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Abstract. In this article, the bound state solution of the modified radial Schrédinger equation
is obtained for the sum of Cornell and inverse quadratic potential. Here in, the developed
scheme is used to overcome the centrifugal part at the finite temperature and the energy
eigenvalues and corresponding radial wave functions are defined for any angular momentum
case via the Nikiforov-Uvarov methods. The present result are applied on the charmonium and
bottomonuim masses at finite and zero temperature. Our result are in goog agreement with
other theoretical and experimental results. The zero temperature limit of the energy spectrum
and eigenfunctions is also founded. It is shown that the present approach can successfully be
apply to the quarkonium systems at the finite temperature as well.

1. Introduction

It is well known that, one of the primary goals in the quantum mechanics is to find exact solutions
of the wave equation because they contain all the necessary information on quantum system
consideration. Since the wave function contains all essential information for full description of
a quantum system, therefore, an analytical solution of the Schrodinger, Klein-Fock-Gordon and
Dirac equations is of high importance in quantum mechanics [1, 2]. There are few potentials
for which the Schrodinger equation are able solved exactly for all n, radial and [ orbital quantum
states [1, 2, 3, 4]. In general, many quantum systems can only be treated by approximation
methods or numerical solutions.

There are several potentials such as exponential-type potentials are still attracted the
attention of many researchers. From this potentials include the Hulthén potential, the Manning
Rosen potential, Woods-Saxon potential and the Eckart-type potential. It should be mentioned
that essential contributions are concerned with the [ # 0 wave case. Also the Cornell potential
and mixed between the Cornell potential and the harmonic oscillator potential, also Morse
potential as in [5, 6, 7, 8, 9] are suggested for solving the Schrédinger equation. The
investigation of the heavy-meson systems such as bottomonium and charmonium are present
essential interest because of its relies on entirely on the theory of quantum chromodynamics
as in  [10] and references therein. Heavy quarkonia have been suggested as hard probes of
the quark-gluon plasma [11] since the modification of static interactions at finite temperature
eventually implies a dissolution of heavy quarkonia bound states into the continuum of scattering
states. Results of this effect is studied in a suppression of heavy quarkonia production in heavy-
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ion collisions as an observable signal [12]. In work [13] solved D-dimensional Schrédinger
equation for the Cornell potential at finite temperature.

Also, there are several works for solving the Schrédinger equation at finite temperature by
using different methods, some of them can be seen in [14, 15, 16]. In work [17], the authors
numerically solved the Schrodinger equation at finite temperature.

It would be interesting and an significant to solve the Schrédinger equation for the sum of
Cornell [18, 19, 20] and inverse quadratic potential for [ # 0, since it has been extensively used
to describe the bound and continuum states of the interacting systems at finite temperature.

The combined potential considering in this study is obtained by sum of Cornell and inverse
quadratic potential, since it has been extensively used to describe the bound and continuum
states of the interacting systems.

B C
Vir)y=A-r r+r2' (1)
where A is a model parameter for the Coulomb strength, B is the string tension, C strength of
the external field, and r is the interquark distance, respectively.

The Cornell potential consists of two terms, namely the Coulomb and linear terms. The
Coulomb term is responsible for the interaction at small distances, which corresponds to the
potential induced by one-gluon exchange between the quark and its anti-quark that dominated
at short distances and the linear term leads to the confinement. The Cornell potential is used
for mathematical modeling of the parton vibrations inside hadronic system and it constitutes
an appropriate model for other physical situations.

Should be noted that the problem of obtaining the interquark potential is still open, its
solution is necessary to find the mass spectra for coupled states and to describe the strong
interaction characteristics of mesons.

The studying of the properties of mesons composed of a heavy quark and antiquark gives
very important information of the heavy quark dynamics in sight hadrons. Should be notice
heavy quarkonia have a rich spectroscopy with many narrow states lying under the threshold of
open flavor production.

Therefore, it would be important and interesting to solve the Schrédinger equation for the
sum of Cornell and inverse quadratic potential for arbitrary orbital [ # 0 quantum number at
finite temperature T' # 0 using Nikiforov-Uvarov (NU) [21] method.

The rest of the present work is organized as follows. Bound-state Solution of the radial
Schrodinger equation for the sum of Cornell and inverse quadratic potential by NU method
is provided in Section 2. In Section 3 we present the numerical results for energy and mass
spectrum and the corresponding normalized eigenfunctions. Finally, some concluding remarks
are stated in Section 4.

2. Bound state Solution of the Radial Schrodinger equation for the sum of Cornell
and inverse quadratic potential.
The Schrodinger equation in spherical coordinates is given as

2
VA4 55 B = V(Ili(r,6,6) = 0. 2)
Considering this equation, the total wave function is written as
Y(r,0,0) = R(r)Y,m (0, ¢), (3)

Thus, the radial Schrédinger equation for the sum of Cornell and inverse quadratic potential
defined in this form:

2
2 W+DN* B Clpey (4)

2
/! = / =" AR
R"(r) + TR (r) + 52 2072 2
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We assume R(r) = Ly(r) in (4) then radial Schrédinger equation becomes

2
= 2 [ P B C

- = - — —A- —— = = 0. 5
12 2u 12 T ror2 x(r) (5)
Here 1 the reduced mass for the quarkonium particle, for charmonium p = ¢, for bottomonium
p= g

In a thermal medium of temperature 7" > 0 the potential is modified by colour screening
which can be parameterized in the form:

Vi(r) = HDf(lT) (1 —exp(—pp(T)r)) — gewp(—uD(T )r) + %wp(—uD(T )T) (6)
Here

AT, r) = A 1 T 7

(T,r) = W( —exp(—pp(T)r)) (7)

B(T,r) = Bexp(—pp(T)r)), (8)

C(T,r) = Cexp(—pup(T)r)). 9)

Here pup(T) is the Debye screening mass, which vanishes at 7' — 0.
First we expand these (7-9) functions in a Taylor series around r = 0, then we obtain:

A(T.r) = i (U= cap(oup(T)) = (1= 1+ ip(T)r = gyb(T) - 1*)
= A= Zup(@)r (10)
B(T,r) = B~ pp(T)r + 3uh(T) 1) ()
OT,r) = O~ up(T)r + 5h(T) -1?) (12)

Now substituting expression (10-12) into Eq.(6), then we obtain:

V(T,r) = Bun(T) + 5 Cub(T) + (A — 5 Bib(T))r — (B + Cpup(T)):. -
%A,uD(T)rQ + % (13)

In Eq.(13) we use the following ansatz in order to make the potential more compact,

1 1
D = Bup(T) + ;Cup(T), F=A—Bup(T), (14)
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G =B+Cup(T)), L= Aup(T). (15)

Then V (T, r) have the form:

V(T,r)=D+Fr—€—Lr2+€2 (16)
T r
Then Eq.(5) rewrite in this form:
2 B2 (14 1) G C
" 2 —

Main aim to transform Eq.(17), the equation of the generalized hypergeometric-type which
is in the form [21]:

T o
X"(s) + —x'(s) + —x(s) =0, (18)
o o
In Eq.(17) changing 7 = 1, then we obtain:
2 2u 1 h? F L
" / 2 2 _
X (ac)—ﬁ ( )+?F E—ﬂl(l—kl)x —D—;%—G:c—k?—Cx x(x)=0. (19)

For the solution Eq.(19) we will use approach, which in this approach is based on the
expansion of % and m% in a power series around the characteristic radius rg of meson up to
the second order. In order to solve Eq.(19) for [ # 0, we should make an approximation for the
centrifugal term. For this we apply as Pekeris approximation [22], which it is helps to transform
the centrifugal potential such that the modified equation can be solved by NU method. For this
we introduce new variable y = x — § where § = 1/ry. After this we expand g and m% into a

series of powers around y = 0, then we obtain:

F F F y y:. F r—0 (x—6)>
privay S S a2l AU S SR
3 3z a2
Also similarly
L L L Y. o 6 8z 322
= = = _(1+2 =L|=—-—=+—]. 21
2 rog 20Ty (52 5 54> (21

Substituting Eqgs.(20-21) into Eq.(19) then we obtain:

2z 2p 1 3F 6L, 3F 8L
@)= X @)+ T (B D= Tk )+ G+ G Glet
n? F 3L, ,
gl ) -5 = Ot e ]x(w) =0. (22)
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In the Eq.(22) we introduce new variable in order to make the differential equation more compact:

2% 3F 6L 2u 3F 8L
H=-lE-p-22 412, Nn=2HE= o2 2
w2 s ek Neple m e o) (23)
21, h? F 3L
=l +1) - =+ = —0). 24
Then Eq.(22) have the form:
" 2z, 1 2

X'(@) + 5x (@) + 5 |[~H + Na+ Qo] x(a) = 0. (25)

Now, we can successfully apply NU method for defining eigenvalues of energy. By comparing
Eq.(25) with Eq.(18) we can define the following:

7(z) =2z, o(x) = 2%, &(x) = (—H + Nz + Qz?). (26)

If we take the following factorization

x(x) = o(x)y(x) (27)

for the appropriate function ¢(z), Eq.(25) takes the form of the well-known hypergeometric-type
equation. The appropriate ¢(z) function has to satisfy the following condition:

¢(x)  o(x)’

where function 7 (z) the polynomial of degree at most one is defined as

¢ () _ m(x) (28)

I F r—7\2 27 — 2
77(55):0 Ti\/<0’ 7') 5t ko— :1:2 xi\/H—NJ:—QCUQ-FkJUz:

+\/(k—Qa? — Nz +H.  (29)

Finally, the equation, where y(x) is one of its solutions, takes the form known as
hypergeometric-type,

where

and
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The constant parameter k can be found by utilizing the condition that the expression under
the square root has a double zero, i.e., its discriminant is equal to zero. Hence, we obtain

_ Lo
k= (N2 +4HQ). (33)

Now substituting Eq.(33) into Eq.(29), then for 7(z) we obtain:

(z) = +——(Na — 2H). (34)

2vVH

According to NU method, from the two possible forms of the polynomial m(z), we select
the one for which the function 7(x) has the negative derivative. Another form is not suitable
physically. Hence, the appropriate functions and 7 (z) and 7(z) have the following forms:

m(x) = ———=(Nx — 2H). (35)

N
7(z) =22 — \/—% +2VH, (37)
N
"(2) =2 - —. 38
@) =2- = (39)
Also by Eq.(31), we can define the constant A as
A=k+n'z N2+Q N (39)
_= v = —_— _—
4H 2vH

Given a nonnegative integer n,., the hypergeometric-type equation has a unique polynomial
solution of degree n if and only if

A=X\,=-n7 — ———0", (n=0,1,2..) (40)

and A\, # A\, for m =0,1,2,...,n — 1, then it follows that

A, = —np (2 — —1) = 20, + —=n, — 02 +n, = ——=n, —ny(n, +1) (41)

S|

Ny N
N VH

N2 N N
7_’_@_7:7
4H oVH H

We can solve Eq.(42) explicitly for H then we obtain:

ny — np(ny +1). (42)
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N
(1+2n)+/1I-4Q

Substitute Eq.(43) into Eq.(23), then we obtain:

VH = (43)

2 F 6L N
\/—M(E—D—%—i—(;?): (44)

h? (1+2n) +£+/1—4Q

From Eq.(44) very easy we found energy spectrum in this form:

B+ 0)

(1+2n,) /1 + 400+ 1) + 8y — 24k +8uC

582 2

If in Eq.(45) we take T' = 0 then we obtain:

3A
E="c—

QM(%—’? + B)?
(1+2n) £ \/1+4I( +1) + 8 + 8uC

. (46)

If we take T'=0 and C = 0 in Eq.(45), then we obtain result [5]:

3A
E="
0

2u(:§‘5—‘§1 + B)?
(1+2n) £ /1+4I( +1) + 8

(47)

Now, applying the Nikiforov-Uvarov method we can obtain the radial eigenfunctions. The
appropriate 7(s) function must satisfy the following condition

") wl(e) E(NE — VH) N VH
(i((x)) - aéxi - 2\/?1962 - i(m - ?)7 )

Having substituted m(x) and o(z) into Eq.(48) and solving first-order differential equation,
it is easy to obtain

o(x) = s VAT (49)

Furthermore, the other part of the wave function y,(z) is the hypergeometric-type function
whose polynomial solutions are given by Rodrigues relation

Cp d*
p(x) dz™

yn() = [0" (2)p(x)], (50)

where (), is a normalizing constant and p(z) is the weight function which is the solution of the
Pearson differential equation. The Pearson differential equation and p(x) for our problem is
given as



Group32 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012001  doi:10.1088/1742-6596/1194/1/012001

(op) =Tp. (51)

It is easy to find the second part of the wave function from the definition of weight function

plx) = g N/VH—2VH/z (52)

Substituting ¢(z) and yy, (x) into Eq.(27), we obtain

N vE d" n—2L _
an(x> = Cnrle\/ﬁeTH dxn |:1.2 \/ﬁe 2\/ﬁ/x:| . <53)

In Eq.(53) changing x = 1/r and using that x(r) = rR(r), then we obtain:
N N
Xn, (1) = Cn,-lfﬁe\/ﬁr(_ﬂd%)n L“Qwﬁe_wﬁr} : (54)
Finally for radial wave function R(r) we find:

R(r) = Cnrlr_l_%e‘/ﬁ'r(—ﬂdi)” {T_QTH_\/NﬁeQ‘/E'T] . (55)
r

We calculate mass spectra of the heavy quarkonium system, for example charmonium and
bottomonium mesons at finite temperature that quark and antiquark have flavor. For this we
apply the following relation:

M =2m+ E,;. (56)

here m is bare mass of quarkonium.
So, at finite temperature T' # 0 for mass of quarkonium system M we obtain:

2

M=2m+D+%—§—2—;L (5T — ) 5
a (1+2n)i\/1+4l(l+1)+8u5%—24uéé4+8uc

The Eq.(57) represents the quarkonium mass at finite temperature. Here m is quarkonium
bare mass for the charmonium or bottomonium mesons. By replacing T" = 0 then we obtain
quarkonium mass at zero temperature:

A
M:2m+37—

2u(3s + B)?
(1+2n)+ \/1 F AU+ 1) + 8uf +8uC

. (58)

By replacing T'= 0 and C' = 0 then we obtain quarkonium mass at zero temperature [5].

A
M:2m—|—37—

2u(3s + B)?
(1+2n) /1 + 410+ 1) + 8
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Should be noted that result at 7' = 0 and C' = 0 full coincides with [5], in which the authors
obtained the quarkonium energy and mass at zero temperature.

At the numerical calculations free parameters A, B, C' and ¢ fitted with experimental data
with using the Eq.(58).

The present results are in good agreement with available experimental data for all states of
charmonium and bottomonium mesons. For the calculation the mass spectra of charmonium
and bottomonium at finite temperature, we use the explicit form of up(T") according to [23]:

pup(T) = vas(T)T. (60)

where v = 47 - ne,. At the numerical calculations we use ¢, = 0.566 £+ 0.013, n = 2.06 and
v = 14.652 £ 0.337. In the numerical calculations for running coupling constant a,(7") we will
adopt following form at finite temperature:

2T
(11 — %nf)ln(%)

Here from lattice QCD we take for A = 8T,, and 5 = 0.104 +0.09 [24].

In the numerical calculations we will apply as Ny = 3 with two light quarks of the same
mass u and d and one heavier s and critical temperature 7, = (169 + 16)MeV, then for
A=pT, = (176 £3.2)MeV [25].

In Table 1 and 2 present mass spectra of charmonium and bottomonium for the sum of
Cornell and inverse quadratic potential are given in comparison with experimental data and
other theoretical calculations at T' = 0, respectively.

as(T) = (61)

3. Numerical Results and Discussion

Solutions of the modified radial Schrodinger equation for the sum of Cornell and inverse quadratic
potential for I # 0 are obtained respectively within quantum mechanics by applying the
Nikiforov-Uvarov method.

In Table 1 and 2 present mass spectra of charmonium and bottomonium for the sum of
Cornell and inverse quadratic potential are given in comparison with experimental data and
other theoretical calculations at the finite temperature 17" # 0, respectively.

In Fig.1 the dependence of the mass spectrum 1s, 2s, 3s, 4s and 5s state of charmonium on the
temperature T are plotted. These plots indicate that in the region 0 GeV/c < T < 0.046 GeV/c,
mass spectrum of the charmonium increases systemically with an increasing the temperature
and has a maximum at point 7' = 0.046GeV, which it is correspond to T/T. = 0.272, but
in the region 0.046 GeV/c < pr < 0.156 GeV/c mass spectrum of charmonium decrease with
increasing the temperature.

In Fig.2 the dependence of the mass spectrum 1s, 2s, 3s, 4s and 5s state of bottomonium
on the temperature T' are plotted. These plots indicate that in the region 0 GeV/c < T <
0.046 GeV/c, mass spectrum of the charmonium increases systemically with increasing the
temperature has a maximum in point at 7" = 0.046GeV, but in the region 0.046 GeV/c <
T < 0.156 GeV/c mass spectrum of charmonium monotonically decrease with an increasing the
temperature. The analysis of our calculations shows that the main reason for this depends on
the phenomenological factors

These plots indicate that mass spectrum of charmonium and bottomonium is very sensitive
to the choice of the quantum numbers and potential parameters.

Our detailed analysis show that this result opens a new possibilities for determining of the
properties of the interactions in hadronic system. As a conclusion of the results presented in
these tables and figures the numerical analyses obtained of the analytically solution is very



Group32 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012001  doi:10.1088/1742-6596/1194/1/012001

sensitive to the n, radial and [ orbital quantum numbers. The results are sufficiently accurate
for practical purpose.

4. Conclusion

In this research we present analytical solution of the modified radial Schrodinger equation for
the sum of Cornell and inverse quadratic potential are obtained within quantum mechanics
by applying the Nikiforov-Uvarov method. The energy eigenvalues, mass spectrum and
corresponding eigenfunctions are obtained for arbitrary [ angular momentum quantum numbers.

The spectral problem of the Schrédinger equation with spherically symmetric potentials
is important in the spectroscopy of complex chemical compounds and molecules. It is
also important in describing the spectra of hadron resonances, specially mesons-quarkoniums
systems. It is know, that despite the absence of a rigorous theoretical approach, potential
models give a satisfactory description of the mass spectra for such systems as quarkonium. The
interactions in such systems are usually represented by confining-type potentials. As an example,
one can take the sum of Cornell and inverse quadratic potential consisting of three terms. One of
the terms is responsible for the Coulomb interaction of quarks, second to the string interaction,
which provides confinement and third terms corresponds inverse quadratic potential.

It is worth to mention that the extended Cornell potential is one of the important potential,
and it is a subject of interest in many fields of physics and chemistry. The main results of this
paper are the explicit and closed form expressions for the energy eigenvalues, the normalized
wave functions and mass spectrum of the bottomonium and charmonium. The method presented
in this paper is a systematic one and in many cases it is one of the most concrete works in this
area.

The energy eigenvalues and eigenfunctions were obtained analytically for any [ value at finite
temperature T # 0 using Nikiforov-Uvarov method. Using the available experimental data, the
obtained energy formula were used fit charmonium and bottomonium mass spectra from which
then the potential parameters were determined. These parameters were then used to reproduce
the mass spectra, which then were compared with the experimental results. The predictions
from our model are found to be in good agreement with the experimental results. As a side
result, the Hydrogen atom known spectrum is recovered.

It should be noticed that the analysis of our results and figures shows the bound state of the
system more stable in the case T # 0. Hence, the temperature effects give more information
about quantum systems instead of 7' = 0.

The numerical results obtained by using MATHEMATICA package programm.

Consequently, studying of analytical solution of the modified radial Schrédinger equation for
the sum of Cornell and inverse quadratic potential take into account temperature effects could
provide valuable information on the quantum mechanical dynamics at hadronic physics, atomic
and molecule physics and also opens new window for further investigation.

We can conclude that our analytical results of this study are expected to enable new
possibilities for pure theoretical and experimental physicist, because the results are exact and
more general.
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state | Present work | [5] [26] [27] [28] | Experiment [29]
Is 3.0969 3.096 | 3.068 | 3.078 | 3.096 3.096
2s 3.68697 3.686 | 3.697 | 3.581 | 3.686 3.686
3s 4.04143 4.040 | 4.144 | 4.085 | 3.984 4.040
4s 4.27086 4.269 4.589 | 4.150 4.263
oS 4.42783 4.425 4.421
1p 3.25581 3.255 | 3.526 | 3.415 | 3.433
2p 3.77951 3.779 | 3.993 | 3.917 | 3.910 3.773
3p 1.00997
4p 4.31021
5p 4.45555
1d 3.50471 3.504 | 3.829 | 3.749 | 3.767

Table 1. Mass spectra of charmonium in GeV, m., = 1.209, A = 0.2, B = 1.244,C = 0.0029, =
0.231,T = 0.

state | Present work 5] [26] [27] [28] | Experiment [29]
1s 9.45851 9.460 | 9.447 | 9.510 | 9.460 9.460
2s 10.0218 10.023 | 10.012 | 10.038 | 10.023 10.023
3s 10.3539 10.355 | 10.353 | 10.566 | 10.280 10.355
4s 10.5661 10.567 | 10.629 | 11.094 | 10.420 10.580
oS 10.7098 6578
1p 9.61781 9.619 | 9.900 | 9.862 | 9.840
2p 10.1127 10.114 | 10.260 | 10.390 | 10.160
3p 10.4106
4p 10.6038
Bp 10.7362
1d 10.2567 9.864 | 10.155 | 10.214 | 10.140

Table 2. Mass spectra of bottomonium in GeV, my = 4.823GeV, A = 0.2GeV?, B = 1.569,§ =
0.378GeV,C = 0.002,T = 0.
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Figure 1. The mass spectrum of charmonium of 1s, 2s, 3s, 4s and 5s states as a function of
the temperature T at the m; = 1.209,4 = 0.2GeV?, B = 1.569GeV, C = 0.002, T, = 0.169GeV
and 6 = 0.378.
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Figure 2. The mass spectrum of bottomonium of 1s, 2s, 3s, 4s and 5s states as a function of the
temperature T at the my = 4.823, A = 0.2GeV?, B = 1.244GeV, C = 0.0029, T, = 0.169GeV
and § = 0.231.
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