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1 Introduction

The decay of a pseudoscalar meson P into virtual photons, P (q1 + q2) → γ∗(q1, µ)γ∗(q2, ν),
is described by a transition form factor (TFF) FP γ∗γ∗(q21, q22) via the matrix element

i

∫
d4x eiq1·x⟨0|T{jµ(x)jν(0)}|P (q1 + q2)⟩ = ϵµνρσqρ

1qσ
2 FP γ∗γ∗(q21, q22), (1.1)
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where
jµ(x) = q̄(x)Qγµq(x), q = (u, d, s)T , Q = 1

3diag(2,−1,−1), (1.2)

denotes the electromagnetic current and ϵ0123 = +1. The normalizations of the TFFs are
directly related to the two-photon decay widths

Γ[P → γγ] = πα2M3
P

4 F 2
P γγ , FP γγ = FP γ∗γ∗(0, 0), α = e2

4π
. (1.3)

Due to the pseudo-Goldstone-boson nature of the π0, the Wess-Zumino-Witten (WZW)
anomaly [1, 2] implies a powerful low-energy theorem

F WZW
πγγ = 1

4π2Fπ
= 0.2744(3)GeV−1, (1.4)

with pion decay constant Fπ = 92.32(10)MeV [3], which already agrees so well with experiment,
F exp

πγγ = 0.2754(21)GeV−1 as measured by PrimEx-II [4] via the Primakoff process, that higher-
order chiral corrections tend to generate a tension [5–9]. For η(′), the normalizations are
known to [3]

F exp
ηγγ = 0.2736(48)GeV−1, F exp

η′γγ = 0.3437(55)GeV−1, (1.5)

derived from e+e− → e+e−η [10–14] and the global η′ fit of the Review of Particle Physics
(RPP) [3], respectively, the latter being consistent with the average of direct determinations
from e+e− → e+e−η′ [11–13, 15–19]. In these cases, a WZW interpretation as simple as
eq. (1.4) is not available, since η–η′ mixing has to be taken into account, to the extent
that the experimental normalizations (1.5) actually constitute a relatively clean way to help
determine decay constants and mixing parameters [20, 21]. Accordingly, for our study eq. (1.5)
serves as an important constraint for the TFF normalizations, independent of assumptions
on the η–η′ mixing pattern.

Beyond the normalizations, the TFFs fulfill a number of constraints that help reconstruct
their momentum dependence. Asymptotically, the behavior of the TFFs is predicted by the
light-cone expansion [22–27], while in between the singularities of the TFFs allow one to
infer the momentum dependence via dispersion relations. This program was carried out in
great detail for the π0 in refs. [28–33], and steady progress towards a similarly comprehensive
analysis for η(′) was achieved in refs. [34–39], culminating in ref. [40]. Here, we provide a
detailed account of this calculation.

The primary motivation for such detailed studies of the P = π0, η, η′ TFFs derives from
hadronic light-by-light (HLbL) scattering, given that the pseudoscalar poles constitute the
leading singularities of the HLbL tensor, whose strength is determined by the TFFs. A
robust evaluation of the η(′) TFFs is thus an essential ingredient for a complete dispersive
analysis of HLbL scattering [41, 42], to consolidate and improve upon the previous white-
paper consensus aHLbL

µ = 92(19) × 10−11 [9, 31, 32, 43–56]. In particular, to not only
match the current experimental precision [57, 58], but also the further advances expected
from the final result of the Fermilab experiment [59], HLbL scattering requires at least
a two-fold improvement in precision as well. In addition to efforts aimed at subleading
effects from hadronic states at intermediate energies [60–69], higher-order short-distance
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constraints [70–73], and the matching between hadronic and short-distance realizations [74–
82], completing a dispersive evaluation of the pseudoscalar poles is thus imperative. These
efforts are complementary to recent calculations in lattice QCD [83–87], and should proceed
in parallel to ongoing work to try and resolve the complicated situation regarding hadronic
vacuum polarization [88], i.e., the tensions among data-driven evaluations [63, 89–109] and
with lattice QCD [110–118], including renewed scrutiny of radiative corrections [119–125].
Together with the well-established QED [126, 127] and electroweak [128, 129] contributions
as well as higher-order hadronic effects [130–133], these community-wide efforts are necessary
to bring the leading hadronic contributions under control.

For the η(′) poles, the current situation is less consolidated than for the π0 pole, which
was estimated using a dispersive approach [31, 32], Canterbury approximants (CA) [45],
and within lattice QCD [9].1 While first lattice-QCD calculations have become available
for η(′) as well [135, 138], at present the most precise results can be expected relying on as
much experimental input as possible, for which a dispersive approach is ideally suited. After
reviewing the master formula for pseudoscalar poles in section 2, we lay out the dispersive
formalism in detail in section 3, starting with the isovector TFFs and their relation to the
η(′) → π+π−γ spectra, the η′ → 2(π+π−) amplitude, and the solution of the inhomogeneous
Muskhelishvili-Omnès (MO) problem in the presence of an a2 left-hand cut. Isoscalar
contributions and effective poles are discussed in section 4, the latter serving as a means
to implement the effects of higher intermediate states not explicitly included, and thereby
interpolate to the asymptotic behavior, to which we match in section 5. The main numerical
results are reported in section 6, before we conclude in section 7. Further details of the
calculation are collected in the appendices.

2 Pseudoscalar-pole contributions to aµ

The general master formula for the HLbL contributions to aµ can be written in the
form [47, 139]

aHLbL
µ = 2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√
1− τ2 Q3

1 Q3
2

12∑
i=1

Ti(Q1, Q2, Q3) Π̄i(Q1, Q2, Q3),

(2.1)
where τ is the cosine of the remaining angle between Q1 and Q2, and Q2

3 = Q2
1+2Q1Q2τ +Q2

2.
This decomposition (2.1) isolates the kinematic aspects of the HLbL tensor into known
kernel functions Ti, while the dynamical content of the theory is contained in the scalar
functions Π̄i. In particular, in a dispersive approach to HLbL scattering [47, 139–142], the
scalar functions are reconstructed via their singularities, the leading ones originating from
pseudoscalar poles according to

Π̄1(Q1, Q2, τ) = −FP γ∗γ∗(−Q2
1,−Q2

2)FP γ∗γ∗(−Q2
3, 0)

Q2
3 + M2

P

,

Π̄2(Q1, Q2, τ) = −FP γ∗γ∗(−Q2
1,−Q2

3)FP γ∗γ∗(−Q2
2, 0)

Q2
2 + M2

P

, (2.2)

1Work is ongoing to clarify a potential deficit between more recent lattice-QCD calculations [134–137] and
the PrimEx-II normalization [4].
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Figure 1. Isovector η and η′ TFFs (a) in a diagrammtic representation. The left-hand-cut contribution
due to exchange of the a2(1320) tensor meson is shown in (b). Unitarity cuts are indicated by the
dotted blue lines.

with TFFs as defined in eq. (1.1). This form of the pseudoscalar-pole contributions can be
obtained from standard techniques [143–145], integrating over the angles using Gegenbauer
polynomials [146–148]. More precisely, the form in eq. (2.2) follows when performing dispersion
relations in four-point kinematics, before taking the external photon momentum to zero,
while in triangle kinematics the arguments of the singly-virtual TFFs change according to
Q2

i → −M2
P [50, 64, 76].

3 Dispersion relations for the isovector transition form factors

3.1 Overview of dispersive approach

The QCD vertex function of the decay P (q1 + q2) → γ∗(q1, µ)γ∗(q2, ν) defines the TFF as
anticipated in eq. (1.1). For the evaluation of the HLbL integral (2.1) we need to reconstruct
its full doubly-virtual dependence, for which the following decomposition proves useful:

Fη(′)γ∗γ∗(q21, q22) = F
(I=1)
η(′) (q21, q22) + F

(I=0)
η(′) (q21, q22) + F eff

η(′)(q21, q22) + F asym
η(′) (q21, q22). (3.1)

In contrast to the π0, the vanishing isospin I = 0 of η(′) implies that either both photons
have to be isovector or both isoscalar. The corresponding low-energy contributions are
denoted by F

(I=1)
η(′) and F

(I=0)
η(′) in eq. (3.1), respectively. In the remainder of this section,

starting from the underlying η′ → 2(π+π−) decay amplitude, we present a detailed dispersive
analysis of F

(I=1)
η(′) , which, numerically, constitutes the largest contribution. The dispersive

analysis proceeds via the diagram shown in figure 1(a) and, additionally, takes into account
factorization-breaking effects in the dependence of the TFFs on the two photon virtualities
q21/2 via the left-hand-cut contribution shown in figure 1(b). The effective poles, represented by
F eff

η(′) , are introduced to impose the correct normalizations and to interpolate to the asymptotic
region; they are discussed together with F

(I=0)
η(′) in section 4. Finally, F asym

η(′) incorporates the
leading asymptotic behavior from the light-cone expansion, as discussed in section 5.
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ρ

η′

π+

π−

π+
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ρ

Figure 2. Sample diagrams of contributions to the decay η′ → 2(π+π−) with the leading contribution
in the HLS scheme (a) and the left-hand-cut contribution due to the a2(1320) (b).

3.2 η′ → 2(π+π−) amplitude

As an odd number of pseudoscalar mesons is involved, the decay amplitude for η′(q)→ π+(p1)
π−(p2)π+(p3)π−(p4) can be written in terms of the Levi-Civita symbol and a scalar function F ,

Mη′→4π = ϵµνρσpµ
1pν

2pρ
3pσ

4F(s12, s13, s14, s23, s24, s34), (3.2)

where the Mandelstam variables are defined as

sij = (pi + pj)2 with i, j ∈ {1, . . . , 4}. (3.3)

If two pions in the final state were in a relative S-wave, one way to conserve total angular
momentum would be for the remaining two pions in the final state to also be found in a
relative S-wave. However, the parity Pππ of a two-pion system is determined by Pππ =
P 2

π (−1)L = (−1)L = +1, where L is the angular momentum of the two pion system. The
η′ carries a negative parity eigenvalue, hence, parity conservation would be violated in this
case. However, if one of the two-pion systems were in a relative P -wave, Bose symmetry
would demand this pion system to be in a state of odd isospin under strong interaction,
with I = 1 being the only available possibility. Since the η′ carries isospin I = 0, the other
two-pion system in the final state would also need to carry I = 1 and therefore be in a
relative P -wave. These two P -wave pion pairs can then, with a relative angular momentum
of 1 between the two systems, be coupled to JP C = 0−+.

In order to examine the left-hand cut structure of the decay, crossing symmetry may
be employed: in the scattering process η′π → 3π the lowest hadronic intermediate state
would be πη, where in the S-wave the transition to 3π would be forbidden by parity and
in the P -wave the state would exhibit exotic quantum numbers IG(JP C) = 1−(1−+). The
lowest partial wave that receives resonant enhancement is the D-wave with quantum numbers
IG(JP C) = 1−(2++) with the lowest corresponding resonance being the a2(1320).

In ref. [149] the amplitude for η′ → 2(π+π−) was first examined within chiral perturbation
theory (ChPT) by virtue of the anomalous WZW term [1, 2]. While there is no direct
contribution to the process at leading order O(p4), at O(p6) diagrams involving kaon loops
and counterterms derived from a sixth-order Lagrangian of odd intrinsic parity [150] contribute.
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Additionally, employing a hidden local symmetry (HLS) model [151, 152] the authors of
ref. [149] found the amplitude to be dominated by ρ-meson-exchange contributions shown
in figure 2(a).

The left-hand-cut contribution, showcased in figure 2(b), can be incorporated by means
of phenomenological resonance Lagrangians: the interaction term of a tensor meson and two
pseudoscalars as well as the tensor meson propagator can be found in ref. [153], while the
model for the tensor-vector-pseudoscalar interaction is featured in ref. [154]. Finally the
interaction of a vector meson with two pseudoscalars is taken from ref. [152]. Employing
the HLS scheme and the phenomenological Lagrangians mentioned above, see appendix A,
the scalar function in the decay amplitude of η′ → 2(π+π−) in eq. (3.2) can be written
as F = FHLS + Fa2 , where2

FHLS(s12, s13, s14, s23, s24, s34) =
√
3

8π2F 5
π

[
M4

ρ

Dρ(s12)Dρ(s34)
−

M4
ρ

Dρ(s14)Dρ(s23)

]
, (3.4)

with Dρ(s) = M2
ρ − s− iMρΓρ(s) and the energy-dependent width of the ρ, Γρ(s) (the precise

form of which is never required below), and

Fa2(s12, s13, s14, s23, s24, s34) =
(
F̂(s12, s23, s24, s34) + F̂(s12, s13, s14, s34)

) ca2

Dρ(s34)

+
(
F̂(s34, s14, s24, s12) + F̂(s34, s23, s13, s12)

) ca2

Dρ(s12)

−
(
F̂(s14, s34, s24, s23) + F̂(s14, s12, s13, s23)

) ca2

Dρ(s23)

−
(
F̂(s23, s13, s34, s14) + F̂(s23, s12, s24, s14)

) ca2

Dρ(s14)
,

(3.5)

where the constant ca2 = 2√
3cTPPcVPPcTPV collects the couplings from the different La-

grangian interactions and

F̂(s12, s23, s24, s34) =
(M2

η′ − M2
π)(s23 + s24 − 2M2

π)− M2
a2(2s12 + s23 + s24 − 6M2

π)
2M2

a2(M2
a2 + 3M2

π − s23 − s24 − s34)
. (3.6)

In order to improve on the treatment of pion final-state interaction in the decay, we replace
the ρ-propagator by the Omnès function [155, 156]

M2
ρ

Dρ(s)
→ Ω(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ11(s′)

s′(s′ − s)

}
, (3.7)

where δ11(s) denotes the P -wave ππ phase shift. Of course this replacement only gives a proper
prescription for the pairwise rescattering of the two pions originating from the ρ lines in figure 2
and not a full dispersive description of the four-particle final-state interaction. In order to
include the two pions coupling to the intermediate a2 resonance in the final-state-interaction
approximation, we consider the amplitude for the (fictional) decay η′ → π+π−ρ∗.

2The amplitude for the η would be larger by a factor
√

2.
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η′

ρ∗

π

π

(a)

π

π

η′

ρ∗

π

π

(b)

a2

π

π

Figure 3. Fictional decay η′ → π+π−ρ∗ in general form (a) and its contribution due to the a2(1320)
tensor meson (b). P -wave rescattering of the pion pair is denoted by the gray blob. The dotted blue
lines indicate the unitarity cut.

This amplitude, describing the decay η′(q) → π+(p1)π−(p2)ρ∗(k) with a2 contribution
as shown in figure 3, can be written in terms of a scalar function

Mη′→ππρ = ϵµναβϵµ∗(k)pν
1pα

2 qβFη′→ππρ(s, t, u, k2), (3.8)

where ϵµ(k) is the polarization vector of the outgoing ρ and the Mandelstam variables are
defined by

s = (q − p1)2, t = (p1 + p2)2, u = (q − p2)2. (3.9)

Making use of the phenomenological Lagrangian, the scalar function in eq. (3.8) can be
decomposed into

Fη′→ππρ(s, t, u, k2) = F̃η′(t, k2) + Gη′(s, t, u, k2) + Gη′(u, t, s, k2), (3.10)

where G describes the tree-level a2 contribution via

Gη′(s, t, u, k2) =
ca2

η′ππρ

M2
a2 − s

(
t − u + M2

η′ − M2
π −

(s + M2
π − k2)(M2

η′ − M2
π)

M2
a2

)
, (3.11)

with coupling ca2
η′ππρ = ca2η′πcTPV/

√
3, see appendix A for details. The partial-wave expansion

of the scalar function is carried out in terms of the derivatives of the Legendre polynomials,
since the amplitude involves three pseudoscalar and one vector particle [157]

Fη′→ππρ(s, t, u, k2) =
∑

odd l

P ′
l (zt)fη′→ππρ

l (t, k2), (3.12)

where zt is the cosine of the t-channel center-of-mass angle θt given by

zt = cos θt =
s − u

σπ(t)
√

λ(t, k2, M2
η′)

, (3.13)

with the Källén function defined as λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc) and σπ(t) =√
1− 4M2

π/t. The sum in the partial-wave expansion only runs over odd angular momenta,

– 7 –
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because the pion system is in an I = 1 state. The P -wave can be obtained by projecting
it out via

fη′

1 (t, k2) = 3
4

∫ 1

−1
dzt (1− z2t )Fη′→ππρ(s, t, u, k2) = F̃η′(t, k2) + Ĝη′(t, k2), (3.14)

where in the physical decay region defined by the variables 4M2
π < t < M2

η′ and 0 < k2 <

(Mη′ −
√

t)2 the P -wave projection of the a2 tree-level contributions is given by [37]

Ĝη′(t, k2) ≡ 3
4

∫ 1

−1
dzt (1− z2t )

[
Gη′(s, t, u, k2) + Gη′(u, t, s, k2)

]
= 2ca2

η′ππρ

(
M2

η′ − M2
π

M2
a2

− 1 +
[
M2

a2 − M2
η′ − 2M2

π − k2 + 2t

+
(k2 − M2

π)(M2
η′ − M2

π)
M2

a2

]
3Q
[
y(t, k2)

]
2M2

a2 − M2
η′ − 2M2

π − k2 + t

)
, (3.15)

with the function Q in terms of y = y(t, k2) defined as

Q(y) = y

(1
2(1− y2) log y + 1

y − 1 + y

)
, y(t, k2) =

2M2
a2 − M2

η′ − 2M2
π − k2 + t

σπ(t)
√

λ(t, k2, M2
η′)

. (3.16)

This derivation follows when applying the a2 left-hand-cut model to γ∗ → η′π+π−. By
means of the unitarity relation and the ππ P -wave scattering amplitude, the imaginary
part of the η′ → π+π−ρ∗ amplitude is governed by the following relation (since Ĝη′ is real
in the physical decay region):

Im F̃η′(t, k2) = fη′

1 (t, k2) sin δ11(t)e−iδ1
1(t) =

(
F̃η′(t, k2) + Ĝη′(t, k2)

)
sin δ11(t)e−iδ1

1(t). (3.17)

This equation poses an inhomogeneous MO problem, where the inhomogeneity Ĝη′(t, k2) is
known by usage of the phenomenological Lagrangians mentioned above. Its solution can
be expressed in terms of the hat function Ĝη′(t, k2):

F̃η′(t, k2) =
[
P (t) + t2

π
Dη′(t, k2)

]
Ω(t), (3.18)

with
Dη′(t, k2) =

∫ ∞

4M2
π

dτ

τ2
Ĝη′(τ, k2) sin δ11(τ)
(τ − t − iϵ)|Ω(τ)| , (3.19)

where due to the asymptotic behavior of the integrand two subtractions have been carried out
to render the integral convergent, i.e., P (t) is a first-order polynomial. The scalar function
in the η′ → 2(π+π−) amplitude of eq. (3.2) can be expressed in terms of the η′ → π+π−ρ∗

scalar function by

F
(
s12, s13, s14, s23, s24, s34

)
= Fη′→ππρ(s23 + s24 + s34 − 3M2

π , s12, s13 + s14 + s34 − 3M2
π , s34

)
Ω(s34)

+ Fη′→ππρ(s12 + s14 + s24 − 3M2
π , s34, s12 + s13 + s23 − 3M2

π , s12
)
Ω(s12)

−Fη′→ππρ(s12 + s14 + s24 − 3M2
π , s23, s13 + s14 + s34 − 3M2

π , s14
)
Ω(s14)

−Fη′→ππρ(s23 + s24 + s34 − 3M2
π , s14, s12 + s13 + s23 − 3M2

π , s23
)
Ω(s23). (3.20)

– 8 –
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Note that the coupling to the left-hand-cut contribution, contained in the definition of Ĝη′ ,
needs to be adapted to ca2

η′ππρ → 2ca2
η′ππρcVPP/M2

ρ ≡ cη′4π in this expression, to account for
the fact that the external ρ is now resolved into π+π−. The analysis of η′ → 2(π+π−) decays
in ChPT of ref. [149] shows that these amplitudes contain no terms at leading order (in
the anomalous sector) O(p4), and the structure of the higher-order contributions at O(p6),
also when matched to ρ-exchange contributions, is such that the function Fη′→ππρ in the
decomposition (3.20) is linear in its last argument. Hence, we incorporate the chiral constraint
on the dispersive representation as follows: the constant term in the subtraction polynomial
in eq. (3.18) needs to vanish

P (t) 7→ Ps(t) = At, (3.21)

and, furthermore, the left-hand-cut contribution needs to be modified via

Ĝη′(t, k2) 7→ Ĝη′
s (t, k2) = Ĝη′(t, k2)− Ĝη′(0, k2). (3.22)

In the following we work with this subtracted version of the amplitude in eqs. (3.10) and (3.14).
Additionally, since in the phenomenological model used to evaluate the diagrams of

figure 3, the a2 tensor meson is assumed to have no width, the procedure described in
section 3.2 of ref. [37] can be applied here to approximate finite-width effects by means
of smearing out the resonance with the help of dispersively improved Breit-Wigner (BW)
functions [61, 158–160]. In the opposite direction, we performed a number of cross checks
to ensure that our description of the a2 contribution reduces to the results of ref. [36] in
the appropriate narrow-width limits, see appendix B.

As can be seen from eq. (3.18), we need to evaluate Ĝη′(τ, k2) for τ, k2 ∈ [4M2
π , ∞).

However, the hat function exhibits a branch cut between τ ∈ [(Mη′ −
√

k2)2, (Mη′ +
√

k2)2],
which complicates the direct numerical evaluation of the integral immensely. In the following,
we therefore present a solution strategy that avoids crossing this branch cut [39].

3.3 Solution of the inhomogeneous Muskhelishvili-Omnès problem

In order to evaluate eq. (3.18) numerically, we follow a strategy inspired by the methods of
ref. [161]: the integration path is changed in such a way that all branch points and branch
cuts of the integral are avoided. In order to do so, two immediate issues need to be addressed:
the analytic continuation of the hat function Ĝη′ into the complex plane and the input of
the ππ P -wave phase shift δ11 , which is only observable by experiment on the real axis. For
the sake of simplicity, we refer to the case of the η′ for this part.

The sources of the branch cuts of Ĝη′(t, k2) located at t ∈
[(

Mη′ −
√

k2)2, (Mη′ +
√

k2)2]
and t ∈ [0, 4M2

π ] are to be found in the square root of the Källén function
√

λ(t, k2, M2
η′)

and the two-pion phase space σπ(t), respectively. The analytic continuation of
√

λ(t, k2, M2
η′)

in both t and k2 is not feasible by considering both variables to be complex at the same
time. Rather, one needs to analytically continue one variable at a time into the complex
plane. It should be noted that the physical regions of the decay η′ → ππρ∗ — for t ∈(
4M2

π ,
(
Mη′ −

√
k2)2) and k2 ∈

(
0,
(
Mη′ −

√
t
)2) — and scattering process ρ∗η′ → ππ — for

t ∈
((

Mη′ +
√

k2)2,∞) and k2 ∈
(
0,
(
Mη′ −

√
t
)2) — are direct neighbors of each other in the

– 9 –
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Figure 4. Kinematic (real valued) t–k2 plane. The decay region of η′ → ππρ∗ is marked in green,
the scattering region of ρ∗η′ → ππ in red. The orange/yellow colored areas mark the decay region of
ρ∗ → η′ππ, where the yellow area within shows the region in which the a2(1320) intermediate state is
allowed to go on-shell. The blue area indicates the unphysical region.

kinematical t–k2 plane at the point t = M2
η′ , see figure 4. In both regions the partial-wave

decomposition of eq. (3.12) is well defined and by the angular integration of eq. (3.15) Ĝ

can be obtained. In order for those two regions to be connected,
√

λ should factorize in
t, i.e., the prescription√

λ
(
t, k2, M2

η′
)
→ i

√(
Mη′ −

√
k2)2 − t

√
t −

(
Mη′ +

√
k2)2, (3.23)

where the branch cuts run from the upper/lower branch point at t =
(
Mη′ ±

√
k2)2 along

the real t-axis towards positive/negative infinity, is viable.
The logarithm log

[
(y(t, k2) + 1)/(y(t, k2)− 1)

]
appearing in the Q-function of eq. (3.16)

requires special attention as to in which cases a different sheet needs to be selected. With the
prescription of factorizing the roots of

√
λ in the t variable, as shown in eq. (3.23), t can be

given an infinitesimal imaginary part in order to find an analytic continuation of Ĝη′(t, k2)
in the complex plane. In figure 5 the sign-behavior of the logarithm’s argument in Ĝη′ is
shown for two values of the imaginary part of t in the t–k2 plane. In the complex plane,
the branch cut of the logarithm is conventionally taken to extend from the branch point
at the origin along the negative real axis. In cases where the trajectory of the logarithm’s
argument crosses the branch cut in the complex plane, the appropriate Riemann sheet
needs to be selected. In terms of figure 5 this means that a prescription for analytically
continuing the logarithm is necessary whenever the real part of the argument is negative
(blue regions) and Im

[
(y(t, k2) + 1)/(y(t, k2)− 1)

]
changes sign. As can be seen in the left

column of figure 6, the imaginary part of the logarithm’s principal value exhibits several
discontinuities in the t–k2 plane. A conspicuous discontinuity appears above the point
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Figure 5. Study of the argument of the logarithm appearing in Q(y) in eq. (3.16), log
[
(y(t, k2) +

1)/(y(t, k2) − 1)
]
, for Im t ∈ {−10−12, −0.1}GeV2. In these density plots, blue color signifies a

negative sign of the quantity, yellow color stands for positive sign. The real part is shown on the
left-hand side, the imaginary part on the right-hand side.
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Figure 6. Imaginary part of the logarithm appearing in Q(y) in eq. (3.16), log
[
(y(t, k2)+1)/(y(t, k2)−

1)
]
, for different imaginary parts of the kinematical variable t. The plots on the left-hand side display

the behavior of the principal value, on the right-hand side the analytically continued logarithm is
shown.
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t = (M2
η′ +M2

π −M2
a2)

2/M2
η′ ≈ 0.7GeV2, k2 = (M2

a2 −M2
π)2/M2

η′ ≈ 3.2GeV2, the point where
the borders of the decay region of ρ∗ → η′ππ and the a2 on-shell region coincide, as seen
in figure 4. Therefore we take the prescription

log y(t, k2) + 1
y(t, k2)− 1 = log

∣∣∣∣∣y(t, k2) + 1
y(t, k2)− 1

∣∣∣∣∣+ i arg y(t, k2) + 1
y(t, k2)− 1 + 2πiθ(t, k2), (3.24)

where arg x ∈ (−π, π] and

θ(t, k2) =

1, for Im y+1
y−1 < 0 ∧

(
k2 >

(M2
a2−M2

π)2

M2
η′

∨ Re y+1
y−1 < 0

)
,

0, otherwise,
(3.25)

as analytic continuation of the logarithm in eq. (3.16) for Im t < 0. As can be observed in the
right column of figure 6, the resulting logarithm does not contain unphysical discontinuities
anymore. This prescription is only valid for nonzero imaginary parts of t and evaluation on
the real axis should be understood as approaching the real axis infinitesimally from below.
With an increase in the imaginary part of t, the imaginary part of the logarithm displays a
smoother behavior, as illustrated in figure 6. By means of the Schwarz reflection principle,
for Im t > 0, the function θ(t, k2) would appear as

θ(t, k2) =

−1, for Im y+1
y−1 > 0 ∧

(
k2 >

(M2
a2−M2

π)2

M2
η′

∨ Re y+1
y−1 < 0

)
,

0, otherwise.
(3.26)

In order to deform the contour of the integration in eq. (3.18), it is necessary to evaluate
the integrand in the complex plane. However, the ππ P -wave phase shift δ11(s) is only defined
for real s above threshold. By rewriting the integrand in eq. (3.18) in terms of the ππ P -wave
scattering amplitude t11 [142, 162, 163],

Ĝη′(τ, k2) sin δ11(τ)
τ2(τ − t)|Ω(τ)| = Ĝη′(τ, k2)

τ2(τ − t)
sin δ11(τ)σπ(τ)eiδ1

1(τ)

|Ω(τ)|eiδ1
1(τ)σπ(τ)

= Ĝη′(τ, k2)
τ2(τ − t) Ω−1(τ)σπ(τ) t11(τ), (3.27)

the unitarized inverse-amplitude-method (IAM) amplitude tIAM(s), with input of the ChPT
amplitudes of chiral orders O(p2) and O(p4) supplemented by the O(p6) inspired contact
terms, provides a sufficiently accurate analytic expression that can be evaluated for complex
arguments in a straightforward manner, see appendix C for details.

The method developed in ref. [161] to circumvent singularities in the angular average (the
expression corresponding to eq. (3.14)) and the dispersion integral (corresponding to eq. (3.18))
was originally applied in an iterative manner while deforming the path of integration in the
dispersion integral. Here, in the case at hand, the inhomogeneity Ĝ is given by means of a
phenomenological model and thus no iterative computation of angular average and dispersion
integral is necessary. Furthermore, since in ref. [161] the decay η → 3π is considered, the
branch cuts in the s and t channels are uniform. For η′ → π+π−ρ∗, one does not only need
to consider the more complicated branch cut structure, but also the variable mass of the
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Figure 7. Critical regions in the complex t-plane for angles zt ∈ [−1, 1] for different positions on the
branch cut in the s-channel. The invariant mass square k2 of the virtual ρ∗ is varied. Starting point
of the inhomogeneous dispersion integral is t = 4M2

π .

“virtual” ρ∗. In this case the branch point in the t-channel lies at tthr = 4M2
π , while in the

s-channel the elastic threshold is located at sthr = (Mη′ + Mπ)2.
The critical regions [161] that should be avoided by deforming the path of integration

in the dispersion integral are specified by the condition

s(t, zt) = sc, sc ∈
[(

Mη′ + Mπ
)2

, ∞
)
, (3.28)

where sc is positioned on the s-channel branch cut and

s(t, zt) =
1
2
(
2M2

π + M2
η′ + k2 − t + ztσπ(t)

√
λ(t, k2, M2

η′)
)

. (3.29)

Solving eq. (3.28) for t yields three independent solutions, out of which one is manifestly real
and the two remaining ones are the complex conjugate of each other. Plots of these solutions
with different parameter variations are provided in figures 7 and 8. In the case of ref. [161],
in the iterative calculation of η → 3π, the branch points in the t and s channels are the same.
Furthermore, due to the iterative nature of the calculation, the cut originating at this branch
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Figure 8. Critical regions in the complex t-plane for angles zt ∈ [−1, 1] for different invariant mass
squares k2 of the virtual ρ∗. The position on the branch cut sc on the s-channel branch cut is varied.
Starting point of the inhomogeneous dispersion integral is t = 4M2

π .

point would be deformed together with the path of integration in the dispersion integral. In
the case at hand, however, through usage of the a2 amplitudes for the inhomogeneity, the
dispersion integral does not serve as input for the angular integral. Through the model of
a2 exchange, the inhomogeneous part in the angular integral exhibits a pole at s = M2

a2 ,
see eq. (3.11). However, due to the elastic rescattering in the s-channel, values beyond
s = (Mη′ + Mπ)2 must be avoided. Observing the critical regions in figures 7 and 8, it is
apparent that this procedure fails for a number of kinematical configurations. In cases in
which the critical regions fully surround the starting point of the dispersion integral at 4M2

π ,
it is not possible to find a path of integration that does not cross these critical regions.

For the present application, it is not necessary to evade all these critical regions, in
principle, also an integration along the real axis should be possible. However, we were
not able to obtain stable results in this way, and therefore consider a path deformation
motivated by the previous discussion as shown in figure 9. In particular, deforming the
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Im τ

Re τ
t

(Mη′ −
√
k2)24M2

π

P1 P2

P3

Figure 9. Deformed path of integration in the dispersion integral of eq. (3.18). The Cauchy singularity
of the integrand lies infinitesimally above the real τ axis at t and the pseudo-threshold singularity at(
Mη′ −

√
k2
)2.

path of integration of the dispersion integral then avoids the pseudo-threshold singularity,
located at t =

(
Mη′ −

√
k2)2, and allows us to reach a numerically stable result.3 In order to

choose a suitable integration path, the location of the singularities of the integrand including
their infinitesimal imaginary parts are of importance. While the Cauchy singularity of the
integrand in eq. (3.18) is located at t + iϵ with ϵ > 0, the variable k2 conventionally obtains
an infinitesimal imaginary part by k2 → k2 + iδ with δ > 0, due to its nature as a mass
parameter [161, 166]. Therefore, the pseudo-threshold singularity is located at(

Mη′ −
√

k2)2 → (
Mη′ −

√
k2)2 + iδ

(
1− Mη′

√
k2

)
. (3.30)

Hence, for values of k2 > M2
η′ , the singularity is located (like the Cauchy singularity) in

the upper half plane. Therefore, in these cases, a deformation of the path of integration
towards negative imaginary parts of the kinematic variable is justified, motivating the final
path of integration shown in figure 9.

3.4 η(′) → π+π−γ∗ amplitude

Since the spin structure of η′(q) → π+(p1)π−(p2)γ∗(k) is the same as in the decay η′ →
π+π−ρ∗ the matrix element can be written in terms of a scalar function in the same manner:

Mη′→ππγ = eϵµναβϵµ∗(k)pν
1pα

2 qβFη′ππγ(s, t, u, k2), (3.31)

where ϵµ(k) is the polarization vector of the outgoing (virtual) photon, see eq. (3.8). The
Mandelstam variables are defined by

s = (q − p1)2, t = (p1 + p2)2, u = (q − p2)2. (3.32)

The discontinuity of the scalar function (in the k2 variable) can be reconstructed from
the η′ → 2(π+π−) amplitude and the pion vector form factor F V

π (k2) by means of the
unitarity relation

discMη′→ππγ = i(2π)4
∫

dΦ2 δ(4)(kn − k)M∗
γ∗→ππMη′→4π, (3.33)

3Otherwise, the integration around the pseudo-threshold would become particularly delicate when the
analytic continuation requires a nonvanishing value of θ(t, k2) in Q(y), and would have to be performed with
methods as described in refs. [164, 165].
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in the approximation of taking only the lowest-lying intermediate states into account, where
dΦ2 marks the two-particle phase-space integration and kn labels the intermediate momenta.
The amplitude for γ∗(k) → π−(p3)π+(p4) written in terms of the pion vector form factor
appears as

Mγ∗→ππ = eϵµ(k)(p3 − p4)µF V
π (k2). (3.34)

Furthermore, the η′ → 2(π+π−) amplitude of eq. (3.2) with a2 left-hand-cut contribution
and description of final-state interaction, see eq. (3.20), can be written as

Mη′→4π = ϵµνρσpµ
1pν

2pρ
3pσ

4

[
fη′

1 (t, k2)Ω(k2) + fη′

1 (k2, t)Ω(t)
]

, (3.35)

where fη′

1 (t, k2) is the partial wave of eq. (3.14) and higher partial waves as well as crossed
terms of the final-state interaction have been neglected. After considering the different
momentum combinations of the intermediate pions and performing the two-particle phase-
space integration, the discontinuity of the scalar function in eq. (3.31) appears as

disck2 Fη′ππγ(t, k2) = i
k2σ3

π(k2)
48π

[
F V

π (k2)
]∗ [

fη′

1 (t, k2)Ω(k2) + fη′

1 (k2, t)Ω(t)
]

, (3.36)

where the scalar function depends only on t and k2, see appendix D for the derivation. The
unsubtracted dispersion relation follows from this equation as

Fη′ππγ(t, k2) = 1
96π2

∫ ∞

4M2
π

dx
xσ3

π(x)
[
F V

π (x)
]∗ (

fη′

1 (t, x)Ω(x) + fη′

1 (x, t)Ω(t)
)

x − k2 − iϵ
. (3.37)

In order to determine the input for the η′ TFF, the subtraction constants in this representation
are fit to data for the real-photon decay spectrum of η′ → π+π−γ from BESIII [167], see
section 3.5. Furthermore, the dispersion integrals, as in the equation above, are carried out
up to an integral cutoff Λ2, which is varied between Λ ∈ {1.5, 2.5}GeV in the following
numerical evaluation.

A similar relation can be used for the determination of the η TFF, even though the decay
in the first step of this description, η → 2(π+π−), is kinematically forbidden. More specifically,
in order to apply this description to the η case, in eqs. (3.15) and (3.16) the replacement
Mη′ → Mη needs to be performed in order to obtain the partial-wave amplitude fη→ππρ

1 .
Additionally, the parameters in the subtraction polynomial appearing in the partial-wave
amplitude are fit to the decay spectrum of η → π+π−γ from KLOE [168].

Since we utilize a subtracted representation of the η(′) → 2(π+π−) amplitude as input,
the dispersion relation of eq. (3.37) would be divergent without the appropriate modifications.
That is, the low-energy representation does not hold up to arbitrarily high energies and
needs to be smoothly matched onto the expected asymptotic behavior. Thus, the following
prescription to continue our low-energy description to values above a cut parameter sc is
adopted to render the dispersion integral manifestly finite:

fη(′)

1 (t, k2) =


Ω(t)

[
P (sc) + s2

c
π Dη(′)(sc, k2)

]
+ Ĝη(′)(sc, k2) sc

t , t > sc ∧ k2 < sc,

Ω(t)
[
P (t) + t2

π Dη(′)(t, sc) sc
k2
]
+ Ĝη(′)(t, sc) sc

k2 , t < sc ∧ k2 > sc,

Ω(t)
[
P (sc) + s2

c
π Dη(′)(sc, sc) sc

k2
]
+ Ĝη(′)(sc, sc)K(t, k2), t, k2 > sc,

(3.38)
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(sc,Λ2) [GeV2] (1, 2.25) (1.5, 2.25) (1, 6.25) (1.5, 6.25)

A [GeV−7] 1895(33) 1887(32) 1864(32) 1859(31)
cη′4π [GeV−5] 416.1(5.9) 406.0(6.0) 417.1(6.0) 406.3(6.2)
χ2/dof 1.87 1.90 1.90 1.95

Br
[
η′ → 2(π+π−)

]
× 105 5.31(13) 5.20(12) 5.20(12) 5.10(12)

Table 1. Fit parameters and reduced χ2, normalized to the number of degrees of freedom (dof),
in addition to the extracted branching fraction Br

[
η′ → 2(π+π−)

]
for the η′ → π+π−γ fits to the

BESIII data [167], with data points in the ρ–ω-mixing region excluded as explained in the main text.
The fit variants correspond to different cut parameters sc in the underlying η′ → 2(π+π−) amplitudes
and different values for the integral cutoff Λ2. The quoted errors reflect the fit uncertainties.

where
K(t, k2) = sc(t + sc)(k2 + sc)

2tk2(t + k2) , (3.39)

and Dη(′) is defined in eq. (3.19). In practice this prescription forces fη(′)

1 (t, k2) to drop
off like 1/t and the parts related to the inhomogeneity like 1/k2 above sc. In particular,
the prescription ensures that crossing between the four regions (t, k2) < sc; t > sc, k2 < sc;
t < sc, k2 > sc; and (t, k2) > sc is continuous. Treating the two arguments t and k2 on the
same footing is done in view of the application to the Bose-symmetric TFFs, see section 3.6.
Finally, the procedure to account for finite-width effects of a2 exchange, as outlined in
section 3.2 of ref. [37], dispersing Ĝ(t, k2) and accordingly D(t, k2) around the a2 mass
parameter, is adopted here as well.

3.5 Fits to η(′) → π+π−γ

As the η(′) → π+π−γ scalar functions in eq. (3.37) are based on the η(′) → 2(π+π−) amplitude,
chiral constraints on the latter need to be taken into account. Imposing the constraint
observed at O(p6) in the chiral expansion [149] that the amplitudes vanish for t = 0, we
adapt eq. (3.14) to

fη(′)

1 (t, k2) →
[
At + t2

π

∫ Λ2

4M2
π

dτ

τ2
Ĝη(′)

s (τ, k2) sin δ11(τ)
(τ − t − iϵ)|Ω(τ)|

]
Ω(t) + Ĝη(′)

s (t, k2), (3.40)

with Ĝη(′)
s defined in eq. (3.22).

Furthermore, the coupling multiplying the left-hand-cut contribution Ĝη(′)
s (t, k2) and

thus also the inhomogeneous dispersion integral Dη(′)(t, k2) can, in principle, be fixed from
decay widths by means of phenomenological Lagrangians as outlined in appendix A. The
decay widths Γ[a2 → η(′)π] and Γ[ρ → ππ] would be required in this approach. Additionally,
one would need the values for Γ[a2 → 3π] or Γ[a2 → πγ], where both reactions would proceed
via intermediate ρ resonances, see appendix B for details. However, as demonstrated in
appendix B, we do not obtain fully consistent results, e.g., comparing the extracted couplings
for the η(′) → π+π−γ amplitudes (i) via the a2 → 3π decay with the strength of the left-
hand-cut coupling fixed on that level [36] via Γ[a2 → η(′)π] and (ii) via Γ[a2 → πγ] due
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Figure 10. Fit to the η′ → π+π−γ spectrum from BESIII [167] with different variants, as detailed
in table 1, from which the error band is derived (the central value is defined as the average of all fit
variants, the band by the maximal difference). P̄η′(q2) is defined in eq. (3.46), removing the effects of
the ρ(770) resonance and phase-space functions from the spectrum.

to an a2πγ contact interaction. Part of the mismatch can be attributed to overlapping ρ

resonances in the a2 → 3π Dalitz plot, which would need to be taken into account for a
robust determination, but at the same time the uncertainties in measuring the radiative
decay a2 → πγ are substantial as well.

For these reasons, we aim to determine the left-hand-cut couplings cη(′)4π phenomenolog-
ically, directly from the η(′) → π+π−γ spectra. For the η′, such a strategy gives a reasonable
description of the data, see table 1, with resulting couplings that come out closer to the
prediction via a2 → πγ than a2 → 3π. In case of the η, however, the spectrum has only a
limited phase-space range that does not allow for a direct extraction in a sufficiently reliable
way. Accordingly, we determine cη4π from U(3) symmetry, allowing for a generous variation
to account for the associated uncertainties. Table 1 also displays the branching fractions for
η′ → 2(π+π−) that correspond to the different fit variants. In all cases, the result lies below
the BESIII measurement, Br[η′ → 2(π+π−)] = 8.56(34)× 10−5 [169], but such a moderate
mismatch is to be expected, since the underlying unitarity relation linking η′ → 2(π+π−) and
η′ → π+π−γ, assuming ρ dominance, does not take into account the effect of overlapping ρ

bands, as would be required for a precision calculation of this decay channel. For that reason,
agreement at the present level serves as another plausibility check for our η′ → 4π amplitude.

Given the scalar amplitude in eq. (3.37) with subtracted partial wave of eq. (3.40) as
input, the differential decay width into the π+π−γ final state, with π+π− invariant mass
t, can be expressed as

dΓη(′)

dt
(t) = Γη(′)

0 (t)|Fη(′)ππγ(t, 0)|
2, Γη(′)

0 (t) = α

π2

tσ3
π(t)(M2

η(′) − t)3

1536Mη(′)
. (3.41)
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Since the experimental spectra of KLOE for η → π+π−γ [168] and BESIII for η′ →
π+π−γ [167] are not normalized to physical units, we fit an overall normalization factor in addi-
tion to the left-hand-cut coupling strength cη′4π to the data, while the subtraction constant A

is constrained from the RPP values for Γ[η(′) → π+π−γ] [3]. Accordingly, we first decompose

Fη(′)ππγ(t, 0) = AIη(′)

A (t) + Iη(′)

0 (t), (3.42)

with

Iη(′)

A (t) = 1
96π2

∫ Λ2

4M2
π

dx σ3
π(x)

[
F V

π (x)
]∗(x + t)Ω(t)Ω(x),

Iη(′)

0 (t) = 1
96π2

∫ Λ2

4M2
π

dx σ3
π(x)

[
F V

π (x)
]∗

×
[(

t2

π
Dη(′)(t, x)Ω(t) + Ĝη(′)(t, x)

)
Ω(x)

+
(

x2

π
Dη(′)(x, t)Ω(x) + Ĝη(′)(x, t)

)
Ω(t)

]
. (3.43)

The integral of the differential decay width within the phase-space region gives the correspond-
ing partial decay width. This provides a condition to determine the subtraction constant
A in each step of the fit iteration, by demanding

Γ[η(′) → π+π−γ] != A2I
(2)
η(′) + 2AI

(1)
η(′) + I

(0)
η(′) , (3.44)

where

I
(2)
η(′) =

∫ M2
η(′)

4M2
π

dt Γη(′)

0 (t)
∣∣Iη(′)

A (t)
∣∣2, I

(0)
η(′) =

∫ M2
η(′)

4M2
π

dt Γη(′)

0 (t)
∣∣Iη(′)

0 (t)
∣∣2,

I
(1)
η(′) =

∫ M2
η(′)

4M2
π

dt Γη(′)

0 (t)Re
[
Iη(′)

A (t)
(
Iη(′)

0
)∗(t)]. (3.45)

Note that eq. (3.44) gives two solutions for the subtraction constant A, we always find
a positive and a negative value. For either sign choice, the coupling cη(′)4π obtains its
corresponding sign in the fit to the η′ → π+π−γ data. A related sign ambiguity arises in the
derivation of the η′ → π+π−γ discontinuity of appendix D, the choices given here, however,
ensure a consistent scheme. The spectrum of η′ → π+π−γ spectrum [167] features a prominent
isospin-breaking signal due to ρ–ω mixing [170]. While being relevant for precision analyses
of η′ → ℓ+ℓ−γ [39], the impact of these isospin-breaking corrections in the space-like region
of the TFF is negligible. We, therefore, exclude data of ref. [167] in the region Mω ± 3Γω

from fits of the representation in eq. (3.42), with the ω mass and width parameters fixed
to the values taken from the RPP [3].

The cut parameter sc in the underlying η′ → 2(π+π−) amplitudes is varied from 1 to
1.5GeV2. Additionally, the dispersive integrals of the underlying η′ → 2(π+π−) representation
in eq. (3.18) as well as the one connecting to the π+π−γ final state extend up to an integral
cutoff Λ2 ranging from (1.5)2 to (2.5)2 GeV2. As input for the pion vector form factor we
use F V

π (s) = P V
π (s)Ω(s), with the Omnès function constructed from the ππ P -wave phase
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(sc,Λ2) [GeV2] A [GeV−7] χ2/dof cη4π [GeV−5]

cη′4π − 15%

(1, 2.25) 2330(56) 1.70 354
(1.5, 2.25) 2326(53) 1.44 345
(1, 6.25) 2381(56) 1.40 354
(1.5, 6.25) 2326(53) 1.43 345

cη′4π − 30%

(1, 2.25) 2278(56) 1.39 291
(1.5, 2.25) 2326(53) 1.44 284
(1, 6.25) 2381(56) 1.40 292
(1.5, 6.25) 2326(53) 1.43 284

cη′4π − 45%

(1, 2.25) 2432(56) 1.17 229
(1.5, 2.25) 2359(53) 1.24 223
(1, 6.25) 2432(56) 1.17 229
(1.5, 6.25) 2359(53) 1.24 223

Table 2. Results of the one-parameter fits to the η → π+π−γ data of KLOE [168], varying the
input coupling from the η′ → π+π−γ fits in table 1, cut parameter sc in the underlying η → 2(π+π−)
amplitudes, and cutoff Λ2 of the dispersive integrals.

shift of the (modified) inverse amplitude method as detailed in appendix C, and the (linear)
polynomial fit to the τ− → π−π0ντ data of ref. [171]. Here, the polynomial P V

π (s) is continued
to a constant P V

π (sc) for s > sc in the same way as the η(′) → 2(π+π−) amplitudes. The
outcomes of the two-parameter fits for the dispersive variants with different values for the cut
parameter sc and integral cutoff Λ2 are listed in table 1. In figure 10, we show the observable

P̄η(′)(t) =
(

1
Γη(′)

0 (t)|Ω(t)|2
dΓη(′)

dt

)1/2

, (3.46)

defined in such a way to remove the effects of ρ peak and phase-space factors from the
decay spectrum.

It may be worth commenting on the spectrum in figure 10 (as well as the corresponding
one for the η in figure 11) in comparison to prior analyses in the literature. Originally [34], the
ππ spectra in both radiative decays were described by P -wave Omnès functions, multiplied by
linear polynomials with two free parameters (normalization and slope); additional left-hand
cuts due to a2 exchange were shown to induce curvature in P̄η(′)(t) [36], but ultimately
failed to describe the experimental data [167] with sufficient precision, such that a quadratic
polynomial with three fit parameters was employed [38]. Our approach here is different and
has fewer degrees of freedom: the η(′) → π+π−γ decays are reconstructed via a dispersion
relation, based on underlying η(′) → 2(π+π−) amplitudes that come with only one subtraction
constant A and one effective coupling cη(′)4π for the a2-exchange contribution. We consider
the fact that this approach reproduces the ππ spectra in the radiative η(′) decays to very high
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Figure 11. Fit to the η → π+π−γ spectrum from KLOE [168] for the different variants detailed in
table 2, from which the error band is derived (the central value is defined as the average of all fit
variants, the band by the maximal difference). P̄η(q2) is defined in analogy to eq. (3.46), removing
the effects of the ρ(770) resonance and phase-space functions from the spectrum.

accuracy, although maybe not as perfectly as a free three-parameter fit, a highly nontrivial
and very convincing validation of our construction.

The same analysis for the η, see table 2 and figure 11, is complicated by the limited phase
space. In general, we observe that the fit prefers a smaller effective left-hand-cut coupling
than for the η′, but the sensitivity to the implied curvature is limited. Accordingly, we fix
the central value of cη4π to cη′4π reduced by 30%, in line with a typical violation of U(3)
symmetry, but consider variations by ±15% to account for the associated uncertainties. It is
then instructive to also consider the extrapolation of the resulting fit function beyond the
respective phase-space boundaries, see figure 12. For the η′, one clearly sees the curvature
in the spectrum, whose high-energy growth is cut at sc. For the η, the figure illustrates
how the available phase space only provides limited sensitivity to the curvature, motivating
the additional constraint that arises when restricting the tolerated level of the violation
of U(3) symmetry.

3.6 Analytic continuation to space-like region

Applying the unitarity condition, it is possible to write down a dispersion relation in order
to relate the scalar η(′) → π+π−γ amplitudes of eq. (3.37) with the TFFs through a π+π−

intermediate state

F̃
(I=1)
η(′) (q21, k2) = 1

96π2

∫ Λ2

4M2
π

dx
xσ3

π(x)[F V
π (x)]∗Fη(′)ππγ(x, k2)

x − q21
. (3.47)

The dispersion relation above is intentionally kept unsubtracted to ensure the correct asymp-
totic behavior. A potential violation of the sum rule for the normalization Fη(′)γγ is to be
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Figure 12. Extrapolation of the fits to the η(′) → π+π−γ spectra beyond the respective phase space.
The parts of the spectra in which data are available coincide with figure 10 (η′) and figure 11 (η).
The bands are derived as in figures 10 and 11.

restored by the addition of the effective-pole pieces F eff
η(′) , see section 4. Furthermore, the

dispersion integrals are carried out up to a cutoff Λ2. In order to facilitate the evaluation
in the full space-like Q2

1–Q2
2-plane, it is useful to apply another dispersion relation in the

second variable. After symmetrization in both arguments, this enables us to write down
the TFFs in a double-spectral representation

F
(I=1)
η(′) (−Q2

1,−Q2
2) =

1
π2

∫ Λ2

4M2
π

dx dy
ρη(′)(x, y)

(x + Q2
1)(y + Q2

2)
+ (Q1 ↔ Q2), (3.48)

with double-spectral density

ρη(′)(x, y) = xσ3
π(x)

192π
Im
{[

F V
π (x)

]∗Fη(′)ππγ(x, y)
}

. (3.49)

It is this final dispersive representation that we use to obtain our main results for the isovector
TFFs in the space-like region.

4 Isoscalar and effective-pole contributions

In contrast to the elaborate calculation necessary for the isovector contribution described in
section 3, the isoscalar TFFs are sufficiently well described by the narrow ω and ϕ resonances

F
(I=0)
η(′) (−Q2

1,−Q2
2) =

∑
V ∈{ω,ϕ}

wη(′)V γFη(′)γγM4
V

(M2
V + Q2

1)(M2
V + Q2

2)
, (4.1)

given that the overall contribution is much smaller and concentrated around the very narrow
resonance peaks. The weight factors wη(′)V γ are determined phenomenologically via the
corresponding decays of V and η′ [21]

w2
P V γ =


9M2

V M3
P Γ[V →e+e−]Γ[V →P γ]

2α(M2
V −M2

P )3Γ[P→γγ] if MV > MP ,

3M6
P Γ[V →e+e−]Γ[P→V γ]

2αMV (M2
P −M2

V )3Γ[P→γγ] if MP > MV ,
(4.2)

and their signs by comparison to the vector-meson-dominance (VMD) expressions. This
strategy has the advantage of automatically accounting for symmetry-breaking terms in an
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effective Lagrangian approach. Using eq. (1.5) for Γ[P → γγ] and the RPP values for the
other branching fractions and decay widths, one obtains

wηωγ = 0.099(7), wηϕγ = −0.188(5),
wη′ωγ = 0.071(2), wη′ϕγ = 0.155(4). (4.3)

These numbers can vary slightly depending on the treatment of experimental input quantities
and vacuum-polarization corrections, e.g., ref. [38] finds wη′ωγ = 0.072(2), wη′ϕγ = 0.158(6),
but the uncertainties are sufficiently small that they can be neglected in the error propagation,
see ref. [38] for an explicit breakdown in the case of the slope parameter bη′ .

In general, the sum of isovector and isoscalar contributions constructed so far does not
suffice to saturate the TFF normalizations exactly nor to describe the TFFs at virtualities
≳ 1GeV2, both due to the impact of hadronic intermediate states not explicitly included in
the representation. To rectify this omission, we add an effective-pole term

F
eff (A)
η(′) (−Q2

1,−Q2
2) =

geffFη(′)γγM4
eff

(M2
eff + Q2

1)(M2
eff + Q2

2)
, (4.4)

with coupling constrained to fulfill the normalization exactly and mass parameter fit to
singly-virtual space-like TFF data from e+e− → e+e−η(′) for Q2 ≥ 5GeV2. Accordingly,
the low-energy TFF remains a prediction, just the transition to the asymptotic region is
determined by further data input. Phenomenologically, the picture that emerges is as follows:
for the η, the sum of the low-energy contributions actually overfulfills the sum rule for
the normalization, in such a way that geff becomes negative, in the range −2% to −13%,
with a mass parameter Meff around (1.3–2.2)GeV. For the η′, geff is positive, around 5%,
while the effective mass comes out around Meff = 1.4GeV. In general, the effective-pole
contributions thus remain reasonably small, and the mass scales are compatible with the
expected contributions of higher intermediate states.

However, in comparison to the π0 case [31, 32], we observe that Meff tends to come out
smaller, and the separation of low-energy degrees of freedom and asymptotic constraints is
less robust, necessitating a more thorough uncertainty analysis. To this end, we consider
a second effective-pole variant

F
eff (B)
η(′) (−Q2

1,−Q2
2) =

∑
V ∈{ρ′,ρ′′}

gV Fη(′)γγM4
V

(M2
V + Q2

1)(M2
V + Q2

2)
, (4.5)

in which the mass parameters are fixed at the ρ′, ρ′′ masses and the two couplings fit
to normalization and singly-virtual data above 5GeV2. These resonances are expected to
subsume the dominant effects not explicitly included in the dispersive representation (together
with excited isoscalar resonances in the same mass region), so that this approach should
give a perspective on the effective-pole uncertainties complementary to eq. (4.4). In the fit
to singly-virtual TFF data of one of the effective couplings, the normalization sum rule is
being kept fulfilled in every step of the fit iteration

Fη(′)γγ = F
(I=1)
η(′) (0, 0) + Fη(′)γγ

(
wη(′)ωγ + wη(′)ϕγ +

∑
V

gV

)
, (4.6)
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by adjusting the other one accordingly. In case of the η TFF, gρ′ is found to in the range
−21% to 4% and gρ′′ in the range −6% to 10%. For the η′ TFF, gρ′ is determined to be
around 22%, while gρ′′ comes out around −16%. The spread between the two effective-pole
variants (A) and (B) will be included in the final uncertainty estimate, see section 6.

5 Matching to short-distance constraints

The leading short-distance constraints are obtained by expanding eq. (1.1) around the light
cone x2 = 0. In this way, one obtains the relation [22–24]

FP γ∗γ∗(q21, q22) = −
F̄ P

asym
3

∫ 1

0
du

ϕP (u)
uq21 + (1− u)q22

, (5.1)

where the wave function ϕP (u) can be expanded in Gegenbauer polynomials, and the leading
term in the conformal limit [172] becomes ϕP (u) = 6u(1− u). For the pion, the coefficient,
F̄ π

asym = 2Fπ, is predicted in terms of the pion decay constant, while for η(′) its value depends
on the mixing parameters, see section 6.2. In the symmetric asymptotic limit, eq. (5.1)
predicts [25, 26]

lim
Q2→∞

Q2FP γ∗γ∗(−Q2,−Q2) = 1
3 F̄ P

asym, (5.2)

a factor three less than in the singly-virtual direction

lim
Q2→∞

Q2FP γ∗γ∗(−Q2, 0) = F̄ P
asym. (5.3)

The second limit goes beyond a strict operator product expansion [27, 173], resumming higher-
order terms into the wave function, which can thus be interpreted as the nonperturbative
matrix element in a factorization approach [174–176]. In addition to the leading result (5.1),
αs corrections [177, 178] and higher-order terms in the context of QCD sum rules [179–186]
were studied in the literature, see ref. [32] for an estimate of the impact of the αs corrections
on the asymptotic matching for the π0 TFF. However, to extend the matching to lower
virtualities, arguably, corrections from the finite pseudoscalar mass are likely to generate
the most important effect, which naturally changes eq. (5.1) to [60]

FP γ∗γ∗(q21, q22) = −
F̄ P

asym
3

∫ 1

0
du

ϕP (u)
uq21 + (1− u)q22 − u(1− u)M2

P

. (5.4)

These corrections should be retained when reformulating eq. (5.1) as a dispersion relation [182].
In general, we follow the approach from refs. [31, 32] to rewrite eq. (5.1) as a double

dispersion relation, imposing a lower matching scale sm. In particular, we choose boundary
terms in evaluating the double-spectral density

ρasym(q21, q22) = −π2F̄ P
asymq21q22δ′′(q21 − q22) (5.5)

in such a way that the result vanishes in the singly-virtual limit

F asym
P γ∗γ∗(q21, q22) = F̄ P

asym

∫ ∞

sm
dx

q21q22
(x − q21)2(x − q22)2

. (5.6)
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The motivation for this procedure is that in the singly-virtual limit the dispersive representa-
tion has the same asymptotic behavior as eq. (5.1), with a coefficient that can be determined
by a fit to space-like TFF data measured in e+e− → e+e−P . With F̄ P

asym thus inferred from
the data, via a superconvergence relation, also the doubly-virtual contribution is predicted.

The generalization of the double-spectral density (5.5) to finite pseudoscalar mass was
derived in ref. [61]. To preserve the behavior of eq. (5.6) for small virtualities, appropriate
subtractions need to be introduced [42], leading to the form

F asym
P (q21, q22) =

−F̄ P
asym

M4
P

∫ ∞

2sm
dv

[
q22

v − q21

[ 1
v − q21 − q22

− 1
q21 − q22

]
fasym

P (v, q21) + (q21 ↔ q22)
]
,

fasym
P (v, q2) = (v − 2q2)2 − M2

P v√
(v − 2q2)2 − 2M2

P v + M4
P

+ 2q2 − v. (5.7)

In this form, F asym
P (q21, q22) reduces to eq. (5.6) in the limit MP → 0, and the behavior

F asym
P (q21, q22) = O(q21q22) for small virtualities is maintained. For the pion, these pseudoscalar

mass effects are negligible, but for P = η(′) we observe that keeping the corresponding mass
corrections indeed improves the matching to short-distance constraints.

For the numerical analysis, we therefore employ an asymptotic contribution in the
form (5.7). Motivated by light-cone sum rules [182, 185] (see also appendix E of ref. [32]), we
set sm = 1.5(3)GeV2 for the η′, while for the η we allow for a larger range, sm = 1.4(4)GeV2,
to include TFF variations that display a slightly smoother transition in the doubly-virtual
direction. We also investigated alternative formulations in which the asymptotic contribution
does not vanish in the singly-virtual direction, similarly to the strategy for the short-distance
matching of axial-vector TFFs in ref. [42], but found no further improvement compared
to eq. (5.7).

The asymptotic coefficients F̄ P
asym follow from a superconvergence relation

F̄ P
asym = FP γγ

∑
V

gV M2
V + 1

π2

∫ Λ2

4M2
π

dx dy

[
ρP (x, y)

x
+ ρP (x, y)

y

]
, (5.8)

written in terms of the double-spectral densities defined in eq. (3.49). The sum extends
over V ∈ {ω, ϕ, eff} in case of effective-pole variant (A), where gω/ϕ ≡ wP ω/ϕγ , and V ∈
{ω, ϕ, ρ′, ρ′′} for effective-pole variant (B). The numerical results for F̄ η(′)

asym are provided
in eq. (6.5).

6 Numerical results

In this section, we discuss our numerical results for the slope parameters bη(′) , the η(′) decay
constants and mixing angles, the space-like TFFs in singly- and doubly-virtual kinematics,
and the η(′)-pole contributions to aµ. In each case, we assess the uncertainties as follows: the
uncertainty in the normalizations of the TFFs is propagated from the RPP values given in
eq. (1.5) (“norm”); for the uncertainty of the dispersive representation (“disp”), we consider
different variants for integral cutoffs Λ and cut parameters sc (and U(3)-symmetry violation
for the η), as given in tables 1 and 2, assigning the maximal variation as the resulting
error; the singly-virtual Brodsky-Lepage (“BL”) limit is described by effective poles, with
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Figure 13. Comparison of the η and η′ slope parameters with previous time-like and space-like
experimental measurements as well as theoretical analyses. References are given in the main text.

parameters varied within the fit uncertainties and scanning over the two variants defined in
eqs. (4.4) and (4.5); for the uncertainty of the asymptotic contribution (“asym”) we vary
the threshold parameter sm as described in section 5, adding the variation observed when
replacing our superconvergence values for F̄ η(′)

asym by the determination from ref. [187] (see also
ref. [188] for an earlier calculation in lattice QCD). All uncertainties are added in quadrature.

6.1 Slope parameters

The slope parameters of the TFFs are defined as

bη(′) ≡
1

Fη(′)γγ

∂

∂q2
Fη(′)γ∗γ∗(q2, 0)

∣∣
q2=0, (6.1)

By construction, the asymptotic part of the TFF representation does not contribute, and
we obtain

bη = 1.833 (16)norm (36)disp (9)BL [41]tot GeV−2,

bη′ = 1.493 (10)norm (30)disp (6)BL [32]tot GeV−2. (6.2)
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F8
Fπ

F0
Fπ

θ8 [◦] θ0 [◦] Λ3 Λ1 K2
[
GeV−2] χ2

ref. [187] 1.25(3) 1.15(3) −25.8(2.3) −8.1(1.8) – – – –
ref. [20] 1.27(2) 1.14(5) −21.2(1.9) −6.9(2.4) −0.02(7) 0.01(13) −0.45(57) 2.01
this work 1.28(3) 1.19(5) −22.4(1.0) −9.0(1.8) 0.01(5) 0.14(12) 0.04(15) 1.79

Table 3. η(′) mixing parameters derived in this work, in comparison to the similar analysis from
ref. [20] and the lattice-QCD calculation from ref. [187]. In all cases, F0 is defined at µ0 = 1GeV.

In both cases, the result is broadly consistent with determinations from space-like experi-
ments [17, 19, 189, 190], time-like measurements [191–199], and earlier theoretical determina-
tions [20, 24, 35, 38, 200–206], see figure 13 for an overview. For the η′, we can compare to a
highly optimized dispersive representation for the singly-virtual TFF, including a fully consis-
tent treatment of isospin breaking due to ρ–ω mixing, which gives bη′ = 1.431(23)GeV−2 [38],
in reasonable agreement with the outcome of the present analysis.

6.2 η(′) mixing parameters

Defining the pseudoscalar decay constants F a
P by〈

0
∣∣∣q̄γµγ5

λa

2 q
∣∣∣P (p)

〉
= ipµF a

P , (6.3)

with Gell-Mann matrices λa and λ0 =
√
2/313, we employ the singlet-octet two-angle mixing

scheme [207–209] (
F 8

η F 0
η

F 8
η′ F 0

η′

)
≡
(

F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)
, (6.4)

which overcomes the limitations of a one-angle scheme at leading order in the chiral and
large-Nc expansion. To determine these mixing parameters using as input Fη(′)γγ from
eq. (1.5) and our superconvergence results for F̄ η(′)

asym,

F̄ η
asym = 0.186(7)norm(7)disp(9)BL[13]tot GeV,

F̄ η′
asym = 0.264(5)norm(5)disp(11)BL[13]tot GeV, (6.5)

we follow the strategy put forward in ref. [20]. First, one has at next-to-leading order in
large-Nc ChPT [207–209]

F 2
8 = 4F 2

K − F 2
π

3 , F 2
0 = 2F 2

K + F 2
π

3 + F 2
πΛ1, F8F0 sin(θ8 − θ0) = −2

√
2

3
(
F 2

K − F 2
π

)
.

(6.6)
Defining the scale-dependent singlet decay constant as F0 ≡ F0(µ0), µ0 = 1GeV, as

appropriate for the decomposition of the two-photon decay widths, one then needs to introduce
renormalization-group (RG) corrections for the asymptotic coefficients [185, 210, 211], which
can be subsumed into

F0(µ) = F0(µ0)
[
1 + 2Nf

πβ0

(
αs(µ)− αs(µ0)

)]
≡ F0(µ0)

[
1 + δ(µ, µ0)

]
, (6.7)
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F8
Fπ

F0
Fπ

θ8 θ0 Λ3 Λ1 K2

F8
Fπ

1.00 0.07 −0.33 0.01 0.09 0.07 −0.08
F0
Fπ

1.00 −0.16 −0.18 0.86 0.92 0.09
θ8 1.00 0.27 0.01 −0.15 −0.65
θ0 1.00 −0.45 −0.16 −0.20
Λ3 1.00 0.80 −0.13
Λ1 1.00 0.09
K2 1.00

Table 4. Correlation coefficients among the different quantities quoted in table 3.

where β0 = 11 − 2Nf /3, Nf the number of active quark flavors, and δ∞ ≡ δ(∞, µ0) =
−0.10 [20, 205]. Introducing weights as

Ca = 1
2Tr

(
Q2λa

)
, C8 =

1
6
√
3

, C0 =
2

3
√
6

, (6.8)

as well as versions including higher-order contributions (both chiral and large-Nc-suppressed
corrections) [20, 210, 211]

C̄8 = C8
(
1 + K2

3
(
7M2

π − 4M2
K

))
, C̄0 = C0

(
1 + Λ3 +

K2
3
(
2M2

π + M2
K

))
, (6.9)

one has [20]

F̄ P
asym = 12

(
C8F

8
P + C0(1 + δ∞)F 0

P

)
,

Fηγγ = 3
2π2

C̄8F
0
η′ − C̄0F

8
η′

F 0
η′F 8

η − F 8
η′F 0

η

, Fη′γγ = 3
2π2

C̄8F
0
η − C̄0F

8
η

F 0
η F 8

η′ − F 8
η F 0

η′
. (6.10)

The mixing angles drop out in the combination

F̄ η
asymFηγγ + F̄ η′

asymFη′γγ = 18
π2

(
C8C̄8 + C0C̄0(1 + δ∞)

)
= 3

2π2

[
1 + 8

9
(
(1 + δ∞)(1 + Λ3)− 1

)
+ K2

27
(
M2

π(23 + δ∞) + 4M2
K(1 + 2δ∞)

)]
, (6.11)

which is therefore predicted by the anomaly apart from RG, singlet, and quark-mass correc-
tions, parameterized by δ∞, Λ3, and K2, respectively. The scale dependence inherent in δ∞
and Λ3 drops out up to higher orders in the expansion. K2 also describes the iso-symmetric
quark-mass dependence of π0 → γγ, for which constraints from lattice QCD are available,
K2 = −0.13(15)GeV−2 [9]. Motivated by this range and the even smaller estimate from
ref. [8], we set K2 = 0 with an error ∆K2 = 0.15GeV−2. This constraint, the four conditions
in eq. (6.10), and the three ChPT relations (6.6) then amount to eight equations for the seven
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Figure 14. Singly-virtual η TFF, in comparison to CA [45], ETM [138], BMWc [135], and the data
from CELLO [17] and CLEO [190]. The lower figure, displaying a broader range in Q2, also shows the
data from BaBar [212] and the asymptotic value implied by RQCD [187]. Only data with Q2 ≥ 5GeV2

are included in our fit.
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Figure 15. Doubly-virtual η TFF, with legends as in figure 14.

– 31 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
7

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5

Q
2
F
η
′ γ
γ
∗
(−

Q
2
,0
)
[G

eV
]

Q2 [GeV2]

CA (2017)
BMWc (2023)

this work
CELLO (1991)
CLEO (1997)

L3 (1998)

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40

Q
2
F
η
′ γ
γ
∗
(−

Q
2
,0
)
[G

eV
]

Q2 [GeV2]

RQCD (latt.) limit
CA (2017)
this work

CELLO (1991)
CLEO (1997)

L3 (1998)
BaBar (2011)

Figure 16. Singly-virtual η′ TFF, with legends as in figure 14. The L3 data are from ref. [19].
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unknowns F8, F0, θ8, θ0, Λ3, Λ1, and K2. A χ2 minimization yields the results collected in
table 3, where we followed ref. [20] and accounted for the uncertainty due to higher chiral
orders in eq. (6.6) by assigning an additional 2.4% uncertainty to FK/Fπ = 1.1978(22) [213–
217]. Our results are consistent with ref. [20], albeit indicating a slightly larger value for F0
and θ0 (the former being compensated by a corresponding change in Λ1). In the comparison
to the lattice-QCD calculation of ref. [187], the biggest difference occurs in θ8, but even here
the results are compatible, especially, if one adds a scale factor to account for the χ2 > 1.4

Due to the various constraints, the uncertainties quoted in table 3 are not independent, with
the correlations given in table 4. Most correlations are reasonably small, apart from the
expected strong correlation among F0 and the singlet corrections Λ3, Λ1. In addition, θ8
displays a strong correlation with K2, which drives the change in θ8 compared to ref. [20],
while the changes in F0, θ0 largely derive from the higher values of F̄ η(′)

asym.

6.3 Space-like transition form factors

Our results for the space-like TFFs are illustrated in figures 14–19. First, figure 14 shows the
comparison for the singly-virtual η TFF, in comparison to the available data and selected
previous calculations. In general, we observe good agreement, especially for the data with
Q2 ≤ 5GeV2 not included in the fit, while the mismatch to lattice QCD for small virtualities
likely reflects the lower value for the normalization Fηγγ . In the doubly-virtual direction,
see figure 15, we observe a slower rise of the TFF than in the CA approach, while our
asymptotic value even comes out slightly higher. Ultimately, this behavior is driven by the
interplay between low-energy dispersive, isoscalar, and the effective-pole contributions, since
the negative effective coupling geff causes the asymptotic value to be saturated more slowly
than for an effective pole with opposite sign, and could be scrutinized once additional input
from low-energy doubly-virtual data or lattice QCD becomes available.

The analog plots for the η′ TFF are shown in figures 16 and 17, respectively. In general,
we observe again good agreement with previous work as well as the experimental results,
although especially in the doubly-virtual direction our curve lies below the one by BMWc.
The transition to the asymptotic region indeed proceeds faster than for the η TFF, reflecting
the fact that geff is positive. Moreover, we found that the mass corrections described in
section 5 also tend to lead to a faster increase, affecting the η′ TFF more strongly than for
the η. We also checked a representation in which part of the singly-virtual TFF is carried by
F asym

η (q21, q22), but the same behavior as for both effective-pole variants remains. Accordingly,
the fact that the large size of the combined isovector and isoscalar low-energy contributions
to the η TFF — and the required compensation by higher intermediate states to reproduce
the experimental normalization — enforces a slower transition to the asymptotic form seems
to be rather robust among the different interpolations we considered.

Finally, we illustrate the entire Q2
1–Q2

2 range in figure 18, again indicating the faster
rise to the asymptotic form in the case of the η′. The numerical results for the η and η′

TFFs in the space-like region corresponding to this figure are provided as supplementary
material. For the η′, one can also compare to the nondiagonal doubly-virtual data points

4We disagree with ref. [20] regarding the number of degrees of freedom, because eq. (6.11) is not an
independent constraint. Even for dof = 1, however, the resulting p-value is still 18%.

– 33 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
7

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4

Q
2
F
η
′γ

∗ γ
∗
(−

Q
2
,−

Q
2
)
[G

eV
]

Q2 [GeV2]

CA (2017)
BMWc (2023)

this work

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40

Q
2
F
η
′γ

∗ γ
∗
(−

Q
2
,−

Q
2
)
[G

eV
]

Q2 [GeV2]

RQCD (latt.) limit
CA (2017)
this work

BaBar (2018)

Figure 17. Doubly-virtual η′ TFF, with legends as in figure 14. The two data points from BaBar [218]
are not included in the fit.
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Figure 18. Three-dimensional representation of (Q2
1 + Q2

2)Fη(′)γ∗γ∗(−Q2
1,−Q2

2) for the η (left) and
η′ (right) TFFs.

5

10

15

(6.5, 6.5) (16.9, 16.9) (14.8, 4.3) (38.1, 15.0) (45.6, 45.6)

F
η
′ γ

∗ γ
∗
(−

Q
2 1
,−

Q
2 2
)
×

1
03

[G
eV

−
1
]

(Q2
1, Q

2
2) [GeV2]

BaBar (2018)
this work

Figure 19. Doubly-virtual η′ TFF in comparison to the data points from BaBar [218] with both
statistical and total errors.

from BaBar [218], see figure 19. Here, some disagreement occurs for the points with the
largest values Q2

1 ≃ 40GeV2, as observed before in the CA approach [45].

6.4 Pole contributions to aµ

Using our results for the space-like TFFs as described in section 6.3, the η(′)-pole contributions
to aµ follow from the master formula, eqs. (2.1) and (2.2), leading to

aη-pole
µ = 14.72(56)norm(32)disp(23)BL(54)asym[87]tot × 10−11,

aη′-pole
µ = 13.50(48)norm(15)disp(20)BL(48)asym[72]tot × 10−11, (6.12)

where the uncertainties are propagated from the TFFs as before. While our results agree
with recent analyses of the pseudoscalar-pole contributions [45, 135, 138, 206, 219–224],
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Figure 20. Comparison of the η and η′ pole contributions aη(′)-pole
µ between the results of the CA

analysis from ref. [45], two Dyson-Schwinger analyses (DS-EFWW [219] and DS-RBR [220]), the
holographic-QCD (hQCD) result from ref. [81], the lattice-QCD calculations by ETM [138] and
BMWc [135], and the Resonance Chiral Theory (RχT) analysis from ref. [206] with the results of this
work.

see figure 20, the highly constrained representation for the TFFs translates to reduced
uncertainties in aη(′)-pole

µ . Equation (6.12) constitutes the main result of our analysis.
Other definitions of pseudoscalar contributions have been used in the literature, e.g.,

employing a constant TFF at the singly-virtual vertex [44], which apart from meson-mass
corrections amounts to a definition in triangle instead of four-point kinematics [50, 64].
Moreover, definitions of a so-called pseudoscalar-exchange contribution include off-shell-
meson effects [145, 223, 225–230], which we do not consider further due to the inherent model
dependence. While the central value of the final result (6.12) comes out remarkably close to
the pioneering calculations aη+η′

µ ≃ 26× 10−11 (see refs. [145, 231] for earlier compilations)
in the extended Nambu-Jona-Lasinio model [232, 233] and VMD/HLS models [234–236], the
main progress over the last years concerns the precision with which the pseudoscalar-pole
contributions can now be evaluated.

7 Conclusions

We presented a comprehensive study of the η(′) TFFs using a dispersive approach, including
a number of inputs from both experiment and theory to constrain various properties of
the TFFs. The normalizations are determined from η(′) → γγ, the momentum dependence
of the isoscalar TFFs via vector-meson couplings that follow from measured branching
fractions. The most detailed analysis was performed for the dominant isovector TFFs, for
which the unitarity relation was solved including the left-hand-cut singularity due to the
a2 resonance. In particular, we detailed how to construct the underlying η(′) → 2(π+π−)
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amplitude in a way consistent with chiral symmetry, how to numerically solve the required
inhomogeneous Muskhelishvili-Omnès problem in a stable manner via a carefully chosen
path deformation, and how to determine the free parameters from a fit to the η(′) → π+π−γ

spectra. The asymptotic behavior of the TFFs was incorporated by matching to the leading
result from the light-cone expansion, augmented by the dominant corrections due to η(′)

mass effects. Finally, the transition between the low-energy dispersive representations and
the short-distance constraints was described by effective poles, with parameters determined
by imposing the exact normalization of the resulting representation and by fitting singly-
virtual, space-like data measured in e+e− → e+e−η(′) for virtualities Q2 ≥ 5GeV2. For
all contributions we performed a comprehensive error analysis, propagating uncertainies
from the experimental input quantities as well as theoretical uncertainties from the cutoff
parameters in the dispersive representation, the parameterization of the effective poles, and
the transition to the asymptotic region.

Our main application concerns the evaluation of the η(′)-pole contributions to HLbL
scattering, see eq. (6.12) for the main result. In addition, we calculated the slope param-
eters (6.2) and provided the η–η′ decay constants and mixing angles that follow from the
TFF normalizations together with the asymptotic coefficients determined via a superconver-
gence relation. Overall, we observed good agreement with previous results, while the highly
constrained nature of our representations allows for a reduction in the final uncertainty. In
particular, our calculation, for the first time, quantifies the impact of factorization-breaking
contributions generated by the leading a2 left-hand cut, whose implementation we validated
by studying the appropriate narrow-width limits. In combination with our previous work
for the π0, the final result

aPS-poles
µ = 91.2+2.9

−2.4 × 10−11 (7.1)

concludes a dedicated effort to determine the pseudoscalar-pole contributions to HLbL
scattering from a data-driven, dispersive approach. Future applications concern improved
Standard-Model predictions for leptonic decays of η(′) [237–240], e.g., η → µ+µ− [241, 242]
and η → 2(µ+µ−), as recently observed for the first time by CMS [243].

While the final uncertainty in eq. (7.1) is actually dominated by the tension between the
Belle [244] and BaBar [245] measurements of the singly-virtual π0 TFF at large virtualities, to
be clarified by future measurements at Belle II [246], also several aspects of the η(′) calculation
could be improved in future work. This includes additional data input, e.g., for η → γγ to be
measured in the JLab Primakoff program [247] (addressing the inconclusive situation regarding
a previous Primakoff measurement [248, 249]), the decays η(′) → π+π−γ, double-differential
data for e+e− → η(′)π+π− [250, 251], and low-energy, singly-virtual TFF measurements [252].
Moreover, the TFFs in the high-energy, doubly-virtual direction would profit from more
precise data [218], and, in general, the comparison to lattice-QCD calculations could help
corroborate or improve the uncertainties especially for doubly-virtual kinematics. Already
the current result (7.1), however, meets the precision requirements set by the final result of
the Fermilab experiment, and serves as crucial input for a complete dispersive analysis of the
HLbL contribution to the anomalous magnetic moment of the muon [41, 42].
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A Left-hand-cut contribution: Feynman rules and couplings

For both the η and η′ case, a contribution to the phenomenological estimation of the curvature
term stems from the decays of the a2(1320). Resonance Lagrangians are employed in order
to extract the magnitude of these couplings. In this approach, the tensor meson fields are
described by symmetric Hermitian rank-2 tensors and arranged in

T =


1√
6f8

2 + 1√
2a0

2 a+
2 K∗+

2
a−
2

1√
6f8

2 − 1√
2a0

2 K∗0
2

K∗−
2 K̄∗0

2 − 2√
6f8

2

+ 1√
3

f0
2 13. (A.1)

Furthermore, vector mesons are introduced by

V =


1√
2ω + 1√

2ρ0 ρ+ K∗+

ρ− 1√
2ω − 1√

2ρ0 K∗0

K∗− K̄∗0 ϕ

 . (A.2)

The coupling of tensor, vector, and pseudoscalar mesons is then modeled by the interac-
tion [154]

LTPV = icTPV
〈
T [µν]α

[
Ṽµν , ∂αΦ

]〉
, (A.3)

where
T [µν]α = ∂µT να − ∂νT µα, Ṽµν = 1

2ϵµναβ

(
∂αVβ − ∂βVα

)
, (A.4)

and the pseudoscalar meson fields are arranged in

Φ =


1√
2π0 + 1√

6η8 π+ K+

π− − 1√
2π0 + 1√

6η8 K0

K− K̄0 −
√

2
3 η8

+ 1√
3

η0 13. (A.5)

The relevant terms for a2 → 3π read

LTPV ⊃ 2
√
2 icTPVϵµναβ

{
∂µ(a+

2 )νδ

[
∂αρ−β ∂δπ0 − ∂αρ0β ∂δπ−]

+∂µ(a0
2)νδ

[
∂αρ+β ∂δπ− − ∂αρ−β ∂δπ+]

−∂µ(a−
2 )νδ

[
∂αρ+β ∂δπ0 − ∂αρ0β ∂δπ+]}. (A.6)
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The neutral ρ meson then couples to a±
2 π∓ via the Feynman rule

(a±2 )νγ

π±

ρ0β

k
p

q

= ±2
√
2 icTPVϵµναβkµqαpγ . (A.7)

As a spin-2 particle, the polarization tensor ϵµν(k, λ) is associated to the a2(1320) with
momentum k and polarization λ. The polarization sum is given by [153]∑

λ

ϵ∗µν(k, λ)ϵαβ(k, λ) = Pµν,αβ(k), (A.8)

where

Pµν,αβ = 1
2 (PµαPνβ + PµβPνα)−

1
3PµνPαβ ,

Pµν(k) = gµν − kµkν

M2
a2

. (A.9)

On the other hand, the coupling of the ρ meson to a pion pair can be expressed as [152]

LVPP = i√
2

cVPP ⟨Vµ [Φ, ∂µΦ]⟩ . (A.10)

The interaction term for the coupling of a tensor meson to two pseudoscalars is given by

LTPP = F 2
π

4 cTPP ⟨Tµν [{uµ, uν} − 2gµν (uρuρ + χ+)]⟩ , (A.11)

where the chiral field in the absence of external sources reduces to uµ = i(u†∂µu − u∂µu†),
with u = exp

[
iΦ/(

√
2Fπ)

]
, and χ± = u†χu† ± uχ†u, χ = 2B diag(mu, md, ms). Note that

for the tensor field in position space Tµν(x), the matrix element

⟨0|gµνTµν(0)|T (k, λ)⟩ = ϵµ
µ(k, λ) = 0 (A.12)

vanishes [153]. Furthermore, for diagrams with intermediate tensor mesons, the interaction
terms proportional to the metric tensor in eq. (A.11) would generate terms that do not
propagate as a spin-2 field and therefore are neglected in the following. The remaining
interaction term for the coupling of a tensor meson to two pseudoscalars is given by [153, 154]

LTPP = cTPP ⟨Tµν∂µΦ∂νΦ⟩ . (A.13)

One finds the following relation of the interaction terms between the octet and singlet
pseudoscalars

La2η0π =
√
2La2η8π. (A.14)

Therefore, in a single-angle mixing scheme for the η and η′ mesons(
|η⟩
|η′⟩

)
=
(
cos θ − sin θ

sin θ cos θ

)(
|η8⟩
|η0⟩

)
(A.15)
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and assuming the mixing angle θ = arcsin
(
−1

3

)
, one can show that matrix elements involving

η or η′ in the asymptotic states can be reduced to

⟨a2π| (La2η8π + La2η0π) |η⟩ =
√
2 ⟨a2π|La2η8π|η8⟩ ,

⟨a2π| (La2η8π + La2η0π) |η′⟩ = ⟨a2π|La2η8π|η8⟩ . (A.16)

The relevant Feynman rule is then given by

(a2)
µν

η8

πp

q

= −i

√
2
3cTPP pµqν . (A.17)

The decay rate a2 → η(′)π follows according to

Γ[a2 → η(′)π] =
gη(′) |cTPP|2

2880πM7
a2

λ5/2(M2
a2 , M2

η(′) , M2
π

)
, with gη(′) =

 2, η

1, η′
, (A.18)

where the factor gη(′) arises due to the ideal mixing scenario of η and η′ that is considered
here. Comparing with the experimental averages of Br[a2 → ηπ] = 14.5(1.2)% and Br[a2 →
η′π] = 5.5(9)×10−3 [3], gives the couplings |ca2ηπ| = 9.3(4)GeV−1 and |ca2η′π| = 12(1)GeV−1.
Note that our normalization is such that both couplings would coincide in the limit of a
perfectly U(3)-symmetric interaction; the symmetry breaking observed here hence supports
limiting the difference between cη′4π and cη4π (which the η fit within the limited phase space
indicates) to 30% for the central results in table 2, varied between 15% and 45% to reflect
the associated uncertainties.

Furthermore, the width of the decay ρ → ππ from the interaction in eq. (A.10) is given by

Γ[ρ → ππ] = |cVPP|2

48π
Mρ

(
1− 4M2

π

M2
ρ

)3/2

. (A.19)

Together with the BW parameters Mρ = 775.26(23)MeV and Γρ = 149.1(8)MeV from the
RPP [3], the coupling strength can be estimated to be |cVPP| = 5.98(2). In this case, the
coupling actually comes close to the result in a definition in terms of the residue at the
pole [253–255].

B Left-hand-cut contribution: cross checks of couplings

B.1 a2 → 3π

On the level of these phenomenological Lagrangians, the matrix element for the decay
a−
2 → π−π+π− can be written as the sum of two tree-level diagrams

iMa2 = a−2

π− π+

π−
ρ

p1

p2

p3

+ a−2

π− π+

π−

ρ

p3

p2

p1

. (B.1)
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Upon replacing the ρ propagators by ππ P -wave Omnès functions,

M2
ρ

M2
ρ − p2 − iMρΓρ(p2)

→ Ω(p2), (B.2)

the unpolarized squared matrix element appears as

1
5
∑

λ

|Ma2 |2 (B.3)

= |cΩ|2

5M2
a2

[
M2

a2(2M4
π + s12s23)− M4

a2M2
π − M6

π + 3M2
πs12s23 − s12s23(s12 + s23)

]
×
{
Ω∗(s12)

[
M4

a2(Ω(s12) + Ω(s23))− M2
a2

(
2(M2

π + s12)Ω(s12) + Ω(s23)(s12 + s23)
)

+ (M2
π − s12)

(
M2

π(Ω(s12)− Ω(s23))− Ω(s12)s12 +Ω(s23)s23
)]

+Ω∗(s23)
[
M4

a2(Ω(s12) + Ω(s23))− M2
a2

(
2(M2

π + s23)Ω(s23) + Ω(s12)(s12 + s23)
)

− (M2
π − s23)

(
M2

π(Ω(s12)− Ω(s23))− Ω(s12)s12 +Ω(s23)s23
)]}

,

where the couplings are collected in cΩ = cTPVcVPP/M2
ρ and the Mandelstam variables

are defined as

s12 = (p1 + p2)2, s13 = (p1 + p3)2, s23 = (p2 + p3)2. (B.4)

In order to obtain an estimate of the collective coupling cΩ, the decay width can be compared
to the experimental total BW width Γa2 = 107(5)MeV combined with the experimental
branching fraction average Br[a2 → 3π] = 70.1(2.7)% [3]. For this comparison, an average
over the initial isospin states and a sum over the final pion state configurations needs to be
taken. Starting from the phenomenological Lagrangians, it can be worked out that the decay
a−
2 → π−2π0 is to be described by the same squared matrix element as the one in eq. (B.3),

as are the decays a+
2 → π+π−π+/π+2π0. Furthermore, a symmetry factor of 1/2 due to two

identical particles being present in the final state needs to be multiplied to the representation
of the decay width dΓ. Conversely, the decay width for the decay a0

2 → π0π+π− does not
obtain any symmetry factor. Note that the decay via the ρ resonance to three neutral pions is
forbidden by C-parity. Therefore, the partial decay width for a2 → 3π can just be expressed by

Γ[a2 → 3π] = Γ[a−
2 → π−π+π−] + Γ[a−

2 → π−2π0] = Γ[a0
2 → π0π+π−]

= 1
(2π)332M3

a2

∫
ds12 ds23

[
1
5
∑

λ

|Ma2 |2
]

, (B.5)

resulting in |cΩ| = 61(2)GeV−4 when compared to the experimental value (employing
the Omnès function generated from the IAM phase shift), which by means of cη(′)4π =
2ca2η(′)πcΩ/

√
3 would suggest c

(a2→3π)
η4π = 660(70)GeV−5 and c

(a2→3π)
η′4π = 850(70)GeV−5.
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B.2 a2 → πγ

In a VMD approach the coupling of a photon and vector mesons arises from [256]

Lργ = −
√
2e

gργ
F µν⟨QVµν⟩ ⊃

e

gργ
∂µAν (∂µρν − ∂νρµ) , (B.6)

expressed in a manifestly gauge-invariant way. In combination with the interaction in
eq. (A.7) the decay a2 → πγ is thereby induced,

iMa2→πγ = a2

π

γ

k

p

ρ
q

. (B.7)

In the configuration a−
2 → π−γ, the amplitude reads

iMa2→πγ = ϵνγ(k)
(
−i

√
8cTPVϵµναβkµqαpγ

) i
(
gβδ − qβqδ

M2
ρ

)
q2 − M2

ρ

i
e

gργ

(
q2gδϵ − qδqϵ

)
ϵϵ∗(q). (B.8)

Replacing the ρ-propagator with the Omnès function, the partial decay width reads

Γ[a2 → πγ] = e2c2TPV
160πg2ργ

|Ω(q2)|2
λ5/2(M2

a2 , M2
π , q2)

M5
a2

(
q2

M2
ρ

)2

, (B.9)

which for q2 = M2
ρ , M2

ρ → 0 (on-shell limit of external photon), and gργ = cVPP reduces to

Γ[a2 → πγ] = e2c2TPV
160πc2VPP

(M2
a2 − M2

π)5

M5
a2

. (B.10)

With the experimentally determined partial decay rate Γ[a2 → πγ] = 311(25) keV [3], this
would imply cTPV = 4.0(2)GeV−2 or, by means of cη(′)4π = 2cTPVca2η(′)πcVPP/(

√
3M2

ρ ), the
couplings c

(a2→πγ)
η4π = 430(30)GeV−5 and c

(a2→πγ)
η′4π = 550(20)GeV−5. Accordingly, we see that

the determination via a2 → πγ tends to be better in line with the fits to the η(′) → π+π−γ

spectra discussed in section 3.5 than the one via a2 → 3π.
Moreover, comparison to eq. (20) of ref. [36] suggests the matching equation

cT

Fπ
∼ cTPV

cVPP
= M2

ρ

cΩ
c2VPP

. (B.11)

Numerically, this matching condition is not fulfilled very well, only up to a relative factor
1.6 in 0.65(4)GeV−2 vs. 1.03(3)GeV−2. This mismatch likely reflects the limitations of
ρ-dominance in a2 → 3π due to overlapping ρ bands in the Dalitz plot (cf. also ref. [164]),
and indeed the phenomenological determination discussed in section 3.5 comes out closer
to the prediction via a2 → πγ. In contrast, we observe that the matching condition for the
tensor-to-two-pseudoscalar-meson coupling in ref. [36]

g′T ∼ F 2
π

4 ca2η′π, (B.12)

is fulfilled much better, 25.5(2.3)MeV vs. 25.4(2.1)MeV.
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Coupling Definition

cTPV eq. (A.3), eq. (A.7)
cTPP ≡ ca2η(′)π eq. (A.13), eq. (A.17)
cVPP eq. (A.10), eq. (A.19)
ca2 below eq. (3.5)
cΩ below eq. (B.3)
ca2

η(′)ππρ
below eq. (3.11)

cη(′)4π below eq. (3.20), eq. (B.15)

Table 5. Overview of the various phenomenological couplings, together with their defining equation(s).

B.3 Narrow-width approximation for η(′) → π+π−γ

In the narrow-resonance approximation of the scalar function of the η(′) → π+π−γ matrix
element in eq. (3.37), one replaces

|Ω(x)|2 → π
M3

ρ

Γρ
δ(x − M2

ρ ), (B.13)

in the integrand with integration variable x. Using the representation F V
π (s) = (1 + απs)Ω(s)

for the pion vector form factor, the scalar function then reduces to

Fη(′)ππγ(t, 0) =
1

96π

{
Ω(t)

[
M3

ρ

Γρ
σ3

π(M2
ρ )(1 + απM2

ρ )
[
A(2 + αM2

ρ ) + Aαt

+
cη(′)4π

π

(
t2Dη(′)(t, M2

ρ ) + M2
ρ Dη(′)(M2

ρ , t)
)]

+
cη(′)4π

π

∫ ∞

4M2
π

dx σ3
π(x)(F V

π (x))∗Ĝη(′)(x, t)
]

+ cη(′)4π

M3
ρ

Γρ
σ3

π(M2
ρ )(1 + απM2

ρ )Ĝη(′)(t, M2
ρ )
}

, (B.14)

where
cη(′)4π = 2√

3M2
ρ

cTPVca2η(′)πcVPP = 2√
3

ca2η(′)πcΩ. (B.15)

Moreover, when switching off the a2 contribution, the representation (B.14) becomes

Fη(′)ππγ(t, 0) =
1

96π
Ω(t)

{
M3

ρ

Γρ
σ3

π(M2
ρ )(1 + απM2

ρ )A
[
(2 + αM2

ρ ) + αt
]}

. (B.16)

For comparison, the representation in ref. [36] is given by

F [36]
η(′)ππγ

(t) = Ω(t)
{

AΩ(1 + αΩt) + gΩ
t2

π
D(t, 0)

}
+ gΩĜ(t, 0). (B.17)
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scut [GeV2] l̄2 − l̄1 l̂s [GeV−2] l̂π [GeV−2] χ2 / dof

1 4.73(3) 1.45(3) 420(20) 282/472 ≈ 0.6
1.69 4.47(3) 1.74(3) 560(20) 874/827 ≈ 1.1

Table 6. Fits of the modified IAM phase to the Bern phase [257] up to two different cutoff values scut.

Comparing eqs. (B.16) and (B.17) allows for the identification

αΩ ∼ α

2 + αM2
ρ

⇔ α ∼ 2αΩ
1− M2

ρ αΩ
. (B.18)

Since απM2
ρ ∼ 0.08 ≪ 1, we can neglect this correction, obtaining

AΩ ∼ 1
96π

M3
ρ

Γρ
σ3

π(M2
ρ )(1 + απM2

ρ )(2 + αM2
ρ )A ≈

M2
ρ

2c2VPP
(2 + αM2

ρ )A,

gΩ ∼ 1
96π

M3
ρ

Γρ
σ3

π(M2
ρ )(1 + απM2

ρ )cη(′)4π ≈
M2

ρ

2c2VPP
cη(′)4π. (B.19)

Employing the matching conditions to ref. [36], eqs. (B.11) and (B.12), the combined coupling
that multiplies hat function and left-hand-cut dispersive integral, see, e.g., eq. (32) of ref. [36],
appears as

gΩ = 4cT gT√
3F 3

π

∼
ca2η′πcTPV√

3cVPP
=

M2
ρ√
3

ca2η′πcΩ
c2VPP

, (B.20)

in agreement to the value of gΩ extracted via the right-hand side of eq. (B.19),

gΩ ∼
M2

ρ

2c2VPP
cη(′)4π =

M2
ρ√
3

ca2η′πcΩ
c2VPP

, (B.21)

via cη(′)4π defined in eq. (B.15), and thereby serving as a strong consistency check on our
calculation. An overview of the various couplings is given in table 5.

C ππ P -wave phase shift

The following is presented as an addition to the phase-shift construction found in ref. [37].
In SU(2) ChPT, the O(p2) and O(p4) ππ → ππ scattering amplitudes projected onto the
P partial wave appear as [258, 259]

t2(s) =
sσ2

96πF 2 , σ ≡ σπ(s) =

√
1− 4M2

π

s
,

t4(s) =
t2(s)

48π2F 2

{
s

(
l̄2 − l̄1 +

1
3

)
− 15

2 M2
π − M4

π

2s

[
41− 2Lσ

(
73− 25σ2)

+ 3L2
σ

(
5− 32σ2 + 3σ4)]}+ iσ

[
t2(s)

]2
, (C.1)
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Mρ [MeV] Γρ [MeV]

scut = 1GeV2 758.8 140.0
scut = 1.69GeV2 759.3 138.7

Madrid (GKPY) [271] 763.7 (1.6) 146.4 (2.2)
Bern (Roy) [257] 762.4 (1.8) 145.2 (2.8)

Table 7. Comparison of the ρ pole positions extracted from the modified IAM phase fits up to
different cutoff values to more sophisticated analyses.

respectively, where

Lσ = 1
σ2

( 1
2σ

log 1 + σ

1− σ
− 1

)
, (C.2)

F is the pion decay constant in the chiral limit, l̄i are low-energy constants (LECs), and s

the ππ invariant mass squared. The unitarized scattering amplitude can then be written
as [260–262]

tIAM(s) =
[
t2(s)

]2
t2(s)− t4(s)

. (C.3)

This form, in principle, allows for an extraction of the ππ P -wave phase shift once values for
the LECs are inserted. In order to enforce the desired convergence of the phase shift to π

for s → ∞, however, we work with an approximation of the two-loop amplitude [263, 264],
and add O(p6) inspired terms by hand,

t4(s) 7→ t4(s) +
t2(s)

48π2F 2
(
l̂ss2 + l̂πM4

π

)
, (C.4)

introducing two additional free parameters l̂s and l̂π. Asymptotically, the corresponding
phase shift behaves as

δ11(s) = π − 2√
1 + 4π2 l̂2ss2 + 2πl̂ss

+O(s−3). (C.5)

Hence, the modified IAM phase converges with 1/s to π. We treat the combination of LECs
l̄2 − l̄1 as well as l̂s and l̂π as free parameters. These are then fit to the solution of the Roy
equations of ππ scattering (“Bern phase”) [257], while taking the value of the pion decay
constant in the chiral limit from the ratio Fπ/F = 1.062(7) [265–270]. The results of the
fits up to two different cutoff values are given in table 6. As a consistency check, one can
also consider the ρ pole parameters via analytic continuation to the second Riemann sheet,
see table 7, which shows reasonable agreement with previous analyses.
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D Derivation of the η(′) → π+π−γ∗ discontinuity

By means of the unitarity condition, in our approximation, the discontinuity of the η(′) →
π+π−γ∗ amplitude in the photon virtuality appears as

disck2 M
[
η(′)(q) → π+(p1)π−(p2)γ∗(k)

]
= i(2π)4

∫
dΦ2(k; l1, l2)

×
(
M
[
γ∗(k) → π+(l1)π−(l2)

])∗
M
[
η(′) → π+(p1)π−(p2)π+(l1)π−(l2)

]
, (D.1)

in terms of the matrix elements

M∗[γ∗(k) → π+(l1)π−(l2)
]
= eϵ∗µ(k)(l1 − l2)µ[F V

π (k2)
]∗

,

M
[
η(′) → π+(p1)π−(p2)π+(l1)π−(l2)

]
= ϵνρσαpν

1pρ
2lσ1 lα2 faux(t, k2), (D.2)

with the Lorentz invariants t = (p1 + p2)2, k2 = (l1 + l2)2, and the auxiliary function

faux(t, k2) = fη(′)

1 (t, k2)Ω(k2) + fη(′)

1 (k2, t)Ω(t). (D.3)

The unitarity condition then appears as

disck2 M
[
η(′)(q) → π+(p1)π−(p2)γ∗(k)

]
= i(2π)4e

[
F V

π (k2)
]∗

faux(t, k2) ϵ∗µ(k)pν
1pρ

2 P µ
νρ,

(D.4)
where the phase space integral

P µ
νρ = ϵνρσα

∫
dΦ2(k; l1, l2) (l1 − l2)µlσ1 lα2 = 1

2ϵνρσαkα
∫

dΦ2(k; l1, l2) (l1 − l2)µ(l1 − l2)σ

≡ 1
2(2π)6 ϵνρσαkαP̃ µσ, (D.5)

needs to evaluated. The reduced integral P̃ µσ can be written as

P̃ µσ =
∫ d3l1d4l2

2l01
δ(l22 − M2

π)θ(l02)δ(4)(k − l1 − l2) (l1 − l2)µ(l1 − l2)σ

=
∫ d3l

2(M2
π + |l|2)1/2 δ((k − l)2 − M2

π)θ(k0 − l0) (2l − k)µ(2l − k)σ, (D.6)

with tensor decomposition

P̃ µσ = gµσSg +
kµkσ

k2 Sk. (D.7)

Contracting this equation with kµkσ and gµσ gives a system of two equations that can
be solved for

Sg = 1
3

(
gµσ − kµkσ

k2

)
P̃ µσ, Sk = −1

3

(
gµσ − 4kµkσ

k2

)
P̃ µσ. (D.8)

In the virtual photon rest frame k = 0, the integrands in the two integrals above assume
a convenient form, and evaluate to

Sg = −Sk = π(k2 − 4M2
π)3/2

6
√

k2
. (D.9)
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Therefore,

P̃ µσ = π

6

(
gµσ − kµkσ

k2

)
k2σ3

π(k2), Pµνρ = π

12(2π)6 ϵµνρσkσ. (D.10)

Expressing the matrix element for η(′) → π+π−γ∗ in terms of a scalar function

M
[
η(′)(q) → π+(p1)π−(p2)γ∗(k)

]
= eϵµνρσϵµ∗(k)pν

1pρ
2kσFη(′)ππγ(t, k2), (D.11)

the unitarity relation implies

disck2 Fη(′)ππγ(t, k2) = i

48π
k2σ3

π(k2)
[
F V

π (k2)
]∗

faux(t, k2), (D.12)

completing the derivation of eq. (3.36).
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