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Abstract We investigate how thermal fluctuations affect
the properties of five-dimensional Kerr–Newman black
holes, focusing particularly on the shear viscosity to entropy
ratio. Our analysis incorporates logarithmic corrections to the
Bekenstein–Hawking entropy and examines their impact on
black hole thermodynamics. We explore three approaches to
studying the shear viscosity-entropy ratio in the presence of
thermal fluctuations: considering independent shear viscos-
ity, thermally corrected shear viscosity, and an independent
ratio assumption. Notably, we find that the lower bound of
η/S ≥ 1/4π remains valid even with thermal fluctuations,
though the specific behavior depends on the black hole mass
and correction parameter. Our results suggest that thermal
fluctuations generally decrease the ratio for massive black
holes while maintaining the universal lower bound. This
work extends our understanding of quantum corrections to
black hole transport properties.

1 Introduction

Black hole physics has long served as a fertile ground for
exploring the interplay between general relativity, thermody-
namics, and quantum mechanics. Since the seminal discovery
of the Bekenstein–Hawking entropy [1,2], black hole ther-
modynamics has provided profound insight into the quan-
tum nature of gravity [3–14]. In recent years, the study
of higher-dimensional black holes has gained prominence
due to their relevance in string theory, supergravity, and
the AdS/CFT correspondence [15–23] Among these, five-
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dimensional black holes, such as the Kerr–Newman solu-
tions, stand out due to their rich structure, incorporating
electric charge, angular momentum, and additional spatial
dimensions.

The five-dimensional Kerr–Newman black hole arises as
a solution to the Einstein–Maxwell–Chern–Simons theory,
which naturally emerges in higher-dimensional supergrav-
ity models [24]. The inclusion of Chern–Simons terms not
only ensures gauge invariance but also leads to intriguing
modifications in the thermodynamic and transport proper-
ties of black holes. These properties make five-dimensional
Kerr–Newman black holes a versatile platform for studying
quantum corrections and transport phenomena [25–33].

One of the remarkable developments in black hole physics
is the realization that black holes behave as thermodynamic
systems. Their entropy and temperature satisfy relations anal-
ogous to those of conventional thermodynamic systems. Fur-
thermore, when black holes are embedded in an anti-de Sitter
(AdS) background, the AdS/CFT correspondence provides
a holographic interpretation of their transport properties in
terms of strongly coupled quantum field theories. A key quan-
tity in this context is the shear viscosity to entropy ratio, η/S,
which has been conjectured to satisfy the universal Kovtun–
Son–Starinets (KSS) bound, η/S ≥ 1/4π [34]. However,
thermal fluctuations and quantum effects introduce correc-
tions to this ratio, prompting investigations of the strength of
the KSS bound under such modifications [35]. It is also worth
noting that recent studies have demonstrated that thermal
fluctuations can induce logarithmic corrections to black hole
entropy, significantly impacting transport properties such as
the shear viscosity to entropy ratio [36,37]. For instance, in
the context of the STU black hole [38], these corrections were
shown to potentially violate the KSS bound, highlighting the
sensitivity of black hole thermodynamics to quantum effects.
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These findings underline the importance of analyzing similar
corrections in higher-dimensional black holes to better under-
stand their implications within the AdS/CFT framework.

Thermal fluctuations are expected to play a significant role
in black hole thermodynamics, particularly for black holes
of smaller mass or near extremality [39]. These fluctuations
induce logarithmic corrections to the classical Bekenstein-
Hawking entropy and may alter the black hole’s thermody-
namic stability and transport coefficients. In this work, we
explore the impact of thermal fluctuations on the shear vis-
cosity to entropy ratio in five-dimensional Kerr–Newman
black holes. By incorporating quantum corrections to the
entropy and considering various approaches to the viscosity
correction, we aim to assess the validity of the KSS bound
in the presence of thermal fluctuations.

The manuscript is organized as follows: Sect. 2 presents
an overview of the five-dimensional Kerr–Newman black
hole solution, its thermodynamic properties, and the for-
mulation of the corrected entropy. The problem of quan-
tum corrected thermodynamics of the five-dimensional Kerr–
Newman black hole is studied in Sect. 3. Section 4 exam-
ines quantum corrections to the shear viscosity-entropy ratio
through three distinct approaches: independent shear viscos-
ity, thermally corrected viscosity, and invariant ratio assump-
tion. Finally, in Sect. 6, we summarize our findings and dis-
cuss potential avenues for future research in the context of
black hole transport properties and quantum gravity.

2 The five-dimensional Kerr–Newman black holes

The five-dimensional Kerr–Newman black hole represents
a crucial extension of black hole physics beyond four
dimensions, offering insights into both string theory and
the AdS/CFT correspondence. Unlike its four-dimensional
counterpart, this solution exhibits a richer structure due to the
additional spatial dimension and the presence of two inde-
pendent rotation parameters. The solution we study emerges
from the five-dimensional Einstein–Maxwell theory with a
Chern–Simons term, which naturally arises in various super-
gravity theories. The complete metric structure of this space-
time incorporates both electric charge and angular momen-
tum, making it an ideal testing ground for examining how
quantum corrections might modify classical black hole prop-
erties. Of particular interest is the behavior of the horizon
geometry, which plays a crucial role in determining both ther-
modynamic and transport properties. We consider a charged
and rotating black hole solution of five-dimensional gravity
minimal coupled to a gauge gravity. The relevant action is
given by the Yang–Mills–Chern–Simons Lagrangian [24],

S5 = 1

4π2

∫
d5x

(√−g
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4
F2

)
+ 1

4
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)
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The action S5 represents a five-dimensional Einstein–Maxwell
theory augmented with a Chern–Simons term. The first term

(
√−g

(
R − 3

4 F
2
)

) captures the standard Einstein–Maxwell

dynamics, where R is the Ricci scalar and F2 represents the
tensor of the strength of the electromagnetic field. The sec-
ond term εabcde Aa FbcFde is the Chern–Simons term, which
distinguishes this theory from its four-dimensional counter-
part. This term is crucial for maintaining gauge invariance in
five dimensions and naturally emerges in various supergrav-
ity theories.

This action yields field equations that admit the Kerr–
Newman black hole solution we study.

We are interested in the following black hole solution of
the above action [24],

ds2
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where

B = a2 + r2 − 2Ms3c3 − Ms4(2s2 + 3),

F = a(r + 2 + a2)(c3 + s3) − aMs3,

� = r2 + a2 + Ms2,

f = r2 + a2, s ≡ sinh δ, c ≡ cosh δ

These black holes contains three physical parameters i.e.
mass, electric charge and angular momentum respectively
given by,

M0 = 3M

2
cosh 2δ, Q = Msc, J = aM(c3 + s3) (4)

The inner (-) and outer (+) horizons of this black hole are
given by,

r2± = 1

2

[
(M − 2a2) ±

√
M(M − 4a2)

]
. (5)

The Hawking temperature of the event horizon is given
by,

T = 1

π
√
M

√
1 − 4a2

M

c3 − s3 + (c3 + s3)

√
1 − 4a2

M

, (6)

while the Bekenstein-Hawking entropy in Planck units is
given by,
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SH = π
√

2M√
(c6 + s6)M − 2(c3 + s3)2a2 + (c4 + c2s2 + s4)

√
M(M − 4a2).

(7)

The physical parameters M0, Q, and J characterizing this
black hole solution have a rich interplay through the rela-
tions given in Eq. (4). The presence of both charge and angu-
lar momentum leads to an interesting horizon structure, as
expressed in Eq. (5) for the inner and outer horizons. The
corresponding thermodynamic quantities – temperature and
entropy – given by Eqs. (6) and (7) respectively, form the
foundation for studying quantum corrections in subsequent
sections. These expressions reduce to the expected limits for
Kerr and Reissner–Nordström black holes in five dimensions
when appropriate parameters vanish. The existence of both
charge and rotation parameters makes this solution particu-
larly suitable for examining how thermal fluctuations might
modify the classical picture of black hole thermodynamics
and transport properties.

3 Corrected thermodynamics

The quantum nature of gravity suggests that black hole ther-
modynamics should incorporate thermal fluctuations around
equilibrium. These fluctuations introduce corrections to the
classical Bekenstein–Hawking entropy, with the leading cor-
rection typically taking a logarithmic form. For the five-
dimensional Kerr–Newman black hole under consideration,
the corrected entropy incorporates these quantum effects
through,

S = SH − 1

2
ln S′′

c , (8)

where S′′
c represents the second derivative of the classical

entropy with respect to the inverse temperature β, evaluated
at the equilibrium temperature β0,

S′′
c = ∂2SH

∂β2
k

|βk=β0 .

This correction term arises from a saddle-point approxima-
tion of the partition function and captures the leading quan-
tum effects on black hole thermodynamics. This logarithmic
correction can alternatively be expressed in terms of the hori-
zon temperature,

S = SH − α

2
ln(SHT

2), (9)

where α is a parameter that controls the strength of the ther-
mal fluctuations [35]. This formulation proves particularly
useful for analyzing how quantum effects modify the ther-
modynamic stability and transport properties of the black
hole.

We can see the behavior of the logarithmic corrected
entropy graphically by Fig. 1 where we used Planck units
(h̄ = kB = 
p = 1). We can see that the effect of the loga-
rithmic correction is increasing of the entropy.

Figure 1 reveals the fundamental relationship between
thermal fluctuations and black hole entropy in five-dimensional
Kerr-Newman spacetime. The plots compare the classical
entropy (α = 0) with quantum-corrected entropy (α = 1)
across different mass regimes and rotation states. In both
rotating (a = 0.5) and non-rotating (a = 0) configurations,
the entropy demonstrates a consistent monotonic increase
with mass, reflecting the deep connection between a black
hole’s mass and its information content.

The quantum-corrected entropy consistently exceeds the
classical values, with the divergence becoming particularly
pronounced at smaller mass scales (M < 0.5). This enhance-
ment indicates that thermal fluctuations introduce additional
microscopic degrees of freedom that contribute to the black
hole’s total entropy.

The presence of rotation (a = 0.5) manifests itself in a
steeper entropy growth curve compared to the non-rotating
case, suggesting that angular momentum provides additional
channels for storing information in the black hole system.
This behavior aligns with our theoretical understanding that
both quantum effects and rotation contribute to the rich ther-
modynamic structure of higher-dimensional black holes. The
enhanced effect of quantum corrections at smaller masses
also supports the broader theoretical framework in which
quantum gravity effects become increasingly relevant at
smaller scales.

Having established the form of the quantum-corrected
entropy, we now examine its implications for the black hole’s
thermodynamic stability. A key thermodynamic quantity that
reveals stability characteristics is the specific heat, which
measures the system’s response to temperature changes. We
calculate this through the standard thermodynamic relation,

C = T
dS

dT
. (10)

This expression, incorporating our quantum corrections to
the entropy, allows us to analyze how thermal fluctuations
modify the black hole’s thermal stability. The derivative cap-
tures both the classical contribution from the Bekenstein-
Hawking entropy and the quantum corrections from ther-
mal fluctuations, providing insight into the interplay between
these effects.

In Fig. 2 we can see the behavior of the specific heat in
terms of the mass parameter. We find that logarithmic correc-
tion does not have many important effects in the specific heat
when the parameters c and s are large. In that case, for c ≥ s
we can see a phase transition while in the case of c < s, the
black hole is in unstable phase without any phase transition
and critical points (see Fig. 2a). On the other hand, for the
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Fig. 1 Entropy S [kB ] in terms
of M [
p] with c = s = 1. (a)
a = 0.5 and (b) a = 0; α = 0
(black solid) and α = 1 (red
dashed)

Fig. 2 Specific heat C [kB ] in
terms of M [
p]: (a) for
c = α = 1, and a = 0.5, with
variation of s; (b) for
c = s = 0.2, and a = 0.5 with
α = 0 (black solid) and α = 1
(red solid)

small values of c and s parameters we show that logarith-
mic correction is important to have a stable black hole. In
Fig. 2b we can see that the black hole is completely unstable
in the absence of logarithmic correction (α = 0), however,
the effect of the thermal fluctuations are the presence of some
stable regions for M ≤ Mc (Mc ≈ 1.25 in Fig. 2b). For the
non-rotating case (a = 0) we have always an unstable black
hole.

4 Shear viscosity to entropy ratio

The shear viscosity to entropy ratio ( η
S ) serves as a crucial

probe of how quantum effects modify the transport properties
of black holes. This ratio has garnered significant attention
due to its connection to the AdS/CFT correspondence and
the proposed universal bound,

η

S
≥ 1

4π
, (11)

known as the KSS bound. In the context of five-dimensional
Kerr–Newman black holes, thermal fluctuations introduce

corrections to both the entropy and potentially the shear vis-
cosity, making it essential to examine how these quantum
effects influence this fundamental ratio.

For strongly coupled quantum field theories, this ratio
approaches the KSS bound, making it a valuable tool for
understanding quantum corrections to classical black hole
physics. Our analysis explores three distinct approaches to
incorporating thermal fluctuations: treating shear viscosity
as independent of quantum corrections, considering ther-
mally corrected shear viscosity, and assuming the ratio itself
remains unchanged. Each approach provides unique insights
into how quantum effects modify transport properties while
potentially preserving or violating the KSS bound.

4.1 Independent shear viscosity

We can assume that the shear viscosity is independent of
thermal fluctuations. This means that logarithmic correction
does not contribute to shear viscosity. In that case, we use
uncorrected entropy given by the Eq. (7) and temperature
given by the Eq. (6) together diffusion constant [40] to obtain
the shear viscosity to entropy ratio as,
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Fig. 3 Effect of the logarithmic correction on the shear viscosity to
entropy ratio η

S [ h̄
kB

] versus M [
p] for c = 0.8, s = 0.2, D = 1 and
a = 0.5; α = 0 (black solid) and α = 1 (red solid)

η

S
= 1

π
√
M

SH D

SH − α
2 ln(SHT 2)

×
√

1 − 4a2

M

c3 − s3 + (c3 + s3)

√
1 − 4a2

M

, (12)

where SH is given by the the Eq. (7). We find that the effect
of thermal fluctuation is decreasing of ratio, while the lower
bound is kept for the massive black hole. A typical behavior
can be seen in Fig. 3. It is illustrated that for large M the ratio
yields 1

4π
for both the cases of α = 0 and α = 1.

Figure 3 shows how thermal fluctuations affect the shear
viscosity to entropy ratio ( η

S ) in five-dimensional Kerr–
Newman black holes, with parameters set to c = 0.8, s =
0.2, D = 1, and the rotation parameter a = 0.5. The plot
compares the classical case (α = 0, solid black line) with the
quantum corrected case (α = 1, red dashed line). The ratio
exhibits a nonmonotonic behavior with respect to the black
hole mass M , initially increasing sharply to reach a peak
around M ≈ 2, followed by a gradual decrease for larger
masses. In particular, thermal fluctuations reduce the maxi-
mum value of η

S but preserve the overall qualitative behav-
ior. For large masses (M > 8), the classical and quantum-
corrected ratios converge toward the universal lower bound
of 1/4π , suggesting the robustness of this bound even in the
presence of quantum effects. The suppression of η

S by thermal
fluctuations aligns with the expectation that quantum effects
generally enhance dissipative processes in dual field theory,

while maintaining the fundamental constraints imposed by
unitarity.

4.2 Corrected shear viscosity due to thermal fluctuations

Thermal fluctuations can modify both the entropy and trans-
port coefficients of black holes. While the corrections to
entropy are well established through logarithmic terms, the
quantum modifications to shear viscosity require careful con-
sideration. We propose that the shear viscosity, like other
thermodynamic quantities, receives corrections from ther-
mal fluctuations. The relationship between shear viscosity η

and the diffusion constant D can be modified in the presence
of quantum effects according to,

η

D
= SHT + O(α). (13)

It is easy to find that the shear viscosity-entropy ratio may be
an increasing or a decreasing function of α. Also, this ratio
may yield a constant for a suitable value of O(α). There-
fore, we can conclude that the lower bound may hold. How-
ever, for the appropriate value of correction terms, the lower
bound may violated and the shear viscosity to entropy ratio
vanishes (SHT ≈ O(α)). Among the various methods for
calculating correction terms, the Kubo formula [41], which
relates the shear viscosity to the correlation function of the
stress–energy tensor with zero spatial momentum, is famous.

There is also another way to obtain the corrected shear
viscosity due to thermal fluctuations, which is explained in
the next subsection.

4.3 Independent ratio

An alternative approach to understanding how thermal fluc-
tuations affect the shear viscosity-to-entropy ratio is to pos-
tulate that the ratio itself remains invariant under quantum
corrections. This assumption stems from the fundamental
nature of the KSS bound and its possible deeper connection
to quantum gravity. Under this hypothesis, we maintain,

η

S
= 1

4π
. (14)

This approach allows us to derive the quantum corrections to
shear viscosity by requiring the ratio to remain constant even
as the entropy receives logarithmic corrections. The result-
ing expression for the shear viscosity must then compensate
for the changes in entropy to preserve the universal bound.
This provides a unique perspective on how thermal fluctu-
ations might modify transport properties while maintaining
fundamental quantum gravity constraints.

By combining Eq. (7) with (9) and utilizing the invari-
ance of the η

S ratio under quantum corrections, we derive a
comprehensive expression for the shear viscosity that incor-
porates both classical and thermal fluctuation effects,
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η =
√

2
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M
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The analysis under the independent ratio assumption leads
to an expression for shear viscosity that maintains the uni-
versal bound while incorporating quantum corrections. As
demonstrated by Eq. (15), this approach yields a complex
relationship between shear viscosity, black hole mass, rota-
tion parameter, and thermal fluctuation strength. Notably, this
formulation ensures that the KSS bound remains valid for all
values of the correction parameter α, providing a consis-
tent framework for understanding quantum effects on trans-
port properties. The persistence of the lower bound across all
parameter ranges suggests its fundamental nature in quantum
gravity, even when thermal fluctuations significantly mod-
ify both the entropy and shear viscosity individually. This
robustness adds weight to conjectures about the universal
character of the η/S ratio in strongly coupled quantum sys-
tems, including those described by higher-dimensional black
hole geometries.

5 Holographic interpretation of results

In the dual QFT, the logarithmic corrections to the entropy,
and consequently to the viscosity, likely correspond to
higher-order quantum effects in the thermal plasma. These
corrections are expected to manifest themselves as deviations
in the scaling behavior of the viscosity and other transport
coefficients. Moreover, the intricate dependence of η (15)
on the black hole’s rotation and charge parameters suggests
that the dual plasma’s properties are influenced by additional
conserved charges or angular momentum.

The correction terms in Eq. (15) also provide a framework
to understand the impact of thermal fluctuations on the sta-
bility and hydrodynamic behavior of the dual system. The
logarithmic dependence on entropy and temperature implies
that quantum corrections introduce new scales into the sys-
tem, which may influence its critical behavior near phase
transitions or in non-equilibrium states.

Equation (15) is in fact logarithmic corrected shear vis-
cosity due to thermal fluctuation. The holographic corre-
spondence provides a powerful framework for understand-
ing universal transport properties in strongly coupled quan-
tum systems. Through this duality, the transport coefficients
of the boundary field theory are intimately connected to the

dynamics of bulk gravitational fields near the black hole hori-
zon. The shear viscosity to entropy ratio emerges as a par-
ticularly significant quantity, as its universal value of 1/4π

in holographic theories suggests a fundamental bound on
quantum dissipation. In this context, thermal fluctuations in
five-dimensional Kerr–Newman black holes not only modify
the transport coefficients but also reveal deeper connections
between gravitational dynamics and quantum transport phe-
nomena. The relationship between different transport coef-
ficients, electrical conductivity, bulk viscosity, and thermal
conductivity, can be understood through the holographic dic-
tionary, where the horizon properties encode the boundary
transport behavior. This connection becomes especially rele-
vant when considering quantum corrections, as thermal fluc-
tuations in the bulk geometry manifest themselves as modifi-
cations to transport coefficients in the dual-field theory, while
preserving certain universal relations that appear to transcend
specific models.

In quantum critical systems, several transport coefficients
exhibit universal relations with the shear viscosity (η).

5.1 Electrical conductivity

The electrical conductivity (σ ) near quantum critical points
follows a universal relation with shear viscosity [42],

σ = B
e2η

T 2 , (16)

where e denotes the electron charge, and B is a constant
related to a suitable measure of the number of degrees of
freedom in the system. This relation emerges from the quan-
tum critical nature of the system and has been verified in
quark-gluon plasma experiments at RHIC, and cold atom
systems near unitarity.

By using the shear viscosity (15) in the equation (16) one
can obtain the electrical conductivity in terms of M .

In Fig. 4, the electrical conductivity of the five-dimensional
Kerr–Newman black hole in unit of electrical charge exhibits
a rich and complex behavior as a function of mass M , with
parameters set to c = 0.8, s = 0.2, B = 0.005 and rotation
parameter a = 0.5. The plot compares two cases: the classi-
cal behavior without thermal fluctuations (α = 0, shown by
the black solid line) and the quantum-corrected case includ-
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Fig. 4 The electrical conductivity σ [ e2 h̄
] in terms of M [
p] for c =

0.8, s = 0.2, B = 0.005, e = 1 and a = 0.5; α = 0 (black solid) and
α = 1 (red solid)

ing thermal fluctuations (α = 1, depicted by the red dashed
line). The conductivity shows distinctive features across dif-
ferent mass regimes. For small masses (M < 1), both curves
show a sharp decrease, leading to a pronounced minimum
around M ≈ 1. This minimum suggests a critical point
where the transport properties of the black hole undergo
a significant transition. Beyond this point, the conductiv-
ity increases monotonically with mass, with both classi-
cal and quantum-corrected cases showing similar qualitative
behavior. Thermal fluctuations introduce subtle but notice-
able modifications to conductivity, particularly evident in the
intermediate mass range, where the quantum-corrected curve
(α = 1) shows slightly higher values compared to the classi-
cal case. This enhancement aligns with the theoretical expec-
tation that quantum effects generally modify transport coef-
ficients while preserving their fundamental scaling relations.
For larger masses (M > 2), both curves converge, indicat-
ing that thermal fluctuation effects become less prominent
in the high-mass regime, consistent with the general princi-
ple that quantum corrections are most significant for smaller
black holes. This behavior provides important insights into
how quantum effects modify the transport properties of black
holes while maintaining the universal relationships predicted
by holographic correspondence. The general behavior of the
electrical conductivity obtained in this model is in agreement
with previous results obtained from the other holographic
models [43].

Our results at the intermediate mass shows,

σ

T
≈ 0.4, (17)

Fig. 5 The bulk viscosity ζ [h̄] in terms of M [
p] for c = 0.8, s = 0.2,
cs = 0.5, and a = 0.5; α = 0 (black solid) and α = 1 (red solid)

which is in agreement with the claim of the Ref. [44].

5.2 Bulk viscosity

The bulk viscosity (ζ ) satisfies Buchel’s bound in terms of
shear viscosity,

ζ

η
≥ 2

(
1

3
− c2

s

)
, (18)

where cs is the speed of sound in the medium. Assuming the
lower bound we can obtain the following relation for the bulk
viscosity in terms of the shear viscosity,

ζ = 2

(
1

3
− c2

s

)
η. (19)

By using the shear viscosity (15) in the equation (19) one can
obtain the bulk viscosity in terms of M .

In Fig. 5, we analyze the bulk viscosity behavior of the
five-dimensional Kerr–Newman black hole, plotted against
mass M with parameters c = 0.8, s = 0.2, cs = 0.5, and
rotation parameter a = 0.5. The plot compares the classical
(α = 0, black solid line) and quantum corrected (α = 1,
red dashed line) cases. The bulk viscosity exhibits interest-
ing behavior across different mass regimes. For small masses
(M ≈ 1), both curves show a characteristic minimum, sug-
gesting a critical point where the transport properties undergo
a significant transition. Beyond this point, the bulk viscosity
increases monotonically with mass, with both classical and
quantum-corrected cases showing similar qualitative behav-
ior. The thermal fluctuations introduce modifications to the
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bulk viscosity, particularly evident in the intermediate mass
range, where the quantum-corrected curve shows slightly
higher values compared to the classical case. This enhance-
ment indicates that quantum effects tend to increase the num-
ber of dissipative processes in the bulk. For larger masses,
both curves demonstrate similar growth patterns, suggesting
that thermal fluctuation effects become less prominent in the
high-mass regime. This behavior is consistent with the the-
oretical expectation that quantum corrections are most sig-
nificant for smaller black holes. The choice of sound speed
cs = 0.5 ensures that the bulk viscosity remains positive and
satisfies causality constraints, leading to physically mean-
ingful results that align with holographic predictions and the
general framework of quantum field theory in curved space-
time.

5.3 Thermal conductivity

The thermal conductivity (κ) follows a Wiedemann-Franz
law,

κ

σ
= LT, (20)

where L is a Lorenz number that is given by,

L = π2k2
B

3e2 , (21)

where kB is Boltzmann constant. So, we can calculate the
thermal conductivity using the electrical conductivity given
by equation (16).

Figure 6 reveals a fascinating aspect of thermal conduc-
tivity (κ) in five-dimensional Kerr–Newman black holes,
displaying behavior that is markedly different from other
transport coefficients. The plot shows κ versus mass M with
parameters c = 0.8, s = 0.2, e = 1, B = 0.005, anda = 0.5,
comparing classical (α = 0) and quantum corrected (α = 1)
cases.

The most striking feature is the scale of the thermal con-
ductivity values, shown in units of 10−9, which is several
orders of magnitude smaller than both the electrical conduc-
tivity and the bulk viscosity. This dramatic suppression of
thermal transport relative to other transport phenomena sug-
gests a hierarchical structure in the dissipative processes of
holographic systems.

Thermal conductivity exhibits a sharp peak near M ≈ 1,
followed by a rapid decrease to a minimum, before gradu-
ally increasing again for larger masses. This nonmonotonic
behavior differs significantly from the more straightforward
patterns seen in electrical conductivity and bulk viscosity.
The quantum corrections (red dashed line) modify this behav-
ior most prominently near the peak region, where thermal
fluctuations appear to smooth out the classical singularity-
like feature.

Fig. 6 The thermal conductivity κ [ k2
B
h̄ ] in terms of M [
p] for c = 0.8,

s = 0.2, e = 1, B = 0.005 and a = 0.5; α = 0 (black solid) and α = 1
(red dashed)

Perhaps most intriguingly, the quantum-corrected and
classical curves nearly coincide for large masses, but with a
subtle separation that persists even in this regime. This behav-
ior aligns with the Wiedemann–Franz law [45] and suggests
that thermal fluctuations maintain a small but finite effect on
thermal transport even in the classical limit, a feature not as
apparent in other transport coefficients.

6 Conclusion

In this paper, the effects of thermal fluctuations on the prop-
erties of five-dimensional Kerr–Newman black holes were
analyzed, with a particular focus on the shear viscosity to
entropy ratio. The study incorporated quantum corrections
to the classical Bekenstein–Hawking entropy through loga-
rithmic terms, which captured the leading effects of thermal
fluctuations. These corrections were shown to significantly
modify the thermodynamic and transport properties of the
black hole, especially for smaller mass black holes or near-
extremal configurations.

The corrected entropy was found to increase due to the
presence of thermal fluctuations, enhancing the black hole’s
information content and microscopic degrees of freedom.
The specific heat analysis revealed that the thermal correc-
tions altered the stability characteristics of the black hole.
While massive black holes exhibited stable behavior, smaller
black holes displayed unstable phases with critical points
emerging in certain parameter regimes.
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The shear viscosity to entropy ratio was examined under
three different scenarios: assuming the shear viscosity to be
independent of quantum corrections, incorporating correc-
tions directly into the viscosity, and maintaining the ratio
itself as invariant. Across all approaches, the study confirmed
the robustness of the KSS bound, η/S ≥ 1/4π , even in
the presence of quantum effects. The findings demonstrated
that while thermal fluctuations tended to decrease the ratio,
they did not violate the universal bound, which underscores
its fundamental significance in quantum gravity and holo-
graphic duality. This study’s findings enhance our compre-
hension of the impact of quantum corrections on the trans-
port properties and thermodynamic behavior of black holes.
The persistence of the KSS bound across all examined sce-
narios highlights its potential universality, even under sig-
nificant thermal fluctuations. We believe that these findings
support the broader theoretical framework that relates black
hole physics to strongly coupled quantum systems through
the AdS/CFT correspondence.

In the near future, we plan to analyze extensions to higher-
dimensional rotating black holes with more complex charge
configurations or cosmological backgrounds. We aim to
investigate non-logarithmic quantum corrections [46,47] and
their impact on transport coefficients, such as shear viscosity
[48], bulk viscosity and electrical conductivity. Employing
holographic techniques to derive more rigorous formulations
of quantum corrections to transport properties will also be a
focus of our research. Furthermore, we intend to examine
the implications of these results within the framework of the
fluid-gravity correspondence, with the goal of illuminating
the connections between black hole dynamics and relativistic
hydrodynamics. These planned investigations are expected to
provide deeper insights into the interplay between quantum
gravity and black hole transport phenomena.

The corrected expression for shear viscosity serves as a
starting point for exploring more complex scenarios within
the AdS/CFT framework. Future work could extend this
analysis to higher-dimensional rotating black holes with
more intricate charge configurations, such as those in gauged
supergravity theories.

Furthermore, holographic techniques could be employed
to derive more precise quantum corrections to transport prop-
erties, using tools such as the Kubo formula [49,50]. These
efforts would deepen the understanding of the interplay
between quantum corrections in black hole thermodynam-
ics and their dual field-theoretic descriptions, offering new
insights into the nature of strongly coupled systems and quan-
tum gravity.
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