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Abstract

The empirical success of particle physics rests largely on an approximation method:
perturbation theory. Yet even within perturbative quantum field theory, there are a vari-
ety of different formulations. This variety teaches us that reformulating approximation
methods can provide a tremendous source of progress in science. Along with enabling
the solution of otherwise intractable problems, reformulations clarify what we need to
know to obtain solutions, which can in turn make previously hidden properties mani-
fest. To develop these lessons, I compare and contrast three compatible formulations
of perturbative QFT: (i) elementary perturbation theory, (ii) the method of Feynman
diagrams, and (iii) a recent reformulation known as on-shell recursion. I propose and
defend a novel account of what it means to ‘make a property manifest,” based on the
inferences that a formulation warrants.

Keywords Reformulation - Approximation - Intellectual significance - Manifest
properties - Feynman diagrams - Scattering amplitudes

1 Introduction

Many results in quantum field theory arise from an application of perturbation theory.
Not just in QFT, but across physics and chemistry, perturbation theory underwrites
important approximation methods—sometimes, the most important. Far from being
an undifferentiated monolith, perturbation theory comprises a multifaceted collection
of problem-solving techniques, unified by an overarching problem-solving strategy.
In many cases, how we formulate perturbation theory makes a huge difference, both
conceptually and methodologically.!

While philosophers of science commonly talk about different formulations of sci-
entific theories, it is less common to focus on formulations of approximation methods.

I For discussions of the importance of perturbation theory for physics, see Batterman (2002), Fillion (2021),
Ruiz de Olano et al. (2022, p. 85), and Miller (2023).
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This is what I propose to do in this essay. I will focus on three different formulations
of perturbative methods for quantum field theory: (i) elementary perturbation theory,
(i1) Feynman diagrams, and (iii) on-shell recursion. At each stage of reformulating,
we will see how new concepts—both mathematical and physical—clarify what we
need to know to solve problems. This case study thereby supports and extends my
‘conceptualist’ account of reformulating (Hunt, 2021b, 2023). Additionally, this case
study supports Ruiz de Olano et al.’s claim that making sense of high-energy physics
requires “acknowledging approximation construction as a distinct stream of theoretical
development,” namely, an activity distinct from constructing new models or theories
(2022, p. 88).

Section 2 introduces key notions from my account of reformulations, including
compatible formulations, problem-solving plans, epistemic dependence relations, and
methodological vs. intellectual significance. Section 3 establishes a baseline for com-
parison by introducing an elementary formulation of perturbation theory. I discuss the
well-known Feynman diagram formulation in Sect. 4. Limitations of this approach
motivate a more recent formulation known as on-shell recursion, which I introduce in
Sect. 5. Section 6 expounds some epistemic benefits that on-shell recursion provides.
This includes making manifest some properties that the Feynman diagram formula-
tion obscures. In Sect. 7, I propose and apply a novel philosophical account of what
it means to make a property manifest. On this account, a formulation makes a prop-
erty manifest whenever it warrants inferring that the property obtains. I then proceed
to gradate this account: relative to a given evidence set and problem of interest, one
formulation makes a solution more manifest provided it rules out more epistemically
possible but non-actual solutions than an alternative formulation does.

2 Compatible reformulations of approximation methods

In previous work, I have proposed and defended conceptualism as an account of how
scientific reformulations improve understanding (2021a, 2021b, 2023). According to
conceptualism, reformulations improve understanding by clarifying what we need to
know to solve problems. Although this prior work does not explicitly highlight refor-
mulating approximation methods, many of my examples involve just this, including
reformulations of matrix element calculations in atomic physics (2021a) and reformu-
lations of crystal field theory in quantum chemistry (2023). Indeed, like the present
case study, both of these examples involve reformulating perturbation theory.

In conjunction with a theory or model, an approximation method provides a
problem-solving plan. A plan consists of a series of steps, connected by inference
rules. Each step of a problem-solving plan relates input information to output infor-
mation, via an inference rule. For convenience, I refer to these components of plans
as epistemic dependence relations or ‘EDRs’ for short (2023). EDRs specify what we
need to know or what suffices to know to carry out a step in a problem-solving plan,
serving as basic components in the epistemic structure of problem-solving. Signif-
icant reformulations involve changes to EDRs: in providing a new problem-solving
plan, a non-trivial reformulation requires a different set of things we need to know (or
that suffice to know) to solve a problem. In Lagrangian mechanics for instance, we
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learn that for many systems, we do not need to know the constraint forces in order to
solve for the equations of motion. In this way, Lagrangian and Newtonian mechanics
provide problem-solving plans based on different epistemic dependence relations.

Here, I focus on different calculational methods for approximating scattering ampli-
tudes. Since these methods constitute logically consistent plans for solving a given
problem—or, more generally, a class of problems—they function as compatible for-
mulations. Compatible formulations do not disagree about the way the world is. They
provide the same answers to problems within their shared domain of applicability.
For such problems, they make the same predictions and ascribe compatible content to
physical systems.? Throughout, I will use “formulation’ as a convenient shorthand for
the more precise—but cumbersome— ‘problem-solving plan.” Differences in EDRs
arise naturally in the context of formulations of perturbation theory. Using on-shell
recursion, we learn that for many quantum field theories, we do not need to know the
Feynman diagrams corresponding to a given tree-level amplitude. Instead, as Section 5
illustrates, it suffices to know a finite number of ‘seed amplitudes’ along with recur-
sion relations. In such cases, “the mere knowledge of three-point [seed] amplitudes
allows the construction of all higher point amplitudes in a recursive fashion” (Henn
& Plefka, 2014, p. 36).

As noted above, a reformulation involves a change in problem-solving plan,
sometimes leading to an entirely novel approach. While some reformulations are
worthwhile, others add little to nothing of value, and still others make matters worse.
In the case study that follows, I identify various ways that a reformulation can con-
stitute scientific progress. In particular, I focus on two dimensions of progress: the
‘methodological’ and the ‘intellectual.” On the methodological side, good reformula-
tions often lead to calculations that are shorter, easier, or reduce the risk of mistakes.
On the intellectual side, good reformulations isolate independently-treatable aspects
of a problem, unify different phenomena, uniformly treat different problems, or illumi-
nate patterns that are otherwise hidden or surprising. Of course, to call a reformulation
‘good’ (or ‘better’) is to make a judgment of its (comparative) value. Such judgments
seemingly commit us to facts about the value of reformulations. Here, I remain neutral
on how best to understand these normative or evaluative commitments.”

2 Ruiz de Olano et al. (2022, pp. 86-88) provide an extended illustration of how some uses of perturba-
tion theory can lead to incompatible approximation methods, i.e. methods that make different empirical
predictions or ascribe logically-incompatible content to a physical system. As Ruiz de Olano et al. (2022)
note, such cases seem to lead to genuinely different or new approximation methods, rather than what I
call reformulations of the same approximation method. I set aside here further questions about how best to
individuate approximation methods.

3 Regarding my own meta-normative commitments, I endorse expressivism about the goodness or value of
reformulations. When we judge that a reformulation is either (intellectually) good or better than another, we
at least express acceptance of a set of norms that recommend (intellectually) preferring that formulation.
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3 Elementary perturbation theory

An n-point scattering amplitude ‘A,,’ characterizes the likelihood that a given particle
interaction will take place, where n-many particles are involved.* Amplitudes provide
a bridge between theoretical predictions and empirical observation. The norm-squared
of the amplitude (| A, |?) is proportional to the differential cross-section, which quanti-
fies how likely a given scattering process is to occur. Owing to the central importance
of scattering amplitudes for characterizing the empirical content of a QFT, physicists
devote a great deal of theoretical resources to calculating them for various particle
interactions.

Formally, an amplitude A, is an inner product of an initial particle state ‘|in)’
and a final particle state ‘|out)’. Due to computational complexities, we typically
approximate scattering amplitudes by applying perturbation theory. To calculate a
scattering amplitude, we treat it as a matrix element of a scattering matrix S. This
matrix relates idealized in- and out-states at negative and positive temporal infinity,
respectively. In these limits, we can idealize the relevant particles as non-interacting,
enabling us to use a non-interacting Hamiltonian Hy. We then perturb this Hamiltonian
by an interaction term H’ to model particle scattering.’

To approximate a scattering matrix, we can expand it in powers of the coupling
between quantum fields, relying on a formula known as Dyson’s expansion.® We
can then compute the amplitude to a desired order in the coupling by summing the
terms that contribute at this order. Calculating these individual terms—known as
time-ordered vacuum expectation values (‘“VEVs’)—can itself be complicated. One
method is to apply Wick’s theorem, which re-expresses time-ordered VEVs in terms of
quantities that are easier to calculate, namely normal-ordered operators and Wick con-
tractions of pairs of operators.” Wick developed this theorem in Wick (1950), building
on the special case of contractions between bosonic fields introduced by Houriet and
Kind (1949).

4 More precisely, a scattering amplitude is a complex-valued function that acts on the “external data” which
defines a scattering process (comprising the energies and momenta of the initial and final particles).

5 Forabrief overview of this approach, see Fraser (2020, p. 395ff.). Other formulations exist for carrying out
elementary perturbation theory, such as expressing a generating functional as a path integral. See Srednicki
(2007).

6 Dyson’s expansion expresses the time-evolution operator U (¢, t1) (in the interaction picture) as a time-
ordered exponential of the interaction Hamiltonian H’ integrated over time: U(t;,?;) = Time-order

P2
— H'(t)dt . . . . o P
e’ I P HO ]. We then relate the scattering matrix to U in the infinite time limit (i.e. 7, 1 approach oo

and —oo, respectively) and approximate the exponential by expanding in powers of the interaction term
H'. See Lancaster and Blundell (2014, §18) for details.

7 Whereas time-ordering rearranges the operators in a vacuum expectation value so that those defined at
later times precede those defined at earlier times, normal-ordering rearranges them such that all creation
operators precede all annihilation operators. A Wick contraction of two operators is the difference between
their time-ordered and normal-ordered values. See Rivat (2021, p. 12129) for standard interpretations of
VEVs.

8 Thanks to Alexander Blum for suggesting this paper by Houriet and Kind. My discussion deviates from
the historical progression of these reformulations, since Feynman introduced his famous diagrams in 1948,
before the introduction of Wick contractions. This element of rational reconstruction does not threaten my
philosophical theses. For the historical development of Feynman diagrams, see Kaiser (2005) and Wiithrich
(2010).

@ Springer



Synthese (2024) 204:116 Page50f25 116

Already within this elementary approach to perturbation theory, an opportunity for a
simple reformulation arises. Naively, one must consider all possible Wick contractions
when calculating VEVs of time-ordered operators. However, one can show that any
VEV term that has non-contracted operators equals zero—i.e. whenever there is at
least one operator in a VEV not paired with any other by a Wick contraction, that
VEV vanishes. This fact leads to the following epistemic dependence relation (EDR):
in order to compute an amplitude (at a given order in perturbation theory), it suffices
to calculate Wick-contracted terms where all operators are contracted (i.e. paired off).
Hence, all VEVs with an odd number of operators necessarily vanish, since it is
impossible to pair off an odd number of operators. This EDR focuses attention on
a much smaller number of terms, illustrating a common methodological benefit of
reformulating: by learning in advance that some terms of a calculation necessarily
vanish, we free ourselves from the labor of calculating them.

Nevertheless, as described here, elementary perturbation theory requires us to cal-
culate many terms that contribute only to the trivial part of the scattering amplitude S.
This trivial part characterizes non-interacting particle processes, but our interest is in
the non-trivial part characterizing interactions between particles.® Both epistemically
and methodologically, we would prefer a formulation that focuses attention on the
terms that contribute non-trivially. This would not only save us calculational labor, but
also clarify what we need to know to describe interaction processes. The method of
Feynman diagrams provides one reformulation of perturbative QFT that accomplishes
these goals.

4 Feynman diagrams

Using Feynman diagrams, we can reformulate perturbation theory to focus attention on
only those terms that contribute non-trivially to the scattering amplitude. This approach
establishes a correspondence between diagrams and terms in the perturbative expan-
sion. Each Feynman diagram is either path-connected or disconnected, depending on
whether one can reach any given point in the diagram from any other point following
a path of propagator lines. This topological property allows us to identify which terms
contribute non-trivially. In short, Feynman diagrams allow us to take advantage of
the following epistemic dependence relation: to approximate the scattering matrix, it
suffices to calculate connected terms, where a connected term is one corresponding to
a path-connected Feynman diagram (Srednicki, 2007, p. 65). Feynman diagrams are
not the only way to express this EDR, but they are the most commonly used expressive
means for taking advantage of it.!”

9 The scattering matrix S decomposes into a trivial part (the identity operator ‘1’) characterizing non-
interactions and a non-trivial part (7) characterizing interactions between particles: S =1 +i7.

10 Both (i) Wick contractions of vacuum expectation values and (ii) position space representations of terms
in the perturbative expansion have the resources to express whether a term is connected or disconnected.
Yet for a variety of reasons, they are at least practically less convenient for agents like us to structure the
search space of identifying all path-connected terms at a given order of perturbation theory. I borrow the
notion of ‘expressive means’ from Ken Manders.
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The Feynman diagram reformulation illustrates some of the intellectual benefits that
conceptualism is designed to capture. By taking advantage of topological properties
of the terms, we learn that many terms need not be calculated. In other words, we
clarify what we need to know to approximate the scattering matrix at a given order
in perturbation theory. As noted above, to calculate the non-trivial part of S, one
only needs to calculate the terms corresponding to connected diagrams. Moreover,
a subset of connected diagrams—known as ‘tadpoles’—can also be neglected. In
this way, Feynman diagrams make manifest particular patterns already present in
the perturbation series, picking out those terms that contribute to the non-trivial part
of the scattering amplitude. They thereby provide a reformulation that is not only
methodologically advantageous but also intellectually significant. Section 7 returns to
this point by developing an account of what it means to make a property manifest.

4.1 Limitations of Feynman diagrams

In principle, we could calculate any scattering amplitude using Feynman diagrams
(at least for theories described by a Lagrangian). But in practice, the Feynman dia-
gram approach becomes incredibly complicated even for relatively simple scattering
processes. A key reason is that the number of Feynman diagrams grows factorially
even as the number of particles involved grows linearly (Henn & Plefka, 2014, p. vii).
For gluon scattering at tree-level (i.e. first-order in perturbation theory), four-particle
scattering involves four diagrams, five-particle scattering involves 25 diagrams, six
particles require 220 diagrams, and ten particles require more than 1 million diagrams
(Elvang & Huang, 2015, p. 8).!! Hence, using Feynman diagrams for processes like
these quickly becomes impractical.

Moreover, the desire to calculate such higher-point amplitudes is not purely theo-
retical; it matters for experiments. At the Large Hadron Collider, interaction processes
are dominated by quarks and gluons scattering off each other and other particles, such
as Z and W¥ bosons. These processes are known as multiple jet events, described by
quantum chromodynamics (QCD). These generic processes form the backgrounds of
most scattering signals. Hence, to isolate more interesting signals, these background
processes must be calculated precisely so that they can be eliminated as noise. Detect-
ing new, interesting signals requires calculating these backgrounds to third-order in
perturbation theory, which includes content associated with two-loop Feynman dia-
grams (Cordero et al., 2022, p. 4; Dixon, 2016). 12 Puture particle colliders may require
calculating some backgrounds to fourth and fifth order in perturbation theory (Arkani-
Hamed et al., 2021, p. 66). This requires calculating a multitude of terms at various
orders in perturbation theory and provides practical motivation for developing on-shell
methods, which are more tractable or computationally efficient than many alternatives.
Historically, these computational motivations led first to off-shell recursion (Berends

1 Badger (2016, p. 2) compares the rates at which the number of diagrams grows based on Feynman
diagrams, color-ordered diagrams, and on-shell diagrams from BCFW recursion.

12 For additional reviews of the current state of high precision calculations, see Heinrich (2021) and
Campbell and Ellis (2023). Abreu et al. (2019) provides a representative example.
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& Giele, 1988), which has many of the same methodological and epistemic benefits
as on-shell recursion (introduced in Sect. 5).13

One might wonder: why can’t we simply stick with Feynman diagrams but compute
them numerically using a computer program, thereby sufficiently speeding up calcu-
lations to achieve our practical goals? Indeed, many of the most precise perturbative
calculations have been done in exactly this way, using supercomputers.'* However,
since terms have to be properly canceled between diagrams, such calculations can be
sensitive to the way in which the program handles poles. Even a computer calculation
can go wrong.!> Thus, working with thousands of diagrams is not only methodolog-
ically inconvenient but also epistemically risky. Here we see an important practical
dimension of the epistemic value of a formulation: a compatible reformulation can
reduce the likelihood of mistakes. The Feynman diagram calculations are error-prone
in a way that on-shell recursion is not. Hence, on-shell recursion reduces the likelihood
of making a mistake for both non-ideal agents and non-ideal computers. Neverthe-
less, in principle, Feynman diagrams contain the relevant information for making a
successful calculation, even if they become impractical or risky.

Motivated by practical necessity, physicists in the 1980s developed strategies for
making Feynman diagram calculations more tractable. These include the methods
of helicity amplitudes (Gastmans & Wu, 1990) and color-ordered amplitudes. Both
methods feature in the more sophisticated on-shell reformulation, but on their own, the
number of Feynman diagrams still grows too quickly for feasible computer computa-
tions, especially at higher orders in perturbation theory. Section 5 returns to helicity
amplitudes after introducing spinor—helicity variables. To color-order an amplitude, we
factoroutall SU (N) gauge group degrees of freedom, resulting in color-ordered (a.k.a.
partial) amplitudes. The full amplitude consists of partial amplitudes adjoined with
the color degrees of freedom. For instance, in pure Yang—Mills theory at first-order in
perturbation theory, all color degrees of freedom can be expressed as a sum over traces
of the generator matrices 7¢ for the gauge group, leading to the following relationship

between the full tree-level amplitude for n-many gluons, .A;’_ gfuon({ai, pi, hi}), and
ree

the partial amplitudes A’g,l ({pi, hi}). The latter are a function only of the kinematical
information involving particle momenta and polarization states (note that the coupling

13 For instance, Berends and Giele note that “the advantage” of recursion “is that for the calculation of
an n + 1 gluon process one can use the calculation of the n-gluon process....the recursion relation takes
automatically into account all Feynman diagrams. Writing down those diagrams would be a problem in
itself, which is now avoided” (1988, p. 760). Badger et al. (2013a) compare the efficiency of on-shell vs.
off-shell recursion.

14 See, for instance, the numerical calculation of the electron’s anomalous magnetic moment up to fifth-
order in perturbation theory, involving thousands of Feynman diagrams (Aoyama et al., 2012). For a
schematic introduction to this research program, see Kinoshita (1989). Miller (2023, p. 515) provides a brief
overview. Note that numerical calculation introduces another approximation method beyond perturbation
theory, such as Monte Carlo integration.

15 The following remarks summarize some risks involved: “using computers to do the calculation can
of course be very helpful, but not in all cases. Sometimes numerical evaluation of Feynman diagrams is
simply so slow that it is not realistic to do. Moreover, given that there are poles that can cancel between
diagrams, big numerical errors can arise in such evaluations. Therefore compact analytic expressions for
the amplitudes are very useful in practical applications” (Elvang & Huang, 2015, p. 8). See also Abreu et
al. (2019), Heinrich (2021) and Huss et al. (2023).
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constant ‘g’ is removed from the partial amplitudes): '®

e on(lai, pis hi}) = "2 Y Tr(T T T A% (pi i) (1)
Sn—1

Color-ordering provides another illustration of how reformulating can be intellec-
tually significant. Specifically, color-ordering modularizes an amplitude calculation
into separate calculations for each color-ordered, partial amplitude. Using the appro-
priate symmetry factors, we can then combine these partial amplitudes into the full
amplitude. Elsewhere, I have characterized ‘modularization’ as the decomposition of
a problem into independently treatable sub-problems (2021a; 2023). Here, we see that
color-ordering parallels the Wigner—Eckart theorem in atomic and molecular physics
(2021a). By taking advantage of a system’s symmetry, this theorem modularizes matrix
element calculations into a symmetry-related component (Clebsch—Gordan coeffi-
cients) and a symmetry-invariant component (known as the reduced matrix element).
This modularization teaches us that many matrix elements are related to each other by
symmetries. A similar moral applies to color-ordering: to calculate the full amplitude,
it suffices to calculate the color-ordered, partial amplitude and then later apply knowl-
edge that depends only on symmetry properties of the amplitude. This separation of
degrees of freedom improves our understanding of scattering amplitudes. On-shell
recursion also takes advantage of color-ordering, making this technique applicable
across different formulations of perturbation theory.

5 On-shell recursion

The calculational limitations of Feynman diagrams helped motivate physicists to
reformulate the perturbative approach to QFT. Using a procedure known as on-shell
recursion, physicists construct recursion relations that express a given amplitude in
terms of amplitudes involving fewer particles. This reformulation involves multiple
steps, including (i) re-expressing amplitudes in terms of spinor—helicity variables, (ii)
applying Lorentz invariance, dimensional analysis, and a locality principle to deter-
mine the initial ‘seed amplitudes’ for recursion, and (iii) applying complex analysis and
a principle of unitarity to derive recursion relations. Recursion provides a particularly
powerful epistemic dependence relation: knowledge of the lower-point amplitudes
yields knowledge of amplitudes involving arbitrarily-many particles. Because this for-
mulation remains under-explored in the philosophical literature, this section provides
a brief overview. More details can be found in the appendix. For simplicity, I focus on
the case of scattering massless gluons (‘pure Yang—Mills’ theory), which conceptually
forms the basis for scattering particles of arbitrary mass and spin (Arkani-Hamed et
al., 2021; Liu et al., 2023).17

16 See Henn and Plefka (2014, p- 23). Here, S,,_1 is the permutation group on n — 1-many objects. For
more on color-ordering, see Schuster (2014) or Elvang and Huang (2015, p. 30ff.).

17 For pedagogical introductions to the case of massless particles, see Elvang and Huang (2015) or Henn
and Plefka (2014). For an introduction to the case of massive particles, see Ochirov (2018). The appendix
discusses the scope of on-shell methods in more detail. Cushing mentions how in the early 1960s, Gunson
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On-shell recursion and the Feynman diagram approach provide compatible formu-
lations of perturbation theory. In the context of a specific quantum field theory, these
two approaches agree on the models’ symmetries, particle content, and scattering
amplitudes (and hence all physical observables). Alongside elementary perturbation
theory, I take them to be both predictively and ontologically compatible, rather than
rival interpretations of quantum field theory or rival formulations of perturbation the-
ory. For instance, physicists working in the on-shell framework frequently move back
and forth between reasoning in terms of Feynman diagrams and reasoning in terms of
on-shell expressions, indicating compatibility. Overall then, these three formulations
provide compatible plans for approximating the scattering amplitudes of a quantum
field theory.'8

As the name suggests, on-shell recursion assumes that all particles are on-shell,
i.e. on the “mass shell.” This means that they satisfy a key kinematic constraint from
special relativity, the energy—momentum relation E2 = ¢*m? + ¢? |p|*. Expressed
in 4-vector notation in natural units: p*p, = m?.1% For instance, massless on-shell
particles lie on the light cone. In contrast, off-shell particles—such as virtual particles
represented by internal lines in a Feynman diagram—do not satisfy this relativistic
constraint. They are in that sense unphysical (and hence typically not construed as
literally representing particles).

The on-shell reformulation begins with a variable change to spinor—helicity vari-
ables, a “highly convenient and powerful notational tool” for expressing the amplitudes
of massless particles for theories set in four spacetime dimensions and some other
dimensions as well (Elvang & Huang, 2015, p. 15). According to Cheung, “spinor
helicity variables are nothing more than an algebraic reshuffling of the external kine-
matic data. Such a manipulation would not be particularly advantageous were it not
for the fact that scattering amplitudes enjoy an immense reduction in complexity when
translated into these variables” (2017, p. 8). When expressed using these variables,
many matrix elements of the scattering matrix vanish. These variables are thus akin to
a good choice of basis, providing similar benefits to diagonalizing a matrix by choos-
ing good basis functions in linear algebra. Additionally, these variables provide an
expressive means that is both on-shell and Lorentz invariant, along with being gauge
invariant.20

For a given particle, helicity is the projection of its spin along momentum:
h = (o - p)/ Ipl, where ¢ = (o1, 072, 03) is the usual set of Pauli spin matrices. For
a positive helicity particle, spin and momentum are aligned, whereas for a negative
helicity particle they are anti-aligned. Although helicity is neither Lorentz nor gauge

(1965) gave an on-shell formulation of S-matrix theory, which Gell-Mann had suggested by at least 1956
(1990, pp. 185, 117, 81). Rivat (2023, §6) briefly discusses the on-shell formalism.

18 Different physical interpretations of these formulations could yield different verdicts about their onto-
logical compatibility. If one interprets Feynman diagrams—but not on-shell recursion—as committed to
virtual particles, then these formulations would no longer qualify as fully compatible. Elsewhere, I argue that
on-shell recursion provides evidence that virtual particles are a formulational artifact of Feynman diagrams
and hence should not be construed literally.

19 Throughout, I will use the mostly-minus metric convention: n,, = diag (1, =1, —1, —1).

20 For an early application of spinor—helicity variables to the calculation of gluon scattering amplitudes in
QCD, see Berends and Giele (1987). For a quick review of this formalism, in a variety of notations, see
Elvang and Huang (2015, pp. 16-18) or Ochirov (2018, p. 2ff.).
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invariant for massive particles, for massless particles it is, since their helicity coincides
with their chirality.?! Moreover, at high energies, many particles are approximately
massless, including light quarks, charged leptons, and neutrinos (Gastmans & Wu,
1990, p. 3).2% Hence, at high-enough energies, particle helicity is approximately con-
served. Working in the helicity basis thereby simplifies matrix element calculations:
matrix elements associated with processes that do not conserve helicity are guaranteed
to vanish, providing a helicity-based selection rule.

To arrive at spinor-helicity variables, we begin with the usual momentum 4-vector
p". We re-express these four degrees of freedom as a momentum matrix p,;:

po+p3 pr—ip2 ?)
p1+ip2 po— p3

A neo_
pab—l’u%;}—(

Here, 0% = (1, o). Notice that the determinant of this momentum matrix is p* p,,
which for a massless particle equals zero. Hence, for massless on-shell particles,
det(p,;) = 0, which implies that this 2 x 2 matrix has rank one. Applying an elemen-
tary fact from linear algebra, we can therefore express p,; as an outer product of two
2-component vectors. These vectors constitute our spinor—helicity variables, denoted
using square and angle bra-ket notation:

Pai = 1P, (pl; and p® = |p)* [p|® A3)

Spinor-helicity variables encode the helicity of spinor states: angle brackets corre-
spond to negative helicity spinors, whereas square brackets correspond to positive
helicity spinors.

We can express any function of kinematic data using inner products of angle and
square spinors. For instance, the familiar Mandelstam invariants s;; = (p; + pj)2
from the Feynman diagram approach are easily re-expressed as follows:

sij = (pi +pp)* =2pip; = (pirj)[pip;] 4

In general, by taking inner products of these angle and square spinor-helicity variables,

we form Lorentz invariant building blocks: {pg) = (p|, |q)d and [pq] = [pl, 1q1°.
Rather than approximate the non-Lorentz invariant Feynman amplitude A#!#»

(p1, - - ., pn) as a sum of Feynman diagrams, on-shell recursion aims to directly cal-

21 For massive particles, a Lorentz boost can reverse momentum without reversing spin, making chirality
the relevant Lorentz invariant for massive particles. In contrast, since massless particles move at the speed of
light, it is impossible to change the direction of their momentum using a Lorentz boost. Hence, the helicity
of a massless particle coincides with its chirality, which is invariant under gauge interactions. Right-handed
massless particles have positive helicity, and left-handed particles have negative helicity (the opposite is
true of anti-particles).

22 Even at a time when particle colliders were much lower energy than today, Gastmans and Wu noted that
at high energies, the masses of leptons and quarks (excluding perhaps the top quark) “are so small compared
to the energies involved in the collisions that they can safely be neglected in almost all cases” (Gastmans &
Wu, 1990, p. 3). Whether or not to count this massless limit as an abstraction, idealization, or approximation
depends on one’s background philosophical views. See Fletcher (2019) and Morrison (2015, pp. 20-21).
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culate helicity amplitudes A, (1" - - n') 23 Helicity amplitudes are Lorentz-invariant
and gauge-invariant quantities, related to a product of polarization vectors " with a
corresponding Feynman amplitude: A, (171 - - . nn) = eﬁﬁ .. .GZZ AHLHn(py oo pp).
Each helicity amplitude arises from scattering n-many particles with a particular con-
figuration of helicities (e.g. two gluons with positive helicity and five with negative
helicity).

Spinor-helicity variables make manifest a transformation property of helicity
amplitudes: these amplitudes are little group covariant. Combined with two further
principles—dimensional analysis and locality—this transformation property places
strong constraints on the form of possible three-particle scattering amplitudes at first-
order in perturbation theory. A system’s ‘little group’ is the subgroup of the Lorentz
group that leaves the system’s momentum p,, invariant. For massless particles in
four dimensions, p,, is invariant under two kinds of transformations: translations in
space and rotations around the direction of motion. Hence, the little group is the
two-dimensional Euclidean group 750 (2), with rotational subgroup SO (2).>*

Little group transformations leave invariant the 4-momentum of spinor-helicity
variables: letting 7 be a non-zero complex number, |p) — 7 |p), and |p] — ~ipl.
The phases ¢ and r~! cancel, keeping the momentum invariant. However, helicity
amplitudes are not invariant under little group scaling. Instead, they are covariant with
weight tifzh": A, (1 phny = 1‘;2h"An(1h1 ... n"n). Applying little group transfor-
mations to helicity amplitudes thereby yields information about the helicity of the
scattering particles (Elvang & Huang, 2015, p. 38).

By applying little group covariance alongside a principle of locality, we can use
dimensional analysis (counting the mass dimensions of various expressions) to derive
the 3-particle helicity amplitudes for massless Yang—Mills theory at tree-level. In the
Lagrangian framework, locality imposes the following constraint: the Lagrangian .
must be a function of fields that are (i) defined at a single point and (ii) possess no
more than finitely-many derivative terms (with no derivatives in denominators). This
locality principle allows us to eliminate some otherwise formally adequate expressions
for tree-level 3-particle amplitudes (i.e. expressions that satisfy the constraints from
little group covariance and dimensional analysis but violate locality). In this way, one
can show that at first-order in perturbation theory, the 3-point amplitudes for massless
Yang—-Mills theory are fixed entirely by the helicities of the scattering particles (Elvang
& Huang, 2015, p. 39). At first-order in perturbation theory, amplitudes with either all
positive or all negative helicity particles vanish. If there are two particles of negative
helicity and one of positive helicity, then the 3-particle helicity amplitudes are given
entirely as a function of angle products:

123
Az[17273 ]——(23) a1 (5)
e, (13 e (23)°
A[172737] = et AsllT2737 1= o (6)

23 Here, we adopt the notational convenience of letting ‘n'tn* denote the kinematic properties of the n-th
particle, with momentum °p;,’ and helicity ‘h,’.

24 For a discussion of the little group aimed at philosophers, see Rivat (2023, §3).
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Notice that the two negative helicity particles occur in the numerator, while the denom-
inator contains products of the positive helicity particle with both negative helicity
particles. If instead there are two positive helicity particles and one negative helicity
particle, then the 3-particle amplitudes take exactly the same form, only now expressed
in terms of square spinors:

bty 12P
A3[112137] = ETETIR 7)

Using complex analysis, we can develop recursion relations for higher-point tree-
level amplitudes as a function of these three-particle amplitudes. In this way, the
3-point amplitudes function as “seed amplitudes” for Yang—Mills theory. Yang—Mills
theory is thereby on-shell constructible: all tree-level amplitudes can be defined recur-
sively starting from a finite number of seed amplitudes. As the appendix elaborates,
deriving recursion relations relies on a third physical principle: unitarity. The most
familiar definition of unitarity references the scattering matrix. The S-matrix is uni-
tary, meaning that the probabilities of all possible scattering processes always sum to
one. Combining unitarity with locality leads to the following factorization property:
at a pole, an amplitude factorizes into left and right subamplitudes, connected by a
propagator. This factorization property underwrites the recursive structure of scatter-
ing amplitudes. As discussed in the appendix, these recursion relations require that
a pole at infinity vanishes. This typically occurs with felicitous choices about which
lines to momentum-shift, but there is no known uniform method for handling the pole
at infinity.

Using these recursion relations, the on-shell approach provides epistemic access to
the same tree-level amplitudes as Feynman diagrams. At higher-orders in perturbation
theory, Feynman diagrams acquire a ‘loop’ structure, with multiple internal propaga-
tors connected to each other. On-shell recursion handles these higher-orders through
the method of unitarity cuts (based on the optical theorem) (Elvang & Huang, 2015, p.
124ff.).2% In short, one can systematically decompose loop-level amplitudes into prod-
ucts of tree-level amplitudes. Overall then, on-shell recursion shows that knowledge
of (i) seed amplitudes, (ii) recursion relations, and (iii) the method of unitarity cuts
suffices for knowledge of amplitudes at any order in perturbation theory, for theories
that are on-shell constructible. Since none of these calculational techniques, physical
principles, or attendant variable changes contradict the method of Feynman diagrams,
on-shell recursion provides a compatible problem-solving plan for calculating scatter-
ing amplitudes. One can consistently move back and forth between these formulations
without contradiction.

6 Some epistemic benefits of on-shell recursion

Having slogged through the rudiments of on-shell recursion, we are entitled to wonder:
so what? (at least philosophically speaking). Fortunately, our hard work is amply

25 For more on the generalized unitarity method, see Bern and Huang (2011), Badger et al. (2013b), and
Arkani-Hamed et al. (2021, §7).
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renumerated. [ will argue that the on-shell reformulation of perturbative QFT supports
at least three philosophical upshots. First, the derivation of recursion relations provides
aparticularly compelling example of different epistemic dependence relations between
two formulations: by moving to spinor—helicity variables and using complex analysis,
we change what we need to know to calculate scattering amplitudes. Second, this
reformulation illustrates how it can be worthwhile to identify and utilize basic physical
constraints or principles to the full extent possible. While substantial progress in QFT
did not require exploiting dimensional analysis, little group scaling, and locality, it
is extremely illuminating to discover how much follows from these principles alone.
Third, on-shell recursion helps make important patterns manifest, patterns that are
otherwise hidden (such as the Parke—Taylor formula). Section 7 develops this third
philosophical upshot in detail.

The on-shell formulation teaches us the following: to approximate an n-point scat-
tering amplitude, it suffices to know (i) the lower-point amplitudes and (ii) a relevant
set of recursion relations. This knowledge is an instance of an epistemic dependence
relation, obtained by reformulating. According to conceptualism, knowledge of these
EDRs has epistemic value independently of any practical consequences or method-
ological benefits. Figuring out what we need to know to solve problems enhances
our understanding. Without this knowledge from on-shell recursion, one might erro-
neously think that they need to know the physical or mathematical content associated
with each connected Feynman diagram at a given order in perturbation theory. Even in
a context where we choose not to avail ourselves of on-shell recursion, knowledge of
this EDR remains valuable. As this case study illustrates, it is epistemically valuable
to clarify what we need to know to solve problems, and this is one of the benefits
of reformulating. Of course, gaining knowledge of EDRs typically has downstream
practical and methodological benefits as well. We can save ourselves a vast amount
of computational resources by decomposing higher-point amplitudes into lower-point
amplitudes that we have already calculated.

For those who remain skeptical of the non-practical epistemic value of reformulat-
ing, some interpretive consequences of on-shell recursion might be more convincing.
The EDR behind on-shell recursion supports the following physical interpretation of
scattering amplitudes: scattering amplitudes have a recursive structure, wherein part of
the physical content of a scattering amplitude is contained within lower-point ampli-
tudes. The success of on-shell recursion provides evidence of this recursive structure
in reality (or at any rate, evidence for some physical connection between scattering
amplitudes that involve different numbers of particles). Intuitively, knowledge of this
recursive structure has epistemic value independently of any practical benefits that
might come from exploiting it in calculations. This interpretive point illustrates a
philosophical thesis defended by Ruiz de Olano et al. (2022), namely that approxi-
mation methods can influence how we interpret a physical theory. Here, we see that
a particular formulation of perturbation theory provides evidence for how to interpret
the physical content of scattering amplitudes.

On-shell recursion also illustrates a more general moral regarding a particular
methodology for reformulating. Schematically, on-shell recursion succeeds by iden-
tifying and applying basic physical constraints or principles. The goal is to extract as
much physical information from these principles as possible, thereby constraining the
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form and content of perturbative scattering amplitudes. In particular, we saw how some
three-particle amplitudes are completely determined by (i) a principle of locality, (ii)
their transformation properties under the little group (stemming from a background
principle of Poincaré invariance), and (iii) a logico-physical principle of dimensional
analysis.26 Then, to develop recursion relations, we extract further information from a
physical principle of unitarity. Overall, on-shell recursion illustrates how it sometimes
pays to ‘go back to basics’ when reformulating a theory or approximation method.?’

Nonetheless, it can sometimes take decades to reap the benefits of reformulat-
ing a theory using basic principles. In many ways, on-shell recursion is a successful
resuscitation of a similar but largely unsuccessful approach from the 1950s—1960s,
known as S-matrix theory.”® The S-matrix program sought to constrain scattering
amplitudes on the basis of a few fundamental physical principles, rather than by pos-
tulating Lagrangians for field theories. Perhaps this program floundered because it
initially focused on the less tractable case of massive particles. On-shell recursion
takes advantage of many of the same physical principles, but it initially focused on
massless particles, often in the context of more tractable supersymmetric Yang—Mills
theories.?? Hence, there is no guarantee that this general methodological approach to
reformulating will be fruitful.

7 Making properties manifest

Physicists often claim that one formulation or representational choice makes a property
manifest, such as a particular symmetry.? Perhaps the most common example is ‘man-
ifest Lorentz invariance,” wherein a representation makes manifest that an expression
is Lorentz invariant. Moreover, by clarifying what we need to know to solve problems,
some reformulations make properties or facts more manifest, indicating that manifest-
ness admits of degrees. Nonetheless, physicists do not typically specify what it takes
for a property to be manifest, as opposed to being hidden or obscured.?!

Roughly, by calling a property ‘manifest,” physicists seem to mean that it is easy or
simple to infer that the property obtains. In the case of manifest Lorentz invariance, one

26 For more on the epistemic benefits of dimensional analysis, see Sterrett (2009) and Lange (2009).

27 Carcassi and Aidala’s Assumptions of Physics project (2021) illustrates this methodological moral as
well, in the context of classical mechanics, quantum mechanics, and thermodynamics.

28 For contemporaneous overviews of S-matrix theory, see Eden et al. (1966), Olive (1964), and Chew
(1966). For a philosophical-historical account, see Cushing (1990).

29 For discussions of the relationship between the S-matrix program and on-shell recursion, see Benincasa
and Conde (2012), Feng et al. (2011), and Bern and Huang (2011, p. 2). Illustrating the methodological
moral discussed here, Benincasa and Conde note that “ideally one would like to formulate a general S-
matrix theory starting from a minimal amount of assumptions” (2012, p. 2). This aim goes back to early
proponents of the S-matrix program (Cushing, 1990, pp. 116-118, 133, 182).

30 For instance, Cohen, Craig, et al. (2023) discuss how one can make manifest the independence of
scattering amplitudes from the choice of field parameterization, an issue I discuss below.

31 Regarding Yang—Mills theory and perturbative approaches to gravity, physicists sometimes mean some-
thing very precise when they say a variable choice ‘makes a symmetry manifest,” namely that the variables
transform linearly under a given symmetry group. Yet, this definition is too restrictive to capture all uses of
‘manifestness.’
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can ‘read off” Lorentz invariance from index notation, checking that each lower tensor
index matches a corresponding upper tensor index. Matching indices indicate that the
represented quantity transforms as a Lorentz scalar (and is hence invariant). Yet, what
it takes for an inference to be ‘easy’ or ‘simple’ is problematically subjective: these
factors depend primarily on idiosyncratic features of scientific agents, rather than the
formulation or mode of presentation itself. What is easy or simple for one person to
infer might be difficult for another, based on differences in their cognitive capacities
or skills. Fortunately, from this subjective starting point, we can extract a notion of
‘manifestness’ that is at least intersubjective. In what follows, I propose and apply a
more precise characterization of what it means to make a property manifest.

Lying behind physicists’ intuitions about easy or simple inferences are norms gov-
erning when an inference is warranted. I propose that a formulation makes a property
manifest when an agent who understands that formulation is warranted to infer that the
property obtains. In other words, the agent’s evidence warrants or licenses this infer-
ence. Depending on one’s preferred philosophical account of epistemic warrant, this
makes ‘manifestness’ at least an intersubjective—if not an entirely objective—feature
of a problem-solving formulation. Additionally, by focusing on epistemic warrant, my
account avoids appeals to differences in how joint-carving, natural, or fundamental
different formulations are. In this way, my proposal is less metaphysically-committed
than related proposals regarding perspicuous representations (Mgller-Nielsen, 2017,
North, 2021).

To illustrate my account of making properties manifest, consider again the property
of being invariant under Lorentz transformations. As noted above, an expression is
manifestly Lorentz invariant provided all lower and upper tensor indices are paired
off. Matching indices warrants inferring that the quantity is a Lorentz scalar and
hence invariant under Lorentz transformations. For instance, the expression F),, F/*¥

is manifestly Lorentz invariant. In contrast, the expression f % is not man-
ifestly Lorentz invariant, despite representing a Lorentz invariant measure (here,
wy = ++/|k|> + m?). Short of performing a calculation, one is not warranted to infer
that this expression is Lorentz invariant, simply on the basis of its representational
form.

Turning to a slightly more involved example, consider the following Lagrangian
density (Cheung, 2017, p. 2):

1 I B B
3_5[1+x1¢+2—!/\2¢ + 30’ + et ...]amaﬂqj 8)

Superficially, this Lagrangian density appears to represent an interacting theory, based
on the terms involving ¢, ¢*, and higher powers of the scalar field ¢. In fact, this
Lagrangian density describes a free, i.e. non-interacting, scalar field. For instance, the
non-trivial part of its four-particle scattering amplitude vanishes. Working from the
Lagrangian density (8), one could define Feynman rules and compute this four-particle
amplitude at first-order in perturbation theory, finding that it equals zero. Likewise,
one could calculate the five-particle amplitude, again finding that the contributions
from different Feynman diagrams cancel each other out.
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As Cheung dramatically notes, “the 14-particle [tree-level] amplitude also vanishes,
albeit through the diabolical cancellation of upwards of 5 trillion Feynman diagrams”
(2017, p. 3). In saying this, Cheung has not himself written down any of these 5 trillion
Feynman diagrams. Instead, it suffices to perform an appropriate field redefinition
¢(x) —> é(x) that makes manifest the non-interacting nature of the Lagrangian (8).
In general, scattering amplitudes are invariant under local redefinitions (a.k.a. re-
parameterizations) of the fields appearing in the Lagrangian density. A redefinition of
a field ¢ (x) adds any local function F(¢(x)) to that field, provided the derivative of
F evaluated at zero equals one (i.e. F/(0) = 1). By making an appropriate choice of
F(¢(x)), we can transform the Lagrangian density (8) into a manifestly free form,
where m is the mass of the field:

. %a,@a% 4 %ngﬁ ©

Since formulations can make properties more or less manifest, my account must
allow for gradation. Intuitively, depending on the formulation being used, an agent
can be more or less ‘close’ to having a warranted inference. One way to quantify
this notion of closeness relies on the number of epistemically possible solutions at a
given stage of problem-solving. A solution counts as epistemically possible provided
it has not yet been ruled out by the agent’s evidence. Other things equal, an agent is
closer to the solution provided fewer non-actual answers are epistemically possible, i.e.
provided their evidence has ruled out more non-actual putative solutions. At each stage
of calculation, an agent applies an inference rule which changes their evidence (or at
least their proximal or salient evidence), restricting which answers are epistemically
possible (relative to their proximal evidence).

In a given problem-solving context, each possible solution corresponds to an epis-
temically possible property that the system might have. The problem is to determine
which property or fact obtains, relative to a contrast class of possible properties or
facts. With these clarifications in place, I propose the following gradated account
of manifestness: compared to a given formulation, another makes a property more
manifest provided it rules out more epistemically possible properties from the given
contrast class. This means that an agent working with the ‘more manifest’ formulation
is closer to being warranted to infer the solution—e.g. the relevant property or fact that
actually obtains—compared to another agent who begins with the same initial input
information (i.e. background evidence) while using a ‘less manifest” formulation.

Comparing the Feynman diagram formulation with on-shell recursion, the lat-
ter makes more manifest some striking properties of scattering amplitudes. One
paradigmatic example is the Parke—Taylor formula, which characterizes gluon helicity
amplitudes in terms of an elegant cyclic structure (provided exactly two of the gluons
have negative helicity):

(p1p2)*

Al’l T +... + = 10
PPy ps - pnl (p1p2){p2p3) - -~ (np1) "
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After calculating the tree-level amplitude for two gluons scattering to four gluons
(1986a), Parke and Taylor (1986b) proposed this formula as a well-motivated conjec-
ture. Berends and Giele first proved it in 1988 using off-shell recursion techniques
combined with color-ordering and spinor—helicity variables (1988, p. 788ff.). Using
Feynman diagrams, a proof of this relation for the special case of a 7-gluon tree ampli-
tude would generically require analyzing 154 diagrams (Elvang & Huang, 2015, p.
34). These calculations would also require choices of field redefinitions and gauge,
even though the answer does not depend on these choices. In contrast, on-shell recur-
sion provides a short inductive proof, spanning a mere three pages once the on-shell
formulation has been laid out (Elvang & Huang, 2015, pp. 55-57).3% Intuitively then,
an agent using the on-shell formulation is much ‘closer’ to being warranted to infer the
Parke—Taylor formula. In virtue of good variable choices and the physical principles
deployed, the on-shell formulation rules out more answers that are initially epistemi-
cally possible, regarding the form of these n-point gluon amplitudes. Whereas with the
Feynman diagram approach, more epistemically possible but non-actual answers are
‘live,” up until the end of the calculation when the Parke—Taylor formula emerges.*3

As this example suggests, making a property (more) manifest typically provides
a number of practical and methodological benefits, such as shortening the length of
proofs or calculations. This saves time and resources, making it easier to derive some
facts about amplitudes, such as the Parke-Taylor formula. Of deeper philosophical
interest, making a property (more) manifest is another way reformulations can pro-
vide non-practical epistemic value. Intuitively, it is intellectually valuable to approach
logical omniscience. By making a property (more) manifest, a formulation takes us
closer to logical omniscience. We spend fewer evidential stages of calculation further
away from knowledge of a relevant consequence of our framework or theory.

For another argument that the on-shell reformulation yields something of non-
practical epistemic significance, consider the following. The form of the Parke—Taylor
formula shows that it does not depend on particular choices of gauge or field redef-
inition for the quantum fields in the Lagrangian. Intuitively then, we should be able
to derive and understand the formula without relying on such representational over-
specifications.’* Regardless of any downstream practical benefits, it is intellectually
significant to derive this formula without introducing gauge choices and field redef-
initions. The on-shell formulation provides a way of achieving this epistemic aim,
thereby improving our understanding of the Parke—Taylor formula. In contrast, any
way of deriving this formula using Feynman diagrams requires making a particular
choice of gauge and field parametrization. Hence, the Feynman diagram formulation
is epistemically deficient in a way that the on-shell formulation is not.

32 See Henn and Plefka (2014, pp. 42—45) for a similar proof.

33 Henn and Plefka helpfully summarize this difference between the two approaches as follows: “A reason
for the complexity of the Feynman diagram calculation is that individual Feynman diagrams are gauge
variant and involve off-shell intermediate states in internal propagators. The amplitude, on the other hand,
is gauge invariant and only knows about on-shell degrees of freedom. Hence, in going from Feynman
diagrams to an amplitude the unphysical degrees of freedom cancel. On-shell approaches that focus on the
analytic structure of the final result allow [us] to circumvent these unnecessary complications” (2014, pp.
vii-viii).

34 This desideratum is somewhat analogous to an occasional desire in mathematics for ‘purity of proof” or
method. For the notion of representational over-specification, see Manders (1999).
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Of course, this limitation does not entail that Feynman diagrams obscure all
physically-relevant properties of scattering amplitudes. As we saw in Section 4, Feyn-
man diagrams make manifest some topological features of scattering amplitudes. For
instance, they warrant inferring that any term in the perturbation series which corre-
sponds to a disconnected Feynman diagram does not contribute to the non-trivial part
of the scattering amplitude. This is a fact that elementary perturbation theory obscures.

Even compared with the on-shell formulation, there are physical properties that
Feynman diagrams succeed at making more manifest. In particular, Feynman dia-
grams make locality manifest, while on-shell recursion obscures this property within
amplitude calculations. To accommodate an inherent gauge redundancy within polar-
ization 4-vectors, the on-shell formalism introduces an arbitrary reference momentum
spinor (representing an equivalence class of gauge-related polarization vectors). Prob-
lematically, using reference momenta to re-express polarization vectors leads to the
appearance of spurious poles (Elvang & Huang, 2015, p. 61). Calculating amplitudes
using reference momenta frequently leads to expressions of the following form:

1

11
il pi+---+pjlk) (o

Interpreted literally, these expressions correspond to non-local interactions, namely a
pole in a tree amplitude where a particle fails to go on-shell. They thereby represent
an unphysical pole. Ultimately, the residues of these unphysical poles must cancel
systematically so that only physically meaningful (i.e. local) poles remain.>> By con-
trast, in the Feynman diagram approach—once appropriate gauge choices and field
redefinitions are made—Ilocality is manifest throughout the calculation: all poles in a
tree amplitude correspond to a propagating particle going on-shell, indicating that all
interactions are local.

If one were searching for a grand philosophical moral from these examples it might
be this: we should not expect that success at making some properties manifest will
translate into success at making all physically-relevant or fundamental properties man-
ifest. There may not be a canonically best formalism for making physical properties
manifest. This moral is similar to Ruetsche’s skepticism that we will ever arrive at
a single, unified interpretation of all successful scientific theories (2015, p. 3434).
Hence, in at least a small way, this case study provides reasons to doubt that physics
will arrive at a uniquely-best language for ‘carving nature at its joints.” Fortunately,
we have seen how to appraise the non-practical epistemic value of these formulations
without relying on putative differences in joint-carving.

8 Conclusions

By examining three formulations of perturbative QFT, I have illustrated numerous
ways in which reformulating an approximation method can improve our understanding

35 Spurious poles arise in the case of handling massive particles as well (Arkani-Hamed et al., 2021, p.
19). For a discussion of how to eliminate spurious poles by changing variables to momentum twistors, see
Hodges (2013).
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of a physical theory. At each stage of reformulating, we clarify what we need to know
to calculate scattering amplitudes. The Feynman diagram formulation shows that we
do not need to calculate terms corresponding to disconnected diagrams. The on-shell
formulation shows that we typically can construct higher-point amplitudes recursively
from a small number of seed amplitudes.

Clearly, these aspects of reformulation provide methodological benefits that are
of practical epistemic significance. They facilitate and speed up calculation, while
reducing the risk of mistakes for imperfect epistemic agents like ourselves. Beyond
these practical benefits, I have defended a stronger claim: these reformulations also
provide epistemic benefits of a non-practical sort, thereby supporting my conceptualist
account of the ‘intellectual significance’ of compatible reformulations (2021b, 2023).
In particular, I have argued that different formulations of perturbative QFT succeed at
making different properties manifest. According to my proposal, a formulation makes
a property manifest whenever it warrants inferring that the given property obtains.
By gradating this account of manifestness, I captured how some formulations make
a property more manifest, compared with other formulations. Finally, this case study
supports Fraser’s (2020) and Ruiz de Olano et al.’s (2022) contention that approxima-
tion methods matter for theory interpretation. For instance, on-shell recursion provides
evidence that scattering amplitudes possess arecursive structure. Additionally, we have
seen how reformulations can reveal patterns that are otherwise hidden or obscured,
such as the Parke—Taylor formula for gluon helicity amplitudes.

Appendix

According to a standard principle of locality, all particle interactions are local, rep-
resented either by a local field or by an on-shell propagating particle which mediates
the interaction (Elvang & Huang, 2015, pp. 44—45). In terms of the analytic structure
of tree-level amplitudes, locality posits that all tree-level poles (with non-vanishing
residue) correspond to a propagating particle going on-shell. Hence, all poles in the
amplitude arise from a sum of momenta, P, going on-shell, such that P? = 0. Where
there is a pole, there is a propagator. Unitarity requires that the probability of a scatter-
ing process be preserved under insertion of a pole, which requires that the amplitude
factorize into a product of left and right subamplitudes: A, P2—0> A L#A gr. Com-

bined with a simple application of complex analysis, this factorization property results
in powerful recursion relations.

Different kinds of recursion relations amount to different ways of formulating the
same physical content. These approaches are based on applying Cauchy’s residue the-
orem to an analytic continuation of the amplitude A,, into the complex plane (Elvang &
Huang, 2015, Ch. 3). Since we know from locality and unitarity that n-point amplitudes
factorize into lower-point amplitudes at poles, we seek to characterize the amplitude
in terms of its poles. Cauchy’s residue theorem provides one way of expressing a holo-
morphic function in terms of residues of its poles. This motivates defining a complex
shifted amplitude A, (z), whichisa holomorphic (i.e. complex differentiable) function
of a complex variable z. We construct the shifted amplitude An(2) by shifting some
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component momenta pl” by an associated complex-valued vector ri“ times z. The shift
vectors rl.“ are constrained such that the shifted momenta 13;‘ (z) remain on-shell and
satisfy momentum conservation.® When z = 0, the shifted momenta return to being
wholly real-valued, and we recover the unshifted amplitude of interest A, = An 0).
A, (2) is thus the analytic continuation of A, into the complex plane. More usefully,
A, is the residue at z = 0 of the holomorphic function %.37

Since 42 jg holomorphic except at finitely-many isolated singularities (i.e. its

Z
poles), we can apply Cauchy’s residue theorem to calculate A, as a sum of residues.

First, note that An(O) = 2—71” f @ dz, where Cy is a closed contour around the

Co
pole at z = 0O (and containing no other singularities). We proceed to deform the

contour Cp to oppositely oriented contours surrounding the other poles, including
possibly a pole at infinity. Then, applying Cauchy’s residue theorem, we see that
An (0) = By — Zz; Res,—;, [@] Here, ‘B’ denotes the residue of the pole at
infinity. As mentioned in Section 5, the construction of on-shell recursion relations
requires showing that B, equals zero. To summarize what we’ve done so far: by
transforming the on-shell amplitude into a holomorphic function of a complex variable,
we can determine its value by focusing on the residues of poles of this holomorphic
function. Cauchy’s theorem lets us express the physical, unshifted amplitude as a

summation of residues of the shifted amplitude divided by z.
An(@)
Z

Our goal then is to calculate these residues Res;—;, ,[ ] of the various poles.

As it turns out, each residue equals a product of lower-point amplitudes connected
by a propagator. This is how we finally arrive at recursion relations for higher-point
amplitudes in terms of lower-point amplitudes. First, we define the following sums of
momenta and shift vectors: P = Y, pi» Pr = Y jc; Pi»and Ry = Y, ri. Using
the constraints on the shift vectors riM , we can show that 1312 = PI2 +2z-2P;-R;. We
want to factor this expression so that when 1312 = 0 (i.e. when 1/ 1’312 has a pole), we
have a zero at z = z;. This lets us define the other poles z; corresponding to the sums
of shifted momenta equaling zero. A short manipulation shows that we should define

1 =27
z—z; p?’

By this construction, each simple pole z; corresponds to a sum of complex shifted
momenta P; = p1 + -+ + Pi going to zero. By locality, we know that each of these
poles corresponds to an on-shell propagator term 1/ }3,2 Then, by unitarity, we know
that we can factorize the shifted amplitude as z — zj:

-P? . . A .
ZJ as ﬁ. Taking the reciprocal of P?, we then have # = as desired.
1

. A A 1.
limg—z; An(2) = AL(z1) =5 Ar(21) (12)
PI
36 : : n no_ 0 - i 7t L = i
Specifically, we require that ) ", ri =05r;-rj =0Vi,j;and p; - r; = 0 Vi (Elvang & Huang,
2015, p. 50).
37 To see this, recall from elementary complex analysis that the residue of a simple pole z; is given by the

limit as z — z; of the holomorphic function times (z — z;). In this case, z = 0 is a simple pole of w.
An(@) An@

4

=lim,_0 An(z) = Ap.

Hence, we have Res( z=0)=lim;_,0(z—0)
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This expresses the amplitude in terms of the complex shifted momenta P2, but ulti-
mately we want a factorization using the real, physical momenta P; instead. Our goal

remains to calculate the residues Res;—, [%] By asimple algebraic manipulation,
An(2)
Z

we can show that Res;—, [ ] actually equals —A L(z 1) A r(z7).38 Hence, sub-
l

stituting this expression into our earlier expression from Cauchy’s residue theorem,
we discover the following recursion relation:

An=Ay0) =B+ )] [AL(Z»%AR(Z])] (13)

diagramsj 1

This represents our amplitude of interest as a product of two shifted amplitudes
A r(z;) and A r(z1) (Correspondmg to left and right parts of an on-shell diagram),
with a propagator term 1/ P12 in between. Note that the left and right subamplitudes

(A and Ag) must each involve fewer than n-particles since they each have at least
one external particle leg. Hence, provided that B, = 0, we have just expressed
our n-point amplitude of interest, A,, as a summation over products of lower-point
(complex-shifted) on-shell amplitudes Ay and Ag. We could apply the same recursion
relation to A7 and Ag to express them as functions of lower-point amplitudes, all the
way until we reach the seed amplitudes (assuming the theory is on-shell constructible).

For this method to succeed, the residue of the pole at infinity (B,) must equal zero.
This means that it is necessary to know the behavior of the amplitude at large z, i.e. at
the boundary of the complex plane. There is no known systematic way of calculating
this for arbitrary quantum field theories (Elvang & Huang, 2015, p. 52). It generally
must be shown on a case-by-case basis. Furthermore, only certain combinations of
shifted external momenta succeed at satisfying this boundary condition. For instance,
some choices of shifts in pure Yang—Mills theory do not lead to a vanishing residue
at infinity. This boundary condition problem provides a good example of a lack of
uniformity of treatment, since we don’t have a uniform method for calculating this
residue systematically. In contrast, approaches based on Feynman diagrams do not
encounter a similar problem, since they do not have to calculate this residue for a pole
at infinity.

One of the most popular on-shell methods uses BCFW recursion relations, named
after Ruth Britto, Freddy Cachazo, Bo Feng, and Edward Witten (2005). The resulting
on-shell diagrams are known as BCFW diagrams or BCFW terms/subamplitudes.
The BCFW recursion relations make the generic recursion relations described above
more convenient by shifting the fewest possible external momenta. This decreases
the number of on-shell diagrams that need to be considered to compute an n-point
amplitude.

38 This follows from the fact that l/lf’,2 equals z:Zz11 ﬁ. Then, since z; is a simple
1

pole, we have ResZ=Z[[A"Z(Z)] = limgsz(z — 21)@ = limzﬁzlzZ Anm) =
limg— 7, Z;Z’ AL(Z[) J2AR(11). Then, substituting for ﬁ,, we see that this equals

z]

limz—z [Z L= ALGD 5 AR(zn] = —ALGn) 5 ARG
1
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Regarding their scope, BCFW recursion has been shown to work in a variety of
different quantum field theories and gravity theories. These include gluon scattering
in Yang-Mills (YM) theory, scalar-QED, ./ = 4 super Yang-Mills theory®’, and
graviton scattering at tree-level (Elvang & Huang, 2015, pp. 62-65). In pure YM theory,
A = 4 super YM theory, and gravity scattering, all tree-level amplitude information is
ultimately contained in 3-point amplitudes. This suggests interpreting the higher-point
interaction vertices in the Lagrangians for these theories as not carrying additional
physical content beyond the on-shell three-point interactions. For instance, the four-
point interaction term in the Feynman diagram formulation of pure YM theory may
merely serve to maintain the gauge invariance of the Lagrangian (2015, p. 62). It is
an open question whether BCFW recursion extends to scattering arbitrary massive
particles (Arkani-Hamed et al., 2021, pp. 65-66), although it has been shown to apply
in some specific cases (Badger et al., 2006; Ozeren & Stirling, 2006).

For arbitrary renormalizable quantum field theories in four dimensions, BCFW
recursion does not generally work. However, other recursion methods have been devel-
oped that succeed. In particular, by shifting all of the external momenta lines, one can
develop recursion relations using three-point and four-point scattering amplitudes as
the seed amplitudes (Cheung, 2017, pp. 27-29; Cohen et al., 2011). This all-line recur-
sion is computationally more complicated than BCFW recursion. Since more momenta
are shifted, there are more subamplitudes to consider when factorizing. Nonetheless,
it has been shown that if the theory contains only massless particles, it is necessary to
shift only five external lines, and in many cases three lines suffice (Cheung et al., 2015).
Additionally, on-shell recursion succeeds even for some non-renormalizable theories
with massless particles, including those that do not have derivative interactions (Che-
ung et al., 2015). More recently, on-shell recursion methods have been extended to the
Standard Model, viewed as an effective field theory (Aoude & Machado, 2019; Huber
& De Angelis, 2021; Liu et al., 2023). Constructing recursion relations for theories
with massive particles is an active area of research (Ballav & Manna, 2022).
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39 ¢ counts the number of supercharges 04 and QZ, which are supersymmetry generators that transform
bosons into fermions and vice versa.
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