
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012134

IOP Publishing
doi:10.1088/1742-6596/2438/1/012134

1

A vendor-agnostic, single code-based GPU tracking

for the Inner Tracking System of the ALICE

experiment

M Concas

Sezione di Torino, Istituto Nazionale di Fisica Nucleare, Via Pietro Giuria 1, Torino 10125, IT

E-mail: matteo.concas@cern.ch

Abstract. During the LHC Run 3 the ALICE online computing farm will process up to 50
times more Pb-Pb events per second than in Run 2. The implied computing resource scaling
requires a shift in the approach that comprises the extensive usage of Graphics Processing
Units (GPU) for the processing. We will give an overview of the state of the art for the
data reconstruction on GPUs in ALICE, with additional focus on the Inner Tracking System
detector. A detailed teardown of adopted techniques, implemented algorithms and approaches
and performance report will be shown. Additionally, we will show how we support different
GPUs brands (NVIDIA and AMD) with a single code-base using an automatic code translation
and generation for different target architectures. Strengths and possible weaknesses of this
approach will be discussed. Finally, an overview of the next steps towards an even more
comprehensive usage of GPUs in ALICE software will be illustrated.

1. Introduction
During the Run 3 at the Large Hadron Collider (LHC) the accelerator will deliver a rate of Pb-
Pb collisions up to 50 kHz. The A Large Ion Collider Experiment (ALICE)[1] apparatus aims at
recording an integrated luminosity greater than 10 nb−1 of minimum bias events. Such a huge
sample of data corresponds to a factor 50 times more compared to what collected in Run 2 and
represents a great challenge under many experimental perspectives, both in hardware and and
software. ALICE is adopting a new data acquisition strategy called ”continuous readout” using
a trigger-less approach that steadily registers input from every sub-detectors. The resulting
continuous stream of data is split in timeframes with a duration of the order of tenths of
milliseconds containing the cumulative information from multiple events. The overall starting
bandwidth for raw data is greater than 3.5 TB/s, after a first pass of reduction and compression
done by the ”First Level Processing” it is reduced down to 600 GB/s and it is impossible to
directly store them on permanent media. To this extent, ALICE is going to further reduce
the amount of information by operating the online reconstruction of the data. A completely
renovated framework encompassing both the online and the offline software for Run 3 in a single
stack called O2[2] will run on a dedicated on-site computing farm composed by Event Processing
Nodes (EPNs), the ”EPN farm”.

The online reconstruction is divided in two phases: the synchronous and the asynchronous
reconstruction. The former runs during the data taking strictly on the EPN cluster and operates
the reconstruction of the most demanding detectors, for instance the Time Projection Chamber



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012134

IOP Publishing
doi:10.1088/1742-6596/2438/1/012134

2

(TPC) and a fraction of the Inner Tracking System (ITS)[3] to be used as calibration information.
The latter performs the full reconstruction of all the data before saving them on permanent
storage and will run during technical stops or during less demanding online reconstruction (e.g.
runs of pp collisions) both on EPN farm and on the Grid.

The EPN computing cluster is composed by 250 nodes, each equipped with 64 cores CPUs and
8 Graphics Processing Units. The resulting amount of computing resources is then computed
to provide the best cost over performance ratio to fulfill the synchronous reconstruction of the
TPC detector. Using 1500 GPUs will be sufficient to cope with 50 kHz Pb-Pb collisions.

2. Using GPUs in ALICE from Run 2 to Run 3
Already during the Run 2 the TPC was offloading some of the data compression tasks on
the High-Level Trigger (HLT) on GPUs. In general, the software stack designed to steer the
operations was designed to support multiple target architectures and parallelism paradigms via
different libraries, thus resulting able to run different systems other than the HLT. As an example
OpenMP[4] was adopted for the CPU parallel version, CUDA[5] on NVIDIA graphics cards and
OpenCL[6] v1.2,2 for the remaining supported accelerators and co-processors. Schema in 1
shows the structure of the approach in dynamic loading for multiple platforms. The selection
is dynamically applied at program runtime: after an automatic detection of the underlying
computing device, the corresponding algorithmic library is dynamically loaded upon request.
The interface is transparent: a single class is used to call the main functions (e.g. fitting function
included in a comprehensive Algorithm class) and includes the headers of libraries related to
the available devices. A second class is responsible to call the actual implementations of the
requested function via the dynamic loading of corresponding library.

Figure 1. Example of the organization of fitting libraries in the unified framework. The
Algorithm class provides a generic function for track fitting. A dedicated library libFit takes
care of loading the required implementation of the symbols depending on the required device to
operate with. It then dynamically loads the corresponding detailed libraries. The framework is
supporting multiple GPU management in all of the libraries implemented.

In Run 3 the usage of graphics cards is required to be able to perform the synchronous
reconstruction for TPC, to minimise the cost over performance ratio for the EPN farm. Figure
2 shows how GPUs can efficiently supply computing power scaling proportionally to the size of
the input data in the TPC reconstruction for Run 3. In figure 3 it is also depicted the speedup



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012134

IOP Publishing
doi:10.1088/1742-6596/2438/1/012134

3

achieved by using different GPU models and vendors normalized to the number of CPU cores
(AMD Rome at 3.3 GHz) showing the actual advantage in trading CPU resources for GPU ones.
The framework to steer the GPU reconstruction in Run 3 has a similar schema to its predecessor

ALI-PERF-359014

Figure 2. Computing time for TPC
reconstruction linearly scales as a function
of the number of processed clusters.

ALI-PERF-359019

Figure 3. Average speedup normalised to
1 core for different GPUs. It’s possible to
trade up to 150 CPU cores with one GPU.

it evolved from, with an extended scope in term of the type of tasks that nowadays run on
GPUs. For an efficient usage of the resources on the EPN farm and to be able, in the future,
also to exploit GPU pledges on the Grid, an increasing amount of the computing effort for the
asynchronous reconstruction is being moved to GPUs. To this extent, the GPU reconstruction
framework includes enhanced capabilities, such as the ability of integrating externally developed
libraries for GPU code (e.g. GPU reconstruction for ITS) and provide the convenient dynamic
load of them, reducing the amount of duplicated code to implement such a functionality on a
per-detector basis.

3. GPU in ITS reconstruction
The ALICE Inner Tracking System is among the detectors aiming at exploiting the GPU
potential for their asynchronous reconstruction.

3.1. ITS reconstruction
The ITS is the innermost detector of the experiment, it is composed by 7 layers of silicon pixels,
for a total 12.5 Gigapixels and 10 m2 of sensitive area. Among its duties the two main one are
the measure of the position of the beam collision points, also called the collision vertices, and the
reconstruction of the particle trajectories at their early stages right after the collisions. These
two tasks are accomplished respectively by two pieces of reconstruction software: the primary
vertex seeding and the tracker. In both cases the complexity of the problem is dominated by
combinatorial matches between associations of elements (e.g. clusters of pixels, segments of track
candidates, etc.). The algorithms employed are typically embarrassingly parallel at many levels
with very few exceptions in the process where more sophisticated developments are required.
More demanding use cases (i.e. TPC reconstruction) share a similar type of complexity but
scaled to a larger number of points per track, resulting in relevant speedups. In the case of
ITS reconstruction, preliminary results shows that even in this case it is possible not only to
effectively use graphics cards to operate the reconstruction, but it’s also possible to achieve a
faster execution that releases CPU resources for other non offloadable tasks.



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012134

IOP Publishing
doi:10.1088/1742-6596/2438/1/012134

4

3.2. GPU usage in asynchronous phase
GPU reconstruction for the ITS is a new development started with preparation for Run 3. Design
choices such as the supported platforms and libraries used for development are based on recent
years state of the art. Currently two target GPU brands are supported: Advanced Micro Devices
(AMD) and NVIDIA. The former is developed using the Heterogeneous-Compute Interface for
Portability (HIP)[7] language through the Radeon Open Compute ROCm platform and aims at
efficiently running on the devices available on the EPN cluster. The latter uses the Compute
Unified Device Architecture (CUDA)[5]. By using the possibility to dynamically loading external
GPU libraries in the main GPU reconstruction framework previously described, it has been
possible to develop and prototype separate libraries, independent from the main component.
This has the advantage to reduce the learning curve related to the specific approaches used by
already present GPU code, and to have something that is naturally integrated into the main
framework, thus reducing the amount of duplicate code to support the execution. Especially
during prototyping and testing stage, this facilitates the development. If required, the integration
inside the existing GPU libraries can be postponed after the finalization.

4. Develop and maintain two different code bases with minimum redundancy
Typical aspect of supporting multiple platforms is to cope with redundant and duplicated code
minimisation, so that the effort in developing and maintaining the two or more source code is
very low. This can be addressed using different strategies like external libraries for portability.
However, in order to reduce the dependencies and to avoid learning additional APIs, it will be
later described another approach based on the features of platform already used which results
in a very convenient approach for this specific use case.

4.1. HIP: Heterogeneous-Compute Interface for Portability
HIP is a C++ runtime API and a kernel language for portable AMD and NVIDIA applications.
The design of its API resembles by construction the CUDA ones with a 1:1 mapping and
covering all the shared capabilities among the two different platforms. The relative small set
of features that related to NVIDIA-only devices is not supported. Most of the commonly used
external CUDA libraries find their counterparts in the ROCm[8] ecosystem. It also provides
some semantic and literal ”translators” (i.e. hipify-clang and hipify-perl) which are able
to convert source files written in CUDA to the corresponding HIP version. Figure 4 shows a
minimal example of the corresponding mapping of HIP to CUDA APIs.

Figure 4. Code to compute the square of an array on GPU, HIP version is automatically
generated from CUDA code. CUDA and HIP API calls have a strict correspondence.



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012134

IOP Publishing
doi:10.1088/1742-6596/2438/1/012134

5

4.2. Generating HIP code on-the-fly
The compilation process of the O2 is managed by CMake[9]. It is able to perform a platform auto-
detection: it automatically produces dedicated libraries depending on supported GPU devices
and installed framework (e.g. CUDA, HIP, OpenCL, ...). It is also highly configurable and it’s
able to perform custom commands and establish dependencies across targets. This is very useful
during the development, as the final approach is to write one single code and dynamically produce
two version of it to be compiled against each target. The workflow to support with a single code
base can be summarised in few steps. Code is developed using CUDA, all the C++ platform
specific implementations are placed in the declaration files, header files are written to be portable
between CUDA and HIP. Pre-compiler macros are used to solve possible divergences between
the nomenclatures in two dialects for types and function definitions. The amount of dedicated
code to support portability is negligible and is only related to the inclusion of HIP headers.
During the compilation CMake identifies the supported platforms and add the corresponding
targets to the list of libraries to produce. If HIP is requested, it runs a custom command that
feeds all the CUDA (.cu) files to the hipify-perl translation script that produces in-places
HIP (.hip.cxx) files. Header files are used at each compilation instance and do not need to be
translated, thus reducing the amount of redundant information. By establishing dependencies
among targets it was also possible to add the re-trigger of the translation of CUDA files upon any
change on them. Initially, this approach has been developed and tested for a memory benchmark
tool written to compare GPU I/O performance of devices from different vendors. Currently this
approach is successfully used in the ITS GPU reconstruction code.

5. Conclusion
During Run 3 data taking the ALICE experiment is using GPUs to enable an online data
reconstruction. The main use case, the TPC reconstruction has been successfully tested during
the pilot beam in October in pp collisions at 900 GeV. For ALICE asynchronous reconstruction
the plan is to extend the usage of graphics cards to include more use cases The ITS aims at
having a working GPU version of the tracking algorithms. The approach is to have CUDA
and HIP platforms served by a single code base, duplicated at build time. Primary vertexer
is already functional, and works with visible speedup: up to x12 times in a not optimized
implementation on CUDA and x5 on AMD. A prototype GPU tracking has been developed in
the past, it is currently under development to be updated to current reconstruction schema in
ITS. The automatic translation of the CUDA code allows us to maintain and develop a single
code with minimal additions with respect to what is already present in the O2 for GPU support.
Therefore it does not require any external dedicated compatibility or portability library.

References
[1] ALICE Collaboration, ”The ALICE experiment at the CERN LHC”, J. Inst. 3 S08002 (2008)
[2] ] P. Buncic, M. Krzewicki, P. Vande Vyvre, Technical Design Report for the Upgrade of the Online-Offline

Computing System (2015)
[3] ALICE Collaboration, ”Technical Design Report for the Upgrade of the ALICE Inner Tracking System”,

CERN-LHCC-2013-024 (2013)
[4] OpenMP Architecture Review Board, ”OpenMP Application Program Interface Version 3.0” (2008)
[5] John Nickolls, Ian Buck, Michael Garland, Kevin Skadron, ”Scalable Parallel Programming with CUDA”

(2008)
[6] J. E. Stone, D. Gohara and G. Shi, ”OpenCL: A Parallel Programming Standard for Heterogeneous Computing

Systems,” in Computing in Science and Engineering, vol. 12, no. 3, pp. 66-73, May-June 2010, doi:
10.1109/MCSE.2010.69.

[7] HIP, https://rocm-developer-tools.github.io/HIP/
[8] AMD, ROCm, https://rocmdocs.amd.com/en/latest/Current Release Notes/Current-Release-Notes.html
[9] CMake, https://cmake.org/


