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Abstract: The Dark Energy Spectroscopic Instrument (DESI) will provide precise mea-
surements of Baryon Acoustic Oscillations (BAO) to constrain the expansion history of the
Universe and set stringent constraints on dark energy. Therefore, precise control of the global
error budget due to various systematic effects is required for the DESI 2024 BAO analysis.
In this work, we estimate the level of systematics induced in the DESI BAO analysis due the
assumed Halo Occupation Distribution (HOD) model for the Emission Line Galaxy (ELG)
tracer. We make use of mock galaxy catalogs constructed by fitting various HOD models to
early DESI data, namely the One-Percent survey data. Our analysis includes typical HOD
models for the ELG tracer used in the literature as well as extensions to the baseline models.
Among the extensions, we consider various recipes for galactic conformity and assembly bias.
We use 25 AbacusSummit simulations under the ΛCDM cosmology for each HOD model and
perform independent analyses in Fourier space and in configuration space. To recover the
BAO signal from our mocks we perform BAO reconstruction and apply the control variates
technique to reduce sample variance noise. Our BAO analyses can recover the isotropic BAO
parameter αiso within 0.1% and the Alcock Paczynski parameter αAP within 0.3%. Overall,
we find that the systematic error due to the HOD dependence is below 0.17%, with the
Fourier space analysis being more robust against the HOD systematics. We conclude that
our analysis pipeline is robust enough against the HOD systematics for the ELG tracer in
the DESI 2024 BAO analysis, for the assumptions made.
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1 Introduction

The Dark Energy Spectroscopic Instrument (DESI) is designed to conduct a survey of 14,000
square degrees and measure around 40 million galaxy redshifts throughout five years [1, 2].
DESI observation range will span redshifts going from redshift 0.1 up to redshift 2.1 for
clustering analysis, extending this range further up to redshift of around 4.1 for Lyman-α
forest analyses. DESI target selection program makes a distinction between four tracers in
this redshift range, namely Bright Galaxy Survey (BGS) [3] over 0.1 < z < 0.4, Luminous
Red Galaxy (LRG) [4] in the range 0.4 < z < 1.1, Emission Line Galaxy (ELG) [5] covering
0.8 < z < 1.6, and Quasars (QSO) [6], ranging from z = 0.8 up to z = 2.1 for galaxy
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clustering analyses. Currently, DESI already surpassed its survey validation stage [7] and
made an early data release publicly available [8]. So far, various cosmological probes have
been explored by previous and ongoing surveys to shed some light on dark energy. Indeed,
Stage-III experiments have pushed the boundaries of dark energy parameters up to figures of
merit of 92 as pointed out by [9] when combining SDSS with several Stage-III experiments,
such as Planck [10, 11], Pantheon [12], and DES [13, 14]. The search for answers to the query
of dark energy has made efforts to move toward the next generation of Stage-IV experiments,
which will push the figure of merit of dark energy even further. One of the key measurements
for the determination of dark energy properties is the expansion history of the Universe. By
creating a 3D map of the Universe covering ∼1/3 of the sky surface area, DESI plans to
constrain the expansion history of the Universe and better understand the growth of structure.

As the nature of dark energy remains an open question in cosmology, one of the key
probes in cosmology that could offer potential answers is measurements of Baryon Acoustic
Oscillations (BAO). DESI will produce precise measurements of BAO using the aforemen-
tioned tracers. In particular, the LRG tracer already exhibited a ∼5-σ detection of BAO
with only two months of data [15], this is just ∼2.2 times less precise than the full BOSS and
eBOSS BAO measurements for this tracer with ∼1/4 less galaxies observed. The precision of
this early analysis is a testimony in support of the quality of the DESI data. Since the first
detection of BAO [16], and further BAO measurements (see for example [17–20]), not only
has the quality of the data improved, but also BAO analyses have become more accurate in
terms of modeling. Current BAO analyses estimate the BAO feature from galaxy clustering
statistics by measuring an isotropic shift in the BAO scale parameterized by αiso and an
anisotropic warping parameterized by αAP (AP stands for Alcock-Paczynski). These two
parameters can be translated into measurements of the angular diameter distance (BAO
scale perpendicular to the line-of-sight) and the Hubble parameter (BAO scale along the
line-of-sight), after accounting for the AP effect [21].

The results presented in the DESI 2024 BAO analysis [22] report the constraints on
αiso and αAP for the ELG tracer in the redshift bins 0.8 < z < 1.1 and 1.1 < z < 1.6. The
statistical errors concerning these parameters are presented in table 1, and we focus on the
aggregated error over both redshift bins. Additionally, internal forecast using early DESI
data estimate the expected statistical precision the full survey to be σY5

stat(αiso) = 0.0038 and
σY5

stat(αAP) = 0.011. Yet, the statistical precision reported on BAO measurements should be
accompanied by the characterization of potential systematics, and it should be ensured that
the analysis pipeline is robust against them. Therefore, a precise knowledge of the global
error budget due to various systematics is required. There are several systematics to be
examined in companion papers to support the DESI 2024 BAO analysis presented at [22].
The optimal BAO reconstruction settings are investigated in [23] while [24] shows tests on
unblinded mocks and catalogs with this configuration. Tests to validate analytical covariance
matrices are performed in [25], based on independent studies about analytical covariance
matrices in Fourier space [26], and configuration space [27]. [28] presents the systematic error
budget for the BAO theoretical modeling. Potential systematic errors due to assumptions
regarding the fiducial cosmology assumed in the theoretical template are explored in [29].
In particular, this work aims to focus on the robustness of the BAO modeling against the
Halo Occupation Distribution (HOD) model assumed in the mocks.
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Redshift bin
Fourier space Configuration space

σstat(αiso) σstat(αAP) σstat(α∥) σstat(α⊥) σstat(αiso) σstat(αAP) σstat(α∥) σstat(α⊥)

0.8 < z < 1.1 0.020 0.018
1.1 < z < 1.6 0.011 0.033 0.022 0.018 0.014 0.044 0.029 0.023

Aggregated precision 0.0096 0.033 0.012 0.008 0.011 0.044 0.013 0.009

Table 1. Table with the aggregated error on the BAO parameters and AP parameter based on
the results reported in [22], for the ELG tracer. The values reported on this table correspond to
post-reconstruction fits, in both Fourier space and configuration space. We take the aggregated errors
in bold as our reference for the statistical error to which we compare the systematic error from HOD
modeling. Note that the empty values for the first redshift bin represent that the BAO fit was isotropic.

The HOD model is an empirical framework that assumes that galaxies are spatially
distributed within dark matter halos. Given the number of mocks needed to perform all
the required analyses by DESI, the HOD framework turns out to be a suitable tool for
mock mass production. Rather than evolving costly hydrodynamical simulations, the HOD
framework allows one to populate a dark matter-only N-body simulation with galaxies while
tuning the clustering to match the desired clustering signal to reproduce. Naturally, the dark
matter halos have to be identified in advance by employing a halo finder algorithm. However,
selecting an HOD model over another to build the mocks could introduce some bias. For this
study, rather than trying to improve the HOD modeling itself, we are interested in assessing
that our analysis pipeline is robust against different choices of HOD models.

In this work, we evaluate the systematic error due to the assumed HOD model and we
provide the error budget associated with this systematic for the DESI 2024 BAO analysis. In
particular, we focus on HOD models that aim to describe the clustering of the ELG tracer
(see [30] for an analogous analysis focused on the LRG tracer, and see [31] for a further
multi-tracer analysis treatment for LRG×ELG). The approach followed in this work is to
select representative HOD models that have been widely used in the literature and include new
promising HOD models (see [32] and [33]) to assess robustness against HOD systematics in
support of the DESI 2024 BAO analysis, presented at [22]. Based on such HOD prescriptions,
we produce several mocks fitted to early DESI data and use them to perform BAO analyses
in both the Fourier space and the configuration space. The results of the BAO fits under
various HOD models are then compared and used to assess the error level induced by such
a systematic effect. A similar systematic error analysis is to be examined in [34] for the
DESI 2024 full shape analysis that will be presented in [35]. Both BAO and full shape DESI
2024 results are based on two-point clustering measurements from the DESI Data Release 1
(DESI DR1) [36] presented in [37]. The corresponding cosmological constraints using DESI
2024 BAO measurements (including BAO measurements from the Lyman-α forest [38]) are
described in [39]. Further cosmological constraints based on full shape measurements will be
shown in [40], as well as constraints on primordial non-gaussianity [41].

The structure of this paper is organized as follows: section 2 presents the simulations on
which we rely on our analysis and the data that we use to build our HOD mocks. Section 3
offers a review of the HOD formalism and introduces the HOD models that we use to
characterize the systematic error due to the assumed HOD prescription. Section 4 lays out
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our general methodology for clustering estimation and BAO analysis. Next, we describe our
results from the BAO analysis and the robustness against HOD dependence in section 5.
Finally, we summarize our findings and provide a set of conclusions regarding the DESI
2024 BAO analysis in section 6.

2 Simulations and data

In this section, we provide a concise overview of the N-body simulations employed for evolving
the dark matter halos, which are subsequently populated with galaxies utilizing the HOD
formalism. Additionally, we describe the data sample used for tuning the clustering of
the HOD models.

2.1 AbacusSummit simulations

We based our analysis on the AbacusSummit suite of cosmological N-body simulations. The
AbacusSummit simulations are a massive set of high-accuracy and high-resolution N-body
simulations [42] designed to support science analyses in the era of Stage-IV surveys. In
particular, they are expected to meet and exceed the requirements of DESI [14]. This suite
of simulations was produced by running Abacus [43, 44], which is an optimized N-body
code for GPU architectures based on the static multipole mesh method to compute the
gravitational potential.

The AbacusSummit suite of simulations was run on the Summit supercomputer of the
Oak Ridge Leadership Computing Facility. We use base resolution simulations consisting
of (2Gpc/h)3 boxes where each of them has 69123 (around 330 billion) particles with mass
2 × 109h−1M⊙. Although this suite of simulations consists of more than 150 simulations that
span 97 different cosmological models, we only use 25 different realizations and restrict our
analysis to the Planck 2018 baseline ΛCDM model as our fiducial cosmology.1 We refer to
[29] for systematic effects concerning fiducial cosmology assumptions, where simulations for
different cosmologies were considered. Additionally, we make use of two types of simulation
output based on discrete redshift snapshots, these being at z = 0.8 for the HMQ(3σ)

i HOD
models (i = 1, 2, . . . , 6) and at z = 1.1 for the rest of the HOD models, as we will explain
in the following section.

Dark matter halos are identified with the CompaSO method [45], which is a halo-finding
algorithm based on previous spherical overdensity algorithms. Before assigning halo member-
ship to the particles, CompaSO accounts for the tidal radius around all nearby halos, rather
than simply truncating the halos at the overdensity threshold. Such an algorithm for halo
membership allows for a more effective halo deblending, especially during major mergers.
A further cleaning procedure as described in [46] is applied to eliminate unphysical halos
utilizing information from the merger-tree for every halo. Such ‘cleaning’ has been shown to
produce a more effective deblending not only by removing the halos that are over-deblended
but also by aggregating halos that are separated at the present but were physically unified in
the past. Hence, this method enhances the fidelity of the AbacusSummit halo catalogs.

1Specifically, our fiducial cosmology refers to the mean values of base_plikHM_TTTEEE_lowl_lowE_
lensing.
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2.2 The One-Percent DESI sample

The first public DESI spectroscopic data sample released was tagged as Early Data Release
(EDR) [8]. The EDR is derived from the Survey Validation (SV) campaign in April and May
2021 [7] before the start of the main survey operations. There were three main phases of
operation, the Target Selection Validation phase, the Operations Development stage, and the
One-Percent survey. The dataset we use to fit our mocks is the so-called DESI One-Percent
sample. The DESI One-Percent sample is a pilot survey of the full DESI program where 140
deg2 were covered. This is, the survey integrates 1% of the total area of the DESI footprint.

Given the early nature of this work, we rely on a wide variety of ELG mocks constructed
with HOD models fitted to the DESI One-Percent survey data, rather than DESI DR1. As
described in more detail in [5], the target selection algorithm for the ELG sample relies on a
magnitude cuts in the grz-bands. A magnitude cut g < 20 is imposed to obtain samples for
z > 0.6 and a selection box in the (g − r) versus (r − z) color-color space is used to favor [OII]
emitters, typical of ELGs. Also, the measured flux of the emitter needs to be greater than
zero in all three bands. We refer to the reader to [5] for more specific details about the ELGs
target selection. On the other hand, the DESI ELG sample originally covers the redshift
range 0.6 < z < 1.6 based on two sub-samples. However, information below z < 0.8 is not
considered as signal-to-noise is dominated by the LRG sample which exhibits a higher number
density below this redshift. The first sub-sample covers lower redshifts from z = 0.6 up to
z = 1.1 while having a higher redshift sucess rate. The second sub-sample covers 1.1 < z < 1.6
and allows to access information from earlier epochs compared to the LRG sample. The
One-Percent clustering measurements of the ELG sample between redshift 0.8 < z < 1.6
were used to fit different HOD models. It is worth mentioning that early versions of the
One-Percent data were used as well to tune some HOD models such as 1st-Gen and HMQ(3σ)

i

(see section 3 for a description of such HOD models). However, we still expect such mocks to
be useful for the HOD systematics studies as the clustering signal is not too distinct. In the
following, we briefly introduce the HOD formalism and the models used in this analysis.

3 Galaxy-halo connection

In this section, we provide an overview of the formalism we use to establish the connection
between galaxies and dark matter halos. While we define a baseline model for the satellite
galaxies in section 3.1, we continue to describe the various HOD models used in this work
for the central galaxies in section 3.2. We extend 3.3. Later, we present an overview of
the HOD models considered in this work and briefly describe how the HOD mocks for the
ELG tracer are generated.

3.1 HOD framework

In according toc form, the HOD formalism describes the relation between a typical class
of galaxies and dark matter halos, as the probability that a halo with mass M contains N

such galaxies. It also specifies how the galaxy positions and velocities are distributed within
halos. HOD models have contributions from two galaxy populations, namely centrals and
satellites, with ⟨Ncen(M)⟩ and ⟨Nsat(M)⟩ being their respective mean numbers hosted per
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halo of a given halo mass. Analytical descriptions of these mean HODs have been derived
from either semi-analytical models or hydrodynamical simulations of galaxy formation and
evolution (see e.g. [47, 48]). The most common mean HOD function [49] uses a softened
step function for centrals, a power law for satellites, and assumes generally that satellites
can only be found in halos that already host a central galaxy. This model has proven to
describe well the clustering of luminosity selected [50] or stellar mass limited [51] samples
like Luminous Red Galaxies (LRGs) [52] or quasars [53].

However, a step function cannot represent ELG samples. Strong emission lines in galaxy
spectra are strongly correlated with the galaxy star formation rate. In DESI, Emission Line
Galaxies (ELGs) are selected spectroscopically using the [OII] [5] doublet which strongly
correlates with a high star formation rate [54]. At the relevant redshift, quiescent galaxies
are more prevalent than star forming galaxies at high stellar masses, leading to the center of
massive halos to be dominated by quiescent central galaxies [55–57]. Additionally, ELGs are
selected to have strong star formation, which becomes inefficient at the center of massive
halos given the absence of cold gas. Therefore, ELG centrals are unlikely to reside in high
halo masses, which turns into a quenching of the ELG central occupation in the high halo
mass end [58]. This can be reflected in a reduction in the central probability of the ELGs in
high-mass halos. From semi-analytical models, the predicted mean HOD for central ELGs
can be fitted reasonably well by a Gaussian or an asymmetric Gaussian for centrals, together
with a power law for satellites [51, 58].

As part of the HOD framework, the total number density of the galaxy sample is
calculated as

n̄gal =
∫

dn(M)
dM

[⟨Ncen(M)⟩ + ⟨Nsat(M)⟩]dM, (3.1)

where dn(M)
dM is the differential halo mass function. The contribution of the expected number

of centrals and satellites depends on the parameterization of ⟨Ncen(M)⟩ and ⟨Nsat(M)⟩, which
are defined below. We assume the number of central (resp. satellite) galaxies per halo of mass
M to follow a Bernoulli (resp. Poisson) distribution with mean equal to ⟨Ncent(M)⟩ (resp.
⟨Nsat(M)⟩). However, alternative probability distribution functions for the satellite galaxies
are considered in [59–61]. In the standard approach, central galaxies are positioned at the
center of their halos while satellite galaxy positions sample a Navarro-Frenk-White (NFW)
profile [62]. On the other hand, other spatial profiles have been investigated to positionate
satellite galaxies within dark matter halos. For example, [61] used a less concentrated NFW
profile for ELG satellites. Similarly, [63] studied the profile of ELG satellites using the
Millennium-XXL simulation [64] and [65] proposed a generalization of the NFW profile to
describe ELG satellites. For the purpose of this work, satellite velocities are typically assigned
in two different ways: 1) They are normally distributed around their mean halo velocity, with
a dispersion equal to that of the halo dark matter particles, rescaled by an extra free parameter
denoted fσv that accounts for velocity biases, as described in [66]. 2) Alternatively, satellites
are assigned to DM particles of the halo with equal probabilities. However, other discussions
beyond the standard approach for modeling the infall velocity of ELG satellites can be found
in [32, 61, 63]. When satellites are assigned to particles, two extra parameters are added,
namely αc and αs, allowing for both central and satellite velocity biases, respectively. These
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mHMQ

Figure 1. Best-fit baseline HOD models derived from fits to the One-Percent survey ELG data.
The values used to plot these HOD models are the ones shown in table 2. The plot shows the mean
number of galaxies per halo of a given mass M . The solid curves represent the contribution from
central galaxies while the dashed lines show the contribution from the satellite galaxies.

parameters modify the velocities as vcent = vh + αcδv(σvh) for centrals, where δv(σvh) is the
Gaussian scatter of the velocity dispersion of the halo, and vsat = vparticles + αs(vparticles − vh),
as described in equations 8 & 9 in [67]. αc = 0 and αs = 1 correspond to “no velocity bias”.
While the velocity of the halo is obtained from the mean velocity of all particles within the
halo, the dispersion velocity in CompaSO is output as ∑i(vi − vh)2/Npart, where Npart is the
total number of particles of the halo. In the following, we proceed to define the explicit
functional form for these quantities based on standard HOD models and extensions beyond.

3.2 Baseline HOD models

To study a large variety of ELG mocks, four different HOD models for the expected number
of central galaxies are used, one with a Gaussian shape and three different functions with an
asymmetric Gaussian shape as described below. On the other hand, we use a standard model
for the satellite galaxies as baseline. We show a plot for the baseline HOD models in figure 1
and we refer to the reader to [32] for similar plots for these HOD models and extensions.

3.2.1 Gaussian HOD

The Gaussian HOD (GHOD), originally presented in [68], is a parameterization that is based
on a Gaussian distribution around a logarithmic mass mean. Typically, this HOD is written as

⟨Ncen(M)⟩ = Ac√
2πσM

exp
[
−(log10 M − log10 Mc)2

2σ2
M

]
. (3.2)

Here, log10 Mc represents the logarithmic mass mean, where Mc is the characteristic mass
of the halo. Also, σ2

M corresponds to the variance of the Gaussian functional form for this
parameterization. The parameter Ac represents an amplitude. This model was used in [61] as
a simple expression for the expected number of centrals used to fit the semi-analytical model
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of galaxy formation and evolution presented in [58]. We label this model for the expected
number of central galaxies per halo as GHOD.

3.2.2 Star forming HOD

The star-forming HOD (SFHOD) is a combination of a Gaussian distribution for low-
mass halos < Mc and a decreasing power law for high-mass halos > Mc. We adop the
parameterization used as a baseline model in the in eBOSS analysis by [61], and described by

⟨Ncen(M)⟩ =


Ac√

2πσM

exp
[
−(log10 M − log10 Mc)2

2σ2
M

]
, M ≤ Mc,

Ac√
2πσM

·
(

M

Mc

)γ

, M > Mc.

(3.3)

The result is an asymmetric shape where the asymmetry is modulated by the γ parameter.
This model was able to produce a better fit to the semi analytical model from [58], compared
to the GHOD model. See also [51, 69] for other parameterizations proposed for star-forming
HOD models. We refer to this parameterization as SFHOD.

3.2.3 High mass quenched

The third model used is the High Mass Quenched model (HMQ) [70], which is described by

⟨Ncen(M)⟩ = 2Aϕ(M)Φ(γM)

+ 1
2Q

[
1 + erf

( log10 M − log10 Mc
0.01

)]
,

(3.4)

where

ϕ(x) = Ac · N (log10 Mc, σM ), (3.5)

Φ(x) = 1
2

[
1 + erf

(
x√
2

)]
(3.6)

and
A = pmax − Q−1

max(2ϕ(x)Φ(γx)) . (3.7)

This model is a combination of a Gaussian function and an error function. The parameter
pmax controls the amplitude of the low-mass Gaussian part relative to the high-mass plateau,
whose level is set by Q that represents the quenching efficiency at high halo masses. The
asymmetry of the Gaussian distribution is controlled by the parameter γ.

Furthermore, a modified version of the HMQ model (labeled mHMQ) is considered in
this analysis. In the mHMQ model, the quenching parameter Q goes to infinity and we
rather calculate the central occupation as

⟨Ncen(M)⟩ = 2pmaxϕ(M)Φ [γ(log10 M − log10 Mc)/σM ] . (3.8)

Such a limit in the Q parameter is used to suppress the high-mass plateau and only retain
the asymmetric shape of the central distribution.
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3.2.4 Lognormal HOD

The last model we test in our set of standard HODs is a lognormal HOD (LNHOD), which by
construction is an asymmetric function with its asymmetry led by the width of the distribution
σM . Defining x = log10 M − (log10 Mc − 1), the prescription for central galaxies is given by

⟨Ncen(x)⟩ = Ac√
2πσM

· 1
x

· exp
[
−(ln x)2

2σ2
M

]
. (3.9)

This model was introduced in [32], and it can lead to a sharp asymmetry (close to a staircase
function) when σM > 1 (see figure 10 in [32]) which is not a physically motivated model
for ELGs but still can reproduce the observed clustering with similar goodness of fit values
to other HOD models.

3.2.5 Standard model for satellite galaxies

In this work, our baseline model for the expected number of satellites is a standard power
law distribution (see [48, 71]) given by

⟨Nsat(M)⟩ = As

(
M − Mcut

M1

)α

, (3.10)

where As controls the overall normalization of the satellite occupation, Mcut is the cut-off mass,
which defines the minimum mass of the halo to host satellite galaxies. M1 is a normalization
parameter that characterizes the halo mass at which we expect to have one satellite per halo.
Finally, α represents a power law index parameter.

3.3 Extensions for HOD modeling

In addition to the 4 different HOD models described above, ELG mocks were also constructed
using extensions to the baseline HOD framework, such as galactic conformity, assembly bias,
and using a modified profile for satellites. In the following, such extensions are described.

3.3.1 1-halo conformity

The phenomenon in which properties of satellite galaxies exhibit some correlation with those
of their central galaxy is called “galactic conformity”. Galactic conformity was introduced
in [72], which reported that the properties of satellite galaxies in SDSS data are strongly
correlated with those of the central galaxy in their halo. Since then, other studies have
found a significant trend in favor of galactic conformity [73–77]. In a recent study, [78]
used hydrodynamical models to investigate the ELG-halo connection and suggested the
inclusion of 1-halo conformity by correlating the central and satellite occupation in the HOD.
Similar conclusions about the influence of galactic conformity were derived in [65]. This
was further investigated with DESI One-Percent data, where we measured ELG clustering
deep into 1-halo scales with high accuracy, for the first time. This measurement exhibits an
unexpectedly large amplitude on very small scales < 0.2 h−1Mpc. This signal was modeled
in [32] by introducing 1-halo conformity, which generates an excess in small-separation pairs
by populating ELG satellites in the same halos as ELG centrals and further studied in [33].
In this paper, three different prescriptions for galactic conformity are used to generate mocks.
The three prescriptions are defined as follows:
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• Strict conformity: halos can host ELG satellites only if they already host an ELG
central:

⟨Nsat(M)⟩ =

As

(
M − Mcut

M1

)α

if ELG central,

0 if not.
(3.11)

• Parameterized conformity model: one parameter that modulates the strength of the
ELG central-satellite conformity is added to the HOD model. Specifically, the M1
parameter, which controls the overall amplitude of satellite occupation, is modulated
by whether the halo hosts an ELG central or not. We have that

⟨Nsat(M)⟩ =


As

(
M − Mcut

M1,EE

)α

if ELG central,

As

(
M − Mcut

M1

)α

if not,
(3.12)

where M1,EE is the new parameter that modulates the ELG-ELG conformity strength.
If there is no conformity, then M1,EE = M1. Also, if there is maximal conformity, i.e.
ELG satellites only occupy halos with ELG centrals, then M1,EE ≪ M1. This model is
studied in detail in [33].

• Complex conformity model: we also test a model where a more complex form for
galactic conformity was attempted. The model is given by

⟨Nsat(M)⟩ =


(M/M1)α

1 + (M/κMc)−As
+ β

(
M

M ′
1

)α1

if ELG central,

(M/M1)α

1 + (M/κMc)−As
if not,

(3.13)

where M ′
1, α1, β are galactic conformity parameters and κMc = Mcut determines the

minimum halo mass to host a satellite galaxy. This piece-wise satellite conformity
model allows for different conformity behaviors in two halo mass regimes. This model
is effectively a further generalization of eq. (3.12). We note that we have yet to find
observational evidence for this model, but we include it as an “overkill” model in our
systematic tests.

In our study for HOD systematics, we rely on some HOD models with strict confor-
mity, and on some models that use complex conformity, which is a generalization of the
parameterized conformity.

3.3.2 2-halo conformity

While HOD modeling is primarily a function of halo mass, both semi-analytical models and
hydrodynamical simulations predict dependencies in other properties that are referred to
as secondary biases in the literature. Evidence for 2-halo galactic conformity was found
in [79], based on the addition of extrinsic halo properties to the halo occupation model
to alleviate discrepancies found at scales r ≳ 1h−1Mpc using hydrodynamical simulations.
Deviations from the assumption that the distribution of galaxies depends exclusively on the
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mass of the host halo are known as “assembly bias”. We consider three forms of assembly bias
that manifest primarily in the 2-halo term. In [32], different halo secondary dependencies
have been tested to model the ELG clustering: the halo concentration (referred to as C in
the following), the local halo density (referred to as Env) and the local shear/halo density
anisotropies (referred as Sh). They modified the probability of occupation following the
parameterization suggested in [79], where〈

N ′
cen(M)

〉
= [1 + acenfa(1 − ⟨Ncen(M)⟩)] ⟨Ncen(M)⟩ , (3.14)〈

N ′
sat(M)

〉
= [1 + asatfa] ⟨Nsat(M)⟩ . (3.15)

Here, ⟨Ncen(M)⟩ and ⟨Nsat(M)⟩ are the standard HODs described above, and acen and asat
are free parameters for the central and satellite galaxies, respectively. Each halo is provided
with a fixed fa value prior to the fit. Halos are separated in mass bins of ∆ log(M) =0.1.
Within each mass bin, halos are ranked in decreasing order based on the specific secondary
property of interest. Then, within this mass bin, each halo is assigned a single and unique
value of fa, assuming that this value decreases linearly from 0.5 to −0.5 as one progresses
from the highest-ranked halo to the lowest-ranked one. Therefore, a positive value of acen
(asat) will increase (decrease) the value of < Ncen′ > for halo with high (low) value of the
secondary properties within his mass bin.

3.3.3 Modified satellite profile

The last extension to the standard HOD framework is a modification of the satellite profile.
In the standard HOD framework, satellite galaxies are often positioned following an NFW
profile or using dark matter particles. However, this description fails to describe correctly the
transition between the 1-halo and 2-halo terms in the clustering of the ELG sample from
the One-Percent survey. Inspired by several theoretical works [63, 80, 81], [32] introduced
a modified NFW profile (referred to as mNFW in the following) to position ELG satellites
using a combination of an NFW profile and an exponential law. Basically, the radial position
of a fraction of the satellite galaxies is governed by

dN(r)
dr

= exp
(

− r

τ · rs

)
. (3.16)

Here, eq. (3.16) modifies the expected number of satellites by means of the extra exponential
term. The parameter τ modulates the slope of the exponential and rs is the scale radius
of the profile. This new profile increases the probability of placing satellites in at larger
radii and allows satellites to be placed outside the virial radius defined from the simulation
(see figure 16 of [32] for details). This modified positioning of satellites translates into a
significant improvement of the agreement of the goodness of fit, with a χ2 value dropping
from 2.38 to 1.44. It is worth mentioning that other modifications to the NFW profile have
been proposed (see for example [65]).

3.4 Overview of the HOD models

In summary, we considered 5 different HOD models for the central occupation: Gaussian HOD
(eq. (3.2)), Lognormal HOD (eq. (3.9)), Star Forming HOD (eq. (3.3)), High-Mass Quenched
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HOD (eq. (3.4)) and the Modified HMQ model (eq. (3.8)) together with a single prescription
for satellite galaxies (eq. (3.10)). Then, extensions to the standard HOD framework are
considered: assembly bias with concentration, environment, and shear (local anisotropy);
galactic conformity; and a modified NFW profile for satellite positions. The mocks presented
in this analysis are fitted to the ELG sample from the DESI One-Percent survey and are
generated using different fitting procedures as described below. A first set of mocks is
generated based on the work from [32], using a fitting pipeline based on Gaussian Processes
described [66]. In these mocks, satellites are positioned using an NFW profile, if not specified
otherwise. Then, following the first approach we mentioned before regarding satellite velocities,
these are normally distributed around their mean halo velocity, with a dispersion equal to
that of the halo dark matter particles, rescaled by an extra free parameter denoted fσv that
accounts for velocity biases (see [66]). To fit the data, the projected clustering correlation
function wp fitting range lies between rp 0.04 to 32 Mpc/h, while π goes up to πmax = 40
Mpc/h. We point out to the reader that small scale information is contained below π < 6
Mpc/h as shown in figure 2 from [32]. Alongside wp, we jointly fit the first two multipoles
ξ0, ξ2 between two different s ranges, being 0.8 to 32 Mpc/h the first choice (1) and 0.17
to 32 Mpc/h the second choice (2). Below is the list of the HOD models from the first set
of mocks fitted using the first (1) binning range:

• GHOD: Gaussian HOD.

• SFHOD: Star forming HOD.

• SFHOD+cf : Star-forming HOD with strict galactic conformity.

• HMQ: HMQ model with Q = 100.

• 1st-Gen: First generation of DESI mocks based on HMQ model (Q = 0.1) tuned to
preliminar SV3 spectroscopic data from DESI.

• LNHOD1: Lognormal HOD (1).

• LNHOD1-1h: Same mock as the Lognormal HOD where the 1-halo term was removed,
i.e. the satellite galaxies hosted by a halo with a central were removed.

• LNHOD1+cf : Lognormal HOD with strict galactic conformity.

The following mocks were fitted using the second (2) binning range:

• LNHOD2: Lognormal HOD (2).

• LNHOD2+cf : Lognormal HOD (2) with strict galactic conformity.

• mHMQ: Modified HMQ model. This model is HMQ in the limit Q → ∞.

• mHMQ+cf : Modified HMQ model with strict galactic conformity.

• mHMQ+cf+mNFW: Modified HMQ model with strict galactic conformity and a
modified NFW profile with an exponential function. While most of the HOD models
led to χ2 per degree of freedom between 2.34–2.44, this HOD model resulted in a χ2

per degree of freedom of 1.44 with 71 degrees of freedom.
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• mHMQ+cf+C: Modified HMQ with strict galactic conformity and concentration-
based assembly bias.

• mHMQ+cf+Env: Modified HMQ with strict galactic conformity and environment-
based assembly bias.

• mHMQ+cf+Sh: Modified HMQ with strict galactic conformity and shear-based
assembly bias.

Finally, a second set of mocks is generated using the HMQ model and flexible conformity
implementations, described in [33]. These mocks follow the AbacusHOD framework, where
satellites are assigned to dark matter particles inside the host halo as was the second approach
for velocities assignment that we discussed, but at the same time velocity bias is allowed
for both centrals and satellites using two extra parameters αc and αs (see section 3.1 and
equations 8 & 9 in [67]). Additionally, the more flexible conformity model defined in eq. (3.13)
is used in these mocks. The models were fitted to the 2D clustering measurement ξ(rp, π) of
the DESI ELG data from the One-Percent survey between rp from 0.04 to 32 Mpc/h and π

going up to πmax = 40 Mpc/h. Then, from the best-fit model, 6 mocks were generated with
different HOD parameters sampled along the 3σ contour of the best-fit model, labeled as

• HMQ(3σ)
i : HMQ model described in section 3.2.3 spanning the 3-σ region for the HOD

parameters around the best-fit. The models have velocity bias applied to both centrals
and satellites.

– The HOD mocks with i = 1, 2, 3 have velocity bias applied to both centrals and
satellites, and have no galactic conformity. They represent the same model but
mocks have different HOD parameter values (values span the 3-σ region around
the best-fit).

– The mocks with i = 4, 5, 6 not only have velocity bias applied to both centrals
and satellites, but also have complex galactic conformity as given in eq. (3.13).
Overall, these models led to a good fit to the data with the best-fit χ2 per degree
of freedom being close to 1.2. Similarly, these mocks are constructed with the same
underlying HOD model but each mocks have different HOD parameter values,
spanning the 3-σ region around the best-fit.

Thus, while HMQ(3σ)
1 , HMQ(3σ)

2 and HMQ(3σ)
3 represent the same underlying HOD model,

we construct three versions of mocks using different HOD parameter values and use all of
them in our HOD systematics study (same holds for the triad with i = 4, 5, 6). In the end, a
total of 22 HOD mocks are used in this analysis. All the models presented in this analysis
reproduce the clustering measurement of the ELG sample from the DESI One-Percent survey
up to 32 Mpc/h with a similar goodness of fit, except for the model with the modified NFW
profile, which obtained a significantly better χ2. Additionally, the HMQ(3σ)

i models also
led to a good χ2 but these were fitted to an early version of the One-Percent survey data.
It is worth mentioning that while a first set of HOD mocks include fitting ranges that are
more conservative, a second round of HOD mocks include information down to smaller scales.
Originally this mocks were used to test for potential systematics beyond the scope of this
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HOD
parameters

As Ac log10 Mc α log10 Mcut log10 M1 fσv σM γ pmax acen asat αs αc fexp τ λNFW n̄g z

1st-Gen 1.00 1.00 13.22 0.007 11.22 12.28 - 0.60 4.70 0.65 - - - - - - - 3 × 10−3 1.1
GHOD 0.17 1.00 11.79 -0.01 11.49 13.00 1.06 0.09 - - - - - - - - - 3 × 10−3 1.1
SFHOD 0.58 1.00 11.68 -0.02 11.56 13.00 1.00 0.06 -2.52 - - - - - - - - 3 × 10−3 1.1
SFHOD+cf 0.47 0.50 11.99 0.55 11.17 13.00 1.31 0.24 -2.69 - - - - - - - - 2 × 10−3 1.1
HMQ 1.00 1.00 11.55 0.16 11.38 14.30 0.83 0.32 6.71 0.79 - - - - - - - 3 × 10−3 1.1
LNHOD1 0.21 0.50 11.80 -0.03 11.40 13.00 0.92 0.17 - - - - - - - - - 3 × 10−3 1.1
LNHOD1-1h 0.21 0.50 11.80 -0.03 11.40 13.00 0.92 0.17 - - - - - - - - - 3 × 10−3 1.1
LNHOD1+cf 0.50 0.50 12.32 0.58 11.19 13.00 1.49 1.16 - - - - - - - - - 3 × 10−3 1.1
LNHOD2 0.09 1.00 11.87 -0.28 11.78 13.00 1.29 0.08 - - - - - - - - - 2 × 10−3 1.1
LNHOD2+cf 0.26 1.00 12.55 0.80 11.23 13.00 1.25 1.71 - - - - - - - - 2 × 10−3 1.1
mHMQ 0.10 0.10 11.72 -0.26 11.70 13.00 1.27 0.22 7.06 1.00 - - - - - - - 2 × 10−3 1.1
mHMQ+cf 0.31 0.10 11.64 0.91 11.19 13.00 1.34 0.39 4.50 1.00 - - - - - - - 2 × 10−3 1.1
mHMQ+cf+C 0.35 0.10 11.63 0.91 11.17 13.00 1.35 0.39 4.54 1.00 0.75 -0.32 - - - - - 2 × 10−3 1.1
mHMQ+cf+Env 0.28 0.10 11.61 0.86 11.19 13.00 1.34 0.44 5.76 1.00 -0.02 0.02 - - - - - 2 × 10−3 1.1
mHMQ+cf+Sh 0.27 0.10 11.66 0.92 11.19 13.00 1.31 0.41 6.05 1.00 0.10 0.00 - - - - - 2 × 10−3 1.1
mHMQ+cf+mNFW 0.41 0.10 11.64 0.81 11.20 13.00 1.63 0.30 5.47 1.00 - - - - 0.58 6.14 0.67 2 × 10−3 1.1

As Ac log10 Mc α κ M1 fσv σM γ pmax acen asat αs αc fexp τ λNFW n̄g z

HMQ(3σ)
1 3.94 1.00 11.34 0.42 2.88 15.49 - 0.16 5.52 0.03 - - 0.13 0.51 - - - 8 × 10−4 0.8

HMQ(3σ)
2 6.23 1.00 11.35 0.42 1.85 15.53 - 0.12 4.94 0.03 - - 0.06 0.52 - - - 8 × 10−4 0.8

HMQ(3σ)
3 4.08 1.00 11.27 0.42 3.41 15.50 - 0.22 6.79 0.02 - - 0.15 0.51 - - - 8 × 10−4 0.8

HMQ(3σ)
4 0.27 1.00 11.46 1.35 0.14 15.42 - 1.10 6.07 0.11 - - 0.27 0.59 - - - 8 × 10−4 0.8

HMQ(3σ)
5 0.56 1.00 11.50 1.23 4.33 15.58 - 1.16 5.19 0.12 - - 0.23 0.54 - - - 8 × 10−4 0.8

HMQ(3σ)
6 0.27 1.00 11.49 1.36 2.50 15.28 - 1.03 5.08 0.10 - - 0.22 0.62 - - - 8 × 10−4 0.8

Table 2. Summary of the HOD models and HOD parameters used to estimate our systematic error
budget. The table shows the HOD parameter values used to generate our mocks and some other
characteristics such as number density and central redshift. We have a total of 22 HOD models with
25 mocks based on a common dark matter simulation for each of them.

work but none were found. However we include the whole series of HOD mocks for our
analysis of systematics related to BAO

3.5 HOD mocks for ELGs

The HOD mocks used for our analysis are based on the AbacusSummit halo catalogs mentioned
before in section 2 and the aforementioned HOD prescriptions. To generate these mocks, a
fitting methodology of two steps was used: the HOD mock generation and HOD parameter
fitting. Most of the HOD mocks used in this work were obtained during the effort presented
at [32], while in particular, the mocks for the HMQ(3σ)

i models (i = 1, 2, . . . , 6) were generated
following [67].

The HOD mock generation for most of the HOD models declared in section 3.4 were based
on a fixed galaxy density of either 2 × 10−3(h/Mpc)3 or 3 × 10−3(h/Mpc)3. These mocks are
built from simulations at z = 1.1. As described in [32], central galaxies are positioned at the
center of the host halos while, unless stated otherwise, satellites follow an NFW profile using
r25 (the radius of a sphere enclosing 25% of the halo particles). Satellite velocities follow a
normal distribution around the mean velocity of the host halo with a dispersion equal to
that of the dark matter particles in the halo but rescaled by an extra parameter fσv as done
in [82]. In the case of the HMQ(3σ)

i models, centered at z = 0.8, the number density used for
the mock generation is of about 0.8 × 10−3(h/Mpc)3. Moreover, the HMQ(3σ)

i mocks were
generated using AbacusHOD [67], which introduces some generalizations based on [83, 84],
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allowing satellite profile to deviate from that of the host halo. Additionally, while the rest
of the HOD models use a velocity bias prescription based on the rescaling parameter fσv ,
the HMQ(3σ)

i mocks use velocity bias in both centrals and satellites through two parameters
αc and αs, respectively, as shown in [85] (labeled there as αvel,c and αvel,s, respectively).
However, the rest of our mocks assume the centrals have the same velocity as that of the
dark matter halo. It is worth mentioning that the measured number density (corrected for
completeness) of the DESI ELG sample is ∼ 10−3(h/Mpc)3 and ∼ 0.75 × 10−3(h/Mpc)3, for
z = 0.8 and z = 1.1, respectively (see figure 1 in [32]). However, here we take the freedom to
consider mocks at high number density to reduce the shot-noise and focus on HOD effects.

Since we use two different fitting procedures in this work depending on the HOD model,
we describe in the following two different statistics. While the first procedure which is done
for most of the HOD models the number density is fixed, the second procedure includes the
number density in the χ2 calculation. In the first procedure, used for most of the HOD mocks,
the HOD parameter fitting was performed by generating 20 mock catalogs (within the same
box) at each evaluation of a single set of HOD parameters to account for stochasticity. This
process is done at every point of the parameter space and then the clustering signal for each
mock is compared to that of the data. Then an average χ2 from 20 realizations is computed
as well as a standard deviation for ⟨χ2⟩, and both are fed into a Gaussian Process (GP) fitting
pipeline to obtain a surrogate model of the likelihood surface. The computed χ2 is defined as

χ2 = (ξdata−ξmodel)T [Cdata/(1−Ddata)+Cmodel/(1−Dmodel))]−1(ξdata−ξmodel), (3.17)

where ξmodel is the clustering measurements data vector, C is the covariance matrix calculated
by applying the Jackknife method to the One-Percent survey footprint divided by 128
independent regions, as described in [32]. Additionally, D is a Hartlap correction factor [86].
Thus, eq. (3.17) is used as our statistic to fit ξ0, ξ2 and wp data measurements and generate
mocks for our HODs.

In the case of the HMQ(3σ)
i mocks, AbacusHOD rather samples the HOD parameter space

using the DYNESTY nested sampler [87] and assumes a χ2 statistic given by two contributions.
The first one is a simple Gaussian likelihood-based χ2 given by

χ2 = (ξmodel − ξdata)T C−1(ξmodel − ξdata), (3.18)

and the second one is a contribution that penalizes the HOD models with insufficient galaxy
number density, defined as

χng =


(

nmock − ndata
σn

)2
, nmock < ndata,

0, nmock ≥ ndata.

(3.19)

Here, ndata is the observed number density of the data, nmock is the number density of the
mock and σn is the associated uncertainty of the galaxy number density of the mock. Then,
the total χ2 statistic can be written as

χ2 = χ2
ξ + χ2

ng
. (3.20)
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Such a statistic is used to fit the two-point correlation function ξ(rp, π) and get the best
fit HOD parameters. From there, we generate the 3-σ contours sampled along the best-fit
model to define our mocks for the HMQ(3σ)

i models.
As we are using 25 different realizations of AbacusSummit, we produce 25 different mocks

for every HOD. Additionally, as we will mention later, to have HOD mocks with similar
number density we also sub-sample some of our high-density mocks to obtain a low-density
version of such HOD mocks, with galaxy number density of around 10−3(h/Mpc)3. Finally,
we provide in table 2 a summary table where we list the values of the HOD parameters used
to generate the HOD mocks as well as some properties of interests and variants.

4 Methodology

In this section, we describe the methodology for the data analysis that we follow in this work.
Ultimately, we aim to assess the impact on the BAO fits due to the assumed HOD model.
As stated before, to estimate the impact due to the HOD prescription in our BAO analysis
we opt to generate mocks tuned with early DESI data for various HOD models and use these
mocks to assess the systematics level. In the following, we describe in a more specific way
our galaxy clustering estimation and our modeling of the BAO template and fitting scheme.

4.1 Galaxy clustering estimation

We perform analyses in both configuration and Fourier spaces. In the case of the configuration
space analysis, typically one can measure the galaxy two-point correlation function using
the [88] estimator, given by

ξ(s, µ) = DD(s, µ) − 2DR(s, µ) − RR(s, µ)
RR(s, µ) , (4.1)

where DD are the counts for galaxy pairs and RR are the counts for pairs in the randomly
generated catalog. Similarly, DR are the cross-pair counts. Here, s is the separation of the
galaxies, and µ is the cosine of the angle formed between the line-of-sight and the galaxy
pair. While in principle we could estimate RR analytically, at the time of this work we used
eq. (4.1) as done in for example, [89]. We use the publicly available DESI package pycorr2

to measure the two-point correlation function.
Additionally, the BAO measurement is enhanced by a process called reconstruction [90–

92], where the displacement field of the galaxies due to the peculiar velocities (which arise from
bulk flows due to non-linear structure growth) is reconstructed from the observed density field.
Then, The position of each galaxy can be reversed to where each galaxy would reside if such
non-linear effects had not occurred. We estimate the shift in the galaxies due to reconstruction
using pyrecon.3 We follow the details and methodology for optimal reconstruction presented
at [23] and applied it to the unblinded data in [24]. For the reconstruction procedure, we
assume a galaxy bias b = 1.2 for the ELG tracer and use a MultiGrid4 reconstruction

2https://github.com/cosmodesi/pycorr (version 1.0.0).
3https://github.com/cosmodesi/pyrecon (version 1.0.0).
4https://github.com/martinjameswhite/recon_code.
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algorithm. We only apply the rec-sym reconstruction [93], which preserves the linear kaiser
factor and so the quadrupole term, which accounts for redshift space distortions.

The two-point correlation functions for post-reconstruction measurements were run by
taking into account the pair counts SS from the shifted random catalog and the DS pairs.
In this case, the estimator can be written as

ξ(s, µ) = DD(s, µ) − 2DS(s, µ) − SS(s, µ)
RR(s, µ) . (4.2)

In the case of the two estimators, we project the two-point correlation function into correlation
function multipoles by computing

ξℓ(s) = 2ℓ + 1
2

∫ 1

1
dµξ(s, µ)Lℓ(µ), (4.3)

where ℓ = 0, 2, 4. However, we do not consider the hexadecapole term since it can introduce
noise from the measurements to the fits beyond the HOD-dependent systematics. Then, we
simplify our analysis by considering only the monopole and quadrupole terms. We compute
ξ(s, µ) for evenly spaced bins of 1Mpc/h for s going from 0Mpc/h up to 200Mpc/h and 200
bins for µ between −1 and 1. However, ultimately we rebin our results for ξℓ(s) to bin steps
of 4Mpc/h, with the rebinning happening at the pair count level (the DD, DR and DR

pairs being rebinned along s before computing the estimator).
In the case of the Fourier space measurements, we use the implementation of the periodic

box power spectrum estimator as shown in [94] into the DESI package pypower.5 If the density
contrast is given by δg(r) = ng(r)

n̄g
−1 then the power spectrum multipoles can be calculated as

Pℓ(k) = 2ℓ + 1
V

∫
dΩk

4π
δg(k)δg(−k)Lℓ(k̂ · η̂) − P noise

ℓ (k), (4.4)

where V is the volume of the box, k is the wavenumber vector and η is the line-of-sight vector.
The shot-noise term is only considered for the monopole term. We interpolate the density
field using meshes of 5123 based on a Triangular-Shaped Cloud (TSC) prescription. We use
steps of ∆k = 0.001h/Mpc starting at k = 0h/Mpc and then we rebin the measurements to
∆k = 0.005h/Mpc. For both configuration space and Fourier space analyses, the procedures
described above match the method adopted for the final DESI 2024 results.

4.2 Zeldovich control variates technique

We go beyond the typical two-point measurements and take advantage of the Control Variates
(CV) technique to produce additional measurements where statistical noise is reduced. Given
a random variable X and a correlated random variable C with mean µc, the CV technique
is based on building a new estimator for X based on

Y = X − β(C − µc), (4.5)

where Y is the new random variable and β is some arbitrary coefficient that can be set to
minimize the variance of Y . It can then be shown that the optimal choice for such coefficient

5https://github.com/cosmodesi/pypower (version 1.0.0).
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is β⋆ = Cov[X, C]/Var[C] (see [95]). In the case where µc can be obtained analytically, the
variance of the new random variable can be written just as

Var[Y ] = Var[X](1 − ρ2
xc), (4.6)

where ρxc is the Pearson correlation coefficient between X and C. Therefore, we observe that
there is a reduction in the variance of the new random variable Y coming from the extra
information provided by the correlation between X and C. Here, we use the CV technique as
described in [96] to produce measurements in both Fourier space and configuration space.
We explain below the CV technique applied to the power spectrum measurements as an
example case.

Recently, [97] provided a recipe to combine Lagrangian perturbation theory models with
N-body simulations to reduce the effects of finite volume in calculating ensemble average
properties. More precisely, using the Zeldovich approximation [98] they noticed that the
Zeldovich displacements calculated during the initial conditions are strongly correlated with
the final density field. Therefore, one can get a reduced noise version of the biased tracer power
spectrum if we use the fact that this one has a correlation with the Zeldovich approximation
version of the power spectrum. This is referred to as Zeldovich Control Variates (ZCV).
While [97] worked out the real space version, [99] developed the redshift space version of
the formalism. In the last one, we can write

P̂ ∗,tt
ℓ (k) = P̂ tt

ℓ (k) − βℓ(k)
(
P̂ ZZ

ℓ (k) − P ZZ
ℓ (k)

)
, (4.7)

where P̂ tt
ℓ (k) is the power spectrum measured at late times in the N-body simulation, P̂ ZZ

ℓ (k)
is the power spectrum measured in the Zeldovich approximation and P ZZ

ℓ (k) is the ensemble-
average power spectrum in the Zeldovich approximation. It can be shown that

βℓ(k) =
[

P̂ tZ
ℓ (k)

P̂ ZZ
ℓ (k)

]2

, (4.8)

where P̂ tZ
ℓ (k) is the cross-power spectrum and P̂ ZZ

ℓ (k) is the auto-power spectrum of the ZCV.
We apply the ZCV technique to all our HOD galaxy catalogs to get a set of noise-reduced
measurements. For more details on ZCV or derivations for the correlation function multipoles
we refer to the reader to [96].

We can also produce post-reconstruction CV measurements using a linear model. This
formalism is called Linear Control Variates (LCV) and is described in detail in [96]. The
LCV equation is given by

P̂ ∗,rr
ℓ (k) = P̂ rr

ℓ (k) − βℓ(k)
(
P̂ LL

ℓ (k) − P LL
ℓ (k)

)
, (4.9)

where P̂ rr
ℓ (k) is the measured power spectrum for a given tracer, but now P̂ LL

ℓ (k) and
P LL

ℓ (k) are the measured and analytical reconstructed power spectrum using linear theory.
Similarly, we also have that

βℓ(k) =
[

P̂ rL
ℓ (k)

P̂ LL
ℓ (k)

]2

, (4.10)
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where P̂ rL
ℓ is the measured cross-power spectrum between the true and the linear modeled

reconstructed fields. Finally, for both ZCV and LCV, we can obtain the correlation function
multipoles by performing an inverse Fourier transform, followed by some appropriate treatment
for remnant ringing effects. In sum, we can use the fact that we have a reliable analytic
approximation at large scales such as the Zeldovich approximation to remove sample variance
noise using the CV technique.

4.3 Baryon acoustic oscillations modeling

We perform an anisotropic analysis to extract the BAO feature information. We use a slightly
modified version of [100] for the modeling of our BAO template. We adopt a BAO modeling
version close to the one presented in [28] and explain the differences further below. We start by
splitting the linear matter power spectrum into ‘wiggle’ and ‘no-wiggle’ parts, labeled as Pw(k)
and Pnw(k) respectively, using the method as described in [101]. From there we define an
oscillatory term O(k) = 1 + Pw(k)/Pnw(k), which contains the BAO information. We proceed
to fit the BAO feature by constructing a template of the galaxy power spectrum. The random
peculiar velocities at small scales cause an elongation of the positions in the redshift space.
This produces damping due to the non-linear velocity field that can be parameterized with

DFoG(k, µ, Σs) = 1
(1 + k2µ2Σ2

s/2)2 , (4.11)

where Σs is the damping scale parameter for the Fingers-of-God. Additionally, we have
to introduce a term to account for the coherent infall of galaxies at large scales, given by
(1 + βµ2)2 [102], where β is a free parameter to fit. These two terms allow us to define a
smoothed power spectrum that accounts for the effect of galaxy bias and peculiar velocities, as

Psm(k, µ) = B2(1 + βµ2)2DFoG(k, µ, Σs)Pnw(k). (4.12)

We also have added a factor B that acts as a linear galaxy bias. Now, the growth of
non-linear structure can also wash out the BAO feature. Then, we introduce an extra
damping factor given by

C(k, µ) = exp
[
−k2

(
(1 − µ2)Σ2

⊥
2 +

µ2Σ2
∥

2

)]
. (4.13)

The first mode affects the BAO signal perpendicular to the line-of-sight and is parameterized
by Σ⊥, while the second mode acts along the line-of-sight and is represented by Σ∥. We now
add eq. (4.13) to eq. (4.12) and calculate the power spectrum multipoles as

Pℓ(k) = 2ℓ + 1
2

∫ 1

1
dµLℓ(µ)Psm[k′(k, µ), µ′(µ)]

× [1 + (O(k′) − 1)C(k′, µ′)] +
4∑

i=−1
A

(i+1)
ℓ ki.

(4.14)

Here, Lℓ represents the Legendre multipoles and Ai
ℓ are a set of polynomials that allows us to

fit the broadband of the power spectrum. The number and power of polynomial terms were
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chosen based on the work of [28]. We perform analytic marginalization of both the broadband
terms and the linear galaxy bias as described in [28]. The prime (′) represents the use of the
true wave numbers compared to the observed wave numbers (without ′). This rescaling is
added to our template to account for the radial dilation of BAO and the anisotropic warping.
The radial dilation of BAO is parameterized by αiso, given by

αiso(z) = DV (z)rfid
s (zd)

Dfid
V (z)rs(zd)

. (4.15)

Here, the spherically-averaged distance DV (z) is divided by the sound horizon rs evaluated
at the drag epoch redshift zd. This ratio DV (z)/rs(zd) is then divided by the fiducial value
used to construct our template. On the other hand, the fact that we measure redshifts
and these are converted to physical distances by assuming a concrete cosmology can lead
to bias since the assumed cosmology can be different from the true one. Such a bias can
introduce an anisotropic warping effect deviating us from having a purely isotropic scale
(besides non-linear structure evolution). We account for this effect (referred to as AP, [21])
by using the scaling parameter

αAP(z) = H(z)fidDA(z)fid

H(z)DA(z) . (4.16)

Hence, the parameters defined in eq. (4.15) and eq. (4.16) account for the dilation of the
coordinates according to (compare to [103])

k′ = k
α

1/3
AP

αiso

[
1 + µ2

(
1

α2
AP

− 1
)]1/2

(4.17)

and

µ′ = µ

αAP

[
1 + µ2

(
1

α2
AP

− 1
)]−1/2

. (4.18)

If we work rather in configuration space, we just transform the power spectrum multipoles
from eq. (4.14), without including any contribution from the polynomial terms, according to

ξℓ(s) = iℓ
∫ ∞

0

k2

2π2 Pℓ(k)jℓ(ks)dk +
1∑

i=−2
A

(i+2)
ℓ si, (4.19)

where jℓ are the spherical Bessel functions and 4 polynomial terms were added in this
case. Notice that the polynomial terms to characterize the broadband are added after the
spherical Hankel transformation of the power spectrum multipoles. Thus, our fits in Fourier
space are performed using eq. (4.14), while the fits in configuration space are computed
by using eq. (4.19).

We note that, due to the parallel nature in which the two studies were performed, our
BAO modeling procedure differs slightly from that recommended by [28], which is the BAO
modeling method adopted for the DESI 2024 results, in that 1) we allow the FoG damping
term to affect both the wiggle and no-wiggle terms; 2) we use a ‘polynomial’-based broadband
method instead of their preferred ‘spline’-based method; 3) we allow the BAO dilation
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Parameter Description Prior
1. BAO template MCMC parameters

αiso Isotropic shift in the BAO scale. (0.8, 1.0)
ϵ Anisotropic warping of the BAO signal. (−0.2, 0.2)

Σ∥ Non-linear damping of the BAO feature mode in the line-of-sight.
Pre, CS: N (8.75, 2.0), Post, CS: N (5.42, 2.0)
Pre, FS: N (8.94, 2.0), Post, FS: N (5.35, 2.0)

Σ⊥ Non-linear damping of the BAO feature mode perpendicular to the line-of-sight.
Pre, CS: N (4.23, 2.0), Post, CS: N (1.92, 2.0)
Pre, FS: N (3.98, 2.0), Pre, FS: N (1.40, 2.0)

Σs Fingers of god parameter for the velocity dispersion in the Lorentzian form.
Post, CS: N (5.36, 4.0), Post, CS: N (1.70, 4.0)
Pre, FS: N (2.0, 2.0), Post, FS: N (0.0, 2.0)

β Kaiser term parameter equal to f/b. (0.01, 4.0)
b Linear galaxy bias. Obtained by analytic marginalization. (0.1,10.0)

Aℓ,i Polynomial coefficients for broad band terms. Obtained by analytic marginalization. (-20000.0, 20000.0)
2. Derived BAO parameters

αAP Alcock-Paczynski scale distortion parameter. Derived from ϵ.
α∥ BAO scaling parameter along the line-of-sight. Derived from αiso and ϵ.
α⊥ BAO scaling parameter perpendicular to the line-of-sight. Derived from αiso and ϵ.

3. Statistical definitions
⟨∆X⟩ Mean difference between the measured value of X and the fiducial value of X.

σX Statistical uncertainty associated with variable X given the assumed covariance matrix.
σ(X) Standard deviation for the mean of X, obtained from 25 independent measurements.

Table 3. Description of the BAO template parameters used throughout this work. The BAO template
parameters are described in the first section of the table along with the priors used during the fitting
stage. The parameters shown in the next section of the table are considered derived parameters after
the MCMC parameter estimation. Finally, a brief description of the statistical notation we use in
follow-up sections is described at the bottom of the table. As explained in the text, our results are
unaffected compared to the BAO modeling methodology used for the DESI 2024 results.

parameters to affect both the wiggle and no-wiggle model components and 4) we use k and
µ for the redshift space distortion factor within C(k, µ) instead of the dilated coordinates.
However, they conclude that the BAO fitting methodology is robust to any of these choices, at
the 0.1% level for αiso and 0.2% level for αAP. In any case, as demonstrated later, our method
is also able to recover unbiased BAO constraints, and because we focus on comparative
differences between different simulations in this work our results are immune to these choices.

A summary table with the parameters used in our modeling of the BAO template, along
with some derived parameters and statistical definitions are provided in table 3. In the
following, we describe our parameter estimation methodology.

4.4 Parameter fitting scheme

For both Fourier space fits and configuration space fits, we perform MCMC analysis to fit
the BAO template described before. We use Barry6 [104] for our parameter estimation.7
As stated in [22], this BAO fitting pipeline is consistent with the desilike8 code used
for the DESI 2024 results, but given the early nature of our analysis we use Barry. We
explore the parameter space by using the nested sampling algorithm in DYNESTY [87], while

6https://github.com/Samreay/Barry (version April 2023).
7Note that Barry uses ϵ = α

1/3
AP − 1 as a base parameter for MCMC sampling.

8https://github.com/cosmodesi/desilike.
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we minimize the χ2 as defined by

χ2 = (Pmodel − Pdata)T W (Pmodel − Pdata) . (4.20)

Here, Pmodel is given by eq. (4.14) if we perform a Fourier space analysis or eq. (4.19) if
we rather work with the correlation function. Similarly, Pdata represents the corresponding
data vector, which can be either the power spectrum multipoles or the correlation function
multipoles. The matrix W is given by W = C−1, where C an analytical covariance matrix.
We use analytical covariance matrices for all of our HOD models. However, we performed
validation tests for the 1st-Gen HOD model, where we were able to produce a covariance
matrix generated from 1000 EZMocks simulations [105]. We performed BAO fits using an
analytical covariance matrix and an EZMocks covariance matrix for the 1st-Gen and compare
the consistency of both results. For such validation test, in the case of the fits using an
EZMocks covariance matrix, we apply a Hartlap correction factor [86] given the fact that
we are inverting a covariance matrix generated from a finite amount of mocks, which can
lead to biased parameter estimation. However, as shown in [106], including extra correction
factors could slightly broad the posterior distribution of the parameters. Nevertheless, using
scatter plots we verified that the values measured for α∥ and α⊥ were consistent using both
covariance matrices. Then, we generate analytical covariance matrices tuned to the clustering
of 25 mocks for every HOD. In the case of Fourier space analysis, we generate Gaussian
analytical covariances by using thecov,9 which is based on [107] and is validated in the
context of DESI 2024 in [26]. For configuration space analysis, we use RascalC.10 This code
was applied to early DESI data in [108] and it was originally presented in [109]. The validation
of RascalC towards DESI 2024 results will be detailed in [27]. In both cases, a validation
against covariance matrices derived from EZMocks simulations was carried out in [25]. We do
not apply any correction factor when using analytical covariance matrices as little inversion
bias is expected. The choices used in our analysis match the methods adopted for the DESI
2024 results, as presented in [22]. The overall methodology used in this work related to
HOD-dependent systematics can be summarized by the flowchart given in figure 2, where the
various performed calculations and pipeline codes used in our analysis are highlighted.

5 Results

In this section, we use the mock data based on the HOD models shown in section 3 and
apply the methodology described in section 4 to perform comparisons between different
HOD prescriptions at the level of the BAO scaling parameters. We then use the BAO fits
derived from our HOD mocks to quantify a systematic error budget and compare it to the
statistical error from DESI 2024 results.

5.1 Results from BAO analysis

To perform a BAO fitting analysis, we calculate two-point measurements in both configuration
space and Fourier space. As mentioned before, our measurements in configuration space

9https://github.com/cosmodesi/thecov (version 0.1.0).
10https://github.com/oliverphilcox/RascalC (version 2.2).
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(pyco
rr)

Configuration Space AnalysisGalaxy Catalogs

HOD prescription

HOD1, HOD2,…, HODN

Dark matter N-body 
simulation

(AbacusSummit)

𝛏ℓ(s) measurements
Pre-recon catalogs

Shifted catalogs

Analytical Cov
(RascalC)

𝛼iso, 𝛼AP

Reconstruction
(pyrecon)

(pypower)

BAO template
(Barry)

+

+

Fourier Space Analysis

Pℓ(k) measurements

Analytical Cov
(thecov)

BAO template
(Barry)

+

+

BAO fits

HOD systematics

𝛼iso, 𝛼AP

Figure 2. Flowchart that summarizes the algorithm followed in deriving the results of this work. While
the HOD prescription is used at the top of the dark matter simulation to produce pre-reconstruction
catalogs, we follow a series of calculations to obtain the impact on the BAO parameters. The different
codes or simulations used in each step are written between parentheses.

are performed using pycorr, while our analysis in Fourier space uses pypower. First of
all, we focus on analyzing the data without applying reconstruction. We use the catalogs
for all of our 22 HOD models, which were generated by populating the AbacusSummit N-
body dark matter simulation with galaxies using different HOD prescriptions. We then
estimate two-point measurements and produce 25 measurements for each HOD model in
both configuration and Fourier Space.

The average correlation function measurements before BAO reconstruction are shown
in figure 3, where we include the correlation function measurements for the final version
of the EDR used to construct the vast majority of our HOD mocks. This helps us to see
how similar the clustering of the various HOD models is, just after the HOD fitting stage
and without any BAO reconstruction applied yet. We observe that most of the two-point
correlation function measurements overlap slightly for s > 60Mpc/h when considering HOD
models without galactic conformity or assembly bias. However, if we look at smaller scales,
we observe that the mHMQ model and the LNHOD2 model start to prefer a higher clustering
amplitude for the monopole term. This can be explained by the fact that these two models
were obtained by fitting to smaller scales compared to the rest of the HODs, therefore they
match better the EDR clustering at small scales. Nevertheless, these differences at small
scales are not expected to have a big impact on the BAO fits since we fit only scales over
s = 50Mpc/h. On the other hand, there is a low clustering signal for the 1st-Gen mocks,
which is simply explained by the fact that such a model was fitted to a preliminary version of
the EDR. Yet, the differences in the clustering signal are constant above s = 50Mpc/h and
of the order of 10% and we should then be still able to recover the BAO scale correctly after
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Figure 3. HOD measurements calculated from catalogs prior BAO reconstruction using mocks that
were tuned against the One-Percent survey data (black data points). The top panels represent the
measurements obtained for the monopole term, the middle panels show the results for the quadrupole
term and the bottom panels correspond to the hexadecapole term measurements. We do not use the
hexadecapole term neither in the HOD fits nor in the BAO fits, but still, we show it for completeness.
While the HODs on the left panel correspond to the standard HOD models used in our work, the
HODs shown in the central panels assume galactic conformity and the HOD models in the right-hand
side panel assume not only galactic conformity but also assembly bias. Additionally, each correlation
function multipole measurement has a smaller panel below where the relative error in % is shown
with respect to the mHMQ+cf+mNFW model, which is the fiducial HOD model for our analysis of
systematics. The color legend for each HOD curve is shown at the top of the plot. Note that while
the black data points correspond to actual data, the curves correspond to measurements from galaxy
catalogs that were further rebinned going from s = 2Mpc/h up to s = 198Mpc/h with steps of 4Mpc/h.
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reconstruction and include this HOD in our systematic error budget. When we add galactic
conformity to some of the HODs (second column in figure 3), we see that overall there is a
good match in the observed clustering among all HODs, except by the LNHOD1+cf. This
model was indeed not fitted to such small scales compared to the others. Let us recall that
LNHOD1+cf and LNHOD2+cf are the same model with the exception that LNHOD1+cf
is fitted down to 0.8 Mpc/h while LNHOD2+cf goes down to just 0.17 Mpc/h. Therefore,
the low clustering signal of the LNHOD1+cf model observed in figure 3 can be explained
by the fitting range choices. On the other hand, we observe that adding galactic conformity
to the HOD models does not produce a meaningful deviation in the two-point correlation
function measurements. Finally, including assembly bias at the top of the galactic conformity,
does not seem to have a significant impact on the observed clustering of the mHMQ+cf when
adding concentration bias, environment bias, or shear bias.

Next, after looking at the clustering signal for the various HOD models we focus on
enhancing the BAO measurement. We apply BAO reconstruction on all of our galaxy
catalogs as described in section 4. We then again perform two-point measurements in
both configuration space and Fourier space on the catalogs after BAO reconstruction. The
measurements after applying BAO reconstruction and CV are shown in appendix B in figure 13.
These measurements were subtracted with the smoothing component after performing the
BAO fits to highlight the BAO feature explicitly. As described in section 4, we use a BAO
template based on 11 (13) parameters to fit the monopole and quadrupole in configuration
(Fourier) space. To test the HOD dependence on the BAO fits and reduce the effect of
systematics due to the BAO template, we apply Gaussian priors for Σ∥, Σ⊥, Σs. Since we
want to test the impact on the BAO measurement due to HOD dependence when choosing a
particular HOD for the analysis, we use the mHMQ+cf+mNFW as our fiducial HOD. We
tune the priors based on this fiducial HOD to perform an optimal fit for this HOD model
and analyze the systematic effect this can have when changing the HOD prescription but
holding the same priors. We show the priors we assumed in our fits in table 3, along with
some useful statistical notation that will be used in the following. To get such prior choices,
we tune the optimal non-linear damping parameters for this model by setting αiso = αAP = 1
while fitting the nuisance parameters to the average of 25 realizations. We also tested other
prior choices such as using 1st-Gen as our fiducial HOD or taking an average prior from all
the HODs. However, our results are not significantly sensitive to this choice. In the following,
we proceed to describe the results we obtain from the BAO analysis for both Fourier space
and configuration space, independently. Even though we use the CV measurements as our
final choice for quoting systematics, we also describe both CV and non-CV BAO fits for
completeness and to show the gain from the CV approach.

5.1.1 Fourier space analysis

We shall focus first on the results from the Fourier space analysis. We perform BAO fits in
the range 0.02Mpc−1h < k < 0.30Mpc−1h, using Gaussian priors for the non-linear damping
parameters and Σs, as described table 3. We run fits for 25 realizations for each HOD
model and present the average BAO fit in figure 4. Here, the error bars correspond to the
dispersion on αiso (alternatively, αAP) over 25 fits rather than the statistical uncertainty
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Figure 4. Results for the BAO scaling parameters when fitting the power spectrum monopole and
quadrupole. The fits are obtained by averaging the fits of 25 realizations and rescaling accordingly. We
show the difference in the scaling parameters with respect to their fiducial value and depict the 0.1%
regions in a red band. We also show the σ-error level along with a yellow region that corresponds to the
interval where the error is below 1-σ. The results in the left panel are obtained before reconstruction
while the right panel fits represent the post-reconstruction results. The blue circles correspond to the
fits to Pℓ(k) while the white circles are obtained when fitting the CV noise-reduced measurements.
Each index in the x-axis corresponds to a particular HOD model.

from the covariance matrix used in the fit. The blue data points represent the fits to the
power spectrum multipoles and the white data points correspond to the BAO fits to the
CV version of the measurements. We shall focus first on describing the non-CV BAO fits.
We observe (left-hand side of the figure) that the pre-reconstruction fits for αiso are slightly
above (around 2%) of the fiducial value while estimations of αAP also show a bias for most
HOD models. Such bias in the fits before BAO reconstruction is expected as our BAO
damping model is not sufficient to capture the nonlinear physics included in the HOD mocks.
We observe that the bias in such fits is overall around 2-σ. Looking at the right-hand side
of the figure we observe that the post-reconstruction fits are successful in two ways, as
follows: first, we find a decrease in the error bars of both αiso and αAP, with respect to the
pre-reconstruction BAO fits. This effect can be observed by comparing the left-hand side
panel and right-hand side panel error bars in the figure. Second, we observe a shift in the
measured values of the BAO scaling parameters which diminishes the bias of the fit. This can
be seen by looking at the plots for ∆α/σα where most of the data points now lie within the
1-σ confidence interval. These effects are expected as reconstruction reverses the positions of
galaxies based on the displacement field, to reduce the impact of the non-linear structure
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growth on the BAO feature. Then, reverting the positions of the galaxies enhances the extra
clustering signal coming from the BAO shells at the BAO scale, reducing the bias on the BAO
measurement. We can also see from figure 4 that αiso is the best measured BAO statistic
for DESI. Furthermore, we found that the dispersion between BAO fits corresponding to
different HOD models is way below the aggregated statistical error for DESI 2024 (0.96% for
αiso). Indeed, we can see that the bias in the BAO fits is overall within the sub-sub-percent
level, as highlighted by the red band in figure 4.

If we now draw our attention to the BAO fits corresponding to CV noise-reduced
measurements, we can see that overall they are not only consistent with the non-CV BAO
fits before reconstruction, but they also show a better performance in terms of the recovery of
the BAO feature for the post-reconstruction fits. The last point can be reflected in the panel
dedicated ∆αiso/σαiso in figure 4 (second panel on the right-hand side), where overall all white
dots stay inside the yellow region. We indeed observe that the maximum bias observed in
the BAO scale recovery for αiso goes from 2.0-σ down to 1.3-σ when using CV measurements.
Additionally, while the average bias observed for αiso is 0.7-σ for non-CV BAO fits, the CV
BAO fits shows a 0.2-σ bias on average. On the other hand, we notice that CV BAO fits
are bit more bias compared to non-CV BAO fits for few HODs, such as HMQ(3σ)

1 , HMQ(3σ)
2

and HMQ(3σ)
3 since BAO fits moves to a higher value of αiso. This effect however can be

attributed to the trend that overall, all the CV BAO fits seem to lead to a higher value of αiso.
Such an effect can be associated with the fact that all HOD models are correlated to some
degree since they belong to the same dark matter simulation and are therefore populating
the same halos. Since the quoted error bar is given by the dispersion on αiso (alternatively,
αAP) given 25 independent measurements of them, we observe that the CV results show a
smaller error compared to the non-CV results. Such reduction in the variance is due to the
fact that statistical noise is removed in the CV two-point measurements.

We show the quantitative results for our BAO fits in table 5 in appendix B, using both
the standard two-point measurements and the CV noise-reduced two-point measurements.
The table also includes the results of the derived BAO scaling parameters α∥ (scaling along
the line-of-sight) and α⊥ (scaling transversal to the line-of-sight). These parameters are
defined from the relations αiso = α

1/3
∥ α

2/3
⊥ and αAP = α∥/α⊥. We notice that the mean error

coming from the covariance matrix ⟨σα⟩ is of the same order for all HODs except for the
HMQ(3σ)

i mocks at z = 0.8, which have the smallest number density. Apart from this, we
observe that overall, the mean error on a given BAO scaling parameter ⟨σα⟩ is similar to
the error coming from the dispersion of 25 fits σ(α), for the standard BAO fits. However,
the CV BAO fits show that σ(α) < ⟨σα⟩, being the average error improvement factor due
to CV around 1.50 for αiso and 1.45 for αAP (or equivalently, ϵ). This is in agreement with
what had been found in [96]. This can be also seen better from figure 11 in appendix A,
where we show the CV error improvement factor per HOD model, for various BAO scaling
parameters and ϵ. The aforementioned values correspond to the average factors shown in
blue and red dashed lines, respectively, in figure 11. In the case of α⊥ we observe that the
error improvement factor is a bit less than 1.3. However, since α⊥ is correlated with α∥,
this low factor is compensated by a 1.6 factor in the case of α∥. While we do not find a
clear trend about the error improvement comparing αiso and ϵ, we observe that comparing
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Figure 5. 68% confidence regions for α∥ and α⊥. The fit was performed in Fourier space on the
averaged data vector over 25 realizations for each HOD mock rather than individual realizations. The
star represents the best-fit value. The dashed black lines represent the fiducial value for both α∥ and
α⊥. The fiducial value of αiso is shown as a gray dashed dotted line. Similarly, the fiducial value for
αAP is shown in a dotted gray line. While HMQ(3σ)

i mocks are constructed at z = 0.8, the rest of the
HOD models are applied for simulations at z = 1.1.

α⊥ improvement with respect to α∥ shows a clear tendency, being CV more efficient for the
latter. This might be due to the fact that CV is more accurate on linear scales where α∥ is
impacted by linear redshift space distortion effects. Now, looking at the goodness of the fit,
we find that the ⟨χ2⟩ seems reasonably close to the degrees of freedom (DoF) of the BAO
template (DoF= 93), as shown in table 5. Similarly, we also observe a decrease in ⟨χ2⟩ for
the CV BAO fits. This drop in the ⟨χ2⟩ is expected since we are using the same covariance
matrices for both CV and non-CV BAO fits. However, the CV BAO fits show a decrease
in the dispersion, which ends up impacting the χ2 computation.

As shown in figure 4, our BAO analysis pipeline can recover the BAO feature with
fluctuations at a sub-sub-percent level. Some fluctuations in the BAO parameters are present
for some HOD models, but they are below 2-σ. The situation improves in general when we
perform BAO fits after using the CV technique. Focusing on our CV BAO fits, we found that
the biggest deviation for αiso among all our HOD models, is about 0.1% for the HMQ(3σ)

2
model, with a bias of 1.3-σ with respect to the fiducial value. A similar case is found for
HMQ(3σ)

1 and HMQ(3σ)
3 as these HOD models correspond to 3-σ variations of the best-fit

model. We found a maximum shift of 0.24% in αAP when looking at the SFHOD model,
with a bias with respect to αAP = 1 of about 1.7-σ. Again, we stress that αiso is our best
measured and most robust parameter for the DESI 2024 BAO analysis.

We now analyze the BAO scaling parameters when fitting the average of 25 mocks for
each HOD model. We leverage on α∥ and α⊥ to investigate the degeneracy direction followed
by the BAO fits, as shown in figure 5, based on the CV measurements. We observe that all
the fits are consistent with the fiducial BAO scale within the 1-σ confidence regions. We
point out that in this case, the error on the parameters is directly coming from the covariance
matrix rather than from the dispersion over 25 BAO fits since we are directly fitting the
mean. We observe that the conventional HOD models (contours on the left panel in figure 5)
tend to scatter well within αiso = 1 but some of them show slight shifts away from αAP = 1.
For example, LNHOD1+cf shows a shift towards a low value of αAP. Similarly, if we focus
on the central panel, we observe that the HMQ(3σ)

i best-fit values (i = 1, 2, 3) exhibit slight
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Figure 6. Results for the BAO scaling parameters when fitting the correlation function monopole and
quadrupole. The fits are obtained by averaging the fits of 25 realizations and rescaling accordingly. We
show the difference in the scaling parameters with respect to their fiducial value and depict the 0.1%
region in a red band. We also show the σ-error level along with a yellow region that corresponds to the
interval where the error is below 1-σ. The results in the left panel are obtained before reconstruction
while the right panel fits represent the post-reconstruction results. The blue circles correspond to the
fits to ξℓ(s) while the white circles are obtained when fitting the CV noise-reduced measurements.
Each index in the x-axis corresponds to a particular HOD model.

shifts in both αiso and αAP towards high values. However, we get an optimal recovery of
the BAO scale for HMQ(3σ)

i models (i = 1, 2, 3), where complex galactic conformity is added
at the top of the velocity bias. Thus, it is expected that the LNHOD1+cf model and the
HMQ(3σ)

i models without galactic conformity will end up driving the systematic error for
αAP. Also, that the HMQ(3σ)

i models (i = 1, 2, 3) will drive the systematics for αiso. Finally,
the mHMQ model along with its extensions, such as strict galactic conformity and assembly
bias, show not much scattering from the fiducial BAO scale.

5.1.2 Configuration space analysis

For the configuration space BAO analysis we fit ξ0(s) and ξ2(s) in the range 50Mpc/h < s <

150Mpc/h. The modeling is similar to the Fourier space BAO fits, but here we only use 4
broadband terms compared (involving s−2, s−1, 1 and s) to the 6 coefficients (related to k−1,
1, k, k2, k3 and k4) used in the Fourier space analysis, as shown in eq. (4.19) and eq. (4.14),
respectively. The fits to the correlation function multipoles in redshift space are shown in
figure 6. We observe that reconstruction behaves as expected for all the HOD models, being
especially efficient for αAP, by bringing most HOD models below the 1-σ threshold. The
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Figure 7. 68% confidence regions for α∥ and α⊥. The fit was performed in configuration space on
the averaged data vector over 25 realizations for each HOD mock rather than individual realizations.
The star represents the best-fit value. The dashed black lines represent the fiducial value for both α∥
and α⊥. The fiducial value of αiso is shown in a gray dashed-dotted line. Similarly, the fiducial value
for αAP is shown in a dotted gray line. While HMQ(3σ)

i mocks are constructed at z = 0.8, the rest of
the HOD models are applied for simulations at z = 1.1.

performance of the BAO fits for αAP looks even more encouraging for CV measurements,
where the expected value of αAP is recovered within 1-σ for all HODs. For the isotropic
BAO parameter, we found that reconstruction pulls down the over-optimistic values of αiso.
However, some HODs still show some bias up to 2.5-σ. Nevertheless, the BAO fits for the
CV measurements restore the overall consistency of the fits. Except for the 1st-Gen mocks,
the rest of the HOD models show consistent BAO fits with αiso = 1 up to 1.3-σ. We also
observe that the αiso shift differences in the HOD models for CV BAO fits lie within the
0.1% precision region (red horizontal band in figure 6). These shifts are below the DESI
2024 aggregate precision threshold (1.1% for αiso) by a factor of 10. However, this is the
maximum difference found between a pair of HOD models, and could be a very pessimistic
value to quote for the HOD systematics, as we discuss in section 5.2.

We observe that the error improvement factors coming from CV show, on average,
lower values than those found in the Fourier space analysis (see figure 11). This is due
to the low-density HMQ(3σ)

i models with (i = 1, 2, 3), which do not manifest an efficient
noise reduction. Overall, we observe the CV technique to work better for the high-density
HOD mocks providing a larger improvement in the error, which is consistent with what
was found in [96]. This is potentially due to the fact that high-density mocks have larger
satellite fractions, which play an important role in the efficacy of the CV method. Also,
it was shown in [99] that CV is less efficient for higher shot-noise samples which lead to
decorrelation between the ZA power spectrum and the tracer power spectrum. On the other
hand, qualitatively we found that the hierarchy on the error improvement factor is the same
in both Fourier space and configuration space. The highest improvement is shown in α∥ (a
1.5 error improvement factor) while α⊥ shows just a 1.2 error improvement factor.

The 2D contours for the BAO fits to the average of 25 measurements are shown in figure 7.
In this case, we observe that the contours are inflated in comparison to the Fourier space
results. This comes from the fact that the errors reported in figure 7 come from analytical
covariance matrices for the correlation function multipoles. Yet, our error budget should not
depend much on these differences in the covariance matrices between both spaces since our
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systematic error comes from the difference between the mean values of the fit. In general,
while we observe similar trends compared to the Fourier space results, yet we observe more
scattering in the best-fit values. Similarly as before, the LNHOD1+cf model will drive the
systematics for αAP in configuration space. However, we observe that the LNHOD2+cf
model, which is the same model as LNHOD1+cf but fitted to smaller scales, shows a better
performance on the BAO fit. On the other hand, we observe that the CV BAO fit for the
1st-Gen mocks is biased slightly above 1-σ, opposite to what is found in the Fourier space
analysis. The shift affects exclusively αiso and will drive the systematics for this parameter.

In general, we found the results from the configuration space analysis to be slightly more
scattered compared to the Fourier space analysis, but overall consistent. A discussion about
the consistency between the two analyses is presented in appendix A.

5.2 Robustness against HOD modeling

Considering different prescriptions for sampling a given underlying cosmological field with
galaxies can provide consistent results when compared to actual measurements. However,
even in the absence of errors in the measurements, such sampling can lead to different results
for the BAO scale. This fact turns into an unavoidable systematic error floor on any BAO
measurement. In this work, we are interested in estimating such systematic error.

After achieving good performance in our BAO fits, we need to establish a methodology
to test the robustness of these fits against the underlying HOD model. This will help us
to quantify the systematic error budget due to HOD-dependence in modeling BAO. Our
strategy to quantify the level of systematics is the following. Previously, we made some
general conclusions about the results from the BAO fits, based on the average BAO fits over
25 realizations for each HOD. Indeed, we can calculate the maximum shift between pairs of
HOD models derived from averaging the BAO fits over all realizations as a starting point.
However, not all the shifts found between HOD models are statistically significant, and a
more conservative strategy needs to be drawn. Then, we rather focus on comparing the BAO
fits from individual realizations (rather than the averaged fits) across all HODs to test the
robustness of the BAO analysis against the HOD prescription. We rely on two statistics to
analyze the HOD systematics on the BAO fits. First, we define

⟨∆αij⟩ = ⟨αi − αj⟩, (5.1)

where α can correspond to either αiso or αAP. Eq. (5.1) represents the average over 25
realizations on the BAO fits between different pairs of HODs. We also define

Nσ(αij) = ⟨∆αij⟩
σ(∆αij)/

√
N

, (5.2)

as the associated significance of the shifts calculated from eq. (5.1). Here, σ(∆αij) is the
corresponding dispersion of the shifts in αiso (or alternatively, αAP). We notice that the
standard deviation associated with the mean difference in αij is divided by

√
N , where N = 25

is the number of mocks. As ⟨∆αij⟩ → 0 for a given pair of HOD models, Nσ(αij) → 0 and
there is no HOD systematics detected in our BAO fits. Similarly, if the dispersion in the values
of the BAO scaling parameters is too large, σ(αij) → ∞, and the measured average shift
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between HODs becomes significant. Conversely, if we had an infinite number of simulations
and σ(αij)/

√
(N) → 0, Nσ(αij) → ∞ and we would claim an HOD systematics detection. To

consider a systematics detection due to the HOD modeling, we consider a threshold of 3-σ for
such a claim when eq. (5.2) is calculated. We chose this threshold after testing sub-sampled
versions of our mocks with higher shot-noise, which led to higher values of Nσ. Then, we opt
for a conservative 3-σ threshold to consider differences in number density between our mocks.

We compare all the possible permutations of pairs of HOD models and use the 25 mock
realizations in each case to calculate eq. (5.1) and eq. (5.2). To properly visualize our results,
we express the comparisons in terms of heatmaps. We shall focus first on our results in
Fourier space. We show in figure 8 the heatmaps for some selected HOD models which are
representative of the biggest shifts found across all permutations of HOD models. While the
values in the blue color scale represent the shift in the BAO scaling parameters, the values
associated with the red color scale show the significance of such shifts. If we compare the
heatmap at the top (for αiso) with the heatmap at the bottom (for αAP), we observe that αiso
turned out to be not only a more precise variable to measure the BAO scale but also the most
robust in terms of HOD dependence. As mentioned in section 1, while the statistical error
related to αiso is around 1%, the maximum shift in αiso as seen from the heatmap is 0.08%
(0.17%) in Fourier (configuration) Space. This is, the maximum difference in αiso due to the
HOD prescription found is around 1/12 (1/6) of the statistical error for DESI 2024 statistical
error. However, this number is the maximum fluctuation found across all HODs and it should
be regarded as a too aggressive number to quote for the systematic error. In the case of αAP,
the maximum shift found from the heatmaps is just 1/13 of the aggregated error for ELGs in
Fourier space, and 1/16 in configuration space. At the top of this, we have to remember that
these numbers will end up being added in quadrature, which makes the effect smaller.

Overall, the heatmaps show the differences between the measured BAO scaling parameters
given a pair of HOD models that are under comparison. These HOD models were constructed
from a common dark matter simulation and were populated using the same random seed.
Therefore, ∆αiso (alternatively, ∆αAP) tells us the impact on αiso (alternatively, αAP) due to
differences in the HOD model, given our fiducial choice of mHMQ+cf+mNFW as our default
HOD. We can construct a histogram based on all these differences to analyze the dispersion
between HOD models for a given BAO scaling parameter. A meaningful quantity to quote
from such a histogram is the 68% region around the mean, which tells us the dispersion given
the changes in the underlying HOD model. We show these histograms separately for both
sets of HOD models at z = 1.1 and z = 0.8 in figure 9. These were obtained by using the
full heatmaps shown in appendix B. The complete heatmaps as well as the full set of results
are shown in appendix B. In general, we observe that the 68% region covered by both the
z = 1.1 and the z = 0.8 histograms have nearly the same width. However, we choose to quote
a larger value between the two as our HOD systematic error if there is no HOD detection.

In case the heatmaps directly point towards systematics due to HOD modeling being
detected above the 3-σ threshold, we quote the corresponding shift found. The top right
heatmap in figure 8 shows various Nσ(αiso) values above the 3-σ threshold, pointing out to
detected systematics due to HOD modeling. In this scenario we quote the highest average
shift ⟨∆αiso⟩ found among all detected cases as our σHOD systematic error. Yet, the shift

– 32 –



J
C
A
P
0
1
(
2
0
2
5
)
1
3
2

Fourier space analysis Configuration space analysis

mHMQ+cf+
mNFW

LNHOD 1

LNHOD 1+
cf

mHMQ+cf+
Env

SFH
OD

1st-G
en

HMQ
(3

)
5

HMQ
(3

)
6

mHMQ+cf+mNFW

LNHOD1

LNHOD1+cf

mHMQ+cf+Env

SFHOD

1st-Gen

HMQ(3 )
5

HMQ(3 )
6

0.0 0.27 -0.62 0.18 -0.64 -1.98

-0.01 0.0 -1.2 -2.4 -1.22 -1.8

0.04 0.05 0.0 1.08 -0.44 -0.92

-0.01 0.0 -0.05 0.0 -1.11 -1.7

0.04 0.05 0.0 0.05 0.0 -0.91

0.09 0.1 0.05 0.1 0.05 0.0

0.0 1.94

-0.03 0.0

N ( iso)

iso

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

mHMQ+cf+
mNFW

LNHOD 1+
cf

1st-G
en

mHMQ+cf+
Sh

SFH
OD+cf

mHMQ+cf+
C

HMQ
(3

)
1

HMQ
(3

)
2

mHMQ+cf+mNFW

LNHOD1+cf

1st-Gen

mHMQ+cf+Sh

SFHOD+cf

mHMQ+cf+C

HMQ(3 )
1

HMQ(3 )
2

0.0 -0.86 -2.39 0.97 1.19 1.22

0.04 0.0 -1.31 2.44 1.85 2.93

0.1 0.06 0.0 4.0 3.28 3.67

-0.04 -0.09 -0.15 0.0 0.23 0.45

-0.06 -0.1 -0.16 -0.01 0.0 0.22

-0.07 -0.11 -0.17 -0.02 -0.01 0.0

0.0 1.89

-0.1 0.0

N ( iso)

iso

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

mHMQ+cf+
mNFW

LNHOD 1

LNHOD 1+
cf

mHMQ+cf+
Env

SFH
OD

1st-G
en

HMQ
(3

)
5

HMQ
(3

)
6

mHMQ+cf+mNFW

LNHOD1

LNHOD1+cf

mHMQ+cf+Env

SFHOD

1st-Gen

HMQ(3 )
5

HMQ(3 )
6

0.0 1.21 1.45 1.07 1.46 -0.81

-0.13 0.0 0.6 -1.79 0.59 -1.92

-0.21 -0.08 0.0 -0.7 0.13 -2.31

-0.12 0.02 0.09 0.0 0.7 -1.79

-0.21 -0.08 -0.0 -0.09 0.0 -2.33

0.1 0.23 0.31 0.22 0.31 0.0

0.0 0.47

-0.02 0.0

N ( AP)

AP

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

mHMQ+cf+
mNFW

LNHOD 1+
cf

1st-G
en

mHMQ+cf+
Sh

SFH
OD+cf

mHMQ+cf+
C

HMQ
(3

)
1

HMQ
(3

)
2

mHMQ+cf+mNFW

LNHOD1+cf

1st-Gen

mHMQ+cf+Sh

SFHOD+cf

mHMQ+cf+C

HMQ(3 )
1

HMQ(3 )
2

0.0 1.39 0.64 -0.04 0.09 0.49

-0.29 0.0 -1.14 -1.69 -1.87 -1.61

-0.1 0.18 0.0 -0.6 -0.44 -0.01

0.01 0.3 0.11 0.0 0.13 0.59

-0.02 0.27 0.09 -0.03 0.0 0.54

-0.1 0.19 0.0 -0.11 -0.09 0.0

0.0 -1.1

0.22 0.0

N ( AP)

AP

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

Figure 8. BAO systematics heatmap for selected HOD models in Fourier space (left-hand side) and
configuration space (right-hand side). The heatmaps at the top correspond to systematics related to
αiso while the heatmaps at the bottom correspond to αAP. For each heatmap, the values corresponding
to the blue color scale represent the mean differences in αiso (or αAP, respectively) when comparing
different pairs of HOD models. The values of these shifts are multiplied by 100 to show ⟨∆αiso⟩ in %.
Similarly, the upper triangle matrix in red scale shows the corresponding value of Nσ as defined in
eq. (5.2), where the color scale in red is set by the 5-σ detection level. Notice that empty values in
each heatmap mean that we do not compare HOD mocks not centered at the same redshift to avoid
introducing extra systematics not exclusively due to the HOD model itself. The complete versions of
these heatmaps are shown in appendix B.
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Figure 9. Histogram built from the shifts found in the heatmaps from figure 8. The values depicted
in blue represent the HOD models at z = 1.1 while the red histogram corresponds to results from the
HOD models at z = 0.8. The solid vertical line represents the mean value from the histogram while
the 68% region is enclosed between vertical dashed lines.

quoted (0.17%) in the detected systematics case is still below the statistical error for DESI
2024. Figure 10 shows the results of ∆αiso for each mock realization along with the mean
value obtained when comparing 1st-Gen against mHQM+cf+C, which is the pair of HOD
models that provides the highest shift in αiso where a detected systematic due to HOD have
occurred. We observe that the results without applying CV show a 4.45-σ deviation from
∆αiso = 0 while the CV results only diminish this down to 3.67-σ. In comparison, the Fourier
space analysis for this combination (not shown in the figure) went down from 2.04-σ to 0.03-σ.
This highlights the fact that even though CV is able to reduce the sample variance noise in
αiso, the systematics due to HOD modeling in configuration space remained present between
these two models for our BAO template modeling choices. Hence, we conclude that our
analysis in Fourier space is slightly more robust against HOD systematics than the analysis in
configuration space. A similar conclusion holds for αAP. On the other hand, the systematic
error found in αiso is ∼3.6 times larger in configuration space compared to Fourier space,
where no HOD systematics was detected given our threshold for such a claim. However, we
still point out that a systematic error of 0.17% for αiso is 1/6 of the statistical error and,
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Figure 10. Differences in αiso between 1st-Gen and mHMQ+cf+C models. The purple data represents
the results from fitting the two-point measurements while the blue data points correspond to the
results for the CV measurements. Similarly, the colored bands represent the 68% region of the mean
value of ∆αiso. The final result quoted in this work corresponds to the blue band which indicates a
3.75 HOD systematics detection on figure 8.

since the error is added quadratically, this would just cause a difference of ∼1.2% in the
total error. In comparison, the systematic error quoted in Fourier space is 0.047%, which
would lead to an increase of ∼0.1% in the total error.

In summary, the values we decide to quote as our systematic error due to HOD dependence
are given by the following expression,

σHOD =

max(⟨∆αij⟩) , if Nσ(αij) ≥ 3, (HOD detection)
σ68%(⟨∆αij⟩) , if Nσ(αij) < 3. (No HOD detection)

(5.3)

Here σ68%(⟨∆αij⟩) represents the interval which covers 68% of the histogram region around
the mean. Since the histograms are not exactly Gaussian we opt to use this notation.
However, the value found for σ68% is close to the standard deviation obtained from assuming
a Gaussian histogram. We summarize our HOD systematic errors quoted for the DESI 2024
BAO analysis in table 4. We observe that the errors found in Fourier space are consistent
with those of configuration space. Additionally, the error due to HOD systematics found
for αiso is around 1/20 of the statistical error for DESI 2024 in Fourier space, while αAP is
about 1/37 of it. In the case of the configuration space analysis, these factors are 1/6 and
1/40, respectively. Since σ2

tot = σ2
stat + σ2

syst, we can calculate the increase in σtot given our
added HOD systematics. We found that adding our values found for σHOD leads to a change
of 0.12% on the statistical error for αiso and 0.07% on the statistical error for αAP in the
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Space Parameter σHOD ∆σ/σstat HOD Systematics detected

Fourier
αiso 0.047% 0.12% No
αAP 0.12% 0.07% No

Configuration
αiso 0.17% 1.19% Yes
αAP 0.12% 0.04% No

Table 4. Summary table with the systematic error budget due to HOD quoted from σHOD. In the
non-detection case, we follow the procedure described in section 5.2 where σHOD is obtained from
the 68% region around the mean value of a histogram constructed from the shifts between all the
permutations of pairs of HODs. If systematics due to HOD modeling is detected, we directly quote
σHOD as the highest shift found for the pair of HOD models for which an HOD systematics has been
detected. In the next column, we use ∆σ = σtot − σstat, once σHOD has been added quadratically as a
systematic error according to σ2

tot = σ2
stat + σ2

HOD. The last column shows whether a systematics due
to HOD was detected or not.

Fourier space. In configuration space, we found an increase of 1.19% for αiso and 0.04% for
αAP in the statistical error. However, since this is the percentage increase on the statistical
error itself, we conclude that this is still a sub-dominant effect for DESI 2024.

Finally, it is worth mentioning that we also tested other effects during our tests related
to HOD systematics. For example, we tested the effect of having different number densities
across our HOD models. We diminished the number density of our HOD mocks at high
redshift by sub-sampling our mocks to have a common number density of 10−3(h/Mpc)3.
We found that sub-sampling our HOD mocks to have the same number density across all
HOD models led to an increase in the shifts between pairs of HODs, but these were coming
mostly from a higher shot-noise, which causes CV to also be less efficient. Nevertheless, even
though these shifts were small enough for the DESI 2024 statistical precision, we opted to
use the high number density version of our mocks as our final choice, since the larger shifts
we observed across our HODs were mostly coming from statistical noise due to a higher
shot-noise. Additionally, we also tested the effect of stochasticity into our HOD modeling,
specifically for the LNHOD1 model. We produced several mocks with alternative random
seeds and concluded that such effects were small enough to propagate in a significant way
compared to the statistical error for DESI 2024.

6 Conclusions

In this analysis, our objective was to test the robustness of our BAO modeling against the
dependence on the assumed HOD model. Furthermore, our aim was to quantify the error
budget due to this particular systematics in order to support the DESI 2024 BAO analysis
presented in [22]. A companion paper presented in [30] shows analogous results for the LRG
tracer. While the methodologies of these two analyses are consistent, each analysis employs
different HOD models for the respective tracers under consideration. To test the sensitivity to
the HOD prescription, we based our analysis on the most representative HOD models present
in the literature for the ELG tracer. Even though this analysis occurred earlier compared
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to other DESI 2024 BAO systematics analyses, our pipeline is close enough and analogous
to the final theoretical modeling choices for DESI 2024 as described in [28].

In this analysis, we included various HOD models as well as extensions to go beyond
the standard modeling, such as galactic conformity and assembly bias. We produced mocks
for each of these models based on the AbacusSummit simulations as our underlying dark
matter simulation. Such simulations are well resolved for the scales we intended to test (below
k=0.3h/Mpc). Our HOD mocks were tuned to the early One-Percent DESI data, prior to the
DESI 2024 BAO analysis with DESI-DR1. We calculated two-point measurements before and
after BAO reconstruction using a common galaxy bias value for all the mocks. This makes
our final systematic error to also include effects from the fiducial bias assumptions during
BAO reconstruction and this will be included as well in the DESI 2024 BAO systematic error
budget for the ELG tracer. To support the fidelity of our analysis when producing BAO
fits, we estimated analytical covariance matrices in both Fourier space and configuration
space based on the clustering of the 25 mocks per HOD model. To mitigate the sample
variance noise coming from the fact that we have a limited number of simulations, we used
the CV technique to produce noise-reduced versions of the two-point measurements. We
found that the CV technique can reduce the bias with respect to the fiducial value in our
BAO parameters. This enhancement in the performance of the fits for the BAO parameters
led us to consider the CV two-point measurements after BAO reconstruction as our choice
for the final systematic error. We also tested the effect of number density disparity in our
mocks and found that sub-sampling over the HOD mocks leads to higher shifts but these
are just due to statistical noise.

While the statistical error for the ELGs is approaching the sub-percent level, as seen
in the case of αAP, or has already reached it, as observed in the case of αiso, within DESI
2024, we found that the variations on αiso due to HOD modeling are close or below the
sub-sub-percent level. In the case of αAP, we found that variations due to HOD prescription
are small compared to the current statistical error. These conclusions were reached after
successfully recovering the isotropic BAO parameter αiso within 0.1% accuracy and the Alcock
Paczynski parameter αAP within 0.3% accuracy in our BAO fits. Furthermore, we established
a methodology to define the systematic error budget by comparing the BAO fits for every
pair of HODs. We built heatmaps for the pairwise differences between HODs that summarize
the differences in the fits as well as the statistical significance of such shifts. Then, when no
significant shift between a pair of HOD models is detected below a 3-σ threshold, we defined
our systematic error from the spread among all the shifts between pairs of HOD models.
More precisely, for a given BAO parameter (or for the AP parameter), our systematic error
is defined by the 68% percentile around the mean of the histogram constructed from all
the shifts in αiso (or αAP) between pairs of HODs. In the case of a histogram very close
to a Gaussian distribution, our quoted systematic error would coincide with the standard
deviation of such a histogram. If there is a shift or more than one shift between a pair of
HOD models with a significance above 3-σ (i.e. systematics due to HOD modeling detected)
we then directly quote the maximum shift found. We only found an HOD detection in the
case of αiso for the configuration space analysis, while the rest of the systematic errors were
derived from the heatmap approach.
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As a result from our analysis, while the statistical errors derived from aggregated precision
for the ELG tracer in the DESI 2024 BAO analysis are 0.96% (1.1%) for αiso and 3.3% (4.4%)
for αAP in Fourier space (configuration space), the systematic errors attributed to HOD
dependence for the ELG tracer can be expressed as follows: in Fourier space, we obtained
0.047% as our systematic error for αiso and 0.12% as our systematic error for αAP. These
values would lead to an increase of the order 0.12% and 0.07%, respectively, in the statistical
error. For the configuration space analysis, we found the systematic error for αiso to be
0.17% and 0.12% for αAP. Similarly, these errors would produce an increase in the total
error of about 1.19% and 0.04% with respect to the statistical error. Therefore, we found
that the changes due to HOD modeling are small enough for DESI 2024 BAO analysis. On
the other hand, it is worth remembering that in addition to the error budget quoted in this
work, other systematic errors will be added.

As the next generation of Stage-IV surveys is preparing to upgrade our scientific knowledge
of the cosmos, there is no doubt that DESI, as the first Stage-IV experiment to analyze
data, will deliver very important results to the scientific community in the BAO domain
and beyond. Therefore, it has become crucial to assess systematic effects to assure the
precision and accuracy of the results. Based on all the evidence presented in this work, we
conclude that our analysis pipeline is robust enough against HOD-dependent systematics
for the DESI 2024 BAO results. Moreover, the systematic error budget derived from this
analysis seems reasonable and it is close to or below the sub-sub-percent level, depending
on whether we refer to the configuration space or Fourier space, respectively. Therefore, the
error that is added to the DESI 2024 BAO analysis is small enough for DESI-DR1. Yet,
this analysis shall be revisited in the future with more mocks and new HOD models for
the DESI result after five years of observations.

7 Data availability

The data used in this analysis will be made public along with the DESI Data Release 1
(details in https://data.desi.lbl.gov/doc/releases/). Also, the data and code to reproduce
the figures are available at https://doi.org/10.5281/zenodo.10905805, as part of DESI’s
Data Management Plan.
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A Consistency between Fourier space and configuration space across
HOD models

The BAO analysis for quantifying the systematic error due to HOD dependence has been
conducted for both configuration and Fourier spaces. Hence, it is reasonable not only to
perform each analysis separately but also to provide some comparison of both results to assess
whether they are consistent with each other or not. It is important as well, to evaluate if the
consistency/inconsistency of the results has something to do with a particular HOD model.

We focus first on the efficiency of CV on our BAO fits results. Figure 11 shows the CV
improvement factor of the dispersion on the BAO parameters obtained from the BAO fits
with respect to the standard non-CV fits. We observe that the improvement in the errors is
higher for mocks with higher number density compared to mocks with lower number density
such as HMQ(3σ)

i (i = 1, 2, . . . , 6). This is in agreement with what was argued in [96]. We
also found that on average, the dispersion in the CV results is a factor of ∼1.5 times lower
for αiso and ϵ, compared to the non-CV results. Here we use ϵ for direct comparison with the
original work presented in [96] and due to the fact that the improvement is not so visible in
αAP compared to ϵ. Indeed, our findings in terms of the values of the improvement factors
are consistent with the results from [96]. We observe that other BAO-related parameters give
different improvement factors. For example, while it has been found that α∥ gives the highest
improvement rate (∼1.6 times in Fourier space, and ∼1.5 in configuration space), α⊥ shows
no major improvement after CV, with a dispersion of around 1.2 times lower compared to the
non-CV results. In principle, we expect these factors as such given the fact that the Zeldovich
approximation is more accurate at larger scales, where α∥ is more sensitive to, due to the
Kaiser effect that causes the coherent infall of galaxies onto still collapsing structures. Overall,
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we found consistent results between both Fourier space and configuration space in terms of the
error improvement factor in the dispersion of the BAO parameters due to the CV technique.

We show scatter plots for both αiso and αAP for some HOD models in figure 12. We can
draw several conclusions from these scatter plots. First of all, we found that the CV results
were less scattered with respect to the fiducial values, compared to the non-CV BAO fits.
Some exceptions can be observed as in the case of the 1st-Gen mocks, where the BAO fits
from the correlation function multipoles prefer a higher value of αiso after CV, which turns
out to drive our final systematic error budget for configuration space. We observe that while
the mean values are consistent between the two analyses, sometimes the results for individual
realizations are not, as is the case for the HMQ(3σ)

1 model. This in principle is due to sample
variance noise which is reduced after considering several realizations. Scatter plots such as
the ones for αiso in the case of the SFHOD, HMQ, and mHMQ+cf+Sh models show us that
while CV does not particularly improve the consistency of the results between Fourier space
and configuration space, it helps to correctly shift the BAO fits towards consistent values
of αiso and αAP by reducing sample variance noise. Thus, in general, whereas CV shows to
reduce the dispersion between the αiso and αAP measurements there is no clear trend about
CV improving the consistency between configuration space and Fourier space. Part of this
can be due to the fact that we are using analytical covariance matrices tuned to the clustering
of the non-CV two-point measurements for both CV and non-CV BAO fits. Then, this
mismatch might introduce some degree of inconsistency between the results of both spaces,
even though the dispersion between the BAO scaling parameters is reduced. Nevertheless,
overall we found consistency between the results from Fourier space and configuration space
analyses. We found no extreme outliers that point out inconsistencies between the two spaces.
At most, models with very low number density show more scatter but the mean values found
over the 25 realizations are still consistent.

B Extended set of results

Our full set of results comprehends 22 HOD models. 25 realization mocks are used for
each HOD model and we apply reconstruction to each mock. Then, we calculate two-point
measurements before and after reconstruction in both Fourier space and configuration space.
All these analyses give a total of around 2200 BAO fits used to estimate the systematics in
our BAO analysis due to HOD dependence. As we are using 25 mocks for each HOD we
present the results of this work by quoting the mean values of the 25 fits. Table 5 shows the
results for the BAO fits times a factor of 103. This means that our differences in the recovery
of the correct value of the BAO parameters are at the sub-sub-percent level. We found that
most of our shifts with respect to 1 in αiso are reduced with the CV two-point measurements.
We can observe that this comes together with a reduction in the dispersion σ(αiso). Such
reduction is more pronounced for mocks with less shot-noise as CV becomes more efficient
with a higher number density. This is related to the factors described in figure 11. We
found that our ⟨χ2⟩ per DoF values are less than ∼1.1, which indicates that our analytical
covariance matrices for the power spectrum multipoles derived from thecov based on the
clustering of 25 mocks are appropriated for our analysis. We then use the same analytical
covariance matrices for our fits to the CV two-point measurements. Hence, we observe a
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Figure 11. Error improvement factor calculated when comparing the dispersion over 25 mocks using
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HOD model and the y-axis shows the error improvement factor. We show such factors for several
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dashed lines.
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Figure 12. Post-reconstruction scatter plots for αiso and αAP for various HOD models. The scatter
plots for αiso are shown in the upper plots while the lower plots correspond to αAP. Each box
corresponds to a particular HOD model denoted in boldface. The x-axis of each scatter plot represents
the measurement using the power spectrum multipoles (Fourier space). On the other hand, the results
from the fits on the correlation function multipoles (configuration space) are depicted over the y-axis.
The blue dots show the results for the non-CV two-point measurements while the CV results are
represented by orange points. The stars represent the mean values after averaging the results from
the fits of 25 realizations.
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drop in our ⟨χ2⟩ values as the dispersion on our BAO parameters with respect to the fiducial
values is reduced. We show the analogous for the configuration space analysis in table 6.
We observe a similar behavior to our results in Fourier space, except for 1st-Gen where our
measurements after CV increase the bias in αiso. This ended up driving our HOD systematics
for the configuration space case. However, we also found reasonable ⟨χ2⟩ values. For BAO fits
to CV two-point measurements we also observed a drop in ⟨χ2⟩, although smaller compared
to the Fourier space case. This might have to do with the fact that the reduction factors due
to CV are smaller in the configuration space case. This is related to CV being less efficient
for configuration space analysis as the noise mitigation is less scale-dependent compared to
the Fourier spaces, leading to less sensitivity at large scales.

We also show in this section the complete version of the simplified heatmaps presented in
section 5.2. Figure 14 represents the comparison for all the permutations of pairs using our 22
HOD models. While the statistical error for αiso is about 1%, we found at most differences of
around 0.08% for HOD mocks at z = 1.1. In the case of the HOD mocks centered at z = 0.8,
we observe that the models HMQ(3σ)

i (i = 1, 2, 3) are fairly consistent with each other. A
similar trend is observed for the models with complex galactic conformity (i = 4, 5, 6). On
the other hand, we observed mild differences between the models HMQ(3σ)

i with and without
complex galactic conformity. However, these differences are of about 0.1% at most for αiso.
We remind the reader that we do not compare HOD models based on mocks built from
simulations centered at different redshifts since we do not want to introduce simulation noise
differences beyond the HOD model itself. We did not find shifts in αiso above 3-σ in Fourier
space. Similar results are found for αAP as shown in figure 15. In such case, the highest
significance found in ∆αAP is 2-σ of less. We found shifts of at most 0.26% in αAP, but still
this is very small compared to the statistical error of DESI 2024.

The full heatmaps for αiso and αAP in the configuration space analysis are shown in
figure 16 and figure 17, respectively. We found higher shifts in αiso between pairs of HOD
models compared to the Fourier Space case. The highest shifts come from comparing 1st-Gen
with other HOD models. The maximum shift found is 0.17%, which is 1/6 of the statistical
error for DESI 2024. The 1st-Gen mocks show significant differences with various HOD models
at more than 3-σ. We quote the maximum shift found at more than 3-σ as our systematic
error for αiso. We do not find significant shifts for the models at z = 0.8. In a similar fashion
to the Fourier space analysis, we did not find any significant shift in αAP. Therefore, our
quoted systematic error comes from the dispersion over all shifts. It is worth mentioning that
we also tested the effect of the shot-noise differences in our analysis. We produced sub-sampled
versions of our HOD mocks to have the same number density for all of them (∼ 10−3h3/Mpc−3).
We found that this sub-sampling leads to higher shifts in the BAO parameters and the AP
parameter as well as higher significance in the shifts. However, these biases are introduced
by increasing the shot-noise and reducing the efficiency of the CV technique.

Finally, we show the measurements of the BAO feature in both Fourier space and
configuration space after removing the smoothed component for each HOD model in figure 13.
The smoothed component is calculated after performing the BAO fits and it is then subtracted
to the measurements. While we do not show explicit error bars to facilitate the comparison
between measurements of various HOD models, we found that the measurements are consistent
within the error bars when the covariance matrices are taken into consideration.
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Figure 13. Two-point measurements of the BAO feature after applying rec-sym reconstruction, the
CV technique, and after averaging 25 realizations for each HOD model. The measurements in the plot
show the data after being subtracted with the smoothed component. We do not show the error bars
for the measurements in this plot for clarity of the plot, but the BAO components of all the HOD
models are consistent within the error bars. The top panels show the measurements for the monopole
and quadrupole of the galaxy power spectrum and the bottom panels correspond to the monopole
and quadrupole terms of the two-point correlation function.
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HOD model ⟨∆αiso⟩ ⟨σαiso⟩ σ(αiso) ⟨∆αAP⟩ ⟨σαAP⟩ σ(αAP) ⟨∆α∥⟩ ⟨σα∥⟩ σ(α∥) ⟨∆α⊥⟩ ⟨σα⊥⟩ σ(α⊥) ⟨χ2⟩
Using standard two-point measurements

mHMQ+cf+mNFW -0.80 0.64 0.64 0.00 2.30 2.60 -0.90 1.72 1.92 -0.80 0.96 1.00 101.3
GHOD -0.90 0.64 0.70 -1.20 2.28 2.23 -1.70 1.70 1.84 -0.50 0.96 0.84 91.8
SFHOD -0.70 0.64 0.55 -1.90 2.30 2.32 -2.00 1.70 1.80 0.00 0.96 0.80 91.4
SFHOD+cf -1.20 0.64 0.80 -0.50 2.26 2.19 -1.50 1.68 1.86 -1.00 0.96 0.90 100.7
HMQ -0.40 0.64 0.56 -2.10 2.26 2.51 -1.80 1.66 1.88 0.30 0.96 0.90 92.2
mHMQ -0.30 0.64 0.70 -1.20 2.26 2.25 -1.10 1.66 1.74 0.20 0.96 0.94 101.9
mHMQ+cf 0.00 0.64 0.66 -1.70 2.30 2.54 -1.10 1.70 1.96 0.60 0.96 0.94 103.5
LNHOD1 -0.80 0.64 0.58 -2.20 2.26 2.12 -2.30 1.68 1.68 0.00 0.96 0.76 90.2
LNHOD1-1h -0.60 0.62 0.62 -1.30 2.24 2.31 -1.50 1.66 1.88 -0.20 0.94 0.76 93.8
LNHOD1+cf -0.30 0.64 0.64 -2.90 2.28 2.13 -2.20 1.70 1.76 0.80 0.96 0.76 90.2
LNHOD2 -0.70 0.64 0.70 -0.60 2.30 2.09 -1.10 1.70 1.62 -0.50 0.96 0.94 105.8
LNHOD2+cf -0.10 0.64 0.66 -1.20 2.26 2.54 -0.90 1.68 1.80 0.40 0.96 1.10 103.4
HMQ(3σ)

1 0.20 0.94 0.96 1.00 3.18 2.57 0.80 2.28 2.02 -0.10 1.44 1.24 98.3
HMQ(3σ)

2 0.20 0.92 1.02 1.00 3.12 3.10 0.80 2.22 2.38 0.00 1.42 1.40 99.3
HMQ(3σ)

3 0.10 0.96 0.94 0.60 3.24 2.31 0.50 2.30 1.84 0.00 1.48 1.18 96.1
HMQ(3σ)

4 -0.50 0.94 1.23 -0.40 3.20 2.93 -0.90 2.28 2.40 -0.30 1.44 1.50 95.0
HMQ(3σ)

5 -0.40 0.94 1.19 0.20 3.20 2.83 -0.30 2.30 2.22 -0.40 1.44 1.52 94.5
HMQ(3σ)

6 -0.70 0.94 1.25 -0.10 3.20 3.08 -0.80 2.30 2.38 -0.60 1.44 1.62 95.5
mHMQ+cf+C -1.20 0.64 0.61 -1.50 2.24 2.37 -2.20 1.64 1.86 -0.60 0.98 0.84 100.3
mHMQ+cf+Env -0.30 0.64 0.60 -0.80 2.26 2.07 -0.90 1.68 1.50 0.00 0.96 0.92 101.4
mHMQ+cf+Sh -0.90 0.64 0.60 -0.10 2.30 2.47 -1.00 1.70 1.80 -0.90 0.98 0.98 102.2
1st-Gen 0.30 0.64 0.69 0.30 2.30 1.97 0.40 1.70 1.60 0.20 0.98 0.86 86.0

Using CV noise-reduced two-point measurements
mHMQ+cf+mNFW -0.20 0.60 0.46 -0.40 2.16 1.60 -0.40 1.60 1.08 0.00 0.90 0.76 56.7
GHOD -0.40 0.64 0.48 -0.90 2.24 1.51 -1.00 1.64 1.12 0.00 0.96 0.68 40.6
SFHOD 0.20 0.64 0.40 -2.50 2.28 1.44 -1.40 1.68 1.08 1.10 0.96 0.60 37.7
SFHOD+cf -0.10 0.64 0.37 -0.90 2.26 1.60 -0.70 1.66 1.16 0.20 0.98 0.64 39.3
HMQ 0.10 0.62 0.36 -1.60 2.20 1.41 -1.00 1.62 0.98 0.60 0.94 0.62 42.3
mHMQ 0.20 0.62 0.42 -0.90 2.20 1.51 -0.40 1.62 1.06 0.50 0.94 0.68 49.7
mHMQ+cf -0.30 0.66 0.46 -0.70 2.36 1.48 -0.80 1.74 1.08 -0.10 1.00 0.68 40.0
LNHOD1 -0.30 0.62 0.36 -1.70 2.22 1.39 -1.40 1.62 0.94 0.30 0.94 0.62 40.2
LNHOD1-1h -0.10 0.62 0.37 -0.80 2.18 1.61 -0.70 1.60 1.16 0.20 0.92 0.64 42.7
LNHOD1+cf 0.20 0.62 0.40 -2.50 2.24 1.43 -1.40 1.64 1.06 1.10 0.94 0.60 39.2
LNHOD2 -0.20 0.64 0.45 -0.20 2.24 1.62 -0.30 1.66 1.10 0.00 0.94 0.76 53.2
LNHOD2+cf 0.40 0.62 0.48 -0.90 2.20 1.79 -0.20 1.62 1.22 0.80 0.94 0.82 50.2
HMQ(3σ)

1 0.90 0.92 0.69 1.60 3.10 1.79 1.90 2.22 1.30 0.40 1.42 0.96 65.2
HMQ(3σ)

2 0.90 0.90 0.78 1.40 3.04 2.47 1.80 2.16 1.74 0.60 1.40 1.20 64.8
HMQ(3σ)

3 0.90 0.94 0.72 1.30 3.16 1.90 1.70 2.24 1.34 0.50 1.46 1.04 62.4
HMQ(3σ)

4 0.10 0.92 0.94 0.00 3.14 2.41 0.00 2.24 1.56 0.20 1.42 1.42 62.7
HMQ(3σ)

5 0.20 0.92 0.90 0.40 3.12 2.32 0.50 2.24 1.42 0.20 1.42 1.42 62.0
HMQ(3σ)

6 -0.10 0.92 0.96 0.20 3.16 2.43 0.00 2.26 1.48 -0.10 1.42 1.50 63.1
mHMQ+cf+C 0.10 0.64 0.36 -1.60 2.26 1.40 -1.00 1.66 0.98 0.70 0.98 0.62 39.8
mHMQ+cf+Env -0.20 0.66 0.36 -1.50 2.32 1.40 -1.30 1.70 0.94 0.30 0.98 0.64 36.6
mHMQ+cf+Sh 0.40 0.62 0.49 -0.80 2.20 1.78 -0.10 1.62 1.22 0.80 0.94 0.82 50.6
1st-Gen 0.70 0.64 0.45 0.60 2.24 1.38 1.10 1.64 0.98 0.50 0.96 0.68 38.1

Table 5. Post-reconstruction BAO fits in Fourier space for standard two-point measurements and CV
two-point measurements. We show the constraints for both (αiso,αAP) and (α∥,α⊥) parameterizations
for each HOD model. The ⟨∆αiso⟩ column represents the mean of the shifts in αiso with respect to
the fiducial. Then, while second column for αiso shows the average error coming from the covariance
matrix, the third column shows the standard deviation obtained from the dispersion of 25 fits for
αiso, and so on for the rest of parameters. All values are multiplied by a 103 factor, meaning that
deviations from fiducial values can be of the order of the sub-sub-percent level. The last column
corresponds to the average χ2 obtained from 25 realization fits with 93 DoF for all fits.
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HOD model ⟨∆αiso⟩ ⟨σαiso⟩ σ(αiso) ⟨∆αAP⟩ ⟨σαAP⟩ σ(αAP) ⟨∆α∥⟩ ⟨σα∥⟩ σ(α∥) ⟨∆α⊥⟩ ⟨σα⊥⟩ σ(α⊥) ⟨χ2⟩
Using standard two-point measurements

mHMQ+cf+mNFW -1.10 0.66 0.64 -0.20 2.34 2.48 -1.20 1.74 1.80 -1.00 1.00 1.02 36.0
GHOD -1.70 0.62 0.68 -0.90 2.22 2.30 -2.30 1.64 1.82 -1.30 0.92 0.90 32.1
SFHOD -1.40 0.62 0.58 -1.40 2.22 2.14 -2.40 1.64 1.70 -0.90 0.94 0.76 30.7
SFHOD+cf -1.80 0.66 0.80 -0.20 2.30 2.20 -2.00 1.68 1.82 -1.70 1.00 0.96 31.9
HMQ -1.10 0.62 0.54 -2.70 2.18 2.34 -2.90 1.62 1.74 -0.10 0.92 0.86 32.4
mHMQ -0.90 0.66 0.66 -1.40 2.30 2.01 -1.90 1.70 1.60 -0.40 0.98 0.84 33.9
mHMQ+cf -0.60 0.66 0.62 -1.20 2.32 2.35 -1.40 1.70 1.88 -0.20 1.00 0.80 35.1
LNHOD1 -1.20 0.62 0.58 -2.30 2.18 2.13 -2.80 1.62 1.66 -0.40 0.92 0.80 31.4
LNHOD1-1h -1.20 0.60 0.63 -1.50 2.14 2.27 -2.20 1.58 1.84 -0.60 0.90 0.78 37.4
LNHOD1+cf -0.70 0.62 0.68 -3.30 2.20 2.03 -2.90 1.64 1.70 0.50 0.92 0.80 30.0
LNHOD2 -1.00 0.66 0.71 -0.80 2.34 1.94 -1.50 1.72 1.52 -0.70 1.00 0.92 35.4
LNHOD2+cf -0.70 0.64 0.62 -1.10 2.28 2.42 -1.40 1.68 1.70 -0.30 0.98 1.04 34.2
HMQ(3σ)

1 0.20 0.94 0.99 1.50 3.24 2.43 1.10 2.32 1.96 -0.30 1.46 1.24 39.3
HMQ(3σ)

2 0.20 0.94 1.03 0.70 3.22 2.85 0.60 2.30 2.32 0.10 1.46 1.26 37.2
HMQ(3σ)

3 0.10 0.94 0.94 0.80 3.22 2.37 0.60 2.32 1.88 -0.10 1.44 1.18 42.1
HMQ(3σ)

4 -0.20 0.96 1.16 -1.10 3.32 3.07 -0.90 2.38 2.44 0.30 1.50 1.46 37.4
HMQ(3σ)

5 0.00 0.96 1.08 -0.40 3.32 2.97 -0.30 2.40 2.32 0.30 1.50 1.40 40.4
HMQ(3σ)

6 -0.30 0.98 1.17 -1.00 3.34 3.19 -1.00 2.40 2.42 0.20 1.50 1.58 38.3
mHMQ+cf+C -1.80 0.66 0.61 -1.10 2.28 2.18 -2.50 1.66 1.76 -1.30 1.00 0.76 32.5
mHMQ+cf+Env -1.10 0.66 0.58 -0.80 2.32 1.84 -1.60 1.70 1.38 -0.80 1.00 0.84 33.3
mHMQ+cf+Sh -1.50 0.66 0.64 -0.20 2.32 2.45 -1.70 1.70 1.82 -1.40 1.00 0.98 32.9
1st-Gen 0.50 0.64 0.65 0.90 2.28 2.04 1.00 1.70 1.68 0.20 0.96 0.80 31.5

Using CV noise-reduced two-point measurements
mHMQ+cf+mNFW 0.10 0.74 0.40 1.00 2.78 2.01 0.70 1.94 1.36 -0.20 1.22 0.82 25.6
GHOD -0.40 0.70 0.50 -0.30 2.64 1.65 -0.60 1.86 1.18 -0.30 1.14 0.76 24.6
SFHOD -0.40 0.70 0.39 -0.50 2.64 1.50 -0.70 1.86 1.12 -0.10 1.16 0.58 23.7
SFHOD+cf -0.50 0.74 0.55 0.90 2.76 1.67 0.00 1.92 1.30 -0.70 1.22 0.72 24.9
HMQ 0.00 0.70 0.35 -1.40 2.58 1.38 -1.00 1.82 0.96 0.60 1.14 0.60 24.6
mHMQ 0.30 0.74 0.41 0.00 2.74 1.36 0.30 1.92 1.00 0.30 1.20 0.62 24.5
mHMQ+cf 0.50 0.74 0.53 -0.10 2.72 1.40 0.40 1.92 1.08 0.60 1.22 0.70 25.9
LNHOD1 0.00 0.70 0.32 -0.70 2.60 1.52 -0.50 1.82 1.02 0.30 1.14 0.62 24.2
LNHOD1-1h 0.00 0.68 0.35 0.10 2.54 1.66 0.10 1.80 1.20 0.00 1.12 0.62 27.9
LNHOD1+cf 0.50 0.70 0.42 -1.80 2.60 1.45 -0.70 1.84 1.06 1.20 1.14 0.64 22.8
LNHOD2 0.20 0.74 0.46 0.50 2.78 1.47 0.50 1.96 0.98 0.10 1.22 0.74 26.0
LNHOD2+cf 0.60 0.74 0.44 0.30 2.70 1.90 0.70 1.90 1.30 0.50 1.20 0.80 27.4
HMQ(3σ)

1 0.70 1.02 0.91 0.60 3.68 2.31 1.10 2.54 1.76 0.60 1.68 1.20 34.4
HMQ(3σ)

2 -0.20 1.30 0.96 2.80 4.72 2.96 1.40 3.16 2.06 -0.90 2.18 1.34 32.8
HMQ(3σ)

3 0.30 1.00 0.81 1.00 3.62 2.43 0.90 2.50 1.62 0.10 1.66 1.28 35.5
HMQ(3σ)

4 0.20 1.00 0.97 0.70 3.62 2.51 0.60 2.50 1.72 0.10 1.66 1.42 34.9
HMQ(3σ)

5 0.20 1.02 0.94 1.20 3.68 2.47 0.90 2.54 1.70 -0.10 1.68 1.38 33.9
HMQ(3σ)

6 0.10 1.02 0.97 1.50 3.70 2.48 1.00 2.56 1.68 -0.30 1.68 1.42 33.7
mHMQ+cf+C -0.60 0.74 0.43 0.00 2.70 1.54 -0.60 1.88 1.10 -0.60 1.22 0.68 26.3
mHMQ+cf+Env 0.10 0.74 0.44 0.40 2.74 1.38 0.30 1.92 0.98 0.00 1.22 0.66 25.6
mHMQ+cf+Sh -0.40 0.74 0.37 1.10 2.74 1.70 0.30 1.92 1.20 -0.70 1.22 0.66 25.7
1st-Gen 1.10 0.56 0.46 0.00 2.10 1.67 1.10 1.56 1.26 1.20 0.86 0.66 39.0

Table 6. Post-reconstruction BAO fits in configuration space for standard two-point measurements
and CV two-point measurements. Each row represents a different HOD model for which fits were
performed. We show constraints for both (αiso,αAP) and (α∥,α⊥) parameterizations while values are
multiplied by a 103 factor, meaning that deviations from fiducial values can be of the order of the
sub-sub-percent level. The last column corresponds to the average χ2 obtained from 25 realization fits
with 37 DoF for all fits. For a nomenclature used for the variables listed in this table we refer to the
reader to table 3.
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Figure 14. Heatmap for the analysis of the shifts between pairs of HOD models in Fourier space.
The heatmap shows the results for ∆αiso after the CV technique has been already applied to the
post-reconstruction version of the mocks. The empty spots in the heatmap indicate that we do not
compare shifts between HOD models that are not centered within the same redshift bin. The values
in the lower part of the heatmap represent the shifts in αiso and the values in the upper side of the
heatmap show the corresponding significance of the shift.
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Figure 15. Heatmap for the comparison between pairs of HOD models when focusing on αAP in
Fourier space. The shifts between the measurements on αAP for pairs of HOD models are shown in
blue, where the blue color scale has been set to be 1/3 of the statistical error in αAP. The values in
red show the associated value of Nσ for each shift between a pair of HODs. The red color scale is
set to peak at a 5-σ detection level. Again, the empty spots in the heatmap indicate that we do not
compare HOD models that correspond to different redshift values in order to not introduce extra
noise from the simulations not due to the HOD prescription specifically.
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Figure 16. Analogous heatmap to the one shown in figure 14 for the configuration space analysis.
Here we also focus on comparing results from BAO fits after reconstruction and CV are applied. We
notice that in the configuration space analysis case, we found biases due to HOD systematics for some
pairs involving the 1st-Gen mocks. For example, a comparison of 1st-Gen with mHMQ+cf+Sh shows a
systematics detection due to HOD prescription at a 4.16-σ with a corresponding shift in αiso of 0.15%.
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Figure 17. Analogous heatmap to the one described in figure 15 in configuration space. The two
heatmaps produce consistent results for the shifts in αAP and no systematics in the AP parameter
is detected.
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