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Abstract
Phase space tomography is a powerful technique for char-

acterising beams in particle accelerators, and has found
widespread use at many facilities. However, conventional
tomography techniques require significant computational
resources, particularly when reconstructing the charge dis-
tribution for two or more degrees of freedom. Here, we
describe a novel technique that employs machine learning
and image compression for transverse phase space tomogra-
phy in two degrees of freedom. The use of machine learning
allows the beam distribution in 4D phase space to be re-
constructed more quickly than by conventional tomography
techniques, while the application of image compression can
dramatically reduce the size of the data sets involved in the
analysis. The new method has been deployed on the CLARA
accelerator at Daresbury Laboratory to characterise electron
bunches with moderate energy (35 MeV) and charges up to
100 pC. We compare the machine learning technique against
a conventional tomography algorithm (algebraic reconstruc-
tion) applied to the same data set, and show that the results
are at least as good in terms of predicting the observed beam
profiles for a range of quadrupole strengths.

INTRODUCTION
Phase space tomography [1,2] is a powerful technique for

characterising a beam’s charge distribution in phase space in
one or more degrees of freedom. Tomography in two trans-
verse degrees of freedom provides a detailed understanding
of the beam substructure, and also allows for characterization
of the betatron coupling. However, applying the technique
for multiple degrees of freedom generally requires signifi-
cant computational resources. Storage of a 4D phase space
distribution with 𝑁 data points along each axis requires a
data structure with 𝑁4 values, and the memory resources
required to manipulate the input data can be much larger.

High-dimensional tomography methods may be of par-
ticular use for characterizing and operating advanced accel-
erators, such as high-brightness Free Electron Laser (FEL)
drivers and injectors for machines using novel acceleration
methods. Recent simulation work [3, 4] has demonstrated a
technique for 5D tomography, revealing the transverse phase
space as a function of longitudinal position. Techniques
leading to a reduction in the computational resources re-
quired for high-dimensional tomography are therefore of
widespread interest.
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Figure 1: Schematic layout of the CLARA front end at the
time of this study. Distances between elements are approxi-
mately to scale. For clarity not all elements are shown.

In principle, images can be stored in a compressed form
(for example, as discrete cosine transforms) to reduce the
size of the data structures involved in tomography, while re-
taining sufficient information to reconstruct the phase space
to a good resolution. However, conventional tomography
algorithms are formulated on the basis that the input data
are direct projections of the initial phase space (e.g. beam
images obtained for a range of betatron phase advances).
Therefore, it is not obvious how compressed data can be
used in the context of an established tomography algorithm.

Machine learning (ML) techniques such as artificial neu-
ral networks (ANNs) offer an alternative to conventional
algorithms, and can be used for tomographic analysis of
data stored in a compressed form. Similar methods are al-
ready used extensively for image analysis and tomography,
particularly in medical contexts [5].

These proceedings describe experimental studies aimed
at demonstrating transverse phase space tomography using
machine learning. The implementation of the technique is
explicitly designed to work with beam images stored in a
compressed format. The experiments described here were
performed on the CLARA front end [6,7] at STFC Daresbury
Laboratory in 2022. Earlier tomography studies on CLARA
are reported in [8].

EXPERIMENTAL METHOD
Data Collection

Figure 1 shows a schematic of CLARA, as operated at
the time of these studies. The accelerator consists of an
S-band RF photoinjector and short linac, providing elec-
tron bunches (up to 250 pC) at a maximum momentum of
35 MeV/c and 10 Hz repetition rate, with transverse emit-
tance below 1 µm. As shown in Fig. 1, the accelerating
structures are followed by a transport and diagnostics section
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Figure 2: Projections of the 4D charge distribution at the reconstruction point, shown in normalised phase space for bunch
charges of (a) 10 pC and (b) 100 pC.

that includes five quadrupoles. The tomography technique
in [8] was applied to CLARA, operated at 35 MeV/c.

Measurements were taken with the aim of reconstructing
the phase space at the linac exit (the reconstruction point; see
Fig. 1). Beam images were collected using a YAG screen
at the end of the diagnostics section (the observation point)
for a range of optics configurations. Before beam time, a
design model of the machine [9] was used to find 32 sets of
quadrupole settings, producing a range of phase advances
between the reconstruction and observation points. Settings
were chosen to keep the Twiss beta functions approximately
constant, avoiding beams with very small sizes or large as-
pect ratios. Measurements were ordered to minimise the
need for magnet degaussing between steps.

Offline analysis of the experimental data indicated a dis-
crepancy between the design model of the accelerator and
the operational settings during beam time. Throughout this
work, a “calibrated”model of the beam optics is used, ini-
tialised with the measured Twiss functions at the reconstruc-
tion point. This improves consistency with the experimental
data, but reduces the range of betatron phase advances.

Image Processing
In this study, tomography analyses are exclusively per-

formed in normalised phase space; this improves the accu-
racy of reconstructions [10] and simplifies the analysis. In
the horizontal plane, the normalised coordinates are defined
as 𝑥norm = 𝑥/√𝛽𝑥 and 𝑝𝑥,norm = 𝑝𝑥√𝛽𝑥 + 𝑥𝛼𝑥/√𝛽𝑥, where
(𝑥, 𝑝𝑥) are the standard phase space coordinates, and 𝛼𝑥
and 𝛽𝑥 are the local values of the Twiss optics functions.
When transformed into normalised coordinates, the linear

transport matrices are simply rotation matrices about angles
corresponding to the betatron phase advances.

Before analysis, a background frame (taken with the pho-
toinjector laser turned off) was subtracted from each beam
image to remove contributions from dark current. Images
were then cropped to maximize the area occupied by the
beam, scaled from camera pixels to physical units, and trans-
formed into normalised coordinates (𝑥norm, 𝑦norm). For each
step of the scan, the Twiss optics functions at the observation
point were determined using the calibrated optics model.

In this implementation of the tomography technique, beam
images are represented by their 2D discrete cosine trans-
forms (DCTs) [11]. Compression is achieved by truncating
the (type II) DCT expansion to a finite number of modes;
here, a fixed DCT resolution of 21 x 21 values is used. This
generally results in some loss of image fidelity, but retains
the main structure of the beam profile and some details. In
principle, better reconstructions can be obtained by increas-
ing the number of DCT modes. In this study, the limiting
factors are expected to be the number of quadrupole scan
steps, and the limited range of phase advances.

The 4D phase spaces obtained using this method are also
stored in a compressed form, encoded with an equivalent
DCT algorithm for higher-dimensional arrays. An image (or
phase space distribution) can be retrieved from its respective
DCT by applying the appropriate inverse DCT operation.

MACHINE LEARNING TECHNIQUE
The ANN used in this study was implemented in Keras

[12]. A resolution of 21 points per side was used for the
DCTs of the 32 beam images (the input layer), and 19 points
per side for the DCT of the 4D phase space (the output layer).
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Figure 3: Validation images showing the observed (left)
and reconstructed (right) beam profiles at the observation
point, for different quadrupole scan steps. (a) and (b) show
profiles for a 10 pC bunch charge, while (c) – (f) correspond
to quadrupole scan steps with 100 pC bunch charge.

Between the input and output layers, there are two hidden
layers, each followed by a dropout layer to limit overtraining.

Training data for the ANN was generated by superimpos-
ing 4D Gaussian distributions with random shapes, positions,
and intensities to produce artificial normalised phase spaces.
Corresponding beam images were obtained by transforming
these distributions under phase space rotations (matching
the steps of the quadrupole scan), and projecting them onto
the (𝑥norm, 𝑦norm) plane. 3000 artificial phase spaces were
generated as training data, of which 100 were reserved for
model validation. Training the model takes several minutes
on a standard laptop PC using the Adam optimiser [13].

After training, the ANN was able to reconstruct 4D phase
space distributions when provided with the DCTs for a series
of beam images. Validation of the model using simulated
data, including non-Gaussian phase spaces, demonstrated its
ability to reconstruct complex 4D distributions despite the
limited range of training data (see [14] for further details).

RESULTS AND DISCUSSION
The trained ANN was applied to quadrupole scan data

taken on CLARA. Full details of the technique and results
are published in [14]. Figure 2 shows projections of the
4D phase space, reconstructed at the exit of the linac using
the ML tomography method. The technique produces high-
fidelity images of the phase space projections, showing the
rich beam substructure in the 100 pC case. For comparison,
an equivalent reconstruction was obtained using Algebraic
Reconstruction Tomography (ART). The two methods are
broadly in good agreement, however, Fig. 2 contains fewer
artefacts than the results from ART (see [14] for full details).

The tomography results can be validated by attempting to
reconstruct the measured beam profiles at the observation
point from the 4D phase space distribution. Figure 3 shows
a comparison between several measured and reconstructed
beam profiles, for bunch charges of 10 pC and 100 pC. Qual-
itatively, there is good agreement between pairs of images,
with only some loss of fine detail in the reconstructed profiles.
Similar results were obtained from the ART tomography.

For quantitative comparison, Fig. 4 shows the observed
and reconstructed beam sizes across all 32 steps of the
quadrupole scan. Two linear optics models, initialised with
different covariance matrices, are also shown for compari-
son. The first (the “calibrated model”) is initialised using the
measured Twiss functions at the reconstruction point. The
second (“linear optics”) is initialised by fitting a covariance
matrix to the 4D distributions obtained from tomography.

CONCLUSIONS
A method for transverse phase space tomography using

compressed beam images and machine learning has been
demonstrated with experimental data. This method will
be used to characterise the CLARA high repetition rate
(100 Hz) gun [15], and for commissioning of the full ac-
celerator at momentum up to 250 MeV/c.

While our tomography technique has certain advantages
over conventional algorithms (such as ART), it is not nec-
essarily the optimal implementation. In future, we plan to
extend our method to more complex ANN architectures (or
other sophisticated ML tools), which may yield better recon-
struction of the 4D phase space. Using basis functions other
than DCTs for image compression, or generating a greater
variety of training data, may also be beneficial.

Figure 4: Horizontal (blue) and vertical (red) beam sizes
at the observation point (a) 10 pC and (b) 100 pC bunch
charges. The observed beam sizes are compared against
the reconstructions from ML tomography, and linear optics
models initialised with different beam covariance matrices.
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