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Abstract

Laser wakefield accelerators (LWFAs) operate through a
high intensity ultra short laser pulse exciting a relativis-
tic density wave in a plasma. I carried out experiments
constructing LWFAs using lasers of a wide range of powers.
Thereby allowing me to examine the generation of electrons
and x-rays under these different conditions. The compar-
ison of these results with my own and existing analytical
models and computational modelling is discussed.

In fulfilment of this, I developed novel techniques to measure
hard x-rays in the tens of KeV energy range. In measure-
ment of the relativistic electrons I found it possible to de-
velop techniques to not only accurately measure the energy
but also discern the three momentum vectors of electrons
measured on a multiscreen electron spectrometer.

As LWFAs open up the ability to produce high energy elec-
tron beams without the need of tens of meters of RF accel-
eration cavities and the lasers used to drive them can also
be made relatively compact perhaps one of the most excit-
ing application of this is the production of hard x-rays for
imaging. As the source size of a LWFA betatron source is
typically of micron scale, I investigated using LWFA derived

x-rays for phase contrast imaging.
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Chapter 1
Introduction.

Plasma based accelerators are of great interest due to their ability to sustain extremely
large accelerating gradients of about three orders of magnitude greater than that

L', The consensus in the world high energy physics

obtained in conventional linacs
community is that a TeV-scale lepton collider would be the next step after the LHC.
As such, plasma based accelerators represent an option as they would, due to their
smaller size, afforded by their higher accelerating gradients, ideally be an order of
magnitude lower in cost. However there are a huge number of technical, and plasma
physics challenges which would need to be overcome to reach these kinds of energies.
However lower energy plasma based accelerators can be produced. In this work I will
be describing my studies on one such type of accelerator, and I will show that it is
capable of producing electron beams of GeV-scale over accelerating lengths on the
cm-scale, so allowing for table top sized machines.

This thesis is concerned with laser wakefield plasma accelerators. Laser wakefield
accelerators (LWFAs) open up the ability to produce high energy electron beams
without the need of tens of meters of radio frequency acceleration cavities. One of
the most exciting application of this, because the lasers used to drive them can also
be made relatively compact, is the production of hard x-rays which before now had
required large synchrotron, and free electron-laser facilities. My studies are on the
electron beams generated by laser wakefield accelerators, and the x-rays generated by

the electrons while they are in the accelerator.

! Conventional radio-frequency linear accelerators are currently limited to ~100 MV /m before
material breakdown begins to occur [1]. Where as in plasma based accelerators accelerating gradients
on the order of 100 GV /m have been produced [2]. The electric fields that can be sustained by plasma

waves can be approximated by Ey = cm.wp/e see section 2.3.3 for details.

10
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I will start with a basic description of what a LWFA is, and how it generates
x-rays. I will then provide a literature review in this chapter. The second chapter
will describe standard theory used in this thesis. In the third chapter experimental
methods will be presented. I will discuss novel techniques I implemented to measure
the 3 momentum components of accelerated electrons, and to measure x-rays in the
1-100 keV range.

In the fourth (and first experimental) chapter an 18 TW laser is used to create a
self-guided laser wakefield accelerator. A detailed study is conducted to examine the
plasma density threshold for electron self injection in a self guided LWFA | a parameter
critical for both electron, and x-ray generation. An analytical model is derived, and
compared to experiment.

In the fifth (and second experimental) chapter a 180 TW laser is used to again
create a self-guided laser wakefield accelerator. It is shown that this produces much
higher energy electrons, up to 1.3 GeV. The x-rays are measured, and found to have
betatron like spectra with critical energies of 15-30 keV, and brightness of 10%4-10%°
photons per second per mrad? per mm? per 0.1% bandwidth. The effects of plasma
density on electron energy are examined in detail, and a simple model is compared
to experiment. The transverse momentum of the electrons is measured.

In the sixth, and final chapter the conclusions from the two experiments are dis-
cussed, and the connections between the results of the studies in this work are made

clear.

Laser Wake Field Accelerators

In a LWFA a high intensity short laser pulse excites a relativistic plasma wave in a
low density plasma. If the electron density of the plasma is n., and the critical density

2 ne = (2mc/XNo)*meeo/€® , then the Lorentz factor of this excited wave’s

for the laser is
phase velocity will be?: 7, = \/m . This plasma wave can be an ideal accelerating
cavity, with fields in excess of 100 GeV /m.

As in the case of the experiments reported here, by ensuring the amplitude of
the laser pulse is sufficiently large the plasma wave can be driven beyond breaking.

This causes electrons to become self-injected in the laser’s wake, and experience the

2Discussed in section 2.2.5.
3Derived in section 2.3.1, equation 2.55.
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accelerating force of the plasma wave. Additionally if the laser pulse’s power is greater
than® P. = 17 x 10°(n./n,)W, then a focused laser pulse will not diffract away but
instead can be guided through the plasma until its power falls below this value, this
is known as the critical power for self focusing. The depletion length, the distance
the laser pulse propagates through the plasma before its energy is depleted can be
estimated as® Ly, = mocne/n.. where 7 is the pulse duration of the pulse before
entering the plasma.

The first period of the plasma wave behind the laser pulse can be thought of as a
spheroid or "bubble” devoid of background plasma electrons travelling at -4, behind
the laser pulse. Electrons self injected into this bubble will oscillate around its axis as
they are accelerated, retaining the transverse potential energy they possessed on entry
to the bubble. This is due to the bubble electric fields being directly proportional to
the distance from the center of the bubble. Due to this oscillation the electrons will

emit synchrotron like radiation.

Literature Review of LWFAs

The laser driven plasma wave accelerator (LWFA) was first proposed 35 years ago
in 1979 by Tajima, and Dawson [3], and simulated using what computational means
were available at the time.

Despite this early invention the first experimental evidence for the generation
of laser induced wake field did not come about until 1993, Hamster [4]. The first
example of acceleration from a self-modulated wakefield was by Nakajima in 1995 [5].
The first example of laser wake field acceleration from a broken relativistic plasma
wave was by Modena in 1995 [6], and the first experimental observation of laser wake
field acceleration (without self modulation) was by Amiranoff in 1998 [7].

The original high powered lasers® had too long a pulse duration to allow for
resonant driving of plasma waves, where 7 ~ 1/w, is needed. So instead the beat
wave scheme was invented (PBWA), where the interference between two relativity long
co-propagating laser pulses can be used as the driver for plasma waves for particle
acceleration, as outlined in Rosenbluth in 1972 [8]. Though it should be pointed

out that the idea for using optical mixing as a plasma density probe was around as

4See section 2.3.4.
5See section 2.3.5.

6Utilising CO5 or Neodymium:Glass laser mediums.
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early as 1964 [9], and was also suggested in Tajima’s, and Dawson’s original paper.
Key experiments into beat wave acceleration, ranging from 1985 to 2006, are given in
Clayton et al. 1985 [10], Dangor et al. 1990 [11], Kitawa et al. 1992 [12], Everett et
al. 1994 [13], Clayton et al. 1994 [14], Amiranoff et al. 1995 [15], Walton et al. 2002
[16], and Wlaton et al. 2006 [17].

The invention of chirped pulse amplification (CPA) in 1985 [18], revolutionised
high powered laser systems, providing shorter, and more powerful laser pulses. This
allowed access to Self Modulated Laser Wake Field Accelerator regime (SM-LWFA).
Here the laser pulse is self-modulated due to non-linear plasma optical effects caused
by the laser pulse’s high intensity. This results in the laser pulse, which is orig-
inally longer that the plasma period 7 > 1/w,, becoming split (through resonant
modulation) into a pulse train capable of driving a high amplitude plasma wave. Ex-
periments utilising the SM-LWFA | ranging from 1995 to 2003, include Modena et al.
1995 [6], Coverdale et al. 1995 [19], Ting et al. 1997 [20], Santala et al. 2001 [21],
and Najmudin et al. 2003 [22].

SM-LWFA also differed from PBWA in another important aspect. The PBWA
was not in of its self a source of electrons. So it was necessary to inject bunches of
electrons which where already well localised in both space, and time. This presents
a number of technical challenges given that the laser focal spot waist are on the
order of 10um. SM-LWFAs are capable of driving a plasma wave beyond the point
of wave breaking (see section 2.3.3), allowing plasma electrons to become trapped
in the accelerating structure. This is known as “self trapping”. The SM-LWFA can
therefore act as its own source of electrons without the need of elaborate injection
mechanisms.

Eventually pulses shorter than required for the self-modulation process became
available (with 7 ~ 1/w,). These could drive the plasma waves directly but had
intensities large enough to lead to modification of the pulse itself. This is known
as the Forced Laser Wakefield regime (F-LWFA), and was first observed in 2002 by
Malka et al. [2]. In this regime the plasma wave focuses the laser pulse space, and
compresses it in time.

The next important milestone in laser wake field acceleration was made possible
with the development of Ti:Sapph lasers. Pulse lengths of e¢r ~ \,/2, and powers
exceeding 100 TW became available, , and it became possible to access the yet another

scheme, some times referred to as the “bubble regime”, where wave breaking could
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be caused to occur in a single plasma cycle” . See Pukhov, 2002 [24]. In this highly
non-linear regime, the plasma wave is reduced to a solitary cavity free of electrons,
where the wave breaking, and self-trapping is localised in the back of the bubble-
like structure. This leads to all the self-injected electrons experiencing the same
accelerating field, and results in quasi-mono-energetic electron spectra.

A real revolution in Laser Wakefield Acceleration occurred in 2004 when the bub-
ble regime was first accessed by three groups near simultaneously, Mangles [25], Ged-
des [26], and Faure [27]. Here utilising only moderate laser powers of tens of terawatts,
quasi-monoengetic (with energy bandwidths of less than 3%), low divergence electron
beams with energy of the order of 100 MeV, and charges of up to 100pC were first
observed. These were a favourable contrast to the quasi-thermal electron spectra®
which were typical of the previous Wakefield regimes.

Since then even higher energies have been reached in the F-LWFA regime. Expe-
ments include Mangles et al. 2006 [28], Hsieh et al. 2006 [29], Hidding et al. 2006
[30], Hosokai et al. 2003 [31], and Karsch et al. 2007 [32].

The first LWFA experiment to pass the GeV level was reported in 2006 by Leemans
[33]. This utilised an external guiding structure to over come diffraction relaxing the

power requirements of the beam.

Further Advanced Techniques in LWFA

There are a great number of avenues, not mentioned above, being pursued to improve
one aspect of LWFA or another. Though of interest they do not fit neatly into the
discussion above. Some of them are therefore mentioned in this section.

Laser stability, and laser focal spot quality is of great importance in laser wake
field acceleration, and are examined in Mangles et al. 2006 [34], Mangles et al. 2007
[35], and Lindau et al. 2008 [36]. It is also the topic of the first experiment in this
thesis.

One new technique to improve electron trapping. Thus improving the amount

of charge accelerated, and working towards higher energy mono-energetic electron

7 There is another scheme known as the “blow out regime” which is similar in concept to the
“bubble regime”. The “blow out regime” is described in Lu et al. 2006 [23]. The two scheme’s are
very similar but give slightly different scaling laws. The bubble regime claims applicability when

ag > 1 where as the blow out does for ag > 2.
8Quasi-thermal Spectra: With the number of electrons decreasing with beam energy.
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beams is “ ionization induced trapping” [37]. See McGuffey [38], and Pak [39]. The
idea behind this is to dope the plasma with heavy ions which will not release all their
available electrons until the very peak of the driving laser pulse passes. The will cause
electrons to be “born” right in the middle of the acceleration structure.

External wave guides (or light pipes) can be used to increase the interaction length,
and help guild the laser pulse in the plasma lessening the requirements of self focusing.
Work on this has been done utilising a number of diffrent external waveguilding
structures. In 2001 Spence et al. 2001 [40] describes the first example of a gas-
filled capillary discharge waveguide of the same type as used in the Leemans 2006
GeV paper [33]. Osterfhoff 2008 [41] demostrates a steady-state-flow gas cell. The
grazing angle reflection capillary is shown in Courtois et al. 2001 [42]. The Heater
Ignitor Technique is shown in Volfbeyn et al. 1999 [43], where a short (75 fs) ignitor
pulse, and a long (160 ps) heater pulse are used to create a plasma channel through a
combination of inverse Bremsstrahlung heating, and hydrodynamic shocks. The ‘light
pipe’ guiding technique is given in Durfee 1993 [44], where a second co-propagating
pulse is guided behind a first by the channel formed through hydrodynamic effects.
A similar result is achieved in Krushelnick 1997 [45] through ponderomotive force
effects.

Another ongoing avenue of research is the laser injection scheme first proposed
by Umstadter in 1996 [46]. In this a second orthogonal laser beam locally alters the
trajectory of some of the electrons in such a way as to allow them to become trapped
in the plasma wave. However the second laser pulse’s duration must be of the same
order as the driving beam, and alignment is difficult. The advantage being however
that the injection of electrons into the wake field can be stabilised, and controlled
allowing for the accelerated electron’s energy to be precisely tuned, at least in theory.
Experiments utilising this technique include Faure et al. 2006 [47], Rechatin et al.
2009 [48], Davoine et al. 2009 [49], and Kotaki et al. 2009 [50].

Another method of injection is for electrons to be provided by an external linac.
A theretical investigation is presented in Irman’s 2007 paper [51], and this is the topic
of the EuroLEAP Consortium (European Laser Electron controlled Acceleration in
Plamas to GeV energy range)?.

Multi-stage LWFA are also a way forward to longer interaction lengths, and higher

energies, see Leeman et al. 2009 [52], not to mention being a possible route to

Yhttp://www.laser-electron-acceleration-plasma.eu/
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laboratory scale HEP experimentation.

Other Forms of Wake Field Acceleration

The relativistic electron plasma waves necessary to act as high energy particle accel-
eration structures can be set up other ways than through the use of lasers.

One obvious candidate to drive the plasma waves are other particle beams. Par-
ticle driven Wake Field Accelerators (PWFA) are an on going area of research. The
physics is similar to that of a LWFA, and it is easy to envisage a plasma stage being
added to a large conventional RF linac. Electron driven PWFA is decribed by Chen
et al. [53]. Positively charged particle (positron or proton) driven PWFA is decribed
by Caldwell et al. 2009 [54], and even Neutrino driven wake field accelertion has been
proposed see Bingham et al. 1994 [55].

In electron beam driven PWFA energy doubling of the energy of some electrons
has been seen, Blumenfeld 2007 [56], where electrons from a 48 GeV drive beam have
been accelerated to > 80 GeV. Though these energy spectra are quasi-thermal. The
PWFA acts to increase the energy of some of the beams particles while lowering the
total number of accelerated particles. It has exciting possibilities for the future HEP

applications!?.

X-Ray Production: The WakeField Wiggler

In a similar way to high energy photons (hard X-rays) being produced in circular
conventional RF accelerators!! due to the acceleration the high energy particles ex-
perience as they follow the curve of the machine, the electrons accelerated in LWFA
can emit X-rays as they oscillate inside the accelerating bubble. Furthermore this os-
cillation can more closely resemble that found in a magnetic insertion device'?. This
is generally known as betatron radiation, and was first observed experimentally by
Rousse in 2004 [57].

0Current work at SLAC (The Stanford linear accelerator), and ongoing research as part of CERN
is directed to this end. See FACET (Facilities for Accelerator Science, and Experimental Test Beams

at SLAC), http://facet.slac.stanford.edu/ .
1 Synchrotrons.
12A magnetic insertion device (undulator or wiggler) consists of rows of oppositely aligned alter-

nately poled permanent magnets which electron beams are inserted between. This make the incoming

electrons wiggle slightly as they pass thus emitting collimated beams of synchrotron radiation. The
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The Wake Field Wiggler is theoretically treated in Kostyukov et al. 2003 [58],
Kostyukov et al. 2004 [59], Kiselev et al. 2004 [60], and Thomas et al. 2009 [61].
Furthermore Thomas et al. 2010 [62] is of interest to the experimental work in this
report as it is tested in section 4.2.

Experiments into wakefield wiggler radiation include Phuoc et al. 2005 [63], Albert
et al. 2008 [64], and Albert et al. 2009 [65]. High quality x-ray production has been
seen in Kniep et al. 2008 [66], Mangles et al. 2009 [67], and Kneip et al. [68], and
Kneip et al. 2011 [69] where I am also a co-author.

Related to this field Phuoc et al. 2006 [70], and Phuoc et al. 2008 [71] shows
imaging of electron orbits in plasma cavities (or at least the electron orbits are deduced
from the emitted radiation). It is reasonable to assume that the radiation pulse
length must be ultra short, similar to the bunch duration of the electron beam. In
Phouc et al. 2007 [72] the ultra short nature of the radiation is verified. Finally in
Khachatryan’s 2008 paper [73] it is found that at wavelengths longer than the electron

bunch length, the radiation is coherent.

X-ray Production in Other Related Areas

In this section a review of some related radiation production techniques will be pre-
sented. Techniques which are either closely related physical systems or employ similar
experimental techniques.

The following papers show betatron radiation generated from PWFA’s;Wang et
al. 2002 [74], and Clayton et al. 2002 [75]. The physics here is very similar to
betatron emission in LWFA however the inserted electron beam provided the drive
for the plasma wave, and the plasma channel then acts as an undulator. Again here
the high field gradients available in plasmas can be an advantage.

When beams of relativistic high energy electrons are inserted into a conventional
undulators as they emit radiation they act in a very similar way to a laser medium.
This has lead to the term Free Electron Laser (FEL). The idea was first proposed
in 1976 by Madey et al. [76]. Conventional accelerators such as SLAC' are now

radiation will be at wavelength
A
Ag = —=
6 272
where 7 is the relativistic factor of the electrons, and A, the periodic spacing of the magnets.
13The Stanford Liner Accelerator.
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being used for this purpose to provide coherent X-ray radiation (X-FELs), but are
expensive to build, and maintain. Other FELs include PETRA III, and FLASH.

Work is also being done on inserting the electrons produced from a LWFA into
a conventional magnetic undulator. This has the potential to provide table top X-
FELs. Progress in this area is reported in Gruner et al. 2007 [77], Schlenvoig et al.
2008 [78], Fuchs et al. 2009 [79], and is the aim of the Alpha-X project!?.

“http://phys.strath.ac.uk/alpha-x/



Chapter 2

Theory.

2.1 High Intensity Short Pulse Laser Concepts.

In this chapter I will introduce some of the key concepts used throughout this thesis.

2.1.1 Rayleigh Range

The Rayleigh Range (or length), denoted with 2, is a useful parameter in defining the
length of a laser plasma interaction. It is defined as the distance along the direction
of propagation of a beam from its narrowest waist (or focus) to the place where its
area of cross section is doubled. For a Gaussian beam this corresponds to
w3

AL

ZR = (21)

where wy is the radius of focus. See figure 2.1.

2.1.2 The laser strength parameter q

An important parameter in the discussion of intense laser-plasma interactions is the
laser strength parameter aq. It is defined as the peak amplitude of the normalized
vector potential of the the laser field.
ﬁ
eA
E)

(2.2)

MeC?

19
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Figure 2.1: Relevant lengths in the definition of the Rayleigh length.

Assuming a Gaussian radial profile!, the laser strength parameter is related to the

peak laser intensity by

mc [moctay\’
L= (2.3)

and to the laser power,

2
I
pP= % (2.4)

The peak electric field amplitude due to the laser is also given by [1],

E, = Ne®Ldo (2.5)
(&

Physically if ap > 1 then then it can cause electrons to move relativistically. This

corresponds, for a laser wavelength of about 1 ym, I > 10'® W /cm?.

2.1.3 The size of a diffraction limited focal spot.

In the case of a lens or parabolic mirror the F-number f,, is given by the focal length
divided by the width of the entrance pupil. The diameter of the diffraction limited
spot 2wy is then given by

Qg = 2.4410—" (2.6)

L

L = agexp(—r? /w?) cos(kLz — wit)i
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2.2 Concepts of Plasma Physics.

Here subscripts p and L will be used to distinguish values associated with the plasma
wave and electromagnetic wave in the plasma accordingly. The exception to this will
be w,, which will refer to the frequency of the plasma wave opposed to the frequency

of the plasma (w,).

2.2.1 Debye length.

Plasma have the property of masking charges present in them. As for any single
charge, the ions and electrons given sufficient time are able to move to obscure it. In
the treatment of this property it is useful to define a convenient length known as the
Deybye length above which this screening takes place (see Appendix B for derivation

and discussion).

1/2
Ap = (EokBT@) (2.7)

nee2

Thus for hotter plasmas the shielding is greater and the Ap greater and for more

dense plasmas the shielding is less. 2

2.2.2 Plasma frequency

Another extremely important property of a given plasma is its natural frequency w,

which is the frequency the electrons will oscillate at, if perturbed from quasi-neutral

€2n 1/2
= - 2.
o= () 29

A full derivation of this is given in Appendix C.

equilibrium and is: 3

2 S0
1/2
Ap[m] = 7430 (%)

. KpTlev] \Y?
)

=2 1078 ————
)\D[cm] 35 x 10 <n81021[cm

wylrad/s] = 5.64 x 10*n}/?
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2.2.3 Dispersion relation of an Electromagnetic wave in Plasma
Dispersion relation of an Electromagnetic wave in Vacuum

If we consider a plane electromagnetic wave propagating in the x direction in a vacuum
with no external electric or magnetic Fields. The relevant Maxwell equations are

Faraday’s Law A.3 and Ampere’s Law A.4:

_VxE-= % (2.9)
— 8E

Vx B ="+ 2.10
"V x 5 ( )

Taking the curl of Ampere’s law and the time derivative of Faraday’s law:
o OE o°B (211)

ot o = '
AV x (Vx B) =V x aa_t (2.12)
Equating:
*B

VX (VxB) =2 (2.13)

ot?

g
Now assuming the plane waves are varying as ci(KT—wt) and using identity A.13. We

have:
B =K x (K xB)= ¢ (?(? .B) - ?23) (2.14)
From Gauss’s Law of Magitusum we have:
K-B=—iV-B=0 (2.15)
This leads to:
w? = k*c? (2.16)

Which is the dispersion relation for a EM wave in vacuum. From Appendix D the
phase velocity and the group velocity are thus both equal to the speed of light as

expected.

w y _d_w_
A

v

(2.17)

g
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Dispersion relation of an Electromagnetic wave in Plasma

Now instead conceder an EM wave in a plasma. The Equation of Amperes law will
gain a 71 /€0 to account for charged particle motions. I will use the sub script 0 and
1 to represent particles at, and moved from, their equilibrium positions respectively.

So 2.10 becomes:

szx_B>1:1+aEl
€0 ot

(2.18)

Taking the time derivative and curl on opposite equations this time in the same way

as before:

AV x B, = 07, +E, (2.19)

GOat .
V x (V x El) =—-V x Bl (2.20)

ﬁ?—wt

Eliminating V x ﬁl, using A.13 and assuming e ) dependence we arrive at:

. 2
KK -EB)+#E, = 2T, +2FE, (2.21)
€pC C

- -
Transverse waves mean Kk - El =0. As El is L to k.

(w? — c2k2)ﬁl = —iw? (2.22)

If we consider light waves or higher frequency waves ions can be considered fixed so
71 comes only from electrons. 71 = —n06761 where 761 has the usual ei(ﬁ?_“’t)
dependence. Now let us consider the temperature of the electrons (kgT.) to be
unimportant. We may then used the linearised equation of electron motion derived
while considering the plasma frequency C.9:

m68761 — B, = V- °E, (2.23)

ot 1Mew

So substituting in:

W — A, = R, = W E, (2.24)

€0Me

So finally we arrive at the dispersion relation which is:

wi = w2 + k3 (2.25)
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So

2 2 2
w w dw c’k c
k’L k‘L dk‘L Wi, VoL

Which means that the phase velocity in the plasma is likely to be greater than c.
However causality is preserved due to the group velocity necessary being less than c,

and it is this that would carry any information.

2.2.4 Dispersion relation of an Electron Plasma Wave.

Electrons streaming into adjacent layers of plasma with their thermal velocities will
carry information about the oscillating region. If the Equation of Motion is (from

equation C.2 in appendix) :

MeNe ((9;6 + (Ve V)Ve) — —en B (2.27)

Then we must add term —Vp, to the EOM to account for this. In one dimension it

can be argued that:

on; .
—Vpe = 3kpTLVn, = 3kpT,V (no + 1) = Sk:BTe%x (2.28)

So the linearized equation of motion is, where some terms have been neglected:

) )
men()% = —engEr — 3/@BTQ% (2.29)

Now assuming wave like behaviour, (So E; = E,,e®*=)) we have:

—iwvimeng = —engEy — 3kpT.ikn, (2.30)
Using,
—iwny; = —ngtkv,  and, ikegE; = —eny (2.31)
So,
. —€ . nolk‘
—wuimeng = |eng | =—— | + 3kyTeik | ——v; (2.32)
ikeg w

2 3kgT,
Wiy = (nge + ij) vy (2.33)

€Egm m
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So we end up with what is sometimes referred to as the Bohm-Gross Dispersion

relation for an electron plasma wave:

3
w? w]% + §k‘gvfh (2.34)

Where v, = 2kgT./m is the thermal velocity of the electrons, and subscripts have

been added to avoid confusion*. The group and phase velocities are respectively then:

Using: 2wy, dw,, = gvfh%‘pd/{p (2.35)
§ k'p 2 3 Uth

dwy,
ng = d_kp = 2@7),% = (236)

- 2ugp
So if the plasma’s temprature (7,) is negligible then so will be the group velocity of

the electron plasma wave (vg,).

2
W w, 3,
Vgp = — = 4| = + =V (2.37)
P kp k}% 2 th
3, .
So (k, = 00, vgp —> évth), for large wave numbers the phase velocity only depends

on the plasma temperature.

2.2.5 Critical density

Another important concept to do with plasmas is the critical density for a given
electromagnetic wave with a given frequency in vacuum wy. At densities above this
and electromagnetic wave will not propagate into a plasma and will be completely
masked by electrons moving to obscure it. As we will see the critical density for a
plasma turns out to be when the w, = wy. This means the natural oscillations of the
plasma (derived in Appendix C) are faster than that of the EM waves and so can
mask it. However this can also be shown from the dispersion relation 2.25.

n062

+ k7 (2.38)

Wi =
(S

As the wavenumber, k of the radiation will change on entering the plasma but the

frequency (wp) will not (So wy = wy), we arrive at

k=2 — (2.39)

2 egmec?

4 As mentioned before here subscripts p and L will be used to distinguish values associated with
the plasma wave and electromagnetic wave in the plasma accordingly. The exception to this will

be w,, which will refer to the frequency of the plasma wave opposed to the frequency of the plasma

(wp)-



CHAPTER 2. THEORY. 26

now k% > 0 for it to have any physical meaning. So

2 2
wh nee
=2 P (2.40)
Thus w, < wy and
Wam.€o
e< =g =T (2.41)

Which is the condition for a electromagnetic wave to propagate in a plasma. Where

n. is known as the critical density °.

1113 x 102!

(Alpmn])?

nefem
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2.3 Concepts of Laser plasma interactions.

2.3.1 Wave Interactions Inside a Laser Wakefield Particle

Accelerator

In the case of a Laser Wakefield Particle Accelerator (LWFA). The electromagnetic
wave from a short laser pulse is focused into a plasma and used to excite an electron
plasma wave. This causes the phase velocity of the plasma wave to become equal to

the group velocity of the laser wave.
Ugp = VgL

Lorentz Factor Associated with the Phase Velocity of a LWFA’s Plasma

wave.

From section 2.2.4 we know that the dispersion relation for a electron plasma wave
is:

3 1)2
2 2 2 “th
Wi =ws + =k 2.42
w P 2 pUcZ)p ( )

As usual here subscripts p and L will be used to distinguish values associated with the
plasma wave and electromagnetic wave in the plasma accordingly and the exception
to this will be w,, which will refer to the frequency of the plasma wave opposed to
the frequency of the plasma (w,). From 2.25 we have the dispersion relation of an

electromagnetic wave being:
wi = w2 + kic? (2.43)

This gives the group and phase velocities as follows:

A2k c? 3 Ky 3 ’U
L VoL ww Vgp

2
VpL = W_g + c? ) —|- ’Uth (245)
k2 2

Now if we consider the ratio of the critical frequency to the plasma frequency we have

the following relation:

nee?  n.e’ Ne

= == 2.46
6077716/607”6 Uz ( )

W

SN N

w
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This result will come in useful later. From the relations above we can also deduce:

k3 = # (2.47)
So again from above we may write down:
viL = @L—Ci}; + c? (2.48)
% _ w%—w—%wg (2.49)
- ai?,/w% (2.50)

From equation 2.46 we have,

w2\ "2 —1/2
YsL _ ( _ _g) - (1 — ”_) (2.51)
c wi Ne

From our expression for vy, above, we have;

VgL C Ne 1/2
A . (2.52)
C VoL

Now by definition the Lorentz factor associated with the phase velocity of a LWFA’s

plasma wave (74,) is given by:

02 -1/2
Yop = (1 - ﬂ) (2.53)

c2

Now as also has been dissussed in a LWFA vy, = v,, so:

V2, —1/2 n 1/2
_ _ 9L —(1-(1=-2¢ 2.54
we () =0 0-0) e

_ Ve v (2.55)
which is a very elegant result indeed.

The wavelength of a LWFA’s Plasma wave.

Starting from the group velocity of the laser pulse vy, and combining with equation

2.46 for the wave number k; we arrive at:

v, = (1 — L) (2.56)
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Now as discussed before equating vy, = v,1, and squaring both sides we have,

w? 3 w?
p 2 2 p
k2 gt = ¢ (1= w%> (2:57)

1_@ & 3w _ A (2.58)
k2 w2 wi 2wl 4n? '

This is a exact equation for the wavelength of the plasma wave. However it is common
to simply this equation. As wy, > w, for laser propgation to occur the second term in
the middle can be neglected. Also in the systems we are considering v, << ¢* and

so can also be ignored. This yields the well known result:

2
A = € (2.59)

Wp

2.3.2 Rigorous Mathematical Treatment of Laser Propaga-

tion in Underdense Plasma

In this subsection the relevant mathematics for a laser wave propagating in an un-
der dense plasma causing a plasma wave to develop will be explored, resulting in
TRANSVERSE and LONGITUDINAL WAVE EQUATIONS, as will expressions for
the magnitude of the electric field and electron density as a functions of time. This
leads neatly to the derivation of the ‘well known’ cold wave-breaking limit in section
2.3.3. This treatment expands upon and follows Gibbon 2005 [80] however in SI units.

To begin let us right down the Lorentz equation of motion for the electrons®(see
A.7) and Maxwell equations (see A.1) for this system, noting we have no external

magnetic field:

%
8_It) —(V-V)P = —e(E +V x B) (2.60)
Gauss’s Law:
V-E = “(no—n) (2.61)
€o
Faraday’s Law:
%

vxE-_28 (2.62)
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Gauss’s Law of Magnesium.
%
V-B=0 (2.63)

Ampére’s Law:

1 0F
c? ot

—

V x B =—en. Vg + (2.64)

Where V is the velocity of an electron at this position, n. the electron density and

no the initial plasma electron density. Now making a quite large” assumption that

8

all the relevant quantities® have an oscillating time spatial dependence of the form

flwt — X T), but for ease using f(r) where,

—
- 1 —
T:t—i~iz—(wt— K-T)
Vg w

— ~
k and i are in the direction of propagation of our laser, and vy is the phase velocity
(see D) of the electromagnetic wave in the plasma (vsy,) (given by 2.26) but here the
subscript L will be omitted. The following substitutions for derivatives are therefore

possible with this assumption ?

o 0 io0 io
E?& , Vj—ﬁa , VX:>—U—¢EX

Then doing some substitutions, integration and replacing partial derivatives with

total derivatives the equations become:

(T' v _ 1) ¥ _ ¢(E+V x B) (2.65)

- — = —(no — ne) (266)

B- i< E+B, (2.67)

Ys

6Here using the convective derivative A.3
"A quite large but well founded assumption. Given that we are looking for wave like behaviour.

8Such as n., E and ﬁ
91t should be pointed out that Ugp NOt vgr, should be used if the operators act on an non elec-

tromagnetic quantity.
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i.—— =0 (2.68)

"UdE

ik 22— Vi + —2—— 2.
ix — evpNe V fio + 2 (2.69)

The term BO which comes about as a constant of integration represents an external
magnetic field which here is of course zero. Taking the dot product of our equation
for Gauss’ Law 2.69 With/i\,

¢<¢ dﬁ) v Vg —> dﬁ
—1[1x e —ev¢n61 Mo —|— :

-
Vg €V
0= —ev nel Yo — 2% (n — Ne
¢ Ho 2 e (no )
substituting with 2.66. Thus rearranging we get:
UpN
ne = —2>— (2.70)
Vp — i- 7
which is an important expression for n.. Like wise taking the cross product of the
equation of motion 2.65,

(TV —1>T>< T = i x E—i—e?x (7><§)

U¢ d_

Substituting in equation 2.67, and using identity A.14,

(i'7 1) xg—e%ﬁ—ke ~(i-V)B]

Yo

%
Bo_ L3¢ (2.71)
evy dr

This is a very useful expression for the magnitude of the magnetic field in terms of
momentum. Taking?x Ampére’s Law (2.69) and using identity A.14 then substituting
in 2.67,
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then noting 2.68 gives (i - dﬁ/dT) = 0 and rearranging gives:

% = enecugﬁ¢ ixV (2.72)
where 3, = v,/c. Then taking d/dr of 2.71 and subtracting 2.72 we get:
iB 4B d 1. dp
?_?:5%1 ?—kenecuo%_lle
which rearranging!® becomes the TRANSVERSE WAVE EQUATION:
i d2ﬁ+€”e % 5w -0 (2.73)

X
dr? €0 5¢—1

Taking the i- of the equation of motion 2.65, then differentiating we have:

2 Y]t

dr Ve dr dr dr

%
Substituting in using Gauss’ Law 2.66 and our expression for B 2.71 the right hand

side becomes:

€0 dr
v, VgNo 1 d iB ~ ~dP
——?(no—%_ : -V)_@E [l< '?)1—(7 1)?)]

where identity A.14 and our expression for n. 2.70 have been used as required. The
LONGITUDINAL WAVE EQUATION is then:

(0 o] 2o b) waf o

Vg dr € <U¢ _T_ 7) Vg dT dr dr

d
dr

(2.74)
Now to make the longitudinal and transverse wave equations more useful we will set
— o~
k ,i to be in the x-direction so:

. T =
i-P=p,, ixPp=(0,-p.py)

ONoting ¢? = (egpo) !
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and so on for the other vectors. We will also use W = V /c. The expression for n,
then becomes:

/Bqﬂlo

R (2.75)

Ne =

This means the density has a singularity whenever the fluid velocity approaches the
phase velocity. This of course does not happen however it does result in large electron
plasma densities and is indicative of wave breaking (see 2.3.3).

Splinting the transverse wave equation (2.73) into y and z components and making

use of our expression for the plasma frequency w, (2.8) yealds:

1 d?p, N Wb Byu.
mec dr? 37— 13 — u,
1 d*p, wzgﬁi By
mec dr? 35— 1 s — u,

=0 (2.76)

—0 (2.77)

These where first shown in [81] and form a closed set of equations for a non-linear
plasma wave of arbitrary amplitude and fixed phase velocity vy4. It is therefore possible

_>
to find explicit expressions for all the field components. From our expression for B
2.71:

1 d
Bx7B 7BZ = - 5 07_ 2z
( y ) evg dT( p py)
1 dp, 1 dp
B,=0 , B,=—— = 2.78
Y ecBy dr ecfy dr ( )
From 2.67 we have:
1 dp, 1 dp, 1
0, — ————)=—(0,—E,,E
( TecBy dT ecBy dT) U¢( ’ v)
1dp 1dp
E=——-P g ).
v edr ? e dr (2.79)

Naturally E, being the most useful quantity to find for wake field acceleration it is the
most difficult to derive. Starting from 3 of the equation of motion 2.65, and noting
that V = P/(m~y). Where 4% = 1 + p?/(m2c?).

T = — BoR
. 1 ~ -~ P B
(1 b _1>i.d_P:€i.(E>+ x )

I pedp, dp,
mecy By dt dr mey
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Using the expresions for B, and B, in 2.78:

L padps _dpe oo e (_&%_p_zdpﬁ
mecy By dr dt T mey ecfy dr  ecBy dr
dp, 1 P dP
dt ecﬁd,? dr

eb, = —

This can be simplified noting the following;:

2 2
v = 1+ p m = — =
/( C ) dr m202 d7

9
=V T

So

d? 1 dp? dy 29 dp
m2c?  dr

34

(2.80)

(2.81)

This is a widely used result. There are no general analytical solutions for this set of

equations however some limiting cases exist and are shown in [82] and [81]. There is

also a useful treatment in [83] which is relevant to particle acceleration in a plasma
wave, which contains the following. First we will consider a PURE LONGITUDINAL
PLASMA OSCILLATION. So p, = p. = 0, and so the subscript will be dropped from

u, for convenience. The longitudinal wave equation 2.74 becomes:

d dp] w2 B3u
%|:(U_/8¢> }—mecﬁd)_u
The left hand side of this equation becomes:
_ d dury d [ duy duy
B mech {(u Bo) g dr } mech {u dr Po dr }
Noting:
dy _d (. P’ 1/2_1 14 P\ dp _ uymec1dp
dr — dr m2c? 2 m2c? m2dr  m2 ydr
Thus
d [dy duy] w2 B3u
mech |:d7' Bo dr ] N meC@b —u
d? w2 B2u
— [~(1 — _ pl7¢
dr2 [ Bou)] Bs—u

(2.82)

dyu

~ar

(2.83)
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d
Now setting: Y = . [7(1 — Byu)], and multiplying through 2.83 by Y:
T

Yy  wyBiu d

& B —udr [v(1 = Bsu)]
Noting:
dry u du
i —(1 EIETE e (2.84)
This becomes
1dY? wfiu u du y )
2dr  By—u(l—u?)PRdr (u = Bou” = By(1 = %))
Using 2.84 then gives
1dY? 9 o dY
v - g
So finally integrating one gets:
1
5V =B+ C (2.85)

The constant C' can be found by seeing that the left hand side is zero when there is a
stationary point in u. This also corresponds to the maximum value of v which is this
case we shall call u,, = v,,,/c with associated Lorentz factor v,,. So C' = wf)ﬁqzﬁm.

Thus

d
Y=—h-Fu)= V2w B [Ym — ()] (2.86)
Now noting that 2.81 gives F, = MeCy
Gﬁd)
MeC
Eo(7) = £= V2w [y — 1(7)]? (2.87)

This is an important result which shows that the magnitude of the electric field and

the maximum gamma factor, really only depend on each other.

2.3.3 Wave Breaking

Wave Breaking is an important phenomena in plasma based accelerators as it can
result in self injection into the plasma wave causing an much greater number of parti-
cles to be accelerated. In this section the standard theoretical treatment is discussed,

in section 4.2.1 a more advanced experimentally applicable model is developed.
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There is more than one definition of wave breaking and it depends on the oscil-
lations involved and the type of wave. However fundamentally if the oscillation is in
a fluid medium and the fluid velocity (in our case v) exceeds the phase velocity of
the wave (in our case v,) the density sheets (in our case also charge sheets) will cross

causing the wave to “break”.

The cold relativistic wave breaking field.

Wave breaking also holds the key to understanding what the maximum possible accel-
erating field maintainable for a given plasma length is. Apparently this was a problem
for many years before the treatment of [81] shown above was postulated. The an an-
swer was first found by Dawson and Oberman in [84]. Here a similar expression will
be found utilising a different argument.

From equation 2.87:

e 2y — (7)) (2.88)

(&

E.(1) =+

We can see the electric field takes on its maximum value when ~(7) is minimum. The

minimum value it can take is v(7) = 1. So:

B =

el Byl — 1]17? (2.89)
e

So assuming our definition of a broken wave to be when u,, = ug, = v4,/c and
Ym = Yep- Meaning the maximum velocity an accelerated electron in the wave can

have is greater than the phase velocity of the wave itself.

B = v 2w,y — 11V (2.90)

e

The cold non-relativistic wave breaking field.

For non-relativistic plasmas where ug), is small, then'! ~,, ~ u?bp /2+1, and equation
2.90 can be simplified. So

_ MeWpClgp  MeWyUgp (2.92)

En,

1 Using the Taylor expansion

=1+ 4. (2.91)
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With more approximation it can be seen that in a cold electron plasma the maximum

electric fields that can be sustained are

E,, ~ cmew,/e = Ey (2.93)
which is sometimes in the literature given the symbol Ey. And

Ey = 964/no(cm=3)

this is known as the non-relativistic wave breaking field.[85]

2.3.4 The critical power for self focusing

Transverse variation in the plasma density and thus the refractive index can lead to
self focusing in LWFA. This focusing effect is often balanced by diffraction so the
laser can from a channel much longer than the Rayleigh length. It is useful to know
the critical power for self focusing and it is given by [86]:

2 .5, ,2
_ Bmegmcwy

2
W
Pc — e 0

~ 17—GW (2.94)

e*w? w3
2.3.5 Laser Depletion Length

Suffice is to say that laser plasma interactions cannot go on indefinitely. Eventually
the driving laser pulse will lose all its energy to the plasma. It can be shown that for
ap << 1, the so call pump depletion length, (other wise known as the etching length)
is given by [86]:

Lgrcn = TOC% (2.95)

e

Where 7j is the duration of the laser pulse before entering the plasma.

2.3.6 The Dephasing Length

One of the largest limiting factors in LWFA is that the accelerated electron will
eventually overtake the accelerating structure which is mearly moving at the plasma
wave phase velocity. In one dimension it can be shown that the distance over which
this take to occur is [86]:

2n,
Ly = 5%3 (2.96)
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Where R is the bubble radius. This limit can however be over come by the use of
staged LWFA as the phase velocity of the accelerating structure can be increased in

each subsequent stage by lowering the plasma density.

2.3.7 Betatron Radiation

Electrons in blow out regime (ignoring accelerating field) undergo oscillations at a
frequency wg = g—f;

For large oscillations (Kg = vkgrg > 1) this produces X-ray radiation with a
synchrotron-like radiation spectrum characterised by a spectrum d*I/(dEdQ)s—y o<
§2KC35(€/2), where Koys(x) is a modified bessel function of order 2/3 and { = E/E..

The shape of this spectrum is characterized by a single parameter, the critical
energy F.. The on-axis spectrum is broadband and peaked close to E., which can be

approximated to be E, = 3/ 47172%%7“5 /c where rg is the amplitude of the oscillations.



Chapter 3

Methods.

This chapter will describe methods used to obtain the experimental results in this
work. My thesis is concerned with the relativistic electrons and radiation produced
by laser wake field accelerators so methods of electron measurement and x-ray mea-

surement will be described here.

3.1 Electron Measurement.

A broad scope of electrons from a span of different plasma processes exits the LWFA
before recombination takes place. Although a LWFA plasma also emits low energy
electrons in a myriad of directions, it is important to measure the high energy electron
beams that can be created by LWFAs. Indeed these are among the most interesting
aspects of the phenomena. For this thesis, concern is focused on examining the highly
relativistic electrons: finding where and in what direction they exit the plasma; how
they are distributed in space; their number; and how much energy they carry. This

section describes the methods used to do so.

3.1.1 Electron Spectrometry.

Here the basics of electron spectrometry are discussed. Though the spectrometers
used in this work were by and large built, modified and dismantled in a number of
weeks. The basic design differs between only two archetypes, a single and two screen
design. For the data taken the only change from these archetypes is the magnet used

and the distances which separated the magnet and other components.
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Figure 3.1: A two screen electron spectrometer. Electrons of differing energies are
shown passing through scintillating screens as calculated by tracking algorithm. The
setup shown is for the Gemini 2011 experiment, and the magnet field map is shown

in figure 3.4.

Basics of Electron Spectrometry.

In order to find the kinetic energy of electrons they may be passed through a magnetic
field so that particles of different momenta are dispersed by different angles. If they
are then detected using some method their energy can be ascertained. Though it
should be noted that in this method particles of different mass but the same charge
such as muons and electrons can have the same dispersion angle and be mistaken for
each other unless the method of detection is able to distinguish them.

The trajectory of an electron through an ideal rectangular magnetic field can be
solved analytically. Consider a uniform magnetic field of length L,, parallel to the
electrons motion and of width sufficient to allow the electron to exit the boundary
perpendicular to the electrons motion, (essentially the same as a field infinite in extent

perpendicular to the electrons motion) figure 3.2.

§Z<x) = Bmaw/z\ O<x< L,
ﬁz(:p)zo 0>x>1L,

An electron will be deflected by the Lorentz force:

T _ P xB (3.1)

dt YeMe
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ol

v

Figure 3.2: The geometry of an electron passing through an ideal rectangular magnetic

field.

Equating this to the centripetal force ?Qme_lfye_ 21 where 7, is known as the Larmor
Orbit gives:

AP
qBimaa
From AAOB in figure 3.2 and from the fact that AAOB = ACOB it is trivial to
show that:

r, =

(3.2)

0 AO
tan - = — 3.3
ang = (3.3)
Similarly it can be shown:
L

A = —"— 3.4
14 cosf (34)

Thus the analytical equation for the dispersion angle of an electron 6 is:

0 Lm Bmaa}

tan 5(1 + cosf) = % (3.5)

So using the small angle approximation: tan = ¢ and cosf ~ 1 — 6/2, the left hand
side becomes: 6+ 6?/4. Which means that for deflections of <100mrad the dispersion
angle is proportional to L,,B,,... So in order to increase the dispersion angle, the
magnetic field must be increased in magnitude, or the length of the field must be

increased.
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We have essentially reached the limit of peak field intensity using neodymium
magnets in previous work.So in order to increase the dispersion angle of high en-
ergy electrons, longer magnets where constructed to produce the results in this work.
Though another approach would be the use of electromagnets or superconducting
electromagnets, which can support higher peak magnetic fields. However the smaller
size of the electromagnets is often countered by the size or the necessary power sup-
plies and cooling apparatus.

In this work a range of LWFA experiments are presented which produced electrons
of energies up to over a GeV but also electrons with energies down to MeVs. Different
magnets are appropriate for looking at different energy ranges. If L,, B4, is too low
then electrons are not deflected sufficiently to have good resolution and to give precise
measurements. If L,, B,,q. is too large then electrons are deflected too much and will
impact inside the magnet. Magnet selection was made using theoretical predictions
of the range of electron energies exiting the LWFAs.

In order to calculate energy of electrons once they were detected I used a code
developed over a number of years in-house at Imperial College. [The Imperial College
Tracker]. It works by solving the Lorentz force (3.1) numerically using a centre-

differencing (or leap-frog) method. Where the approximation:

Blt+d)-Plt—d) e

2dt mey(t)

(P(t) x B(t,z,9)) (3.6)
Becomes:

Pt +dt) ~ — (P (1) x B(t,2,y))2dt + P(t — dt) (3.7)

mey(t)

Where dt is small. Then using the forward difference method it calculates the electrons

position. Where the approximation:

r(t+dt) —z(t) P
dt ~ mey(t) (38)

Becomes:

Px
x(t+dt) = (D) dt + xz(t) (3.9)

This code has been heavily benchmarked and compared with the analytical solution.
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Figure 3.3: The mapped field of the magnet used in the Lund Experiment. The units

of the labelled contours are mT .

Single Screen Design

In the simple case of a single screen electron spectrometer The electrons are dispersed
through a magnet and impact on an electroluminescent screen at 45° to the laser axis.

The magnet’s fields were measured using a Hall probe mounted on a micrometer
stage. The magnetic field maps are shown in figures 3.3 and 3.4 along with their di-
mensions. In each case the fields where found to not vary appreciably in the dispersion
direction which is out of the page in relation to the figures.

The electroluminescent screen used for all the experiments was composed of Gd205S:Tbh
and is sold under the trade name Kodak Lanex. GdsO5S:Th emits 546nm photons
when energy is deposited in the scintillator layer by incident electrons. The energy
deposited is an almost constant (80 eV) for electrons of energy greater than 4 MeV
[87]. So energies less than this were discarded in the analysis. The screens were
shielded from laser and interaction light on the front by layers of Al coated Mylar
as this would also cause luminescence. The screens were imaged from the back by
CCD'’s at an angle of 45°. The imaging lines were fitted with 546 nm interference
filters to minimize the signal from non-electroluminescent light. The relaxation time

of the scintillator is of the order of a millisecond. Thus to further minimize the signal
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Figure 3.4: The mapped field of the magnet used in the Gemini Experiment. The
units of the labelled contours are mT. The magnet consists of rectangular pole pieces
constructed from sintered neodymium blocks, mounted in a c-shaped yoke. This c-
shape allows low energy electrons to leave the spectrometer without striking the yoke,
further reducing the bremsstrahlung radiation produced. The pole piece separation is
25 mm. We find that the field maximum is 1.02 T in the mid-plane of the magnet with
a field uniformity of 0.01 T r.m.s. over the central 200 mm of the magnet. The yoke
design ensures that there is no field reversal along the electron propagation direction.
The magnet is constructed in two sections, each 150 mm long. In this experiment

these were fixed together providing a single magnet 300 mm long.
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from non-electroluminescent light the CCD’s were triggered 0.1 ms after the elec-
tron beam. This is long enough for laser light not be present and for the light from
plasma recombination to have ceased. However in practice it was found that laser or
recombination light could be reflected onto the backs of the Lanex screens and cause
photoluminescence. For this reason light tight shielding was installed as well.

Electrons with positive or negative momentum in the magnets dispersion direction
(i.e. electrons which exit the accelerator at an angle to the spectrometer axis) can
cause the beam energy to be over or under estimated, (see figure 3.5). In addition
the electron beams spatial extent in the dispersion direction and the lasers pointing
variation can have a similar effect.

One way to limit the uncertainty of the measurement due to this is to employ
a collimator before the electron beam enters the magnet, to stop these electrons.
However in this work I am interested in measuring the x-rays created in the LWFA.
The electrons stopped in the collimator would be in the line of sight of the x-rays
being measured and would create large amounts of bremsstrahlung radiation in the
same cone. This would introduce large amounts of noise to the x-ray measurement.
This makes the use of collimating apertures unsuitable for electron spectrometers for
experiments where betatron radiation is important.

It is however possible to use the electron beam divergence in the non-dispersion
direction, as detected on the scintillating screen, to give estimates of the spatial extent
of the electron beam and deduce its divergence. Thus assuming this is the same in
the dispersion direction the uncertainty in the electron energy can be assessed. This
assumption is however not always valid. This method also does not deal with the
problem of laser pointing variation. Another way is to use the information provided
by an electron beam pointing measurement. However as these could not be done on
the same shot as the electron measurements only statistical measurements can be

used. Finally a two screen spectrometer method can be utilized as described below.

Two Screen Design

As shown in Figure 3.5, electrons with different energies can strike the same point
on a single screen due to differing exit angles. However with the inclusion of a
second screen their energies and angles can be ascertained. Separating the exit angle
from the electron energy is equivalent to measuring two components of the electron

momentum: the electron momentum in the laser propagation direction (p,), and the
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Scintillating Scintillating
Screen 1 Screen 2 _a)

Laser cone

Figure 3.5: Three electron paths are shown which all impact screen 1 at the same
position. b) Shows the path of an electron exiting the LWFA along the laser axis. a)
Shows a higher energy electron exiting at a positive angle. c¢) Shows a lower energy

electron exiting at a negative angle.

electron momentum in the magnet dispersion direction (p,). The third component of
the electron momentum (p, ), can be recovered from the position of the electron beam
on the screens in the direction perpendicular to the magnet dispersion direction.

The two-screen method allows the bending magnet to be placed close to the LWFA
without a collimator, see figure 3.1. This allows the whole electron beam to pass be-
tween the magnet pole pieces without deteriorating the magnet performance, thereby
reducing bremsstrahlung radiation. This geometry also produces sufficient deflection
of electrons away from the laser axis reducing the chance of the electron beam collid-
ing with x-ray detectors. This collimator-free two screen spectrometer still allows a
reliable and full measurement of the electron energy to be produced. Furthermore the
method allows all three momentum components of the electron beam to be measured
which can provide insight into the acceleration and radiation generation mechanisms.

In order to find the energy and angle of exit from the LWFA of a given electron,
it is necessary, to first identify what point it passes on both of the electroluminescent
screens, which I will call ?1 and ?2.

If many electrons are incident on the screens identifying these positions is not
trivial. One method of solving this problem is to place fiducials in the beam between
the two screens, creating shadows in the images on the second screen. However this
method has the disadvantage of not sampling the whole spectrum. Alternatively, I

identified §'; and 55 points using clearly identifiable features in the electron spec-
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trum.

Once a feature has been identified and points 'S’ and ¥, have been defined, the
correct electron momentum and exit angle (or equivalently p, and p,) can be found by
tracking electrons through the mapped magnetic field using the relativistic Lorentz
force equation in an iterative process. There are two methods which I considered in
order to solve this computational problem.

?1 and ?2 the point at which

The first is, given the two points on the screens
the electron exits the magnet and its position vector could be found. In the same way
as the Lorentz force solver described above tracks an electron through the magnet it
should be possible via reversing time and charge to track the electron back through
the magnet and iteratively guess the electrons energy until its path takes it back to
the LWFA. This has the advantage of having only one iteration loop.

However given I already had access to a well benchmarked iterative tracking code.
The second method which I used is as follows, and is depicted in figure 3.6. I modified
the existing Imperial College Tracker code slightly to act as a matlab function which
when passed a given exit angle and energy, would only track a single electron through
a magnetic field set up given by another file. The algorithm I wrote then receives the
input of S, and S, and starts with a guess of an angle and energy, passes this to

?1 and ?2 which are the

the matlab function, which passes back to it the positions
screen positions for this guess of the angle and energy. There are two loops.

In the first loop T, is compared to . Depending on which is larger the guess
of energy is changed. The process is repeated iteratively until the difference between
?1 and ?2 is small.

Then T and 8 are compared. Depending on which is larger the angle is
changed. Then the first loop is repeated.

Finally, when ?1 and ?2 match ?1 and ?2, within a certain tolerance, the
algorithm outputs the energy and exit angle of the electron.

I chose this method because it was more compatible with the existing bench
marked code, and all the ancillary magnetic field maps and libraries developed for
it could be retained. Computationally the first method would in principle be faster.
However this code takes around 10 minutes to run a dozen points on a desktop
computer so further optimization was not necessary for my purposes.

It is not necessarily the case that for highly non-uniform magnetic fields there will

be a unique mapping of momentum vectors p, and p, to positions on the screens S
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Figure 3.6: Diagram of the iterative algorithm for finding the energy and exit angle

of electrons exiting a LWFA incident on a two screen spectrometer.
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and §5. However as shown in figures 3.3 and 3.4, the magnetic fields which I have
used are highly uniform. This leads to there being a unique mapping as long as the
electron source point is known. I verified this by carrying out fittings of electrons of
energies between 1 MeV and 2 GeV with exit angles of between +100 mrad and -100
mrad. I took note of the turning points in the positions on the screens where the
electrons hit. There where no obvious discontinuities and so concluded that the map
from p, and p, to ?1 and ?2 is smooth.

So the two-screen method allows the full three dimensional momentum distribu-
tion of the beam to be examined which provides insight into the dynamics of electron
motion in a LWFA such as injection and acceleration. This is vital for understanding

the processes responsible for beam instabilities and x-ray generation.

3.1.2 Electron Profile Measurements.

In various places I will refer to electron profile measurements. These were conducted
using a similar method to the electron spectrometry. However instead the deflecting
magnet was removed and a scintillating screen was placed along the laser axis after
the LWFA. It was positioned at 45 degrees to the normal of the laser axis and imaged
using mirrors and lenses terminating in a CCD camera placed at 45 degrees to the
final mirror thus removing the distortion due to angle. The scintillating screen is
constructed in the same way as for the spectrometers with layers of aluminised Mylar
to block laser light and Lanex scintillator however with the addition of a sheet of solid

aluminium to block low energy electrons ( < 1 MeV ).

3.2 X-Ray Measurement

In this section I will describe the methods I used to measure the betatron x-rays
generated by the wakefield accelerators, the goal being to arrive at a measurement of
the peak brightness and critical energy of the x-ray spectrum. These two numbers
together give you all you need to know about the x-rays assuming betatron like
spectrum.

The basic method is to deflect the electrons produced by the laser wakefield ac-
celerator so that they are no longer concurrent with the x-ray beam, filter out any
remaining laser light, pass the x-rays through a filter pack made of materials with

different atomic weights, and then detect the x-rays using a phosphor and a CCD
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camera. By using the known transmission curves of the filters making up the filter
pack, an iterative fitting algorithm was used to find the critical energy of the syn-
chrotron like spectrum which best fitted the observed experimental data. This along
with a calculation of the number of photons incident on the detector and measure-
ments of the size of the x-ray source is sufficient to give the peak brightness of the
X-ray spectrum.

I will start off by describing the filter pack designs used in this thesis, then discuss
the details of the data treatment and finally talk about the x-ray detection system.

3.2.1 Filter Pack Design

The purpose of the filter pack is to find the spectrum of the x-rays transmitted
through it. The method is similar to the use of Ross filters, where the purpose of the
filters is to produce a mono-chromatizing effect. In Ross filters this is accomplished
by using two filters composed of elements of adjacent atomic number with thicknesses
adjusted so that the transmitted spectra are identical for all wavelengths except those
lying within the K-absorption limits [88]. Here however, instead of using only two
filters, a number are used with K-alpha absorption peaks spread across the range of
wavelengths we wish to measure. This allows for the spectrum to be fitted using an
iterative (trial and error) algorithm.

The first filter pack I constructed using the design in Kneip 2010 [89]. It is shown
in figure 3.7 and was used in the experiment using the Lund laser ( 18 TW). It is
designed to measure the spectrum between 1 and 10 keV as this is a x-ray energy

range consistent with a 18 TW laser producing a LWFA betatron spectrum [90].
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Figure 3.7: Initial filter pack design. Designed for categorising the critical energy of
a betatron-like x-ray spectrum between 1 and 10 keV. The backing material 6 pym of

mylar (Biaxially-oriented polyethylene terephthalate) with 90 nm of aluminium.

Element | K-edge KeV
" 6
Fe 7
Ni 8
Zr 10
Zn 18

Figure 3.8: Table of filters used in initial filter pack design. Designed for categorising

the critical energy of a betatron like x-ray spectrum between 1 and 10 keV.

As I was to conduct experiments using the much more powerful Gemini laser,
(which produced a peak power on target of 180 TW during the experiment), I needed
a way to measure x-ray spectrums with critical energies between 1 and 100 keV. To
this end I adapted the filter pack method selecting elements with k-alpha absorp-
tion edges as equally spaced as possible across this energy range, while considering
their availability, chemical stability, affordability and safety. I chose filter thicknesses
which would provide a similar transmission of betatron like spectra other than the
changes due to the K-alpha edge, which could be fabricated by combining layers of
commercially available foils. I tested the filter pack fitting algorithm by creating test
x-ray spectra, adding Gaussian noise, passing them through the transmission curves
expected for my selected thicknesses of elements [91], also adding appropriate noise

at this stage. I then took the resultant signals through each filter and used the fitting
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algorithm to calculate the critical energy of the original spectra. With some adjust-
ment to the filter thicknesses I found filter elements and thicknesses which worked

effectively. These are shown in the table of figure 3.9.

Element Thickness mm | K Edge KeV
\ 0.003 6
Zn 0.005 18
Mo 0.050 20
Sn 0.050 29
Pr 0.050 43
Gd 0.050 50
Yb 0.050 61
W 0.025 70
Au 0.010 81
Pb 0.040 88
Bi 0.040 91

Figure 3.9: Table of elements used in filter pack designed for betatron like spectra

with critical energies between 1 and 100 keV.

My first attempt at measuring x-rays, from the Lund laser, is not presented in
the accompanying chapter on the experiment, as I found fitting the spectrum using
the algorithm was not possible due to the noise levels being too high. I will however
discuss it here as it helped inform the methodology in the subsequent experiments
and my filter pack design.

Figure 3.10 shows an image from the x-ray camera in the Lund experiment with
the filter pack from figure 3.7. In the sections 1 and 8 shown in the figure 3.10 2
mm pieces of copper have been placed. The signal through these sections is due
to Bremsstrahlung gamma rays generated by the electron beam from the LWFA
stopping. This prevented the x-rays from being properly categorised on this occasion.
For the Gemini experiment I took measures to prevent this problem described in that
chapter.

I did however note from figure 3.10 the signal through the thin backing material
could be useful. I wanted to address the potential problem of the x-ray beam not
being homogenous across the field of view of the x-ray camera. This could come
about if the beam was smaller than the solid angle of the CCD. It could also come

about if the beam was not centred on the x-ray camera and there was a change



CHAPTER 3. METHODS. 93
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Figure 3.10: This a typical (if bright) image captured by the x-ray camera on the
Lund experiment. The different filters are clearly visible. For analysis purposes the
image is broken into the sections shown. 1) and 8) act as a background calibration
and are covered with 2mm Copper. 2) 3um V, 3) 3um Fe, 4) 5um Ni, 5) 5um Zn,
6) 3um Zr, 7) The backing material 6 ym of mylar (Biaxially-oriented polyethylene
terephthalate) with 90 nm of aluminium. The camera was a front illuminated Andor

CCD mounted in vacuum. The axis show pixel number.

in intensity across the chip. For this reason I selected a grid design (as shown in
figure 3.11). This would mean that it would be possible to know if the beam was
inhomogeneous, something that would not necessary be possible without a thin grid
of backing material. It would also allow for measurements to be made if the x-ray
beam changed in intensity across the field of view, of course assuming that the change

in x-ray spectrum was small.
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Figure 3.11: Grid filter pack design 4x4. Designed for categorising the critical energy
of a betatron like x-ray spectrum between 1 and 100 keV. The backing material 6 pym
of mylar (Biaxially-oriented polyethylene terephthalate) with 90 nm of aluminium.

Used in the Gemini Experiment chapter.

In the design of the filter in figure 3.11, some key filter elements are repeated. This
is for two reasons, one for the case of the x-ray beam covering a smaller angle than
the filter pack, the section for improved confidence in measuring a inhomogeneous
x-ray beam. In the case of the x-ray beam covering a smaller section of the filter
pack, the filters are arranged to hopefully allow the spectrum to be fitted with only
a subset of exposed filters.

In the case of a large inhomogeneous beam this allows the signal through repeated
filters to be compared. If the ratio of these repeat filter to the surrounding backing
material is the same at different positions on the field of view, then one can conclude

that change in x-ray spectrum energy is small across the field of view. Subsequently
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the sections of the grid around each filter can be used to normalise the signal before
being passed to the fitting algorithm allowing beams of inhomogeneous intensity to
have their critical energy fitted.

Once the manufacturing process had been perfected I was able to further improve
on the design by cutting the area of each filter by a quarter, leading to the filter
design shown in figure 3.12. This has the advantage of more repetition of elements

thus increasing the confidence in the measurement.
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Figure 3.12: Grid filter pack design 8x8. Designed for categorising the critical energy
of a betatron like x-ray spectrum between 1 and 100 keV. The backing material 6 ym
of mylar (Biaxially-oriented polyethylene terephthalate) with 90 nm of aluminium.

Used in the Gemini Experiment.

3.2.2 Data Treatment for X-ray Spectrum

In the x-ray measurements discussed in the chapter on the Gemini Experiment. The

x-ray beam was found to be inhomogeneous, figure 3.13 shows an extreme example.
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Figure 3.13: An image from the Princeton PIXIS camera system used on the Gemini
experiment. The colour table is arbitrary but linear. One can see the x-ray beam

varies in intensity.

Due to this the signal through each elemental filter was normalised to the four
backing regions around it (shown in figure 3.14. Then passed through the fitting
algorithm. The long Al vacuum tube (shown in figure 3.15) is used to measure
the level of bremsstrahlung gamma rays in the four regions at the corners of the
image, this is subtracted from the data before the photon number is calculated. Once
normalised the ratios between repeat filters were seen to be the same. Allowing for
the assumption of only a small change in spectrum across the field of view of the

camera.

Figure 3.14: An image from the Princeton PIXIS camera system used on the Gemini
experiment. The colour table is arbitrary but linear and saturated in places. The
extent of each filter region is shown in blue. The regions around each filter( to

normalise for inhomogeneities in the beam) are shown in green.
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Figure 3.15:  Photograph of a filter pack in place on the Gemini experiment. A
beryllium window is used to pass the x-rays into air. The length of vacuum tube is

used to provide information on the level of bremsstrahlung radiation.

3.2.3 Princeton PIXIS camera

In order to detect and characterise x-rays which have energies between 1 keV and
100 keV a PIXIS-XF:2048BL system supplied by Princeton Instruments was used.
This consisted of a Csl: TT scintillator coupled to a CCD array using optical fibres and
enclosed behind a Be window. The process of x-ray detection involved in this system
is summarised in the illustration of figure 3.16.

The Csl:TI has a reasonably good response to x-rays in the 10 - 100 keV part
of the spectrum as shown in figure 3.17. For the measurements of the x-ray source
reported in this thesis, it was necessary to absolutely calibrate the camera response,
i.e. to provide a direct relationship between the signal recorded by the camera and
the number of incident photons. This was performed using an Fe-55 source. The
following section describes this calibration process and the method for calculating

the absolute number of photons.
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Figure 3.16: An illustration of the stages involved in an x-ray causing an ADC count

in the Princeton PIXIS camera system.

Calculation of Princeton PIXIS system counts from photon

number.

To understand the coefficients that need to be calibrated, consider the calculation
of the number of counts given by a certain number of x-ray photons incident on the
Princeton PIXIS system for a given x-ray spectrum. It can be considered as follows,

(working from right to left in illustrationin figure 3.16):

1. Let us assume a known spectral shape function ( S’(E) ), which gives the number
of photons per photon energy (F). For instance a synchrotron like spectrum

could be assumed.

2. The fraction of the total number of photons in the spectrum at a given energy
( S(E) ) is then given by the following integral equation:
S'(E)

S = Totmar

(3.10)
3. The fractional transmission of x-rays through the length of air and/or other
materials such as metallic filters and Be windows between the x-ray source and
the Princeton PIXIS system is given by the function T'(E). This function can
be found from reference values [91], as long as the length of air or of other

materials is precisely measured.
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Csl:TI Phosphor X-ray Absorption Efficiency (With Be Window)
Quantum Efficiency of the Princeton PIXIS System CCD Array
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Figure 3.17: The Princeton PIXIS system’s CCD array quantum efficiency is shown

in red. The Princeton PIXIS camera system’s Csl:'TI scintillator’s x-rays absorption

efficiency is shown in blue. This includes the transmission through the 10 mm Be

window. Data reproduced from Princeton Instruments documentation [92].

4. The fraction of photons absorbed as a function of photon energy in the scintil-

lator Q(F) is given in figure 3.17. This also takes account of the transmission

of the integrated Be window which is part of the Princeton PIXIS system.

. The integral I then gives the total energy deposited in the phosphor on average

per photon of the incident x-ray spectrum.

I= / T(E)Q(E)S(E)EJE (3.11)

. Now that a certain amount of x-ray energy has been deposited in the phos-

phor scintillator it will produce 2.25 eV green photons with a certain energy

conversion efficiency g.

. The green photons are emitted over an angular distribution, some fraction of

them (a) are captured and guided to a CCD array pixel by an optical fibre
(or collection of fibres). This constant a will not necessary be the same for
all camera pixels. This is because distortions and blemishes are inherently

produced during the fibres” manufacturing process and introduce distortion and
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non-uniformity of response in the fibres, [93]. In addition certain ‘dead’ fibres
are used by design and create the hexagonal pattern seen in figure 3.20c). These

effects collectively can be modelled by a slight variation in the constant «.

8. The green photons are then deposited in the CCD. The CCD quantum efficiency
can be seen in figure 3.17. Its efficiency for 2.25 eV photons is ¢(2.25 eV) = 97%.

9. Each deposited green photon will create one electron-hole pair, as this is normal
for a CCD interacting with a visible light photon, [94].

10. The resulting number of counts recorded for each of the electron-hole pairs
created depends on the analogue-to-digital converter. Its details are shown in
figure 3.18. The number of counts for each green photon is then given by the
factor ADC.

11. So the number of counts (c) given for a certain number of incident photons (N,)

for a pixel of the CCD array is then given by this expression:

I(5)
=N,
¢ pE2.25eV

~g-a-q(2.25eV) - ADC (3.12)

12. This expression can be simplified into the factors which do not depend on the

incident x-ray radiation spectrum (M’) and the integral 1(S").

¢c=N,-I(S)-M'=N,-M (3.13)

3.2.4 Princeton PIXIS Camera System Calibration

As the values of the phosphor energy conversion efficiencies (¢) and the fibre coupling
efficiencies («) for each pixel were not precisely known. It was necessary to calibrate

the system using a source of known brightness.
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Conversion Gain (e-/ADU) and Non-Linearity
Mode | Gain setting | (e-/ADU) | Non-Linearity
Low-Noise Output (LNO)
LNO 100 kHz 1 3.58 <2%
2 1.85 <2%
3 0.90 <2%
LNO 2 MHz 1 3.89 <2%
2 1.98 <2%
3 1.05 <2%
High-Capacity Output (HCO)
HCO 100 kHz 1 14.99 <3%
2 7.54 <3%
3 3.97 <3%
HCO 2 MHz 1 16.52 <3%
2 8.01 <3%
3 4.55 <3%
Read Noise (e- rms)
Mode | Speed Measured
Low-Noise Output (LNO) 100 kHz 4.29
Low-Noise Output (LNO) 2 MHz 14.85
High-Capacity Output (HCO) 100 kHz 7.90
High-Capacity Output (HCO) 2 MHz 36.21
Dark Charge (e-/pixel/sec)
Measured
0.1 @ -30 degree Celsius

Figure 3.18: The ADC settings for the Princeton PIXIS system. Reproduced from

Princeton Instrument’s unique calibration.

Figure 3.19: Photo of calibration setup with approximate scale.

The calibration was carried out at the Rutherford Appleton laboratory using a
Fe-55 disk source of 11 mm diameter, and an activity of 2.5926 MBq at the time of the

calibration. The camera was placed in contact with the source holder and a number
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of 30 min (1800 s) exposures were taken. This length of exposure was necessary to
yield an appreciable signal on the camera. A number of 1800 s background exposures
were also taken without the source present.

It is necessary when using the system to conduct a pixel by pixel subtraction using
an appropriate background image. This due to the noise levels in each pixel not being
uniform across the CCD array but varying reproducibly for each pixel. The results of
this subtraction are shown in figure 3.20. One can notice that in figure 3.20c) there

is a hexagonal grid pattern in the data. This is due to the optical fibre design, and is

normal.

0 6000 0 6000 -1000 2000
Count: 4177111 Min: O Count: 4182286 Min: 0 Count: 4193495 Min: -1000
Mean: 2681.429 Max: 65535 Mean: 2476.522 Max: 65535 Mean: 190.615 Max: 2000
StdDev: 928.413 Mode: 2240 (47619) StdDev: 879.712 Mode: 2128 (54544) StdDev: 288.404 Mode: 25.391 (193891)

Bins: 256 Bin Width: 23.438 Bins: 256 Bin Width: 23.438 Bins: 256 Bin Width: 11.719

Figure 3.20: Exposure to Fe-55 for 1800 s. b) Exposure with no source present. ¢) A
pixel by pixel subtraction of a) from b). The images above show the camera counts.

The histograms below show the exact colour tables used for the images above.

The shape of the distribution seen in 6¢) is typical of the distribution produced
by a disk source of radiation. From Smith et al.1954 [95] the following expression for

this off-axis distribution ( D(z,a,€) ) of a disk radiation source is given:

D(z,a,¢€) :/oa/o WG(R)S(p)pdde (3.14)

The geometry is shown in figure 3.21. a is the source radius. G(R) is the response of

the detector at distance R from the disk. S(R) is the source strength per unit area,
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in this case 2.5926 MBq / (2ma?) . p and 6 are the polar coordinates on the disk. z
is the perpendicular distance of the detector to the source. € is the distance from the
axis of the disk to a point on the detector. R is the distance of a point on the disk to

a point of the detector, given by the expression:

R= (22 +p*+ € —2epcosh)/? (3.15)

R=(Z+p*+ - 2EpCOSQ)%

Figure 3.21:  The geometry used for the off axis distribution of a disk radiation

source.

In the case of a detector such as the Princeton PIXIS camera system the response
G(R) varies with solid angle. As the solid angle is reduced, by the angle between the
vector R and the normal of the camera increasing, the camera response will decrease.

This results in:

z

G(R) = Py (3.16)

This can be substituted into the integral and solved numerically. It is important to
do this as the on axis distribution, which is the centre of the distribution in figure
3.20c), will differ from that of a point like source if z is not very much greater than
a. A point like source would be expected on axis to vary as: D = a?/(4z?). The

difference is shown in figure 3.22.
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10 10 10 10’
z/a

Figure 3.22: The on axis distribution due to a point like source (green line) and the

on axis distribution for a disk source (red dotted line).

Unfortunately the distance between the front of the camera and the radiation
source (z) could not be measured. This is because the Fe-55 source was too dangerous
to examine and the distance of the disk from the front of the enclosure is not known.

However, because the off axis distribution changes in shape with changes to the
distance z, as is shown in Figure 3.23, it was possible to numerically solve for D(z, a, €)

and iteratively fit the constant M and the distance z.

a=55mm,z=1mm a=55mm,z=3mm a=55mm,z=5mm

b)' c)!

1500

pixels
pixels

2048 2048
1 1

2048 2048 2048

pixels pixels pixels

Figure 3.23: Calculation of the off axis distribution of radiation for a uniform disk
source of 2.5926 MBq activity radius 5.5 mm, placed at distance z from a pixel
detector with the same pixel size and dimensions as the Princeton PIXIS system.
The distribution was calculated numerically and in this case the constant M (defined

above) has been set to one. a) z =1 mm. b) z =3 mm. ¢) z =5 mm.
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The iterative fitting algorithm found z = 3.11 mm and M = 0.942. This value
of z is consistent with the set up shown in figure 3.19 and this value of M is also
consistent with reasonable values of the unknown constants mentioned above. The
results of the fit are shown in Figure 3.24 and can be seen to be in good agreement

with the experimental data.

1200

1000

800

600 1

Count

400

200 |

0 1 1 1
0 500 1000 1500
Pixel

Figure 3.24: Blue Solid Line: A lineout through the centre of the signal due to
exposure to the Fe-55 source for 1800 s after a pixel by pixel background subtraction.
Red Dashed Line: The off axis distribution calculated with fitted values of z=3.11
mm and M = 0.942 for a uniform 2.5926 MBq activity disk source of radius 5.5 mm,

1800 s exposure.

Recalling the expression of counts due to photon number:
c=N,-I(S)-M'"=N,-M (3.17)

The calibration factor M contains the spectrally dependent term 7(S’) and the spec-
trally independent term M’. In order to calibrate the system’s response to an arbitrary
x-ray spectrum S’ the constant M’ must be found. To do this the integral I(.S") must

be assessed for the Fe-55 spectrum.
[ / T(E)Q(E)S(E)EdE (3.18)

The decay of Fe-55 is via electron capture to Mn-55. The result of this is a rapid

adjustment in the electrons around the nucleus and a vacancy in the ‘K’ shell, which
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is usually filled by an electron from a higher shell. There are a variety of ways the
excess energy from this process may be emitted via Auger electrons or x-rays of
differing energy and probability. However the x-rays energies are so similar they can
be specified as mono-energetic radiation of 5.9 keV, [96]. Thus S’(E) = §(E—5.9keV)

The transmission of 5.9 keV x-rays through 3.11 mm of air is found from reference
values [91], yielding T(E) = 0.992. The quantum efficiently of the Csl:TT scintillator
for 5.9 keV photons can be assessed from Figure 3.17 as Q(5.9keV) = 0.899. Thus
I(Fe-55) = 5.26 keV /Photon. So M’ = 0.1791 counts/keV .

So furnished with an accurate calibration of the Princeton PIXIS system, it is now
possible to calculate incident photon number on the system with accurate knowledge

of the spectral shape function of the radiation.



Chapter 4

Laser Wakefield Acceleration
Experiments with the Lund
Multi-T'W Laser

For this experiment a multi-TW CPA laser system at the Lund Laser Laboratory
(LLC) located in Sweden was used, which delivered 18 TW to target.

Wavelength Pulse Energy Pulse Duration Repetition Rate
Ao (nm) (J) 70 (fs) (shots per min)
800 0.6 45 >1

In this chapter the threshold for electron self injection in a self guided LWFA, a

parameter critical for both electron and x-ray generation.

4.1 Experimental Set Up.

The general set up is best described by figure 4.1. The laser beam is focused onto
the edge of a supersonic gas jet using an f/9 off-axis parabolic mirror. A range of
nozzles was available for the gas jet to examine the guiding properties. In practice
the measurements were made with both a 2mm and 3mm diameter nozzle,[97].

A permanent magnet based electron spectrometer was set up inside the vacuum
chamber using a Lanex screen and CCD imaging system to record the electron spec-
trum. The magnet was placed on a translation slide so that it could be moved out of

the beam line-of-sight, allowing measurements of the electron beam profile.

67
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Figure 4.1: The experimental set up for the Lund Laser Lab experiment.
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To characterize the guiding, the transmitted laser light was attenuated using two
glass wedges before being collected. A magnified image of the exit mode was then
recorded on a high dynamic range CCD camera and simultaneous measurement of
the transmitted laser spectrum was also recorded. Filters centred around 800nm were
used. In addition calibrated measurements of the transmitted laser energy were made
using diodes both before and after the interaction.

An x-ray CCD camera was set up on the laser axis able to operate either as a
filter transmission spectrometer or in single-photon mode (to provide a high resolution
spectrum in a single shot). This is to characterize the x-ray spectrum produced by
betatron oscillations of the electron beam.

Through a clever arrangement of the glass wedge, and two Lanex screens of differ-
ent sizes on a rotation stage it was made possible to operate the experiment in three
modes without the need to break vacuum:

1. To measure a portion of the electron spectrum while simultaneously running
the x-ray camera. This was achieved through diverting the electrons via the magnet
(into a aluminium backed sheet of Lanex) which allowed the laser and subsequent
betatron x-rays to pass unobstructed.

2. To take a full image using Al backed Lanex of either the electron spectrum
with the magnet in or the electron profile.

3. To use the glass wedge to take measurements on the forward line diagnostics
and record the electron spectra or profiles utilizing a Lanex screen mounted on the
rear of the glass wedge. (Here it would be expected that glass would filter out the
lower energy electrons).

Additionally, use was made of the relatively long fluorescence life time of Lanex, see
Buck 2009 [98]. By gating the image taking in the spectrometer to a few microseconds

after the interaction, elaborate light shielding was made unnecessary.

Variation of electron density of the plasma.

Electron density in the plasma was varied through changing the backing pressure of
the gas feed line before the super sonic gas jet. The resulting density profiles were
found offline (but in situ) through use of a Wollaston interferometer using neutral

argon gas.



CHAPTER 4. LUND EXPERIMENT 70

Figure 4.2: Focal spot images recorded with increasing amounts of spherical aberra-
tion. From left to right the intensity contained in the FWHM is (a) 47%, (b) 40%,
(c) 31%, (d) 20%.

Variation of Energy in FWHM focal spot.

The focal spot quality of the laser and subsequently the energy in FWHM of the
focal spot were controlled using the 32 actuator deformable mirror and wave-front
sensor available at LLC. Using this system not only could the focal spot quality be
maximised but known aberrations could be approximated at focus. Figure 4.2 shows

some of the focal spot profiles used.

Variation of focal spot size.

This was achieved through changing a lens before the off axis parabola. This allowed
the beam diameter on the parabola to be changed and so subsequently the size of the

of the beam at focus to be increased.

Variation of the power of the laser pulse.

This was varied through changing the pulse length by moving the compressor gratings,
thus allowing the total energy of the pulse to remain the same but change the power. A
side effect of this is to introduce (chromatic) chirp into the pulse, where the wavelength
varies linearly over time. Both directions of grating movement were used in order to
create positive and negative chirp, positive chirp having shorter wavelengths at the
leading edge of the pulse. This also causes skew in the pulse where the electric field
gradient varies more quickly on the leading or falling edge of the pulse depending on

which direction the gratings are moved in.
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Figure 4.3: Measurements of the electron beam profile for different plasma densities
for « = 0.40 . The colour table is linear and in arbitrary units. A threshold for

injection is clearly visible between densities of 1.3 and 1.6 x 10* cm?.

The total energy of the laser pulse.

The total energy of the laser pulse was varied though changing the number of pump
lasers in the CPA system. Through reducing the number of lasers pumping each

amplification stage a number of different energies could be produced.

4.2 Examining the energy-density threshold for wave-
breaking

As already mentioned in section 4.2.1 in the highly non-linear regime there is a thresh-
old plasma density below which no electron beams are produced. In this section the
effects of laser pulse duration 7, laser energy Fy and the laser energy « in the FWHM
of the laser spot on this density threshold are examined.

From measurements of the electron beam profile monitor (Figure 4.3), it is clear

that the threshold for wavebreaking has, as expected, a dependence on plasma density.
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Figure 4.4: The recorded charge for the different focal spot qualities («) for different

plasma densities (n.).
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Figure 4.5: The recorded charge for the different focal spot qualities («) plotted

against the power in the FWHM of the pulse as a ratio of power for self focusing
(aP/P,).
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Figure 4.6: The recorded charge for the different laser energies against different plasma
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Figure 4.7: Electron beam profiles for various plasma densities for different values
of the amount of laser energy within the FWHM of the focal spot a. Each panel is
an average of five shots and is displayed on a logarithmic color scale. (a), (b), and
(d) kept the total laser energy E constant but varied « whereas (c¢) reduced the laser
energy E. (I made this figure, which was first published in Mangles, Bloom, et al.

2012 [99]. Reproduced under creative commons licence.)
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Figure 4.8:  (Left) This is the recorded charge on the electron profile monitor for
when the position of the compressor gratings is varied. (Right) The pulse duration

measured using a “GRENOUILLE” against grating position.

Above 1.3 x10' ¢cm™2 clear electron beams are present. However there are arguably
clearer beams with higher charge and small divergence at 1.8 x10* cm™ than at 1.6
or 2.1 x10* cm=3.

The quality of the focal spot was varied as set out in the previous section and
figure 4.4 shows the results of this study. In this graph, as it will be for all the figures
in this section, each point represents the average of 5 shots and the error bars are
representative of the standard deviation of these results. The charge shown for each
profile measurement is simply the total number of CCD counts across the electron
beam profile monitor.

From figure 4.4 it is clear that as the quality of the focal spot («) is lowered
the amount of charge on the profile is reduced. Here one can identify for the a =
0.5 beam at pressure 1.8 x10' the hight point representing the clearer beams with
higher charge and small divergence shown in figure 4.3!. An important thing to note
is that at higher plasma densities the beam quality clearly deteriorates in figure 4.3
with multiple beamlets appearing. However in figure 4.4 you can see that though the
beam quality is poor at these high densities the amount of charge is equivalent or
greater than for the good quality beam.

In order to compare the data from the different focal spots it is useful to compare

their power. In doing so its not a bad idea to normalise to the critical power for self

!The data is actually from o = 0.47 in figure 4.4 and o = 0.40 in figure 4.3. But the results for
a = 0.40 were so close to a = 0.47 (0.5) that they have been omitted from figure 4.4. The two spots

can be viewed in figure 4.2.
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Figure 4.9: (a) Electron charge (>4 MeV) versus aP/ P, keeping the pulse duration
constant but varying the focal spot quality « and the plasma density n. (closed
circles) or total pulse energy E, and plasma density (open squares) but keeping the
pulse duration constant 7y. (b) Electron charge versus P/ P, varying pulse duration
7o while keeping plasma density n. and energy in focal spot aE constant. (c) Data
from (a) and (b) plotted versus aFEn./n.. Fach data point is an average of five shots
and the error bars represent 1 standard deviation. (I made this figure, which was first
published in Mangles, Bloom, et al. 2012 [99]. Reproduced under creative commons

licence.)
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focusing P, which is in turn dependent on the plasma density?. This is done in figure
4.5. Here one can see that there is a clear trend.

The effect of changing the energy of the laser pulse as a function of density is
shown in figure 4.6. This when plotted against aP/P, as seen in figure 4.9 this data
can also be seen to follow the same trend as the variation of focal spot quality.

Through variation of the compressor grating distance the pulse length (7) was
changed. The resulting pulse length was evaluated using a “GRENOUILLE”?. This
effect is shown in figure 4.8 (b). It can been seen that counter to expectations the
amount of accelerated charge actually increases at positions away from the grating’s
zero position; the position where the pulse is at its shortest and known as bandwidth
limited. As shown on figure 4.9 the charge is optimised for a positively chirped pulse
of 50 fs opposed to the bandwidth limited pulse of 41 fs. This effect was actually first
reported by Leemans in 2002 [100], in which it was theorised that the electric field
gradient at the front of the pulse was the necessary factor. This would indicate that
is not in fact a power threshold as in figure 4.9 (a).

In figure 4.9 (c) the data from (a) and (b) is plotted as a function of energy
aFEn./n. not power. The variation of pulse length fits better in this case indicative

of an energy threshold.

4.2.1 Model of The Self-Injection Threshold in Self-Guided
Laser Wakefield Accelerators.

The highly nonlinear broken wave regime is used in many experiments to produce
quasimonoenergetic electron beams and is used in the experiments presented in this
thesis. In such experiments a threshold plasma density is commonly observed, below
which no electron beams are produced. In section 2.3.3 the cold wave-breaking lim-
its were discussed. However they did not take into account the 3D field structures
dependences on driving laser pulses.

Because of the inverse scaling of the electron beam energy with plasma density

n., the highest energy beams achievable with a given laser system are achieved just

2

8megm2cPw? w?

P — e 0 0 GW
° e2w? - 170.)2
P P

3A “GRENOUILLE” is a device which operates utilising a similar principle to a frequency resolved
optical grating F.R.O.G. .
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above the threshold, and it is well known that many of the beam parameters includ-
ing the spectrum and stability are also optimized just above the threshold density.
This therefore makes this parameter of key importance to x-ray as well as electron
generation by LWFAs. The threshold is also of importance if designing a LWFA to
not self inject. In which case one would have to operate below the threshold.

The first period of the plasma wave behind the laser pulse in a LWFA can be
thought of as a spheroid or bubble devoid of background plasma electrons travelling
at 74 behind the laser pulse. In the paper Kostyukov et al. 2004 [101] field equations
are derived for the electric and magnetic field present in a spherical cavity moving
through a plasma at relativistic velocities. In the paper Thomas et al. 2010 [102]
it is shown using these fields that electrons initially at rest following near elliptical
velocities due to the ponderomotive force of the laser will be accelerated to 74,m.c?

if the radius of the plasma bubble is larger than
kpry > 24/1n(273,) (4.1)

The paper Decker et al. 1996 [103] finds

2 . Ne

Vop = (4.2)

3N,
for the Lorentz factor associated with the phase velocity of the bubble, (in contrast
to 2.55). In Lu et al. 2007 [104] the following relation between laser power aE /7 and
the matched bubble size is shown:

aF 1/6
kyry = 2V/2 (T PC) (4.3)

However the laser pulse duration 7(I) changes from the initial pulse duration entering
the plasma 7y as a function of the propagation length /. The paper Schreiber et al.

2010 [105] presents a simple model for the rate of the pulse compression:

n,

7(l) ~ 79 —

(4.4)

2cn,

However pulse compression can not continue after the pulse has passed the pump

depletion length,

ToCN¢

Lpd ~ (45)

ne
Combining together these equations the following expressions for the threshold for

electron self injection are reached. Depending on if the LWFA is longer or shorter



CHAPTER 4. LUND EXPERIMENT 80

than the pump depletion length one or the other should be used.

P, 2 3
oF >T0 € |In fle) _ 1
16 3N,

forl > L4
! , (4.6)
aF > _ e ) Fe In 2ne 1
70 2cn. ) 8 3N,
for | < Lpg

This expressions were then tested against experiment as will be discussed in the
relevant chapters.

A previous study in Froula et al. 2009 [106] showed that, at low density, the
threshold is approximately

aP
P,

<3 (4.7)

A pure power dependence. This can be rearranged to similar form as the model

developed in 4.6 above.

Teomic® n,

—T (4.8)

all >3
ez n.

This alternate model will be contrasted with 4.6.

4.2.2 Comparing The Self-Injection Threshold Model With
The Experiment.

In section 4.2.1 a model for the self injection threshold was presented along with a
competing theory, given in equations 4.6 and 4.8 respectively. Figure 4.10 shows the
two predictions along with the thresholds observed in this experiment due to variation
of aF/. The energy threshold is in good agreement to observation as opposed to the

power threshold.
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Figure 4.10: Observed electron density threshold for self injection as a function of
laser energy (aF). The solid curve represents the model discussed in section 4.2.1
given by equation 4.6. The dashed curve represents the alternate threshold model

given by 4.8.



Chapter 5

Laser WakeF'ield Acceleration and
Betatron X-Ray Generation Using

the Astra Gemini Laser

The experiment described in this chapter used the Astra Gemini laser at the Ruther-
ford Appleton Laboratory, UK. This two beam line laser was designed to deliver 15 J
pulses with a duration of 30 fs onto the desired target, and so have a peak power of
500 TW. The focusing optic used is a /20 one metre off-axis parabolic mirror which
would be capable of producing intensities on target greater than 1.5 x10%*° Wem—2.
As this corresponds to a normalised vector potential of ay > 5, the motion of electrons
in this laser field will be highly relativistic.

The initial motivation for using such a laser to study electron acceleration was as
an extension of previous work producing betatron x-rays from self-guided wakefield
regime using the Hercules laser [69] where a peak power of 70 TW was used. The
results of the last experiment were encouraging as we saw x-rays of peak brightnesses
of 10*2 ph/s/mm?/mrad?/0.1% bandwidth at critical energies of 10 keV, and sources
sizes of between 1 and 3 um which we demonstrated could be used for phase contrast
imaging.

It was of great interest to see what x-rays would be produced by the more powerful
laser as existing scalings predicted a large increase in the accelerated electron energies

and so could produce both brighter and harder x-rays.

82
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5.1 Experimental Set-Up

At the time of the experiment, the Astra Gemini laser delivered pulses of 10J on
target with pulse durations of 55 fs; and peak power of 180 TW. An /20 off axis
parabolic mirror was used to focus these pulses onto the edge of a supersonic gas
jet, producing intensities of 5 x 10 Wem, corresponding to a normalised vector
potential of ay ~ 3. The nozzles used were high density conical nozzles with a range
of entrance orifices producing plasma densities between 10'® to 10 cm ™2 depending
on the backing gas pressures used. Only the nozzles with 10 and 15 mm entrances
will be discussed here. They produce constant density regions of 8.5 and 11.5mm
diameter respectively in their centres with sharp density ramps around their edges.
The gas used was helium, as the laser pulse intensity is well above the threshold for
ionisation one can expect the gas to be fully ionised long before the main pulse of
the laser arrives. The nozzles were calibrated before the experiment by carrying out
interferometry using argon gas, this was later confirmed by observed Raman satellites
in an imaging system set up transversely to the laser propagation direction.

Figure 5.1 shows the experimental layout of the target vacuum chamber and di-
agnostics. The principal diagnostics which will be described here were a two screen
magnetic spectrometer used in measuring the energy spectrum of the accelerated
electrons which is described in chapter 3.1.1, and Csl:TT scintillator, fibre optically
coupled to a CCD array which is the Princeton PIXIS system described in chapter
3.2.3 and used to measure the x-rays produced when combined with the filter packs

discussed in section 3.2.1.
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Figure 5.1: Experimental layout showing the laser beam path and the separation of

the electron beam from the x-ray beam.

Previous experiments found that measurements of the betatron x-rays were ob-
scured by bremsstrahlung gamma rays produced by the electron beam meeting objects
within the experimental chamber or the chamber wall. Therefore this experiment was

designed to avoid this in the following ways:

e A magnet was used with a high magnetic field to deflect the electrons by a large
angle away from the x-ray path. The electron spectrometer was not fitted with
collimating apertures as they would produce bremsstrahlung. Instead the two
screen spectrometer technique described in section 4 was used which does not
require collimating apertures. The c-shape magnet design allows for electrons
to pass through without striking the yoke, further reducing bremsstrahlung

production.

e The distance of the electrons flight before exiting the vacuum chamber was
maximised thereby making the distance of the x-ray detector from the electrons

point of impact on the vacuum chamber as large as possible.

e Lead shielding was placed in-between the x-ray detector and the point of impact

of the electrons on the vacuum chamber.
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e The Al vacuum chamber was fitted with a low-z polymer flange at the electrons

impact point in order to minimise the bremsstrahlung produced.

e Inside the chamber the electrons flight path was kept as clear as possible with
only the electron scintillator screens in their path. These screens were inten-
tionally kept as thin as possible while remaining light tight, through the use
of an aluminised mylar layer, and maintaining a thick enough Lanex layer to

ensure good signal on the electron spectrometer.

These precautions together avoided the betatron x-rays from being obscured by
bremsstrahlung radiation as was the case in previous experiments I have conducted.

A microscope objective could be lowered into place, and the gas jet removed, to
record the focal spot of the laser, in vacuum; this in conjunction with motorised
mirrors and the off-axis parabolic mirror being motorised allowed for the focus of the
laser to be optimised while in vacuum. A top view camera was also set up above the
interaction to image the whole plasma, and was useful for alignment.

In addition to the diagnostics mentioned, a probe beam was set up to image
the plasma transversely, and carry out interferometry. An imaging system could be
inserted in front of the x-ray diagnostic in order to image the exit mode of the laser
from the plasma and also passed to an energy measuring diode. Data from these
diagnostics won’t be discussed here, however they did allow for confirmation that a
wake field was being produced, and on shot verification of how the laser energy was
being deposited into the plasma as a function of changing the backing gas pressure.

For data taking, shots could be taken around every 40s, limited mainly by the
speed at which gas could be pumped out of the chamber. Images from the x-ray
camera and two electron spectrometer screens were available immediately after each
shot. This combined with crude image processing done immediately allowed for the
experimental parameters to be searched to optimise both the x-ray production and

electron beam energies.

5.2 3D Momentum Distributions of GeV Electron

Beams

High-energy electron beams were produced over a range of plasma densities. The

electron beam typically produced significant features on the electron spectrometer
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screens due to betatron oscillations of the electron beam. Example scintillator screen

images are shown in figures 5.2 and 5.3.

a)_ b)

T

C) _ d)_
Figure 5.2: Raw images of electron spectrometer scintillator screens. Images from
3

a) screen 1 and b) screen 2 for a shot at n, = 5 x 10! cm™3 and a 10 mm gas jet
nozzle, ¢) and d) show a smaller region. The marked point on the right corresponds
to 1.34 £ 0.07 GeV electrons at an angle of 3 mrad. The marked point on the left

corresponds to 1.09 £ 0.04 GeV at an angle of -1 mrad.

Figure 5.2 shows the images from screens 1 and 2 for a shot at an electron plasma
density of 5 x 10'® ecm™3, laser energy after amplification of 10.1 J, and a LWFA
length of 10 mm, and results of the reconstruction method is shown. The error in
this measurement was assessed: it was found that effects of positional error were
greater than those from other sources such as the accuracy of the magnetic field
measurement. By propagating the errors in the position for the screens, gas jet,
plasma, magnet, and the human error in choosing clearly identifiable features in the
spectra maximum bounds were found for s; and sy; these maximum bounds were
used in the reconstruction algorithm in order to find the limits shown in the reported
error. Electrons were observed at energies as high as 1.34 4 0.07 GeV on this shot.
There are also features closer to the spectrometer axis that missed the first screen.
The higher energy end of this spectrum shows clear betatron oscillations, responsible

for the generation of bright x-rays.
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a)

Figure 5.3: Raw images of electron spectrometer scintillator screens. Images from a)
screen 1 and b) screen 2 for a shot at n, = 2 x 10’ cm ™2 and a 15 mm gas jet nozzle.
The marked points have their momentum components p, , p, and p, plotted in figure
5.

Figure 5.3 shows images of the two scintillator screens for a shot at an electron
plasma density of 2 x 10'® cm™3, a laser energy of 11.3 J, but using a 15 mm di-
ameter supersonic nozzle. This shot appears to show two interleaving beamlets. We
have analysed the full 3D momentum distribution of a set of points for one of these

beamlets. This is shown in figure 5.4.
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Figure 5.4: a) Three dimensional momentum distribution of one of the beamlets
shown in figure 5.3. The blue points are 3D momentum coordinates of the identified
features in the beam. The blue plane is the “plane of best-fit” to these points. The
red plane corresponds to the laser electric field direction. Two additional views are
shown (without axes) taken along the direction of the red and the blue arrows. b)
shows the view along the red arrow (1), highlighting the head-to-tail tilt of the beam;
c¢) shows the view along the blue arrow (2). This is a direction almost tangential to
the red and blue planes, showing that the electrons are approximately distributed in

a plane that is approximately at 90° to the laser electric field direction.

The three dimensional momentum information about this beamlet shows that
the oscillation is approximately confined to a plane and that this plane is almost 90

degrees to the laser electric field direction, i.e. the strong betatron oscillations are
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not due to interaction with the laser field. As to the apparent small oscillations out
of the “plane of best fit” visible in figure 5.4, due to experimental uncertainty it is
not possible to say if they are significant. There is a clear correlation between p, and
Py, Which can be interpreted as a “head-to-tail” tilt. Such tilts can be responsible for
hosing instabilities in beam driven plasmas wakefield accelerators [107].

Preliminary simulations with Osiris do show that for extended plasma lengths the
laser can be sufficiently depleted for the interaction to enter a “beam driven”phase
(i.e. one where the electron beam itself drives a wakefield). However the resulting
hosing does not show interleaving features in the electron beam. Such features are
observed earlier in the interaction when the bubble undergoes rapid expansion due
to modification of the laser strength by self-focusing, pulse compression and photon
deceleration.

We have successfully fielded a two-screen spectrometer capable of measuring elec-
tron beams with energies greater than 1 GeV on Astra Gemini, having observed beams
with features up to 1.34 £+ 0.07 GeV. The two-screen method allows the full three di-
mensional momentum distribution of the beam to be examined which provides insight
into the dynamics of electron injection and acceleration, vital for understanding the

processes responsible for beam instabilities and x-ray generation.

5.3 A Model For The Electron Energy As Function
Of Density Including The Pre-Injection Pulse
Evolution Length

Changing the background density of the plasma has a profound effect on the type
of electron spectra generated in the LWFA, and subsequently the betatron x-rays
generated. Figure 5.5 a) shows the electron spectra produced during a series of shots
where the plasma density was altered. Each shot shown is representative of the
behaviour of the LWFA at this density. A qualitative transition is noticeable in the
type of electron spectra, below n, ~ 4 x 10'® cm =2 the beams are well collimated, with
a divergence of > 20 mrad, above n, ~ 4 x 10'® ecm™ the beams are more diffuse,
the beam divergence is significantly larger (> 50 mrad) and significant transverse

structure is observed in the beam profile.
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ST ENR

Figure 5.5: The data from 24 shots of the laser, using the 10 mm nozzle, is shown
in order of increasing density (from left to right) a) Shows the images from one of
the electron spectrometer screens. The electrons to the top of the images have been
deflected less by the magnet and have a higher energy. b) Shows the plasma densities
of each of these shots. ¢) The images from the Princeton PIXIS x-ray camera for each

shot are shown.

In understanding why this change in spectral type occurs, we can consider some
key lengths associated with laser wakefield accelerators. First there is a length of
plasma at the beginning of the accelerator over which the laser pulse is still evolving,
(self focusing and compressing in time), and the wakefield has not yet formed in such a
way to allow for electron self injection. I will call this the pre-injection pulse evolution
length (or PIPE Length). After self-injection has occurred (or started) the electrons
are accelerated for some length, Lacc. In practice this length is often limited by
either the length of the plasma, Lpyasna, or the length over which the laser pulse
propagates before its energy is depleted to the extent it can no longer produce an
accelerating wakefield, Lgrcn. Finally the dephasing length Ly is important, this is
the length over which an electron injected at the back of the wakefield bubble, will be
accelerated enough, and have a long enough time of flight, to reach the centre of the
bubble where the electric fields reverse and the electron will start to be decelerated.
The relationship between Lacc and Ly will have a strong effect on the type of electron

spectra emerging from the LWFA.
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Figure 5.6: The illustration shows the various scenarios which can occur in a LWFA
due to differing ratios between the lengths Lpiasma , Lercu, Lacc, Ly and Lpipg,
(not to scale). The blue line represents the energy of an electron self injected at the
beginning of Lcc, and demonstrates the effect of Ly on such an electron. (However in
D and H the energies shown are for a idealised simplified symmetric series of wakefield
periods which doesn’t take into account the presence of the laser pulse, the plasma
between wakefield periods or that the LWFA my be in a bubble regime.) A, B, C and
D are limited by the plasma length Lppasma, whereas E, F, G and H are the same
but limited instead by the laser depletion length Lgpcy.

Essentially all these lengths have a dependence on the plasma density n. as well
as the initial laser pulse conditions. Figure 5.6 shows the various possible scenarios
dependent on the ratio of these lengths. Scenarios A, B, C and D are all limited by
the plasma length, whereas E, F, G and H are the same but limited instead by the
laser depletion length. Scenarios F, G and H differ from B, C and D as the accelerated
electrons may go on to drive a wakefield of their own. This beam driven wakefield can

lead to further electron acceleration, Chen 1985 [108]. The electron beam propagating
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through the plasma (over length Lpgay) can also be affected by instabilities, such
as the current filamentation instability Huntington 2011 [109] which can drastically
change the electron spectrum which is measured outside of the plasma. The cases of
A and E are trivial as the laser pulse never evolves to drive a plasma wave capable
of self injection. In the case of B and F the acceleration length ends before electrons
injected at the beginning of the acceleration length can dephase, and so the maximum
achievable electron energy is not reached.

The transition of the fifth shot to the sixth shot in figure 5.5 (Counting from
left to right), corresponds to a transition from A to B in figure 5.6 (or E to F), and
represents the threshold for self injection in a LWFA.

One possible explanation for the transition from collimated beams to diffuse spec-
tra, seen between shots 12 and 13 in figure 5.5, is a transition from scenario B to F
in figure 5.6 (or possibly a transition from C to G) ). To assess this a simple model

of the pipe length’s dependence on plasma density has been developed.

5.3.1 A Simple Model Applied To Maximum Achievable Elec-
tron Energy In The LWFA

Simple models of Lgren and Ly already exist in the literature Lu 2007 [104].

n()
LETCH = ToC— (51)
Ne
and
2 ne
Ly,=-R— 5.2
o= 3R (5.2)

where R is the bubble radius and 7y is the duration of the laser pulse before
entering the plasma.
To try and find a very simple model of how the PIPE length scales with plasma
density I tried the following:
Lprpp = S% (5.3)

e

where S is just a linear constant. This simple model completely ignores the initial
laser pulse parameters such as power, pulse duration, spot size and wavelength which
should play a role in pulse evolution, however it may be useful in comparing LWFAs
where the input laser pulse is the same. Indeed in what follows I hope to demonstrate
to the reader that this is the case.
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Let us now consider what the maximum energy FE,, an electron can be accelerated
to in a given LWFA scenario. If the electron beam is considered as an ensemble of
electrons with different energies, F,, will be the upper limit of the energies contained
in the ensemble. E,, will not necessarily be the mean energy of the electrons contained
in the ensemble, though it is possible for these energies to be the same, e.g. through
phase rotation. FE,, is the energy an electron which was initially at rest in the bubble
frame, and at the back edge of the bubble will be accelerated to, if it remains in the
bubble until it reaches the centre of the bubble, and is not decelerated by dephasing.

A generally used scaling expression for the maximum achievable energy gain of a

single stage LWFA [104] is,
2n
mar — = 5.4
7 3ne a0 (54)

However aq as considered in vacuum is an underestimation of the laser pulse’s
normalized vector potential in the plasma, as self focusing and temporal pulse com-

pression act to compress the pulse in both space and time. The a( after these effects

P\ /3
Umag = 2 <P—Z) (5.5)

can be estimated as:

where Pr = aE/7p. The energy in the laser pulse’s FWHM is aF, and 7f is the

FWHM laser pulse duration after plasma pulse compression given by:

e L
T = T — n—— (56)

Ne C

Where L is the length over which compression happens and 7, is the initial pulse

duration.
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Figure 5.7: Variation of electron beam energy with density for the 10mm nozzle. In
blue are shown the upper limit of the electron’s energy spectra for a number of shots
at each plasma density. The blue circles are the mean value of the upper energy limit
of these shots. The bars shown are the standard error about the mean. In black are
shown the mean electron energy in the spectra. The black crosses are the mean of
multiple shots. The bars again show the standard error about the mean. In green is
shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows the prediction
of the simple model taking into account the PIPE length.

Figure 5.7 shows details of electron beams from multiple shots at different densi-
ties. The upper limit of the electrons energy spectrum is shown by the blue circles
and shows good agreement with the prediction of equation 5.4 when equation 5.5 and
5.6 are used (shown by the green line in figure 5.7).

However this assumes electrons are able to travel at least one dephasing length.

In practice the PIPE length reduces the effective acceleration length L scc.

LACC = LINT - LPIPE (57)

where Lyt is either the total length of the LWFA (8.5 mm for the 10 mm gas jet
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nozzle used in this experiment) or the pump depletion length, which ever is shorter.
Due to the non-linear interplay between the processes of self-focusing, pulse com-
pression, energy depletion and photon deceleration and their role in determining the
wake amplitude I have not found a simple expression for the PIPE length, however
as a first approximation, it is reasonable to assume that the rate of evolution will be
inversely proportional to plasma density, so I assume that the pipe length scales as:

Te
LPIPE :Sn— (58)

e

And assuming that inside the bubble the fields are linearly increasing from the
centre, [110]. So:

Lace  Liicc )
L, L2

We find that if the coefficient S ~ 11.5 mm, the PIPE model (shown in red)

corresponds to the experimentally recorded results in figure 5.7.

Y = Ymaz (2 (5.9)
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Figure 5.8: Variation of electron beam energy with density for the 15 mm nozzle. In
blue are shown the upper limit of the electron’s energy spectra for a number of shots
at each plasma density. The blue circles are the mean value of the upper energy limit
of these shots. The bars shown are the standard error about the mean. In black are
shown the mean electron energy in the spectra. The black crosses are the mean of
multiple shots. The bars again show the standard error about the mean. In green is
shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows the prediction
of the simple model taking into account the PIPE length.

Interestingly if we take this value for S and apply it to data taken using the same

setup with a 15 mm gas jet nozzle we see a similar correlation. This is shown in figure
5.8
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Scenario Ne Lpipg | Lacc | L¢ | LercH | Lrerasma | LBEAM
Cm-3 mm mm mm mm mm mm
A 10 x 10 200 00| *20.1 287 85 0.0
B 33x10° 6.1 24 46 87 85 0.0
C 24 x10° 08 0.4 03 12 12 0.0
E 10 x 10 200 00| *20.1 287 300 00
F 38x10° 53 23 38 76 85 09
G 24 x10° 08 04 03 85 12 73

Figure 5.9: The table shows which scenario shown in figure 5.6 the simple model
predicts will occur for various plasma densities and plasma lengths, for S = 11.5 mm.
The laser parameters used are those of the experiment. *Scenarios A and E are trivial

because no electron acceleration occurs. So the dephasing length has no real meaning.

Using this very simple model one can see that it is possible to enter several of the
scenarios shown in figure 5.6 by just changing the plasma density and the length of
the wakefield accelerator. The table in figure 5.9 shows which scenario this model
predicts will occur for various plasma densities and plasma lengths. Scenarios D
and H are not shown in the table because they are not accessible with these laser
parameters. Importantly the transition from scenario B to scenario F can be seen to
occur at a plasma density near to where, in the experimental data of figure 5.5, the
electron spectra change shape from well collimated beams to diffuse. So confirming

this as the most likely explanation of the change in spectral shape.

5.4 X-Ray Measurements

Using the Princeton PIXIS system, x-ray measurements were taken with the 10 mm
nozzle. As discussed in the experimental methods section both the peak x-ray bright-
ness and the critical energy of the x-ray spectrum could be found. Figure 5.10 shows
the variation of peak x-ray brightness with changes to the background plasma density.
For the calculation of brightness a source size of 1 um has been assumed. This is
because on shot measurements of the source size was not possible on this series of
shots. However this size is consistent with the x-ray source size measurements taken
during the same experiment. The temporal duration of the x-ray beam is assumed
to be 55 fs, the same as the driving laser pulse FWHM. In reality this is merely the
upper limit of the x-ray temporal duration, which may reasonably be less than 10 fs,

so the figures shown for peak x-ray brightness may be an underestimation.
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In figure 5.10 one can see the average peak x-ray brightness consistently varies
between two and three x10** photons per photons per second per mrad? per mm?
per 0.1% bandwidth over the plasma density region of 3 to 5 x10*® cm=3. This
statistical trend is roughly correlated with the mean electron beam energy average at
these densities also shown in figure 5.10. It also shows correlation with the average
maximum electron beam energy shown in figure 5.11. Though they are statistical
outliers, the brightest shots at each density are of physical importance. They indicate
that given the right conditions x-ray brightnesses of as great as 10%® photons per
second per mrad? per mm? per 0.1% bandwidth can be achieved, corresponding to
~ 10'% photons incident on our camera per shot.

My hypothesis, centred around the scenarios of figure 5.6, is as follows: Generally
in the region of 3 to 4 x10'® cm™2 the accelerator is transitioning from scenario
B to F (plasma length limited to pump depletion length limited). This is due to
the pipe length shortening due to increasing plasma density as discussed in section
5.3. However occasionally, as in the case of these outlying shots, the pipe length is
significantly shorter leading to scenario C or G occurring at these background plasma
densities. This leads to betatron x-ray emission happening over a longer electron
path length both before and after dephasing, thus resulting in a larger x-ray yield. 1
believe this pipe length shortening must be as a result of changes in the laser wavefront
resulting in a faster pulse evolution. (This is illustrated in figure 5.12 ).

Using the filter pack method, described in the methods section, the hardness of
the x-rays was measured on each shot. This can be best parameterised as a single
number the critical energy of a synchrotron like spectrum, (The value at which half
the energy of the spectrum is contained within photons that have energies greater

than this value). The results of this measurement are shown in figure 5.13 .
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Figure 5.13: The average measured x-ray spectrum critical energy for multiple shots
at different plasma densities. A synchrotron like spectrum is assumed (see section 3

for more details). The error bars show the standard error about the mean.

One can see that after the initial ramp up of both electron energy and x-ray
brightness which occurs at plasma densities less than 3.5x10'® cm™3, the critical
energy of the x-ray spectrum is consistently between 15 and 25 keV. So the x-rays
are both hard and bright. At higher plasma densities (4.5x10'® cm™2) though both
the mean electron energy and x-ray brightness somewhat decrease the critical energy
of the spectrum appears to increase.

This is not all that surprising as the critical energy is expected to vary as in the
following equation ([90], [111], [112]):

3h 5

E.= 2o VewnTs (5.10)

Where 7 is the betatron radius: the amplitude of the electrons’ oscillation. w? will
increase linearly with plasma density. Besides we cannot be sure that the recorded

mean electron energies are accurate representations of the energy is reached inside
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the accelerator for these densities, as for these densities the electron beam is certainly
propagating through a length of plasma without a laser Wakefield, and so may be
effected by instabilities such as the current filamentation instability [109]. Thus the
electron energies inside the accelerator may be greater than those measured outside at
these densities. This would explain the increase in critical energy at higher densities
and may mean that, if higher energy x-rays are required, working at even higher
densities with decreased accelerator length may be the preferable option.

In summary high brightness hard x-rays were seen with critical energies varying
between 15 keV and 30 keV and peak brightnesses between 10%* and 10%° photons per
second per mrad? per mm? per 0.1% bandwidth. A strong correlation between the x-
ray brightness and electron beam energy was seen. The variation of x-ray brightness
with plasma density is explained by the transition of the laser Wakefield accelerator
from scenario B to scenario F (the acceleration length limited by the plasma length
to the acceleration length limited by the pump depletion length). The brightest shots
are explained if the pipe length is unusually short, potentially due to unmeasured
changes in the laser wave front, which cause the acceleration length to be unusually
long or to enter scenarios C and G (which are like B and F but the acceleration length

passes dephasing).
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Figure 5.10: Blue: The average peak x-ray brightness of multiple shots at each den-
sity. *The units of brightness are photons per second per mrad? per mm? per 0.1%
bandwidth. A source size and 1 um is assumed, and the x-ray pulse duration is as-
sumed to be 55 fs. The error bars show the standard error about the mean. Red:
The peak x-ray brightness of the brightest shots at each density. The error in each
individual measurement is smaller than the circle shown. Green: The average of mul-
tiple shots’ electron beam mean energy. The error bars shown are the standard error

about the mean.
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Figure 5.11: The average peak x-ray brightness for groups of shots at different plasma
densities is shown plotted against the maximum electron energy average for the groups
of shots. The error bars show the standard error about the mean. To the top left of
each point the plasma density is written in units of 10'® cm™. Those points without
error bars represent single shots. *The units of brightness are photons per second per
mrad? per mm? per 0.1% bandwidth. A source size and 1um is assumed, and the

x-ray pulse duration is assumed to be 55 fs.
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Figure 5.12: An illustration showing the various scenarios I hypothesise are respon-
sible for the x-ray brightnesses observed. The scenarios are detailed in figure 5.6.
In red are those responsible for the outlying very bright shots. In green are those
responsible for the majority of the shots observed. The arrows on the lines indicate

increasing plasma density.



Chapter 6

Discussion, Conclusions and
Outlook

6.1 Threshold For Self-Injection In A Self-Guided
LWFA

In this thesis, it has been shown in section 4.2 that the threshold for self injection in
a self-guided laser wakefield accelerator is dependent on both the energy contained in
the FWHM of the laser focal spot and the background electron plasma density. The
dependence on power, as affected by laser pulse duration, is less important than the
quality of the laser focal spot.

A model of the self-injection threshold based on combining simple theoretical
models of electron motion, laser pulse compression, and wakefield bubble size has
been discussed (4.2.1) and shown to have good agreement with experiment (4.2.2).

Figure 6.1 shows a comparison of reported LWFA experiments’ self-injection thresh-
olds, and the calculated prediction of the model (equation 4.6). In blue are shown
the results from the Lund Experiment changing the laser energy. In red the threshold
from the Gemini experiment. These experiments have peak laser powers of 18 TW
and 180 TW respectively. One can see that the model shows good predictive power
between these two lasers with an order of magnitude difference in power. In addition
I have shown the reported threshold densities from other published experiments in
green. I conclude that the model is an effective predictor as it is in good agreement
to the observations made in experiment.

It can be useful in planning future experiments using both higher energy lasers

104
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Figure 6.1: Plot of reported density threshold, verses predicted density threshold
for the experiments presented herein and other published experiments. The circles
show the predictions of the model given by equation 4.6 and the diamonds show the
threshold based on 4.8

with lower density plasmas to produce higher energy electron and x-ray beams, and
for lower energy laser systems where high repletion rate maybe required and precise
design of gas delivery and removal for multiple shots is important, in bringing laser

Wakefield technology to other applications.

6.2 Two-Screen Spectrometer Method for Measur-
ing the 3D Momentum Distributions of GeV

Electron Beams

In section 5.2 I showed a methodology which allows the full three dimensional momen-

tum distribution of a LWFAs electron beam to be examined which provides insight
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into the dynamics of electron injection and acceleration, vital for understanding the
processes responsible for x-ray generation. The electron motion inside the laser wake-
field is responsible for the generation of x-rays and through observing it directly gives
a powerful tool in improving x-ray generation. In the future the technique could be
used to understand how changes to the laser power, laser focus and adding aberrations
to the laser wavefront, effect the electron motion via direct measurement rather than
computer simulation. (It has been shown that x-ray critical energy can be increased

through tailoring the laser wavefront [112]. )

6.3 The Pre-Injection Pulse-Evolution Length of a
LWFA

I have shown in section 5.3 that the laser pulse evolution (both self focusing and pulse
compression) and the propagation of the laser through the length of plasma in the
LWFA before self-injection of electrons has a effect on the electron energies produced.
By defining a Pre-Injection Pulse-Evolution (PIPE) Length I have created a simple
model to predict the maximum achievable electron energy in a self guided LWFA as a

function of plasma density. I have shown this works for different accelerator lengths.

6.4 betatron X-Rays from LWFAs

Care must be taken in separating betatron X-rays from bremsstrahlung gamma-rays
produced by LWFAs electron beams. This is important from an experimental and
application point of view and prevented me from effectively measuring the x-rays from
the 18TW Lund experiment. However in another experiment Genoud et al. 2011 [113]
using the same laser saw x-rays with a critical energy of 1.7 keV and brightness of
3 x 10'7 photons per second per mrad? per mm? per 0.1% bandwidth.

I was also involved in an experiment producing betatron x-rays using the 25 TW
laser in LOA France, published in Thaury et al. 2013 [114], x-rays of 3 keV were
seen Corde 2011 [115]. In Michigan using the Hercules laser (69 TW), the experiment
I was also a part of, generated x-rays with a critical energy of 5 keV [69] (and 15
keV [116]) and brightness of 10** photons per second per mrad® per mm? per 0.1%
bandwidth.*

IFootnote: There is a disparity with the definition of critical energy used in these sources. I have
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So the results of the experiment using the Gemini laser (180 TW) reported in
section 5.4 of this thesis, with x-rays of 15-30 keV critical energy and brightness of
1024-10% photons per second per mrad? per mm? per 0.1% bandwidth, show a sig-
nificant improvement in both energy and brightness over these previous experiments
(see figure 6.2).

40 b) ®)
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Figure 6.2: a) Reported betatron x-ray critical energies generated by LWFAs shown
by laser peak power. From Genoud et al. 2011 [113], Thaury et al. 2013 [114] , Kneip
et al. 2010 [116] and section 5.4 of this thesis. The bars show the range of critical
energies seen under differing conditions. b) Reported betatron x-ray brightness gen-
erated by LWFAs shown by laser peak power. From Genoud et al. 2011 [113], Kneip
et al. 2010 [116], and 5.4 of this thesis. *The units of brightness are photons per

second per mrad? per mm? per 0.1% bandwidth.

This increase in critical energy and brightness of x-rays is due to the increase in
the energy of the accelerated electrons. The Lund Laser (18 TW) produced electrons
of up to 120 MeV [112] and in the Gemini Experiment (180 TW) electrons up to 1.3
GeV were seen (see figure 5.2 ). So an order of magnitude increase in laser energy
has had an order of magnitude increase in accelerated electrons. A clear correlation
between the x-ray brightness and electron beam energy was seen in figure 5.11 using
a single laser.

I have discussed in Chapter 5 the effect the laser pulse evolution (both self focusing

and pulse compression) and the propagation of the laser through the length of plasma

used and will continue to use throughout this work the definition from the 3rd Edition of Jackson
[117]. Some sources such as Kneip 2010 [116] use the definition from the 2nd Edition of Jackson

[118] which results in exactly double the value of critical energy I use.
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in the LWFA before self-injection of electrons occurs on both the electron beam
energies and x-rays generated. The PIPE length model and scenarios I described
in Figure 5.6 explained the changes in electron energy due to changing the electron
plasma density. They also help explain the variation in x-ray brightness and critical
energy. I postulated that the very bright shots as shown in figure 5.10 pipe length is
unusually short, potentially due to unmeasured changes in the laser wavefront, which
caused the acceleration length to be unusually long and enter a scenario where a
larger proportion of the electrons, which make up the electron beam ensemble, get
closer to or pass and decelerate from, the dephasing energy.

Another possible explanation for the brightest shots is the effect of bubble injec-
tion expansion. As the wakefield bubble expands electrons are gradually injected.
Depending on how this expansion occurs electrons may find themselves inside the
bubble’s electromagnetic fields at varying degrees from the laser axis. My instinct
from PIC simulations is that if the bubble expands very quickly by a large amount,
there will be a greater number of electrons inside the bubble off axis from this ef-
fect. Because the bubble fields increase linearly transversely from the laser axis, any
displacement from the axis results in an increase in transverse momentum in the elec-
tron. One would then expect such an electron to produce a greater amount betatron
radiation.

This can be contrasted with the situation of a bubble of fixed size traveling through
a plasma, which is used in deriving the fields in Kostyukov et al. 2004 [101] and as-
sumed in the threshold for injection in Thomas 2010 [102], which I have discussed and
matched to experiments in section 4.2. In this situation electrons are injected by fol-
lowing elliptical trajectories in an unchanging bubble, and the transverse momentum
of the election is from following these trajectories.

I have demonstrated the Two-Screen Spectrometer Method for Measuring the 3D
Momentum Distributions of GeV Electron Beams in section 5.3 which may be used to
examine the transverse momentum of the electrons directly after exiting the plasma.
Perhaps in the future this can be used to confirm if bubble expansion is responsible
for the brightest x-ray shots. However exact variation of the accelerator length would
be necessary to avoid the electron beam interacting with the background plasma after

the laser pulse has depleted as seen in section 5.3.
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6.5 Phase Contrast Imaging

The betatron x-rays from laser wakefield accelerators can be easily used to conduct
phase contrast imaging. This is especially true if an in-line geometry with no x-
ray optics is used keeping the experimental set up simple. All that is required is a
sufficiently small x-ray source to provide a sufficiently high-spatial coherence and that
the object is in the near-field Fresnel diffraction regime close to light source. Then
all that is required is that the observer is at a sufficient distance from the object. In
the experiment described in Chapter 5, I placed phase contrast targets immediately
after the deflecting magnet, as shown in figure 5.1.

Figures 6.3 and 6.4 show images from the x-ray camera. In these cases the Phase
Contrast Target was a dead Acheta domesticus, (commonly called the house cricket
and commonly farmed for food and sold as pet feed in the United Kingdom. ) One
can note that the exoskeleton of the creature is completely transparent to the x-rays,
however the edges of the skeleton and structures inside the animal are visible. This
is due to phase contrast taking place, proving the utility of the LWFA of this specific
experiment, as an x-ray source for phase contrast imaging. X-ray phase contrast
imaging is currently under investigation as an advanced medical imaging technique
suitable for imaging soft tissue [119] and LWFA may be a useful alternative to micro-
focus x-ray tubes as the x-ray critical energy can be produced in the 1-100 keV range
and the radiation is delivered in tens of femto-seconds. This could remove the need for
minutes or hours of exposure which can be a problem with x-ray tube based sources.
Phase contrast imaging with LWFA betatron x-rays may be a solution waiting for a

problem due to the novel nature of the source.

6.6 Future Directions

My thesis has shown that Laser Wakefield Accelerators have significant potential as
x-ray sources for imaging. I have shown that achieving optimal x-ray and electron
beam conditions with a given laser system will require the simultaneous control of
both the plasma density and the plasma length — this conclusion suggests that future
experiments will need to be performed with variable length gas cells rather than the
fixed length gas jets used to date.

Future directions for the continuation of this work include investigating the use of

betatron radiation sources for imaging of bio-medically interesting soft tissue such as
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breast and prostate, both of which are major areas of interest in the field of cancer
diagnosis and treatment. The ultra-short nature of the betatron x-rays also makes
them ideal for imaging rapidly moving systems such as laser driven shocks.

The rapid increase with laser power of both the energy and brightness of the
betatron radiation reported in this thesis indicates that the next generation of multi-
PW laser systems will be able to produce ultra-bright sources of gamma rays that

could perhaps be used in QED and nuclear physics experiments.
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Figure 6.3: This image shows a high resolution x-ray image taken with the x-rays
produced by a laser wakefield accelerator. The very small (micrometer sized) x-ray
source allows a technique called phase contrast imaging to be used. This allows high
definition imaging of objects even when they are transparent to the x-rays and is
particularly good at showing up edges and boundaries. The image was taken on the

experiment detailed in chapter 5.
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Figure 6.4: This image shows a high resolution x-ray image taken with the x-rays
produced by a laser wakefield accelerator. The very small (micrometer sized) x-ray
source allows a technique called phase contrast imaging to be used. This allows high
definition imaging of objects even when they are transparent to the x-rays and is
particularly good at showing up edges and boundaries. The image was taken on the

experiment detailed in chapter 5.



Appendix A
Formula

This appendix represents a collection of formula and definitions which are used

throughout without justification. It is provided for the convenience of the reader!.

A.1 Maxwell’s Equations

Gauss’s Law
Gauss’s Law of Magnetism

Faraday’s Law

_>
VxE = —%—]j’ (A.3)

Ampére’s Law

V X E = Mo7 + ,UOE()&a_? (A.4)

A.2 Taylor’s Series

The Taylor series of a real or complex function f(z) which is infinitely differentiable

in a neighbourhood of a real or complex number a is given by:

Py~ 3 LD (g (A5)

n:

Tt is also indeed provided as a convenient reference to the writer.
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where f"(a) denotes the nth derivative of f evaluated at the point a. For a function

of more than on variable this becomes:

F@ns o 1q) = Z Z (x1 — alslnl...(xf — ag)"™ (8”1—1—...—1—%5;) (@) (A)

1long! oz}'...0x)

n1=0 ng=0

So for a function of two variables 2 and y around the point (a, b) the Taylor series to

second order is:

f(x,y) ~ f(CL, b) + (]3 - a) f27<a7 b) + (y - b) fy(av b)

* % (= a)? fanla, b) + 2(z = a)(y = b) fry(a,0) + (4 = b)* fi(a,B)]

where f, and so on is the partial derviative df/0x.

A.3 Miscellaneous

The Lorentz force (The force on a charge)
F=qgE+7xB) (A7)

The Continuity Equation

dp
. I A.
A =0 (A8)
The Convective Derivative
— —
dG 0G —
%—EjL(V"V)G (A.9)
Equation of Motion in a Plasma
7
m(%—t+(7-V)7) —¢(E +7V x B) (A.10)
Phase Velocity 2
w
= — A1l
Vs = (A.11)
Group Velocity
dw

2See D. Angular frequency in radians w (= 27X frequency) and the wave number k = 27/
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A.4 Identities

Here are some mathematical identities for reference.



Appendix B

Derivation of the Debye length

First let us consisider a plasma with a Boltzman distrbution of particles,

459
ne = nge *BTs (B.1)

where s is the particle species (either electrons or ions), ¢s is the charge of the species,
¢ its pontiential, and T its temperature. ng is the election and ion density very far
away where charges are balanced and there is no ¢.

Now if we assume that the ion and electron temperatures are the same (7, = T;),
and we are dealing with a helium like plasma where ¢ = —¢q;. Using Poisson’s

equation (V2¢ = pyree/€0) we have:

ed(r)
n; — Ne eng(e kBle —
Vi(r) =~ = i - ) _ eral - 2 (B.2)

We can expand around the exponential in a Taylor series (see A.2 ):

co(r) 1 (e¢<r>)2 N

€Ny

kT, 2

B.
i (B.3)

Vie(r) =

€0

We may then just keep the linear term but only if kg7, > e¢p(r) however as ¢(r)
tends to fall of exponentially this is only for a small region. Keeping only the linear

terms we have:

2 . 62nO (b(?“)
Vep(r) = o T, (B.4)

The solution to this is equation is of the form:
7]

6=goe AD (B.5)
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where A\p is a constant with units of length which defines the fall off of potential.

From B.4 it is identifiable as:

A\p = (EokBTe>2 (B.6)

ngye?

This is generally known as the Debye length. Because electrons generally are more
mobile than ions and are therefore responsible for shielding it is appropriate to use

nNg = Ne.



Appendix C

Derivation of the Plasma

Frequency

When electrons are displaced from their uniform background distribution, electric
fields will be built up in such directions as to restore them to their original positions
and restore neutrality to the plasma. However due to inertia it is inevitable that they
will overshoot those positions and oscillate around their equilibrium positions with a
characteristic frequency known as the plasma frequency.

The oscillation is so fast that the massive ions may be considered as fixed. The

following assumptions must also be made.

e There is no magnetic field

It is a cold plasma. There are no thermal motions (kg7 = 0)

The ions are uniformly distributed and fixed.

The extent of the plasma is infinite.

The electrons only move in the x direction.

V =10/0z E=iE VxE =0 E=-Vo (C.1)

As we are assuming their is no fluctuating magnetic field this can be considered an

electrostatic oscillation. The equation of motion A.10 is then,

MeNe (8;'3 + (?e . V)ve) = —ene(ﬁ + V. X ﬁ) (C.2)
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and the equation of continutity A.8 is then

One _

ot

from the first Maxwell equation (Gauss’s Law) A.1 we have

eog = e(n; — ne) (C4)

V-n.ve+ 0 (C.3)

We can split the dependent variables into two parts and equalibrum part and a

perturbation part:
ne:nE+np 7e:7E+7P B:EE—FBP (05)

As the equlibrum quantites express the state of the plasma in the absence of oscilla-

tion.

n;p =10 Nig = NeE (C7)

Applying these condtions and linearising (removing all terms with an ampliture quan-

tity np, 7p, Ep appearing as a more than a lst power) equations C.2, C.3, and C.4

become:
oV
mewp == —€EP (08)
eV - E = —enp (C.10)

Those oscillating are assumed to be oscillating sinusoidally:

7P =Umazx ei(ka:—wt)i (Cll)
Np =Nypa € P9 (C.12)
EP =F 0z ei(ka:fwt)ﬁ (C13)
So the equations then become:
— MU FFDR = —eF, - ethr=wg (C.14)
—iWNmae € FP N 4 ik € 5T =0 (C.15)
€0tk Frnaw €559 = —en, g €590 (C.16)
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Solving for w, noting that ng is n. of our initial plasma, and eliminating F,,,, and

Nmae We finally get:

2 1/2
Wy = (6 ") (C.17)



Appendix D

Phase Velocity, Group Velocity,

and Dispersion Relation

Phase Velocity

A sinusoidally oscillating quantity can be, and often is, represented by

g
n = nmaxGZ( K- T —wt)

ikz=wt) if propagation is in the x direction. The real com-

which becomes n = n,,q.€
ponent of this is

R(n) = Npae cos(kxr — wt)

A point of constant phaselon the wave will move so that:

d
E(k:c —wt) =0
So the velocity of this point is:
dr w

where v, is know as the PHASE VELOCITY. It should be the same for all waves in
a given medium.
Group Velocity

Counsider two waves:

Ey = Eycos [(k + Ak)x — (w+ Aw)t], Ey = Eycos [(k — Ak)z — (w — Aw)t]

1 A point where the magnitude of the quantity n is unchanging but moves in space.
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Their frequency therefore differs by 2Aw . The phase velocity vy should be the
same for both, this necessitates that the difference in their wave number being 2Ak.

Letting:
a=kr—wt b= (Ak)x — (Aw)t
Then the effect of the two waves interfering is

Ey + E; = Eycos(a+ b) + Eycos(a — b)
= 2Fqcosa cosb

= 2 cos[kx — wt] cos[(Ak)z — (Aw)t]

where Ejcosb represents an envelope wave which carries information its velocity is
Aw/Ak. This represents a carrier wave modulated by an envelope wave cos[(Ak)z —
(Aw)t] . The carrier wave carries information and it can be seen in the same way as
above its velocity is given by Aw/Ak. As Aw — 0 then it becomes:

'Ug = % (D2)

Which is known as the GROUP VELOCITY.

Dispersion Relation

For a given wave form in a given medium the relation between the angular frequency
in radians w (= 27x frequency) and the wave number k = 27/X is known as the

dispersion relation.
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experiment. The colour table is arbitrary but linear and saturated in
places. The extent of each filter region is shown in blue. The regions
around each filter( to normalise for inhomogeneities in the beam) are
shown in green. . . . . . . . ...
Photograph of a filter pack in place on the Gemini experiment. A beryl-
lium window is used to pass the x-rays into air. The length of vacuum
tube is used to provide information on the level of bremsstrahlung
radiation. . . . . . ...
An illustration of the stages involved in an x-ray causing an ADC count
in the Princeton PIXIS camera system. . . . .. ... ... ... ..
The Princeton PIXIS system’s CCD array quantum efficiency is shown
in red. The Princeton PIXIS camera system’s Csl:TT scintillator’s x-
rays absorption efficiency is shown in blue. This includes the transmis-
sion through the 10 mm Be window. Data reproduced from Princeton
Instruments documentation [92]. . . . .. ...
The ADC settings for the Princeton PIXIS system. Reproduced from
Princeton Instrument’s unique calibration. . . . . . . ... .. .. ..
Photo of calibration setup with approximate scale. . . . .. ... ..
Exposure to Fe-55 for 1800 s. b) Exposure with no source present. c)
A pixel by pixel subtraction of a) from b). The images above show
the camera counts. The histograms below show the exact colour tables
used for the images above. . . . . ... ..o
The geometry used for the off axis distribution of a disk radiation
SOUTCE. & v v v v e e e e e e e
The on axis distribution due to a point like source (green line) and the
on axis distribution for a disk source (red dotted line). . . . . .. ..
Calculation of the off axis distribution of radiation for a uniform disk
source of 2.5926 MBq activity radius 5.5 mm, placed at distance z
from a pixel detector with the same pixel size and dimensions as the
Princeton PIXIS system. The distribution was calculated numerically
and in this case the constant M (defined above) has been set to one.

a)z=1mm. b)z=3mm. c)z=5mm. .. .............
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3.24 Blue Solid Line: A lineout through the centre of the signal due to

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

exposure to the Fe-55 source for 1800 s after a pixel by pixel background
subtraction. Red Dashed Line: The off axis distribution calculated
with fitted values of z=3.11 mm and M = 0.942 for a uniform 2.5926

MBq activity disk source of radius 5.5 mm, 1800 s exposure. . . . . .

The experimental set up for the Lund Laser Lab experiment.

Focal spot images recorded with increasing amounts of spherical aber-
ration. From left to right the intensity contained in the FWHM is (a)
47%, (b) 40%, (c) 31%, (d) 20%. . . . . . . ...
Measurements of the electron beam profile for different plasma densi-
ties for &« = 0.40 . The colour table is linear and in arbitrary units.
A threshold for injection is clearly visible between densities of 1.3 and
1.6x10% em®. . ..
The recorded charge for the different focal spot qualities («) for differ-
ent plasma densities (1e). . . . . . ..o oo
The recorded charge for the different focal spot qualities (a)) plotted
against the power in the FWHM of the pulse as a ratio of power for
self focusing (aP/P,). . . . . .o
The recorded charge for the different laser energies against different
plasma densities (n.). a=0.47. . . ... oL
Electron beam profiles for various plasma densities for different values
of the amount of laser energy within the FWHM of the focal spot «.
Each panel is an average of five shots and is displayed on a logarithmic
color scale. (a), (b), and (d) kept the total laser energy E constant
but varied a whereas (c) reduced the laser energy E. (I made this
figure, which was first published in Mangles, Bloom, et al. 2012 [99].
Reproduced under creative commons licence.) . . . . . ... .. ...
(Left) This is the recorded charge on the electron profile monitor for
when the position of the compressor gratings is varied. (Right) The
pulse duration measured using a “GRENOUILLE” against grating po-

SILION. . . . . s,
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4.9

4.10

5.1

5.2

2.3

(a) Electron charge (>4 MeV) versus aP/P,. keeping the pulse du-
ration constant but varying the focal spot quality « and the plasma
density n. (closed circles) or total pulse energy E, and plasma den-
sity (open squares) but keeping the pulse duration constant 7. (b)
Electron charge versus P/ P, varying pulse duration 7o while keeping
plasma density n, and energy in focal spot aF constant. (c¢) Data from
(a) and (b) plotted versus aEn,/n.. Each data point is an average of
five shots and the error bars represent 1 standard deviation. (I made
this figure, which was first published in Mangles, Bloom, et al. 2012
[99]. Reproduced under creative commons licence.) . . . . ... ...
Observed electron density threshold for self injection as a function of
laser energy (aE). The solid curve represents the model discussed in
section 4.2.1 given by equation 4.6. The dashed curve represents the
alternate threshold model given by 4.8. . . . .. .. ... ... ...

Experimental layout showing the laser beam path and the separation
of the electron beam from the x-ray beam. . . . .. ... ... ...
Raw images of electron spectrometer scintillator screens. Images from
a) screen 1 and b) screen 2 for a shot at n, = 5 x 10! cm™ and a
10 mm gas jet nozzle, ¢) and d) show a smaller region. The marked
point on the right corresponds to 1.34 4+ 0.07 GeV electrons at an angle
of 3 mrad. The marked point on the left corresponds to 1.09 + 0.04
GeV at an angle of -1 mrad. . . . . ... .. ... ... ... ...
Raw images of electron spectrometer scintillator screens. Images from
a) screen 1 and b) screen 2 for a shot at n, = 2x 10 cm™ and a 15 mm
gas jet nozzle. The marked points have their momentum components

Dz , Dy and p, plotted in figure 5. . . . . ...

127

7

81

84

86



LIST OF FIGURES

5.4

2.5

2.6

a) Three dimensional momentum distribution of one of the beamlets
shown in figure 5.3. The blue points are 3D momentum coordinates
of the identified features in the beam. The blue plane is the “plane of
best-fit” to these points. The red plane corresponds to the laser electric
field direction. Two additional views are shown (without axes) taken
along the direction of the red and the blue arrows. b) shows the view
along the red arrow (1), highlighting the head-to-tail tilt of the beam;
¢) shows the view along the blue arrow (2). This is a direction almost
tangential to the red and blue planes, showing that the electrons are
approximately distributed in a plane that is approximately at 90° to
the laser electric field direction. . . . . . . . . . ... ... ...
The data from 24 shots of the laser, using the 10 mm nozzle, is shown
in order of increasing density (from left to right) a) Shows the images
from one of the electron spectrometer screens. The electrons to the
top of the images have been deflected less by the magnet and have a
higher energy. b) Shows the plasma densities of each of these shots. ¢)
The images from the Princeton PIXIS x-ray camera for each shot are
shown. . . . . .
The illustration shows the various scenarios which can occur in a LWFA
due to differing ratios between the lengths Lprasma , Lercn, Lacc, Lg
and Lprpg, (not to scale). The blue line represents the energy of an
electron self injected at the beginning of Lacc, and demonstrates the
effect of Ly on such an electron. (However in D and H the energies
shown are for a idealised simplified symmetric series of wakefield peri-
ods which doesn’t take into account the presence of the laser pulse, the
plasma between wakefield periods or that the LWFA my be in a bubble
regime.) A, B, C and D are limited by the plasma length Lppasma,
whereas E, F, G and H are the same but limited instead by the laser
depletion length Lgrcy. . . - - - o o o o oo
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5.7

2.8

2.9

5.13

Variation of electron beam energy with density for the 10mm nozzle.
In blue are shown the upper limit of the electron’s energy spectra for a
number of shots at each plasma density. The blue circles are the mean
value of the upper energy limit of these shots. The bars shown are the
standard error about the mean. In black are shown the mean electron
energy in the spectra. The black crosses are the mean of multiple shots.
The bars again show the standard error about the mean. In green is

shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows

129

the prediction of the simple model taking into account the PIPE length. 94

Variation of electron beam energy with density for the 15 mm nozzle.
In blue are shown the upper limit of the electron’s energy spectra for a
number of shots at each plasma density. The blue circles are the mean
value of the upper energy limit of these shots. The bars shown are the
standard error about the mean. In black are shown the mean electron
energy in the spectra. The black crosses are the mean of multiple shots.
The bars again show the standard error about the mean. In green is

shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows

the prediction of the simple model taking into account the PIPE length. 96

The table shows which scenario shown in figure 5.6 the simple model
predicts will occur for various plasma densities and plasma lengths, for
S = 11.5 mm. The laser parameters used are those of the experiment.
*Scenarios A and E are trivial because no electron acceleration occurs.
So the dephasing length has no real meaning. . . . . ... ... ...
The average measured x-ray spectrum critical energy for multiple shots
at different plasma densities. A synchrotron like spectrum is assumed
(see section 3 for more details). The error bars show the standard error

about the mean. . . . . . . . . ...
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5.10

5.11

5.12

6.1

6.2

Blue: The average peak x-ray brightness of multiple shots at each
density. *The units of brightness are photons per second per mrad?
per mm? per 0.1% bandwidth. A source size and 1 ym is assumed, and
the x-ray pulse duration is assumed to be 55 fs. The error bars show
the standard error about the mean. Red: The peak x-ray brightness
of the brightest shots at each density. The error in each individual
measurement is smaller than the circle shown. Green: The average of
multiple shots’ electron beam mean energy. The error bars shown are
the standard error about the mean. . . . . . . ... ... ... ...
The average peak x-ray brightness for groups of shots at different
plasma densities is shown plotted against the maximum electron en-
ergy average for the groups of shots. The error bars show the standard
error about the mean. To the top left of each point the plasma density
is written in units of 10'® cm~3. Those points without error bars rep-
resent single shots. *The units of brightness are photons per second
per mrad? per mm? per 0.1% bandwidth. A source size and 1um is
assumed, and the x-ray pulse duration is assumed to be 55 fs.

An illustration showing the various scenarios I hypothesise are respon-
sible for the x-ray brightnesses observed. The scenarios are detailed
in figure 5.6. In red are those responsible for the outlying very bright
shots. In green are those responsible for the majority of the shots

observed. The arrows on the lines indicate increasing plasma density.

Plot of reported density threshold, verses predicted density threshold
for the experiments presented herein and other published experiments.
The circles show the predictions of the model given by equation 4.6
and the diamonds show the threshold based on 4.8 . . .. .. .. ..
a) Reported betatron x-ray critical energies generated by LWFAs shown
by laser peak power. From Genoud et al. 2011 [113], Thaury et al.
2013 [114] , Kneip et al. 2010 [116] and section 5.4 of this thesis. The
bars show the range of critical energies seen under differing conditions.
b) Reported betatron x-ray brightness generated by LWFAs shown by
laser peak power. From Genoud et al. 2011 [113], Kneip et al. 2010
[116], and 5.4 of this thesis. *The units of brightness are photons per

second per mrad? per mm? per 0.1% bandwidth. . .. ... ... ..
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6.3

6.4

This image shows a high resolution x-ray image taken with the x-rays
produced by a laser wakefield accelerator. The very small (micrometer
sized) x-ray source allows a technique called phase contrast imaging
to be used. This allows high definition imaging of objects even when
they are transparent to the x-rays and is particularly good at showing
up edges and boundaries. The image was taken on the experiment
detailed in chapter 5. . . . . . .. ... ..o
This image shows a high resolution x-ray image taken with the x-rays
produced by a laser wakefield accelerator. The very small (micrometer
sized) x-ray source allows a technique called phase contrast imaging
to be used. This allows high definition imaging of objects even when
they are transparent to the x-rays and is particularly good at showing
up edges and boundaries. The image was taken on the experiment

detailed in chapter 5. . . . . . . ... .
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