

Title	Fluctuations in QCD phase diagram in the strong coupling limit of lattice QCD(Abstract_要旨)
Author(s)	Ichihara, Terukazu
Citation	Kyoto University (京都大学)
Issue Date	2016-03-23
URL	https://doi.org/10.14989/doctor.k19488
Right	
Type	Thesis or Dissertation
Textversion	ETD

(続紙 1)

京都大学	博士 (理学)	氏名	市原 輝一			
論文題目	Fluctuations in QCD phase diagram in the strong coupling limit of lattice QCD (強結合極限格子 QCD による有限温度・密度における揺らぎの研究)					
(論文内容の要旨)						
<p>We investigate field fluctuation effects and fluctuation observables on the QCD phase diagram by using the strong coupling limit of lattice QCD.</p> <p>The phase diagram of Quantum Chromodynamics (QCD) has been attracting attention both from theoretical and experimental points of view. QCD phase transition at zero baryon density took place in the early universe, and is extensively investigated in recent high-energy heavy-ion collision experiments. Quarks and gluons are confined and the chiral symmetry is spontaneously broken as the temperature approaches the transition temperature from above. The phase transition is found to be a continuous crossover in the lattice QCD Monte Carlo simulation, which is the non-perturbative first-principles method of QCD. By comparison, phase transition at high density may be realized in compact star phenomena, and is expected to be realized in lower-energy heavy-ion collisions. It is expected that there exists a critical point, which connects the crossover transition at lower densities and the first-order phase transition boundary at higher densities. Fluctuations of net-baryon number at mid-rapidity are investigated as a promising signal of the critical point. It is not easy to confirm the existence and the location of the critical point in lattice QCD, since there is the sign problem at finite density.</p> <p>In this thesis, we investigate the QCD phase diagram and properties of QCD matter at finite temperature and density by using the strong coupling approach of lattice QCD. The strong coupling approach of lattice QCD is one of the ways to circumvent the sign problem at finite density, and has been applied to study the QCD phase diagram mainly in the mean field approximation. In order to evaluate fluctuation observables, we need to take account of fluctuation effects beyond the mean field. In the first part of this thesis, we investigate the QCD phase diagram with field fluctuation effects in the strong coupling and chiral limits. We utilize an effective action in the strong coupling limit derived from the lattice QCD action with one species of unrooted staggered fermion in the leading order of the large dimensional expansion. We introduce auxiliary fields via the extended Hubbard-Stratonovich transformation of four Fermi interaction terms, and perform integral by using the auxiliary field Monte Carlo (AFMC) method. Fluctuation effects beyond the mean field approximation are thus taken into account. When we evaluate observables, we introduce a new method referred to as the chiral angle fixing (CAF) to obtain an appropriate order parameter, the chiral condensate, on a fixed size lattice in the symmetry breaking phase. After applying CAF, the order parameters show the phase transition behavior, and we have obtained the QCD phase boundary. The obtained QCD phase diagram is almost consistent with that obtained in another independent method, the monomer-dimer-polymer simulation. We can conclude that the QCD phase boundary in the strong coupling and chiral limits is finally determined. We also study an origin of the sign problem in AFMC. We find that the high-momentum auxiliary fields give rise to the sign problem.</p> <p>Next, we investigate net-baryon number cumulants in the strong coupling and chiral limits. Higher-order cumulants, correlated part of the moments, of the net-baryon number are considered to be sensitive to the criticality at finite density. For example, the fourth-order cumulant positively diverge in the thermodynamic limit according to the scaling function analysis at finite density. We calculate net-baryon number cumulants in the chiral limit on a finite size lattice, and find that the third and fourth-order cumulants show oscillatory behaviors as functions of temperature due to the finite size effect. We also demonstrate that there exists a negative region of the fourth-order cumulant, which would provide clear signals of criticality. This result implies the importance of the finite size effects in understanding the observed non-monotonic behavior of cumulant ratios as a function of colliding energy. Our studies may be of help for constructing a finite-size scaling function in the chiral limit, and the scaling function with regard to both the finite size and the mass effects.</p>						

本学位論文は、強結合極限格子QCDの枠組みを拡張し、有限温度・密度におけるQCD相転移における秩序変数の揺らぎ効果とバリオン数揺らぎを研究したものである。

量子色力学(QCD)は強い相互作用を記述する基礎理論であり、そこでの相転移は、素粒子であるクォーク・グルーオンから通常の物質を構成する陽子や中性子などのハドロンを作る過程である。初期宇宙や超高エネルギー重イオン衝突で実現しているゼロ密度でのQCD相転移は、QCDの非摂動論的第一原理計算である格子QCDモンテカルロ(MC)計算において詳しく調べられている。一方、コンパクト天体現象や少し低いエネルギーでの重イオン衝突で期待される有限密度でのQCD相転移は、符号問題のため標準的なMC計算は困難であり、理論的進展が求められている。

学位申請者は、結合定数が大きな強結合極限において、場の揺らぎを取り入れた格子QCD計算を実行する枠組みを開発し、この枠組みを用いて近年着目されている観測量であるバリオン数揺らぎの計算を実行し、その分析を行った。強結合領域では符号問題が弱まることが知られており、これまで平均場近似に基づく研究が行われてきた。学位申請者は補助場モンテカルロ(AFMC)法と呼ばれる手法を強結合極限格子QCDに導入し、厳密に物理量を求める枠組みを開発した。またカイラル対称性の自発的破れを有限サイズの格子において記述する有効な手法(カイラル角度固定)の開発も行った。

このようにして開発した枠組みを用いて得られた有限温度・密度におけるカイラル極限のQCD相境界(QCD相図)は、平均場近似の結果と有意に異なる。ゼロ密度では相転移温度が10%程度減少し、標準的なMC計算の結果と無矛盾な結果を与える。有限密度では揺らぎによりハドロン相が広がることが示され、独立な手法を用いた先行研究の結果と無矛盾であることが確認された。この研究により、符号問題は存在するものの、強結合極限・カイラル極限におけるQCD相図が確定したといえる。

次に、バリオン数の高次揺らぎが議論されている。バリオン数の高次揺らぎはQCD臨界点を探るシグナルとして着目され、高エネルギー重イオン衝突において観測が行われている。有限密度領域における格子QCDに基づくバリオン数揺らぎの計算結果は精度が低く、実験データを解釈する上で不十分であった。本論文ではAFMC法を用いて強結合極限格子QCD計算を行い、有限密度におけるバリオン数揺らぎを精度よく求めた。得られた結果から、有限体積効果により臨界性から期待される発散がなめされ、温度の関数として非単調に振る舞うこと、また相境界に沿って4次揺らぎに負の領域が現れることを示した。観測されている非単調な振る舞いを理解する上で、実現される系の有限体積効果が重要であることを具体的かつ系統的に示した結果であり、高い価値をもつ研究業績といえる。

よって、本論文は博士(理学)の学位論文としての価値があると認める。さらに、平成28年1月13日に論文内容と関連した口頭試問を行い、合格と認めた。