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Abstract

Laser wakefield accelerators (LWFAs) operate through a

high intensity ultra short laser pulse exciting a relativis-

tic density wave in a plasma. I carried out experiments

constructing LWFAs using lasers of a wide range of powers.

Thereby allowing me to examine the generation of electrons

and x-rays under these different conditions. The compar-

ison of these results with my own and existing analytical

models and computational modelling is discussed.

In fulfilment of this, I developed novel techniques to measure

hard x-rays in the tens of KeV energy range. In measure-

ment of the relativistic electrons I found it possible to de-

velop techniques to not only accurately measure the energy

but also discern the three momentum vectors of electrons

measured on a multiscreen electron spectrometer.

As LWFAs open up the ability to produce high energy elec-

tron beams without the need of tens of meters of RF accel-

eration cavities and the lasers used to drive them can also

be made relatively compact perhaps one of the most excit-

ing application of this is the production of hard x-rays for

imaging. As the source size of a LWFA betatron source is

typically of micron scale, I investigated using LWFA derived

x-rays for phase contrast imaging.
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Appendix A

Formula

This appendix represents a collection of formula and definitions which are used

throughout without justification. It is provided for the convenience of the reader1.

A.1 Maxwell’s Equations

Gauss’s Law

r · �!E =
⇢

✏0
(A.1)

Gauss’s Law of Magnetism

r · �!B = 0 (A.2)

Faraday’s Law

r⇥�!
E = �@

�!
B

@t
(A.3)

Ampére’s Law

r⇥�!
B = µ0

�!
J + µ0✏0

@
�!
E

@t
(A.4)

A.2 Taylor’s Series

The Taylor series of a real or complex function f(x) which is infinitely di↵erentiable

in a neighbourhood of a real or complex number a is given by:

f(x) ⇡
1X

n=0

fn(a)

n!
(x � a)n (A.5)

1It is also indeed provided as a convenient reference to the writer.
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Chapter 1

Introduction.

Plasma based accelerators are of great interest due to their ability to sustain extremely

large accelerating gradients of about three orders of magnitude greater than that

obtained in conventional linacs 1 . The consensus in the world high energy physics

community is that a TeV-scale lepton collider would be the next step after the LHC.

As such, plasma based accelerators represent an option as they would, due to their

smaller size, afforded by their higher accelerating gradients, ideally be an order of

magnitude lower in cost. However there are a huge number of technical, and plasma

physics challenges which would need to be overcome to reach these kinds of energies.

However lower energy plasma based accelerators can be produced. In this work I will

be describing my studies on one such type of accelerator, and I will show that it is

capable of producing electron beams of GeV-scale over accelerating lengths on the

cm-scale, so allowing for table top sized machines.

This thesis is concerned with laser wakefield plasma accelerators. Laser wakefield

accelerators (LWFAs) open up the ability to produce high energy electron beams

without the need of tens of meters of radio frequency acceleration cavities. One of

the most exciting application of this, because the lasers used to drive them can also

be made relatively compact, is the production of hard x-rays which before now had

required large synchrotron, and free electron-laser facilities. My studies are on the

electron beams generated by laser wakefield accelerators, and the x-rays generated by

the electrons while they are in the accelerator.

1 Conventional radio-frequency linear accelerators are currently limited to ≈100 MV/m before

material breakdown begins to occur [1]. Where as in plasma based accelerators accelerating gradients

on the order of 100 GV/m have been produced [2]. The electric fields that can be sustained by plasma

waves can be approximated by E0 = cmeωp/e see section 2.3.3 for details.

10
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I will start with a basic description of what a LWFA is, and how it generates

x-rays. I will then provide a literature review in this chapter. The second chapter

will describe standard theory used in this thesis. In the third chapter experimental

methods will be presented. I will discuss novel techniques I implemented to measure

the 3 momentum components of accelerated electrons, and to measure x-rays in the

1-100 keV range.

In the fourth (and first experimental) chapter an 18 TW laser is used to create a

self-guided laser wakefield accelerator. A detailed study is conducted to examine the

plasma density threshold for electron self injection in a self guided LWFA, a parameter

critical for both electron, and x-ray generation. An analytical model is derived, and

compared to experiment.

In the fifth (and second experimental) chapter a 180 TW laser is used to again

create a self-guided laser wakefield accelerator. It is shown that this produces much

higher energy electrons, up to 1.3 GeV. The x-rays are measured, and found to have

betatron like spectra with critical energies of 15-30 keV, and brightness of 1024-1025

photons per second per mrad2 per mm2 per 0.1% bandwidth. The effects of plasma

density on electron energy are examined in detail, and a simple model is compared

to experiment. The transverse momentum of the electrons is measured.

In the sixth, and final chapter the conclusions from the two experiments are dis-

cussed, and the connections between the results of the studies in this work are made

clear.

Laser Wake Field Accelerators

In a LWFA a high intensity short laser pulse excites a relativistic plasma wave in a

low density plasma. If the electron density of the plasma is ne, and the critical density

for the laser is2 nc = (2πc/λ0)
2meε0/e

2 , then the Lorentz factor of this excited wave’s

phase velocity will be3: γφp =
√
nc/ne. This plasma wave can be an ideal accelerating

cavity, with fields in excess of 100 GeV/m.

As in the case of the experiments reported here, by ensuring the amplitude of

the laser pulse is sufficiently large the plasma wave can be driven beyond breaking.

This causes electrons to become self-injected in the laser’s wake, and experience the

2Discussed in section 2.2.5.
3Derived in section 2.3.1, equation 2.55.
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accelerating force of the plasma wave. Additionally if the laser pulse’s power is greater

than4 Pc = 17 × 109(nc/np)W , then a focused laser pulse will not diffract away but

instead can be guided through the plasma until its power falls below this value, this

is known as the critical power for self focusing. The depletion length, the distance

the laser pulse propagates through the plasma before its energy is depleted can be

estimated as5 Ldp = τ0cnc/ne. where τ0 is the pulse duration of the pulse before

entering the plasma.

The first period of the plasma wave behind the laser pulse can be thought of as a

spheroid or ”bubble” devoid of background plasma electrons travelling at γφp behind

the laser pulse. Electrons self injected into this bubble will oscillate around its axis as

they are accelerated, retaining the transverse potential energy they possessed on entry

to the bubble. This is due to the bubble electric fields being directly proportional to

the distance from the center of the bubble. Due to this oscillation the electrons will

emit synchrotron like radiation.

Literature Review of LWFAs

The laser driven plasma wave accelerator (LWFA) was first proposed 35 years ago

in 1979 by Tajima, and Dawson [3], and simulated using what computational means

were available at the time.

Despite this early invention the first experimental evidence for the generation

of laser induced wake field did not come about until 1993, Hamster [4]. The first

example of acceleration from a self-modulated wakefield was by Nakajima in 1995 [5].

The first example of laser wake field acceleration from a broken relativistic plasma

wave was by Modena in 1995 [6], and the first experimental observation of laser wake

field acceleration (without self modulation) was by Amiranoff in 1998 [7].

The original high powered lasers6 had too long a pulse duration to allow for

resonant driving of plasma waves, where τ ≈ 1/ωp is needed. So instead the beat

wave scheme was invented (PBWA), where the interference between two relativity long

co-propagating laser pulses can be used as the driver for plasma waves for particle

acceleration, as outlined in Rosenbluth in 1972 [8]. Though it should be pointed

out that the idea for using optical mixing as a plasma density probe was around as

4See section 2.3.4.
5See section 2.3.5.
6Utilising CO2 or Neodymium:Glass laser mediums.
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early as 1964 [9], and was also suggested in Tajima’s, and Dawson’s original paper.

Key experiments into beat wave acceleration, ranging from 1985 to 2006, are given in

Clayton et al. 1985 [10], Dangor et al. 1990 [11], Kitawa et al. 1992 [12], Everett et

al. 1994 [13], Clayton et al. 1994 [14], Amiranoff et al. 1995 [15], Walton et al. 2002

[16], and Wlaton et al. 2006 [17].

The invention of chirped pulse amplification (CPA) in 1985 [18], revolutionised

high powered laser systems, providing shorter, and more powerful laser pulses. This

allowed access to Self Modulated Laser Wake Field Accelerator regime (SM-LWFA).

Here the laser pulse is self-modulated due to non-linear plasma optical effects caused

by the laser pulse’s high intensity. This results in the laser pulse, which is orig-

inally longer that the plasma period τ > 1/ωp, becoming split (through resonant

modulation) into a pulse train capable of driving a high amplitude plasma wave. Ex-

periments utilising the SM-LWFA, ranging from 1995 to 2003, include Modena et al.

1995 [6], Coverdale et al. 1995 [19], Ting et al. 1997 [20], Santala et al. 2001 [21],

and Najmudin et al. 2003 [22].

SM-LWFA also differed from PBWA in another important aspect. The PBWA

was not in of its self a source of electrons. So it was necessary to inject bunches of

electrons which where already well localised in both space, and time. This presents

a number of technical challenges given that the laser focal spot waist are on the

order of 10µm. SM-LWFAs are capable of driving a plasma wave beyond the point

of wave breaking (see section 2.3.3), allowing plasma electrons to become trapped

in the accelerating structure. This is known as “self trapping”. The SM-LWFA can

therefore act as its own source of electrons without the need of elaborate injection

mechanisms.

Eventually pulses shorter than required for the self-modulation process became

available (with τ ≈ 1/ωp). These could drive the plasma waves directly but had

intensities large enough to lead to modification of the pulse itself. This is known

as the Forced Laser Wakefield regime (F-LWFA), and was first observed in 2002 by

Malka et al. [2]. In this regime the plasma wave focuses the laser pulse space, and

compresses it in time.

The next important milestone in laser wake field acceleration was made possible

with the development of Ti:Sapph lasers. Pulse lengths of cτ ' λp/2, and powers

exceeding 100 TW became available, , and it became possible to access the yet another

scheme, some times referred to as the “bubble regime”, where wave breaking could
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be caused to occur in a single plasma cycle7 . See Pukhov, 2002 [24]. In this highly

non-linear regime, the plasma wave is reduced to a solitary cavity free of electrons,

where the wave breaking, and self-trapping is localised in the back of the bubble-

like structure. This leads to all the self-injected electrons experiencing the same

accelerating field, and results in quasi-mono-energetic electron spectra.

A real revolution in Laser Wakefield Acceleration occurred in 2004 when the bub-

ble regime was first accessed by three groups near simultaneously, Mangles [25], Ged-

des [26], and Faure [27]. Here utilising only moderate laser powers of tens of terawatts,

quasi-monoengetic (with energy bandwidths of less than 3%), low divergence electron

beams with energy of the order of 100 MeV, and charges of up to 100pC were first

observed. These were a favourable contrast to the quasi-thermal electron spectra8

which were typical of the previous Wakefield regimes.

Since then even higher energies have been reached in the F-LWFA regime. Expe-

ments include Mangles et al. 2006 [28], Hsieh et al. 2006 [29], Hidding et al. 2006

[30], Hosokai et al. 2003 [31], and Karsch et al. 2007 [32].

The first LWFA experiment to pass the GeV level was reported in 2006 by Leemans

[33]. This utilised an external guiding structure to over come diffraction relaxing the

power requirements of the beam.

Further Advanced Techniques in LWFA

There are a great number of avenues, not mentioned above, being pursued to improve

one aspect of LWFA or another. Though of interest they do not fit neatly into the

discussion above. Some of them are therefore mentioned in this section.

Laser stability, and laser focal spot quality is of great importance in laser wake

field acceleration, and are examined in Mangles et al. 2006 [34], Mangles et al. 2007

[35], and Lindau et al. 2008 [36]. It is also the topic of the first experiment in this

thesis.

One new technique to improve electron trapping. Thus improving the amount

of charge accelerated, and working towards higher energy mono-energetic electron

7 There is another scheme known as the “blow out regime” which is similar in concept to the

“bubble regime”. The “blow out regime” is described in Lu et al. 2006 [23]. The two scheme’s are

very similar but give slightly different scaling laws. The bubble regime claims applicability when

a0 > 1 where as the blow out does for a0 > 2.
8Quasi-thermal Spectra: With the number of electrons decreasing with beam energy.
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beams is “ ionization induced trapping” [37]. See McGuffey [38], and Pak [39]. The

idea behind this is to dope the plasma with heavy ions which will not release all their

available electrons until the very peak of the driving laser pulse passes. The will cause

electrons to be “born” right in the middle of the acceleration structure.

External wave guides (or light pipes) can be used to increase the interaction length,

and help guild the laser pulse in the plasma lessening the requirements of self focusing.

Work on this has been done utilising a number of diffrent external waveguilding

structures. In 2001 Spence et al. 2001 [40] describes the first example of a gas-

filled capillary discharge waveguide of the same type as used in the Leemans 2006

GeV paper [33]. Osterfhoff 2008 [41] demostrates a steady-state-flow gas cell. The

grazing angle reflection capillary is shown in Courtois et al. 2001 [42]. The Heater

Ignitor Technique is shown in Volfbeyn et al. 1999 [43], where a short (75 fs) ignitor

pulse, and a long (160 ps) heater pulse are used to create a plasma channel through a

combination of inverse Bremsstrahlung heating, and hydrodynamic shocks. The ‘light

pipe’ guiding technique is given in Durfee 1993 [44], where a second co-propagating

pulse is guided behind a first by the channel formed through hydrodynamic effects.

A similar result is achieved in Krushelnick 1997 [45] through ponderomotive force

effects.

Another ongoing avenue of research is the laser injection scheme first proposed

by Umstadter in 1996 [46]. In this a second orthogonal laser beam locally alters the

trajectory of some of the electrons in such a way as to allow them to become trapped

in the plasma wave. However the second laser pulse’s duration must be of the same

order as the driving beam, and alignment is difficult. The advantage being however

that the injection of electrons into the wake field can be stabilised, and controlled

allowing for the accelerated electron’s energy to be precisely tuned, at least in theory.

Experiments utilising this technique include Faure et al. 2006 [47], Rechatin et al.

2009 [48], Davoine et al. 2009 [49], and Kotaki et al. 2009 [50].

Another method of injection is for electrons to be provided by an external linac.

A theretical investigation is presented in Irman’s 2007 paper [51], and this is the topic

of the EuroLEAP Consortium (European Laser Electron controlled Acceleration in

Plamas to GeV energy range)9.

Multi-stage LWFA are also a way forward to longer interaction lengths, and higher

energies, see Leeman et al. 2009 [52], not to mention being a possible route to

9http://www.laser-electron-acceleration-plasma.eu/
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laboratory scale HEP experimentation.

Other Forms of Wake Field Acceleration

The relativistic electron plasma waves necessary to act as high energy particle accel-

eration structures can be set up other ways than through the use of lasers.

One obvious candidate to drive the plasma waves are other particle beams. Par-

ticle driven Wake Field Accelerators (PWFA) are an on going area of research. The

physics is similar to that of a LWFA, and it is easy to envisage a plasma stage being

added to a large conventional RF linac. Electron driven PWFA is decribed by Chen

et al. [53]. Positively charged particle (positron or proton) driven PWFA is decribed

by Caldwell et al. 2009 [54], and even Neutrino driven wake field accelertion has been

proposed see Bingham et al. 1994 [55].

In electron beam driven PWFA energy doubling of the energy of some electrons

has been seen, Blumenfeld 2007 [56], where electrons from a 48 GeV drive beam have

been accelerated to > 80 GeV. Though these energy spectra are quasi-thermal. The

PWFA acts to increase the energy of some of the beams particles while lowering the

total number of accelerated particles. It has exciting possibilities for the future HEP

applications10.

X-Ray Production: The WakeField Wiggler

In a similar way to high energy photons (hard X-rays) being produced in circular

conventional RF accelerators11 due to the acceleration the high energy particles ex-

perience as they follow the curve of the machine, the electrons accelerated in LWFA

can emit X-rays as they oscillate inside the accelerating bubble. Furthermore this os-

cillation can more closely resemble that found in a magnetic insertion device12. This

is generally known as betatron radiation, and was first observed experimentally by

Rousse in 2004 [57].

10Current work at SLAC (The Stanford linear accelerator), and ongoing research as part of CERN

is directed to this end. See FACET (Facilities for Accelerator Science, and Experimental Test Beams

at SLAC), http://facet.slac.stanford.edu/ .
11Synchrotrons.
12A magnetic insertion device (undulator or wiggler) consists of rows of oppositely aligned alter-

nately poled permanent magnets which electron beams are inserted between. This make the incoming

electrons wiggle slightly as they pass thus emitting collimated beams of synchrotron radiation. The
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The Wake Field Wiggler is theoretically treated in Kostyukov et al. 2003 [58],

Kostyukov et al. 2004 [59], Kiselev et al. 2004 [60], and Thomas et al. 2009 [61].

Furthermore Thomas et al. 2010 [62] is of interest to the experimental work in this

report as it is tested in section 4.2.

Experiments into wakefield wiggler radiation include Phuoc et al. 2005 [63], Albert

et al. 2008 [64], and Albert et al. 2009 [65]. High quality x-ray production has been

seen in Kniep et al. 2008 [66], Mangles et al. 2009 [67], and Kneip et al. [68], and

Kneip et al. 2011 [69] where I am also a co-author.

Related to this field Phuoc et al. 2006 [70], and Phuoc et al. 2008 [71] shows

imaging of electron orbits in plasma cavities (or at least the electron orbits are deduced

from the emitted radiation). It is reasonable to assume that the radiation pulse

length must be ultra short, similar to the bunch duration of the electron beam. In

Phouc et al. 2007 [72] the ultra short nature of the radiation is verified. Finally in

Khachatryan’s 2008 paper [73] it is found that at wavelengths longer than the electron

bunch length, the radiation is coherent.

X-ray Production in Other Related Areas

In this section a review of some related radiation production techniques will be pre-

sented. Techniques which are either closely related physical systems or employ similar

experimental techniques.

The following papers show betatron radiation generated from PWFA’s;Wang et

al. 2002 [74], and Clayton et al. 2002 [75]. The physics here is very similar to

betatron emission in LWFA however the inserted electron beam provided the drive

for the plasma wave, and the plasma channel then acts as an undulator. Again here

the high field gradients available in plasmas can be an advantage.

When beams of relativistic high energy electrons are inserted into a conventional

undulators as they emit radiation they act in a very similar way to a laser medium.

This has lead to the term Free Electron Laser (FEL). The idea was first proposed

in 1976 by Madey et al. [76]. Conventional accelerators such as SLAC13 are now

radiation will be at wavelength

λβ =
λµ
2γ2

where γ is the relativistic factor of the electrons, and λµ the periodic spacing of the magnets.
13The Stanford Liner Accelerator.
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being used for this purpose to provide coherent X-ray radiation (X-FELs), but are

expensive to build, and maintain. Other FELs include PETRA III, and FLASH.

Work is also being done on inserting the electrons produced from a LWFA into

a conventional magnetic undulator. This has the potential to provide table top X-

FELs. Progress in this area is reported in Gruner et al. 2007 [77], Schlenvoig et al.

2008 [78], Fuchs et al. 2009 [79], and is the aim of the Alpha-X project14.

14http://phys.strath.ac.uk/alpha-x/



Chapter 2

Theory.

2.1 High Intensity Short Pulse Laser Concepts.

In this chapter I will introduce some of the key concepts used throughout this thesis.

2.1.1 Rayleigh Range

The Rayleigh Range (or length), denoted with zR, is a useful parameter in defining the

length of a laser plasma interaction. It is defined as the distance along the direction

of propagation of a beam from its narrowest waist (or focus) to the place where its

area of cross section is doubled. For a Gaussian beam this corresponds to

zR =
πw2

0

λL
(2.1)

where w0 is the radius of focus. See figure 2.1.

2.1.2 The laser strength parameter a0

An important parameter in the discussion of intense laser-plasma interactions is the

laser strength parameter a0. It is defined as the peak amplitude of the normalized

vector potential of the the laser field.

−→a =
e
−→
A

mec2
(2.2)

19
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w0
21/2 w0

zR

Figure 2.1: Relevant lengths in the definition of the Rayleigh length.

Assuming a Gaussian radial profile1, the laser strength parameter is related to the

peak laser intensity by

I0 =
πc

2

(
mec

2a0
eλL

)2

(2.3)

and to the laser power,

P =
πw2

0I0
2

(2.4)

The peak electric field amplitude due to the laser is also given by [1],

EL =
mecωLa0

e
(2.5)

Physically if a0 > 1 then then it can cause electrons to move relativistically. This

corresponds, for a laser wavelength of about 1 µm, I > 1018 W/cm3.

2.1.3 The size of a diffraction limited focal spot.

In the case of a lens or parabolic mirror the F-number fn is given by the focal length

divided by the width of the entrance pupil. The diameter of the diffraction limited

spot 2w0 is then given by

2w0 = 2.44
fn
λL

(2.6)

1−→a = a0exp(−r2/w2
0) cos(kLz − ωLt)̂i
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2.2 Concepts of Plasma Physics.

Here subscripts p and L will be used to distinguish values associated with the plasma

wave and electromagnetic wave in the plasma accordingly. The exception to this will

be ωw which will refer to the frequency of the plasma wave opposed to the frequency

of the plasma (ωp).

2.2.1 Debye length.

Plasma have the property of masking charges present in them. As for any single

charge, the ions and electrons given sufficient time are able to move to obscure it. In

the treatment of this property it is useful to define a convenient length known as the

Deybye length above which this screening takes place (see Appendix B for derivation

and discussion).

λD =

(
ε0kBTe
nee2

)1/2

(2.7)

Thus for hotter plasmas the shielding is greater and the λD greater and for more

dense plasmas the shielding is less. 2

2.2.2 Plasma frequency

Another extremely important property of a given plasma is its natural frequency ωp

which is the frequency the electrons will oscillate at, if perturbed from quasi-neutral

equilibrium and is: 3

ωp =

(
e2ne
ε0me

)1/2

(2.8)

A full derivation of this is given in Appendix C.

2 So

λD[m] = 7430

(
KBT [eV]

ne[m−3]

)1/2

or

λD[cm] = 2.35× 10−8

(
KBT [eV]

ne10−21[cm−3]

)1/2

3

ωp[rad/s] ≈ 5.64× 104n1/2e
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2.2.3 Dispersion relation of an Electromagnetic wave in Plasma

Dispersion relation of an Electromagnetic wave in Vacuum

If we consider a plane electromagnetic wave propagating in the x direction in a vacuum

with no external electric or magnetic Fields. The relevant Maxwell equations are

Faraday’s Law A.3 and Ampere’s Law A.4:

−∇×−→E =
∂
−→
B

∂t
(2.9)

c2∇×−→B =
∂
−→
E

∂t
(2.10)

Taking the curl of Ampere’s law and the time derivative of Faraday’s law:

−∇× ∂
−→
E

∂t
=
∂2
−→
B

∂t2
(2.11)

c2∇× (∇×−→B) = ∇× ∂
−→
E

∂t
(2.12)

Equating:

−c2∇× (∇×−→B) =
∂2
−→
B

∂t2
(2.13)

Now assuming the plane waves are varying as ei(
−→
k−→r −ωt) and using identity A.13. We

have:

ω2−→B = −c2−→k × (
−→
k ×−→B) = −c2

(−→
k (
−→
k · −→B)−−→k 2−→B

)
(2.14)

From Gauss’s Law of Magitusum we have:

−→
k · −→B = −i∇ · −→B = 0 (2.15)

This leads to:

ω2 = k2c2 (2.16)

Which is the dispersion relation for a EM wave in vacuum. From Appendix D the

phase velocity and the group velocity are thus both equal to the speed of light as

expected.

c =
ω

k
= vφ =

dω

dk
= vg (2.17)
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Dispersion relation of an Electromagnetic wave in Plasma

Now instead conceder an EM wave in a plasma. The Equation of Amperes law will

gain a
−→
J 1/ε0 to account for charged particle motions. I will use the sub script 0 and

1 to represent particles at, and moved from, their equilibrium positions respectively.

So 2.10 becomes:

c2∇×−→B1 =

−→
J 1

ε0
+
∂
−→
E 1

∂t
(2.18)

Taking the time derivative and curl on opposite equations this time in the same way

as before:

c2∇× −̇→B1 =
∂
−→
J 1

ε0∂t
+
−̈→
E 1 (2.19)

∇× (∇×−→E 1) = −∇× −̇→B1 (2.20)

Eliminating ∇× −̇→B1, using A.13 and assuming ei(
−→
k−→r −ωt) dependence we arrive at:

−−→k (
−→
k · −→E 1) + k2

−→
E 1 =

iω

ε0c2
−→
J 1 +

ω2

c2
−→
E 1 (2.21)

Transverse waves mean
−→
k · −→E 1 = 0. As

−→
E 1 is ⊥ to

−→
k .

(ω2 − c2k2)−→E 1 = −iω
−→
J 1

ε0
(2.22)

If we consider light waves or higher frequency waves ions can be considered fixed so
−→
J 1 comes only from electrons.

−→
J 1 = −n0e

−→v e1 where −→v e1 has the usual ei(
−→
k−→r −ωt)

dependence. Now let us consider the temperature of the electrons (kBTe) to be

unimportant. We may then used the linearised equation of electron motion derived

while considering the plasma frequency C.9:

me
∂−→v e1

∂t
= −e−→E 1 ⇒ −→v e1 =

e
−→
E 1

imeω
(2.23)

So substituting in:

(ω2 − c2k2)−→E 1 =
n0e

2

ε0me

−→
E 1 = ω2

p

−→
E 1 (2.24)

So finally we arrive at the dispersion relation which is:

ω2
L = ω2

p + c2k2L (2.25)
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So

v2φL =
ω2
L

k2L
=
ωp
kL

+ c2 > c2 , vgL =
dωL
dkL

=
c2kL
ωL

=
c2

vφL
< c (2.26)

Which means that the phase velocity in the plasma is likely to be greater than c.

However causality is preserved due to the group velocity necessary being less than c,

and it is this that would carry any information.

2.2.4 Dispersion relation of an Electron Plasma Wave.

Electrons streaming into adjacent layers of plasma with their thermal velocities will

carry information about the oscillating region. If the Equation of Motion is (from

equation C.2 in appendix) :

mene

(
∂−→v e

∂t
+ (−→v e · ∇)−→v e

)
= −ene

−→
E (2.27)

Then we must add term −∇pe to the EOM to account for this. In one dimension it

can be argued that:

−∇pe = 3kBTe∇ne = 3kBTe∇(n0 + n1) = 3kBTe
∂n1

∂x
x̂ (2.28)

So the linearized equation of motion is, where some terms have been neglected:

men0
∂v1
∂t

= −en0E1 − 3kBTe
∂n1

∂x
(2.29)

Now assuming wave like behaviour, (So E1 = Eme
i(xk−ωt)), we have:

−iωv1men0 = −en0E1 − 3kBTeikn1 (2.30)

Using,

−iωn1 = −n0ikv1 and, ikε0E1 = −en1 (2.31)

So,

−iωv1men0 =

[
en0

( −e
ikε0

)
+ 3kbTeik

]
n0ik

iω
v1 (2.32)

ω2v1 =

(
n0e

2

ε0m
+

3kBTe
m

k2
)
v1 (2.33)
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So we end up with what is sometimes referred to as the Bohm-Gross Dispersion

relation for an electron plasma wave:

ω2
w = ω2

p +
3

2
k2pv

2
th (2.34)

Where v2th = 2kBTe/m is the thermal velocity of the electrons, and subscripts have

been added to avoid confusion4. The group and phase velocities are respectively then:

Using: 2ωwdωw =
3

2
v2th2kpdkp (2.35)

vgp =
dωw
dkp

=
3

2

kp
ωw

v2th =
3

2

vth
vφp

(2.36)

So if the plasma’s temprature (Te) is negligible then so will be the group velocity of

the electron plasma wave (vgp).

vφp =
ωw
kp

=

√
ω2
p

k2p
+

3

2
v2th (2.37)

So (kp →∞, vφp →
3

2
v2th), for large wave numbers the phase velocity only depends

on the plasma temperature.

2.2.5 Critical density

Another important concept to do with plasmas is the critical density for a given

electromagnetic wave with a given frequency in vacuum ω0. At densities above this

and electromagnetic wave will not propagate into a plasma and will be completely

masked by electrons moving to obscure it. As we will see the critical density for a

plasma turns out to be when the ωp = ω0. This means the natural oscillations of the

plasma (derived in Appendix C) are faster than that of the EM waves and so can

mask it. However this can also be shown from the dispersion relation 2.25.

ω2
L =

n0e
2

ε0me

+ c2k2L (2.38)

As the wavenumber, k of the radiation will change on entering the plasma but the

frequency (ω0) will not (So ωL = ω0), we arrive at

k2L =
ω2
0

c2
− n0e

2

ε0mec2
(2.39)

4 As mentioned before here subscripts p and L will be used to distinguish values associated with

the plasma wave and electromagnetic wave in the plasma accordingly. The exception to this will

be ωw which will refer to the frequency of the plasma wave opposed to the frequency of the plasma

(ωp).
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now k2L > 0 for it to have any physical meaning. So

ω2
0

c2
>

n0e
2

ε0mec2
(2.40)

Thus ωp < ω0 and

ne <
ω2
0meε0
e2

≡ nc (2.41)

Which is the condition for a electromagnetic wave to propagate in a plasma. Where

nc is known as the critical density 5.

5

nc[cm
−3] =

1.113× 1021

(λ[µm])2
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2.3 Concepts of Laser plasma interactions.

2.3.1 Wave Interactions Inside a Laser Wakefield Particle

Accelerator

In the case of a Laser Wakefield Particle Accelerator (LWFA). The electromagnetic

wave from a short laser pulse is focused into a plasma and used to excite an electron

plasma wave. This causes the phase velocity of the plasma wave to become equal to

the group velocity of the laser wave.

vφp = vgL

Lorentz Factor Associated with the Phase Velocity of a LWFA’s Plasma

wave.

From section 2.2.4 we know that the dispersion relation for a electron plasma wave

is:

ω2
w = ω2

p +
3

2
k2p
v2th
vφp

(2.42)

As usual here subscripts p and L will be used to distinguish values associated with the

plasma wave and electromagnetic wave in the plasma accordingly and the exception

to this will be ωw which will refer to the frequency of the plasma wave opposed to

the frequency of the plasma (ωp). From 2.25 we have the dispersion relation of an

electromagnetic wave being:

ω2
L = ω2

p + k2Lc
2 (2.43)

This gives the group and phase velocities as follows:

vgL =
c2kL
ωL

=
c2

vφL
, vgp =

3

2

kp
ωw

v2th =
3

2

v2th
vφp

(2.44)

vφL =

√
ω2
p

k2L
+ c2 , vφp =

√
ω2
p

k2p
+

3

2
v2th (2.45)

Now if we consider the ratio of the critical frequency to the plasma frequency we have

the following relation:

ω2
p

ω2
L

=
nee

2

ε0me

/
nce

2

ε0me

=
ne
nc

(2.46)
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This result will come in useful later. From the relations above we can also deduce:

k2L =
ω2
L − ω2

p

c2
(2.47)

So again from above we may write down:

v2φL =
ω2
pc

2

ω2
L − ω2

p

+ c2 (2.48)

v2φL
c2

=
ω2
L

ω2
L − ω2

p

(2.49)

=
1

1− ω2
p/ω

2
L

(2.50)

From equation 2.46 we have,

vφL
c

=

(
1− ω2

p

ω2
L

)−1/2
=

(
1− ne

nc

)−1/2
(2.51)

From our expression for vgL above, we have;

vgL
c

=
c

vφL
=

(
1− ne

nc

)1/2

(2.52)

Now by definition the Lorentz factor associated with the phase velocity of a LWFA’s

plasma wave (γφp) is given by:

γφp =

(
1−

v2φp
c2

)−1/2
(2.53)

Now as also has been dissussed in a LWFA vφp = vgL so:

γφp =

(
1− v2gL

c2

)−1/2
=

(
1−

(
1− ne

nc

))1/2

(2.54)

where equation 2.52 has been used. Thus we obtain:

γφp =

√
nc√
ne

=
ωL
ωp

(2.55)

which is a very elegant result indeed.

The wavelength of a LWFA’s Plasma wave.

Starting from the group velocity of the laser pulse vgL and combining with equation

2.46 for the wave number kL we arrive at:

v2gL = c2(1− ω2
p

ω2
L

) (2.56)
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Now as discussed before equating vφp = vgL and squaring both sides we have,

ω2
p

k2p
+

3

2
v2th = c2(1− ω2

p

ω2
L

) (2.57)

The quickly rearranges, noting that kp = 2π/λp,

1

k2p
=
c2

ω2
p

− c2

ω2
L

− 3

2

v2th
ω2
p

=
λ2p
4π2

(2.58)

This is a exact equation for the wavelength of the plasma wave. However it is common

to simply this equation. As ωL > ωp for laser propgation to occur the second term in

the middle can be neglected. Also in the systems we are considering v2th << c2 and

so can also be ignored. This yields the well known result:

λp =
2πc

ωp
(2.59)

2.3.2 Rigorous Mathematical Treatment of Laser Propaga-

tion in Underdense Plasma

In this subsection the relevant mathematics for a laser wave propagating in an un-

der dense plasma causing a plasma wave to develop will be explored, resulting in

TRANSVERSE and LONGITUDINAL WAVE EQUATIONS, as will expressions for

the magnitude of the electric field and electron density as a functions of time. This

leads neatly to the derivation of the ‘well known’ cold wave-breaking limit in section

2.3.3. This treatment expands upon and follows Gibbon 2005 [80] however in SI units.

To begin let us right down the Lorentz equation of motion for the electrons6(see

A.7) and Maxwell equations (see A.1) for this system, noting we have no external

magnetic field:

∂−→p
∂t

= (−→v · ∇)−→p = −e(−→E +−→v ×−→B) (2.60)

Gauss’s Law:

∇ · −→E =
e

ε0
(n0 − ne) (2.61)

Faraday’s Law:

∇×−→E = −∂
−→
B

∂t
(2.62)
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Gauss’s Law of Magnesium.

∇ · −→B = 0 (2.63)

Ampére’s Law:

∇×−→B = −ene−→v µ0 +
1

c2
∂E

∂t
(2.64)

Where −→v is the velocity of an electron at this position, ne the electron density and

n0 the initial plasma electron density. Now making a quite large7 assumption that

all the relevant quantities8 have an oscillating time spatial dependence of the form

f(ωt−−→k · −→r ), but for ease using f(τ) where,

τ = t− î ·
−→r
vφ

=
1

ω
(ωt−−→k · −→r )

−→
k and î are in the direction of propagation of our laser, and vφ is the phase velocity

(see D) of the electromagnetic wave in the plasma (vφL) (given by 2.26) but here the

subscript L will be omitted. The following substitutions for derivatives are therefore

possible with this assumption 9

∂

∂t
⇒ ∂

∂t
, ∇· ⇒ − î

vφ

∂

∂τ
, ∇× ⇒ − î

vφ

∂

∂τ
×

Then doing some substitutions, integration and replacing partial derivatives with

total derivatives the equations become:

(
î · −→v
vφ
− 1

)
d−→p
dτ

= e(
−→
E +−→v ×−→B) (2.65)

−̂i · d
−→
E

dτ
=
evφ
ε0

(n0 − ne) (2.66)

−→
B =

1

vφ
î×−→E +

−→
B0 (2.67)

6Here using the convective derivative A.3
7A quite large but well founded assumption. Given that we are looking for wave like behaviour.
8Such as ne,

−→
E and

−→
B

9It should be pointed out that vφp not vφL should be used if the operators act on an non elec-

tromagnetic quantity.
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î · d
−→
B

dτ
= 0 (2.68)

−̂i× d
−→
B

dτ
= −evφne−→v µ0 +

vφ
c2
d
−→
E

dτ
(2.69)

The term
−→
B0 which comes about as a constant of integration represents an external

magnetic field which here is of course zero. Taking the dot product of our equation

for Gauss’ Law 2.69 with î,

−̂i

(
î× d

−→
B

dτ

)
= −evφnêi · −→v µ0 +

vφ
c2
−→
i · d
−→
E

dτ

0 = −evφnêi · −→v µ0 −
vφ
c2
evφ
ε0

(n0 − ne)

substituting with 2.66. Thus rearranging we get:

ne =
vφn0

vφ −
−→
i · −→v

(2.70)

which is an important expression for ne. Like wise taking the cross product of the

equation of motion 2.65,
(

î · −→v
vφ
− 1

)
î× d−→p

dτ
= êi×−→E + êi× (−→v ×−→B)

Substituting in equation 2.67, and using identity A.14,
(

î · −→v
vφ
− 1

)
î× d−→p

dτ
= evφ

−→
B + e[0− (̂i · −→v )

−→
B ]

= −e−→Bvφ

(
î · −→v
vφ
− 1

)

−→
B = − 1

evφ
î× d−→p

dτ
(2.71)

This is a very useful expression for the magnitude of the magnetic field in terms of

momentum. Taking î× Ampére’s Law (2.69) and using identity A.14 then substituting

in 2.67,

î×
(

î× d
−→
B

dτ

)
= −evφnêi×−→v µ0 +

vφ
c2

î× d
−→
E

dτ

−(i · d
−→
B

dτ
)̂i + (̂i · î)d

−→
B

dτ
= −evφnêi×−→v µ0 +

v2φ
c2
−→
B
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then noting 2.68 gives (i · d−→B/dτ) = 0 and rearranging gives:

d
−→
B

dτ
= enecµ0

βφ
β2
φ − 1

î×−→v (2.72)

where βφ = vφ/c. Then taking d/dτ of 2.71 and subtracting 2.72 we get:

d
−→
B

dτ
− d
−→
B

dτ
=

d

dτ

1

evφ
î× d−→p

dτ
+ enecµ0

βφ
β2
φ − 1

î×−→v

which rearranging10 becomes the TRANSVERSE WAVE EQUATION:

î× d2−→p
dτ 2

+
e2ne
ε0

β2
φ

β2
φ − 1

î×−→v = 0 (2.73)

Taking the î· of the equation of motion 2.65, then differentiating we have:

d

dτ

[(
î · −→v
vφ
− 1

)
î · d
−→p
dτ

]
= e î · d

−→
E

dτ
+ e

d

dτ

[
î · −→v ×−→B

]

Substituting in using Gauss’ Law 2.66 and our expression for
−→
B 2.71 the right hand

side becomes:

= −e
2vφ
ε0

(n0 − ne) + e
d

dτ

[
î · −→v ×

(
− 1

evφ
î× d−→p

dτ

)]

= −e
2vφ
ε0

(n0 −
vφn0

vφ −
−→
i · −→v

)− 1

vφ

d

dτ

[
î

(
(−→v · d

−→
P

dτ
)̂i− (−→v · î)d

−→
P

dτ

)]

=
e2vφn0

(
î · −→v

)

ε0

(
vφ − î · −→v

) − 1

vφ

d

dτ

[
−→v · d

−→
P

dτ
− (−→v · î)

(
î · d
−→
P

dτ

)]

where identity A.14 and our expression for ne 2.70 have been used as required. The

LONGITUDINAL WAVE EQUATION is then:

d

dτ

[(
î · −→v
vφ
− 1

)
î · d
−→p
dτ

]
=
e2vφn0

(
î · −→v

)

ε0

(
vφ − î · −→v

) − 1

vφ

d

dτ

[
−→v · d

−→
P

dτ
− (−→v · î)

(
î · d
−→
P

dτ

)]

(2.74)

Now to make the longitudinal and transverse wave equations more useful we will set
−→
k , î to be in the x-direction so:

î · −→p = px, î×−→p = (0,−pz, py)
10Noting c2 = (ε0µ0)−1
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and so on for the other vectors. We will also use −→u = −→v /c. The expression for ne

then becomes:

ne =
βφn0

βφ − ux
(2.75)

This means the density has a singularity whenever the fluid velocity approaches the

phase velocity. This of course does not happen however it does result in large electron

plasma densities and is indicative of wave breaking (see 2.3.3).

Splinting the transverse wave equation (2.73) into y and z components and making

use of our expression for the plasma frequency ωp (2.8) yealds:

1

mec

d2pz
dτ 2

+
ω2
pβ

2
φ

β2
φ − 1

βφuz
βφ − ux

= 0 (2.76)

1

mec

d2py
dτ 2

+
ω2
pβ

2
φ

β2
φ − 1

βφuy
βφ − ux

= 0 (2.77)

These where first shown in [81] and form a closed set of equations for a non-linear

plasma wave of arbitrary amplitude and fixed phase velocity vφ. It is therefore possible

to find explicit expressions for all the field components. From our expression for
−→
B

2.71:

(Bx, By, Bz) = − 1

evφ

d

dτ
(0,−pz, py)

Bx = 0 , By =
1

ecβφ

dpx
dτ

, Bz = − 1

ecβφ

dpy
dτ

(2.78)

From 2.67 we have:

(0,
1

ecβφ

dpz
dτ

,− 1

ecβφ

dpy
dτ

) =
1

vφ
(0,−Ez, Ey)

Ey = −− 1

e

dpy
dτ

, Ez = −− 1

e

dpz
dτ

(2.79)

Naturally Ex being the most useful quantity to find for wake field acceleration it is the

most difficult to derive. Starting from ·̂i of the equation of motion 2.65, and noting

that −→v = −→p /(mγ). Where γ2 = 1 + p2/(m2c2).
(

î · −→p
βφ

1

mecγ
− 1

)
î · d
−→p
dτ

= êi ·
(
−→
E +

−→
P ×−→B
meγ

)

1

mecγ

px
βφ

dpx
dτ
− dpx

dτ
= eEx +

e

meγ
(pyBz − pzBy)
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Using the expresions for By and Bz in 2.78:

1

mecγ

px
βφ

dpx
dτ
− dpx

dτ
= eEx +

e

meγ

(
− py
ecβφ

dpy
dτ
− pz
ecβφ

dpz
dτ

)

eEx = −dpx
dτ

+
1

ecβφ

−→p
γ
· d
−→p
dτ

This can be simplified noting the following:

γ2 = 1 + p2/(m2c2)⇒ dγ2

dτ
=

1

m2
ec

2

dp2

dτ
⇒ 2γ

dγ

dτ
=

2−→p
m2
ec

2
· d
−→p
dτ

−→p
γ
· d
−→p
dτ

= m2
ec

2dγ

dτ
(2.80)

So

Ex = −mec

e

1

βφ

d

dτ

[
pxβφ
mec

− γ
]

(2.81)

This is a widely used result. There are no general analytical solutions for this set of

equations however some limiting cases exist and are shown in [82] and [81]. There is

also a useful treatment in [83] which is relevant to particle acceleration in a plasma

wave, which contains the following. First we will consider a PURE LONGITUDINAL

PLASMA OSCILLATION. So py = pz = 0, and so the subscript will be dropped from

ux for convenience. The longitudinal wave equation 2.74 becomes:

d

dτ

[
(u− βφ)

dp

dτ

]
= mec

ω2
pβ

2
φu

βφ − u
(2.82)

The left hand side of this equation becomes:

= mec
d

dτ

[
(u− βφ)

duγ

dτ

]
= mec

d

dτ

[
u
duγ

dτ
− βφ

duγ

dτ

]

Noting:

dγ

dτ
=

d

dτ

(
1 +

p2

m2
ec

2

)1/2

=
1

2

(
1 +

p2

m2
ec

2

)−1/2
2p

m2
ec

2

dp

dτ
=
uγmec

m2
ec

2

1

γ

dp

dτ
= u

dγu

dτ

Thus

mec
d

dτ

[
dγ

dτ
− βφ

duγ

dτ

]
= mec

ω2
pβ

2
φu

βφ − u

d2

dτ 2
[γ(1− βφu)] =

ω2
pβ

2
φu

βφ − u
(2.83)
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Now setting: Y =
d

dτ
[γ(1− βφu)], and multiplying through 2.83 by Y :

Y
dY

dτ
=
ω2
pβ

2
φu

βφ − u
d

dτ
[γ(1− βφu)]

Noting:

dγ

dτ
=

u

(1− u2)3/2
du

dτ
(2.84)

This becomes

1

2

dY 2

dτ
=
ω2
pβ

2
φu

βφ − u
u

(1− u2)3/2
du

dτ

(
u− βφu2 − βφ(1− u2)

)

Using 2.84 then gives

1

2

dY 2

dτ
= −ω2

pβ
2
φ

dγ

dτ

So finally integrating one gets:

1

2
Y 2 = −ω2

pβ
2
φγ + C (2.85)

The constant C can be found by seeing that the left hand side is zero when there is a

stationary point in u. This also corresponds to the maximum value of u which is this

case we shall call um = vxm/c with associated Lorentz factor γm. So C = ω2
pβ

2
φγm.

Thus

Y =
d

dτ
[γ(1− βφu)] = ±

√
2ωpβφ[γm − γ(τ)]1/2 (2.86)

Now noting that 2.81 gives Ex =
mec

eβφ
Y

Ex(τ) = ±mec

e

√
2ωp[γm − γ(τ)]1/2 (2.87)

This is an important result which shows that the magnitude of the electric field and

the maximum gamma factor, really only depend on each other.

2.3.3 Wave Breaking

Wave Breaking is an important phenomena in plasma based accelerators as it can

result in self injection into the plasma wave causing an much greater number of parti-

cles to be accelerated. In this section the standard theoretical treatment is discussed,

in section 4.2.1 a more advanced experimentally applicable model is developed.
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There is more than one definition of wave breaking and it depends on the oscil-

lations involved and the type of wave. However fundamentally if the oscillation is in

a fluid medium and the fluid velocity (in our case v) exceeds the phase velocity of

the wave (in our case vφ) the density sheets (in our case also charge sheets) will cross

causing the wave to “break”.

The cold relativistic wave breaking field.

Wave breaking also holds the key to understanding what the maximum possible accel-

erating field maintainable for a given plasma length is. Apparently this was a problem

for many years before the treatment of [81] shown above was postulated. The an an-

swer was first found by Dawson and Oberman in [84]. Here a similar expression will

be found utilising a different argument.

From equation 2.87:

Ex(τ) = ±mec

e

√
2ωp[γm − γ(τ)]1/2 (2.88)

We can see the electric field takes on its maximum value when γ(τ) is minimum. The

minimum value it can take is γ(τ) = 1. So:

Em =
mec

e

√
2ωp[γm − 1]1/2 (2.89)

So assuming our definition of a broken wave to be when um = uφp = vφp/c and

γm = γφp. Meaning the maximum velocity an accelerated electron in the wave can

have is greater than the phase velocity of the wave itself.

Em =
mec

e

√
2ωp[γφp − 1]1/2 (2.90)

The cold non-relativistic wave breaking field.

For non-relativistic plasmas where uφp is small, then11 γφp ' u2φp/2 + 1, and equation

2.90 can be simplified. So

Em =
meωpcuφp

e
=
meωpvφp

e
(2.92)

11Using the Taylor expansion

1

(1− x)1/2
= 1 +

x

2
+ ... (2.91)
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With more approximation it can be seen that in a cold electron plasma the maximum

electric fields that can be sustained are

Em ' cmeωp/e ≡ E0 (2.93)

which is sometimes in the literature given the symbol E0. And

E0 ≈ 96
√
n0(cm−3)

this is known as the non-relativistic wave breaking field.[85]

2.3.4 The critical power for self focusing

Transverse variation in the plasma density and thus the refractive index can lead to

self focusing in LWFA. This focusing effect is often balanced by diffraction so the

laser can from a channel much longer than the Rayleigh length. It is useful to know

the critical power for self focusing and it is given by [86]:

Pc =
8πε0m

2
ec

5ω2
0

e2ω2
p

≈ 17
ω2
0

ω2
p

GW (2.94)

2.3.5 Laser Depletion Length

Suffice is to say that laser plasma interactions cannot go on indefinitely. Eventually

the driving laser pulse will lose all its energy to the plasma. It can be shown that for

a0 << 1, the so call pump depletion length, (other wise known as the etching length)

is given by [86]:

LETCH = τ0c
nc
ne

(2.95)

Where τ0 is the duration of the laser pulse before entering the plasma.

2.3.6 The Dephasing Length

One of the largest limiting factors in LWFA is that the accelerated electron will

eventually overtake the accelerating structure which is mearly moving at the plasma

wave phase velocity. In one dimension it can be shown that the distance over which

this take to occur is [86]:

Lφ =
2

3

nc
ne
R (2.96)
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Where R is the bubble radius. This limit can however be over come by the use of

staged LWFA as the phase velocity of the accelerating structure can be increased in

each subsequent stage by lowering the plasma density.

2.3.7 Betatron Radiation

Electrons in blow out regime (ignoring accelerating field) undergo oscillations at a

frequency ωβ = ωp

2γ
.

For large oscillations (Kβ = γkβrβ > 1) this produces X-ray radiation with a

synchrotron-like radiation spectrum characterised by a spectrum d2I/(dEdΩ)θ=0 ∝
ξ2K2

2/3(ξ/2), where K2/3(x) is a modified bessel function of order 2/3 and ξ = E/Ec.

The shape of this spectrum is characterized by a single parameter, the critical

energy Ec. The on-axis spectrum is broadband and peaked close to Ec, which can be

approximated to be Ec = 3/4~γ2ω2
prβ/c where rβ is the amplitude of the oscillations.



Chapter 3

Methods.

This chapter will describe methods used to obtain the experimental results in this

work. My thesis is concerned with the relativistic electrons and radiation produced

by laser wake field accelerators so methods of electron measurement and x-ray mea-

surement will be described here.

3.1 Electron Measurement.

A broad scope of electrons from a span of different plasma processes exits the LWFA

before recombination takes place. Although a LWFA plasma also emits low energy

electrons in a myriad of directions, it is important to measure the high energy electron

beams that can be created by LWFAs. Indeed these are among the most interesting

aspects of the phenomena. For this thesis, concern is focused on examining the highly

relativistic electrons: finding where and in what direction they exit the plasma; how

they are distributed in space; their number; and how much energy they carry. This

section describes the methods used to do so.

3.1.1 Electron Spectrometry.

Here the basics of electron spectrometry are discussed. Though the spectrometers

used in this work were by and large built, modified and dismantled in a number of

weeks. The basic design differs between only two archetypes, a single and two screen

design. For the data taken the only change from these archetypes is the magnet used

and the distances which separated the magnet and other components.

39
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Figure 3.1: A two screen electron spectrometer. Electrons of differing energies are

shown passing through scintillating screens as calculated by tracking algorithm. The

setup shown is for the Gemini 2011 experiment, and the magnet field map is shown

in figure 3.4.

Basics of Electron Spectrometry.

In order to find the kinetic energy of electrons they may be passed through a magnetic

field so that particles of different momenta are dispersed by different angles. If they

are then detected using some method their energy can be ascertained. Though it

should be noted that in this method particles of different mass but the same charge

such as muons and electrons can have the same dispersion angle and be mistaken for

each other unless the method of detection is able to distinguish them.

The trajectory of an electron through an ideal rectangular magnetic field can be

solved analytically. Consider a uniform magnetic field of length Lm parallel to the

electrons motion and of width sufficient to allow the electron to exit the boundary

perpendicular to the electrons motion, (essentially the same as a field infinite in extent

perpendicular to the electrons motion) figure 3.2.

−→
B z(x) = Bmaxẑ 0 < x < Lm
−→
B z(x) = 0 0 > x > Lm

An electron will be deflected by the Lorentz force:

d
−→
P

dt
=

q

γeme

−→
P ×−→B (3.1)
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Figure 3.2: The geometry of an electron passing through an ideal rectangular magnetic

field.

Equating this to the centripetal force
−→
P 2m−1e γ−2e r−1L where rL is known as the Larmor

Orbit gives:

rL =
|P |

qBmax

(3.2)

From ∆AOB in figure 3.2 and from the fact that ∆AOB = ∆COB it is trivial to

show that:

tan
θ

2
=
AO

rL
(3.3)

Similarly it can be shown:

AO =
Lm

1 + cos θ
(3.4)

Thus the analytical equation for the dispersion angle of an electron θ is:

tan
θ

2
(1 + cos θ) =

LmeBmax

|P | (3.5)

So using the small angle approximation: tan θ ≈ θ and cos θ ≈ 1− θ/2, the left hand

side becomes: θ+θ2/4. Which means that for deflections of <100mrad the dispersion

angle is proportional to LmBmax. So in order to increase the dispersion angle, the

magnetic field must be increased in magnitude, or the length of the field must be

increased.
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We have essentially reached the limit of peak field intensity using neodymium

magnets in previous work.So in order to increase the dispersion angle of high en-

ergy electrons, longer magnets where constructed to produce the results in this work.

Though another approach would be the use of electromagnets or superconducting

electromagnets, which can support higher peak magnetic fields. However the smaller

size of the electromagnets is often countered by the size or the necessary power sup-

plies and cooling apparatus.

In this work a range of LWFA experiments are presented which produced electrons

of energies up to over a GeV but also electrons with energies down to MeVs. Different

magnets are appropriate for looking at different energy ranges. If LmBmax is too low

then electrons are not deflected sufficiently to have good resolution and to give precise

measurements. If LmBmax is too large then electrons are deflected too much and will

impact inside the magnet. Magnet selection was made using theoretical predictions

of the range of electron energies exiting the LWFAs.

In order to calculate energy of electrons once they were detected I used a code

developed over a number of years in-house at Imperial College. [The Imperial College

Tracker]. It works by solving the Lorentz force (3.1) numerically using a centre-

differencing (or leap-frog) method. Where the approximation:

−→
P (t+ dt)−−→P (t− dt)

2dt
≈ − e

meγ(t)
(
−→
P (t)×−→B(t, x, y)) (3.6)

Becomes:

−→
P (t+ dt) ≈ − e

meγ(t)
(
−→
P (t)×−→B(t, x, y))2dt+

−→
P (t− dt) (3.7)

Where dt is small. Then using the forward difference method it calculates the electrons

position. Where the approximation:

x(t+ dt)− x(t)

dt
≈ Px
meγ(t)

(3.8)

Becomes:

x(t+ dt) ≈ Px
meγ(t)

dt+ x(t) (3.9)

This code has been heavily benchmarked and compared with the analytical solution.
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Figure 3.3: The mapped field of the magnet used in the Lund Experiment. The units

of the labelled contours are mT .

Single Screen Design

In the simple case of a single screen electron spectrometer The electrons are dispersed

through a magnet and impact on an electroluminescent screen at 450 to the laser axis.

The magnet’s fields were measured using a Hall probe mounted on a micrometer

stage. The magnetic field maps are shown in figures 3.3 and 3.4 along with their di-

mensions. In each case the fields where found to not vary appreciably in the dispersion

direction which is out of the page in relation to the figures.

The electroluminescent screen used for all the experiments was composed of Gd2O2S:Tb

and is sold under the trade name Kodak Lanex. Gd2O2S:Tb emits 546nm photons

when energy is deposited in the scintillator layer by incident electrons. The energy

deposited is an almost constant (80 eV) for electrons of energy greater than 4 MeV

[87]. So energies less than this were discarded in the analysis. The screens were

shielded from laser and interaction light on the front by layers of Al coated Mylar

as this would also cause luminescence. The screens were imaged from the back by

CCD’s at an angle of 45o. The imaging lines were fitted with 546 nm interference

filters to minimize the signal from non-electroluminescent light. The relaxation time

of the scintillator is of the order of a millisecond. Thus to further minimize the signal
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Figure 3.4: The mapped field of the magnet used in the Gemini Experiment. The

units of the labelled contours are mT. The magnet consists of rectangular pole pieces

constructed from sintered neodymium blocks, mounted in a c-shaped yoke. This c-

shape allows low energy electrons to leave the spectrometer without striking the yoke,

further reducing the bremsstrahlung radiation produced. The pole piece separation is

25 mm. We find that the field maximum is 1.02 T in the mid-plane of the magnet with

a field uniformity of 0.01 T r.m.s. over the central 200 mm of the magnet. The yoke

design ensures that there is no field reversal along the electron propagation direction.

The magnet is constructed in two sections, each 150 mm long. In this experiment

these were fixed together providing a single magnet 300 mm long.
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from non-electroluminescent light the CCD’s were triggered 0.1 ms after the elec-

tron beam. This is long enough for laser light not be present and for the light from

plasma recombination to have ceased. However in practice it was found that laser or

recombination light could be reflected onto the backs of the Lanex screens and cause

photoluminescence. For this reason light tight shielding was installed as well.

Electrons with positive or negative momentum in the magnets dispersion direction

(i.e. electrons which exit the accelerator at an angle to the spectrometer axis) can

cause the beam energy to be over or under estimated, (see figure 3.5). In addition

the electron beams spatial extent in the dispersion direction and the lasers pointing

variation can have a similar effect.

One way to limit the uncertainty of the measurement due to this is to employ

a collimator before the electron beam enters the magnet, to stop these electrons.

However in this work I am interested in measuring the x-rays created in the LWFA.

The electrons stopped in the collimator would be in the line of sight of the x-rays

being measured and would create large amounts of bremsstrahlung radiation in the

same cone. This would introduce large amounts of noise to the x-ray measurement.

This makes the use of collimating apertures unsuitable for electron spectrometers for

experiments where betatron radiation is important.

It is however possible to use the electron beam divergence in the non-dispersion

direction, as detected on the scintillating screen, to give estimates of the spatial extent

of the electron beam and deduce its divergence. Thus assuming this is the same in

the dispersion direction the uncertainty in the electron energy can be assessed. This

assumption is however not always valid. This method also does not deal with the

problem of laser pointing variation. Another way is to use the information provided

by an electron beam pointing measurement. However as these could not be done on

the same shot as the electron measurements only statistical measurements can be

used. Finally a two screen spectrometer method can be utilized as described below.

Two Screen Design

As shown in Figure 3.5, electrons with different energies can strike the same point

on a single screen due to differing exit angles. However with the inclusion of a

second screen their energies and angles can be ascertained. Separating the exit angle

from the electron energy is equivalent to measuring two components of the electron

momentum: the electron momentum in the laser propagation direction (pz), and the
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Figure 3.5: Three electron paths are shown which all impact screen 1 at the same

position. b) Shows the path of an electron exiting the LWFA along the laser axis. a)

Shows a higher energy electron exiting at a positive angle. c) Shows a lower energy

electron exiting at a negative angle.

electron momentum in the magnet dispersion direction (py). The third component of

the electron momentum (px), can be recovered from the position of the electron beam

on the screens in the direction perpendicular to the magnet dispersion direction.

The two-screen method allows the bending magnet to be placed close to the LWFA

without a collimator, see figure 3.1. This allows the whole electron beam to pass be-

tween the magnet pole pieces without deteriorating the magnet performance, thereby

reducing bremsstrahlung radiation. This geometry also produces sufficient deflection

of electrons away from the laser axis reducing the chance of the electron beam collid-

ing with x-ray detectors. This collimator-free two screen spectrometer still allows a

reliable and full measurement of the electron energy to be produced. Furthermore the

method allows all three momentum components of the electron beam to be measured

which can provide insight into the acceleration and radiation generation mechanisms.

In order to find the energy and angle of exit from the LWFA of a given electron,

it is necessary, to first identify what point it passes on both of the electroluminescent

screens, which I will call −→s 1 and −→s 2.

If many electrons are incident on the screens identifying these positions is not

trivial. One method of solving this problem is to place fiducials in the beam between

the two screens, creating shadows in the images on the second screen. However this

method has the disadvantage of not sampling the whole spectrum. Alternatively, I

identified −→s 1 and −→s 2 points using clearly identifiable features in the electron spec-



CHAPTER 3. METHODS. 47

trum.

Once a feature has been identified and points −→s 1 and −→s 2 have been defined, the

correct electron momentum and exit angle (or equivalently pz and py) can be found by

tracking electrons through the mapped magnetic field using the relativistic Lorentz

force equation in an iterative process. There are two methods which I considered in

order to solve this computational problem.

The first is, given the two points on the screens −→s 1 and −→s 2 the point at which

the electron exits the magnet and its position vector could be found. In the same way

as the Lorentz force solver described above tracks an electron through the magnet it

should be possible via reversing time and charge to track the electron back through

the magnet and iteratively guess the electrons energy until its path takes it back to

the LWFA. This has the advantage of having only one iteration loop.

However given I already had access to a well benchmarked iterative tracking code.

The second method which I used is as follows, and is depicted in figure 3.6. I modified

the existing Imperial College Tracker code slightly to act as a matlab function which

when passed a given exit angle and energy, would only track a single electron through

a magnetic field set up given by another file. The algorithm I wrote then receives the

input of −→s 1 and −→s 2 and starts with a guess of an angle and energy, passes this to

the matlab function, which passes back to it the positions −→r 1 and −→r 2 which are the

screen positions for this guess of the angle and energy. There are two loops.

In the first loop −→r 1 is compared to −→s 1. Depending on which is larger the guess

of energy is changed. The process is repeated iteratively until the difference between
−→r 1 and −→r 2 is small.

Then −→r 2 and −→s 2 are compared. Depending on which is larger the angle is

changed. Then the first loop is repeated.

Finally, when −→r 1 and −→r 2 match −→s 1 and −→s 2, within a certain tolerance, the

algorithm outputs the energy and exit angle of the electron.

I chose this method because it was more compatible with the existing bench

marked code, and all the ancillary magnetic field maps and libraries developed for

it could be retained. Computationally the first method would in principle be faster.

However this code takes around 10 minutes to run a dozen points on a desktop

computer so further optimization was not necessary for my purposes.

It is not necessarily the case that for highly non-uniform magnetic fields there will

be a unique mapping of momentum vectors pz and py to positions on the screens −→s 1
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Figure 3.6: Diagram of the iterative algorithm for finding the energy and exit angle

of electrons exiting a LWFA incident on a two screen spectrometer.
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and −→s 2. However as shown in figures 3.3 and 3.4, the magnetic fields which I have

used are highly uniform. This leads to there being a unique mapping as long as the

electron source point is known. I verified this by carrying out fittings of electrons of

energies between 1 MeV and 2 GeV with exit angles of between +100 mrad and -100

mrad. I took note of the turning points in the positions on the screens where the

electrons hit. There where no obvious discontinuities and so concluded that the map

from pz and py to −→s 1 and −→s 2 is smooth.

So the two-screen method allows the full three dimensional momentum distribu-

tion of the beam to be examined which provides insight into the dynamics of electron

motion in a LWFA such as injection and acceleration. This is vital for understanding

the processes responsible for beam instabilities and x-ray generation.

3.1.2 Electron Profile Measurements.

In various places I will refer to electron profile measurements. These were conducted

using a similar method to the electron spectrometry. However instead the deflecting

magnet was removed and a scintillating screen was placed along the laser axis after

the LWFA. It was positioned at 45 degrees to the normal of the laser axis and imaged

using mirrors and lenses terminating in a CCD camera placed at 45 degrees to the

final mirror thus removing the distortion due to angle. The scintillating screen is

constructed in the same way as for the spectrometers with layers of aluminised Mylar

to block laser light and Lanex scintillator however with the addition of a sheet of solid

aluminium to block low energy electrons ( . 1 MeV ).

3.2 X-Ray Measurement

In this section I will describe the methods I used to measure the betatron x-rays

generated by the wakefield accelerators, the goal being to arrive at a measurement of

the peak brightness and critical energy of the x-ray spectrum. These two numbers

together give you all you need to know about the x-rays assuming betatron like

spectrum.

The basic method is to deflect the electrons produced by the laser wakefield ac-

celerator so that they are no longer concurrent with the x-ray beam, filter out any

remaining laser light, pass the x-rays through a filter pack made of materials with

different atomic weights, and then detect the x-rays using a phosphor and a CCD
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camera. By using the known transmission curves of the filters making up the filter

pack, an iterative fitting algorithm was used to find the critical energy of the syn-

chrotron like spectrum which best fitted the observed experimental data. This along

with a calculation of the number of photons incident on the detector and measure-

ments of the size of the x-ray source is sufficient to give the peak brightness of the

x-ray spectrum.

I will start off by describing the filter pack designs used in this thesis, then discuss

the details of the data treatment and finally talk about the x-ray detection system.

3.2.1 Filter Pack Design

The purpose of the filter pack is to find the spectrum of the x-rays transmitted

through it. The method is similar to the use of Ross filters, where the purpose of the

filters is to produce a mono-chromatizing effect. In Ross filters this is accomplished

by using two filters composed of elements of adjacent atomic number with thicknesses

adjusted so that the transmitted spectra are identical for all wavelengths except those

lying within the K-absorption limits [88]. Here however, instead of using only two

filters, a number are used with K-alpha absorption peaks spread across the range of

wavelengths we wish to measure. This allows for the spectrum to be fitted using an

iterative (trial and error) algorithm.

The first filter pack I constructed using the design in Kneip 2010 [89]. It is shown

in figure 3.7 and was used in the experiment using the Lund laser ( 18 TW). It is

designed to measure the spectrum between 1 and 10 keV as this is a x-ray energy

range consistent with a 18 TW laser producing a LWFA betatron spectrum [90].
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Figure 3.7: Initial filter pack design. Designed for categorising the critical energy of

a betatron-like x-ray spectrum between 1 and 10 keV. The backing material 6 µm of

mylar (Biaxially-oriented polyethylene terephthalate) with 90 nm of aluminium.

Figure 3.8: Table of filters used in initial filter pack design. Designed for categorising

the critical energy of a betatron like x-ray spectrum between 1 and 10 keV.

As I was to conduct experiments using the much more powerful Gemini laser,

(which produced a peak power on target of 180 TW during the experiment), I needed

a way to measure x-ray spectrums with critical energies between 1 and 100 keV. To

this end I adapted the filter pack method selecting elements with k-alpha absorp-

tion edges as equally spaced as possible across this energy range, while considering

their availability, chemical stability, affordability and safety. I chose filter thicknesses

which would provide a similar transmission of betatron like spectra other than the

changes due to the K-alpha edge, which could be fabricated by combining layers of

commercially available foils. I tested the filter pack fitting algorithm by creating test

x-ray spectra, adding Gaussian noise, passing them through the transmission curves

expected for my selected thicknesses of elements [91], also adding appropriate noise

at this stage. I then took the resultant signals through each filter and used the fitting
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algorithm to calculate the critical energy of the original spectra. With some adjust-

ment to the filter thicknesses I found filter elements and thicknesses which worked

effectively. These are shown in the table of figure 3.9.

Figure 3.9: Table of elements used in filter pack designed for betatron like spectra

with critical energies between 1 and 100 keV.

My first attempt at measuring x-rays, from the Lund laser, is not presented in

the accompanying chapter on the experiment, as I found fitting the spectrum using

the algorithm was not possible due to the noise levels being too high. I will however

discuss it here as it helped inform the methodology in the subsequent experiments

and my filter pack design.

Figure 3.10 shows an image from the x-ray camera in the Lund experiment with

the filter pack from figure 3.7. In the sections 1 and 8 shown in the figure 3.10 2

mm pieces of copper have been placed. The signal through these sections is due

to Bremsstrahlung gamma rays generated by the electron beam from the LWFA

stopping. This prevented the x-rays from being properly categorised on this occasion.

For the Gemini experiment I took measures to prevent this problem described in that

chapter.

I did however note from figure 3.10 the signal through the thin backing material

could be useful. I wanted to address the potential problem of the x-ray beam not

being homogenous across the field of view of the x-ray camera. This could come

about if the beam was smaller than the solid angle of the CCD. It could also come

about if the beam was not centred on the x-ray camera and there was a change
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Figure 3.10: This a typical (if bright) image captured by the x-ray camera on the

Lund experiment. The different filters are clearly visible. For analysis purposes the

image is broken into the sections shown. 1) and 8) act as a background calibration

and are covered with 2mm Copper. 2) 3µm V, 3) 3µm Fe, 4) 5µm Ni, 5) 5µm Zn,

6) 3µm Zr, 7) The backing material 6 µm of mylar (Biaxially-oriented polyethylene

terephthalate) with 90 nm of aluminium. The camera was a front illuminated Andor

CCD mounted in vacuum. The axis show pixel number.

in intensity across the chip. For this reason I selected a grid design (as shown in

figure 3.11). This would mean that it would be possible to know if the beam was

inhomogeneous, something that would not necessary be possible without a thin grid

of backing material. It would also allow for measurements to be made if the x-ray

beam changed in intensity across the field of view, of course assuming that the change

in x-ray spectrum was small.
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Figure 3.11: Grid filter pack design 4x4. Designed for categorising the critical energy

of a betatron like x-ray spectrum between 1 and 100 keV. The backing material 6 µm

of mylar (Biaxially-oriented polyethylene terephthalate) with 90 nm of aluminium.

Used in the Gemini Experiment chapter.

In the design of the filter in figure 3.11, some key filter elements are repeated. This

is for two reasons, one for the case of the x-ray beam covering a smaller angle than

the filter pack, the section for improved confidence in measuring a inhomogeneous

x-ray beam. In the case of the x-ray beam covering a smaller section of the filter

pack, the filters are arranged to hopefully allow the spectrum to be fitted with only

a subset of exposed filters.

In the case of a large inhomogeneous beam this allows the signal through repeated

filters to be compared. If the ratio of these repeat filter to the surrounding backing

material is the same at different positions on the field of view, then one can conclude

that change in x-ray spectrum energy is small across the field of view. Subsequently
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the sections of the grid around each filter can be used to normalise the signal before

being passed to the fitting algorithm allowing beams of inhomogeneous intensity to

have their critical energy fitted.

Once the manufacturing process had been perfected I was able to further improve

on the design by cutting the area of each filter by a quarter, leading to the filter

design shown in figure 3.12. This has the advantage of more repetition of elements

thus increasing the confidence in the measurement.

Figure 3.12: Grid filter pack design 8x8. Designed for categorising the critical energy

of a betatron like x-ray spectrum between 1 and 100 keV. The backing material 6 µm

of mylar (Biaxially-oriented polyethylene terephthalate) with 90 nm of aluminium.

Used in the Gemini Experiment.

3.2.2 Data Treatment for X-ray Spectrum

In the x-ray measurements discussed in the chapter on the Gemini Experiment. The

x-ray beam was found to be inhomogeneous, figure 3.13 shows an extreme example.
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Figure 3.13: An image from the Princeton PIXIS camera system used on the Gemini

experiment. The colour table is arbitrary but linear. One can see the x-ray beam

varies in intensity.

Due to this the signal through each elemental filter was normalised to the four

backing regions around it (shown in figure 3.14. Then passed through the fitting

algorithm. The long Al vacuum tube (shown in figure 3.15) is used to measure

the level of bremsstrahlung gamma rays in the four regions at the corners of the

image, this is subtracted from the data before the photon number is calculated. Once

normalised the ratios between repeat filters were seen to be the same. Allowing for

the assumption of only a small change in spectrum across the field of view of the

camera.

Figure 3.14: An image from the Princeton PIXIS camera system used on the Gemini

experiment. The colour table is arbitrary but linear and saturated in places. The

extent of each filter region is shown in blue. The regions around each filter( to

normalise for inhomogeneities in the beam) are shown in green.
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Figure 3.15: Photograph of a filter pack in place on the Gemini experiment. A

beryllium window is used to pass the x-rays into air. The length of vacuum tube is

used to provide information on the level of bremsstrahlung radiation.

3.2.3 Princeton PIXIS camera

In order to detect and characterise x-rays which have energies between 1 keV and

100 keV a PIXIS-XF:2048BL system supplied by Princeton Instruments was used.

This consisted of a Csl:TI scintillator coupled to a CCD array using optical fibres and

enclosed behind a Be window. The process of x-ray detection involved in this system

is summarised in the illustration of figure 3.16.

The Csl:TI has a reasonably good response to x-rays in the 10 - 100 keV part

of the spectrum as shown in figure 3.17. For the measurements of the x-ray source

reported in this thesis, it was necessary to absolutely calibrate the camera response,

i.e. to provide a direct relationship between the signal recorded by the camera and

the number of incident photons. This was performed using an Fe-55 source. The

following section describes this calibration process and the method for calculating

the absolute number of photons.
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Figure 3.16: An illustration of the stages involved in an x-ray causing an ADC count

in the Princeton PIXIS camera system.

Calculation of Princeton PIXIS system counts from photon

number.

To understand the coefficients that need to be calibrated, consider the calculation

of the number of counts given by a certain number of x-ray photons incident on the

Princeton PIXIS system for a given x-ray spectrum. It can be considered as follows,

(working from right to left in illustrationin figure 3.16):

1. Let us assume a known spectral shape function ( S ′(E) ), which gives the number

of photons per photon energy (E). For instance a synchrotron like spectrum

could be assumed.

2. The fraction of the total number of photons in the spectrum at a given energy

( S(E) ) is then given by the following integral equation:

S(E) =
S ′(E)∫
S ′(E)dE

(3.10)

3. The fractional transmission of x-rays through the length of air and/or other

materials such as metallic filters and Be windows between the x-ray source and

the Princeton PIXIS system is given by the function T (E). This function can

be found from reference values [91], as long as the length of air or of other

materials is precisely measured.
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Figure 3.17: The Princeton PIXIS system’s CCD array quantum efficiency is shown

in red. The Princeton PIXIS camera system’s Csl:TI scintillator’s x-rays absorption

efficiency is shown in blue. This includes the transmission through the 10 mm Be

window. Data reproduced from Princeton Instruments documentation [92].

4. The fraction of photons absorbed as a function of photon energy in the scintil-

lator Q(E) is given in figure 3.17. This also takes account of the transmission

of the integrated Be window which is part of the Princeton PIXIS system.

5. The integral I then gives the total energy deposited in the phosphor on average

per photon of the incident x-ray spectrum.

I =

∫
T (E)Q(E)S(E)EdE (3.11)

6. Now that a certain amount of x-ray energy has been deposited in the phos-

phor scintillator it will produce 2.25 eV green photons with a certain energy

conversion efficiency g.

7. The green photons are emitted over an angular distribution, some fraction of

them (α) are captured and guided to a CCD array pixel by an optical fibre

(or collection of fibres). This constant α will not necessary be the same for

all camera pixels. This is because distortions and blemishes are inherently

produced during the fibres’ manufacturing process and introduce distortion and
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non-uniformity of response in the fibres, [93]. In addition certain ‘dead’ fibres

are used by design and create the hexagonal pattern seen in figure 3.20c). These

effects collectively can be modelled by a slight variation in the constant α.

8. The green photons are then deposited in the CCD. The CCD quantum efficiency

can be seen in figure 3.17. Its efficiency for 2.25 eV photons is q(2.25 eV) = 97%.

9. Each deposited green photon will create one electron-hole pair, as this is normal

for a CCD interacting with a visible light photon, [94].

10. The resulting number of counts recorded for each of the electron-hole pairs

created depends on the analogue-to-digital converter. Its details are shown in

figure 3.18. The number of counts for each green photon is then given by the

factor ADC.

11. So the number of counts (c) given for a certain number of incident photons (Np)

for a pixel of the CCD array is then given by this expression:

c = Np
I(S ′)

E2.25eV

· g · α · q(2.25eV) · ADC (3.12)

12. This expression can be simplified into the factors which do not depend on the

incident x-ray radiation spectrum (M ′) and the integral I(S ′).

c = Np · I(S ′) ·M ′ = Np ·M (3.13)

3.2.4 Princeton PIXIS Camera System Calibration

As the values of the phosphor energy conversion efficiencies (g) and the fibre coupling

efficiencies (α) for each pixel were not precisely known. It was necessary to calibrate

the system using a source of known brightness.
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Figure 3.18: The ADC settings for the Princeton PIXIS system. Reproduced from

Princeton Instrument’s unique calibration.

 

Princeton PIXIS camera calibration – including source geometry effects 
Stuart Mangles 11/09/2013 


I have been looking again at the calibration data for the Princeton camera as the main thrust 
of Michael’s paper is the number of photons and currently this is based on best available data 
on the camera sensitivity, rather than an actual calibration.  Michael and Rob Clarke took 
some calibration data using an Fe-55 source at RAL (a source of 5 keV photons) that we can 
use to cross check the calculated camera sensitivity  with the actual sensitivity. 
 
 
The source is a disk source (assumed uniform) of 11 mm diameter with an activity of 
2.5926 Mbq.  The camera was placed in contact with the source holder and exposed for 
1800 s.  Figure 1 shows a photo of the set up. 

 

Figure 1: Photo of the set up with approximate scale. 

 
The recorded image, after a pixel by pixel background subtraction is shown in figure 2. The 
image shows a cylindrically symmetric smooth intensity distribution which falls to zero 
before the edge of the chip (which is 27.6 mm across). 

 
Figure 2:  Recorded image from a 1800 s exposure.  The number of ADC counts in the centre is 1042 counts. 

source - camera distance

10
 c

m

Figure 3.19: Photo of calibration setup with approximate scale.

The calibration was carried out at the Rutherford Appleton laboratory using a

Fe-55 disk source of 11 mm diameter, and an activity of 2.5926 MBq at the time of the

calibration. The camera was placed in contact with the source holder and a number
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of 30 min (1800 s) exposures were taken. This length of exposure was necessary to

yield an appreciable signal on the camera. A number of 1800 s background exposures

were also taken without the source present.

It is necessary when using the system to conduct a pixel by pixel subtraction using

an appropriate background image. This due to the noise levels in each pixel not being

uniform across the CCD array but varying reproducibly for each pixel. The results of

this subtraction are shown in figure 3.20. One can notice that in figure 3.20c) there

is a hexagonal grid pattern in the data. This is due to the optical fibre design, and is

normal.

a)! b)! c)!

Figure 3.20: Exposure to Fe-55 for 1800 s. b) Exposure with no source present. c) A

pixel by pixel subtraction of a) from b). The images above show the camera counts.

The histograms below show the exact colour tables used for the images above.

The shape of the distribution seen in 6c) is typical of the distribution produced

by a disk source of radiation. From Smith et al.1954 [95] the following expression for

this off-axis distribution ( D(z, a, ε) ) of a disk radiation source is given:

D(z, a, ε) =

∫ a

0

∫ 2π

0

G(R)S(ρ)ρdρdθ (3.14)

The geometry is shown in figure 3.21. a is the source radius. G(R) is the response of

the detector at distance R from the disk. S(R) is the source strength per unit area,
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in this case 2.5926 MBq / (2πa2) . ρ and θ are the polar coordinates on the disk. z

is the perpendicular distance of the detector to the source. ε is the distance from the

axis of the disk to a point on the detector. R is the distance of a point on the disk to

a point of the detector, given by the expression:

R = (z2 + ρ2 + ε2 − 2ερ cos θ)1/2 (3.15)

Figure 3.21: The geometry used for the off axis distribution of a disk radiation

source.

In the case of a detector such as the Princeton PIXIS camera system the response

G(R) varies with solid angle. As the solid angle is reduced, by the angle between the

vector R and the normal of the camera increasing, the camera response will decrease.

This results in:

G(R) =
z

4πR3
(3.16)

This can be substituted into the integral and solved numerically. It is important to

do this as the on axis distribution, which is the centre of the distribution in figure

3.20c), will differ from that of a point like source if z is not very much greater than

a. A point like source would be expected on axis to vary as: D = a2/(4z2). The

difference is shown in figure 3.22.
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Figure 3.22: The on axis distribution due to a point like source (green line) and the

on axis distribution for a disk source (red dotted line).

Unfortunately the distance between the front of the camera and the radiation

source (z) could not be measured. This is because the Fe-55 source was too dangerous

to examine and the distance of the disk from the front of the enclosure is not known.

However, because the off axis distribution changes in shape with changes to the

distance z, as is shown in Figure 3.23, it was possible to numerically solve for D(z, a, ε)

and iteratively fit the constant M and the distance z.
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Figure 3.23: Calculation of the off axis distribution of radiation for a uniform disk

source of 2.5926 MBq activity radius 5.5 mm, placed at distance z from a pixel

detector with the same pixel size and dimensions as the Princeton PIXIS system.

The distribution was calculated numerically and in this case the constant M (defined

above) has been set to one. a) z = 1 mm. b) z = 3 mm. c) z = 5 mm.
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The iterative fitting algorithm found z = 3.11 mm and M = 0.942. This value

of z is consistent with the set up shown in figure 3.19 and this value of M is also

consistent with reasonable values of the unknown constants mentioned above. The

results of the fit are shown in Figure 3.24 and can be seen to be in good agreement

with the experimental data.

0 500 1000 1500
0

200

400

600

800

1000

1200

Pixel

Co
un
t

Figure 3.24: Blue Solid Line: A lineout through the centre of the signal due to

exposure to the Fe-55 source for 1800 s after a pixel by pixel background subtraction.

Red Dashed Line: The off axis distribution calculated with fitted values of z=3.11

mm and M = 0.942 for a uniform 2.5926 MBq activity disk source of radius 5.5 mm,

1800 s exposure.

Recalling the expression of counts due to photon number:

c = Np · I(S ′) ·M ′ = Np ·M (3.17)

The calibration factor M contains the spectrally dependent term I(S ′) and the spec-

trally independent termM ′. In order to calibrate the system’s response to an arbitrary

x-ray spectrum S ′ the constant M ′ must be found. To do this the integral I(S ′) must

be assessed for the Fe-55 spectrum.

I =

∫
T (E)Q(E)S(E)EdE (3.18)

The decay of Fe-55 is via electron capture to Mn-55. The result of this is a rapid

adjustment in the electrons around the nucleus and a vacancy in the ‘K’ shell, which
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is usually filled by an electron from a higher shell. There are a variety of ways the

excess energy from this process may be emitted via Auger electrons or x-rays of

differing energy and probability. However the x-rays energies are so similar they can

be specified as mono-energetic radiation of 5.9 keV, [96]. Thus S ′(E) = δ(E−5.9keV )

The transmission of 5.9 keV x-rays through 3.11 mm of air is found from reference

values [91], yielding T (E) = 0.992. The quantum efficiently of the Csl:TI scintillator

for 5.9 keV photons can be assessed from Figure 3.17 as Q(5.9keV ) = 0.899. Thus

I(Fe-55) = 5.26 keV/Photon. So M ′ = 0.1791 counts/keV .

So furnished with an accurate calibration of the Princeton PIXIS system, it is now

possible to calculate incident photon number on the system with accurate knowledge

of the spectral shape function of the radiation.



Chapter 4

Laser Wakefield Acceleration

Experiments with the Lund

Multi-TW Laser

For this experiment a multi-TW CPA laser system at the Lund Laser Laboratory

(LLC) located in Sweden was used, which delivered 18 TW to target.

Wavelength Pulse Energy Pulse Duration Repetition Rate

λ0 (nm) (J) τ0 (fs) (shots per min)

800 0.6 45 >1

In this chapter the threshold for electron self injection in a self guided LWFA, a

parameter critical for both electron and x-ray generation.

4.1 Experimental Set Up.

The general set up is best described by figure 4.1. The laser beam is focused onto

the edge of a supersonic gas jet using an f/9 off-axis parabolic mirror. A range of

nozzles was available for the gas jet to examine the guiding properties. In practice

the measurements were made with both a 2mm and 3mm diameter nozzle,[97].

A permanent magnet based electron spectrometer was set up inside the vacuum

chamber using a Lanex screen and CCD imaging system to record the electron spec-

trum. The magnet was placed on a translation slide so that it could be moved out of

the beam line-of-sight, allowing measurements of the electron beam profile.

67



CHAPTER 4. LUND EXPERIMENT 68

Electron
Spectrometer

X-Ray
Camera

DiodeMirrors

Lens

Lens

Semi Reflective
Mirrors

Spectrometer

Diode

Focal spot
Camera

Glass
Wedges

Electron
Profile Monitor Off-Axis Parabola

Gas Jet

Magnet

Figure 4.1: The experimental set up for the Lund Laser Lab experiment.
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To characterize the guiding, the transmitted laser light was attenuated using two

glass wedges before being collected. A magnified image of the exit mode was then

recorded on a high dynamic range CCD camera and simultaneous measurement of

the transmitted laser spectrum was also recorded. Filters centred around 800nm were

used. In addition calibrated measurements of the transmitted laser energy were made

using diodes both before and after the interaction.

An x-ray CCD camera was set up on the laser axis able to operate either as a

filter transmission spectrometer or in single-photon mode (to provide a high resolution

spectrum in a single shot). This is to characterize the x-ray spectrum produced by

betatron oscillations of the electron beam.

Through a clever arrangement of the glass wedge, and two Lanex screens of differ-

ent sizes on a rotation stage it was made possible to operate the experiment in three

modes without the need to break vacuum:

1. To measure a portion of the electron spectrum while simultaneously running

the x-ray camera. This was achieved through diverting the electrons via the magnet

(into a aluminium backed sheet of Lanex) which allowed the laser and subsequent

betatron x-rays to pass unobstructed.

2. To take a full image using Al backed Lanex of either the electron spectrum

with the magnet in or the electron profile.

3. To use the glass wedge to take measurements on the forward line diagnostics

and record the electron spectra or profiles utilizing a Lanex screen mounted on the

rear of the glass wedge. (Here it would be expected that glass would filter out the

lower energy electrons).

Additionally, use was made of the relatively long fluorescence life time of Lanex, see

Buck 2009 [98]. By gating the image taking in the spectrometer to a few microseconds

after the interaction, elaborate light shielding was made unnecessary.

Variation of electron density of the plasma.

Electron density in the plasma was varied through changing the backing pressure of

the gas feed line before the super sonic gas jet. The resulting density profiles were

found offline (but in situ) through use of a Wollaston interferometer using neutral

argon gas.
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Figure 4.2: Focal spot images recorded with increasing amounts of spherical aberra-

tion. From left to right the intensity contained in the FWHM is (a) 47%, (b) 40%,

(c) 31%, (d) 20%.

Variation of Energy in FWHM focal spot.

The focal spot quality of the laser and subsequently the energy in FWHM of the

focal spot were controlled using the 32 actuator deformable mirror and wave-front

sensor available at LLC. Using this system not only could the focal spot quality be

maximised but known aberrations could be approximated at focus. Figure 4.2 shows

some of the focal spot profiles used.

Variation of focal spot size.

This was achieved through changing a lens before the off axis parabola. This allowed

the beam diameter on the parabola to be changed and so subsequently the size of the

of the beam at focus to be increased.

Variation of the power of the laser pulse.

This was varied through changing the pulse length by moving the compressor gratings,

thus allowing the total energy of the pulse to remain the same but change the power. A

side effect of this is to introduce (chromatic) chirp into the pulse, where the wavelength

varies linearly over time. Both directions of grating movement were used in order to

create positive and negative chirp, positive chirp having shorter wavelengths at the

leading edge of the pulse. This also causes skew in the pulse where the electric field

gradient varies more quickly on the leading or falling edge of the pulse depending on

which direction the gratings are moved in.
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5 4 6 7 8 9 10 2 3 0 Backing 
Pressure [Bar] 

1.6 1.3 1.8 2.1 2.4 2.7 3.0 0.7 1.0 0 Plasma Density 
/cm3 x1019 

Electron Profiles for 40% Focal Spot. 

Figure 4.3: Measurements of the electron beam profile for different plasma densities

for α = 0.40 . The colour table is linear and in arbitrary units. A threshold for

injection is clearly visible between densities of 1.3 and 1.6 x 1019 cm3.

The total energy of the laser pulse.

The total energy of the laser pulse was varied though changing the number of pump

lasers in the CPA system. Through reducing the number of lasers pumping each

amplification stage a number of different energies could be produced.

4.2 Examining the energy-density threshold for wave-

breaking

As already mentioned in section 4.2.1 in the highly non-linear regime there is a thresh-

old plasma density below which no electron beams are produced. In this section the

effects of laser pulse duration τ0, laser energy E0 and the laser energy α in the FWHM

of the laser spot on this density threshold are examined.

From measurements of the electron beam profile monitor (Figure 4.3), it is clear

that the threshold for wavebreaking has, as expected, a dependence on plasma density.
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Figure 4.4: The recorded charge for the different focal spot qualities (α) for different

plasma densities (ne).
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Figure 4.5: The recorded charge for the different focal spot qualities (α) plotted

against the power in the FWHM of the pulse as a ratio of power for self focusing

(αP/Pp).
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Figure 4.6: The recorded charge for the different laser energies against different plasma

densities (ne). α = 0.47.
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where there is no loss of energy during self-focusing, nor
any change in the pulse duration, the final matched spot
size, and hence the final intensity, is simply a function of
!P=Pc. P is the laser power; ! is the fraction of laser
energy within the full width at half maximum intensity of
the focal spot—important because energy in the wings of
the spot are not self-focused by the plasma wave and
so do not contribute; Pc is the laser power where
relativistic self-focusing dominates over diffraction, Pc ¼
ð8"#0m2

ec
5=e2Þðnc=neÞ ’ 17nc=ne GW (where ne is the

background plasma electron density and nc is the critical
density for propagation of the laser in the plasma). We
might therefore expect that the self-injection threshold
would occur at a fixed value of !P=Pc [25]. However, it
is also known that the longitudinal nonlinear refractive
index gradient also has a significant effect on the pulse
properties [26,27] and we expect this to have an affect on
the self-injection threshold.

The experiment was carried out using the multi-TW
laser at the Lund Laser Centre. The laser delivered pulse
energies of up to 0.7 J in pulses as short as 40 fs, corre-
sponding to a peak power of 18 TW. An f/9 off-axis
parabolic mirror was used to focus the pulse. A deformable
mirror was used to optimize the focal spot, producing a
spot size of 16$ 1 $m FWHM. For a Gaussian focal spot
the theoretical maximum fraction of energy within the
FWHM is ! ¼ 1=2, the best focus that we obtained had
! ¼ 0:48. The focal plane was positioned onto the front
edge of a supersonic helium gas jet with an approximately
flat top profile of length 1:8$ 0:1 mm.

To investigate the self-injection threshold, we studied
the effect of the plasma density ne, the total laser energy E,
the focal spot quality !, and the pulse duration % on the
amount of charge in the electron beam. We chose to use
the total charge in the electron beam as the diagnostic of
self-injection as it provides a clear unambiguous signal
of an electron beam.

The charge was measured using an electron beam profile
monitor, consisting of a Lanex screen placed on the back
surface of a wedge (which was used to collect the trans-
mitted laser light). The wedge was 1 cm thick and made of
glass and therefore prevented electrons below approxi-
mately 4 MeV reaching the Lanex. The Lanex screen
was imaged onto a 12 bit CCD camera. To reduce the
amount of background light from the interaction, a narrow
band interference filter matched to the peak emission of the
Lanex screen was placed in front of the camera. In addi-
tion, the camera was triggered several microseconds after
the interaction but within the lifetime of the Lanex fluo-
rescence. The Lanex screen was calibrated using the abso-
lute efficiency data, absolute response of the CCD camera,
and the details of the imaging system [28]. A beam profile
monitor was used in preference to an electron spectrometer
due to the fact that it has a higher sensitivity (i.e. the
signal produced by a low charge beam dispersed inside a

spectrometer will drop below the background level,
whereas the same low charge beam will produce a bright
image on the profile monitor). Also close to the threshold
we do not expect the electrons to have particularly high
energy (i.e. injection could be occurring but the electron
beam energy could be outside the range of the electron
spectrometer).
The gas jet could produce electron densities up to ne ¼

5% 1019 cm&3. The laser pulse energy was varied by
altering the energy pumping the final laser amplifier. We
used the deformable mirror to reduce ! by adding varying
amounts of spherical aberration. Spherical aberration has
the effect of decreasing ! without introducing asymmetry
to the focal spot and without significantly affecting its size.
Degrading the focal spot symmetrically was desirable as
asymmetric pulses can drive asymmetric wakes which can
have a strong effect on the dynamics of self-injection [29].
The pulse duration was altered by changing the separation
of the gratings in the compressor. Changing the grating
separation introduced both a chirp to the pulse spectrum
and a skew to the pulse envelope. To take this into account,
we investigated both positive and negative chirps.
Figure 1 shows the effect of varying the laser pulse

energy within the focal spot on the self-injection threshold.
Keeping the total laser energy constant and degrading the
focal spot (i.e. lowering !) moves the threshold to higher
plasma densities. We also observe an increase in the
threshold density when we keep ! constant and reduce
the laser pulse energy. In fact, we find that the two effects
are equivalent, i.e., that the threshold shifts according to
the product!E. This demonstrates that it is only the energy
within the FWHM of the focal spot that contributes to
driving the plasma wave. This emphasizes the importance

FIG. 1. Electron beam profiles for various plasma densities for
different values of the amount of laser energy within the FWHM
of the focal spot. (a), (b), and (d) kept the total laser energy
constant but varied ! whereas (c) reduced the laser energy. Each
panel is an average of five shots and is displayed on a logarithmic
color scale.

S. P. D. MANGLES et al. Phys. Rev. ST Accel. Beams 15, 011302 (2012)

011302-2

Figure 4.7: Electron beam profiles for various plasma densities for different values

of the amount of laser energy within the FWHM of the focal spot α. Each panel is

an average of five shots and is displayed on a logarithmic color scale. (a), (b), and

(d) kept the total laser energy E constant but varied α whereas (c) reduced the laser

energy E. (I made this figure, which was first published in Mangles, Bloom, et al.

2012 [99]. Reproduced under creative commons licence.)
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Figure 4.8: (Left) This is the recorded charge on the electron profile monitor for

when the position of the compressor gratings is varied. (Right) The pulse duration

measured using a “GRENOUILLE” against grating position.

Above 1.3 ×1019 cm−3 clear electron beams are present. However there are arguably

clearer beams with higher charge and small divergence at 1.8 ×1019 cm−3 than at 1.6

or 2.1 ×1019 cm−3.

The quality of the focal spot was varied as set out in the previous section and

figure 4.4 shows the results of this study. In this graph, as it will be for all the figures

in this section, each point represents the average of 5 shots and the error bars are

representative of the standard deviation of these results. The charge shown for each

profile measurement is simply the total number of CCD counts across the electron

beam profile monitor.

From figure 4.4 it is clear that as the quality of the focal spot (α) is lowered

the amount of charge on the profile is reduced. Here one can identify for the α =

0.5 beam at pressure 1.8 ×1019 the hight point representing the clearer beams with

higher charge and small divergence shown in figure 4.31. An important thing to note

is that at higher plasma densities the beam quality clearly deteriorates in figure 4.3

with multiple beamlets appearing. However in figure 4.4 you can see that though the

beam quality is poor at these high densities the amount of charge is equivalent or

greater than for the good quality beam.

In order to compare the data from the different focal spots it is useful to compare

their power. In doing so its not a bad idea to normalise to the critical power for self

1The data is actually from α = 0.47 in figure 4.4 and α = 0.40 in figure 4.3. But the results for

α = 0.40 were so close to α = 0.47 (0.5) that they have been omitted from figure 4.4. The two spots

can be viewed in figure 4.2.
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Figure 4.9: (a) Electron charge (>4 MeV) versus αP/Pc keeping the pulse duration

constant but varying the focal spot quality α and the plasma density ne (closed

circles) or total pulse energy E, and plasma density (open squares) but keeping the

pulse duration constant τ0. (b) Electron charge versus αP/Pc varying pulse duration

τ0 while keeping plasma density ne and energy in focal spot αE constant. (c) Data

from (a) and (b) plotted versus αEne/nc. Each data point is an average of five shots

and the error bars represent 1 standard deviation. (I made this figure, which was first

published in Mangles, Bloom, et al. 2012 [99]. Reproduced under creative commons

licence.)
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focusing Pc which is in turn dependent on the plasma density2. This is done in figure

4.5. Here one can see that there is a clear trend.

The effect of changing the energy of the laser pulse as a function of density is

shown in figure 4.6. This when plotted against αP/Pc as seen in figure 4.9 this data

can also be seen to follow the same trend as the variation of focal spot quality.

Through variation of the compressor grating distance the pulse length (τ) was

changed. The resulting pulse length was evaluated using a “GRENOUILLE”3. This

effect is shown in figure 4.8 (b). It can been seen that counter to expectations the

amount of accelerated charge actually increases at positions away from the grating’s

zero position; the position where the pulse is at its shortest and known as bandwidth

limited. As shown on figure 4.9 the charge is optimised for a positively chirped pulse

of 50 fs opposed to the bandwidth limited pulse of 41 fs. This effect was actually first

reported by Leemans in 2002 [100], in which it was theorised that the electric field

gradient at the front of the pulse was the necessary factor. This would indicate that

is not in fact a power threshold as in figure 4.9 (a).

In figure 4.9 (c) the data from (a) and (b) is plotted as a function of energy

αEne/nc not power. The variation of pulse length fits better in this case indicative

of an energy threshold.

4.2.1 Model of The Self-Injection Threshold in Self-Guided

Laser Wakefield Accelerators.

The highly nonlinear broken wave regime is used in many experiments to produce

quasimonoenergetic electron beams and is used in the experiments presented in this

thesis. In such experiments a threshold plasma density is commonly observed, below

which no electron beams are produced. In section 2.3.3 the cold wave-breaking lim-

its were discussed. However they did not take into account the 3D field structures

dependences on driving laser pulses.

Because of the inverse scaling of the electron beam energy with plasma density

ne, the highest energy beams achievable with a given laser system are achieved just

2

Pc =
8πε0m

2
ec

5ω2
0

e2ω2
p

≈ 17
ω2
0

ω2
p

GW

3A “GRENOUILLE” is a device which operates utilising a similar principle to a frequency resolved

optical grating F.R.O.G. .
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above the threshold, and it is well known that many of the beam parameters includ-

ing the spectrum and stability are also optimized just above the threshold density.

This therefore makes this parameter of key importance to x-ray as well as electron

generation by LWFAs. The threshold is also of importance if designing a LWFA to

not self inject. In which case one would have to operate below the threshold.

The first period of the plasma wave behind the laser pulse in a LWFA can be

thought of as a spheroid or bubble devoid of background plasma electrons travelling

at γφp behind the laser pulse. In the paper Kostyukov et al. 2004 [101] field equations

are derived for the electric and magnetic field present in a spherical cavity moving

through a plasma at relativistic velocities. In the paper Thomas et al. 2010 [102]

it is shown using these fields that electrons initially at rest following near elliptical

velocities due to the ponderomotive force of the laser will be accelerated to γφpmec
2

if the radius of the plasma bubble is larger than

kprb > 2
√
ln(2γ2φp) (4.1)

The paper Decker et al. 1996 [103] finds

γ2φp '
nc
3ne

(4.2)

for the Lorentz factor associated with the phase velocity of the bubble, (in contrast

to 2.55). In Lu et al. 2007 [104] the following relation between laser power αE/τ and

the matched bubble size is shown:

kprb = 2
√

2

(
αE

τPc

)1/6

(4.3)

However the laser pulse duration τ(l) changes from the initial pulse duration entering

the plasma τ0 as a function of the propagation length l. The paper Schreiber et al.

2010 [105] presents a simple model for the rate of the pulse compression:

τ(l) ' τ0 −
lne

2cnc
(4.4)

However pulse compression can not continue after the pulse has passed the pump

depletion length,

Lpd '
τ0cnc
ne

(4.5)

Combining together these equations the following expressions for the threshold for

electron self injection are reached. Depending on if the LWFA is longer or shorter
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than the pump depletion length one or the other should be used.

αE >
τ0Pc
16

[
ln

(
2nc
3ne

)
− 1

]3

for l > Lpd

αE >

(
τ0 −

lne
2cnc

)
Pc
8

[
ln

(
2nc
3ne

)
− 1

]3

for l < Lpd

(4.6)

This expressions were then tested against experiment as will be discussed in the

relevant chapters.

A previous study in Froula et al. 2009 [106] showed that, at low density, the

threshold is approximately

αP

Pc
< 3 (4.7)

A pure power dependence. This can be rearranged to similar form as the model

developed in 4.6 above.

αE > 3
πε0m

2
ec

5

e2
nc
ne
τ0 (4.8)

This alternate model will be contrasted with 4.6.

4.2.2 Comparing The Self-Injection Threshold Model With

The Experiment.

In section 4.2.1 a model for the self injection threshold was presented along with a

competing theory, given in equations 4.6 and 4.8 respectively. Figure 4.10 shows the

two predictions along with the thresholds observed in this experiment due to variation

of αE. The energy threshold is in good agreement to observation as opposed to the

power threshold.
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scaled pulse power. The fact that the pulse duration data set
now fits closely with the !E data sets confirms that pulse
compression is playing an important role in determining
whether or not the wakefield accelerator reaches self-
injection.

A recent paper that examined the trajectory of electrons
inside the plasma bubble [21] predicts that self-trapping
will occur when the radius of the plasma bubble (rb) is
larger than a certain value given by

kprb > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2"2

pÞ # 1
q

; (1)

where "p $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nc=ð3neÞ

p
[33] is the Lorentz factor associ-

ated with the phase velocity of the bubble. When this
condition is met, an electron starting at rest a distance rb
from the laser axis and following an elliptical trajectory in
the bubble fields (thus defining the edge of the bubble) will
be accelerated by the bubble fields up to "pmec

2 by the
time it reaches the back of the bubble. A key feature of this
model is that the normalized bubble size required for self-
injection kprb is not constant with density. As Eq. (1)
depends only on the plasma density and bubble size, we
can determine the minimum pulse properties required to
reach the threshold by noting that the radius of the bubble
is related to the pulse energy and duration through [34]

kprb ¼ 2
ffiffiffi
2

p "
!E

#Pc

#
1=6

: (2)

Combining Eqs. (1) and (2) yields an expression for the
minimum pulse energy required to reach self-injection:

!E>
$%0m

2
ec

5

e2

$
ln
"
2nc
3ne

#
# 1

%
3 nc
ne

#ðlÞ; (3)

where #ðlÞ is the pulse duration after a propagation length l.
A simple model for the rate of pulse compression was put
forward in Ref. [27] based on the fact that the front of the
pulse travels at the group velocity of the laser in the plasma
and the back of the pulse travels in vacuum, this produces
#ðlÞ $ #0 # ðnelÞ=ð2cncÞ. The interaction length will be
limited by either the length of the plasma target or the
pump depletion length lpd ’ c#0nc=ne [34]. For the deple-
tion limited case Eq. (3) reduces to

!P

Pc
>

1

16

$
ln
"
2nc
3ne

#
# 1

%
3
: (4)

The threshold density for self-injection for a given experi-
ment can be calculated from (3) and (4). This model
requires knowledge of the initial pulse energy, pulse dura-
tion, and the length of the plasma to predict the threshold.
As Eqs. (3) and (4) are transcendental, the density thresh-
old for a given laser system must be found numerically.

A previous study showed that, at low density, the
threshold is approximately !P=Pc > 3 [25], this can be
rearranged into a similar form to Eq. (3):

!E> 3
$%0m

2
ec

5

e2
nc
ne

#0: (5)

We can then use Eq. (5) to predict the density threshold for
specific experimental conditions. To use this model only
the initial pulse power is required to calculate the threshold
density. Combining !P=Pc > 3 and Eq. (2) reveals that
this threshold model is also equivalent to stating that the
minimum bubble size for self-trapping is constant with
density (kprb > 3:4) in contrast to Eq. (1).
In Fig. 4 we plot the variation of the observed threshold

density with laser energy (!E). We have defined the ex-
perimentally observed threshold density as lying in the
region between the highest density where we observe no
electron beam and the lowest density where we clearly
observe a beam. We also show the theoretical threshold
density based on Eqs. (3) and (4), and the predicted thresh-
old based on Eq. (5). Its agreement with the experimental
data indicates that our model accurately predicts the self-
injection threshold, confirming that the threshold is
reached because the laser pulse undergoes intensity ampli-
fication due to a combination of pulse compression and
self-focusing.
Our measurements of the threshold density for self-

injection have been made with only moderate laser pulse
energies &1 J. Many laser wakefield experiments are now
being performed with pulse energies &10 J and the valid-
ity of this model at these higher laser energies can be
verified by applying it to previously published data. We
restrict ourselves to data obtained from experiments with
gas jets as guiding structures can affect the trapping thresh-
old by changing the way pulse evolution occurs [30] or by
introducing additional effects such as ionization injection
[35]. To calculate the density threshold for a particular set
of experimental parameters, the following information is
required: the laser energy E, the focal spot quality !, the
initial pulse duration #, and the maximum plasma length l.
Equations (3) and (4) or Eq. (5) can then be used to
calculate the expected density threshold for the two mod-
els. Kneip et al. [2], using a 10 J, 45 fs, 800 nm laser pulse
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FIG. 4. Observed density threshold as a function of laser
energy (!E) for our experiment. The solid curve represents
our threshold model. The dashed curve represents a threshold
based on !P=Pc > 3.

S. P. D. MANGLES et al. Phys. Rev. ST Accel. Beams 15, 011302 (2012)

011302-4

Figure 4.10: Observed electron density threshold for self injection as a function of

laser energy (αE). The solid curve represents the model discussed in section 4.2.1

given by equation 4.6. The dashed curve represents the alternate threshold model

given by 4.8.



Chapter 5

Laser WakeField Acceleration and

Betatron X-Ray Generation Using

the Astra Gemini Laser

The experiment described in this chapter used the Astra Gemini laser at the Ruther-

ford Appleton Laboratory, UK. This two beam line laser was designed to deliver 15 J

pulses with a duration of 30 fs onto the desired target, and so have a peak power of

500 TW. The focusing optic used is a f/20 one metre off-axis parabolic mirror which

would be capable of producing intensities on target greater than 1.5 ×1020 Wcm−2.

As this corresponds to a normalised vector potential of a0 > 5, the motion of electrons

in this laser field will be highly relativistic.

The initial motivation for using such a laser to study electron acceleration was as

an extension of previous work producing betatron x-rays from self-guided wakefield

regime using the Hercules laser [69] where a peak power of 70 TW was used. The

results of the last experiment were encouraging as we saw x-rays of peak brightnesses

of 1022 ph/s/mm2/mrad2/0.1% bandwidth at critical energies of 10 keV, and sources

sizes of between 1 and 3 µm which we demonstrated could be used for phase contrast

imaging.

It was of great interest to see what x-rays would be produced by the more powerful

laser as existing scalings predicted a large increase in the accelerated electron energies

and so could produce both brighter and harder x-rays.

82
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5.1 Experimental Set-Up

At the time of the experiment, the Astra Gemini laser delivered pulses of 10J on

target with pulse durations of 55 fs, and peak power of 180 TW. An f/20 off axis

parabolic mirror was used to focus these pulses onto the edge of a supersonic gas

jet, producing intensities of 5 × 1019 Wcm, corresponding to a normalised vector

potential of a0 ∼ 3. The nozzles used were high density conical nozzles with a range

of entrance orifices producing plasma densities between 1018 to 1019 cm−3 depending

on the backing gas pressures used. Only the nozzles with 10 and 15 mm entrances

will be discussed here. They produce constant density regions of 8.5 and 11.5mm

diameter respectively in their centres with sharp density ramps around their edges.

The gas used was helium, as the laser pulse intensity is well above the threshold for

ionisation one can expect the gas to be fully ionised long before the main pulse of

the laser arrives. The nozzles were calibrated before the experiment by carrying out

interferometry using argon gas, this was later confirmed by observed Raman satellites

in an imaging system set up transversely to the laser propagation direction.

Figure 5.1 shows the experimental layout of the target vacuum chamber and di-

agnostics. The principal diagnostics which will be described here were a two screen

magnetic spectrometer used in measuring the energy spectrum of the accelerated

electrons which is described in chapter 3.1.1, and Csl:TI scintillator, fibre optically

coupled to a CCD array which is the Princeton PIXIS system described in chapter

3.2.3 and used to measure the x-rays produced when combined with the filter packs

discussed in section 3.2.1.
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Figure 5.1: Experimental layout showing the laser beam path and the separation of

the electron beam from the x-ray beam.

Previous experiments found that measurements of the betatron x-rays were ob-

scured by bremsstrahlung gamma rays produced by the electron beam meeting objects

within the experimental chamber or the chamber wall. Therefore this experiment was

designed to avoid this in the following ways:

• A magnet was used with a high magnetic field to deflect the electrons by a large

angle away from the x-ray path. The electron spectrometer was not fitted with

collimating apertures as they would produce bremsstrahlung. Instead the two

screen spectrometer technique described in section 4 was used which does not

require collimating apertures. The c-shape magnet design allows for electrons

to pass through without striking the yoke, further reducing bremsstrahlung

production.

• The distance of the electrons flight before exiting the vacuum chamber was

maximised thereby making the distance of the x-ray detector from the electrons

point of impact on the vacuum chamber as large as possible.

• Lead shielding was placed in-between the x-ray detector and the point of impact

of the electrons on the vacuum chamber.
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• The Al vacuum chamber was fitted with a low-z polymer flange at the electrons

impact point in order to minimise the bremsstrahlung produced.

• Inside the chamber the electrons flight path was kept as clear as possible with

only the electron scintillator screens in their path. These screens were inten-

tionally kept as thin as possible while remaining light tight, through the use

of an aluminised mylar layer, and maintaining a thick enough Lanex layer to

ensure good signal on the electron spectrometer.

These precautions together avoided the betatron x-rays from being obscured by

bremsstrahlung radiation as was the case in previous experiments I have conducted.

A microscope objective could be lowered into place, and the gas jet removed, to

record the focal spot of the laser, in vacuum; this in conjunction with motorised

mirrors and the off-axis parabolic mirror being motorised allowed for the focus of the

laser to be optimised while in vacuum. A top view camera was also set up above the

interaction to image the whole plasma, and was useful for alignment.

In addition to the diagnostics mentioned, a probe beam was set up to image

the plasma transversely, and carry out interferometry. An imaging system could be

inserted in front of the x-ray diagnostic in order to image the exit mode of the laser

from the plasma and also passed to an energy measuring diode. Data from these

diagnostics won’t be discussed here, however they did allow for confirmation that a

wake field was being produced, and on shot verification of how the laser energy was

being deposited into the plasma as a function of changing the backing gas pressure.

For data taking, shots could be taken around every 40s, limited mainly by the

speed at which gas could be pumped out of the chamber. Images from the x-ray

camera and two electron spectrometer screens were available immediately after each

shot. This combined with crude image processing done immediately allowed for the

experimental parameters to be searched to optimise both the x-ray production and

electron beam energies.

5.2 3D Momentum Distributions of GeV Electron

Beams

High-energy electron beams were produced over a range of plasma densities. The

electron beam typically produced significant features on the electron spectrometer
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screens due to betatron oscillations of the electron beam. Example scintillator screen

images are shown in figures 5.2 and 5.3.

	
  
Figure 5.2: Raw images of electron spectrometer scintillator screens. Images from

a) screen 1 and b) screen 2 for a shot at ne = 5 × 1019 cm−3 and a 10 mm gas jet

nozzle, c) and d) show a smaller region. The marked point on the right corresponds

to 1.34 ± 0.07 GeV electrons at an angle of 3 mrad. The marked point on the left

corresponds to 1.09 ± 0.04 GeV at an angle of -1 mrad.

Figure 5.2 shows the images from screens 1 and 2 for a shot at an electron plasma

density of 5 × 1018 cm−3, laser energy after amplification of 10.1 J, and a LWFA

length of 10 mm, and results of the reconstruction method is shown. The error in

this measurement was assessed: it was found that effects of positional error were

greater than those from other sources such as the accuracy of the magnetic field

measurement. By propagating the errors in the position for the screens, gas jet,

plasma, magnet, and the human error in choosing clearly identifiable features in the

spectra maximum bounds were found for s1 and s2; these maximum bounds were

used in the reconstruction algorithm in order to find the limits shown in the reported

error. Electrons were observed at energies as high as 1.34 ± 0.07 GeV on this shot.

There are also features closer to the spectrometer axis that missed the first screen.

The higher energy end of this spectrum shows clear betatron oscillations, responsible

for the generation of bright x-rays.
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Figure 5.3: Raw images of electron spectrometer scintillator screens. Images from a)

screen 1 and b) screen 2 for a shot at ne = 2× 1018 cm−3 and a 15 mm gas jet nozzle.

The marked points have their momentum components px , py and pz plotted in figure

5.

Figure 5.3 shows images of the two scintillator screens for a shot at an electron

plasma density of 2 × 1018 cm−3, a laser energy of 11.3 J, but using a 15 mm di-

ameter supersonic nozzle. This shot appears to show two interleaving beamlets. We

have analysed the full 3D momentum distribution of a set of points for one of these

beamlets. This is shown in figure 5.4.
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Figure 5.4: a) Three dimensional momentum distribution of one of the beamlets

shown in figure 5.3. The blue points are 3D momentum coordinates of the identified

features in the beam. The blue plane is the “plane of best-fit” to these points. The

red plane corresponds to the laser electric field direction. Two additional views are

shown (without axes) taken along the direction of the red and the blue arrows. b)

shows the view along the red arrow (1), highlighting the head-to-tail tilt of the beam;

c) shows the view along the blue arrow (2). This is a direction almost tangential to

the red and blue planes, showing that the electrons are approximately distributed in

a plane that is approximately at 90◦ to the laser electric field direction.

The three dimensional momentum information about this beamlet shows that

the oscillation is approximately confined to a plane and that this plane is almost 90

degrees to the laser electric field direction, i.e. the strong betatron oscillations are
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not due to interaction with the laser field. As to the apparent small oscillations out

of the “plane of best fit” visible in figure 5.4, due to experimental uncertainty it is

not possible to say if they are significant. There is a clear correlation between pz and

py, which can be interpreted as a “head-to-tail” tilt. Such tilts can be responsible for

hosing instabilities in beam driven plasmas wakefield accelerators [107].

Preliminary simulations with Osiris do show that for extended plasma lengths the

laser can be sufficiently depleted for the interaction to enter a “beam driven”phase

(i.e. one where the electron beam itself drives a wakefield). However the resulting

hosing does not show interleaving features in the electron beam. Such features are

observed earlier in the interaction when the bubble undergoes rapid expansion due

to modification of the laser strength by self-focusing, pulse compression and photon

deceleration.

We have successfully fielded a two-screen spectrometer capable of measuring elec-

tron beams with energies greater than 1 GeV on Astra Gemini, having observed beams

with features up to 1.34± 0.07 GeV. The two-screen method allows the full three di-

mensional momentum distribution of the beam to be examined which provides insight

into the dynamics of electron injection and acceleration, vital for understanding the

processes responsible for beam instabilities and x-ray generation.

5.3 A Model For The Electron Energy As Function

Of Density Including The Pre-Injection Pulse

Evolution Length

Changing the background density of the plasma has a profound effect on the type

of electron spectra generated in the LWFA, and subsequently the betatron x-rays

generated. Figure 5.5 a) shows the electron spectra produced during a series of shots

where the plasma density was altered. Each shot shown is representative of the

behaviour of the LWFA at this density. A qualitative transition is noticeable in the

type of electron spectra, below ne ∼ 4×1018 cm−3 the beams are well collimated, with

a divergence of > 20 mrad, above ne ∼ 4 × 1018 cm−3 the beams are more diffuse,

the beam divergence is significantly larger (> 50 mrad) and significant transverse

structure is observed in the beam profile.
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Figure 5.5: The data from 24 shots of the laser, using the 10 mm nozzle, is shown

in order of increasing density (from left to right) a) Shows the images from one of

the electron spectrometer screens. The electrons to the top of the images have been

deflected less by the magnet and have a higher energy. b) Shows the plasma densities

of each of these shots. c) The images from the Princeton PIXIS x-ray camera for each

shot are shown.

In understanding why this change in spectral type occurs, we can consider some

key lengths associated with laser wakefield accelerators. First there is a length of

plasma at the beginning of the accelerator over which the laser pulse is still evolving,

(self focusing and compressing in time), and the wakefield has not yet formed in such a

way to allow for electron self injection. I will call this the pre-injection pulse evolution

length (or PIPE Length). After self-injection has occurred (or started) the electrons

are accelerated for some length, LACC. In practice this length is often limited by

either the length of the plasma, LPLASMA, or the length over which the laser pulse

propagates before its energy is depleted to the extent it can no longer produce an

accelerating wakefield, LETCH. Finally the dephasing length Lφ is important, this is

the length over which an electron injected at the back of the wakefield bubble, will be

accelerated enough, and have a long enough time of flight, to reach the centre of the

bubble where the electric fields reverse and the electron will start to be decelerated.

The relationship between LACC and Lφ will have a strong effect on the type of electron

spectra emerging from the LWFA.
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Figure 5.6: The illustration shows the various scenarios which can occur in a LWFA

due to differing ratios between the lengths LPLASMA , LETCH, LACC, Lφ and LPIPE,

(not to scale). The blue line represents the energy of an electron self injected at the

beginning of LACC, and demonstrates the effect of Lφ on such an electron. (However in

D and H the energies shown are for a idealised simplified symmetric series of wakefield

periods which doesn’t take into account the presence of the laser pulse, the plasma

between wakefield periods or that the LWFA my be in a bubble regime.) A, B, C and

D are limited by the plasma length LPLASMA, whereas E, F, G and H are the same

but limited instead by the laser depletion length LETCH.

Essentially all these lengths have a dependence on the plasma density ne as well

as the initial laser pulse conditions. Figure 5.6 shows the various possible scenarios

dependent on the ratio of these lengths. Scenarios A, B, C and D are all limited by

the plasma length, whereas E, F, G and H are the same but limited instead by the

laser depletion length. Scenarios F, G and H differ from B, C and D as the accelerated

electrons may go on to drive a wakefield of their own. This beam driven wakefield can

lead to further electron acceleration, Chen 1985 [108]. The electron beam propagating
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through the plasma (over length LBEAM) can also be affected by instabilities, such

as the current filamentation instability Huntington 2011 [109] which can drastically

change the electron spectrum which is measured outside of the plasma. The cases of

A and E are trivial as the laser pulse never evolves to drive a plasma wave capable

of self injection. In the case of B and F the acceleration length ends before electrons

injected at the beginning of the acceleration length can dephase, and so the maximum

achievable electron energy is not reached.

The transition of the fifth shot to the sixth shot in figure 5.5 (Counting from

left to right), corresponds to a transition from A to B in figure 5.6 (or E to F), and

represents the threshold for self injection in a LWFA.

One possible explanation for the transition from collimated beams to diffuse spec-

tra, seen between shots 12 and 13 in figure 5.5, is a transition from scenario B to F

in figure 5.6 (or possibly a transition from C to G) ). To assess this a simple model

of the pipe length’s dependence on plasma density has been developed.

5.3.1 A Simple Model Applied To Maximum Achievable Elec-

tron Energy In The LWFA

Simple models of LETCH and Lφ already exist in the literature Lu 2007 [104].

LETCH = τ0c
nc
ne

(5.1)

and

Lφ =
2

3
R
nc
ne

(5.2)

where R is the bubble radius and τ0 is the duration of the laser pulse before

entering the plasma.

To try and find a very simple model of how the PIPE length scales with plasma

density I tried the following:

LPIPE = S
nc
ne

(5.3)

where S is just a linear constant. This simple model completely ignores the initial

laser pulse parameters such as power, pulse duration, spot size and wavelength which

should play a role in pulse evolution, however it may be useful in comparing LWFAs

where the input laser pulse is the same. Indeed in what follows I hope to demonstrate

to the reader that this is the case.
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Let us now consider what the maximum energy Em an electron can be accelerated

to in a given LWFA scenario. If the electron beam is considered as an ensemble of

electrons with different energies, Em will be the upper limit of the energies contained

in the ensemble. Em will not necessarily be the mean energy of the electrons contained

in the ensemble, though it is possible for these energies to be the same, e.g. through

phase rotation. Em is the energy an electron which was initially at rest in the bubble

frame, and at the back edge of the bubble will be accelerated to, if it remains in the

bubble until it reaches the centre of the bubble, and is not decelerated by dephasing.

A generally used scaling expression for the maximum achievable energy gain of a

single stage LWFA [104] is,

γmax =
2nc
3ne

a0 (5.4)

However a0 as considered in vacuum is an underestimation of the laser pulse’s

normalized vector potential in the plasma, as self focusing and temporal pulse com-

pression act to compress the pulse in both space and time. The a0 after these effects

can be estimated as:

amax = 2

(
PF
Pc

)1/3

(5.5)

where PF = αE/τF . The energy in the laser pulse’s FWHM is αE, and τF is the

FWHM laser pulse duration after plasma pulse compression given by:

τF = τ0 −
ne
nc

L

c
(5.6)

Where L is the length over which compression happens and τ0 is the initial pulse

duration.
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Figure 5.7: Variation of electron beam energy with density for the 10mm nozzle. In

blue are shown the upper limit of the electron’s energy spectra for a number of shots

at each plasma density. The blue circles are the mean value of the upper energy limit

of these shots. The bars shown are the standard error about the mean. In black are

shown the mean electron energy in the spectra. The black crosses are the mean of

multiple shots. The bars again show the standard error about the mean. In green is

shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows the prediction

of the simple model taking into account the PIPE length.

Figure 5.7 shows details of electron beams from multiple shots at different densi-

ties. The upper limit of the electrons energy spectrum is shown by the blue circles

and shows good agreement with the prediction of equation 5.4 when equation 5.5 and

5.6 are used (shown by the green line in figure 5.7).

However this assumes electrons are able to travel at least one dephasing length.

In practice the PIPE length reduces the effective acceleration length LACC .

LACC = LINT − LPIPE (5.7)

where LINT is either the total length of the LWFA (8.5 mm for the 10 mm gas jet
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nozzle used in this experiment) or the pump depletion length, which ever is shorter.

Due to the non-linear interplay between the processes of self-focusing, pulse com-

pression, energy depletion and photon deceleration and their role in determining the

wake amplitude I have not found a simple expression for the PIPE length, however

as a first approximation, it is reasonable to assume that the rate of evolution will be

inversely proportional to plasma density, so I assume that the pipe length scales as:

LPIPE = S
nc
ne

(5.8)

And assuming that inside the bubble the fields are linearly increasing from the

centre, [110]. So:

γ = γmax(2
LACC
Lφ

− L2
ACC

L2
φ

) (5.9)

We find that if the coefficient S ≈ 11.5 mm, the PIPE model (shown in red)

corresponds to the experimentally recorded results in figure 5.7.
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Figure 5.8: Variation of electron beam energy with density for the 15 mm nozzle. In

blue are shown the upper limit of the electron’s energy spectra for a number of shots

at each plasma density. The blue circles are the mean value of the upper energy limit

of these shots. The bars shown are the standard error about the mean. In black are

shown the mean electron energy in the spectra. The black crosses are the mean of

multiple shots. The bars again show the standard error about the mean. In green is

shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows the prediction

of the simple model taking into account the PIPE length.

Interestingly if we take this value for S and apply it to data taken using the same

setup with a 15 mm gas jet nozzle we see a similar correlation. This is shown in figure

5.8
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Scenario        

 cm-3 mm mm mm mm mm mm 
A 1.0 × 1018 20.0 0.0 *20.1 28.7 8.5 0.0 
B 3.3 × 1018 6.1 2.4 4.6 8.7 8.5 0.0 
C 2.4 × 1019 0.8 0.4 0.3 1.2 1.2 0.0 
E 1.0 × 1018 20.0 0.0 *20.1 28.7 30.0 0.0 
F 3.8 × 1018 5.3 2.3 3.8 7.6 8.5 0.9 
G 2.4 × 1019 0.8 0.4 0.3 8.5 1.2 7.3 

Figure {fig:pipetable} : The table shows which scenario shown in 
figure \ref{fig:pipeschematic} the simple model predicts will occur 
for various plasma densities and plasma lengths. The laser 
parameters used are those of the experiment. *Scenarios A and C 
are trivial because no electron acceleration occurs. So the 
dephasing length has no real meaning. 

!

ne LPIPE LACC L� LETCH LPLASMA LBEAM

Figure 5.9: The table shows which scenario shown in figure 5.6 the simple model

predicts will occur for various plasma densities and plasma lengths, for S = 11.5 mm.

The laser parameters used are those of the experiment. *Scenarios A and E are trivial

because no electron acceleration occurs. So the dephasing length has no real meaning.

Using this very simple model one can see that it is possible to enter several of the

scenarios shown in figure 5.6 by just changing the plasma density and the length of

the wakefield accelerator. The table in figure 5.9 shows which scenario this model

predicts will occur for various plasma densities and plasma lengths. Scenarios D

and H are not shown in the table because they are not accessible with these laser

parameters. Importantly the transition from scenario B to scenario F can be seen to

occur at a plasma density near to where, in the experimental data of figure 5.5, the

electron spectra change shape from well collimated beams to diffuse. So confirming

this as the most likely explanation of the change in spectral shape.

5.4 X-Ray Measurements

Using the Princeton PIXIS system, x-ray measurements were taken with the 10 mm

nozzle. As discussed in the experimental methods section both the peak x-ray bright-

ness and the critical energy of the x-ray spectrum could be found. Figure 5.10 shows

the variation of peak x-ray brightness with changes to the background plasma density.

For the calculation of brightness a source size of 1 µm has been assumed. This is

because on shot measurements of the source size was not possible on this series of

shots. However this size is consistent with the x-ray source size measurements taken

during the same experiment. The temporal duration of the x-ray beam is assumed

to be 55 fs, the same as the driving laser pulse FWHM. In reality this is merely the

upper limit of the x-ray temporal duration, which may reasonably be less than 10 fs,

so the figures shown for peak x-ray brightness may be an underestimation.
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In figure 5.10 one can see the average peak x-ray brightness consistently varies

between two and three ×1024 photons per photons per second per mrad2 per mm2

per 0.1% bandwidth over the plasma density region of 3 to 5 ×1018 cm−3. This

statistical trend is roughly correlated with the mean electron beam energy average at

these densities also shown in figure 5.10. It also shows correlation with the average

maximum electron beam energy shown in figure 5.11. Though they are statistical

outliers, the brightest shots at each density are of physical importance. They indicate

that given the right conditions x-ray brightnesses of as great as 1025 photons per

second per mrad2 per mm2 per 0.1% bandwidth can be achieved, corresponding to

∼ 1010 photons incident on our camera per shot.

My hypothesis, centred around the scenarios of figure 5.6, is as follows: Generally

in the region of 3 to 4 ×1018 cm−3 the accelerator is transitioning from scenario

B to F (plasma length limited to pump depletion length limited). This is due to

the pipe length shortening due to increasing plasma density as discussed in section

5.3. However occasionally, as in the case of these outlying shots, the pipe length is

significantly shorter leading to scenario C or G occurring at these background plasma

densities. This leads to betatron x-ray emission happening over a longer electron

path length both before and after dephasing, thus resulting in a larger x-ray yield. I

believe this pipe length shortening must be as a result of changes in the laser wavefront

resulting in a faster pulse evolution. (This is illustrated in figure 5.12 ).

Using the filter pack method, described in the methods section, the hardness of

the x-rays was measured on each shot. This can be best parameterised as a single

number the critical energy of a synchrotron like spectrum, (The value at which half

the energy of the spectrum is contained within photons that have energies greater

than this value). The results of this measurement are shown in figure 5.13 .
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Figure 5.13: The average measured x-ray spectrum critical energy for multiple shots

at different plasma densities. A synchrotron like spectrum is assumed (see section 3

for more details). The error bars show the standard error about the mean.

One can see that after the initial ramp up of both electron energy and x-ray

brightness which occurs at plasma densities less than 3.5×1018 cm−3, the critical

energy of the x-ray spectrum is consistently between 15 and 25 keV. So the x-rays

are both hard and bright. At higher plasma densities (4.5×1018 cm−3) though both

the mean electron energy and x-ray brightness somewhat decrease the critical energy

of the spectrum appears to increase.

This is not all that surprising as the critical energy is expected to vary as in the

following equation ([90], [111], [112]):

Ec =
3~
4c
γ2eω

2
prβ (5.10)

Where rβ is the betatron radius: the amplitude of the electrons’ oscillation. ω2
p will

increase linearly with plasma density. Besides we cannot be sure that the recorded

mean electron energies are accurate representations of the energy is reached inside
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the accelerator for these densities, as for these densities the electron beam is certainly

propagating through a length of plasma without a laser Wakefield, and so may be

effected by instabilities such as the current filamentation instability [109]. Thus the

electron energies inside the accelerator may be greater than those measured outside at

these densities. This would explain the increase in critical energy at higher densities

and may mean that, if higher energy x-rays are required, working at even higher

densities with decreased accelerator length may be the preferable option.

In summary high brightness hard x-rays were seen with critical energies varying

between 15 keV and 30 keV and peak brightnesses between 1024 and 1025 photons per

second per mrad2 per mm2 per 0.1% bandwidth. A strong correlation between the x-

ray brightness and electron beam energy was seen. The variation of x-ray brightness

with plasma density is explained by the transition of the laser Wakefield accelerator

from scenario B to scenario F (the acceleration length limited by the plasma length

to the acceleration length limited by the pump depletion length). The brightest shots

are explained if the pipe length is unusually short, potentially due to unmeasured

changes in the laser wave front, which cause the acceleration length to be unusually

long or to enter scenarios C and G (which are like B and F but the acceleration length

passes dephasing).
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Figure 5.10: Blue: The average peak x-ray brightness of multiple shots at each den-

sity. *The units of brightness are photons per second per mrad2 per mm2 per 0.1%

bandwidth. A source size and 1 µm is assumed, and the x-ray pulse duration is as-

sumed to be 55 fs. The error bars show the standard error about the mean. Red:

The peak x-ray brightness of the brightest shots at each density. The error in each

individual measurement is smaller than the circle shown. Green: The average of mul-

tiple shots’ electron beam mean energy. The error bars shown are the standard error

about the mean.
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Figure 5.11: The average peak x-ray brightness for groups of shots at different plasma

densities is shown plotted against the maximum electron energy average for the groups

of shots. The error bars show the standard error about the mean. To the top left of

each point the plasma density is written in units of 1018 cm−3. Those points without

error bars represent single shots. *The units of brightness are photons per second per

mrad2 per mm2 per 0.1% bandwidth. A source size and 1µm is assumed, and the

x-ray pulse duration is assumed to be 55 fs.
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Figure 5.12: An illustration showing the various scenarios I hypothesise are respon-

sible for the x-ray brightnesses observed. The scenarios are detailed in figure 5.6.

In red are those responsible for the outlying very bright shots. In green are those

responsible for the majority of the shots observed. The arrows on the lines indicate

increasing plasma density.



Chapter 6

Discussion, Conclusions and

Outlook

6.1 Threshold For Self-Injection In A Self-Guided

LWFA

In this thesis, it has been shown in section 4.2 that the threshold for self injection in

a self-guided laser wakefield accelerator is dependent on both the energy contained in

the FWHM of the laser focal spot and the background electron plasma density. The

dependence on power, as affected by laser pulse duration, is less important than the

quality of the laser focal spot.

A model of the self-injection threshold based on combining simple theoretical

models of electron motion, laser pulse compression, and wakefield bubble size has

been discussed (4.2.1) and shown to have good agreement with experiment (4.2.2).

Figure 6.1 shows a comparison of reported LWFA experiments’ self-injection thresh-

olds, and the calculated prediction of the model (equation 4.6). In blue are shown

the results from the Lund Experiment changing the laser energy. In red the threshold

from the Gemini experiment. These experiments have peak laser powers of 18 TW

and 180 TW respectively. One can see that the model shows good predictive power

between these two lasers with an order of magnitude difference in power. In addition

I have shown the reported threshold densities from other published experiments in

green. I conclude that the model is an effective predictor as it is in good agreement

to the observations made in experiment.

It can be useful in planning future experiments using both higher energy lasers

104
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Figure 6.1: Plot of reported density threshold, verses predicted density threshold

for the experiments presented herein and other published experiments. The circles

show the predictions of the model given by equation 4.6 and the diamonds show the

threshold based on 4.8

with lower density plasmas to produce higher energy electron and x-ray beams, and

for lower energy laser systems where high repletion rate maybe required and precise

design of gas delivery and removal for multiple shots is important, in bringing laser

Wakefield technology to other applications.

6.2 Two-Screen Spectrometer Method for Measur-

ing the 3D Momentum Distributions of GeV

Electron Beams

In section 5.2 I showed a methodology which allows the full three dimensional momen-

tum distribution of a LWFAs electron beam to be examined which provides insight
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into the dynamics of electron injection and acceleration, vital for understanding the

processes responsible for x-ray generation. The electron motion inside the laser wake-

field is responsible for the generation of x-rays and through observing it directly gives

a powerful tool in improving x-ray generation. In the future the technique could be

used to understand how changes to the laser power, laser focus and adding aberrations

to the laser wavefront, effect the electron motion via direct measurement rather than

computer simulation. (It has been shown that x-ray critical energy can be increased

through tailoring the laser wavefront [112]. )

6.3 The Pre-Injection Pulse-Evolution Length of a

LWFA

I have shown in section 5.3 that the laser pulse evolution (both self focusing and pulse

compression) and the propagation of the laser through the length of plasma in the

LWFA before self-injection of electrons has a effect on the electron energies produced.

By defining a Pre-Injection Pulse-Evolution (PIPE) Length I have created a simple

model to predict the maximum achievable electron energy in a self guided LWFA as a

function of plasma density. I have shown this works for different accelerator lengths.

6.4 betatron X-Rays from LWFAs

Care must be taken in separating betatron X-rays from bremsstrahlung gamma-rays

produced by LWFAs electron beams. This is important from an experimental and

application point of view and prevented me from effectively measuring the x-rays from

the 18TW Lund experiment. However in another experiment Genoud et al. 2011 [113]

using the same laser saw x-rays with a critical energy of 1.7 keV and brightness of

3× 1017 photons per second per mrad2 per mm2 per 0.1% bandwidth.

I was also involved in an experiment producing betatron x-rays using the 25 TW

laser in LOA France, published in Thaury et al. 2013 [114], x-rays of 3 keV were

seen Corde 2011 [115]. In Michigan using the Hercules laser (69 TW), the experiment

I was also a part of, generated x-rays with a critical energy of 5 keV [69] (and 15

keV [116]) and brightness of 1022 photons per second per mrad2 per mm2 per 0.1%

bandwidth.1

1Footnote: There is a disparity with the definition of critical energy used in these sources. I have
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So the results of the experiment using the Gemini laser (180 TW) reported in

section 5.4 of this thesis, with x-rays of 15-30 keV critical energy and brightness of

1024-1025 photons per second per mrad2 per mm2 per 0.1% bandwidth, show a sig-

nificant improvement in both energy and brightness over these previous experiments

(see figure 6.2).
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Figure 6.2: a) Reported betatron x-ray critical energies generated by LWFAs shown

by laser peak power. From Genoud et al. 2011 [113], Thaury et al. 2013 [114] , Kneip

et al. 2010 [116] and section 5.4 of this thesis. The bars show the range of critical

energies seen under differing conditions. b) Reported betatron x-ray brightness gen-

erated by LWFAs shown by laser peak power. From Genoud et al. 2011 [113], Kneip

et al. 2010 [116], and 5.4 of this thesis. *The units of brightness are photons per

second per mrad2 per mm2 per 0.1% bandwidth.

This increase in critical energy and brightness of x-rays is due to the increase in

the energy of the accelerated electrons. The Lund Laser (18 TW) produced electrons

of up to 120 MeV [112] and in the Gemini Experiment (180 TW) electrons up to 1.3

GeV were seen (see figure 5.2 ). So an order of magnitude increase in laser energy

has had an order of magnitude increase in accelerated electrons. A clear correlation

between the x-ray brightness and electron beam energy was seen in figure 5.11 using

a single laser.

I have discussed in Chapter 5 the effect the laser pulse evolution (both self focusing

and pulse compression) and the propagation of the laser through the length of plasma

used and will continue to use throughout this work the definition from the 3rd Edition of Jackson

[117]. Some sources such as Kneip 2010 [116] use the definition from the 2nd Edition of Jackson

[118] which results in exactly double the value of critical energy I use.



CHAPTER 6. DISCUSSION, CONCLUSIONS AND OUTLOOK 108

in the LWFA before self-injection of electrons occurs on both the electron beam

energies and x-rays generated. The PIPE length model and scenarios I described

in Figure 5.6 explained the changes in electron energy due to changing the electron

plasma density. They also help explain the variation in x-ray brightness and critical

energy. I postulated that the very bright shots as shown in figure 5.10 pipe length is

unusually short, potentially due to unmeasured changes in the laser wavefront, which

caused the acceleration length to be unusually long and enter a scenario where a

larger proportion of the electrons, which make up the electron beam ensemble, get

closer to or pass and decelerate from, the dephasing energy.

Another possible explanation for the brightest shots is the effect of bubble injec-

tion expansion. As the wakefield bubble expands electrons are gradually injected.

Depending on how this expansion occurs electrons may find themselves inside the

bubble’s electromagnetic fields at varying degrees from the laser axis. My instinct

from PIC simulations is that if the bubble expands very quickly by a large amount,

there will be a greater number of electrons inside the bubble off axis from this ef-

fect. Because the bubble fields increase linearly transversely from the laser axis, any

displacement from the axis results in an increase in transverse momentum in the elec-

tron. One would then expect such an electron to produce a greater amount betatron

radiation.

This can be contrasted with the situation of a bubble of fixed size traveling through

a plasma, which is used in deriving the fields in Kostyukov et al. 2004 [101] and as-

sumed in the threshold for injection in Thomas 2010 [102], which I have discussed and

matched to experiments in section 4.2. In this situation electrons are injected by fol-

lowing elliptical trajectories in an unchanging bubble, and the transverse momentum

of the election is from following these trajectories.

I have demonstrated the Two-Screen Spectrometer Method for Measuring the 3D

Momentum Distributions of GeV Electron Beams in section 5.3 which may be used to

examine the transverse momentum of the electrons directly after exiting the plasma.

Perhaps in the future this can be used to confirm if bubble expansion is responsible

for the brightest x-ray shots. However exact variation of the accelerator length would

be necessary to avoid the electron beam interacting with the background plasma after

the laser pulse has depleted as seen in section 5.3.
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6.5 Phase Contrast Imaging

The betatron x-rays from laser wakefield accelerators can be easily used to conduct

phase contrast imaging. This is especially true if an in-line geometry with no x-

ray optics is used keeping the experimental set up simple. All that is required is a

sufficiently small x-ray source to provide a sufficiently high-spatial coherence and that

the object is in the near-field Fresnel diffraction regime close to light source. Then

all that is required is that the observer is at a sufficient distance from the object. In

the experiment described in Chapter 5, I placed phase contrast targets immediately

after the deflecting magnet, as shown in figure 5.1.

Figures 6.3 and 6.4 show images from the x-ray camera. In these cases the Phase

Contrast Target was a dead Acheta domesticus, (commonly called the house cricket

and commonly farmed for food and sold as pet feed in the United Kingdom. ) One

can note that the exoskeleton of the creature is completely transparent to the x-rays,

however the edges of the skeleton and structures inside the animal are visible. This

is due to phase contrast taking place, proving the utility of the LWFA of this specific

experiment, as an x-ray source for phase contrast imaging. X-ray phase contrast

imaging is currently under investigation as an advanced medical imaging technique

suitable for imaging soft tissue [119] and LWFA may be a useful alternative to micro-

focus x-ray tubes as the x-ray critical energy can be produced in the 1-100 keV range

and the radiation is delivered in tens of femto-seconds. This could remove the need for

minutes or hours of exposure which can be a problem with x-ray tube based sources.

Phase contrast imaging with LWFA betatron x-rays may be a solution waiting for a

problem due to the novel nature of the source.

6.6 Future Directions

My thesis has shown that Laser Wakefield Accelerators have significant potential as

x-ray sources for imaging. I have shown that achieving optimal x-ray and electron

beam conditions with a given laser system will require the simultaneous control of

both the plasma density and the plasma length – this conclusion suggests that future

experiments will need to be performed with variable length gas cells rather than the

fixed length gas jets used to date.

Future directions for the continuation of this work include investigating the use of

betatron radiation sources for imaging of bio-medically interesting soft tissue such as
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breast and prostate, both of which are major areas of interest in the field of cancer

diagnosis and treatment. The ultra-short nature of the betatron x-rays also makes

them ideal for imaging rapidly moving systems such as laser driven shocks.

The rapid increase with laser power of both the energy and brightness of the

betatron radiation reported in this thesis indicates that the next generation of multi-

PW laser systems will be able to produce ultra-bright sources of gamma rays that

could perhaps be used in QED and nuclear physics experiments.
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Figure 6.3: This image shows a high resolution x-ray image taken with the x-rays

produced by a laser wakefield accelerator. The very small (micrometer sized) x-ray

source allows a technique called phase contrast imaging to be used. This allows high

definition imaging of objects even when they are transparent to the x-rays and is

particularly good at showing up edges and boundaries. The image was taken on the

experiment detailed in chapter 5.
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Figure 6.4: This image shows a high resolution x-ray image taken with the x-rays

produced by a laser wakefield accelerator. The very small (micrometer sized) x-ray

source allows a technique called phase contrast imaging to be used. This allows high

definition imaging of objects even when they are transparent to the x-rays and is

particularly good at showing up edges and boundaries. The image was taken on the

experiment detailed in chapter 5.



Appendix A

Formula

This appendix represents a collection of formula and definitions which are used

throughout without justification. It is provided for the convenience of the reader1.

A.1 Maxwell’s Equations

Gauss’s Law

∇ · −→E =
ρ

ε0
(A.1)

Gauss’s Law of Magnetism

∇ · −→B = 0 (A.2)

Faraday’s Law

∇×−→E = −∂
−→
B

∂t
(A.3)

Ampére’s Law

∇×−→B = µ0

−→
J + µ0ε0

∂
−→
E

∂t
(A.4)

A.2 Taylor’s Series

The Taylor series of a real or complex function f(x) which is infinitely differentiable

in a neighbourhood of a real or complex number a is given by:

f(x) ≈
∞∑

n=0

fn(a)

n!
(x− a)n (A.5)

1It is also indeed provided as a convenient reference to the writer.
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where fn(a) denotes the nth derivative of f evaluated at the point a. For a function

of more than on variable this becomes:

f(x1, ..., xd) =
∞∑

n1=0

...
∞∑

nd=0

(x1 − a1)n1 ...(xd − ad)nd

n1!...nd!

(
∂n1+...+ndf

∂xn1
1 ...∂x

nd
d

)
(a1, ..., ad) (A.6)

So for a function of two variables x and y around the point (a, b) the Taylor series to

second order is:

f(x, y) ≈ f(a, b) + (x− a) fx(a, b) + (y − b) fy(a, b)

+
1

2!

[
(x− a)2 fxx(a, b) + 2(x− a)(y − b) fxy(a, b) + (y − b)2 fyy(a, b)

]
,

where fx and so on is the partial derviative ∂f/∂x.

A.3 Miscellaneous

The Lorentz force (The force on a charge)

−→
F = q(

−→
E +−→v ×−→B) (A.7)

The Continuity Equation

∇ · −→J +
∂ρ

∂t
= 0 (A.8)

The Convective Derivative

d
−→
G

dt
=
∂
−→
G

∂t
+ (−→v · ∇)

−→
G (A.9)

Equation of Motion in a Plasma

m

(
∂−→v
∂t

+ (−→v · ∇)−→v
)

= q(
−→
E +−→v ×−→B) (A.10)

Phase Velocity 2

vφ =
ω

k
(A.11)

Group Velocity

vg =
dω

dk
(A.12)

2See D. Angular frequency in radians ω (= 2π× frequency) and the wave number k = 2π/λ
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A.4 Identities

Here are some mathematical identities for reference.

∇× (∇×−→A) = ∇(∇ · −→A)−∇2−→A (A.13)
−→
A × (

−→
B ×−→C) = (

−→
A · −→C)

−→
B − (

−→
A · −→B)

−→
C . (A.14)



Appendix B

Derivation of the Debye length

First let us consisider a plasma with a Boltzman distrbution of particles,

ns = n0e
−
qsφ

kBTs (B.1)

where s is the particle species (either electrons or ions), qs is the charge of the species,

φ its pontiential, and Ts its temperature. n0 is the election and ion density very far

away where charges are balanced and there is no φ.

Now if we assume that the ion and electron temperatures are the same (Te = Ti),

and we are dealing with a helium like plasma where qe = −qi. Using Poisson’s

equation (∇2φ = ρfree/ε0) we have:

∇2φ(r) = − ρ
ε0

=
q(ni − ne)

ε0
=
en0(e

eφ(r)

kBTe − 1)

ε0
(B.2)

We can expand around the exponential in a Taylor series (see A.2 ):

∇2φ(r) =
en0

ε0

[
eφ(r)

kBTe
+

1

2

(
eφ(r)

kBTe

)2

+ ...

]
(B.3)

We may then just keep the linear term but only if kBTe � eφ(r) however as φ(r)

tends to fall of exponentially this is only for a small region. Keeping only the linear

terms we have:

∇2φ(r) =
e2n0

ε0

φ(r)

kBTe
(B.4)

The solution to this is equation is of the form:

φ = φ0 e
−
|r|
λD (B.5)
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where λD is a constant with units of length which defines the fall off of potential.

From B.4 it is identifiable as:

λD =

(
ε0kBTe
n0e2

)2

(B.6)

This is generally known as the Debye length. Because electrons generally are more

mobile than ions and are therefore responsible for shielding it is appropriate to use

n0 = ne.



Appendix C

Derivation of the Plasma

Frequency

When electrons are displaced from their uniform background distribution, electric

fields will be built up in such directions as to restore them to their original positions

and restore neutrality to the plasma. However due to inertia it is inevitable that they

will overshoot those positions and oscillate around their equilibrium positions with a

characteristic frequency known as the plasma frequency.

The oscillation is so fast that the massive ions may be considered as fixed. The

following assumptions must also be made.

• There is no magnetic field

• It is a cold plasma. There are no thermal motions (kBT = 0)

• The ions are uniformly distributed and fixed.

• The extent of the plasma is infinite.

• The electrons only move in the x direction.

∇ = î ∂/∂x
−→
E = îE ∇×−→E = 0

−→
E = −∇φ (C.1)

As we are assuming their is no fluctuating magnetic field this can be considered an

electrostatic oscillation. The equation of motion A.10 is then,

mene

(
∂−→v e

∂t
+ (−→v e · ∇)−→v e

)
= −ene(

−→
E +−→v e ×

−→
B) (C.2)
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and the equation of continutity A.8 is then

∇ · ne−→v e +
∂ne
∂t

= 0 (C.3)

from the first Maxwell equation (Gauss’s Law) A.1 we have

ε0
∂
−→
E

∂−→x = e(ni − ne) (C.4)

We can split the dependent variables into two parts and equalibrum part and a

perturbation part:

ne = nE + nP
−→v e = −→v E +−→v P

−→
E =

−→
EE +

−→
EP (C.5)

As the equlibrum quantites express the state of the plasma in the absence of oscilla-

tion.

∇nE = −→v E =
−→
EE =

∂nE
∂t

=
∂−→v E

∂t
=
∂
−→
EE

∂t
= 0 (C.6)

niP = 0 niE = neE (C.7)

Applying these condtions and linearising (removing all terms with an ampliture quan-

tity nP ,
−→v P ,

−→
EP appearing as a more than a 1st power) equations C.2, C.3, and C.4

become:

me
∂−→v P

∂t
= −e−→EP (C.8)

∂nP
∂t

+ nE∇ · −→v P = 0 (C.9)

ε0∇ ·
−→
E = −enP (C.10)

Those oscillating are assumed to be oscillating sinusoidally:

−→v P =vmax e
i(kx−ωt)x̂ (C.11)

nP =nmax e
i(kx−ωt) (C.12)

−→
EP =Emax e

i(kx−ωt)x̂ (C.13)

So the equations then become:

−imeωvmaxe
i(kx−ωt)x̂ = −eEmaxei(kx−ωt)x̂ (C.14)

−iωnmax ei(kx−ωt) + nEikvmax e
i(kx−ωt) = 0 (C.15)

ε0ikEmax e
i(kx−ωt) = −enmax ei(kx−ωt) (C.16)
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Solving for ω, noting that nE is ne of our initial plasma, and eliminating Emax and

nmax we finally get:

ωp =

(
e2ne
ε0me

)1/2

(C.17)



Appendix D

Phase Velocity, Group Velocity,

and Dispersion Relation

Phase Velocity

A sinusoidally oscillating quantity can be, and often is, represented by

n = nmaxe
i(
−→
k ·−→r −ωt)

which becomes n = nmaxe
i(kx−ωt) if propagation is in the x direction. The real com-

ponent of this is

<(n) = nmax cos(kx− ωt)

A point of constant phase1on the wave will move so that:

d

dt
(kx− ωt) = 0

So the velocity of this point is:

dx

dt
=
ω

k
≡ vφ (D.1)

where vφ is know as the PHASE VELOCITY. It should be the same for all waves in

a given medium.

Group Velocity

Consider two waves:

E1 = E0cos [(k + ∆k)x− (ω + ∆ω)t], E2 = E0cos [(k −∆k)x− (ω −∆ω)t]

1 A point where the magnitude of the quantity n is unchanging but moves in space.
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Their frequency therefore differs by 2∆ω . The phase velocity vφ should be the

same for both, this necessitates that the difference in their wave number being 2∆k.

Letting:

a = kx− ωt b = (∆k)x− (∆ω)t

Then the effect of the two waves interfering is

E1 + E2 = E0 cos(a+ b) + E0 cos(a− b)
= 2E0 cos a cosb

= 2 cos[kx− ωt] cos[(∆k)x− (∆ω)t]

where E0 cos b represents an envelope wave which carries information its velocity is

∆ω/∆k. This represents a carrier wave modulated by an envelope wave cos[(∆k)x−
(∆ω)t] . The carrier wave carries information and it can be seen in the same way as

above its velocity is given by ∆ω/∆k. As ∆ω → 0 then it becomes:

vg ≡
dω

dk
(D.2)

Which is known as the GROUP VELOCITY.

Dispersion Relation

For a given wave form in a given medium the relation between the angular frequency

in radians ω (= 2π× frequency) and the wave number k = 2π/λ is known as the

dispersion relation.
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5.4 a) Three dimensional momentum distribution of one of the beamlets
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5.7 Variation of electron beam energy with density for the 10mm nozzle.

In blue are shown the upper limit of the electron’s energy spectra for a
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value of the upper energy limit of these shots. The bars shown are the

standard error about the mean. In black are shown the mean electron

energy in the spectra. The black crosses are the mean of multiple shots.

The bars again show the standard error about the mean. In green is

shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows

the prediction of the simple model taking into account the PIPE length. 94
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standard error about the mean. In black are shown the mean electron
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The bars again show the standard error about the mean. In green is

shown the prediction of equations 5.4, 5.5 and 5.6. The red line shows

the prediction of the simple model taking into account the PIPE length. 96
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*Scenarios A and E are trivial because no electron acceleration occurs.
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5.10 Blue: The average peak x-ray brightness of multiple shots at each

density. *The units of brightness are photons per second per mrad2

per mm2 per 0.1% bandwidth. A source size and 1 µm is assumed, and

the x-ray pulse duration is assumed to be 55 fs. The error bars show

the standard error about the mean. Red: The peak x-ray brightness

of the brightest shots at each density. The error in each individual

measurement is smaller than the circle shown. Green: The average of

multiple shots’ electron beam mean energy. The error bars shown are

the standard error about the mean. . . . . . . . . . . . . . . . . . . 101
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observed. The arrows on the lines indicate increasing plasma density. 103
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for the experiments presented herein and other published experiments.

The circles show the predictions of the model given by equation 4.6

and the diamonds show the threshold based on 4.8 . . . . . . . . . . 105

6.2 a) Reported betatron x-ray critical energies generated by LWFAs shown

by laser peak power. From Genoud et al. 2011 [113], Thaury et al.
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6.3 This image shows a high resolution x-ray image taken with the x-rays

produced by a laser wakefield accelerator. The very small (micrometer

sized) x-ray source allows a technique called phase contrast imaging

to be used. This allows high definition imaging of objects even when

they are transparent to the x-rays and is particularly good at showing

up edges and boundaries. The image was taken on the experiment

detailed in chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 This image shows a high resolution x-ray image taken with the x-rays

produced by a laser wakefield accelerator. The very small (micrometer

sized) x-ray source allows a technique called phase contrast imaging

to be used. This allows high definition imaging of objects even when

they are transparent to the x-rays and is particularly good at showing

up edges and boundaries. The image was taken on the experiment
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