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Abstract of the Dissertation

The Case of Extended Supersymmetry and

A Study in Superspace

by

Dharmesh Jain

Doctor of Philosophy

in

Physics and Astronomy

Stony Brook University

2014

In this dissertation we study quantum �eld theories with extended
supersymmetry in four and three dimensions. In d = 4 we study
N = 2 supersymmetric theories using projective superspace for-
malism extensively. We discover the full non-Abelian action for su-
per Yang-Mills (SYM) theory in projective superspace by studying
its relation to harmonic superspace under a suitable Wick rotation
of the latter's internal two-dimensional sphere. We also show that
a Chern-Simons action for SYM in `full' N = 2 superspace can be
written down that reproduces both the harmonic and projective
SYM actions. The projective formalism allows simpli�cations in
computing Feynman supergraphs because the N = 2 rules imply
simpler D-algebra than the N = 1 case. Also, integrals over its
one-dimensional internal space are simpler to handle than the two-
dimensional counterparts in the harmonic case. Furthermore, these
calculations are simpli�ed drastically in background �eld formal-
ism and to construct it in projective formalism, we have to choose
di�erent representations for quantum and background �elds. This
also means that the standard power counting arguments are ap-
plicable and �niteness beyond 1-loop for N = 2 SYM becomes
manifest. We then study the hyperkähler moduli space of N = 2
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SYM compacti�ed on a circle. Recently, it was shown that the Dar-
boux coordinates on the moduli space are an e�cient description
of the hyperkähler metric and we give a simple construction of
the integral equation describing these coordinates using project-
ive superspace. We apply this result to study the moduli space of
d = 5 N = 1 SYM compacti�ed on a torus and we obtain results
in agreement with the literature. Lastly, in d = 3 we study the
free energy of N = 3 Chern-Simons theories associated with a�ne
ADE quivers and conjecture a general expression for free energy
of Dn quivers. Through the AdS/CFT correspondence, this leads
to a prediction for the volume of certain class of tri-Sasaki Ein-
stein manifolds. As a consistency check of our expression, we add
massive fundamental �avour �elds and verify that the free energy
decreases in accordance with F-theorem once they are integrated
out.
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Chapter 1

Introduction

Supersymmetry is currently the most studied yet unobserved aspect of the
real world. The most relevant supersymmetry for the physical d = 4 space-
time is labelled N = 1, which has four fermionic supercharges (worth `one'
Majorana or Weyl spinor) in addition to expected generators of the Poincaré
group. However, the N ≥ 2 theories, with the virtue of having more symme-
tries, have simpler UV properties and allow greater control over possible exact
computations, which have applications even to the `real world' QCD.

For the major part of this thesis we will concentrate on N = 2 super-
symmetric �eld theories in d = 4. To study these theories, we will use the
language of projective (and harmonic) superspace. In general, superspace is
the most e�cient tool to study supersymmetric quantum �eld theories. It
keeps supersymmetry manifest at all stages of computations and simpli�es a
lot of calculations (so-called miraculous cancellations). Superspace also has
deep connections with the mathematics of complex geometry. As is well-
known, N = 1 superspace is intimately related to Kähler geometry and here
we will continue that discussion to N = 2 superspace and explore its rela-
tion to hyperkähler manifolds in some detail. We will also take a small tour
of N = 3 theories in d = 3 and compute their `exact' partition functions
using matrix model techniques. We will not use superspace here but a com-
mon thread that ties it with the rest of the chapters is that supersymmetry
simpli�es calculations and in this case, even allows extraction of exact results.

To kick-start our treatment of d = 4, N = 2 supersymmetric theories, we
�rst discuss here the reason for using projective (and/or harmonic) superspace.
That is, why does a naïve extension of the well-known N = 1 superspace
(called ordinary in the case of N = 2) turns out to be insu�cient for describing
the N = 2 theories.
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1.1 Why Not Ordinary Superspace?

Let us �rst consider the masslessN = 2 scalar multiplet (scalar hypermultiplet
[1]) in ordinary superspace. It consists of two complex scalars φi (where i =
1, 2 is an SU(2) index) and two Weyl spinors ψα, κ̄α̇ forming a Dirac spinor.
Upgrading to a super�eld requires addition of fermionic coordinates so the full
set of coordinates is

XM = {xµ, θαi , θ̄α̇i}. (1.1.1)

Also, the super-covariant derivatives satisfy1

{Di
α, D̄α̇j} = −2ι̇δij∂αα̇ ; {Di

α, D
j
β} = 0 . (1.1.2)

Here we have used that for massless theories the central charge Z is zero. A
natural choice for a super�eld describing the physical �elds mentioned above
would be a super�eld Φi such that its lowest components read

φi = Φi
| ; ψα = DαiΦ

i
| ; κ̄α̇ = D̄α̇iΦ

i
| , (1.1.3)

where | denotes setting all θ's to zero. But a general super�eld has too many
components so we have to put some constraints on Φi (like a chiral super�eld
in N = 1). The following constraints [2] produce only the physical �elds in
(1.1.3)

D(i
αΦj) = D̄

(i
α̇Φj) = 0 . (1.1.4)

However, we now show that these constraints are too strong and put these
physical �elds on-shell:

D̄k
α̇

[
D(i
αΦj)

]
= 0

⇒ Dα
i

[
−2ι̇εk(i∂αα̇Φj) −D(i|

α D̄
k
α̇Φ|j)

]
= 0

⇒ εkj
[
−2ι̇

(
Dαk∂αα̇Φj + εkj∂αα̇D

α
i Φi
)
−Dα

i D
j
α

(
−1

2
εki
)
D̄m
α̇ Φm

]
= 0

⇒ −2ι̇
(
∂αα̇D

α
j Φj + 2∂αα̇D

α
i Φi
)

= 0

⇒ ∂αα̇ψ
α = 0

(1.1.5)

1The SU(2) indices i, j are raised and lowered with εij and εij according to the `north-west

rule': vi = εijvj and vi = vjεji with ε
ij = εij and ε12 = ε12 = 1. Then {Di

α, D̄
j
α̇} = 2ι̇εij∂αα̇,

{Dαi, D̄
j
α̇} = 2ι̇δji ∂αα̇ and {Dαi, D̄α̇j} = 2ι̇εij∂αα̇. We further de�ne (θiα)† = θ̄α̇i and

(θαi)
† = θ̄iα̇ but (θαi)† = −θ̄α̇i and (θαi )† = −θ̄α̇i. Spinor indices are raised and lowered with

εαβ = εαβ = −εα̇β̇ = −εα̇β̇ also according to the north-west rule, for example θαi = θβi εβα

and θ̄α̇i = εα̇β̇ θ̄i
β̇
. Then (εαβθβi)

† = −εα̇β̇(θβi)
† = −θ̄α̇i.

2



where we used that Dα
i D

i
α = 0. A similar result holds for κ̄α̇ if we start from

the other constraint. To see that φi is also put on-shell, we need to start from
∂αα̇D

αiΦj = 0. This equation is true since the symmetric part (ij) vanishes
because of (1.1.4) and the vanishing of the antisymmetric part [ij] was proven
above. Now we act with D̄α̇k on it as follows

D̄α̇(k|∂αα̇D
αiΦ|j) = 0

⇒ 2ι̇∂αα̇∂
αα̇εi(kΦj) − ∂αα̇DαiD̄α̇(kΦj) = 0

⇒ 2φj = 0 .

(1.1.6)

Thus, we see that all the physical �elds satisfy the on-shell condition, i.e.,

∂αα̇ψ
α = 0 , ∂αα̇κ̄

α̇ = 0 & 2φi = 0 . (1.1.7)

To have these �elds remain o�-shell, we could try relaxing the constraints
but that approach does not go too far. It gives the tensor multiplet, the
relaxed multiplet, etc. (with �nite sets of auxiliary �elds) [3, 4] but they
have some disadvantages. Their coupling to super Yang-Mills theory is not
straightforward (in fact, impossible in the case of the tensor multiplet). Also
these multiplets have scalars in real representations of SU(2) R-symmetry as
opposed to the �eld content we considered above.

Now we argue that a complex representation can not be accommodated
in the ordinary superspace with a �nite number of auxiliary �elds [5, 6]. O�-
shell, the auxiliary �elds along with the physical �elds form representations
of massive multiplet(s). This implies we would need some auxiliary fermions.
These auxiliary fermions should appear in the action as pairs of Dirac spinors,
like χ̄η, and because the physical spinor ψ is in a real representation of SU(2)R
(the singlet representation), the auxiliary spinors should belong to complex
non-singlet representations. Let us count the total number of real fermionic
�eld components.

Needed: pairs of Dirac spinors in SU(2) representations Ij and the phys-
ical ones ⇒

∑
j[2× 8× (2Ij + 1)] + 8 = 16q + 8.

Expected: half the number of states in a complex irreducible N = 2 su-

permultiplets in SU(2) representations Ji ⇒
∑

i
1
2
× 2× 22×2× (2Ji +

1) = 16p.

Here, p and q are integers and it is clear that these two counting results do
not match. This means we can not construct an o�-shell super�eld describing
the massless N = 2 scalar multiplet with a �nite number of auxiliary �elds.
The way to circumvent this `no - go' theorem is to have an in�nite number of
auxiliary �elds.

3



As we will see the N = 2 projective (and harmonic) superspaces achieve
that by introducing extra bosonic coordinates on which the super�elds are
now allowed to depend. Since these coordinates are bosonic, the super�eld's
expansion in terms of the relevant functions (spherical harmonics for harmonic
and Taylor/Laurent series for projective) does not terminate and we get an
in�nite number of auxiliary �elds. As such, our arguments above apply only
to the complex scalar hypermultiplet and it is possible to describe a vector
(Yang-Mills) hypermultiplet in a `chiral' N = 2 superspace with �nite number
of auxiliary �elds since it is real. However, unlike N = 1, a prepotential
formulation does not exist (at least one that can be satisfactorily quantized) so
projective and harmonic superspaces are indispensable in describing the vector
hypermultiplet. A prepotential can be constructed in these two approaches
that allows a vector action (which can be quantized) to be written down.
These aspects will become clear as we proceed further. We end this chapter
by summarizing the upcoming chapters:

Origins of Projective Superspace is based on [7,8] (with W. Siegel) where
we discuss the derivation of various hypermultiplets in projective super-
space from those in harmonic, including the `�rst' appearance of full
nonabelian action for Yang-Mills theory in projective superspace.

Exploring Projective Superspace consolidates [9�11] (withW. Siegel) and
hence includes derivation of Feynman rules for scalar (both massless and
massive) and vector hypermultiplets, a signi�cant amount of loop calcu-
lations using those rules and the `�rst-ever' construction of a background
�eld formalism in projective superspace.

Applying Projective Superspace discusses the work in [12] (with P. M.
Crichigno) where we derive a general expression for Darboux coordinates
on hyperkähler manifolds described byO(2p) hypermultiplets using proj-
ective superspace, which is then used to reproduce two existing results
in the literature: Coulomb branch moduli space metric for d = 4, N = 2
SYM compacti�ed on S1 and d = 5, N = 1 SYM on T 2.

Quiver Chern-Simons Theories presents the work done in [13] (with P. M.
Crichigno and C. P. Herzog) where we conjecture an expression for free

energy of d = 3, N = 3 D̂n quiver Chern-Simons theories using matrix
model techniques and provide various checks, including an interesting
connection with `signed' graph theory.

4



Chapter 2

Origins of Projective Superspace

As mentioned in the introduction, there are two competing (but closely related)
formalisms for e�ectively dealing with N = 2 supermultiplets (`hypermulti-
plets' [1]) in N = 2 superspace (`hyperspace'), in four dimensions (or sim-
ple supersymmetry in six): projective (Π̌) [14�16] and harmonic (�) [17�20].
Projective hyperspace has the advantage of 1 less R-symmetry coordinate,
which results in all the coordinates �tting neatly into a square matrix, whose
hyperconformal transformations take the form of fractional linear transforma-
tions [21�25], hence the term `projective'.

Although the relations between various multiplets in the two formalisms
has been frequently discussed, in this chapter we will provide a direct derivation
of multiplets, gauge transformations, and actions for the projective formalism
from those of the harmonic. The derivation is mostly straightforward: The
basic step is to start with the usual complex coordinates y and ȳ of the 2-
sphere, which is the space of the SU(2)(/U(1)) R-symmetry, and treat them
as independent, which can be accomplished by Wick rotation. Due to the
change in topology from compact to non-compact, the standard equations of
motion and gauge conditions of the harmonic formalism, which involve only
the (SU(2)- and gauge-)covariant ȳ derivatives, no longer put the theory on
shell. We solve the equations of motion or gauge conditions for explicit ȳ
dependence of the hyper�elds in terms of `coe�cients' that depend on y, and
perform the ȳ integral in the action. (Instead of gauge �xing we can also
de�ne the projective gauge �eld in terms of the line integral of the harmonic
one across the range of ȳ.) E�ectively, the theory has been reduced to its
`boundary' in ȳ, for both the hyper�elds and their residual gauge invariance.
This is not the true boundary of the Wick-rotated theory, but symmetry under
�nite SU(2) R-transformations is maintained on this one-dimensional space y.
(The exception is projective actions for nonrenormalizable theories that require
integration over a speci�c contour in their de�nition, such as for the tensor
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multiplet, past which SU(2) can move singularities. Such theories are SU(2)
invariant under in�nitesimal, but not �nite transformations. They also do not
have SU(2) covariant forms in the harmonic formalism.) This Wick rotation
also accounts for the modi�ed de�nition of charge conjugation used in such
spaces [26]. The remaining coordinate can consistently be treated as real, even
though the SU(2) transformations are complex, by treating them as being on
the �elds, rather than on the coordinates, since the �elds that appear in the
Laurent expansion in y are complex (but may be subject to reality conditions
based on charge conjugation consistent with SU(2)).

Previously [27], the equivalent was accomplished by replacing regular func-
tions on the sphere with singular functions there in the harmonic formalism
(or by taking a singular limit of regular functions), which allowed projective
multiplets to be obtained after minor modi�cations, but altered the harmonic
interpretation. Here we do not modify the de�nition of the harmonic �elds or
action; the singularities of the projective �elds in y follow directly from the
regular harmonic expansion of the harmonic �elds.

We also give further analysis of hypergraphs in the 2 formulations, and eval-
uate the 1-scalar-hypermultiplet-loop divergence with an arbitrary number of
external (nonabelian) vector-multiplet lines. In particular, we give for the �rst
time the complete projective action for nonabelian N = 2 super Yang-Mills
(SYM), which could be guessed from the similar harmonic action, particularly
by noting its coupling with the scalar hypermultiplet. However, we go a step
further and derive even the harmonic action for SYM from a Chern-Simons
(CS) action which can be written in `full' hyperspace (d4x d8θ) supplemented
by the internal SU(2) space (d3y). Since the CS action doesn't know about
the geometry of the space, we can choose a `di�erent' internal space as long as
integration over this space can be consistently de�ned. Thus, choosing a space
with a boundary (amounts to a suitable Wick-rotation of SU(2)) is desirable
as the (local) CS action can then be `reduced' to the (non-local) SYM action
of the harmonic hyperspace on this boundary. This also means that the sphere
is not the only possibility for the harmonic internal space and other spaces can
be chosen as we will see later, which facilitate further reduction to projective
hyperspace.

2.1 R-symmetry Coordinates

We begin with some conventions, and our de�nition for evaluation of the simple
ȳ integrals that convert harmonic hyper�elds to projective ones. We will ignore
questions of representation with respect to the usual superspace coordinates
until later, and focus mostly on just R-space. We begin with a conventional

6



parametrization of an element of SU(2) as

g =

(
eι̇ϕ/2 0

0 e−ι̇ϕ/2

)
1√

1 + yȳ

(
1 −ȳ
y 1

)
≡
(
ū
u

)
, (2.1.1)

where the angle ϕ parametrizes the element of U(1) factored out to leave the
projective complex conjugate coordinates y and ȳ of the sphere. The currents
g−1dg and (dg)g−1 then de�ne the dual SU(2) generators G and covariant
derivatives d, respectively, as usual:

G0 = y∂y − ȳ∂ȳ − ι̇∂ϕ (2.1.2)

Gy = ∂y + ȳ2∂ȳ + ι̇ȳ∂ϕ (2.1.3)

Gȳ = y2∂y + ∂ȳ − ι̇y∂ϕ (2.1.4)

d0 = −ι̇∂ϕ (2.1.5)

dy = eι̇ϕ [(1 + yȳ)∂y − ι̇ȳ∂ϕ] (2.1.6)

dȳ = e−ι̇ϕ [(1 + yȳ)∂ȳ + ι̇y∂ϕ] . (2.1.7)

We then make the change of variables

ȳ → t =
1

1 + yȳ
.

The convenience can be seen from the change of (Haar) measure for the coset
(sphere):

1

2πι̇

∫
dydȳ

(1 + yȳ)2
→ 1

2πι̇

∫
dy

y

∫ 1

0

dt ,

normalized so that the integral of 1 is 1. (We will suppress the factor 1
2πι̇

in
integrals from now on.)

At this point we are already e�ectively treating y and ȳ (now t) as Wick
rotated coordinates, so they can be integrated independently. (This corre-
sponds to independent deformations of contours of integration of the 2 real
coordinates of the sphere.) The triviality of the measure for t implies that
covariant di�erential equations in that coordinate will also be. The range of
t follows from the positivity of yȳ on the sphere; we'll keep this restriction
after Wick rotation to reproduce the usual projective hyperspace formalism.
(Although extending the range to the boundary of the Wick-rotated space at
t =∞ should lead to the usual holography, we have not been able to derive a
corresponding hyperspace formalism.) The y integral will then be interpreted
as a (closed) contour integral. (Reality conditions will be discussed below.)
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Another useful change of variables is

e−ι̇ϕ → e−ι̇φ = e−ι̇φt ⇒ ∂ϕ = ∂φ, (2.1.8)

so d0 is still integer or half-integer. (A similar variable was used, with y and ȳ,
in [27].) After switching from harmonic to projective hyperspace, this complex
rede�nition allows the complex gauge condition φ = 0. Another interpretation
is to replace the R-sphere with a true CP1: 2 complex coordinates with a
complex scale invariance, allowing metrics that di�er from the sphere by a
Weyl scale (including �at R-space). Then φ = 0 is a choice of that complex
scale. So our �nal parametrization of the group element is

g =

(
e
ι̇
2
φ 0

0 e−
ι̇
2
φ

)(
t −1−t

y

y 1

)
. (2.1.9)

The symmetry generators and covariant derivatives are now

G0 = y∂y − ι̇∂φ (2.1.10)

Gy = ∂y − 1
y
(1− t)∂t (2.1.11)

Gȳ = y2∂y − y(t∂t + 2ι̇∂φ) (2.1.12)

d0 = −ι̇∂φ (2.1.13)

dy = eι̇φ
[
∂y − 1

y
(1− t)(t∂t + 2ι̇∂φ)

]
(2.1.14)

dȳ = −e−ι̇φy∂t. (2.1.15)

Determination of ȳ dependence of hyper�elds is simple, since the free �eld
equations or gauge conditions we solve take the form dȳ = 0 or dȳ

2 = 0, so
the harmonic hyper�eld consists of 1 or 2 projective ones by simple Taylor
expansion in t. Together with the determination of φ dependence by the
isotropy constraint, which determines the eigenvalue of d0 for the harmonic
hyper�eld Ψ, we �nd

d0Ψ = nΨ, (dȳ)
mΨ = 0 ⇒ Ψ = eι̇nφ

m−1∑
j=0

ψj(y)tj. (2.1.16)

The analyticity properties of the projective super�elds ψj in y then follow from
the regularity of the original (o�-shell) Ψ on the sphere; we'll discuss each case
individually below. Since the �eld equations are no higher than second order
in derivatives, the projective hyper�elds can be associated with `boundary
values' (at t = 0 or 1) of the harmonic ones.
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The usual charge conjugation of the projective and harmonic formalisms
(with respect to just SU(2); again we ignore the generalization to the full
projective hyperspace [26]) is de�ned by the pseudoreality of the de�ning rep-
resentation of SU(2), as given here by the group element (with respect to just
the symmetry group): Left-multiplication of g∗ (where `∗' is ordinary complex
conjugation) by an antisymmetric matrix gives back the same representation.
So

Cu = ū ⇒ (Cy)∗ = − 1
y
, (Ct)∗ = 1− t, (Ce−

ι̇
2
φ)∗ = ye−

ι̇
2
φ. (2.1.17)

Thus in projective hyperspace, which doesn't have t, C switches a projective
hyper�eld associated with t = 0 with one associated with t = 1. So from the
above solution in terms of projective hyper�elds ψ of the �eld equations on a
harmonic hyper�eld Ψ we have,

(CΨ)(z) = [Ψ(Cz)]∗ ⇒ (Cψ)(z) = y−2n[ψ(Cz)]∗ (2.1.18)

(We include all coordinates in z, so C acts also on x and θ, which we haven't
discussed.) Hyper�elds that have integer eigenvalue of d0 are called `real'
if they are equal to their charge conjugates (whereas half-integer ones are
pseudoreal representations of SU(2)).

2.2 Fermion Representations

Representations with respect to spinor derivatives di�er slightly in the two
formalisms because of the (non)appearance of ȳ. Just as the covariant R-
derivatives of the harmonic formalism are invariant under the global SU(2)
(commute with the generators), the usual covariant spinor derivatives need to
be multiplied by the group element g to replace their SU(2) transformations
with those of the isotropy U(1):(

dθ
dϑ

)
= g

(
d(1)

d(2)

)
(2.2.1)

⇒ dϑ = e−
ι̇
2
ϕ
√
t(d(2) + yd(1)), dθ = e

ι̇
2
ϕ
√
t(d(1) − ȳd(2)) (2.2.2)

where dϑ vanishes on projective hyper�elds. Here we use six-dimensional
SU*(4) matrix notation for spinors (and vectors): In the `real' representation,
d(1) and d(2) are hermitian conjugates of each other up to an antisymmetric
4×4 matrix; they form the usual pseudoreal isospinor representation of the

9



global SU(2). Their anticommutation relations are

{d(1), d(2)} = −{d(2), d(1)} = −ι̇∂x, {d(1), d(1)} = {d(2), d(2)} = 0, (2.2.3)

where the sign is due to the antisymmetry of the 4×4 matrix ∂x (6 coordinates
for d = 6, but easily reduced to d = 4).

In terms of our rede�ned SU(2) coordinates,

dϑ = e−
ι̇
2
φ(d(2) + yd(1)), dθ = e

ι̇
2
φ

[
td(1) − (1− t)1

y
d(2)

]
(2.2.4)

Clearly dθ needs to be rede�ned for the projective formalism: Fixing any value
of t will preserve the spinor-derivative anticommutation relations; t = 1 is the
choice that relates directly to the usual projective formalism, as well as giving
the simplest y dependence. Similar remarks apply to dy.

The real representation is the least useful one for the projective formal-
ism. The representations that are more useful are obtained by supercoordinate
transformations x→ x± 1

2
ι̇ϑθ:

d(1) = ∂θ + ι̇ϑ∂x, d(2) = ∂ϑ or d(1) = ∂θ, d(2) = ∂ϑ − ι̇θ∂x (2.2.5)

The former leads to the `analytic' representation in the harmonic formalism
after a further rede�nition involving the R-coordinates θ → θ ± ϑy. After
manipulations like the above, similar (but not identical) representations can
be obtained for projective hyperspace.

However, the desired representations can be both obtained and explained
more directly in projective hyperspace: We �rst note that the (4D) hyper-
conformal group can be represented directly on the projective coordinates
via fractional linear transformations (as for other projective spaces, such as
SU(2) on CP1). Under this representation of the hyperconformal group, simple
translations of the coordinates yield the usual x translations, half the hyper-
symmetries, and some of the R-symmetry. We call this the `projective repre-
sentation'. But there is another representation where it is the corresponding
covariant derivatives that are just partial derivatives, instead of the genera-
tors of this subgroup of the hyperconformal group. The existence of this other
representation is clear if we consider the hyperspace coordinates in terms of
hyperconformal group elements. At �rst we ignore the isotropy group, which
is generated by a subset of the covariant derivatives. Then there is a symme-
try between hyperconformal generators and covariant derivatives as they are
generated by left and right action on the group element. These representa-
tions can easily be switched by the coordinate transformation that replaces
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the group element by its inverse:

g′ = gLggR ⇒ (g−1)′ = g−1
R g−1g−1

L (2.2.6)

g → g−1 ⇒ gL → g−1
R , gR → g−1

L (2.2.7)

In practice, it's more convenient to replace this transformation with one that
can be obtained continuously from the identity, by in addition performing a
sign change for all the coordinates. These 2 transformations would cancel for
exponential parametrization of the group element. But for the more standard
parametrization as a `product' of exponentials, this combination just reverses
the ordering of the exponential factors. In this case, it is equivalent to a
hyperconformal transformation on the projective coordinates (and not ϑ) with
ϑ acting as the parameter, of the form described above.

The resulting `re�ective' representation is essentially one of the twisted-
chiral representations described above (with t→ 1). The projective represen-
tation is like the other one, but requires in addition a y-dependent hyperco-
ordinate transformation. The net result for the covariant derivatives d and
corresponding symmetry generators G of the 2 representations is

d's & G's Projective (Π̌) Re�ective (z)
dx ∂x ∂x
dθ ∂θ + ι̇ϑ∂x ∂θ
dy ∂y − ϑ∂θ − ι̇1

2
ϑϑ∂x ∂y

dϑ ∂ϑ ∂ϑ + y∂θ − ι̇θ∂x
Gx ∂x ∂x
Gθ ∂θ ∂θ − ι̇ϑ∂x
Gy ∂y ∂y + ϑ∂θ − ι̇1

2
ϑϑ∂x

Gϑ ∂ϑ − y∂θ + ι̇θ∂x ∂ϑ

Table 2.1: Covariant derivatives and symmetry generators in two di�erent
representations.

The advantages of the projective representation are that projective hyper-
�elds depend on just the projective coordinates, hyperconformal transforma-
tions are simpler, and scattering amplitudes are simpler because their hyper-
space form (as derived, e.g., from hypertwistors) contains explicit hypersym-
metry conservation δ-functions δ (

∑
Gθ) for Gθ = ∂θ. The advantage of the

re�ective representation is that the y-nonlocal action for N = 2 SYM (see be-
low) can be written simply. (The same is true for gauge-covariant derivatives,
written in a similar form.) The corresponding expressions in the projective
representation are more complicated, because the y-dependent transformation
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from a real (or re�ective) representation to the projective one (which isn't
needed from real to re�ective) is di�erent at each y. This is related to the
fact that such actions have explicit ϑ-dependence. However, it is possible to
perform the ϑ integration; the result contains derivatives in a form that is
not manifestly covariant. (By analogy, consider an N = 1 action of the form∫
d4θL(Φ, dαΦ) depending only on the chiral Φ and not antichiral Φ̄.)

2.3 Scalar Hypermultiplet

Our general procedure for deriving projective actions from harmonic ones is to
solve the �eld equation (for scalar multiplets) or the gauge condition (for the
vector multiplet), both of which involve t-derivatives, and plug the solution
back into the action. (For application of this idea to nonlinear sigma models,
refer to D. Butter [28].)

For scalar multiplets the procedure is similar to the JWKB approximation
in the path-integral formalism: The `classical' contribution is given by sub-
stituting the solutions of the equations of motion in terms of the boundary
values (at `initial' and `�nal' times). In our case, these boundary values of the
harmonic hyper�elds at t = 0 and 1 are the projective hyper�elds.

There are two versions of the scalar hypermultiplet in harmonic hyperspace,
but both reduce to the same one in projective hyperspace. The one that's easier
to treat is also the one that appears for the usual Faddeev-Popov ghosts: Its
free Lagrangian is

L1 = 1
2
(dȳω)2, d0ω = 0, Cω = ω. (2.3.1)

As described in the previous section, the solution to its �eld equation is

ω = ω0(y) + tω1(y) ⇒ dȳω = −e−ι̇φyω1(y). (2.3.2)

In terms of the boundary values,

ωi(y) = ω|t=0 = ω0, ωf (y) = ω|t=1 = ω0 + ω1 (2.3.3)

⇒ ω = (1− t)ωi + tωf , (2.3.4)

we �nd the reality condition ωf (y) = (ωi)
†
(
− 1
y

)
.

Regular functions on the sphere can be expanded in terms of spherical
harmonics, or equivalently in terms of U(1)-invariant products of the SU(2)
group element. In the present case (integer isospin), these can be obtained
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from symmetrized products of those for isospin 1, namely

(y, ȳ, 1− yȳ)

1 + yȳ
=

(
ty,

1− t
y

, 2t− 1

)
=

{
(0, 1

y
,−1) for t = 0

(y, 0, 1) for t = 1
(2.3.5)

So such harmonic �elds will have only nonpositive powers of y at t = 0 (ωi),
and only nonnegative powers at t = 1 (ωf ). This is just the usual de�nition
of the scalar multiplet Υ in projective hyperspace, regular at y = 0, so we
identify Υ = ωf , Ῡ ≡ (Υ)†(− 1

y
) = ωi.

The projective Lagrangian is then the usual∫ 1

0

dtL1 = −e−2ι̇φy2

(∫ 1

0

dt

)
ῩΥ = −e−2ι̇φy2ῩΥ. (2.3.6)

The fermionic coordinates cancel the φ dependence. The 1
y
in the harmonic

measure reduces the y2 factor to y, a weight factor for charge conjugation [26],
as the Lagrangian is a hyperconformal density in projective hyperspace. We
have dropped the Υ2 and Ῡ2 terms, which vanish after y (and θ) integration
from lack of 1

y
poles.

The other version of the free scalar hypermultiplet is described by the
Lagrangian

L2 = q̄dȳq, d0q = −1
2
q, (2.3.7)

(where q̄ = Cq). The solution to its �eld equation is [27]

q = e−
ι̇
2
φq0(y), q̄ = e−

ι̇
2
φy(q0)†

(
−1

y

)
≡ e−

ι̇
2
φyq̄0(y). (2.3.8)

The Lagrangian would then seem to vanish, but we know from path inte-
grals for fermions in quantum mechanics that a more careful, discretized-`time'
analysis can lead to nonvanishing results, depending on the boundary condi-
tions. In particular, for a �rst-quantized Lagrangian of the form Ψ̄Ψ̇, time
independence of Ψ and Ψ̄ by the equations of motion implies that the propa-
gator gives just the inner product, i.e., the same result as tf = ti. So, if the
boundary conditions are chosen so that the initial wave function depends on
Ψ̄ while the �nal depends on the canonical conjugate Ψ, the `classical' action
found from the JWKB expansion is just Ψ̄iΨf , whose exponentiation gives the
`plane wave' inner product. E�ectively, the result is the same as dropping the
derivative, as for a `boundary term' that might result on integration by parts.
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In this case, this leads to the result∫ 1

0

dtL2 = q̄[−e−ι̇φy]q = −e−2ι̇φy2q̄0q0, (2.3.9)

which is again the projective scalar hypermultiplet action, identifying Υ = q0.
The regularity of Υ at y = 0 follows from associating q0 with the original q at
t = 1, and q̄0 with t = 0. (4D massive scalar hypermultiplets are found from
6D massless by dimensional reduction as will be detailed in next chapter.)

2.4 Vector (Yang-Mills) Hypermultiplet

Unlike the scalar hypermultiplets, the reduction of the vector hypermultiplet
follows from applying the gauge condition, rather than the �eld equation. Solv-
ing the gauge condition is equivalent to (but more convenient than) working
directly in terms of gauge-invariant variables. The residual gauge invariance
(in either method) is that of the projective formalism: The gauge condition
trivializes ȳ dependence in both the gauge �eld and the gauge parameters.

Again from the above analysis, solving the usual gauge condition gives [27]

dȳAȳ = 0, d0Aȳ = −Aȳ ⇒ Aȳ = −ι̇e−ι̇φyV (y) (2.4.1)

where we have de�ned Aȳ,0 = yV by analogy with dȳ. (V is Hermitian with
respect to C.) In the Abelian case, using the covariant current

J ȳ = dȳ eι̇φt2 = dt eι̇φ 1
y

(from (dg)g−1), where J ȳdȳ = dȳ∂ȳ = dt∂t, to de�ne the covariant line integral

Abelian : V ≡ ι̇

∫ 1

0

J ȳAȳ =

∫ 1

0

dt V = V (2.4.2)

we see the gauge-independent de�nition of V is consistent with the above gauge
condition. For the nonabelian case, we instead de�ne the (complexi�ed) group
element

eV ≡ P
[
eι̇
∫ 1
0 J

ȳAȳ
]
, (2.4.3)

again consistent with the above gauge. (C gives an extra sign change from
switching t ↔ 1 − t, so hermitian conjugation with C gives 2 canceling path
reversals.)

The regularity of Aȳ (in arbitrary gauges) tells us it has the above type
of singularities in y at t = 0 or 1. Thus, V must have singularities at both
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y = 0 and ∞, as in the usual projective formalism. Furthermore, examining
the abelian gauge transformation applied to the gauge-independent de�nition
of V as a line integral

Abelian: δAȳ = −dȳK, d0K = 0 ⇒ −ι̇δV = K|1t=0, (2.4.4)

and using the correspondence between the scalar multiplet ω and gauge pa-
rameterK in harmonic hyperspace on the one hand, and the scalar multiplet Υ
and gauge parameter Λ in projective hyperspace on the other hand (except for
di�erent conformal weights), we recognize the usual Abelian projective gauge
transformation

Abelian: δV = ι̇
(
Λ− Λ̄

)
; Λ = K|t=1, Λ̄ = K|t=0. (2.4.5)

Because of the path ordering in the gauge-independent de�nition, this can be
seen to generalize directly to the nonabelian case as

eV
′
= e−ι̇Λ̄eV eι̇Λ. (2.4.6)

2.4.1 Coupling to Scalar

Before looking at the action, we examine the coupling to matter. In the above
gauge, even in the nonabelian case, the ȳ covariant derivative can be written
as

Dȳ = dȳ + ι̇Aȳ = etV dȳe
−tV

This modi�es the solution to the matter �eld equations: e.g.,

ω = etV (ω0 + tω1) ⇒ ωi = ω0, ωf = eV (ω0 + ω1) (2.4.7)

⇒ ω = etV (1− t)ωi + e−(1−t)V tωf (2.4.8)

⇒ dȳω = −e−ι̇φetV yω1 = e−ι̇φy(etV ωi − e−(1−t)V ωf ) (2.4.9)

Since ω must be a real representation of the Yang-Mills group, the group
generators are antisymmetric, so

L1 = 1
2
(dȳω)Tdȳω = −e−2ι̇φy2ωfe

V ωi (2.4.10)

again after dropping non-cross terms, whose V dependence cancels, and so
vanish after integration as before. The result is the usual modi�cation by eV ,
which restores gauge invariance. If we write eV as a gauge-covariant path-
ordered exponential of the integral of Aȳ, we recognize this modi�cation as
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gauge-covariant point splitting in t. Similarly, for the other multiplet we have

q = e−
ι̇
2
φetV q0, q̄ = e−

ι̇
2
φyq̄0e

(1−t)V (2.4.11)

yielding the same result [27].
The nonabelian gauge transformation of V can be derived from the above

expression for that of eV . An alternate method is to solve for the residual gauge
invariance in the above gauge. This is equivalent to solving the equations of
motion for the Faddeev-Popov ghosts. The equation to solve is

0 = δ(dȳAȳ) = −dȳ[Dȳ, K]

Plugging in the above expression for Aȳ in this gauge yields

∂te
tV ∂te

−tVK = 0

where we now writeK as a column vector (so V is in the adjoint representation)
for convenience. The solution, in notation analogous to that for ω above, is

K = etVK0 +
1

V
(etV − 1)K1 =

1

eV − 1

[
(eV − etV )Ki + (etV − 1)Kf

]
(2.4.12)

(Upon Taylor expansion, there are no inverse powers of V .) The transforma-
tion law is then

δV = − ι̇
2
V
[(

Λ̄ + Λ
)

+ coth
(

1
2
V
) (

Λ̄− Λ
)]

(2.4.13)

in analogy to the N = 1 result.
In an arbitrary gauge, we have

Dȳ = P
[
eι̇
∫ t
0 J

ȳAȳ
]
dȳ P

[
eι̇
∫ 0
t J

ȳAȳ
]

(2.4.14)

if we assume the boundary condition Aȳ|t=0 = 0. (This might also be an
asymptotic gauge condition, but it seems reasonable as a boundary condition
since dȳ has a factor of 1

t
multiplying ∂ȳ.) This uses the explicit gauge trans-

formation for going to the gauge Aȳ = 0. Repeating the above manipulations
then produces the same results but in terms of the gauge-covariant de�nition
of V given above. This construction is reminiscent of the construction for
N = 1, where eV = eΩeΩ̄, with Ω̄ corresponding to the

∫ t
0
piece and Ω to

the
∫ 1

t
. This allows transformations to di�erent gauge representations where

the covariant derivatives transform with only one of K ≡ K(t), Λ ≡ K(1), or
Λ̄ ≡ K(0).
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2.5 Hypergraphs

A few N = 2 supergraphs have been evaluated in both approaches. The rules
and tricks were similar, due to the fact that the harmonic formalism [29, 30]
di�ers from the projective one [31�34] only by the appearance of additional
auxiliary multiplets, coming from extra ȳ (or t) dependence. We summarize
these rules here in our notation. Those that are (almost) the same are (in
real/re�ective representations, or those that di�er by only y-independent co-
ordinate transformations):

scalar multiplet propagator:
d4

1ϑd
4
2ϑ

y3
12

δ8(θ12)

p2

vector multiplet propagator: d4
ϑδ(y12)

δ8(θ12)

p2
(Fermi-Feynman gauge)

scalar multiplet vertex:

∫
d4θdy, but use

∫
d4θd4

ϑ =

∫
d8θ

vector multiplet (only) vertex:

∫
d8θdy1...dyn

1

y12y23...yn1

where θ12 ≡ θ1 − θ2, etc. (The rules above are for the q scalar multiplet in
the harmonic formalism, which is simpler, and more similar to the projective
case.) There are also the identities common to both:

d2ϑd
4
1ϑ = y21d1θd

4
1ϑ ⇒ δ8(θ12)d4

2ϑd
4
1ϑδ

8(θ12) = y4
12δ

8(θ12) . (2.5.1)

The former is used when integrating a spinor derivative by parts from one
propagator across a vertex to an adjacent propagator; alternatively, the latter
can be used when only 4 such derivatives are moved in the last step of θ
integration.

The di�erences in the above expressions in the two formalisms are the
number of R-coordinates and the ι̇ε prescription:

Def. Harmonic Projective

`
∫
dy'

∫
dy dȳ

2πι̇(1+yȳ)2

∮
dy
2πι̇

`δ(y12)' 2πι̇ (1 + yȳ)2δ(y12)δ(ȳ12) 2πι̇ δ(y12)
` 1
y12

' 1
y12+ ε

ȳ12

1
y12+ε(y1+y2)

Table 2.2: Di�erences between harmonic and projective hyperspaces.

In manipulations involving integrating ` 1
y
' to make results more R-local, in

the harmonic formalism one needs various identities that generate ȳ derivatives
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to apply

∂ȳ
1

y + ε
ȳ

= πδ2(y), (2.5.2)

which is easy to integrate. On the other hand, in the projective formalism
one just immediately evaluates standard contour integrals. There is also an
ordering for the projective formalism: 1

y12+ε(y1+y2)
, for y1 and y2 on the same

contour, is for 〈Υ(1)Ῡ(2)〉. This means that e�ectively one integrates with
the y2 contour enclosing y1 (and 0), or the y1 contour inside y2 (and ∞). For
example, for contours counterclockwise around the origin, we have

1

y12 + ε(y1 + y2)
+

1

y21 + ε(y1 + y2)
= 2πι̇ δ(y12). (2.5.3)

Another source of di�erences is the relation of the spinor derivatives in the
2 approaches: We have seen that the projective ones follow from the harmonic
ones e�ectively by setting t = 1. (We also gauge φ = 0 in both cases.) So for
the harmonic relations

{d1ϑ, d2ϑ} = −ι̇u1 · u2∂x, (2.5.4)

{d1θ, d2ϑ} = −ι̇ū1 · u2∂x, (2.5.5)

{d1θ, d2θ} = −ι̇ū1 · ū2∂x (2.5.6)

we have in general

u1 · u2 = y12, ū1 · u2 = t1 + (1− t1)y2

y1
, ū1 · ū2 = t2(1− t1) 1

y1
− t1(1− t2) 1

y2

(2.5.7)
but only for the projective case do the latter 2 simplify:

u1 · u2 = y12, ū1 · u2 = 1, ū1 · ū2 = 0 (projective) (2.5.8)

⇒ {d1ϑ, d2ϑ} = −ι̇y12∂x, {d1θ, d2ϑ} = −ι̇∂x, {d1θ, d2θ} = 0. (2.5.9)

Moving spinor derivatives from propagators around loops requires evaluating
expressions of the form

diϑ...djϑd
4
1ϑ

which results in repeated use of the above anticommutators, so the harmonic
formalism also has these t-dependent factors to deal with. (The example above
that gave the same result in the 2 approaches needed only u1 · u2.) However,
one should be able in general to use d(1) in place of dθ in the harmonic approach
to mimic the projective and get the same simpli�cations, since only dϑ appears
in the Feynman rules.
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There is also some Legendre transformation involved in the `duality', which
accounts for the minor di�erences in the action, such as coupling to ι̇Aȳ vs.
eV − 1 (subtracting out the `1' for the kinetic term). Also, the rules for the ω
multiplet (and the ghosts) are a little more complicated than the q multiplet
for the harmonic formalism. (For the most part, the extra dȳ in the vertex
converts the ω propagator into a q propagator.)

The bottom line is that although the �nal results in the two approaches
are almost the same (to the same extent as the Feynman rules), the harmonic
formalism requires some extra algebra (for R-space).

2.6 Yang-Mills Action in Harmonic Hyperspace

The action for nonabelian Yang-Mills multiplet in the harmonic case was writ-
ten as an in�nite series expansion in terms of the prepotential. This action
turned out to be non-local in the internal R-coordinates. Even though the ori-
gin of the Abelian action could be understood via the action written in chiral
hyperspace, the nonabelian action did not have such a direct origin. Its origin
was explained by Zupnik in [19] where the `series' action was summed to a
logarithm of a pseudo-di�erential operator.

We now review the construction of SYM action in harmonic hyperspace.
The following constraints de�ne the SYM in harmonic hyperspace:

{Dϑ,Dϑ} = {Dϑ, D̄ϑ} = {D̄ϑ, D̄ϑ} = 0 (2.6.1)

[D+,Dϑ
(
D̄ϑ
)
] = Dθ

(
D̄θ
)

(2.6.2)

[D+,Dθ
(
D̄θ
)
] = 0 (2.6.3)

[D−,Dϑ
(
D̄ϑ
)
] = 0 (2.6.4)

[D−,Dθ
(
D̄θ
)
] = Dϑ

(
D̄ϑ
)

(2.6.5)

[D0,Dϑ
(
D̄ϑ
)
] = −Dϑ

(
D̄ϑ
)

(2.6.6)

[D0,Dθ
(
D̄θ
)
] = Dθ

(
D̄θ
)

(2.6.7)

[D−,D+] = 2D0 (2.6.8)

[D0,D±] = ±D± (2.6.9)

whereD's are gauge covariant derivatives: D = d+ι̇A. We use here (+,−, 0) as
an alternate notation for (y, ȳ, φ). The coordinate denoted by `0' corresponds
to U(1) in the coset SU(2)/U(1) due to which the corresponding derivative is
not covariantized, i.e., A0 = 0. The above constraints are then solved in the
following way to get the SYM action:

1. Choose the gauge (λ-frame): Aϑ = Āϑ = 0.
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2. A− becomes a harmonic hyper�eld due to equation (2.6.4). It is also the
`prepotential'.

3. Then (2.6.2) just gives Aθ = −dϑA+.

4. A+ is solved as a series in terms of A− from equation (2.6.8):

A+ =
∞∑
n=1

(
n∏
i=1

∫
d2yi

)
A1− ... An−

(y − y1)y12...(yn − y)
. (2.6.10)

where d2y is the volume element of S2, Ai− ≡ A−(x, θ, ϑ, yi) and y12 =
(y1 − y2) with a relevant ε−prescription de�ned later.

5. The Abelian action is written as A−A+ (derived from the chiral version)
which is generalized in the nonabelian case to a series with an extra
factor of 1

n
:

S� = − tr

2g2

∫
dx d8θ

∞∑
n=2

(−ι̇)n

n

(
n∏
i=1

∫
d2yi

)
A1−A2− ... An−
y12 y23 ... yn1

. (2.6.11)

2.7 Chern-Simons Action

We now work with `curved' SU(2) derivatives, ∂m(m = 1 , 2 , 3) instead of the
`�at' ones, da(a = + ,− , 0) used above:

da = ea
m∂m

[da, db] = fab
cdc → [∂m, ∂n] = 0 (2.7.1)

where fab
c's are the SU(2) structure constants (can be read from equations

(2.6.8) & (2.6.9)) and we require that ea
m is a dreibein satisfying

e−
1 = e−

3 = 0. (2.7.2)

Introducing gauge covariant derivatives ∂m → ∇m = ∂m + ι̇Am in equation
(2.7.1), we get:

[∇m,∇n] = Fmn = 0 (2.7.3)

Let us now check how the spinorial covariant derivatives act on the `curved'
SU(2) connections (conjugate derivatives give similar results):

[Da,Dϑ] = faϑ
ηDη → [∇m,Dϑ] = em

afaϑ
ηDη (2.7.4)

⇒ dϑA2 = 0 (2.7.5)
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where the non-zero constants are: f0θ
θ = −f0ϑ

ϑ = f+ϑ
θ = f−θ

ϑ = 1 (read from
eqs. (2.6.4)−(2.6.7)), which imply A2 is a harmonic hyper�eld. This result is
valid in general due to the condition in equation (2.7.2).

Finally, the constraints in equation (2.7.3) can be derived as equations of
motion from a CS action:

S3 =
tr

2g2

∫
dx d8θ d3y εmnp

[
1

2
Am∂nAp +

1

3
AmAnAp

]
. (2.7.6)

This action is reminiscent of the N = 3 SYM action in harmonic superspace
[35]. An important di�erence is that while in the case of N = 3 all the A's
are `harmonic', only one of them is in N = 2 SYM and the above action has
`full' hyperspace measure with 8 Fermionic coordinates whereas the N = 3
SYM action has only harmonic superspace measure also with 8 θ's instead of
all the twelve. Also, the y-integration in (2.7.6) is over three real coordinates
corresponding to SU(2)=S3 (or its Wick-rotated versions) whereas for N = 3
SYM, the integration is over three complex coordinates corresponding to the
coset SU(3)/U(1)2.

2.8 Reduction from CS Action to Harmonic

As mentioned in the introduction, we are not restricted to use the compact
SU(2) manifold as the internal 3-manifold for the CS action since the geometry
does not a�ect it. Hence, we can choose the internal 3-manifold for the CS
action to have a boundary at y3 = 0, which basically amounts to a `Wick-
rotation' of SU(2) to SU(1,1). We do not put any boundary conditions on A
at this boundary due to which the variation of action (2.7.6) reads:

δS3 =
tr

4g2

∫
dx d8θ d3y εmnp [2∂AmFnp − ∂m (An∂Ap)] . (2.8.1)

The �rst term gives the usual equations of motion and the second (boundary)
term breaks gauge invariance in general1. Ignoring this subtlety, we can rewrite
the action (2.7.6) as:

S3 =
tr

4g2

∫
dx d8θ d3y εij [2FijA3 − Ai∂3Aj − ∂i (AjA3)] , (2.8.2)

1The action can be made gauge invariant by imposing suitable boundary conditions on
A or by adding additional boundary degrees of freedom as shown in [36�38]. The gauge
invariance can also be retained if we allow the gauge parameter to vanish at the boundary,
but we do not do that.
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where i = 1, 2. The total derivative term vanishes as there are no boundaries
along yi. Here, A3 acts as a Lagrange multiplier and being an unconstrained
hyper�eld imposes the constraint F12 = 0, whose solution can be substituted
back to get a simpli�ed action2. In other words, we substitute the solution of
the equation of motion of A3 so that the action has only harmonic hyper�elds:

F12 = ∂1A2 − ∂2A1 + ι̇[A1, A2] = 0 & A1 =
∑
n

A
(n)
1 (2.8.3)

⇒A
(1)
1 (y) = ∂1

∫
d2y′

A′2(y′)

y1 − y1′ + ε
y2′−y2

= −
∫
d2y′

A′2(y′)(
y1 − y1′

)2 ,

A
(2)
1 (y) = −ι̇

∫
d2y′d2y′′

A′2(y′)A′′2(y′′)(
y1 − y1′′

) (
y1′′ − y1′

) (
y1′ − y1

) , and so on...

⇒ A1 =
∞∑
n=1

(−ι̇)n+1

∫
d2y′... d2y(n)′ A′2 ... A

(n)′

2

(y1 − y1′) ...
(
y1(n)′ − y1

) (2.8.4)

where d2y ≡ dy1dy2 and the ε−term is present in all denominator factors. The
following identity is used to prove that the solution in (2.8.4) indeed makes
the curvature vanish (equation (2.8.3)):

∂2

(
1

y1′ − y1 + ε
y2′−y2

)
∼ δ2(y′ − y). (2.8.5)

Plugging this solution back in action (2.8.2), we get:

S3 = − tr

4g2

∫
dx d8θ d2y dy3 (A1∂3A2 − A2∂3A1) (2.8.6)

= − tr

2g2

∫
dx d8θ

∫ ∞
0

dy3

∞∑
n=2

(−ι̇)n∂3

n

(∫
d2y d2y′... d2y(n−1)′ ×

× A2 A′2 ... A
(n−1)′
2

(y1−y1′) ...
(
y1(n−1)′−y1

)
)

(2.8.7)

The equation (2.8.7) can be written with the factor 1
n
because all A2's depend

on same y3 (no primes). Assuming A2 is well-behaved at y3 = ∞, we can

2Usually, the connections Ai are chosen to be �at at this point and written as Ai =
(∂iU)U−1, which gives the well-know Wess-Zumino action.
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integrate over y3 and write a `2D' action on the boundary at y3 = 0:

S2 = − tr

2g2

∫
dx d8θ

∞∑
n=2

(−ι̇)n

n

∫
d2y d2y′... d2y(n−1)′ A2 A′2 ... A

(n−1)′
2

(y1−y1′) ...
(
y1(n−1)′−y1

)
(2.8.8)

where A2's are evaluated at the boundary, e�ectively removing the y3 depen-
dence. Furthermore, equation (2.8.6) implies that A1,2 do not depend on y3

on-shell. This is the same as imposing F23 = F31 = 0 and A3 = 0 everywhere.
We can even substitute these `remaining' equations of motion above in action
(2.8.8), which completely removes the y3−dependence of A2's. We also note
that though the CS action as we started with is not gauge invariant, the result-
ing harmonic action on the boundary space is gauge invariant under a familiar
gauge transformation: δA2 = −D2K.

Finally, to connect the above construction with the usual harmonic ac-
tion, we use a speci�c dreibein (ea

m) parameterizing the Wick-rotated coset
SU(2)/U(1) given in Section 2.1:

g =

(
t y
t−1
y

1

)(
e
ι̇
2
φ 0

0 e−
ι̇
2
φ

)
(2.8.9)

⇒


d0 = −2ι̇∂φ

d+ = eι̇φ
[
∂y + 1

y
(t− 1) (t ∂t + 2ι̇∂φ)

]
d− = e−ι̇φy ∂t

(2.8.10)

where ȳ → t = 1
1+yȳ

and the subgroup U(1) acts on the right. We can now
rewrite the above action in terms of `�at' connections and recover the well-
known harmonic SYM action:

S� = − tr

2g2

∫
dx d8θ

∞∑
n=2

(−ι̇)n

n

(
n∏
k=1

∫
dyk dtk
yk

)
A1−A2− ... An−
y12 y23 ... yn1

. (2.8.11)

where y12 =
(
y1 − y2 + ε

ȳ1−ȳ2

)
and the volume element is explicitly written in

terms of `modi�ed' stereographic coordinates for the coset described above.
Furthermore, we could also use a di�erent coset construction for the inter-

nal space that has a di�erent generator as a subgroup and is a `contraction' of
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the earlier coset:

g =

(
1 y
0 1

)(
e
φ
2 0

0 e−
φ
2

)(
1 0
ȳ 1

)
(2.8.12)

⇒


d0 = 2∂φ + 2ȳ∂ȳ
d+ = eφ∂y − ȳ2∂ȳ − 2ȳ∂φ
d− = ∂ȳ .

(2.8.13)

We have to exchange y2 ↔ y3 to see that the dreibein does satisfy the condi-
tions of (2.7.2) at the boundary y2 = 0 now. This gives us a `di�erent' har-
monic hyperspace in which the SYM action reads almost the same as above
(2.8.11) except that the connection A− gets replaced with A0 and the internal
space has a di�erent volume element. This internal 2-manifold has a degen-
erate metric (just dφ2) but the volume element is properly de�ned from the
3-manifold's volume element as ȳ → 0 and is simply: e−φdy dφ.

2.9 Reduction from Harmonic to Projective

We basically have to reduce the Wick-rotated 2D harmonic y-space to 1D
projective y-space. The integration over y as the usual contour integration
needs to be carefully de�ned. We show that the choice of contour is invariant
under �nite SU(2) transformations and the integration can be consistently
de�ned. For that purpose, we choose the Wick-rotated coset SU(1,1)/U(1) (∼
SO(2,1)/SO(2) ∼ RP2) as de�ning the 2D harmonic internal space for the rest
of this section.

2.9.1 Internal Space

In stereographic coordinates, the projective plane RP2 has a circular boundary
that is given by yȳ = 1. It can be shown that it is invariant under the symmetry
group SU(1,1) as follows: Given that

(
a b
c d

)
∈ SU(1,1) and the group `metric'

is
(

1 0
0 −1

)
, the matrix entries of the group element get related: c = b̄ & d = ā.

Then, if y → ay+b
cy+d

, it is easy to see that yȳ = 1 is an invariant. Thus, the
usual contour integration de�nition over this boundary can be used for the
y-coordinate, where the ȳ−coordinate takes a �xed value and is redundant:∮

dy

2πι̇

1

yn+1
= δn,0 . (2.9.1)

The same procedure still works if we Wick-rotate the isotropy group SO(2)
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y

Figure 2.1: Contours in y-plane.

to SO(1,1), which is optional at the level of harmonic hyperspace but required
when reducing to projective hyperspace given by the coset SO(2,1)/SO(1,1)×
ISO(1). This can be achieved by `Wick-rotating' ȳ → 1

ȳ
such that the bound-

ary yȳ = 1 becomes y = ȳ, which is the `real' axis. This change basically
corresponds to choosing an antisymmetric basis for the unitary `metric', i.e.,(

0 −ι̇
ι̇ 0

)
(which is usually chosen for SL(2,R) group) instead of the usual diago-

nal one as chosen above such that the modi�ed group element now has purely
real entries and reads (modulo the U(1)≡GL(1)-factor):

g =
1√

(1− yȳ)

(
1 ȳ
y 1

)
WR−−→ 1√(

1− y
ȳ

) (1 1
ȳ

y 1

)

CT−−→ 1√
−2ι̇ȳ

(
1− y

ȳ

) (1 1
ȳ

y 1

)(
1 ι̇
ȳ −ι̇ȳ

)

⇒ g =
1√
ι̇(y−ȳ)

2

(
1 0
y+ȳ

2
ι̇(y−ȳ)

2

)
. (2.9.2)

The full transformation involves both the Wick-rotation (WR) and a coor-
dinate transformation (CT). After this, the circular contour gets modi�ed to
a contour enclosing the `real' axis (see Figure 2.1) and e�ectively, the earlier
de�nition of the contour integral can still be used by analytic continuation3.
This change now leads to transformation of the metric in stereographic coordi-
nates to that in Poincaré coordinates and the corresponding volume elements

3If y is to be treated as a complex coordinate, then this Wick-rotation is not required.
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read:
dy dȳ

(1− y ȳ)2

WR−−→ dy dȳ

(y − ȳ)2 . (2.9.3)

2.9.2 Yang-Mills Action

We now rede�ne y ≡ y1 and yi = {y2, y3} ≡ {ȳ (t), φ} ∈ [0, 1] to set the
notation for projective hyperspace. We make a `special' Abelian gauge trans-
formation for Ay:

δAy = −∂y

(∫ yi

0

dyi
′
Ayi(y, y

i′)

)
≡ −∂yK , (2.9.4)

where we assume Ayi |yi=0 = 0. This relates the harmonic connection Ay to
the projective one as follows:

� : Ay = ∂y

∫
d2y′

y′ − y
A′yi ;

1

y′ − y
= P

(
1

y′ − y

)
+ πι̇δ(y − y′)θ(yi − yi′)

(2.9.5)

Π̌ : Ay = ∓ι̇ ∂y
∫

dy′

y′ − y
V ′ ; V ′ = ±ι̇

∫ 1

0

dyi
′
A′yi with (2.9.6)

1

y′ − y
+

1

y − y′
= 2πι̇δ (y′ − y)

Now, we can use this transformation to write down the action for Abelian
SYM in projective space characterized by a 1D y-space:

S(2)

Π̌
=

1

2g2

∫
dx d8θdy1dy2

V1V2

y12 y21

(2.9.7)

where y12 is de�ned via equation (2.9.6) and the ε−prescription consistent
with it reads y12 = y1−y2 + ε (y1 + y2). This Abelian action is invariant under
the following linear gauge transformation after identifying K|yi=1 = Λ and
K|yi=0 = Λ̄:

δV = ι̇
(
Λ− Λ̄

)
. (2.9.8)

Thus we connect back to our discussion of Section 2.4 with this explicit reduc-
tion of harmonic action using the connection Ay. The nonabelian generaliza-
tion of V in (2.9.6) was already given in (2.4.3) via path-ordered exponentia-
tion, which lifts the above abelian transformation of V to the nonabelian one
given below:

δ
(
eV
)

= ι̇
(
Λ eV − eV Λ̄

)
. (2.9.9)
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One main di�erence between harmonic and projective that we have already
seen is that while in the harmonic case q couples to ι̇Aȳ, in the projective case
Υ couples to

(
eV − 1

)
. Drawing this analogy and staring at S�, we can write

down the full nonabelian projective SYM action that generalizes (2.9.7) and
is invariant under the nonabelian gauge transformation (2.9.9) as:

SΠ̌ =
tr

g2

∫
dx d8θ

∞∑
n=2

(−1)n

n

(
n∏
k=1

∫
dyk

) (
eV1 − 1

)
...
(
eVn − 1

)
y12 y23 ... yn1

. (2.9.10)

On a concrete note, however, a way to derive this full action is from looking
at the divergent part of a scalar multiplet loop in a vector background [29].
The calculation is almost the same in the two formalisms: To keep the most
divergent part, keep all spinor derivatives inside the loop when integrating
them by parts, and keep the ∂x terms (vs. yd2

θ terms) generated by pushing
dϑ's past dθ's. Thus almost every d4

ϑ integrated by parts produces a y2p2.
The result after performing all θ integration (except the usual �nal one) is
that every 1

y3 is replaced by a 1
y
, while only two 1

k2 's remain (associated with

the two d4
ϑ's killing the next-to-last δ8(θ), as in the identity (2.5.1)), yielding

the logarithmic divergence. This 1-loop calculation then precisely leads to the
projective action (2.9.10).

There is also a `dual' version, coming from reverse ordering of the loop,
corresponding to starting with the action as Υe−V Ῡ rather than ῩeV Υ. The
result is to everywhere change the signs on V and y. For such real represen-
tations V T = −V , so transposing reproduces the above form.

The check of gauge invariance is similar to the harmonic case, but again
no derivatives dȳ are involved. We start with

δ(eV − 1) = −ι̇
(
Λ̄− Λ

)
− ι̇
[
Λ̄(eV − 1)− (eV − 1)Λ

]
.

Then, as in the harmonic case, the inhomogeneous contribution to the `n-
point' (in y) contribution to the action will cancel the linear contribution to
the (n − 1)-point. The exception is the homogeneous contribution to the 2-
point, which vanishes by itself after θ integration. (However, one should not
try to de�ne each contour enclosing the previous simultaneously, implying a
Penrose staircase. Keeping all contours the same is consistent with the iε
prescription.) The details of both the proof of action being gauge invariant
and the loop calculation outlined above leading to the action itself are given
in the next chapter.
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2.10 Discussion

Our explicit construction of the relation between the projective and harmonic
formalisms shows that in the appropriate notation the two are almost the
same, sharing similar (dis)advantages. The only signi�cant di�erence is the
extra R-coordinate of harmonic hyperspace, which appears in so simple a way
as to have little e�ect.

We have shown that a local CS action for N = 2 SYM is equivalent to the
usual action written in harmonic hyperspace. In fact, it seems that as long
as consistent integration over the internal space of the harmonic formulation
can be de�ned, the internal space need not be restricted to S2 but can be
spaces with boundaries like SO(2,1)/SO(2) or even degenerate spaces like its
contraction SO(2,1)/ISO(1). We then showed that the 2D internal space(s) of
the(se) harmonic hyperspace(s) when properly reduced to 1D reproduce the
same projective hyperspace as one would expect.

We have not been able to construct the projective covariant derivatives and
�eld strengths, which would be the fundamental ingredients in the background
�eld formalism for Π̌. However, we have an ansatz for the full nonabelian
connection Ay in terms of V that comes very close to being the right one:

Ay =
∞∑
n=1

(−1)n+1

(
n∏
k=1

∫
dyk

)
eV
(
eV1 − 1

)
...
(
eVn − 1

)
(y − y1) y12 ... (yn − y)

(2.10.1)

because it produces the correct equation(s) of motion:

d4
ϑAy = 0⇒ d2

ϑW = d̄2
ϑW̄ = 0. (2.10.2)

However, Ay in (2.10.1) does not vary as a connection should, as can be checked
with a straightforward calculation. We expect that `regularizing' the divergent
integrals by adding some projective terms should �x Ay but we have not been
able to �nd the correct pieces yet. Despite this `lack' of the connections in
terms of V , we will be able to construct the background �eld formalism in the
next chapter. Before that, we will also look at the ordinary Feynman rules and
quantize the multiplets directly in projective hyperspace without referring to
the harmonic results in the next chapter.
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Chapter 3

Exploring Projective Superspace

Having derived the non-Abelian N = 2 SYM action in projective hyperspace
in the previous chapter, we put it to use for some computations in this chapter.
The hypermultiplets in projective hyperspace have been long known since the
work of Lindström and Ro£ek [15, 16]. The Feynman rules were derived for
scalar and vector hypermultiplets in three successive papers by Gonzalez-Rey,
et al [31�33]. Some one-loop calculations involving scalar hypermultiplet's
contributions to e�ective action were done in [34] but as the non-Abelian
action was lacking, not much could be accomplished as far as calculations
involving vector hypermultiplet were concerned.

Analogous (but slightly better) situation exists in the case of harmonic
hyperspace developed by GIKOS [17, 18, 20]. One-loop two-point functions
for SYM e�ective action and four-point functions (both divergent and �nite)
with external scalar hypermultiplets were computed by them in [29, 30]. The
n−point calculations were accomplished by Buchbinder, et al [39] but these
are contributions to the e�ective action for the Abelian case only. Even a
direct computation of the β-function for N = 2 SYM has not been done,
which requires a 3−point calculation with ordinary Feynman rules. However,
a 3−point calculation is unnecessary in the case of background �eld formalism,
which does exist for harmonic hyperspace [40,41] and which we will construct
later in this chapter for the projective case. Using this formalism, even a
4−point S-matrix calculation in N = 4 SYM has been done in [42], which also
includes e�ective potential calculations similar to those in [34].

In this chapter, we extend the possible set of loop calculations in proj-
ective hyperspace and show that the hypergraphs are easier to handle than
their N = 1 counterparts. We calculate both the divergent and �nite parts
of 1-hoop 2, 3 & 4−point functions. It turns out that both the massless and
massive scalar hypermultiplet actions (along with their coupling to vector hy-
permultiplet) are not renormalized at any loop order. We also �nd that the
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divergent (and some �nite) 1-loop corrections to SYM e�ective action have
the same form as the classical action (modulo their momentum dependence)
proving its renormalizability.

Both the wavefunction and coupling constant are linearly renormalized at
1-loop for N = 2 SYM, which is not the case when N = 1 supergraph methods
are used [43�46]. An independent (non-linear) wavefunction renormalization is
required in that case to keep the e�ective action renormalizable. Additionally,
we learn from using hypergraph rules that there is e�ectively only one renor-
malization factor as is encountered when using background �eld formalism,
which we also develop in the last section of this chapter.

These 1-hoop calculations enable us to compute the well-known β-function
for N = 2 SYM coupled to scalar hypermultiplet (matter) in any representa-
tion of the gauge group. We also perform a few `selected' 2-hoops calculations
to prove its two-loop �niteness. All these calculations and a few `miraculous'
cancellations also show that the β-function of N = 4 SYM vanishes at 1 &
2-loop(s)1.

In the next section, we give the coset construction of projective hyperspace.
After that, we write various hypermultiplet actions (including that for massive
scalar hypermultiplet) to derive the propagators and vertices, which enable
us to present the revised `complete' Feynman rules to evaluate any possible
hypergraph. Then, as mentioned above, we present some examples of 1 &
2-hoop(s) hypergraph calculations and the resulting consequences for N = 2
& 4 theories. Finally, we will construct the background �eld formalism for
theories in projective hyperspace.

3.1 General Theory

We review the (relevant) generalities of Projective Hyperspace that are dis-
cussed in gory details in [53].

3.1.1 Hyperspace

We start with SU(2,2|2) group element gM
A. The SU(2) bosonic (Latin) and

SU(2,2) fermionic (Greek) indices contained in the group indices are divided
into two parts and shu�ed such thatM = {M,M ′} = {(m,µ), (m′, µ̇)} with

1Using N = 1 supergraph methods, �niteness of N = 4 SYM has been shown till 3-
loops explicitly in [47�50]. Using N = 2 super�elds and background �eld formalism, such
cancellations leading to UV �niteness of N = 2 & 4 theories were explained in [51, 52] for
all loop orders.
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their values being {1, (1, 2), 1′, (1̇, 2̇)}. Since the bosonic indices take only one
value, they will be suppressed.

The projective coordinates (4x′s, 4 θ′s& 1 y) are arranged in an o�-diagonal
square matrix wM

A′ inside gM
A. The rest of the fermionic coordinates (ϑµ, ϑ

α̇)
are contained in the diagonal parts of g and can be understood by the method
of projection given below:

g : gM
A → z̄M

A′ (3.1.1)

g−1 : gA
M → zA

M (3.1.2)

Constraint : zA
Mz̄M

A′ = 0 (3.1.3)

Solution :

{
z̄M

A′ =
(
wM

N ′ , δN
′

M ′

)
ūN ′

A′ ;
zA
M = uA

N
(
δMN ,−wNM

′)
.

(3.1.4)

The coordinates in w, u, & ū are arranged as follows:

wM
A′ =

(
y θ̄α̇

θµ xµ
α̇

)
(3.1.5)

uM
A =

(
I 0
ϑµ I

)
(3.1.6)

ūA
′

M ′ =

(
I −ϑ̄α̇
0 I

)
(3.1.7)

These matrices have the following �nite superconformal transformations
(indices are suppressed in matrix notation below):

z̄′ = g0z̄, z′ = zg−1
0 ; g0 =

(
a b
c d

)
, g−1

0 =

(
d̃ −b̃
−c̃ ã

)
(3.1.8)

⇒ w′ = (aw + b)(cw + d)−1, u′ = (wc̃+ d̃)−1u, ū′ = ū(cw + d)−1 (3.1.9)

We can also construct symmetry invariants as di�erentials or �nite di�er-
ences:

zA
Mdz̄M

A′ = uA
M
(
dwM

M ′
)
ūM ′

A′ ,

z2A
Mz̄1M

A′ = u2A
M (w1 − w2)M

M ′ū1M ′
A′ . (3.1.10)

3.1.2 Covariant Derivatives

It is easier to derive the symmetry generators (G = g∂g) and covariant deriva-
tives (D = ∂gg) from the in�nitesimal forms of the transformations given above
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and in matrix form, they read:

Gw = ∂w, Gu = w∂w + u∂u, Gū = ∂ww + ∂ūū (3.1.11)

Dw = ū∂wu, Du = ∂uu, Dū = ū∂ū (3.1.12)

This de�nes the `projective representation', which is not quite useful for the
construction of a `simple' N = 2 SYM action. For that, we need what is
called a `re�ective representation' in which the D's are `switched' with G's.
The explicit forms of covariant derivatives for all the coordinates in both rep-
resentations are given in Table 3.1. (These are similar to those seen in Table
2.1 but in this chapter we use a di�erent convention so some ι̇'s are missing.)

D's Projective (Π̌) Re�ective (z)
dx ∂x ∂x
dθ ∂θ − ϑ̄∂x ∂θ
d̄θ ∂θ̄ + ∂xϑ ∂θ̄
dy ∂y − ϑ̄∂θ̄ − ϑ∂θ − ϑ̄∂xϑ ∂y
dϑ ∂ϑ ∂ϑ + y∂θ + θ̄∂x
d̄ϑ ∂ϑ̄ ∂ϑ̄ + y∂θ̄ + ∂xθ

Table 3.1: Covariant derivatives in two di�erent representations.

All the D-commutators can be read directly from Table 3.1 and are same
in both the representations except the �rst one below, which is non-trivial only
in z:

{d1ϑ, d̄2ϑ} = y12dx (3.1.13)

{d1θ, d̄2ϑ} = dx = {d̄1θ, d2ϑ} (3.1.14)

[dy, dϑ] = dθ & [dy, d̄ϑ] = d̄θ (3.1.15)

The subscript `a' in daϑ's labels di�erent y's (to condense notation, it will
also label ϑ's wherever required), y12 ≡ y1 − y2 and dθ ≡ daθ. All these
commutations lead to the following useful identities2:

d1ϑd
4
2ϑ = y12d1θd

4
2ϑ (3.1.16)

d4
1ϑd

4
2ϑ = y2

12

[
1
2
� + y12d1θdxd̄1θ + y2

12d
4
1θ

]
d4

2ϑ (3.1.17)

δ8(θ12)d4
1ϑd

4
2ϑδ

8(θ21) = y4
12δ

8(θ12) (3.1.18)

d4
ϑd

2
yd

4
ϑ = �d4

ϑ (3.1.19)

2d4
θ = d2

θd̄
2
θ, d

2
θ = 1

2Cβαd
α
θ d

β
θ , and so on.
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3.1.3 Hyper�elds

We de�ne a projective hyper�eld Φ such that dϑΦ = d̄ϑΦ = 0. In Π̌, it just
means that Φ ≡ Φ(x, θ, θ̄, y). This representation is useful for de�ning actions
in projective hyperspace. In z, the dependence on (ϑ& ϑ̄) is non-trivial and
looks like: Φ ≡ Φ(x+ ϑθ̄+ θϑ̄− yϑϑ̄, θ− yϑ, θ̄− yϑ̄, y). This representation is
more suited for writing actions in the `full' hyperspace with 8 θ's.

The superconformal transformation of Φ with a (superscale) weight `ω' can
be deduced by requiring that dwΦ1/ω transforms as a scalar. The resulting
transformations are:

dw′ = dw[ sdet(cw + d)]2, Φ(w′) = [ sdet(cw + d)]−2ωΦ(w) (3.1.20)

This means that the Lagrangian should have ω = 1 for the action to be super-
conformally invariant. An example of this will be the scalar hypermultiplet
action.

Charge conjugate expressions of the coordinates can be derived in a way
similar to the derivation of superconformal transformations:

C
(
y θ̄
θ x

)†
=

(
− 1
y

θ̄
y

θ
y

x− θθ̄
y

)
(3.1.21)

C(ϑ)† =ϑ− θ

y
(3.1.22)

C(ϑ̄)† = ϑ̄+
θ̄

y
(3.1.23)

The (bar) conjugate of the hyper�eld Φ can be now de�ned as follows:

Φ̄ ≡ C(Φ)† = y2ω[Φ(Cw)]† (3.1.24)

3.1.4 Internal Coordinate

Much of projective hyperspace can be understood by analogy to full N = 1
superspace, as a consequence of both having 2 θ's and 2 θ̄'s. Then what we've
left to understand is the treatment of the internal y-coordinate. The �eld
strengths turn out to be Taylor expandable in y on-shell [53], so their charge
conjugates must be Laurent expandable on-shell. Thus, it seems natural to use
contour integration (as seen in the previous chapter, this is also a consistent
thing to do): ∮

dy

2πι̇

ym

yn
= δm+1,n (3.1.25)
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(The factor of 2πι̇ will be suppressed in what follows.) This makes the y-
space e�ectively compact, as expected for an internal symmetry. It is also a
convenient way to constrain a generic hyper�eld Φ's y-dependence:

φ
(
y
[
0↑
])

=

∮
0,y

dy′
1

y′ − y
Φ
(
y′
[
0↑↓

])
=
∞∑
n=0

yn
∮

0

dy′
1

y′n+1 Φ
(
y′
[
0↑↓

])
(3.1.26)

Here, φ(y) has only the non-negative powers of y encoded in the notation[
0↑
]
. The coe�cients of di�erent powers of y in φ matches with the correct

ones in Φ(y′) which has all the powers of y denoted by
[
0↑↓

]
. Thus, the contour

integral acts as an `arctic' projector and φ is an arctic hyper�eld, being regular
at origin.

As for Feynman diagrams in Minkowski space, it is often more convenient,
when de�ning how to integrate around poles (especially when there's more
than one integral to evaluate), to move the poles rather than the contour. In
this interpretation, instead of having a bunch of integrals over various contours,
with the poles for integration over each variable lying on the contour of another
variable, we have all integrals over the same contour, with all poles in various
di�erent positions near that contour. Let us make this idea concrete by de�ning
the following `arctic' (ΠR) and `antarctic' (ΠN) projectors:

ΠR =

∮
C0

dy′
1

y′ − y
, ΠN =

∮
C0

dy′
1

y − y′
, (3.1.27)

where C0 is a closed contour enclosing the origin. Applying the projector ΠR,
we will need to calculate ∮

dy1
1

y1 − y2

ym1 .

Since there's a pole at y1 = y2, we avoid the singularity by moving the pole
slightly inwards in the radial direction. This can be achieved by introducing
the following ι̇ε-prescription

1

y12

≡ 1

y1 − y2 + ε(y1 + y2)
,

at least for the case of any convex contour (e.g., a circular one) about the
origin; otherwise, we need to invent a fancier notation. If m ≥ 0, there is only
the singularity at 0 enclosed by the contour and the integral simply gives ym2 .
If m < 0, the contour encloses both the singularities at 0 and y2 so the integral
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vanishes (because sum of residues). That is, only non-negative powers survive:∮
dy1

ym1
y1 − y2

=

{
ym if m ≥ 0

0 if m < 0
.

Thus, the arctic projection of Φ reads

φ
(
y2

[
0↑
])

=

∫
dy1

1

y12

Φ
(
y1

[
0↑↓

])
. (3.1.28)

Similarly, the `antarctic' projector with the same ε−prescription gives an
antarctic hyper�eld. Now, the pole is shifted radially outwards so if m ≥ 0,
there are no singularities enclosed by the contour and the integral vanishes.
Only when m < 0 the residue becomes ym2 , such that

φ̄ (y2 [(−1)↓]) =

∫
dy1

1

y21

Φ
(
y1

[
0↑↓

])
(3.1.29)

where, [(−1)↓] denotes φ̄ contains only the negative powers of y. Thus, ΠN +
ΠR = 1 as expected. In addition to these, we can construct other projectors
by using appropriate powers of y

y′
. Such a projector will be constructed in the

next chapter to annihilate the non-positive powers of y in a given hyper�eld.
Finally, we list some `simple' identities that will be useful for proving gauge

invariance of the vector action, deriving component action of N = 2 SYM, de-
riving vector propagator and evaluating y-integrals in the Feynman diagrams:

1

yijyjk
=

1

yik

(
1

yij
+

1

yjk

)
(3.1.30)

1

y12

+
1

y21

= 2πι̇ δ(y12) (3.1.31)

y1

y12

+
y2

y21

− 1 =
y1 + y2

2
2πι̇ δ(y12) (3.1.32)

All these generalities now enable us to properly see them in action!

3.2 Massless Hypermultiplets

We start with writing the actions for various massless hypermultiplets and end
with enumerating the Feynman rules, which allow us to do all the necessary
calculations presented in the next section.
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3.2.1 Actions

Scalar Hypermultiplet. For the scalar hypermultiplet, the requirement of
Laurent expandability in y turns out to be too weak o�-shell; we therefore
require that it be Taylor expandable. This `polarity' (arctic or antarctic) will
be the analog of the `chirality' of N = 1 supersymmetry. Unlike the N = 1
case, we now have an in�nite number of auxiliary component �elds because of
the in�nite Taylor expansion in y. The free action can be written in analogy
to N = 1 as:

SΥ = −
∫
dx d4θ dy ῩΥ. (3.2.1)

For superconformal invariance and reality, the arctic hyper�eld Υ
[
0↑
]

must have ω = 1
2
. Its conjugate is an (almost) antarctic hyper�eld Ῡ [1↓] =

y[Υ(Cw)]†. Note that the integral of Υ2 or Ῡ2 would give 0, just as for N = 1,
but now because of polarity rather than chirality. Also, since there is no ana-
log to the chiral superpotential terms of N = 1, there are no renormalizable
self-interactions for this hypermultiplet. All its interactions will be through
coupling to the vector hypermultiplet.

There is not much to say about the o�-shell components: they are just
the coe�cients of Taylor expansion in y and the θ's. So we examine the �eld
equations to see how only a �nite number of components survive on-shell.
A direct and easy way to accomplish that is to use re�ective representation.
Using the 4 extra ϑ's, we can write both the arctic and antarctic hyper�elds
in terms of an unconstrained (in both y and ϑ) hyper�eld:

Υ
(
y2

[
0↑
])

= d4
2ϑ

∫
dy1

1

y12

Φ
(
y1

[
0↑↓

])
(3.2.2)

Ῡ (y2 [1↓]) = d4
2ϑd

2
y2

∫
dy1

1

y21

Φ̄
(
y1

[
0↑↓

])
(3.2.3)

The y-derivatives appear in (3.2.3) because: (1) the antarctic projection
makes `−1' the highest power of y; (2) the y term in each d2ϑ increases this
to `3'; and (3) the two y-derivatives decrease this to the correct power of `1'.
Unconstrained variation of the action with respect to Φ̄ (after using the d4

ϑ

to turn
∫
d4θ into

∫
d8θ) then gives the �eld equations d2

yΥ = 0 (the arctic
projection is redundant). On the other hand, variation with respect to Φ kills
the antarctic pieces of Ῡ, which is the same as d2

yῩ = 0. Due to superconformal
invariance, the rest of the superconformal equations are also satis�ed.
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Thus, the on-shell component expansion of the scalar hypermultiplet reads3:

Υ(x, θ, θ̄, y) = (A+ yB) + θχ+ θ̄ ¯̃χ− θ∂Bθ̄ (3.2.4)

Ῡ(x, θ, θ̄, y) = y

[
Ā− θ∂Āθ̄

y
+
θ2θ̄2�Ā
y2

− B̄

y
+
θ2θ̄2�B̄
y3

+
θ

y

(
χ− θ∂χθ̄

y

)

+
θ̄

y

(
¯̃χ− θ∂ ¯̃χθ̄

y

)]
. (3.2.5)

From the last equation, we clearly see that the equations of motion for the
complex scalars and the Weyl spinors are satis�ed if d2

yῩ = 0 applies.

Vector Hypermultiplet. Like the scalar hypermultiplet, we look for a desc-
ription of the vector hypermultiplet in terms of a prepotential de�ned on proj-
ective hyperspace. Again in analogy to N = 1, this should be a real pre-
potential, rather than a polar one. Because it lacks the polarity restriction,
and is thus Laurent expandable in y, it is called `tropical'. Like the scalar
hypermultiplet, it will have only a few powers of y surviving on-shell.

Just as for both N = 0 & 1, gauge symmetry is understood as a gen-
eralization of global symmetry, so we derive its form by coupling to matter.
The straightforward generalization of the N = 1 coupling is then given by
the action for the scalar hypermultiplet coupled to a vector hypermultiplet
background:

SΥ−V = −
∫
dx d4θ dy ῩeV Υ. (3.2.6)

This coupling �xes the weight of V to be 0:

V ′(w) = V (w′), V̄ (w) ≡ [V (Cw)]† = V (w) (3.2.7)

The gauge transformations are then

Υ′ = e−ι̇ΛΥ, Ῡ′ = Ῡeι̇Λ̄, eV
′
= e−ι̇Λ̄eV eι̇Λ (3.2.8)

where Λ is arctic like Υ, but has ω = 0 like V . Thus, Λ̄ has only non-
positive powers of y, unlike Ῡ. Because of the 1

y
's associated with conjugated

coordinates, setting Λ to Λ̄ would reduce Λ to a real constant, i.e., the global
symmetry.

With this gauge invariance, we can examine the on-shell component �elds

3The θθ̄−term in Υ can be understood as a consequence of one of the superconformal
�eld equations [53], which schematically reads: ∂x∂y + ∂θ∂θ̄ = 0.

37



of the vector hypermultiplet. Since Λ contains all non-negative powers of y,
and Λ̄ contains all non-positive powers, it might seem that everything can be
gauged away, but again the additional 1

y
's associated with charge conjugation

modify things: The 1
y
in Cθ increases the number of non-gauge components

of V with increasing θ, while the θθ̄
y

in Cx leads to an x−derivative gauge

transformation, again in analogy with the N = 1 case. (We can also look at
just what Λ gauges away, and then apply `reality' to V .) The result is that,
unlike the scalar hypermultiplet (but like the N = 1 vector multiplet), V has
a �nite number of auxiliary �elds.

In a Wess-Zumino gauge,

V =
1

y

[ (
θAθ̄ + θ2φ+ θ̄2φ̄

)
+ θ̄2θ

(
λ+

λ̃

y

)
+ θ2θ̄

(
λ̄+

¯̃λ

y

)

+ θ2θ̄2

(
D +

D0

y
+
D̄
y2

)]
(3.2.9)

where the residual gauge invariance is the usual one for the vector A. We thus
�nd, in addition to the expected physical vector (A), a complex scalar (φ) and
SU(2) doublet of spinors (λ& λ̃), there is an SU(2) triplet of auxiliary scalars
(D, D̄&D0). This same set of �elds is found if the vector hypermultiplet is
reduced to N = 1 supermultiplets, one vector supermultiplet plus one scalar
supermultiplet. In the N = 1 case, the construction of the vector multiplet
action depended on the fact that a spinor derivative could kill the chiral gauge
parameter. In the N = 2 case, we have arctic and antarctic gauge parameters,
and the only way to kill them is by antarctic or arctic projection. This leads
to an action of the form

SV =
tr

g2

∫
dx d8θ

∞∑
n=2

(−1)n

n

n∏
i=1

∫
dyi

(
eV1 − 1

)
...
(
eVn − 1

)
y12y23...yn1

(3.2.10)

where Vi ≡ V (x, θ, ϑ, yi). This action is invariant under the following gauge
transformation:

δ
(
eV
)

= ι̇
(
eV Λ− Λ̄eV

)
⇒ δV = ι̇

[
V

2
,

(
(Λ + Λ̄) +

[
coth

V

2
, (Λ− Λ̄)

])]
.

(3.2.11)
We can show that by varying SV using

δ
(
eV − 1

)
= −ι̇

[(
Λ̄− Λ

)
−
{(
eV − 1

)
Λ− Λ̄

(
eV − 1

)}]
,
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which gives:

δSV ∼ tr

∫
d12X

∞∑
n=2

(−1)n
∮ n∏

i=1

dyi
δ
(
eV1 − 1

) (
eV2 − 1

)
...
(
eVn − 1

)
y12y23...yn1

.

Collecting homogeneous variational part of nth term and inhomogeneous part
of (n− 1)th term for n ≥ 3 leads to:

δS(n≥3)
V ∼

∮ − [Λ1

(
eV1 − 1

)
−
(
eV1 − 1

)
Λ̄1

] (
eV2 − 1

)
...
(
eVn−1 − 1

)
y12y23...yn−1,1

−
[
Λ̄1 − Λ1

] (
eV2 − 1

)
...
(
eVn − 1

)
y12y23...yn1

=

∮ −Λ1

(
eV1 − 1

)
...
(
eVn−1 − 1

)
y12y23...yn−1,1

+
Λ̄1

(
eV2 − 1

)
...
(
eVn−1 − 1

) (
eV1 − 1

)
y12y23...yn−1,1

−
[
Λ̄1 − Λ1

] (
eV2 − 1

)
...
(
eVn − 1

)
yn2y12...yn−1,n

−
[
Λ̄1 − Λ1

] (
eV2 − 1

)
...
(
eVn − 1

)
y23...yn1yn2

.

Evaluating the four terms in the last line, we see half of them vanish:

∮
dy1

Λ̄1

y12

=

∮
dy1

Λ̄
(

1
y1

)
y1 − y2 + ε(y1 + y2)

= 0

Similarly,

∮
dy1

Λ(y1)

y1 − y2 + ε(y1 + y2)
= Λ(y2)

Also,

∮
dy1

Λ̄
(

1
y1

)
yn − y1 + ε(yn + y1)

= Λ̄

(
1

yn

)
And,

∮
dy1

Λ(y1)

yn − y1 + ε(yn + y1)
= 0 .

Substituting these results back in δSV , we get:

δS(n≥3)
V ∼

∫ −Λ1

(
eV1 − 1

)
...
(
eVn−1 − 1

)
y12...yn−1,1

+
Λ2

(
eV2 − 1

)
...
(
eVn − 1

)
y23...yn−1,nyn2

+
Λ̄1

(
eV2 − 1

)
...
(
eVn−1 − 1

) (
eV1 − 1

)
y12...yn−1,1

−
Λ̄n

(
eV2 − 1

)
...
(
eVn − 1

)
y23...yn2

= 0 .

Finally, the homogeneous variational term when n = 2 vanishes on its own as
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follows:

δS(n=2)
V ∼ tr

∫
d8θ

∮
dy1dy2

[
Λ̄1 − Λ1

] (
eV2 − 1

)
y12y21

= tr

∫
d4θ

∮
dy1dy2

[
Λ1 − Λ̄1

]
d4

1ϑ

(
eV2 − 1

)
y2

12

= tr

∫
d4θ

∮
dy1dy2

[
Λ1 − Λ̄1

]
[� +O (y12)]

(
eV2 − 1

)
= 0 .

Superconformal invariance of the action might not be obvious, especially
because of the non-locality. The �rst thing to note is that the full superspace
volume element (

∫
dx d8θ) is superconformally invariant (because sdet(g0) =

1). Next is to use the results for the superconformal transformations of dwi
and wij, read from (3.1.9) & (3.1.10), to �nd those for the coordinate y:

dy′i =
dyi

(wic̃+ d̃)(cwi + d)
(3.2.12)

y′ij =
yij

(wic̃+ d̃)(cwj + d)
(3.2.13)

where, the factors (cwi+d), etc denote the single matrix element corresponding
to the y-coordinate. We also use the fact that the other wij's vanish as the
action is local in these coordinates. The similar transformation factors of dyi's
and yij's then cancel due to the `cyclic' nature of the denominator in SYM
action proving its superconformal invariance.

Ghost Hypermultiplets. The introduction of ghosts follows the usual quan-
tization procedure of BRST and is analogous to the case of N = 1 at least in
the Fermi-Feynman gauge (see next section for more details):

Sbc =− tr

∫
dx d4θ dy (y b+ b̄)

[
V

2
,

((
c+

c̄

y

)
+

[
coth

V

2
,

(
c− c̄

y

)])]
=− tr

∫
dx d4θ dy

[
b̄ c+ c̄ b+ (y b+ b̄)

V

2

(
c+

c̄

y

)
+

1

3
(y b+ b̄)

V 2

4

(
c− c̄

y

)
+ · · ·

]
(3.2.14)

We can also choose a non-linear gauge like the Gervais-Neveu gauge in
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which the ghost action would be simpli�ed to:

Sbc =− tr

∫
dx d4θ dy (y b+ b̄)

[
eV c− c̄

y
eV
]

=− tr

∫
dx d4θ dy

[
y b eV c+ c̄ eV b+ b̄ eV c+

1

y
c̄ eV b̄

]
(3.2.15)

There does not seem to be any real advantage of this gauge apart from
the absence of `weird' numerical factors coming from the expansion of coth(x)
in the case of Fermi-Feynman gauge. So we will use action (3.2.14) in all the
calculations presented later.

3.2.2 Propagators

Scalar. We add source terms to the quadratic action of Υ and convert the
d4θ integral to d8θ integral by rewriting Υ's using equations (3.2.2) & (3.2.3):

SΥ−J = −
∫
dx d4θ dy

[
ῩΥ + J̄Υ + ῩJ

]
(3.2.16)

= −
∫
dx d8θ

∫
dy1

[
d2
y1

∫
dy3

Φ̄3

y13

d4
1ϑ

∫
dy2

Φ2

y21

+J̄1

∫
dy2

Φ2

y21

+ d2
y1

∫
dy3

Φ̄3

y13

J1

]
The sources J & J̄ are generic projective hyper�elds with ω = 1

2
. Now, the

modi�ed equations of motion of Ῡ & Υ can be derived from above and (after
some integration by parts and acting with d4

1ϑ) they read:∫
dy1

d4
1ϑd

2
y1

Υ1

y13

=−
∫
dy1d

4
1ϑd

2
y1

(
1

y13

)
J1

⇒ �Υ3 =− d4
3ϑ

∫
dy1

2J1

y3
13

(3.2.17)

Similarly, �Ῡ2 =− d4
2ϑ

∫
dy1

2J̄1

y3
21

(3.2.18)
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Plugging the equations (3.2.17) & (3.2.18) back in action (3.2.16), we get:

SΥ−J =
1

2

∫
dx d8θ dy1

[
J̄1

1
1
2
�

∫
dy2

J2

y3
21

+
1

1
2
�

∫
dy2

J̄2

y3
12

J1

]
=

∫
dx d8θ dy1 dy2

[
J̄1

1

y3
21

1
1
2
�
J2

]
(3.2.19)

This gives us the following scalar propagator:

〈Υ(1)Ῡ(2)〉 = −d
4
1ϑd

4
2ϑ

y3
12

1
1
2
�
δ8(θ12)δ(x12). (3.2.20)

Vector. Gauge �xing of the vector hypermultiplet action looks similar to the
N = 1 case, in the same sense that the scalar hypermultiplet action does. The
main modi�cations are that now d4θ is projective, there is also dy, the ghosts
and Nakanishi-Lautrup �elds are projective arctic / antarctic �elds instead
of chiral / anti-chiral ones. The y-dependence of ghosts c& c̄ is

[
0↑
]

& [0↓];
anti-ghosts b& b̄ is

[
0↑
]

& [2↓] and NL �elds B& B̄ is
[
0↑
]

& [2↓]. We rede�ne
the conjugates so that their y-dependence is similar to Ῡ:

c̄ [0↓]→ 1
y
c̄ [1↓] ; b̄ [2↓]→ y b̄ [1↓] ; B̄ [2↓]→ y B̄ [1↓] (3.2.21)

We choose the following gauge-�xing function:

Vgf =−
∫
dx d4θ dy (y b+ b̄)V (3.2.22)

δVgf =−
∫
dx d4θ dy

[
(y B + B̄)V + (y b+ b̄)δV

(
c,
c̄

y

)]
(3.2.23)

The second term gives Sbc in Fermi-Feynman gauge4 (3.2.14). The �rst term
along with a gauge-averaging term (kinetic term for NL �eld) gives us the
gauge-�xing action:

Sgf = − tr

g2

∫
dx d4θ dy

[
B̄

1

�
B + (y B + B̄)V

]
(3.2.24)

⇒ Sgf =
tr

2g2

∫
dx d8θ dy1 dy2 V1

[
y1

y12
3

+
y2

y21
3

]
V2 (3.2.25)

The �nal expression for Sgf follows from similar manipulations employed in
deriving (3.2.19), i.e., by integrating out B & B̄ using their equations of mo-

4Choosing
(
eV − 1

)
instead of V in Vgf gives the ghost action (3.2.15).
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tion. We now combine the terms quadratic in V from the above equation and
(3.2.10) to get:

S(2)
V + S(2)

gf =− tr

2g2

∫
dx d4θ dy1 dy2 V1

1

y2
12

[
1− y1

y12

− y2

y21

]
d4

1ϑV2

=
tr

2g2

∫
dx d4θ dy1 dy2 V1

1

y2
12

[
y1 + y2

2
δ(y12)

]
y2

12

[
1

2
� +O(y12)

]
V2

=
tr

2g2

∫
dx d4θ dy V

(
y
�
2

)
V (3.2.26)

This gives the following vector propagator:

〈V (1)V (2)〉 = d4
1ϑ

δ(y12)

y1

1
1
2
�
δ8(θ12)δ(x12). (3.2.27)

Ghosts. The derivation of ghost propagators proceeds along similar lines to
that of the scalar propagator and the results are:

〈b̄(1)c(2)〉 = 〈c̄(1)b(2)〉 =
d4

2ϑd
4
1ϑ

y3
12

1
1
2
�
δ8(θ12)δ(x12) , (3.2.28)

〈c(1)b̄(2)〉 = 〈b(1)c̄(2)〉 =− d4
1ϑd

4
2ϑ

y3
21

1
1
2
�
δ8(θ12)δ(x12). (3.2.29)

3.2.3 Vertices

Υ. The scalar hypermultiplet does not have any self-interactions. Only Υ−V
vertices are possible as is evident from the actions written above (We use the
group theoretical conventions and diagrams along the lines of [47,48]5.):

ῩiV j1 ...V jnΥk →
∫
d4θ

∫
dy

(
i

j1

...
jn

k

)
where, the group theory factor (shown in parentheses) is for adjoint represen-
tation.

5To summarize: The vector and ghost hyper�elds are in the adjoint representation of
gauge group and the scalar hyper�eld is in some representation R: V = V aTa, Υ = ΥaTa,
etc. The group generators (Ta) satisfy [Ta, Tb] = ι̇fab

cTc and in adjoint rep: (Ta)b
c

= ι̇fab
c =

. The Dynkin index (cA) is de�ned by: trA(TaTb) = facdfb
cd = cAδab. In R, this

trace generalizes to: trR(TaTb) = cRδab.
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V . Pure vector hypermultiplet vertices take the following form:

(V1)m1 ...(Vn)mn →
∫
d8θ dy1 ... dyn

1

y12...yn1

(
1 ... n

)
The group theory factor shown above corresponds to the case of m1 = ... =
mn = 1. For other cases, this factor depends on the number of V 's rather than
that of the independent y-coordinates. Apart from this subtlety, the factor is
still similar to the simplest case but we will not consider diagrams containing
such vertices (with mi > 1) here.

(b, c). There are altogether four possibilities for ghost vertices and they di�er
in the accompanying y-integrals:

b V n c →
∫
d4θ

∫
dy y

c̄ V n b →
∫
d4θ

∫
dy

b̄ V n c →
∫
d4θ

∫
dy

c̄ V n b̄ →
∫
d4θ

∫
dy

1

y

Group theory factors for these ghost vertices are similar to those for the scalar
vertices.

3.2.4 Feynman Rules

1. Basic set-up: Apply usual Feynman rules for drawing diagrams and
writing expressions for them using the propagators and vertices derived
above.

2. d-Algebra: Convert d4θ integrals to d8θ integrals by taking d4
aϑ's o�

the propagators. There should be at least two d4
aϑ's remaining for the

diagram to not vanish. Remove the remaining d4
aϑ's using integration by

parts (which implicitly assumes using the `freed' δ8(θ12) to do one d8θ
integral) and keep using the identity (3.1.17) till only one d4

aϑ is left6.
As far as computing divergences is concerned, this leads to a deceptively

6All this can be summarized by the formula: nθ −
(
nδ − nϑ

2

)
= 1+n

2 ; where, nθ=no. of∫
d8θ, nδ=no. of δ

8(θ), nϑ=no. of d
4
aϑ and n=no. of times the identity (3.1.17) has to be

applied, which means that a diagram vanishes if n ≤ 0.
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simple result for a 1-hoop diagram (or a particular 1-hoop in a multi-
hoop diagram):

d4
a1ϑ
d4
a2ϑ
...d4

anϑ = 1
2
(k2)n−2y2

a1a2
y2
a2a3

...y2
ana1

d4
anθd

4
anϑ (3.2.30)

where, k is the loop momentum and the second-to-last θ−integral can
be done by using this identity: δ8(θ12)d4

θd
4
ϑδ

8(θ12) = δ8(θ12).

3. y-Calculus: Use some of the identities mentioned in Section 3.1.4 to do
`some' of the y-integrals. These can be set up by using the pictorial rules
shown in Figure 3.1. Speci�cally, for evaluation of divergences, perform

1 2
1
y12

δ(y12)
y1

y12

Figure 3.1: Rules for setting up y-integrals.

partial fractions to generate the cyclic y-denominator (y12y23...yn1) of
the SYM action. Then, performing the extra y-integrals is equivalent to
just replacing the extra y's in the integrand by following these two rules:
(a) Remove the factor

∫
dya
ya1

after replacing all non-negative powers of

ya by y1 and setting its negative powers to 0; (b) Remove the factor∫
dya
y1a

after replacing all negative powers of ya by y1 and setting other

(non)-occurrences of ya to 0.

4. Miscellaneous: Evaluate group theoretical factors and track down signs
and symmetry factors. Finally, evaluate the integrals over loop momenta.

3.3 Calculations

3.3.1 1-hoop Examples

Scalar Self-energy. There are two diagrams with di�erent propagators
making the loop as shown in Figure 3.2.

1. 1V−propagator: Remove d4
ϑ from the vector propagator to get the d8θ

measure. This leaves no dϑ's to kill the δ
8(θ12), so this diagram vanishes.

Such tadpole diagrams (even multi-hoop diagrams containing these as
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1.(=0) 2.(=0)

Figure 3.2: Scalar self-energy diagrams at 1-hoop.

sub-diagrams) always vanish, so we will not consider these anymore in
what follows.

2. 1V − & 1 Υ−propagators: Remove two d4
ϑ's from these propagators to

complete the two d4θ measures. This means there are not enough (in
fact, only 4) dϑ's left to kill one of the δ8(θ12), so this diagram also
vanishes.

This means that the scalar hyper�eld is not renormalized which is obvious
from the fact that its action is over only the projective hyperspace but the
Feynman diagrams give contributions over full hyperspace. In other words,
scalar hypermultiplet action (coupled to vector hypermultiplet, as shown be-
low) is not renormalized at any loop order.

ῩV Υ. There are four diagrams in this case as shown in Figure 3.3. Two
of these diagrams vanish because of d-algebra similar to the self-energy case.
The other two are evaluated below:

1. 2 . = 0 = 0

Figure 3.3: ῩV Υ diagrams at 1-hoop.

1. 1V − & 2 Υ−propagators: This diagram has enough (8, at last) dθ's
to kill one of the δ8(θ12) functions so that two θ−integrals can now be
done. However, this generates only a y4

12−factor without any momentum
factors in the numerator, which makes this diagram power-counting �nite
and the explicit �nite result reads:

−cA
2

∫
d4k

(2π)4

1
1
2
k2 1

2
(k + p2)2 1

2
(k − p1)2

∫
d8θ

∫
dy1,2

y2

Ῡ2(p2)V1(p1)Υ2(p3)

y12 y21

(3.3.1)
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where, pi's are the external momenta.

2. 2V − & 1 Υ−propagators: Applying similar maneuvers as above, we
conclude that this diagram is also �nite:

−A3(p2,−p1)× cA
2

∫
d8θ

∫
dy1,2,3

y2 y3

Ῡ2(p2)V1(p1)Υ3(p3)

y12 y31

(3.3.2)

where, A3(p2,−p1) is just the momentum integral of (3.3.1).

In fact, all hoop diagrams for any ῩV n Υ vertices are �nite because of the
non-cancellation of `su�cient' momentum factors in the denominator.

Ῡ Υ Ῡ Υ. Such a vertex does not appear in the action and hence, the 1-hoop
diagrams (Figure 3.4) contributing to this vertex can not be divergent.

= 0 = 0

Figure 3.4: Ῡ Υ Ῡ Υ diagrams at 1-hoop.

Out of the three diagrams, two vanish due to d-algebra and the remaining
box-diagram can be evaluated in a straightforward manner to give a �nite
result:

∼
∫

d4k

(2π)4

1
1
2
k2 1

2
(k + p2)2 1

2
(k + p2 + p3)2 1

2
(k − p1)2

×

×
∫
d8θ

∫
dy1,2

y1y2

Ῡ1(p1)Υ1(p2)Ῡ2(p3)Υ2(p4)

y12 y21

. (3.3.3)

Vector Self-energy. There are three classes of diagrams contributing to
the self-energy corrections with di�erent hyper�elds (vector, ghosts or scalar)
running inside the loop as shown in Figure 3.5:

1. V−propagators: There are a couple of diagrams (not shown explicitly
in Figure 3.5) which have at least one V 2

1 V2-type vertex and they vanish
trivially due to the presence of expressions like y3δ(y) or y4δ(y)2. This is
a generic feature of 1-hoop (at least) diagrams containing such vertices
and these will not be considered here anymore.
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1.(=0) 2. 3 .

Figure 3.5: Vector self-energy diagrams at 1-hoop.

The diagram which has both vertices of V1V2V3-type (shown explicitly
in Figure 3.5.1) also vanishes but in a di�erent way. After doing the
d-algebra and integrating the two δ(y)'s, we are left with the following
y-integrals:∫

dy1,2,a,b
V1V2 yab yba

ya yb y1b ya1 y2a yb2

=

∫
dy1,2

V1V2

y12y21

∫
dya,b

(
1

ya1

+
1

y2a

)(
1

y1b

+
1

yb2

)(
2− ya

yb
− yb
ya

)
=

∫
dy1,2

V1V2

y12y21

(
2− y1

y1

− y2

y2

)
= 0.

2. (b, c)−propagators: There are four diagrams with di�erent combinations
of ghost propagators and vertices. All of them combine to give (after
relevant d-algebra)7:

A2(p)× 2
1

2
cA
g2

4

∫
d8θ

∫
dy1,2

V1V2

y12 y21

(
1 +

y1

y2

+
y2

y1

+ 1

)
=A2(p)× cA

4
g2

∫
d8θ

∫
dy1,2

V1V2

y12 y21

(
−y12 y21 + 4y1y2

y1y2

)
=A2(p)× cA g2

∫
d8θ

∫
dy1,2

V1V2

y12 y21

. (3.3.4)

The last line follows entirely from the second term in parentheses of the
previous line. This is because the �rst term with no y12's in the integrand
vanishes since d8θ kills such projective integrands. Also, A2(p) is the
divergent integral and is evaluated using dimensional regularization to

7V → gV in rest of these calculations.
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give:

A2(p) =

∫
dDk

(2π)D
1

1
2
k2 1

2
(k + p)2

=
1

4π2

[
1

ε
− γE − ln

(
p2

µ2

)]
,

where 1
ε

= 2
4−D .

3. Υ−propagators: The calculation for this single diagram is similar to that
of the ghost which gives:

−A2(p)× cR g2

∫
d8θ

∫
dy1,2

V1V2

y12 y21

. (3.3.5)

V1 V2 V3. Similar to the vector self-energy case, three classes of diagrams
contribute in this case also as shown in Figure 3.6. We give only the �nal
results after doing the d-algebra and y-calculus in what follows.

(a)
1 .

(b)
2 . 3 .

Figure 3.6: V1 V2 V3 diagrams at 1-hoop.

1. V−propagators: There are two diagrams in this class and both are non-

zero. We use the notation
xy yi
yj

xy to denote the sum of permutations of

yi
yj
−factors over all possible values of i, e.g.

xyy1

y2

xy =
(
y1

y2
+ y2

y3
+ y3

y1

)
.

(a) (V V V )3 vertices: The full (divergent and �nite) contribution of this
diagram reads:

−cA
2
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

[
A2(p3)

(
−3 +

xyy1

y2

xy)+

+ p2
2A3(p2,−p1)

(
1 +

xyy1

y2

− 1

3

(
y31

y1

)2
xy
)]

(3.3.6)

(b) (V V V V ) − (V V V ) vertices: The (wavy line) diagram looks like
contributing only to the V1V

2
2 vertex term in the action but due to
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the 4−point vertex, this diagram also contributes to V1V2V3 vertex
as shown explicitly by the `y-dependence' in Figure 3.6.1.(b). We
will be giving the results for diagrams with all (external) V 's at
distinct y's only since the results for other diagrams follow from
those of the self-energy case. This particular diagram gives a very
simple contribution similar to the self-energy case:

−A2(p3)× 1

2

cA
2
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

(
3−

xyy1

y2

xy) (3.3.7)

2. (b, c)−propagators: There are eight diagrams with di�erent combina-
tions of ghost propagators and vertices. All of them combine to give the
following part containing the divergence:

A2(p3)× 2
cA
2

g3

8

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

(
1 +

xyy1

y2

+
y1

y3

xy+ 1

)
=A2(p3)× cA

8
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

2

(
1 +

xyy1

y2

xy− y12 y23 y31

2 y1 y2 y3

)
(3.3.8)

where the last term in the parentheses does not contribute as in the case
of self-energy diagram but the last term does contribute in the remaining
�nite part given below:

p2
2A3(p2,−p1)× cA

4
g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

1

3

xy
(
y12

y31

)2
xy×

×
(

1 +

xyy1

y2

xy− y12 y23 y31

2 y1 y2 y3

)
(3.3.9)

3. Υ−propagators: The calculation for this single diagram is again straight-
forward and gives as expected:

−cR g3

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

[
A2(p3) + p2

2A3(p2,−p1)
1

3

xy
(
y12

y31

)2
xy
]
.

(3.3.10)

V1 V2 V3 V4. The calculations in this case are similar to the earlier ones ex-
cept for an increase in the number of y-integrals to be evaluated. Before we
proceed further, we make a group theoretical comment. None of the 4−point
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diagrams generate terms proportional to

fipqfjqrfkrsflspV
i

1V
j

2 V
k

3 V
l

4 ≡ GijklV
i

1V
j

2 V
k

3 V
l

4 ,

which do not appear in the SYM action8. This was, however, not the case when
similar calculations were done using N = 1 supergraph rules in [45, 46] and a
nonlinear (cubic) wavefunction renormalization (proportional to GV V V ) was
required to keep the e�ective action renormalizable as predicted in [43,44].

We do not encounter this feature because of the `antisymmetry' of the yab
factors, which enforces the Jacobi identity leading (in this particular case) to
this useful identity:

Gijkl −Gijlk =
cA
2
fijpfklp ≡

cA
2

.

Hence, all the 4−point diagrams end up producing the V 4 term present in
the SYM action and the usual renormalization procedure is applicable. (One
more reason is that `gV ' is not renormalized as explained later.) Now, we
enumerate the complete results for the usual three classes of diagrams shown
in Figure 3.7:

(a)
1 .

2 . 3 .

(b) (c) (d)

Figure 3.7: V1 V2 V3 V4 diagrams at 1-hoop.

1. V−propagators: There are four non-zero diagrams in this class. After
doing the relevant algebra and including the permutations of yi

yj
−factors,

we get:

8Recall from Section 3.2.3 that the V 4 term appearing in the action is proportional to
fijpfklpV

i
1V

j
2 V

k
3 V

l
4 .
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(a) (V V V )4 vertices:

− cA
2
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[(
A2(p4)− p2

2A3(−p3, p4)
)
×

×

(
1

2

xyy1

y2

+
y1

y4

xy− xyy1

y3

xy
)

+A3(−p3, p4)×{
p2

1

(
1

4

xy3
y1

y2

− 2
y1

y3

− y2
3

y2
1

− y2
3

y1 y4

+
y3

3

y2
1 y4

xy)+

+ p2
2

(
−2 +

1

4

xy4
y1

y2

− 3
y1

y3

+
y3 y4

y2
1

− y2
4

y2
1

+
y2

4

y1 y2

xy)+

+ 2p1 · p2

(
2− 1

4

xy4
y1

y2

− y1

y3

+
y2

3

y2
1

− y2
3

y1 y4

− y3 y4

y2
1

xy)
}

+

+ p2
1(p1 + p2)2A4(p2, p2 + p3,−p1)×

×
(
−4 +

1

4

xy5
y1

y2

+ 2
y1

y3

− y2
3

y2
1

− 3y2
3

y1 y4

+
y3

3

y2
1 y4

xy)
]

(3.3.11)

(b) (V V V V )− (V V V )2 vertices:

− cA
2
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[
A2(p4)

(
−8 + 2

xyy1

y3

xy)+

+ p2
3A3(−p3, p4)

xy 1

y12

(
3y41 +

y23y1

y3

+
y12y3

y4

− y41y4

y2

+
y41y

2
4

y2
2

)xy
]

(3.3.12)

(c) (V V V V )2 vertices:

−A2(p4)×1

2

cA
2
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

(
4− 1

2

xyy1

y2

+
y1

y4

xy)
(3.3.13)

(d) (V V V V V )− (V V V ) vertices:

−A2(p4)× 1

2
cAg

4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

(
4−

xyy1

y3

xy)
(3.3.14)

2. (b, c)−propagators: There are sixteen diagrams that combine to give
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(after dropping the term with a projective integrand):

cA
16
g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[(
A2(p4)− p2

2A3(−p3, p4)
)
×

×
(

2

xyy1

y2

+
y1

y4

xy)+

{
A3(−p3, p4)

1

4

(
p2

1

xy
(
y24

y41

)2
xy+

+ p2
2

xy
(
y13

y41

)2
xy− 2p1 · p2

xyy23

y14

+
y12

y41

y34

y41

xy
)

+

+ p2
1(p1 + p2)2A4(p2, p2 + p3,−p1)

1

4

xy
(
y12

y41

)2
xy
}
×

×
(

2

xyy1

y2

+
y1

y4

xy+
y12 y23 y34 y41

y1 y2 y3 y4

)]
(3.3.15)

3. Υ−propagators: Without doing any new calculations, we can write the
result, which is similar to (3.3.15):

−cR g4

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

[(
A2(p4)− p2

2A3(−p3, p4)
)

+

+A3(−p3, p4)
1

4

(
p2

1

xy
(
y24

y41

)2
xy+ p2

2

xy
(
y13

y41

)2
xy−

−2p1 · p2

xyy23

y14

+
y12

y41

y34

y41

xy)+

+ p2
1(p1 + p2)2A4(p2, p2 + p3,−p1)

1

4

xy
(
y12

y41

)2
xy
]
. (3.3.16)

3.3.2 1-hoop β-function

The divergences proportional to the terms in the vector hypermultiplet's action
are absorbed via wavefunction (V ) and coupling constant (g) renormalization
following the usual well-known procedure.

Z− factor forV : VR =
√
ZV V ⇒ Z

(1)
V = Z

(1)
2 (3.3.17)

Z− factor for g : gR = Zggµ
ε ⇒ Z(1)

g = Z
(1)
3

(
Z

(1)
V

)−3/2

(3.3.18)
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where, the Z
(1)
n 's are the Z−factors for corresponding n−point vertex terms

in the action, i.e., S(V n
R ) = ZnS(V n). To �gure these out, we combine the

divergent term of A2 occurring in all n−point functions. The result is:

2− point ((3.3.4)& (3.3.5)) :
(cA − cR)g2

4π2ε

∫
d8θ

∫
dy1,2

V1V2

y12 y21

;

3− point ((3.3.6)− (3.3.10)) :
(cA − cR)g3

4π2ε

∫
d8θ

∫
dy1,2,3

V1V2V3

y12 y23 y31

;

4− point ((3.3.11)− (3.3.16)) :
(cA − cR)g4

4π2ε

∫
d8θ

∫
dy1,2,3,4

V1V2V3V4

y12 y23 y34 y41

.

⇒ Z− factors for Vertices : Z
(1)
2 = Z

(1)
3 = Z

(1)
4 = 1 +

(cA − cR)g2

4π2ε
(3.3.19)

Finally, plugging (3.3.19) in (3.3.17) & (3.3.18), we get:

Z
(1)
V = 1 +

(cA − cR)g2

4π2ε
; (3.3.20)

Z(1)
g = 1− (cA − cR)g2

8π2ε
. (3.3.21)

Using the coupling constant renormalization factor, the 1-loop β-function for
N = 2 SYM coupled to matter in representation R is easily calculated:

β
(1)
N=2 = g3

∂
(
εZ

(1)
g

)
∂g2

= −(cA − cR)g3

8π2

(
= −(2N − cR)g3

8π2
for SU(N)

)
.

(3.3.22)
For N = 4 SYM, it is trivial to see that the β-function vanishes at 1-loop since
the scalar hypermultiplet is in adjoint representation (so cR = cA) implying

β
(1)
N=4 = 0.

3.3.3 2-hoops Finiteness

We recall that any n−point function involving external scalar hyper�elds (in-
cluding ghosts) can not be divergent and hence the hyper�elds b, c & Υ and
other terms in actions (3.2.6) & (3.2.14) are not renormalized. Thus, we need
to calculate just the vector self-energy corrections to compute the β-function
at two-hoops. We can read o� the Zg−factor from g b̄ V c (or gῩVΥ in case of
N = 4 SYM) vertex at 2-hoops (which is true even in the case of 1-hoop as
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can be easily checked.):

Z(2)
g =

(
Z

(2)
V

)− 1
2
. (3.3.23)

In other words, gV is not renormalized which means that the vector hyper-
�eld V can not have any non-linear renormalization since the coupling constant
g is always linearly renormalized. This is the same result as in the background
�eld formalism as far as renormalization is concerned.

Figure 3.8: Vector self-energy diagrams at 2-hoops with only V−propagators.

Figure 3.9: Vector self-energy diagrams at 2-hoops including b, c & Υ-
propagators.

There are a lot of diagrams to consider at 2-loops (at �rst sight) but their
evaluation is not any more di�cult than those at 1-loop. Firstly, we consider
the 11 diagrams shown in Figure 3.8 which have only vector propagators. The
�rst two rows in the �gure show diagrams that vanish due to d-algebra, i.e.,
insu�cient number of d4

aϑ's. The remaining 5 diagrams require some y-calculus
and we �nd that none of their divergent terms survive and only the last two of
them have �nite terms. The vanishing of divergences for these two diagrams
is shown in the Appendix A.

Secondly, there are a lot more diagrams having ghost and scalar propaga-
tors but only 4 classes of such diagrams (Figure 3.9) need to be examined in
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`detail'. The rest of such diagrams vanish either due to the d-algebra or emer-
gence of yδ(y) (even y2δ(y)) factor (mainly in diagrams having only b̄ V c−type
vertices). Again, after doing some y-calculus we see that these four classes of
diagrams also do not have any divergences. Thus, there are no divergent vec-
tor self-energy corrections at 2-hoops, i.e., Z

(2)
V = 1 and hence for both N = 2

SYM coupled to matter in any representation and N = 4 SYM,

β(2) ∼ ∂g2

(
Z(2)
g

)
= 0 .

3.4 Massive Scalar Hypermultiplet

Introducing central charges in superalgebras leads to the possibility of having
massive multiplets as `short' as the massless ones. The central charges in 4D,
N = 2 superspace have been dealt directly in both projective [15, 32] and
harmonic [17, 20,54] hyperspaces.

Having dealt with massless scalar and vector hypermultiplets, for the sake
of completeness, we now extend such an analysis to the massive case. In the
next section, we review the projective hyperspace with central charges. Then
we discuss the massive scalar hypermultiplet in detail from the 4D perspective.
Next, we show that the dimensional reduction of a massless hypermultiplet
from 6D reproduces all the 4D results rather trivially. Finally, we present a
simple 1-hoop calculation using Feynman rules similar to the massless case.

3.4.1 Projective Hyperspace with Central Charges

The centrally extended algebra of covariant derivatives then reads9:

{dθ,α, d̄ϑ,β̇} = ∂αβ̇ (3.4.1)

{dθ,α, dϑ,β} = m̄Cαβ (3.4.2)

{d̄θ,α̇, d̄ϑ,β̇} = −mCα̇β̇ (3.4.3)

[dϑ,α, dy] = −dθ,α (3.4.4)

[d̄ϑ,α̇, dy] = −d̄θ,α̇ (3.4.5)

Such an algebra can be incorporated in the superspace by introducing addi-
tional bosonic coordinates corresponding to the central charges. Then, re-
quiring a trivial dependence of the hyper�elds on these coordinates leads to a
volume element same as the one when m = 0. However, this generates explicit
appearances of θ's in the Lagrangian (for example, [20]).

9m is in general complex but for our purposes, its imaginary part plays no role.
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There are two alternative manifestly covariant approaches to deal with non-
zero m. One (simplest) approach is the dimensional reduction of d = 6, N = 1
massless multiplets to d = 4, N = 2 massive ones. Since six-dimensional
projective superspace exists [55] and is similar to the projective hyperspace in
4D, the main results can be written down just by inspection. We will show
that this is the case in Section 3.4.3, where we will compare the results derived
via another approach.

In this second approach, we work in d = 4 and turn d's into covariant
derivatives: D = d + A, where A is an Abelian connection that has acquired
a vev, i.e., A ∝ m. This avoids the explicit θ's in the Lagrangian that are
now hidden inside the connections [32, 54]. So, the starting point for the sim-
plest example of a massive hypermultiplet is a massless scalar hypermultiplet
coupled to a U(1) vector hypermultiplet.

Having said that, let us repeat here the relevant information about mass-
less hypermultiplets. The following is valid in both 4D & 6D with a few
obvious changes, some of which will be pointed out later. A massless scalar
hypermultiplet represented by a complex `arctic' projective hyper�eld (Υ) has
the following on-shell expansion containing complex scalars A&B and Weyl
spinors χ& χ̃:

Υ = (A+ yB) +
(
θχ+ θ̄ ¯̃χ

)
+ θ∂Bθ̄ (3.4.6)

and their corresponding equations of motion follow from d2
yῩ(Υ) = 0, which

in turn follow from the action:

SΥ = −
∫
dxd4θdyῩΥ. (3.4.7)

The vector hypermultiplet is represented by a real `tropical' projective hyper-
�eld (V ) and since we are mainly interested in the vevs of Abelian connections,
we give below only the vev structure of V (read from the full expression for
V in Wess-Zumino gauge (3.2.9)) to which the connections will eventually get
related:

V = 1
y

(
θ2m̄− θ̄2m

)
. (3.4.8)

Finally, the coupling of these two hypermultiplets is simply given by:

SΥ−V = −
∫
dxd4θdyῩeV Υ. (3.4.9)

These are all the massless ingredients we need to construct the massive scalar
hypermultiplet.
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3.4.2 4D Approach

Action. From the arguments above, it follows that we should be able to
represent a massive scalar hypermultiplet by a complex projective hyper�eld
Υ̂ whose quadratic action should be equivalent to (3.4.9):

SΥ̂ = −
∫
dxd4θdy

¯̂
ΥΥ̂ = −

∫
dxd4θdyῩeV Υ. (3.4.10)

The equations of motion for Υ̂ & Υ can be derived in a way similar to the
massless case and they read

d2
y

¯̂
Υ = D2

yῩ =

∫
dy2

y12

Ῡ2e
V2 = 0. (3.4.11)

We know the massive equations of motion (Klein-Gordon and Dirac equa-
tions) for the component �elds and the expression for vev of V (3.4.8), so it is
a simple algebraic exercise to get the (new) on-shell form of Υ:

Υ = (A+ yB) +
(
θχ+ θ̄ ¯̃χ

)
+
(
θ2m− θ̄2m̄

)
B + θ∂Bθ̄. (3.4.12)

This form (obviously) gives the correct massless limit (3.4.6) when m = 0.
Plugging this expression in the action gives the usual kinetic terms for the
component �elds and the mass terms have an expected appearance:

∼
∫
dx (mχχ+ m̄ ¯̃χ ¯̃χ) +mm̄

(
ĀA+ B̄B

)
.

It is important to note that if we had naïvely used the (3.4.6) in above cal-
culation, we would have gotten a wrong sign for B's mass term! This small
calculation makes it clear that we now have a correct representation for the

massive scalar hypermultiplet. Thus, we can assign10 Υ̂ = eV+Υ and
¯̂
Υ = ῩeV−

such that their on-shell y-dependence remains the same as that of the massless
hyper�elds, i.e.,

[
0↑
]

& [1↓], respectively.
Moreover, in this case we can also �gure out what D's look like explicitly.

10V = V+[0↑] + V−[0↓].
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Comparing the two forms of equations in (3.4.11) (with Ῡ), we get:

D2
yῩ = ∂2

yῩ−
2
(
θ2m̄− θ̄2m

)
y2

(
∂yῩ−

Ῡ

y

)
− 2 θ2θ̄2mm̄

y4
Ῡ (3.4.13)

⇒ Dy = ∂y + Ay = ∂y −
(
θ2m̄− θ̄2m

)
y2

(3.4.14)

⇒ Ay = dy

∫
dy′

V ′

(y − y′)
. (3.4.15)

We can also �nd the expressions for other connections using equations (3.4.4)
& (3.4.5) in the gauge Aϑ = Āϑ = 0:

Aθ = −dϑAy =
m̄θ

y
& Āθ = −d̄ϑAy =

−mθ̄
y

. (3.4.16)

These obviously satisfy the equations (3.4.2) & (3.4.3) as can be easily checked
using the expressions dϑ = ∂ϑ + y∂θ + θ̄∂x and d̄ϑ = ∂̄ϑ + y∂̄θ + ∂xθ in re�ec-
tive representation. This completes the basic construction of a massive scalar
hyper�eld.

The coupling of this massive hypermultiplet to a non-Abelian vector is a
straightforward generalization similar to the massless case:

SΥ̂−V̂ = −
∫
dxd4θdy

¯̂
ΥeV̂ Υ̂. (3.4.17)

Note that having a central charge in the superalgebra does not make the vec-

tor hypermultiplet massive! This is because
∫
d2θd2ϑW 2 m6=0−−→

∫
d2θd2ϑ(W +

m)2 =
∫
d2θd2ϑW 2. The equality holds because

∫
d2θd2ϑW is a total space-

time derivative due to the Bianchi identity d2
θW = d̄2

θW .

Propagator. The quantization of (3.4.10) is almost identical to that of the
massless case. First, we need to rewrite the massive scalar hyper�eld in terms
of a generic unconstrained hyper�eld:

Υ̂(y2)
[
0↑
]

= d4
2ϑ

∫
dy1

1

y12

Φ(y1)
[
0↑↓

]
and,

¯̂
Υ(y2) [1↓] = d4

2ϑd
2
y2

∫
dy1

1

y21

Φ̄(y1)
[
0↑↓

]
.

59



Then, we add source terms to the action and convert the d4θ integral to d8θ
integral by rewriting Υ̂ using above relations:

SΥ̂−Ĵ = −
∫
dx d8θ

∫
dy1

[
d2
y1

∫
dy3

Φ̄3

y13

d4
1ϑ

∫
dy2

Φ2

y21

+

+
¯̂
J1

∫
dy2

Φ2

y21

+ d2
y1

∫
dy3

Φ̄3

y13

Ĵ1

]
(3.4.18)

where the sources Ĵ &
¯̂
J are generic projective hyper�elds. The equation of

motion for Υ̂ with the source reads:

d4
1ϑ

∫
dy1

d2
y1

Υ̂1

y13

= −d4
1ϑ

∫
dy1d

2
y1

(
1

y13

)
Ĵ1. (3.4.19)

The di�erence with respect to the massless case arises at this stage due to
the presence of central charges in the superalgebra, which gives the following
modi�ed identity:

d4
ϑd

2
yd

4
ϑ = (�− 2mm̄) d4

ϑ.

Using this identity in (3.4.19) leads us to the following equations:

(�− 2mm̄) Υ̂3 =− d4
3ϑ

∫
dy1

2Ĵ1

y3
13

(3.4.20)

Similarly, (�− 2mm̄)
¯̂
Υ2 =− d4

2ϑ

∫
dy1

2
¯̂
J1

y3
21

. (3.4.21)

Plugging these equations back in action (3.4.18), we get:

SΥ̂−Ĵ =

∫
dx d8θ dy1 dy2

[
¯̂
J1

1

y3
21

1
1
2

(�− 2mm̄)
Ĵ2

]
. (3.4.22)

This leads to the expected change in the massless propagator to give us the
massive propagator:

〈
Υ̂(1)

¯̂
Υ(2)

〉
= −d

4
1ϑd

4
2ϑ

y3
12

1
1
2
�−mm̄

δ8(θ12)δ(x12). (3.4.23)

Vertices. As in the massless case, there are no self-interacting renormaliz-
able vertices for massive scalar hypermultiplet. The interactions appear purely
with the coupling to a vector as seen in action (3.4.17). That means the ver-
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tices look similar to the massless case:

¯̂
ΥiV̂ j1 ...V̂ jnΥ̂k →

∫
d4θ

∫
dy

(
i

j1

...
jn

k

)
where, the group theory factor shown in parentheses is for adjoint representa-
tion.

3.4.3 6D Approach

We now explain the simpler method for obtaining a massive scalar hypermul-
tiplet in d = 4 via dimensional reduction of a six-dimensional massless scalar
multiplet [55]. First of all, we dimensionally reduce the bosonic coordinates
from 6D

(
XM=0...5

)
to 4D (xµ=0...3) by de�ning a complex coordinate:

z(z̄) =
1√
2

[
X4 + (−)ι̇X5

]
⇒ ∂(∂̄) ≡ ∂z(∂z̄) =

1√
2

[∂4 − (+)ι̇∂5]

(3.4.24)
and demanding that the corresponding momenta equal the 4D central charges:

p = −ι̇∂ = m & p̄ = −ι̇∂̄ = m̄.

The 6D d'Alambertian then reduces to:

�6 = ∂M∂M = ∂µ∂µ + 2∂∂̄ = �4 − 2mm̄. (3.4.25)

Secondly, we reduce the fermionic coordinates in 6D, which are represented
by Weyl spinors of SU*(4) to 4D coordinates, which are represented by dotted
and undotted Weyl spinors of SL(2,C):

Θα̃ =

(
θα

θ̄α̇

)
(3.4.26)

with similar relation holding true for ϑ's. The charge conjugation for Θ works
as follows:

Θ̄α̃ ≡ C α̃
˙̃
β
Θ̄

˙̃
β =

(
θα

−θ̄α̇
)
. (3.4.27)

The d = 6, N = (1, 0) algebra of supercovariant derivatives is equivalent to
the d = 4, N = 2 algebra in equations (3.4.1)-(3.4.3), after the dimensional
reduction. Furthermore, we can express a vector using just spinorial indices
in 6D too:

Vα̃β̃ =
1

2

(
v̄ Cαβ vαβ̇
vα̇β v Cα̇β̇

)
(3.4.28)
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where v (v̄) ∼ −ι̇ [V4 + (−)ι̇V5].
We are now ready to deal with the 6D massless multiplets. As in d = 4, the

massless scalar hypermultiplet is represented by a projective arctic hyper�eld
Υ6. Using the (bi)spinor matrices de�ned above, we can reduce the Υ6 (3.4.6)
to `massive' hypermultiplet in 4D:

Υ6 = (A+ yB) + ΘΞ + Θ̄α̃∂α̃β̃BΘβ̃ (3.4.29)

⇒ Υ4 = (A+ yB) +
(
θχ+ θ̄ ¯̃χ

)
+
(
θ̄α̇∂αα̇Bθ

α + θ2mB − θ̄2m̄B
)
,

which is the same as in (3.4.12). A vector hypermultiplet in d = 6 is again
represented by a projective tropical hyper�eld V6 and its lowest Θ−component
(in Wess-Zumino gauge) looks like:

V6 =
Θ̄α̃Aα̃β̃Θβ̃

y
⇒ V4 =

1

y

(
θ̄α̇Aαα̇θ

α + θ2φ̄− θ̄2φ
)
. (3.4.30)

If the scalar �eld φ develops a vev, then the above equation is identical to
(3.4.8). Moreover, the action of Υ6 coupled to V6 is given by (3.4.9) so the
6D hyper�eld's reduction to 4D reproduces the same massive action derived
in Section 3.4.2.

Now the propagator for Υ6 is similar to that of the massless scalar hyper-
multiplet in 4D and the reduction to massive case is straightforward owing to
(3.4.25):

〈
Υ6(1)Ῡ6(2)

〉
= −d

4
1ϑd

4
2ϑδ

8(Θ12)

y3
12

δ(X12)
1
2
�6

(3.4.31)

⇒
〈
Υ4(1)Ῡ4(2)

〉
≡
〈
Υ̂(1)

¯̂
Υ(2)

〉
= −d

4
1ϑd

4
2ϑδ

8(θ12)

y3
12

δ(x12)
1
2
�4 −mm̄

,

which is equivalent to (3.4.23) derived from the 4D perspective.

3.4.4 Sample Calculation

The Feynman rules are almost the same as those for the massless case. The
only di�erence is the following modi�ed identity:

d4
1ϑd

4
2ϑd

4
1ϑ = y2

12

[(
1
2
�−mm̄

)
+ y21

(
d̄2θdxd2θ +md2

2θ − m̄d̄2
2θ

)
+ y2

12d
4
2θ

]
d4

1ϑ

(3.4.32)
The non-renormalization theorem for massless scalar hypermultiplet holds for
the massive case also for straightforward reasons.

One-hoop correction to vector 2−point function (Figure 3.10) due to the
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d1ϑ
4

d2ϑ
4

Figure 3.10: One-hoop massive scalar example with d-algebra and y-calculus
shown. [A blue (thick) line with a cut represents a δ8(θ12).]

coupling to a massive scalar is simple to calculate and looks same (modulo the
momentum integral) as the massless case:

− Â2(p;m)× cR g2

∫
d8θ

∫
dy1,2

V̂1V̂2

y12 y21

. (3.4.33)

The momentum integral is a standard integral and evaluates to (with D =
4− 2ε):

Â2 =

∫
dDk

(2π)D
1(

1
2
k2 −mm̄

) (
1
2
(k + p)2 −mm̄

)
=

1

4π2

[
1

ε
− γE + 2− ln

(
2mm̄

µ2

)
−
√

1 +
8mm̄

p2
ln

(
1 + p/

√
p2 + 8mm̄

1− p/
√
p2 + 8mm̄

)]
.

3.5 Background Field Formalism

The construction of background �eld formalism for N = 2 SYM in projective
hyperspace is an interesting problem. Such a formalism is desirable for any
(non-)supersymmetric theory as it simpli�es (loop) calculations and even in-
termediate steps respect gauge covariance. A major obstacle in solving this
problem for the N = 2 case seems to be the lack of knowledge relating the
gauge connections to the tropical hyper�eld V , which describes the SYM mul-
tiplet for all practical purposes.

We note that the closely related N = 2 harmonic superspace doesn't en-
counter this issue as the hyper�eld, V (++) describing the SYMmultiplet is itself
a connection, Aȳ. In fact, background �eld formalism in harmonic superspace
has quite a straightforward construction [40, 56]. Although the construction
has some subtleties, it has been re�ned in a series of papers along with relevant
calculations [39,41,42,57�60].

In this section, we solve the problem of constructing the background �eld
formalism in projective superspace without the need for knowing the connec-
tions explicitly in terms of V . This is possible by choosing the background
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�elds to be in a `real' representation (Ay = 0) and the quantum �elds to be
in the `analytic' representation (Aϑ = 0). This is reminiscent of the quantum-
chiral but background-real representation used in N = 1 superspace [61].
What this does is make the e�ective action independent of Ay and dependent
on background �elds (like Aϑ) with `dimension' greater than 0 (since the lowest
one is a spinor). Non-existence of 0-dimension background �elds (like Ay) is a
crucial requirement for the non-renormalization theorems to hold as discussed
in [51]. This directly leads to a proof of �niteness beyond 1-loop. (A di�erent
approach for proof of �niteness has been discussed in [62].)

The coupling of quantum �elds to background �elds comes through the
former's projective constraint alone, which simpli�es the vertex structure a
lot. The calculations are also simpli�ed at 1-hoop as most y-integrals turn
out to be trivial since the background �elds have trivial y-dependence. This
means that the y-integration e�ectively vanishes from the e�ective action and
as expected from the supergraph rules, only one θ-integration survives at the
end of the calculations. We also work in Fermi-Feynman gauge so there are
no IR issues to worry about while evaluating the super-Feynman graphs.

Another important aspect is the ghost structure of the theory in this back-
ground gauge. Apart from the expected Faddeev-Popov (fermionic b, c) and
Nielsen-Kallosh (bosonic E) ghosts, we require two more extra ghosts, namely
real bosonic X and complex fermionic R. This is in contrast to N = 1 SYM
but very similar to the harmonic treatment of N = 2 theory. Heuristically, we
can even see that such a �eld content would give a vanishing β-function for
N = 4: V + [Υ + (b, c) + E] + X + R = 1 + [1 + (−2) + 1] + 1 + (−2) = 0.
However, we will see that the loop contributions of V and extra ghosts have
spurious divergences arising due to multiple δ(y)'s. These are very similar to
the `coinciding harmonic' singularities in the harmonic case, which manifest
themselves at 1-loop level via the subtleties regarding regularization of similar
looking determinants. However, in our case, we do not encounter such striking
similarities. Only the divergences turn out to be similar, leading to a cancella-
tion between the vector hyper�eld's contribution and that of the extra ghosts.
The �nite pieces in the e�ective action are contributed by these extra ghosts
only.

This section is mostly built on the ordinary projective superspace con-
struction of SYM already detailed in this chapter. We also continue using the
6D notation explained above to simplify some useful identities involving back-
ground covariant derivatives and moreover, the results carry over to d = 6,
N = 1 SYM in a trivial manner with this notation.
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3.5.1 Background � Quantum Splitting

The gauge covariant derivatives, ∇ = d + A, describing N = 2 SYM satisfy
the following (anti-) commutation relations:

{∇aα,∇bβ} = −ι̇Cab∇αβ , (3.5.1)

[∇aα,∇βγ] = −εαβγδW δ
a , (3.5.2)

{∇aα,W
β
b } = Dabδβα − ι̇

2
Cabf

β
α , (3.5.3)

[∇αβ,∇γδ] = f [γ
α δ

δ]
β , (3.5.4)

[∇ϑα,∇y] = ∇θα , [∇θα,∇y] = 0 , (3.5.5)

where the SU(2) index a = (ϑ, θ), Cϑθ = ι̇, Wα
a and fβα are the �eld strengths,

and Dab are the triplet of auxiliary scalars. The 4D scalar chiral �eld strength,
W ∼ −ι̇ (∇4 − ι̇∇5) is related to the spinor �eld strength via appropriate
spinor derivatives. We solve the commutation relation for ∇ϑ by writing
∇ϑ = eΩdϑe

−Ω, where Ω is an unconstrained complex hyper�eld. We can
do a background splitting of Ω (similar to N = 1 superspace) such that

∇ϑ = eΩQDϑe−ΩQ , (3.5.6)

with Dϑ being the background covariant derivative. We can now choose `real'
representation for the background derivatives independently such that Ay =
0⇒ Dy = dy. This simpli�es the y-dependence of the connections:

dyAθ = 0 ; dyAϑ = −Aθ ⇒ Aϑ = A(0)
ϑ − yAθ .

Since these connections have simple y-dependence, the y-integrals in the ef-
fective action can be trivially done. Moreover, the quantum part of the full
covariant derivatives then can be chosen to be in `analytic' representation, i.e.,
Ay 6= 0 and Aϑ = 0.

The projective (analytic) constraint on hyper�elds `lifts' to ∇ϑΥ = 0 so we
can now de�ne a background projective hyper�eld Υ̊(≡ Υ̊B+Υ̊Q) as Υ = eΩQΥ̊

such that DϑΥ̊ = 0. Then, the scalar hypermultiplet's action reads:

SΥ = −
∫
dw ῩΥ = −

∫
dw

¯̊
ΥeΩ̄QeΩQΥ̊ ≡ −

∫
dw

¯̊
ΥeV Υ̊ . (3.5.7)

The vector hyper�eld V 's action looks the same as in the ordinary case;
the di�erence being that the V appearing below is only the quantum piece and
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is background projective:

SV =
tr

g2

∫
dx d8θ

∞∑
n=2

(−1)n

n

(
n∏
i=1

∫
dyi

) (
eV1 − 1

)
· · ·
(
eVn − 1

)
y12 y23 · · · yn1

. (3.5.8)

We know from the discussion in previous chapter that this action should give an
expression for Ay and hence the `analytic' representation for quantum hyper-
�elds is a consistent choice. The background dependence of V comes through
the projective constraint and the background covariant derivatives only. The
following identities will be useful in showing that and deriving other results in
the following sections:

∇4
ϑ

(
1
2
d2
y

)
∇4
ϑ = 1

2
2̂∇4

ϑ =
[

1
2
2−Wα

ϑ∇θ,α +Dϑϑdy +Dθϑ
]
∇4
ϑ , (3.5.9)

∇4
1ϑ∇4

2ϑ =
[
y12Dϑϑ + 1

2
y2

122̌+ 1
2
y3

12

(
∇θ,α∇αβ∇θ,β

+Wα
θ ∇θ,α + 2Dθθ) + y4

12∇4
2θ

]
∇4

2ϑ , (3.5.10)

where 2 = 1
2
∇αβ∇αβ is the gauge-covariant d'Alembertian and 2̌ = 2̂ −

2Dϑϑdy. As the quantum connections do not appear explicitly in the calcula-
tions, we will drop the usage of curly fonts to denote the background �elds (as
has been done above) and also the subscript `ϑ' on W

α
ϑ from now on.

3.5.2 Quantum

The quantization procedure in the background gauge proceeds similar to the
ordinary case. The ordinary derivatives are now background-covariant deriva-
tives so 2 gets replaced by 2̂ (or 2̌) everywhere. Moreover, we need extra
ghosts for the theory to be consistent in this formalism as we elaborate further
in the following subsections.

Scalar and Vector. The scalar hypermultiplet is background projective but
the structure of its action is still the same as in the ordinary case. That means
the kinetic operator appearing in the equations of motion is d2

y, i.e., d
2
yΥ = 0

still holds. So the derivation of the propagator performed earlier goes through
after employing these changes: dϑ → ∇ϑ and 2→ 2̂:

〈Ῡ(1)Υ(2)〉 = −∇
4
1ϑ∇4

2ϑ

y3
12

1
1
2
2̂
δ8(θ12)δ(x12) . (3.5.11)

The gauge-�xing for the vector hypermultiplet leading to Faddeev-Popov
(FP) ghosts is still similar to the ordinary case and we just quote the results
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with suitable modi�cations:

Sgf = − tr

2α g2

∫
dx d8θ dy1 dy2 V1

[
y1

y3
21

+
y2

y3
12

]
V2 ; (3.5.12)

SFP = −tr
∫
dx d4θ dy

[
b̄ c+ c̄ b+ (y b+ b̄)

V

2

(
c+

c̄

y

)
+ ...

]
. (3.5.13)

The propagators for the FP ghosts are similar to the scalar hypermultiplet
and will be written down later.

We will always work in Fermi-Feynman gauge (α = 1) but let us derive
the propagator for V with arbitrary α as this technique will be useful later.
We �rst combine the terms quadratic in V from the above equation and the
vector hypermultiplet action to get

S(2)
V + S(2)

gf =− tr

2g2

∫
dx d4θ dy1 dy2 V1

1

y2
12

[
1 +

1

α

(
y1

y21

+
y2

y12

)]
∇4

1ϑV2

=− tr

2g2

∫
dx d4θ dy1,2 V1

[
1 +
−1 + y1δ(y12)

α

](
1

2
2̌+ · · ·

)
V2 .

(3.5.14)

Then, we add a generic real source J to the quadratic gauge-�xed vector action:

SV−J =− tr

g2

∫
dx d8θ

{∫
dy1,2 V1

[
1 +

1

α

(
y1

y21

+
y2

y12

)]
V2

2y2
12

−
∫
dy2 J2V2

}
=− tr

g2

∫
dx d4θ

{∫
dy1,2 V1

[
1 +
−1 + y1δ(y12)

α

]
∇4

1ϑV2

2y2
12

−
∫
dy2 J2V2

}
(3.5.15)

Here, J is now de�ned to be (background) projective. Now, equation of motion
for V reads ∫

dy1V1

[
1 +
−1 + y1δ(y12)

α

]
∇4

2ϑ

y2
12

= J2 , (3.5.16)

which we can solve to write V in terms of J . This amounts to inverting the
kinetic operator for V as we will see. Assuming the following ansatz for V :

V1 =

∫
dy0

p+ q δ(y01)

y2
01

1(
1
2
2̌
)2J0∇4

1ϑ (3.5.17)
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and demanding it satisfy (3.5.16), we are led to p = (1−α)
y0 y1

& q = α
y0

because∫
dy1

[
(1− α) + αy1δ(y01)

y0 y1

] [
1 +
−1 + y1δ(y12)

α

]
= δ(y02) .

Plugging (3.5.16) and (3.5.17) in the action (3.5.15), we get

SV−J =
tr

2g2

∫
dx d4θ dy1,2 J1∇4

1ϑ

(1− α) + αy2 δ(y12)

y1y2 y2
12

1(
1
2
2̌
)2J2 ,

which leads to the required propagator, �rst derived (for the ordinary case)
in [33]

〈V (1)V (2)〉 = ∇4
1ϑ∇4

2ϑ

(1− α) + αy2 δ(y12)

y1y2 y2
12

1(
1
2
2̌
)2 δ

8(θ12)δ(x12) . (3.5.18)

This expression simpli�es for α = 1 to

〈V (1)V (2)〉 = ∇4
1ϑ

δ(y12)

y1

1
1
2
2̌
δ8(θ12)δ(x12) , (3.5.19)

as does the quadratic part of the vector action

S(2)
V = − tr

2g2

∫
dw V

(
1

2
y2̌
)
V . (3.5.20)

1-loop. In background �eld gauge, the gauge �xing function leads to addi-
tional ghosts apart from the FP ghosts, which contribute to the 1-loop calcu-
lations. To see that, consider the e�ective action Γ de�ned by the following
functional:

eι̇Γ =

∫
DV DbDcDf eι̇(SSYM (V )+SFP (V,b,c)+Savg(f))∆(V )δ (f − V ) , (3.5.21)

where ∆(V ) is found by the normalization condition
∫
Df ∆(V )eι̇Savg(f) = 1.

It gives

∆−1 =

∫
Df e

−ι̇ tr
2

∫
dx d8θ dy1,2f1

1
2

(
y1
y3
21

+
y2
y3
12

)
f2

=

∫
Df e−ι̇

tr

2

∫
dx1,2 d8θ1,2 dy1,2f1Y12f2 =

1√
det(Y12)

. (3.5.22)
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So (3.5.21) simpli�es to

eι̇Γ =

∫
DV DbDc eι̇(SSYM (V )+Sgf (V )+SFP (V,b,c))

√
det(Y12) .

We can rewrite the last factor as

1

detY12

=

∫
DρDχ eι̇Sρχ =

∫
DρDχ eι̇tr

∫
dw1dw2ρ1Y12χ2 (3.5.23)

where (ρ, χ) are unconstrained hyper�elds. Proceeding similar to the harmonic
case [56], we rede�ne χ → d2

yχ and introduce Nielsen-Kallosh (NK) ghost E
to account for the resulting Jacobian. This means the 1-loop contribution for
N = 2 SYM coupled to matter simpli�es to:

ι̇Γ = −1
2

ln det
V

(y2̌) + 1
2

ln det
(ρ,χ)

(
Y12 d

2
y

)
+ ln det

FP
d2
y − 1

2
ln det

NK
d2
y − 1

2
ln det

Υ
d2
y.

(3.5.24)
For N = 4, the scalar hypermultiplet is in adjoint representation and its con-
tribution will cancel the joint FP and NK ghosts contributions. The remaining
two terms have spurious divergences due to multiple δ(y)'s but their joint con-
tribution has to be �nite, which will turn out to be the case as we develop this
section further.

To incorporate the e�ect of (ρ, χ) �elds directly in the path integral, we
choose to introduce a real scalar X and a complex fermion R as follows:√

det
(
Y12 d2

y

)
=

∫
DX DRDR̄ eι̇(SX+SR), (3.5.25)

where

SX =
tr

2

∫
dw1dw2X1Y12d

2
y2
X2 ; SR =

tr

2

∫
dw1dw2R̄1Y12d

2
y2
R2 .

(3.5.26)
So the background �eld requires 3 Fermionic ghosts (b, c, R) and 2 Bosonic
ghosts (E,X) and the full quantum action for N = 2 SYM coupled to matter
reads:

SN=2 = [SSYM(V )+Sgf(V )]+SFP (V, b, c)+SNK(V,E)+SXR(V,X,R)+SΥ(V,Υ).

Ghosts. The FP and NK ghosts are background projective hyper�elds. The
actions for these ghosts look the same as those in the case of non-background
gauge. The action for FP ghosts is given in equation (3.5.13) and that for
NK ghost is similar to the scalar hypermultiplet's action. That means their
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propagators are straightforward generalizations and read

〈b̄(1)c(2)〉 =
∇4

1ϑ∇4
2ϑ

y3
12

1
1
2
2̂
δ8(θ12)δ(x12) , (3.5.27)

〈Ē(1)E(2)〉 =
∇4

1ϑ∇4
2ϑ

y3
12

1
1
2
2̂
δ8(θ12)δ(x12) . (3.5.28)

Now, we focus on the new ingredient of the background �eld formalism: the
eXtRa ghosts. In the same vein as the vector hypermultiplet, we can simplify
the actions of these ghosts. Let us just concentrate on the scalar ghost action
as the fermionic ghost can be treated similarly:

SX = − tr

4

∫
dxd8θ

∮
dy1,2X1

[(
y1

y3
21

+
y2

y3
12

)
d2
y2

]
X2

= − tr

4

∫
dxd4θ

∮
dy1,2X1

[(
y1

y21

+
y2

y12

)
1

y2
12

2̂
]
X2

= − tr

4

∫
dxd4θ

∮
dy1,2X1

[
−1 + y1δ (y12)

y2
12

2̂
]
X2 .

The X propagator can then be derived in a similar way as the vector
propagator with arbitrary α. Lets add a source term to the action for X
ghost:

SX−J =− tr

4

∫
dx d8θ dy1,2X1

[(
y1

y3
21

+
y2

y3
12

)
d2
y2

]
X2 + tr

∫
dx d8θ dy2 J2X2

=− tr

4

∫
dx d4θ dy1,2X1

(
−1 + y1δ(y12)

y2
12

)
2̂X2 + tr

∫
dx d4θ dy2 J2X2 .

The equation of motion for X now reads∫
dy1X1

(
−1 + y1δ(y12)

y2
12

)
2̂ = 2J2 . (3.5.29)

Adopting an ansatz for X (similar to what was done for V before),

X1 = d4
1ϑ

∫
dy0 [p+ qδ(y01)]

1
1
2
2̂2

2J0 ,

we �nd that p = 0 and q = 1
y0

satisfy (3.5.29). Collecting all the results, the
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action reduces to

SX−J =
tr

2

∫
dx d4θ dy1,2 J1∇4

1ϑ

δ(y12)

y1

1(
1
2
2̂
)2J2 ,

which leads to the required propagator

〈X(1)X(2)〉 = ∇4
1ϑ∇4

2ϑ

δ(y12)

y1

1(
1
2
2̂
)2 δ

8(θ12)δ(x12). (3.5.30)

The propagator for the fermionic R ghost has a similar expression.

3.5.3 Feynman Rules

Given this new construction of the background �eld formalism forN = 2 SYM,
we can now employ it to calculate contributions to the e�ective action coming
from di�erent hypermultiplets. The general rules for constructing diagrams
in the background �eld formalism are similar to the ordinary case discussed
earlier. However, as expected in this formalism, the quantum propagators
form the internal lines of the loops and the external lines correspond to the
background �elds.

The 2̌ and 2̂ operators in the propagators need to be expanded around
20 (the connection-independent part of 2), which will generate the vertices
with the vector connection and background �elds. For the extra ghosts, we
can further simplify the naïve rules by noticing that the vertices have 1

y2
12
-

factor and the propagator will generate such a factor in the numerator due to
the presence of ∇4

1ϑ∇4
2ϑ. Thus, we can remove them from the very start and

work with the revised propagator and vertex for the purpose of calculating
diagrams. Let us now collect all the relevant Feynman rules below.

Scalar propagator:
∇4

1ϑ∇4
2ϑ

y3
12

δ8(θ12)
1
2
k2

Vector propagator: ∇4
1ϑ

δ(y12)

y1

δ8(θ12)
1
2
k2

FP & NK ghosts propagator:
∇4

1ϑ∇4
2ϑ

y3
12

δ8(θ12)
1
2
k2

XR ghosts propagator: ∇4
1ϑ

δ(y12)

y1

δ8(θ12)
1
2
k2

Scalar, FP & NK vertex:

∫
d4θ dy (2̂−20)

(
use

∫
d4θ∇4

ϑ =

∫
d8θ

)
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Vector vertex (background):

∫
d4θ dy y (2̌−20)

Vector vertex (quantum):

∫
d8θ dy1,...,n

(−1)n

y12y23...yn1

XR ghosts vertex:

∫
d4θ

∫
dy1,2 [−1 + y1δ (y12)] (2̂−20)

3.5.4 Examples

Scalar. The one-loop contribution from the scalar hypermultiplet to the ef-
fective action can not be written in a fully gauge covariant form with a proj-
ective measure. Thus, the diagrammatic calculation required to get this con-
tribution (which includes the UV-divergent piece too) is not accessible via the
formalism constructed here. We note that such an issue appears in the N = 1
background formalism too when the scalar multiplets in complex representa-
tion are considered. The calculations cannot be performed covariantly and
explicit gauge �elds appear in addition to the connections.

Vector. The contribution to one-loop n−point diagrams from vector hyper-
multiplet running in the loop would be given by the following:

Γ(V )
n ∼

∫
d4k

∫
d4θ1,...,n

∫
dy1,...,n∇4

1ϑδ
8(θ12)

δ(y12)

y1

1

k2
1

y1 (Wα(1)∇θ,α + ...) ...

∇4
nϑδ

8(θn1)
δ(yn1)

yn

1

k2
n

yn (Wα(n)∇θ,α + ...)

∼
∫
d4k

∫
d8θ1,...,n−1d

4θn

∫
dy1,nδ

8(θ12)δ(y1n)
1

k2
1

(Wα(1)∇θ,α + ...) ...

∇4
nϑδ

8(θn1)δ(yn1)
1

k2
n

(Wα(n)∇θ,α + ...) , (3.5.31)

where the numerical subscript on k denotes the external momenta dependence.
As usual, to kill the extra δ8(θ)-function, at least four ∇θ should be available

from the vertices and so Γ
(V )
2 = Γ

(V )
3 = 0. The �rst non-vanishing contribution
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is from the 4−point diagram:

Γ
(V )
4 =

3 cA
2

∫
dy1,4δ(y14)δ(y41)

∫
d8θ1d

4θ4 Â4 δ
8(θ14)×

×

(
4∏
i=1

1

2
Wα(i)∇θ,α

)
∇4

4ϑδ
8(θ41)

=
3 cA
32

∮
dy1

2ε y1

∫
d8θ1d

4θ4 Â4 δ
8(θ14)×

×
(
Wα(1)W β(2)W γ(3)W δ(4) εαβγδ∇4

θ

)
∇4

4ϑδ
8(θ41)

=
3 cA
32

∮
dy1

2ε y1

∫
d4θ Â4 εαβγδW

α(1)W β(2)W γ(3)W δ(4) , (3.5.32)

where, Â4 ∼
∫
dk

16

(k2
1) (k2

2) (k2
3) (k2

4)
.

Too many δ(y)'s lead to spurious 1
ε
singularity, similar to `coinciding harmonic'

singularities in the harmonic case. These will cancel when we take into account
the (X,R) ghosts.

Extra Ghosts. Their combined contribution to one-loop n−point diagrams
reads:

Γ(X,R)
n ∼−

∫
d4k d4θ1,...,n d

2y1,...,n∇4
1ϑδ

8(θ12)
δ(y1a,2a)

y1a

1

k2
1

[(−1 + y1aδ(y1a,1b))]×

× (Wα(1)∇θ,α + ...) ...∇4
nϑδ

8(θn1)
δ(ynb,1b)

ynb

1

k2
n

×

× [(−1 + ynaδ(yna,nb))] (Wα(n)∇θ,α + ...)

∼−
∫
d4k d4θn dy1a,...,1b∇4

1bϑδ
8(θn1)

(−1 + y1aδ(y1a,2b))

y1a

1

k2
1

(Wα(1)∇θ,α + ...) ...
(−1 + ynaδ(ynb,1b))

y1b

1

k2
n

(Wα(n)∇θ,α + ...) .

(3.5.33)

Again, the �rst non-vanishing contribution is from n = 4 that has the same
δ(y)2 singularity structure as the vector in (3.5.32) leading to a cancellation,
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in addition to the following �nite part:

Γ4 = −3 cA
32

∫
dy1,2,3,4

(
1

y1y2y3y4

− δ(y12)

y2y3y4

+ ...

)
×

×
∫
d4θ Â4 εαβγδW

α(1)W β(2)W γ(3)W δ(4)

=
3 cA
32

∫
d4θ Â4 εαβγδ

(
Wα(1)W β(2)W γ(3)W δ(4)

)
|y=0 . (3.5.34)

The last line follows because only y-independent pieces of W 's can survive
the y-integrals. (This result also holds for the 6D theory with d6k for the
momentum integral but in 4D it can be re-expressed as an integral over the full
superspace of the usual chiral and antichiral �eld strengths.) Till here, we have
treated W 's as �elds depending on individual external momenta and (3.5.34)
is the complete 4−point e�ective action. Assuming them to be momentum
independent, we can further simplify this expression in case of the U(1) gauge
group and perform the integral over loop momentum to get

Â4 =
16

24

1

(4π)2

1(
WW

)2 ,

where we used the reduction to 4D for 20 → 20 − 2WW . Using this and the
fact that Wα is related to DαϑW

(
&Dα̇ϑW

)
, we get the same non-holomorphic

4−point contribution (with the full superspace measure
∫
d8θ) to N = 4 SYM

action rather directly when compared to the calculation done in [34] (for similar
calculations in harmonic hyperspace see, for example, [42]).

2-loops. We can also see that there are no UV divergences at two-loops. The
proof is similar to that given in the ordinary case, i.e., absence of su�cient
∇4
ϑ's. Only 3 diagrams shown in Figure 3.11 are supposed to contribute at

2-loops. All of them will vanish due to the d-algebra unless we get at least
4 ∇θ's from the expansion of the propagators. This, as we have seen before,
brings in 4 more 2's making these 2-loop diagrams convergent.

Figure 3.11: Diagrams contributing to SYM e�ective action at 2-loops with
external background lines being suppressed.
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Furthermore, we note that the arguments of [51] apply in our case since
there is no background connection Ay, there cannot be any divergences at 2 or
more loops from just power counting. This situation is di�erent than harmonic
where such `0-dimensional' connections are present and arguments similar to
the one given above involving number of ∇ϑ's have to be used and at higher
loops they can be quite involved [60].

3.6 Discussion

We investigated one and two-loop(s) diagrams for N = 2 massless vector and
scalar hypermultiplets directly in projective hyperspace for the cases of 2, 3
& 4−point functions. We found that the e�ective action receives only 1-loop
divergent corrections, which have the same form as the classical action. We
also calculated all the 1-hoop �nite pieces of the diagrams. Some of them are
similar to the classical action modulo the momentum factors whereas others
have extra y-factors, whose `non-linearity' prevents any simpli�cation of the
results. In spite of that, we derived the well-known result that the N = 2
SYM coupled to matter is 2-loops �nite. These calculations also enable us to
show that N = 4 SYM is �nite at one and two-loop(s).

Similar calculations can be done with the harmonic hyperspace Feynman
rules and the procedure is not that di�erent or di�cult. However, the repeated
use of harmonic derivatives (dy & dȳ) to simplify the SU(2) invariant harmonics
in order to do the SU(2) integrals is de�nitely cumbersome compared to `eval-
uating' some contour integrals on a complex plane in the projective hyperspace
as we further demonstrate in the Appendix A.

We presented a reformulation of the massive scalar hypermultiplet that
makes it more transparent at the component level from both 4D and 6D per-
spectives. The diagrammatic Feynman rules are similar to the massless case
and hence no extra e�ort is needed to evaluate diagrams with massive scalar
lines.

Our results like the linear wavefunction renormalization and the nonren-
ormalization of `gV ' have the same simplicity as expected from a background
�eld formalism. In fact, we also formulated the background �eld formalism
for projective hyperspace. The crucial ingredient was to recognize that di�er-
ent representations for background and quantum pieces of the hypermultiplets
are required. Choosing real representation for the background �elds allowed
non-renormalization theorems to be applicable here as the lowest-dimensional
�elds available were spinors. The usual choice of analytic representation for the
quantum �elds allowed us to make a simple extension of the existing `ordinary'
super-Feynman rules to the background covariant rules.
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Moreover, there are extra ghosts required (apart from FP and NK ghosts)
to evaluate the full SYM e�ective action. These extra ghosts also appear in
the harmonic case but in projective case, they cancel the spurious `harmonic'
divergences coming from vector hypermultiplet in a straightforward manner
and the resultant �nite pieces are as expected for N = 4. The UV divergent
parts come only from the usual (FP and NK) ghosts and scalar hypermulti-
plet. However, their contribution can not be directly calculated in the for-
malism developed here for reasons mentioned in Section 3.5.4. We also gave
a diagrammatic 2-loops argument for �niteness of N = 2 SYM coupled with
matter. This is easily supplanted by the power counting argument of [51] in
general, which directly leads to a proof for �niteness beyond 1-loop.

For N = 1 background formalism, there exist improved rules as showcased
in [63�65] and our hope is that such techniques could be applied to what we
have developed in this paper. That would lead to a further simpli�cation of
the higher-loop calculations while also allowing explicit inclusion of the scalar
hypermultiplet's 1-loop contribution.

Note the similarity of the 4−point result (3.5.34) to the case of N =
4 superspace [66, 67]: There N = 4 projective superspace (or maybe some
harmonic analog) is the only convenient way to express this result (with a
scalar �eld strength). This suggests the possibility that in the N = 4 case,
where there is only the vector multiplet, all the supergraph rules might be
formulated most conveniently in projective superspace.

There is also an N = 3 harmonic formulation of N = 4 Yang-Mills [68,
69], but no amplitudes have been calculated with it. It is possible that the
corresponding projective formulation is already N = 4: The number of θ's
(and x's) is already the same, and the combination of �eld equations (since
there are an in�nite number of auxiliary �elds) with gauge condition might
reduce the N = 3 harmonic's 6 R-coordinates to the N = 4 projective's 4.
The N = 3 action is curiously simpler than the N = 2; this also suggests the
existence of a simpler N = 2 action.
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Chapter 4

Applying Projective Superspace

Since the work of Seiberg and Witten [70,71], the structure of N = 2 theories
in four dimensions has been extensively explored, leading to important insights
into the dynamics of gauge theories. A recent area of progress in this �eld is
the study of the Coulomb branch moduli space of N = 2 theories on R3× S1,
�rst analyzed in [72]. It has received renewed attention due its relation to
the Kontsevich-Soibelman (KS) wall-crossing formula [73] for N = 2 theories
in the work by Gaiotto, Moore, and Neitzke (GMN) [74]. As described by
GMN, the KS formula ensures the continuity of the metric on the moduli
space. Alternatively, demanding continuity of the metric provides a physical
proof of the wall-crossing formula. The central idea in [74] was to �nd an
e�cient description of the moduli space metric and its corrections due to BPS
instantons. Such a description was given in terms of the holomorphic Darboux
coordinates (ηe, ηm) by making crucial use of twistor techniques. One of the
important results of their work is that the magnetic coordinate ηm is given in
terms of the electric coordinate ηe.

One of the goals of this chapter is to use the formalism of projective hyper-
space to present a simple derivation and generalization of this formula for any
hyperkähler manifold described by O(2p) multiplets. Our analysis is based on
the projective Legendre transform, which dualizes the O(2p) hypermultiplet
ηe to the arctic hypermultiplet Υ. We will see that ηm turns out to be the
imaginary part of yp−1Υ and Υ is related to the projective Lagrangian (f) for
ηe by this Legendre transform. Such an expression can also be obtained from
gluing conditions for the Darboux coordinates, as done in [75�78] (see [79] for
a recent review and references therein). Our derivation, however, is based on
requiring the consistency of the Legendre transform by imposing the condition
that Υ is regular at y = 0.

In the speci�c case of the periodic Taub-NUT metric, by Poisson resumma-
tion of the usual projective Lagrangian describing the O(2) hypermultiplet, we
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recover the relation given in [74]. A natural generalization of f to incorporate
mutually nonlocal corrections leads to the integral TBA equation. We then
consider the doubly-periodic Taub-NUT metric, deriving an expression for the
Darboux coordinates. This metric was recently studied in [80] to describe the
electric corrections to the moduli space of �ve-dimensional SYM on R3 × T 2.

4.1 Preliminaries

In this section, we review some elements ofN = 2 projective superspace [14,16]
which hasn't been introduced in the previous chapters and the construction of
hyperkähler metrics [81]. A recent review of essential aspects of the relation
between projective superspace and hyperkähler manifolds can be found in [82].

4.1.1 Projective Hypermultiplets

From the previous chapter we know that the projective hyper�elds satisfy the
following constraints:

dϑΥ = d̄ϑΥ = 0 . (4.1.1)

So far we have discussed only the arctic and antarctic hypermultiplets. In
fact, there are more multiplets characterized by their (further) restricted y-
dependence. We shall need the real O(2p) hypermultiplet apart from the
already discussed (ant)arctic hypermultiplets. The O(2p) are polynomials in
y, with its powers ranging from −p to p, and real under the bar conjugation.
In particular, the O(2) multiplet is de�ned by

ηe =
a

y
+ θe − āy . (4.1.2)

It follows from (4.1.1) that a and θe areN = 1 chiral and real linear super�elds,
respectively.

4.1.2 Hyperkähler Manifolds

Here we review the construction of hyperkähler metrics in projective super-
space [15,81�83]. Given an arbitrary analytic function f(ηe; y), one de�nes the
function (we will continue suppressing the 2πι̇ factor in the integral measure)

F (a, ā, θe) ≡
∮
C

dy

y
f(ηe; y) , (4.1.3)
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where C is an appropriately chosen contour, which typically depends on the
choice of f (referred to as the projective Lagrangian henceforth). The Legendre
transform of F serves as the Kähler potential K for a hyperkähler manifold,
i.e.,

K(a, ā, v + v̄) = F (a, ā, θe)− (v + v̄) θe , Fθe = v + v̄ , (4.1.4)

where v is an N = 1 chiral super�eld. Note that Kähler metrics described in
this way automatically have an isometry, associated to shifts of Im(v). The
resulting metric is of the Gibbons-Hawking form

ds2 =
1

V (x)
(dθm + A)2 + V (x)d~x · d~x , (4.1.5)

where a = x1 + ι̇x2, θe = x3 and dV = ?dA, with

V =

∮
C

dy′

y′
∂2f

∂η′2e
, A =

1

2

∮
C

dy′

y′

(
1

y′
da+ y′dā

)
∂2f

∂η′2e
. (4.1.6)

An important class of metrics are AN−1 ALE metrics and can be described in
this way by taking

f(ηe) =
∑
k

(ηe − ηk) log (ηe − ηk) , (4.1.7)

where ηk are constant O(2) multiplets simply giving the position ~xk of N mass
points. For this Lagrangian, the contour in (4.1.3) is an 8-shaped contour C̃
enclosing the two roots of ηe − ηk = 0. Indeed, using (4.1.7) in (4.1.6) gives
the harmonic function

V =
∑
k

∮
C̃

dy

y

1

ηe − ηk
= 2

∑
k

1

|~x− ~xk|
(4.1.8)

and the corresponding A. Taking an in�nite superposition of mass points
along θe, i.e., taking ηk = k and N → ∞, the metric becomes periodic along
this direction1. This metric (commonly referred to as the Ooguri-Vafa metric)
was discussed by Ooguri and Vafa in [84] and Seiberg and Shenker in [85].
Following the terminology of [86], we will refer to it as the periodic Taub-NUT
(PTN) metric. We will refer to a PTN metric which is periodic along two
directions as the doubly-periodic Taub-NUT (dPTN) metric.

1Strictly speaking, V is logarithmically divergent and must be properly regularized. It
should be understood that this has been done in what follows.
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A hyperkähler manifold has three Kähler forms ω(2,0), ω(1,1) and ω(0,2),
which can be conveniently organized into

$ = ω(2,0) + ω(1,1)y − ω(0,2)y2 . (4.1.9)

This combination can be further written as:

$ = ι̇y dηe ∧ dηm , (4.1.10)

with

dηe =
da

y
+ dθe − ydā , dηm = dθm + ι̇A+

ι̇V

2

(
1

y
da+ ydā

)
. (4.1.11)

Since the symplectic form $ takes the canonical form in (4.1.10), the set
(ηe, ηm) are referred to as Darboux coordinates. The main purpose of the
coming sections is to �nd an explicit expression for ηm in terms of f(ηe; y).

4.1.3 Duality and Symplectic Form

One can alternatively describe these hyperkähler manifolds in terms of an
arctic super�eld Υ, rather than in terms of an O(2), by a duality relating
these two multiplets [31, 83]. In terms of N = 1 components, this is based
on the Legendre transform (4.1.4) exchanging a real linear super�eld by a
chiral super�eld. It is similarly described in terms of projective super�elds as
follows: One relaxes the condition of ηe being an O(2) multiplet, imposing this
through a Lagrange multiplier Υ + Ῡ. Integrating out Υ leads to the original
description in terms of ηe, while integrating out ηe leads to a dual description
in terms of Υ. That is, one de�nes

f̃(Υ + Ῡ; y) = f(ηe; y)− (Υ + Ῡ)ηe , (4.1.12)

with the standard Legendre transform relations

∂f

∂ηe
= Υ + Ῡ ,

∂f̃

∂Υ
= −ηe . (4.1.13)

The main advantage of this setup (for our purposes) is that one can de�ne
a holomorphic symplectic two-form [82] that captures the essential aspects of
the hyperkähler geometry (see also [87, 88] for related results). This is based
on the observation that arctic super�elds have in�nitely many unconstrained
N = 1 �elds Υi, for i ≥ 2, which must be integrated out. These equations of
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motion imply that

Υ̃ ≡ y
∂f̃

∂Υ
= −yηe (4.1.14)

is also an arctic super�eld. Thus, one can de�ne a 2-form $ by

$ = dΥ ∧ dΥ̃ = ω(2,0) + ω(1,1)y − ω(0,2)y2 . (4.1.15)

In other words, Υ and Υ̃ are (by construction) Darboux coordinates for the
holomorphic symplectic form $. Note that they are regular at y = 0, while

(Ῡ, ¯̃Υ) are regular at y =∞, and

$ = −y2$ = −y2dῩ ∧ d ¯̃Υ. (4.1.16)

Thus, up to the twisting factor y2, there is a symplectomorphism relating north
pole and south pole coordinates and the generating function is precisely f̃(Υ+
Ῡ), giving a geometric interpretation to the N = 2 projective Lagrangian.

4.2 Darboux Coordinates

As seen in Section 4.1.3, the projective Legendre transform provides an ex-
pression for a set of Darboux coordinates, namely (Υ, Υ̃). The coordinate Υ̃
is given by (4.1.14) whereas only the real part (under bar conjugation) of Υ is
determined by (4.1.13), i.e.,

Υ =
1

2

∂f

∂ηe
+ ι̇ηm , (4.2.1)

where we have introduced ηm = η̄m as the (undetermined) imaginary part of Υ.
The crucial observation [89] is that Υ is actually completely determined by a
consistency requirement on the whole construction. Recall that the constraint
of ηe being an O(2) multiplet was imposed through a Lagrange multiplier,
assuming that Υ was an arctic super�eld. However, the �rst term on the
r.h.s. of (4.2.1) contains negative powers of y and therefore, the consistency
requirement is that these should be canceled by ηm. This ηm is precisely the
magnetic coordinate we are after, since we �nd from (4.1.14) and (4.2.1) that

$ = dΥ ∧ dΥ̃ = ι̇y dηe ∧ dηm (4.2.2)
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coincides with (4.1.10). To determine ηm, we use the antarctic projector

ΠN ≡
∮
C0

dy′
1

y − y′
, Π2

N = ΠN , ΠN Π̄N = 0 , (4.2.3)

where C0 is a closed contour around the origin (see previous chapter for de-
tails). This projector annihilates the non-negative powers of y. Thus, the
consistency requirement is simply

ΠNΥ = 0 . (4.2.4)

It is easy to see that

ηm = θm +
(
ι̇ΠN − ι̇Π̄N

)1

2

∂f

∂ηe
, (4.2.5)

with θm = θ̄m, solves the consistency condition2. We can rewrite (4.2.5) in a
more familiar form. From (4.2.3), we see that the projectors combine into

ι̇ΠN − ι̇Π̄N = ι̇

∮
C0

dy′

y′
y + y′

y − y′
(4.2.6)

and hence

ηm = θm +
ι̇

2

∮
C0

dy′

y′
y + y′

y − y′
∂f

∂η′e
, (4.2.7)

recovering the expression obtained in [75�78]. The derivation of this expres-
sion, by ensuring and making manifest the condition that Υ is arctic, is one of
the main results in this chapter. This condition is enforced by the projector
(y + y′)(y − y′)−1 and will be extended below to include O(2p) multiplets.

We can easily check that from (4.2.7) we recover the expression (4.1.11)

2Indeed, from (4.2.1), (4.2.5), and using the properties in (4.2.3), we see that

ΠNΥ = ΠN

(
1

2

∂f

∂ηe
+ ι̇

[
θm +

(
ι̇ΠN − ι̇Π̄N

)1

2

∂f

∂ηe

])
= ΠN

(
1

2

∂f

∂ηe

)
−ΠN

(
1

2

∂f

∂ηe

)
= 0 .
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for Gibbons-Hawking metrics. Acting with d on ηm, we have

dηm = dθm +
ι̇

2

∮
C0

dy′

y′
y + y′

y − y′
∂2f

∂η′2e
(dη′e − dηe)

= dθm +
ι̇

2

∮
C0

dy′

y′

[(
1

y
+

1

y′

)
da+ (y + y′)dā

]
∂2f

∂η′2e

= dθm + ι̇A+
ι̇V

2

(
1

y
da+ y dā

)
. (4.2.8)

In the �rst line, we have added a term proportional to dηe, which gives no
contribution to the symplectic form (4.2.2). In the last line, we have used the
de�nitions (4.1.6), assuming that the contour giving the Kähler potential is
C0.

Although the derivation of (4.2.7) requires a contour enclosing only a sin-
gularity at the origin, note that choosing the contour to be the one de�ning the
Kähler potential gives the correct symplectic form. This expression provides a
systematic way of constructing Darboux coordinates for any hyperkähler mani-
fold described by an O(2) multiplet ηe and projective Lagrangian f . We will
use this in the following sectionss to describe instanton corrections to moduli
spaces of SYM theories.

Semi�at Geometry and the c-map. It is clear from (4.2.7) that, unlike
ηe, the magnetic coordinate ηm will not be an O(2) in general, this depending
on the singularity structure of f(ηe; y). A special case however is when the
rigid c-map [90�93] (see Appendix B) can be applied. According to the c-map,

f sf (ηe; y) = −ι̇
(
F (yηe)

y2
−F

(
−ηe
y

)
y2

)
, (4.2.9)

where F(W ) is the N = 2 holomorphic prepotential. The c-map gives the
contribution from naïve dimensional reduction, without taking into account
the e�ect of BPS particles. Thus, one expects ηm to be given by an O(2).
However, by the direct substitution of (4.2.9) in (4.2.7), we see that this is
not the case. This is resolved by recalling that the Darboux coordinates are
de�ned up to terms that vanish in the symplectic form. In fact, we can add
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such a term to the de�nition of ηm that does lead to an O(2), namely3

Υ =
1

2

∂f sf

∂ηe
+ ι̇

[
ηsfm −

1

2

(
F ′

y
− F̄ ′y

)]
= − ι̇F

′(yηe)

y
+ ι̇ηsfm . (4.2.10)

From the fact that F ′(yηe) = F ′(a + θey − āy2) is regular at the origin, the
condition that Υ in (4.2.10) is arctic is simply solved by

ηsfm =
F ′(a)

y
+ θm − F̄ ′(ā) y . (4.2.11)

Therefore, naïve electric-magnetic duality a → aD = F ′(a) holds. In general,
dyonic multiplets have the form ηsfγ = Zγ

y
+θγ− Z̄γ y , where the central charge

is Zγ = nea+ nmaD with ne and nm being the electric and magnetic charges,
respectively. Once BPS instanton corrections are included, the magnetic co-
ordinate is no longer an O(2) since the total Lagrangian is

f = f sf + f inst ,

where f inst is not of the form (4.2.9). Thus, the full magnetic coordinate is
given in general by

ηm = ηsfm +
ι̇

2

∮
C0

dy′

y′
y + y′

y − y′
∂f inst

∂η′e
, (4.2.12)

where ηsfm is given by (4.2.11).

Generalization to O(2p) Hypermultiplets. Our construction so far in-
cludes only hyperkähler manifolds described by O(2) multiplets, but it can
be easily extended to the case of O(2p) multiplets by a generalization of the
Legendre transform relating Υ to an O(2p) multiplet ηe [31] . Additional
factors of y have to be introduced in the Legendre transform to impose the
corresponding constraint on ηe, namely

f̃ = f −
(
yp−1Υ + (−y)−(p−1) Ῡ

)
ηe (4.2.13)

3This observation is based on [89].
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with the relations

∂f

∂ηe
= yp−1Υ + (−y)−(p−1) Ῡ , Υ̃ ≡ y

∂f̃

∂Υ
= −ypηe . (4.2.14)

Thus, we now have

yp−1Υ =
1

2

∂f

∂ηe
+ ι̇ηm , (4.2.15)

and the symplectic form is still given by

$ = dΥ ∧ dΥ̃ = ι̇y dηe ∧ dηm .

The magnetic coordinate ηm will again be determined by the requirement that
the resulting super�eld Υ is arctic. From (4.2.14) it follows that ∂f

∂ηe
contains

powers yn with |n| ≥ (p − 1) only. Thus, ηm in (4.2.15) is required to cancel
the powers yn with n < −(p − 1) of ∂f

∂ηe
and we cannot add a y-independent

term, contrary to the O(2) case. Using the corresponding projectors, we then
�nd

ηm =
ι̇

2

∮
C0

dy′

y′
1

y − y′

[
y

(
y

y′

)p−1

+ y′
(
y′

y

)p−1
]
∂f

∂η′e
. (4.2.16)

The corresponding semi�at contribution can be determined using the c-map
prescription for O(2p) multiplets given in [92].

A metric which is described, for example, by an O(4) multiplet is the
Atiyah-Hitchin metric, characterizing the moduli space of two monopoles and
the moduli space of three-dimensional SYM. It would be interesting to compare
(4.2.16) to the Darboux coordinates given in [94, 95]. In the remainder of the
chapter, we will restrict ourselves to O(2) multiplets and apply our results to
the study of moduli spaces of pure SYM theories with eight supercharges in
d = 4 and d = 5.

4.3 N = 2 SYM on RRR3 × S1

In this section, we apply our construction to the study of the Coulomb branch
of pure N = 2 SYM with gauge group SU(2), �rst analyzed in [72]. The
bosonic content of the four-dimensional theory consists of a complex scalar
�eld a and a gauge �eld Aµ. Upon dimensional reduction on a circle S1 of
radius R (which we set to 1 in this section), the gauge �eld decomposes as
Aµ → (Ai, A4), giving a three-dimensional photon and a real scalar �eld.
Since in three dimensions the photon itself is dual to a scalar �eld, the moduli
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space of supersymmetric vacua is four-dimensional. Furthermore, due to the
amount of supersymmetry it is hyperkähler. It can be parameterized by the
vev of the vector multiplet scalar �eld, a, in addition to the gauge-invariant
electric and magnetic Wilson loops4

θe ≡
1

2π

∮
S1

4

A4 , θm ≡
1

2π

∮
S1

4

AD,4 . (4.3.1)

Naïve dimensional reduction of the 4D SYM action results in a 3D sigma
model with a target space metric of Gibbons-Hawking form, speci�ed by the
`semi�at' potential V sf = Imτ , where τ is the usual complexi�ed 4D gauge
coupling. However, the BPS particles from the four-dimensional theory can
wrap the compacti�cation circle S1, generating instanton corrections to the
semi�at metric in the compacti�ed theory, which we discuss next.

4.3.1 Mutually Local Corrections

Following [74], we �rst focus on the case in which all the BPS particles are
mutually local, by choosing a duality frame in which there are no magnetically
charged particles. This leads to a shift isometry in θm and therefore the space
is naturally described by the O(2) multiplet

ηe =
a

y
+ θe − āy . (4.3.2)

Integrating out a hypermultiplet of electric charge q (which we set to 1 here)
leads to a Taub-NUT metric. Summing over the in�nite tower of Kaluza-Klein
momenta k along the S1 turns it into the periodic Taub-NUT metric described
in Section 4.1.2. Thus, the projective Lagrangian is given by

f(ηe) =
∞∑

k=−∞

(ηe − k) log(ηe − k) . (4.3.3)

Recall that here each term in the Lagrangian is to be integrated along an
8-�gure contour around the roots of ηe − k = 0. To isolate instanton contri-
butions, we perform a Poisson resummation, yielding5 f = f sf + f inst, such

4We have normalized the angular variables θe,m to have period 1.
5Poisson resummation works as follows:

∞∑
n=−∞

f(n) =

∞∑
k=−∞

f̂(k) , f̂(k) =

∫ ∞
−∞

dx e−2πι̇kxf(x) .
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that

f sf = −ι̇
(
η2
e log

(yηe
Λ

)
− η2

e log

(
−ηe
yΛ̄

))
, (4.3.4)

f inst = ι̇ s
∑
n>0

1

n2
eι̇nηeθ(s) + ι̇ s

∑
n<0

1

n2
eι̇nηeθ(−s) , (4.3.5)

where Λ is the UV cuto�, s ≡ sign [Im (ηe)] and we have omitted the divergent
n = 0 term. The semi�at Lagrangian f sf has been included using the c-
map prescription described previously, with the 1-loop prepotential F(W ) ∼
W 2 logW 2. The full magnetic coordinate is then given by (4.2.12). Note
that since the Heaviside functions θ(±s) in f inst contain y, they restrict the
integration contour. Using the identity

Im (ηe) = (1 + |y|2)Im

(
a

y

)
, (4.3.6)

we see that θ(±s) imposes the BPS ray condition6

l± =

{
y : sign

[
Im

(
a

y

)]
= ±1

}
,

leading to ∮
C0

f inst(ηe) = ι̇

∫
l+

Li2
(
eι̇ηe
)
− ι̇
∫
l−

Li2
(
e−ι̇ηe

)
, (4.3.7)

where we have used the series expansion for Li2(x) =
∑∞

n=1
xn

n2 . Substituting
(4.3.7) in (4.2.12) �nally gives

ηm = ηsfm +
ι̇

2

∫
l+

dy′

y′
y + y′

y − y′
ln (1− eι̇ηe)− ι̇

2

∫
l−

dy′

y′
y + y′

y − y′
ln (1− e−ι̇ηe) ,

(4.3.8)
where ηsfm is given by (4.2.11). Thus, we have recovered GMN's result for the
mutually local case. We now discuss the mutually nonlocal case.

4.3.2 Mutually Nonlocal Corrections

Inspired by the analytic and asymptotic properties of (4.3.8), an integral equa-
tion (of the form of a TBA equation) for the Darboux coordinates in the mutu-

6Our conventions in the de�nition of ηe di�er by a factor ι̇ with those of GMN, and so
does the de�nition of the BPS rays.
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ally nonlocal case was derived in [74]. The natural proposal to include dyonic
multiplets is that each BPS particle of charge γ contributes independently to
the projective instanton Lagrangian, with a weight given by the multiplicity
of each state Ω(γ′;u), i.e.,

f inst = ι̇
∑
γ′

Ω(γ′;u) Li2
(
σ(γ′)eι̇ηγ′

)
θ(sγ′) . (4.3.9)

Here γ = (ne, nm) is a vector in the two-dimensional charge lattice with the
antisymmetric product 〈γ, γ′〉 = nen

′
m − n′enm, σ(γ) = (−1)ne nm , and sγ =

sign
[
Im
(
Zγ
y

)]
that de�nes the BPS ray lγ. The symplectic form is given by

$ = ι̇y dηγ ∧ dη̃γ , (4.3.10)

where η̃γ =
∑

γ′ 6=γ ηγ′〈γ′, γ〉−1 is the dual Darboux coordinate. The straight-
forward extension of the results obtained for the mutually local case is

ηγ = ηsfγ +
ι̇

2

∑
γ′

〈γ′, γ〉
∮
C0

dy′

y′
y + y′

y − y′
∂f inst

∂η′γ′
. (4.3.11)

Inserting (4.3.9) above leads to

ηγ = ηsfγ +
ι̇

2

∑
γ′

Ω(γ′;u)〈γ′, γ〉
∫
lγ′

dy′

y′
y + y′

y − y′
ln
(

1− σ(γ′)e
ι̇η′
γ′
)
, (4.3.12)

thus reproducing the TBA equation that determines the exact moduli space
metric. Note that the Darboux coordinates played the central role in the
analysis by GMN, being in some sense the fundamental objects. In the cur-
rent setting, the fundamental object (which behaves additively and contains
all the geometric information) is the projective Lagrangian f . The Darboux
coordinates are determined by it through the integral equation (4.3.11).

4.4 N = 1 SYM on RRR3 × T 2

Minimally supersymmetric Yang-Mills in �ve dimensions has an interesting
BPS spectrum, containing not only electrically charged particles, but also
magnetically charged strings and dyonic instantons [96]. Since the theory is
non-renormalizable by power-counting it should be viewed as a �eld theory
with a cuto�. In this sense, one can still ask what are the quantum corrections
to the moduli space. This was �rst studied in [97], where the exact Coulomb
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branch metric was determined. More recently, the compacti�cation of this
theory on T 2 was studied in [80], giving an important �rst step in analyzing
the Coulomb branch metric of the compacti�ed theory. Since dimensional
reduction of this theory to four dimensions leads to the theory discussed in
the previous section, compacti�cation of the �ve-dimensional theory on T 2

gives a (two-parameter) generalization of the moduli space studied above.
The bosonic content of this theory consists of a real scalar σ and the gauge

�eld Aµ̂. Upon dimensional reduction to three dimensions, the gauge �eld
reduces according to Aµ̂ → (Ai, A4, A5), leading again to a four-dimensional
moduli space. The two electric coordinates ϕ1, ϕ2 and the `magnetic' coordi-
nate λ are de�ned by

ϕ1 ≡
1

2π

∮
S1

4

A4 , ϕ2 ≡
1

2π

∮
S1

5

A5 , λ ≡
∫
T 2

B , (4.4.1)

where Bµ̂ν̂ is the (2-form) dual of the photon Aµ̂. Under large gauge trans-
formations, these variables are periodic and parameterize a torus T 2. Due to
the electric particles running around these two compacti�ed dimensions, the
Coulomb branch metric inherits the modular properties of the torus and has
an isometry in λ. A full analysis of the moduli space must include the e�ect of
dyonic instantons, as well as the mutually nonlocal e�ect of magnetic strings
wrapping the whole T 2, which will break the isometry in λ. In this chapter,
we focus only on the projective description of the electric corrections to the
moduli space metric, hoping that this will help in incorporating the e�ect of
magnetic strings as well.

4.4.1 Electric Corrections

Here we apply the methods of Section 4.2 to �nd the corrections to ηm, due
to electric particles running along the two compact directions. It is clear that
the metric in this case is simply the dPTN metric. For simplicity, we discuss
�rst the projective description of this metric in the case of a rectangular torus
and then for a generic torus with complex structure τ .

Rectangular Torus. Consider a rectangular torus with radii R1, R2 and
complex structure τ = ι̇R1

R2
. We de�ne the doubly periodic O(2) multiplet by

ηe =
σR2 + ι̇ϕ2

2R2y
+
ϕ1

R1

− (σR2 − ι̇ϕ2)

2R2

y . (4.4.2)
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With this de�nition, the projective Lagrangian f for the dPTN metric has the
form (4.1.7) with

ηk =
1

R1

k1 +
ι̇

2R2

(
1

y
+ y

)
k2 ≡ a1k1 + a2k2 . (4.4.3)

For convenience, rather than concentrating on the calculation of f , in this
section we will focus on the Gibbons-Hawking potential V , given by

V =
∑
~k

∮
C̃

dy

y

1

ηe − a1k1 − a2k2

. (4.4.4)

As before, C̃ is an 8−shaped contour enclosing the poles of the integrand
for each ~k, leading to a doubly periodic Gibbons-Hawking potential. This
potential is linearly divergent and as in the PTN case should be understood
to be properly regularized. We now perform a double Poisson resummation.
Resumming over k1 �rst gives

V = V (0) + V (1) ,

V (0) = −R1

∮
C0

dy

y

∑
k2

log [yR1 (ηe − a2k2)] + c.c. , (4.4.5)

V (1) = −ι̇R1

∮
C0

dy

y

∑
k2

∑
n1 6=0

eι̇n1R1(ηe−a2k2)s θ (n1s) , (4.4.6)

where s = sign [Im (ηe − a2k2)]. Here V (0) is a superposition of shifted semi�at
potentials of Section 4.3. We now show that it leads to the e�ective gauge
coupling 1

g4(a)2 due to the dimensional reduction from 5D to 4D [98], and it

reduces (after Poisson resummation) to the semi�at potential in the R2 → 0
limit. Performing the integral around the origin in (4.4.5) gives

V (0) = −R1

∑
k2

log

(
σR2 + ι̇(ϕ2 − k2)

2R2

)
+ c.c. = R1

∑
n2 6=0

1

|n2|
e−(R2|n2σ|−ι̇n2ϕ2) ,

(4.4.7)
where we performed a Poisson resummation for the second equality. This in
fact matches the result in [98] (see also [80]). In the four-dimensional limit,

V (0) R2→0−−−→ V sf
4D = R1 (log a+ log ā) , (4.4.8)
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where a = σR2+ι̇ϕ2

2R2
, which coincides with the potential derived from (4.3.4).

The contribution to the magnetic coordinate is given by

η(0)
m =

F ′(a)

y
+

λ

R1

− F̄ ′(ā) y , (4.4.9)

where we have integrated (4.4.7) twice with respect to a to determine

F(a) =
1

4R2
2

[
Li3
(
e2aR2

)
θ(−σ) + Li3

(
e−2aR2

)
θ(σ)

]
. (4.4.10)

Now we turn to V (1), which in the R2 → 0 limit reduces to the instanton
corrections in the four-dimensional theory. The contour in (4.4.6) splits into
two rays l±, and integration along these rays ensures that the limit R2 → 0 is
well de�ned. In fact, in this limit the sum over k2 is localized at k2 = 0, i.e.,

V (1) R2→0−−−→ V inst
4D = −ι̇R1

∮
C0

dy

y

∑
n1 6=0

eι̇n1R1ηes θ (n1s) , (4.4.11)

which is the Gibbons-Hawking potential one would get from (4.3.5). (One
should rescale a→ R1a in the four-dimensional case for comparison.)

For �nite R2, Poisson resumming (4.4.6) leads to7

V (1) = −
∮
C0

dy

y

∑
n1 6=0
n2∈Z

e
ι̇n1ηe
a1

a2n1 − a1n2

. (4.4.12)

Note that after the double Poisson resummation, the contour in (4.4.12) re-
mains a closed contour, enclosing only the essential singularity at the origin
(and not the simple poles). By residue integration, we �nd

V (1) = R1R2

∑
n1 6=0
n2∈Z

1√
n2

1R
2
1 + n2

2R
2
2

eι̇(n1ϕ1+n2ϕ2)−|σ|
√
n2

1R
2
1+n2

2R
2
2 . (4.4.13)

7Here we have dropped a term in the exponent

e
ι̇n1R1ηe+ι̇ Im(ηe)

2R1R2|y|2

(1+|y|2)Re(y)

[
n2
R1
− ι̇n1

2R2
( 1
y+y)

]
,

because we choose the contour enclosing the origin along which Im(ηe) = ±ε. In the limit
ε→ 0 this term does not contribute to the integral, which becomes simply an integral around
the origin.
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Combining the two contributions, we have

V = V (0) + V (1) = R1R2

∑
~n∈Z2′

1√
n2

1R
2
1 + n2

2R
2
2

eι̇(n1ϕ1+n2ϕ2)−|σ|
√
n2

1R
2
1+n2

2R
2
2 ,

(4.4.14)
which matches the expression for U1−loop in [80]. Integrating twice with respect
to ηe (and dropping a possible linear term, which does not contribute to ηm),
we �nd

f (1) =
∑
n1 6=0
n2∈Z

a2
1

n2
1 (n2a1 − n1a2)

e
ι̇n1ηe
a1 . (4.4.15)

As explained in [80], the corrections due to f (1) to the Coulomb branch metric
should coincide with the corrections to the hypermultiplet moduli space due
to D1 instantons in type IIB theory. Indeed, we �nd that the projective
Lagrangian f (1) matches with that given in [99]. Now, putting all the elements
together, the magnetic coordinate for the dPTN metric �nally reads

ηm = η(0)
m +

ι̇

2

∮
C0

dy′

y′
y + y′

y − y′
∂f (1)

∂η′e
. (4.4.16)

In summary, the magnetic coordinate contains two parts: the η
(0)
m part from

the naïve 5D to 4D reduction, which becomes ηsfm in the 4D limit, and the
remaining part, which reduces to ηinstm .

Generic Torus. To consider a generic torus with complex structure τ , we
perform a modular transformation from the rectangular case. Under the
SL(2,Z) symmetry group of the torus, the complex structure τ = τ1 + ι̇τ2

and the coordinates transform as

τ → aτ + b

cτ + d
,

(
ϕ2

ϕ1

)
→
(
a c
b d

)(
ϕ2

ϕ1

)
, (4.4.17)

with ad− bc = 1.
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The electric coordinate for a generic torus then becomes8

ηe =
1

2y

(
σ + ι̇

√
τ2

V
ϕ2

)
+
ϕ1 + τ1ϕ2√
Vτ2

− 1

2

(
σ − ι̇

√
τ2

V
ϕ2

)
y . (4.4.18)

Here we also rescaled the ϕi's by the volume V of the torus. The Gibbons-
Hawking potential is now given by (4.4.4) with

a1 =
1√
V τ2

, a2 =
1√
Vτ2

[
τ1 + ι̇τ2

1

2

(
1

y
+ y

)]
. (4.4.19)

Upon Poisson resummation and contour integration, we �nd

V =
√

det gij
∑
~n∈Z2′

1√
ninjgij

eι̇n
iϕi−|σ|

√
ninjgij , (4.4.20)

with the metric g on the torus given by

gij =
V
τ2

(
1 −τ1

−τ1 |τ |2
)
. (4.4.21)

Finally, the magnetic coordinate is still given by (4.4.16), with the new de�-

nitions (4.4.18), (4.4.19), and the replacement 2a→
(
σ + ι̇

√
τ2
V ϕ2

)
in η

(0)
m .

4.4.2 Dyonic Instanton Corrections

Dyonic instantons are particle-like objects which are the uplift of 4-dimensional
instantons to �ve dimensions. Due to the Chern-Simons term

κ

24π2
A ∧ F ∧ F , (4.4.22)

they become electrically charged. Their central charge is given by

ZI = κσ|nI |+
|nI |
g2

5,0

, (4.4.23)

8For a generic torus with complex structure τ = τ1 + ι̇τ2, we perform the SL(2,Z)
transformation ϕ→MTϕ, where M is given by

M =
1
√
τ2

(
τ2 τ1
0 1

)
.

The metric transforms according to g → (M−1)T gM−1, leading to (4.4.21).
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where g5,0 is the �ve-dimensional gauge coupling and nI is the four-dimensional
instanton number. Since these particles are electrically charged, they con-
tribute corrections to the metric preserving the isometry. Hence, their e�ect
is incorporated easily by replacing a → a + ZI in the de�nition of the O(2)
multiplet.

A more interesting contribution to the metric will come from magnetic
corrections. These are now given by magnetic strings and incorporating their
e�ect will be studied elsewhere.

4.5 Discussion

We have derived the expression for a set of Darboux coordinates on a hyper-
kähler manifold, parameterized byO(2p) projective super�elds. Our derivation
relies on the projective Legendre transform construction of such manifolds and
can be understood as enforcing a consistency condition. The application of
our results to the PTN metric leads to the expression for the magnetic coordi-
nate derived by GMN, describing the mutually local corrections to the moduli
space metric ofN = 2 SYM on R3×S1. Mutually nonlocal corrections can also
be incorporated into the projective Lagrangian, leading to the TBA equation
studied by GMN.

We also applied this method to the study of electric corrections to the mod-
uli space of �ve-dimensional SYM compacti�ed on T 2, providing a projective
superspace description of the metric discussed in [80] and the corresponding
Darboux coordinates. There are two contributions: an O(2) part determined
by the �ve-dimensional perturbative prepotential, which reduces to the semi-
�at part in the 4D limit; and the corrections due to electric particles, which
reduce to the instanton corrections of the 4D theory.

There are several open questions which could be addressed within this
formalism. For example, it could shed new light on the three-dimensional
limit of GMN (recently analyzed in [100]), corresponding to the Atiyah-Hitchin
metric. Regarding the �ve-dimensional theory, corrections due to magnetic
strings could be incorporated in a form analogous to what was done in (4.3.9)
for the four-dimensional case, leading to an integral equation for the Darboux
coordinates.

Apart from the Darboux coordinates, another important geometrical object
is the hyperholomorphic connection (see for example [101, 102]) and it would
be interesting to investigate its description using the Υ↔ η duality. Finally, it
would be quite interesting if this framework could yield any information about
the six-dimensional SYM theory compacti�ed on T 3, whose exact moduli space
is K3.
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Chapter 5

Quiver Chern-Simons Theories

Supersymmetric localization [103,104] is a powerful method that makes exact
computations in superconformal �eld theories (SCFTs) possible. This proce-
dure reduces the in�nite dimensional path integral to a �nite dimensional in-
tegral, typically over the Coulomb branch. It has recently been used to obtain
interesting results for �eld theories in various number of dimensions [104�109].
In particular, Kapustin, Willett and Yaakov [105] applied localization in three
dimensions to calculate the exact partition function on S3 for theories with
N ≥ 2 supersymmetry. One of the outcomes of these calculations has been
the proposal [110] that the free energy, de�ned by

F = − log |ZS3| ,

decreases along renormalization group (RG) �ows, providing a good measure
of the degrees of freedom in the �eld theory. On the other hand, many three-
dimensional SCFTs can be realized as e�ective theories of coincident N M2-
branes. Thus, localization is a tool that can be used to test predictions of the
AdS/CFT correspondence [111�113]. One of the �rst and most remarkable
results [114] was the evaluation of the free energy for U(N)k×U(N)−k Chern-
Simons (CS) theory [115], matching the famous N 3/2 scaling of gravitational
free energy predicted in [116].

A larger class of quiver Chern-Simons theories with U(N)k1×U(N)k2×...×
U(N)kn gauge groups, coupled to bifundamental matter forming a necklace-
type quiver were considered in [110,117�119]. It is believed that the M-theory
description of these theories [120] arises as the near-horizon limit of a stack of
N M2-branes placed at the tip of a Calabi-Yau cone with a tri-Sasaki Einstein
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base Y . In the large N limit, the gravitational free energy is given by [114,117]

F = N
3/2

√
2π6

27Vol(Y )
+ o(N

3/2) ,

where Vol(Y ) is the volume of the compact manifold Y whose geometry de-
pends on the quiver data, in particular the CS levels. By evaluating the free
energy F for the necklace quivers and matching it with the gravitational en-
ergy, an expression for Vol(Y ) as a function of the CS levels was conjectured
in [117]. This was corroborated in [121] by comparison with the explicit calcu-
lations of the volumes of toric Sasaki-Einstein manifolds [122] (see also [123]
for a calculation in type-IIB supergravity).

These necklace quivers are actually an example of a more general class of
quiver theories which have a nice large N limit, i.e., long-range forces between
eigenvalues in the matrix model cancel [124]. In fact, quiver theories for which
this happens are in one-to-one correspondence with the extended ADE Dynkin
diagrams with necklace quivers corresponding to the Â-class.

In this chapter we focus on theories with D̂n quivers. The relevant tri-
Sasaki Einstein manifold Y is the base of the hyperkähler coneH4n−8///U(1)n−1

×SU(2)n−3. By assuming a particular ordering of CS levels, we solve the ma-
trix models for various values of n and propose an expression for Vol(Y ) for
arbitrary n. This expression is related to the area of a certain polygon as
in the case of Â-quivers. Then, we propose a general expression given by a
rational function, which is valid for any ordering of the CS levels and is invari-
ant under Seiberg duality. The numerator for such an expression was given
in [124]. Here we give the denominator as well and show that the numerator
of this expression can be expressed as a sum over certain graphs known as
`signed graphs'. Using a generalized matrix-tree formula, we show that this
formula reduces to the polygon formula for a particular ordering of the CS
levels. Although we do not discuss exceptional quivers in detail, we give the
free energy for Ê6, Ê7, Ê8 in Appendix C.3 for completeness.

5.1 ÂDE Matrix Models

We will consider quiver Chern-Simons gauge theories involving products of
unitary groups only, i.e., G = ⊗aU(naN), coupled to bifundamental chiral su-
per�elds (Aa, Ba). According to [105], the partition function of these theories
on S3 is localized on con�gurations where the auxiliary scalar �elds σa in the
N = 2 vector multiplets are constant N × N matrices. Thus, evaluating the
free energy amounts to solving a matrix model.
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Matrix Model. We denote the eigenvalues of σa in each vector multiplet
by λa,i, i = 1, ..., Na. The partition function is then given by [105]

Z =

∫ (∏
a,i

dλa,i

)
Lv({λa,i})Lm({λa,i}) =

∫ (∏
a,i

dλa,i

)
exp [−F ({λa,i})] ,

(5.1.1)
where the contribution from vector multiplets is

Lv =
d∏
a=1

1

Na!

(∏
i>j

2 sinh[π(λa,i − λa,j)]

)2

e(ι̇π
∑
a,j kaλ

2
a,j),

and from matter multiplets is

Lm =
∏

(a,b)∈E

∏
i,j

1

2 cosh[π(λa,i − λb,j)]
∏
c

(∏
i

1

2 cosh[πλc,i]

)nfc

.

The �rst product in Lm is due to bifundamental �elds while the second one
is due to fundamental �avor �elds, where nfc is the number of pairs of �avor
�elds at the node labeled by the index c.

LargeN Limit and ÂDE Classi�cation. Following [117,124], we assume
that the eigenvalue distribution becomes dense in the large N limit, i.e., λa,i →
λa(x) with a certain density ρ(x). In this limit the free energy becomes a 1-
dimensional integral which we evaluate by saddle point approximation. We
also assume that the eigenvalue distribution for a node with Na = naN is
given by a collection of na curves in the complex plane labeled by λa,I(x) with
I = 1, ..., na and write the ansatz

λa,I(x) = Nαx+ ι̇ ya,I(x) . (5.1.2)

The density ρ(x) is assumed to be normalized, i.e.,∫
dxρ(x) = 1 , (5.1.3)

which will be imposed through a Lagrange multiplier µ. As explained in [124],
the leading order in N in the saddle point equation is proportional to the com-
bination 2na−

∑
b|(a,b)∈E nb. The requirement that this term vanishes is equiva-

lent to the quiver being in correspondence with simply laced extended Dynkin
diagrams, leading to the ADE classi�cation. To next order in N , the saddle
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point equation contains a tree-level contribution and a 1-loop contribution.
Assuming that

∑
a naka = 0, the requirement that these two contributions are

balanced leads to α = 1/2, which is ultimately responsible for the N3/2 scaling
of the free energy1. Finally, the Lagrangian to be extremized reads

F = N3/2

∫
dx ρ(x)

[
πnF |x|+ 2πx

∑
a

na∑
I=1

kaya,I(x) +
ρ(x)

4π
×

×

(
d∑
a=1

na∑
I=1

na∑
J=1

arg
(
e2πι̇(ya,I−ya,J− 1

2
)
)2

−
∑

(a,b)∈E

na∑
I=1

nb∑
J=1

arg
(
e2πι̇(ya,I−yb,J )

)2

)]

− 2πµN3/2

(∫
ρ(x) dx− 1

)
, (5.1.4)

where nF ≡
∑

a n
f
ana. Evaluating the free energy on-shell gives

F =
4πN3/2

3
µ , (5.1.5)

which can be understood as a virial theorem [121]. Thus, the free energy is
determined by µ, which in turn is determined as a function of the CS levels from
the normalization condition (5.1.3). Comparing (5.1.5) with the expression for
gravitational free energy given in this chapter's introduction, we �nd that

Vol(Y )

Vol(S7)
=

1

8µ2
. (5.1.6)

As mentioned earlier, theories with Âm−1 quiver diagrams have been ex-
tensively studied. Here, we wish to study theories with D̂n quivers as the one
shown in Figure 5.1. For now we will set nfa = 0, but we will reintroduce
�avors in Section 5.4.

It is convenient to relate the CS level k(a) at each node to a root αa, by
introducing a vector p and writing k(a) = αa · p . This way, the condition∑

a naka = 0 is satis�ed automatically. Choosing a basis for the roots of D̂n

(see Appendix C.1 for conventions), we have

k1 = −(p1 + p2) , k2 = p1 − p2 , k3 = pn−1 − pn , k4 = pn−1 + pn ,

ki = pi−3 − pi−2 ; i = 5, ..., n+ 1 . (5.1.7)

1Alternatively, one can assume that
∑
naka 6= 0, and choose α = 1/3, which leads to a

massive IIA supergravity dual [110]. We will not consider this case here.
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k3

k4k1

k2

k5 k6 · · · kn+1

Figure 5.1: D̂n quiver diagram. Each node `a' corresponds to a U(naN) gauge
group with CS level ka, where na is the node's comark and we assume that∑

a naka = 0.

In the next two sections we will solve the matrix models for various D̂n

quivers and conjecture a general volume formula for arbitrary n.

5.2 Solving the Matrix Models

Here we describe the saddle point evaluation of the free energy (5.1.4). We
show in detail the solution for n = 5, state the result for n = 6, and propose
a general expression that we have checked for n = 7, ..., 10. Finally, we will
relate this expression to the area of a certain polygon.

5.2.1 Explicit Solutions

Extremizing (5.1.4) (with respect to ya,I and ρ) requires an assumption on
the branch of the arg functions. We will always take the principle value and
therefore we assume that

|ya,I − ya,J | < 1 ; |ya,I − yb,J | <
1

2
, if (a, b) ∈ E . (5.2.1)

Based on numerical results [117, 124], we assume that the na curves for a
given node initially coincide, i.e., |ya,I − ya,J | = 0. Extremizing F under
these assumptions, one �nds that the solution is consistent only in a bounded
region away from the origin. This is because as |x| increases, the di�erences
|ya,I − yb,J | monotonically increase (or decrease), saturating one (or more)
of the inequalities assumed in (5.2.1) at some point. The relation among
the CS levels determines the sequence in which these inequalities saturate.
This saturation will be maintained beyond this point, requiring the eigenvalue
distribution involved either to bifurcate or develop a kink. As an example,
consider the �rst plot in Figure 5.2 where we show the eigenvalue distributions
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for the D̂5 quiver2. It consists of seven regions determined by saturation of
di�erent inequalities. At the end of �rst region (x = x1), one can see that
y1,1 − y5,2 = −1/2 forcing y5,1 and y5,2 to bifurcate.

x1 x2 x3 x4 . . x7
x

1

2

1

3

2

2

5

2

ya,IHxL

y1,1

y2,1

y3,1

y4,1

y5,1

y5,2

y6,1

y6,2

x1 x2 x3 x4 . . x7
x

Μ

3

ΡHxL

Figure 5.2: The eigenvalue distribution ya,I(x) (left) for all nodes and density

ρ(x) (right) for the D̂5 quiver with CS levels: (k2, k3, k4, k5, k6) = (2, 2, 3, 4, 4).

After a saturation occurs, the total number of independent variables is
reduced by one. Thus, at this point, we remove one variable from the La-
grangian, revise the inequalities and solve the equations of motion again until
a new saturation is encountered. This process is iterated until all ya's are
related, determining a maximum of (

∑
a na−1) regions or until the eigenvalue

distribution terminates, i.e., ρ(x) = 0. Once the eigenvalue density ρ(x) is
determined in all regions, the value of µ (and therefore F ) is found from the
normalization condition (5.1.3).

The solution to the D̂4 quiver consists of �ve regions and was solved in [124].
Assuming that p1 ≥ p2 ≥ p3 ≥ p4 ≥ 0, it was found that

1

µ2
= − 1

4p1

+
2p1 + 3p2 − p3

(p1 + p2)2
− 1

2(p1 + p2 + p3 − p4)
− 1

2(p1 + p2 + p3 + p4)
.

(5.2.2)

We now discuss the solution to the D̂5 quiver, consisting of seven regions.
We assume that k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0 with k1 = −(k2 + k3 + k4 +
2k5 + 2k6) implying p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5 ≥ 0. The solution is summarized
in Table 5.1 and Figure 5.2 shows the eigenvalue distributions and density
(further details are given in Appendix C.2). From the information given in

2We have used the freedom to add an arbitrary function to the ya,I to set y1,1(x) = 0 in
the �rst region and we solve explicitly only for x ≥ 0 since the eigenvalue distributions and
density are even functions of x.
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R# xi δy(x = xi) ρi(x)

1 µ
3(k2+k3+k4+2k5+2k6)

y1,1 − y5,2 = −1
2

1
3
µ

2 4µ
6k2+9k3+9k4+12k5+18k6

y5,2 − y6,2 = −1
2

1
3
µ

3 2µ
3(2k2+k3+k4+2k5+2k6)

y2,1 − y6,2 = 0 1
3
µ

4 2µ
2k2+3(k3+k4+2k5+2k6)

y5,1 − y6,2 = 1
2

µ
2

+ x
4
(k1 − k2)

5 2µ
2k2+3k3+5k4+4k5+6k6

y4,1 − y6,2 = 1
2

µ+ xk1

6 2µ
2k2+5k3+3k4+4k5+6k6

y3,1 − y6,2 = 1
2

3µ
2

+ x
4
(6k1 − k3 − 3k4 − 2k6)

7 2µ
2k2+3k3+3k4+4k5+6k6

y6,1 − y6,2 = 1 2µ+ x(2k1 − k3 − k4 − k6)

Table 5.1: Key characteristics of the seven regions of D̂5 matrix model: their
boundaries, the saturated inequalities and the eigenvalue densities, assuming
k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0.

Table 5.1 and (5.1.3), we �nd

1

µ2
=− 1

2k2 + 5k3 + 3k4 + 4k5 + 6k6

− 1

2k2 + 3k3 + 5k4 + 4k5 + 6k6

+
4(k3 + k4 + 3k6 − 2k1)

(2k2 + 3k3 + 3k4 + 4k5 + 6k6)2

− 1

9(2k2 + k3 + k4 + 2k5 + 2k6)
− 1

2k2 + 3k3 + 3k4 + 6k5 + 6k6

,

which, using the relations in (5.1.7) gives

1

µ2
=− 1

18p1

− 1

2(p1 + 2p2)
+

(2p1 + 2p2 + 3p3 − p4)

(p1 + p2 + p3)2

− 1

2(p1 + p2 + p3 + p4 − p5)
− 1

2(p1 + p2 + p3 + p4 + p5)
. (5.2.3)

Similarly, solving the D̂6 matrix model as described above leads to a total
of nine regions and integrating the eigenvalue density gives

1

µ2
=− 1

48p1

− 1

6(p1 + 3p2)
− 1

2(p1 + p2 + 2p3)
+

2(p1 + p2 + p3) + 3p4 − p5

(p1 + p2 + p3 + p4)2

− 1

2(p1 + p2 + p3 + p4 + p5 − p6)
− 1

2(p1 + p2 + p3 + p4 + p5 + p6)
,

(5.2.4)

for p1 ≥ p2 ≥ ... ≥ p6 ≥ 0.
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5.2.2 General Solution and Polygon Area

By comparing (5.2.2), (5.2.3) and (5.2.4), we propose that the free energy for

D̂n quivers is determined by:

1

µ2
=

1

2

n−3∑
a=1

ca∑a−1
b=1 pb + (n− a− 1)pa

+
2
∑n−3

b=1 pb + 3pn−2 − pn−1(∑n−2
b=1 pb

)2

− 1

2

(
1∑n−1

b=1 pb − pn
+

1∑n
b=1 pb

)
, (5.2.5)

with ca ≡ −2
(n−a−1)(n−a−2)

and p1 ≥ p2 ≥ ... ≥ pn > 0. We have veri�ed that

this is correct for the D̂7, ..., D̂10 matrix models.
For Â-quivers, it was shown in [121] that Vol(Y ) can be interpreted as the

area of a certain polygon. By rewriting (5.2.5) in a more suggestive form,
we will show that there is a certain polygon (or rather a cone) whose area is

related to Vol(Y ) for D̂-quivers as well. This construction will be particularly
useful in Sections 5.4 and 5.5. We start by observing that the denominators
appearing in (5.2.5) can be written as

σ̄a =
n∑
b=1

(|pa − pb|+ |pa + pb|)− 4 |pa| ; a = 1, ..., n ,

σ̄0 = 2(n− 2) , σ̄n+1 = 2
n∑
b=1

|pb| . (5.2.6)

The �rst step in rewriting (5.2.5) is to combine consecutive terms to get

Vol(Y )

Vol(S7)
=

1

2

(
1

σ̄0 σ̄1

+
n−1∑
a=1

pa − pa+1

σ̄a σ̄a+1

+
pn

σ̄n σ̄n+1

)
, (5.2.7)

where we have used the relation (5.1.6). The next step is to introduce the
vectors βa = (1, pa) together with β0 = (0, 1) and βn+1 = (1, 0). De�ning the
wedge product (a, b)∧ (c, d) = (ad− bc), we can write all the σ̄a's in (5.2.6) in
terms of γa,b ≡ |βa ∧ βb| as follows

σ̄a =
n∑
b=1

(γa,b + γa,−b)− 4γa,n+1 ; a = 0, ..., n+ 1 , (5.2.8)

102



where we have also de�ned β−a ≡ (1,−pa). This �nally leads to

Vol(Y )

Vol(S7)
=

1

2

n∑
a=0

γa,a+1

σ̄a σ̄a+1

. (5.2.9)

Now, let us consider the vectors βa, a = 0, ..., n + 1 as de�ning a set of
vertices va given by

va = v0 +
∑a−1

b=0 βb ,

where v0 is a base point (undetermined for the moment). This set of vertices
va in turn de�nes a new set of edges by the equations va ∧ x = 1/2. Then, the
set of intersection points of consecutive edges, given by wa = βa/(2 va ∧ va+1),
together with the origin de�nes a cone C whose area is given by

Area(C) =
1

8

n∑
a=0

βa+1 ∧ βa
(va ∧ va+1)(va+1 ∧ va+2)

. (5.2.10)

The denominators va ∧ va+1 = va ∧ (va + βa) = va ∧ βa =
(
v0 +

∑a−1
b=0 βb

)
∧ βa

depend on the choice of base point v0. Choosing v0 = (−n + 2,−1), we can
set (va ∧ va+1) = −1/2 σ̄a leading to

Vol(Y )

Vol(S7)
= Area(C) . (5.2.11)

We also note that by rescaling the cone C by a factor 2µ, we can actually
interpret ρ(x) as the height of the cone. In Figure 5.3 we show the rescaled

cone corresponding to the D̂5 quiver. The x coordinates of the vertices of
this cone correspond to the location of the kinks in ρ(x) in Figure 5.2. Thus,
1/2 =

∫
dx ρ(x) = 4µ2 Area(C), from where (5.2.11) follows immediately.

ρ(x)

Figure 5.3: Schematic cone for the D̂5 quiver. The height of the cone gives
the density ρ(x) in the regions de�ned by the x coordinates of the vertices wa.
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This construction is analogous to the polygon for the Â-quiver [121]. The
vectors βa in that case correspond to the (1, qa) charges of �ve-branes involved
in the brane description of the theory. The addition of the two extra vectors
β0 and βn+1 in the present case seems to suggest that one should also include
(0, 1) and (1, 0) branes in the description of these theories.

We would like to comment that solving the matrix model under a di�er-
ent ordering of the p's amounts to permuting them correspondingly in the
expression (5.2.9). Moreover, regardless of the sign and ordering of p's, the
denominators appearing in the expression for Vol(Y ) are always given by the
σ̄'s in (5.2.8). In the next section we will propose a general expression, which
is valid for any value of the CS levels and is explicitly invariant under Seiberg
duality.

5.3 General Formula for D̂n Quivers

It was shown in [125,126] that the free energy is invariant under a generalized
Seiberg duality [127, 128]. For ADE quivers, Seiberg duality can be reinter-
preted as the action of the Weyl group, which acts by permuting and changing
the sign of an even number of p's in the case of D̂-quivers. Thus, we would like
to have an expression for Vol(Y ) that does not assume any particular relation
among CS levels and is explicitly invariant under Seiberg duality. It was pro-
posed in [124] that this can be written as a rational function whose numerator
is given by

∑
R+

det(α1...αn)2
∏n

a=1 |αa · p|, where R+ denotes all n-subsets
of positive roots. Note that under Weyl transformations the σ̄a's de�ned in
(5.2.8) are simply shu�ed among each other. Based on this, we propose that

the general expression for the volume corresponding to D̂n quivers is given by

Vol(Y )

Vol(S7)
=

∑
R+

det(α1...αn)2
∏n

a=1 |αa · p|
2
∏n+1

a=0 σ̄a
. (5.3.1)

As we will prove below, (5.3.1) reduces to (5.2.9) when the CS levels are
ordered.

We recall that in the corresponding formula for Â-quivers, the numerator
could be interpreted as a sum over tree graphs [117]. In a similar way, we
will show now that the numerator of (5.3.1) can be interpreted as a sum over
certain graphs known as `signed graphs' [129] (see also [130�132] and references
therein). A graph Γ = (V,E) consists of a set of vertices V and a set E of
unordered pairs from V (the edges). A signed graph (Γ, σ) is a graph Γ with a
signing σ : E → {+1,−1} associated to each edge. With these de�nitions, we
can associate a signed graph to each term in the numerator of (5.3.1). Recall
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that the roots αa for Dn are of the form (ei ± ej), where ei are the canonical
unit vectors of dimension n and i 6= j. To a root of the type (ei − ej) we
associate a positive edge (σ = 1) connecting the nodes i and j in the graph,
and to a root of the type (ei + ej) we associate a negative edge (σ = −1). Then,
we think of the matrix I = (α1... αn) as an incidence matrix for a diagram with
n vertices and n edges3. Due to Euler's theorem, such graphs must contain
loops. If the graph contains more than one loop then it must be disconnected.
Loops are naturally associated a sign as well, given by the product of the signs
of all the edges forming the loop. As we shall explain below, the determinant
in (5.3.1) selects diagrams containing only negative loops. Some examples of

diagrams contributing to the numerator for D̂4 are shown in Figure 5.4, where
dashed lines represent negative edges and solid lines positive ones.

� �
�

�

� �

Figure 5.4: Some signed graphs contributing to the numerator for D̂4. The �rst
diagram, for example, contributes a term 4|(p1 +p2)(p2−p3)(p3−p4)(p4−p1)|.

To understand why the determinant vanishes for diagrams with positive
loops, it is useful to introduce the operation acting on graphs called `switching'.
Switching is de�ned with respect to a vertex v ∈ V , and it acts by reversing
the signs of all the edges connected to that vertex. This operation preserves
the value of (det I)2 since it corresponds to multiplying some rows and columns
of the incidence matrix I by −1. It is easy to see that by various switching
operations one can turn any loop with an even number of negative edges into
a loop made entirely of positive edges. Then, det I will vanish simply because
the columns in I associated to these edges add up to zero. On the other hand,
if there are an odd number of negative edges in the loop, the above argument
does not apply. In fact, one can easily check that (det I)2 = 4 for each negative
loop. Thus, we can also write (5.3.1) as

Vol(Y )

Vol(S7)
=

∑
(V,E,σ)∈T − 4L−

∏
(a,b)∈E |pa − σpb|

2
∏n+1

a=0 σ̄a
, (5.3.2)

where T − denotes the set of signed diagrams with n vertices and n edges (con-

3Note that due to the absence of roots of the form 2ei, one should not consider edges
starting and ending on the same node.
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nected or disconnected) and no positive loops, L− is the number of negative
loops in the diagram, and σ the sign of the corresponding edge. Using a gener-
alized matrix-tree formula, we now show that (5.3.2) in fact reduces to (5.2.9)
for pa > pa+1.

5.3.1 Generalized Matrix-tree Formula

We de�ne the n× n adjacency matrix A for a signed graph by:

Aaa =
n−1∑
b=1

(γa,b + γa,−b) , Aab = −γa,b + γa,−b .

The generalized matrix-tree formula [131,132] states that

detA =
∑

(V,E,σ)∈T − 4L−
∏

(a,b)∈E |pa − σpb| . (5.3.3)

By row and column operations we can bring A into the tri-diagonal form:

σ̄1+σ̄2+2γ12 −σ̄2 0 · · · · · · 0

−σ̄2 σ̄2+σ̄3+2γ23 −σ̄3 · · · · · · ...

0 −σ̄3

. . . . . .
...

...
...

...
. . . . . . −σ̄n−1 0

... · · · · · · −σ̄n−1 σ̄n−1+σ̄n+2γn−1,n −σ̄n
0 · · · · · · 0 −σ̄n 1

2
(σ̄n+σ̄n+1)


Using the fact that the determinant of tri-diagonal matrices satis�es a recursion
relation, we have

detA = 1
2

(σ̄n + σ̄n+1) detAn−1 − σ̄2
n detAn−2 , (5.3.4)

detAa = (σ̄a + σ̄a+1 + 2γa,a+1) detAa−1 − σ̄2
a detAa−2 , (5.3.5)

where Aa denotes the a× a sub-matrix of A for a = 1, ..., n− 1. Then, using
the identities: σ̄a+1 − σ̄a = −2(n− 2− a)γa,a+1 and

a−1∑
d=0

(n− 2− d)γd,d+1

σ̄d σ̄d+1

=
1

2 σ̄a
,
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we can show that the recursion relation (5.3.5) is solved by

detAa−1 =
a∏
b=0

σ̄b

a−1∑
d=0

(a− d)γd,d+1

σ̄d σ̄d+1

. (5.3.6)

Using (5.3.6) in (5.3.4), we have

detA =
1

2

n+1∏
b=0

σ̄b

[(
1 +

σ̄n
σn+1

) n−1∑
d=0

(n− d)γd,d+1

σ̄d σ̄d+1

− 2σ̄n
σ̄n+1

n−2∑
d=0

(n− 1− d)γd,d+1

σ̄d σ̄d+1

]

=
1

2

n+1∏
b=0

σ̄b

n−1∑
d=0

[
2
γd,d+1

σ̄d σ̄d+1

+

(
σ̄n+1 − σ̄n
σ̄n+1

)
(n− 2− d)γd,d+1

σ̄d σ̄d+1

]

=
n+1∏
b=0

σ̄b

[
n−1∑
d=0

γd,d+1

σ̄d σ̄d+1

+
1

2

4γn,n+1

σ̄n+1

1

2σ̄n

]

=
n+1∏
b=0

σ̄b

n∑
d=0

γd,d+1

σ̄d σ̄d+1

.

Finally, substituting (5.3.3) in (5.3.2) leads to

Vol(Y )

Vol(S7)
=

detA

2
∏n+1

b=0 σ̄b
=

1

2

n∑
d=0

γd,d+1

σ̄d σ̄d+1

,

recovering the expression (5.2.9).

5.4 Flavored D̂n Quivers and the F-theorem

The F-Theorem [110] states that the free energy F decreases along RG �ows
and is stationary at the RG �xed points of any three-dimensional �eld theory
(supersymmetric or not). Thus, F gives a good measure of the number of
degrees of freedom, in analogy with the c-function in two dimensions and the
anomaly coe�cient, a in four dimensions. This theorem was �rst tested in
a variety of �eld theories [133�135] and recently it has been proven in [136,
137] for any three-dimensional �eld theory by relating F to the entanglement
entropy of a disk-like region. Here we check that it holds for the the class
of theories we have discussed. We trigger the RG �ow by adding massive
non-chiral fundamental �avors in the UV. By integrating out non-chiral �avor
�elds, there is no e�ective shift in the CS levels. Thus, we are interested in
comparing F (ki;nF ) to F (ki; 0). The addition of nF 6= 0 in (5.1.4) introduces
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no additional complications and the matrix model is solved as explained in
section 5.2. We solved the �avored D̂n matrix model for n = 4, ..., 9 leading
us to

Vol(Y )

Vol(S7)
=

1

2

(
γ01

σ̄0(σ̄1 + nF )
+

n∑
a=1

γa,a+1

(σ̄a + nF )(σ̄a+1 + nF )

)
. (5.4.1)

By comparing (5.4.1) with (5.2.9), it is clear that F (ki;nF ) ≥ F (ki; 0) verifying
that

FUV ≥ FIR ,

in accordance with the F-theorem.
In terms of the polygon construction discussed in Section 5.2.2, adding

�avor corresponds to adding the vector βF = (0, nF/2) between β0 and β1.
Then, (5.4.1) has the same form as (5.2.9) with b = F, 1, ..., n in the de�nition
(5.2.8).

5.5 Unfolding D̂n to Â2n−5

Here we provide a check of the formula (5.2.9), based on the folding/unfolding
trick discussed in [138], which relates the free energy of various quiver gauge
theories when some CS levels are identi�ed. It can be used to change the gauge
groups from unitary to orthosymplectic without changing the quiver or it can
be used to change the quiver without changing the type of gauge group. Here
we will deal with the latter use, as it relates the free energy of D̂-quivers to
that of Â-quivers.

When the external CS levels of a D̂n quiver are identi�ed, it can be unfolded
to an Â2n−5 quiver, as shown in Figure 5.5. Each internal node in the D̂-quiver
is duplicated to give two nodes with the same CS level, while the four external
nodes combine to give two nodes with doubled CS levels. Each node in the
Â-quiver corresponds to a U(2N) gauge group and the condition

∑
a naka = 0

is automatically satis�ed in the unfolded quiver. Using this, it can be shown
that in the large N limit, ZD =

√
ZA and therefore the free energies are related

by FD = 1
2
FA. Here we verify explicitly this proportionality by comparing the

formula (5.2.9) to the corresponding formula for Â2n−5.

Let us �rst look at the formula for the D̂n quiver when external CS levels
are identi�ed, i.e., k1 = k2 = k and k3 = k4 = k′. Due to the relations in
(5.1.7), this is ensured by setting p1 = pn = 0. Thus, we need the solution
to the matrix model with the ordering p2 ≥ ... ≥ pn−1 ≥ pn ≥ p1 ≥ 0. As
mentioned at the end of Section 5.2, this is given by permuting the p's in
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k′

k′k

k

k5 k6 · · · kn+1 Unfolding−−−−−→ 2k′2k

k5 k6 · · · kn+1

k5 k6 · · · kn+1

Figure 5.5: Unfolding D̂n to Â2n−5. Each node in the Â-quiver corresponds to
a U(2N) gauge group.

(5.2.9) accordingly. Then, setting p1 = pn = 0 gives

Vol(YD)

Vol(S7)
=

1

2

(
p2

σ̄2
2

+
n−2∑
a=2

γa,a+1

σ̄a σ̄a+1

+
pn−1

(σ̄n−1)2

)
. (5.5.1)

Now we wish to compare this expression with the corresponding one for
Â2n−5 [121], namely

Vol(YA)

Vol(S7)
=

1

2

2n−4∑
a=1

γa,a+1

σa σa+1

, (5.5.2)

where σa =
∑2n−4

a=1 |qa − qb|, γa,b = |qa − qb| and
∑2n−4

a=1 qa = 0. The identi�-

cation of opposite CS levels in the Â2n−4 quiver leads to qa = −q2n−3−a (see
Appendix C.1 for details). Then, we assume that q1 ≥ ... ≥ qn−2 ≥ 0 ≥ qn−1 ≥
... ≥ q2n−4 and

σa =
n−2∑
b=1

|qa− qb|+
2n−4∑
b=n−1

|qa− qb| =
n−2∑
b=1

(|qa− qb|+ |qa + qb|) ; a = 1, ..., n− 2 .

Noting that σa = σ̄a and qa = pa+1 for a = 1, ..., n− 2, we have

Vol(YA)

Vol(S7)
=

1

2

(
n−3∑
a=1

γa,a+1

σa σa+1

+
γn−2,n−1

σn−2 σn−1

+
2n−5∑
a=n−1

γa,a+1

σa σa+1

+
γ2n−4,2n−3

σ2n−4 σ2n−3

)

=
n−3∑
a=1

γa,a+1

σ̄a σ̄a+1

+
qn−2

(σ̄n−2)2 +
q1

σ̄2
1

=
p2

σ̄2
2

+
n−2∑
a=2

γa,a+1

σ̄a σ̄a+1

+
pn−1

(σ̄n−1)2
. (5.5.3)
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Thus, comparing (5.5.3) to (5.5.1) we have

Vol(YD) = 1
2
Vol(YA) . (5.5.4)

Unfolding−−−−−→

Figure 5.6: Polygons associated to the D̂4 quiver (shaded region) and Â3 quiver
(outer polygon). Upon unfolding, Area(PD) = 1/2Area(PA).

This relation can also be seen clearly in terms of the areas of the corre-
sponding polygons, as shown in Figure 5.6 (the cone as de�ned in Section 5.2.2
has been doubled along the dotted line for visual clarity). The outer polygon

corresponds to the Â-quiver with opposite CS levels identi�ed and the shaded
region on the left represents the polygon corresponding to a general D̂-quiver;
when p1 = pn = 0, this shaded region expands to �ll half of the outer polygon
on the right.

Recalling that the nodes of the unfolded Â-quiver correspond to U(2N)
gauge groups, we verify that

FD
FA

=
N3/2

(2N)3/2

√
Vol(YA)

Vol(YD)
=

1

2
.

5.6 Discussion

In this last chapter we have studied three-dimensional D̂n quiver Chern-Simons
matter theories by using the localization method of Kapustin, Willet and
Yaakov in the large N limit. These �eld theories are believed to be dual
to M-theory on AdS4 × Y , where Y is a tri-Sasaki Einstein manifold. We

110



have explicitly solved the corresponding matrix models for various values of
n, leading us to conjecture a general expression for the free energy and there-
fore for the volume of the corresponding space Y given in (5.3.1). We have
shown that the numerator of this expression can be interpreted as a sum over
a class of graphs with edges that carry a sign, known as signed graphs. Using
a generalized matrix-tree formula, we prove that for a particular ordering of
CS levels, it can also be interpreted as the area of a certain polygon, given by
(5.2.9). When external CS levels in the D̂n quiver are identi�ed, the area of

this polygon becomes half the area of the polygon corresponding to the Â2n−5

quiver, in accordance with the unfolding procedure. We have also studied the
addition of massive �avor �elds, showing that when they are integrated out,
the area of the corresponding polygon always increases (thereby decreasing
F ), in accordance with the F-theorem.

The relevant tri-Sasaki Einstein space for a D̂n quiver is the base of the
hyperkähler cone de�ned by the quotient H4n−8///U(1)n−1×SU(2)n−3. To the
best of our knowledge, the volumes of these spaces have not been computed.
Thus, (5.3.1) can be considered as an AdS/CFT prediction for these volumes.
A possible approach to proving the conjectured expression for the free energy
would be to �nd the general solution to the matrix model, perhaps in terms of
the polygon construction presented above, as it has been done for the Â-quiver
in [121]. Some questions which have not been addressed here are whether
there is a group theory interpretation of the volume formula and whether its
denominator can be written in a form that is universal for any ADE quiver.
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Appendix A

y-Calculus

We present here some sample hoop calculations in projective hyperspace using
the diagrammatic rules outlined in Section 3.2.4.

: = 0 .=
1 1 22

a a

Figure A.1: Vanishing of a 2-hoops diagram with ghost propagators.

In Figure A.1, the emergence of yδ(y) factor is shown when only three y2a's
in the y4

2a factor (produced via d-algebra) are cancelled by y3
2a factor present

in the ghost propagator.
Actual evaluation of `q' y-integrals (for the divergent pieces) is possible in

`≤ q' steps as shown in the following calculations involving vector propagators.
First, we look at one 1-hoop 3-point diagram:

1

2
3a

bc

Figure A.2: Setting up y-integrals for diagram 1.(a) in Figure 3.6.
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F.A.2 ≡
∫
dy1,2,3,a,b,c

ya yb yc

V1V2V3 yba yac ycb
y1c yc2 y2a ya3 y3b yb1

=

∫
dy1,2,3

V1V2V3

y12 y23 y31

∮
dya,b,c

(
1

y2a

+
1

ya3

)(
1

y3b

+
1

yb1

)(
1

y1c

+
1

yc2

)
×

×
(

1− ya
yb

)(
1− yc

ya

)(
1− yb

yc

)
=

∫
dy1,2,3

V1V2V3

y12 y23 y31

∮
dya,b

(
1

y2a

+
1

ya3

)(
1

y3b

+
1

yb1

)(
1− ya

yb

)
×

×
(

1− y2

ya
− yb
y1

+
yb
ya

)
=

∫
dy1,2,3

V1V2V3

y12 y23 y31

∮
dya

(
1

y2a

+
1

ya3

)
×

×
(
−ya
y3

− y2

ya
+
y2

y3

+
ya
y1

+
y1

ya
− 1

)
=

∫
dy1,2,3

V1V2V3

y12y23y31

(
−3 +

xyy1

y2

xy) .
This is the result we used in (3.3.7). Next we look at two 2-hoop 2-point
diagrams:

(a)

(b)

1

1 2

2

a b

b

c
a

cd

d

e

e

Figure A.3: Setting up y-integrals for the last two diagrams in Figure 3.8.
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F.A.3.(a) ≡
∫

dy1,2,a,b,c,d,e

ya yb yc yd ye

V1V2 y
3
ad ybc yce yeb

y1a yab yb2 y2c ycd yde yea yd1

=

∫
dy1,2,a,b,c,d

ya yb yd

V1V2 y
2
ad ybc

y1a yab yb2 y2c ycd yd1

(
1− ya

yc
− yb
yd

+
yb
yc

)
=

∫
dy1,2,a,b,d

ya yd

V1V2 y
2
ad

y1a yab yb2 yd1 y2d

(
1− ya

yd
− yb
yd

+
yb
y2

− yd
yb

+
ya
yb

)
=

∫
dy1,2,a,d

ya yd

V1V2 y
2
ad

y1a yd1 y2d ya2

(
3− ya

yd
− y2

yd
− yd
ya

)
=

∫
dy1,2,a

V1V2

y1a ya2 y21

(
−6 + 4

ya
y2

+ 5
y1

ya
−
(
ya
y2

)2

− y2

ya
−
(
y1

ya

)2
)

=−
∫
dy1,2

V1V2

y12 y21

1

2

(
2−

xyy1

y2

xy)
⇒− 1

2

∫
d8θ

∫
dy1dy2

V1V2

y1 y2

= 0.

F.A.3.(b) ≡
∫

dy1,2,a,b,c,d,e

ya yb yc yd ye

V1V2 y
2
bc yae yed yda

y1a yba yac ycd ydb yd2 y2e ye1

=

∫
dy1,2,a,b,d,e

ya yd ye

V1V2 yae yed yda
y1a yba yad ydb yd2 y2e ye1

(
−2 +

yb
ya

+
yd
yb

)
=

∫
dy1,2,a,d,e

ya yd ye

V1V2 yae yed
y1a yad yd2 y2e ye1

(−2 + 1 + 1) = 0.

Thus, the claim made in Section 3.3.3 that these vector self-energy diagrams
are not divergent holds.
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Appendix B

c-Map

The c-map [90,91] relates classical hypermultiplet moduli spaces in compacti�-
cations of type II strings on a Calabi-Yau threefold to vector multiplet moduli
spaces via a further compacti�cation on a circle. In [92, 93], it was shown
that the c-map has a natural description in projective superspace. It can be
regarded as taking a vector multiplet from four to three dimensions and rein-
terpreting it as a tensor multiplet when returning to four dimensions. This
is possible because in three-dimensions, a vector multiplet is equivalent to a
tensor multiplet, which can then be dualized into a hypermultiplet in four
dimensions.

This means that given an N = 2 holomorphic prepotential F (W ) describ-
ing a vector multiplet:

Lv = −Im
[∫

d2θd2ϑF (W )

]
,

there is a corresponding dual projective hypermultiplet Lagrangian G describ-
ing a hyperkähler moduli space given by

Ls =

∫
d2θd2θ̄

∮
dy

y
G(y; ηe) =

∫
d2θd2θ̄

∮
dy

y
Im

[
F(yηe)

y2

]
=− ι̇

∫
d2θd2θ̄

∮
dy

y

[
F (yηe)

y2
−F (yηe) y

2

]
.

This expression determines the semi�at projective Lagrangian f sf in (4.2.9).
We now show how this duality works, following [93]. Rewriting Lv inN = 1

superspace, we get

Lv = −Im
[∫

d2θd2θ̄F ′(Φ)Φ̄ +

∫
d2θF ′′(Φ)WαWα

]
,
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where Φ = W| and Wα = Dϑ,αW| are N = 1 chiral super�eld and vector
multiplet's spinor �eld strength, respectively. When we reduce from four to
three dimensions, the above Lagrangian is still valid but we can write Wα in
terms of a (real linear) �eld strength G as Wα = ι̇√

2
D̄αG such that D2G =

D̄2G = 0. This is because in d = 3 there is no distinction between the
dotted and undotted spinor indices (the conjugate representations of SL(2,C)
in d = 4 reduce to same representation of SL(2,R) in d = 3). Thus the above
Lagrangian turns into

Lv = Im

∫
d2θd2θ̄

(
−F ′(Φ)Φ̄ + 1

2
F ′′(Φ)G2

)
.

We can now compare this to the hypermultiplet Lagrangian. Using (4.3.2),
we �rst expand F(yηe) ≡ F (a+ θey − āy2) in terms of its N = 1 component
�elds. Then we do the y-integral which picks out only two terms proportional
to y2, leading us to

Ls = Im

∫
d2θd2θ̄

(
−F ′(a)ā+ 1

2
F ′′(a)θ2

e

)
.

Thus Ls and Lv precisely match if we identify a with Φ and θe with G.
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Appendix C

Quiver Theories

This appendix covers notation for roots of a�ne Lie algebras used in Chapter
5, showcases the detailed calculation of free energy for the D̂5 quiver and
provides the expression for free energy of exceptional quiver theories.

C.1 Roots of Âm−1 and D̂n

Here we give some useful information about the roots for Â and D̂ Lie algebras.
For Âm−1 we choose the following root basis

α̃a = ea − ea+1 , a = 1, ...,m− 1 ; θ̃ = −e1 + em ,

where ea are canonical unit vectors of dimension m. For D̂n we choose

αi = ei − ei+1 , i = 1, ..., n− 1 ; αn = en−1 + en , θ = −(e1 + e2) ,

where ei are the unit vectors of dimension n.

α̃n−2θ̃

α̃2n−5 · · · α̃n−1

α̃1 · · · α̃n−3

αn−1

αnθ

α1

α2 · · · αn−2

Figure C.1: Dynkin diagrams for Â2n−5 and D̂n.

In Figure C.1 we show the a�ne Dynkin diagrams for the Â and D̂ Lie
algebras along with the roots associated with every node. At each node, the
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CS level is given by α̃ · q and α ·p for Â and D̂, respectively. The identi�cation
of opposite CS levels in the Â2n−5 quiver imposes α̃a · q = α̃2n−4−a · q and
hence qa = −q2n−3−a for a = 1, ..., n − 2. With these conventions, unfolding
the D̂-quiver to the Â-quiver relates qa = pa+1.

C.2 D̂5

Here we give the detailed solution of the matrix model for the D̂5 quiver gauge
theory. As discussed in Section 5.2, there are 7 regions de�ning a generic
solution of this model. To keep the notation simple, the second index for the
four y's corresponding to the external nodes is suppressed.

Region 1: 0 ≤ x ≤ µ
3(k2+k3+k4+2k5+2k6)

ρ =
µ

3
;

y1 − y6,2 =
(2k1 − k3 − k4 − 2k6)x

4ρ
, y2 − y6,2 =

(2k2 − k3 − k4 − 2k6)x

4ρ
,

y3 − y6,2 =
k3x

2ρ
, y4 − y6,2 =

k4x

2ρ
, y5,1 − y6,2 = y5,2 − y6,2 ,

y5,2 − y6,2 = −(k3 + k4 + 2k6)x

4ρ
, y6,1 − y6,2 = 0 .

Region 2: µ
3(k2+k3+k4+2k5+2k6)

≤ x ≤ 4µ
6k2+9k3+9k4+12k5+18k6

ρ =
µ

3
;

y1 − y5,2 = −1

2
, y2 − y6,2 =

(2k2 − k3 − k4 − 2k6)x

4ρ
, y3 − y6,2 =

k3x

2ρ
,

y4 − y6,2 =
k4x

2ρ
, y5,1 − y6,2 = −1

2
− (2k1 + k3 + k4 + 2k6)x

4ρ
,

y5,2 − y6,2 =
1

2
+

(2k1 − k3 − k4 − 2k6)x

4ρ
, y6,1 − y6,2 = 0 .
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Region 3: 4µ
6k2+9k3+9k4+12k5+18k6

≤ x ≤ 2µ
3(2k2+k3+k4+2k5+2k6)

ρ =
µ

3
;

y1 − y5,2 = −1

2
, y2 − y6,2 = −1− (k1 − k2)x

2ρ
,

y3 − y6,2 = −1− (2k1 − 3k3 − k4 − 2k6)x

4ρ
,

y4 − y6,2 = −1− (2k1 − k3 − 3k4 − 2k6)x

4ρ
, y5,1 − y6,2 = −3

2
− k1x

ρ
,

y5,2 − y6,2 = −1

2
, y6,1 − y6,2 = −2− (2k1 − k3 − k4 − 2k6)x

2ρ
.

Region 4: 2µ
3(2k2+k3+k4+2k5+2k6)

≤ x ≤ 2µ
2k2+3(k3+k4+2k5+2k6)

ρ =
µ

2
+
x

4
(k1 − k2) ;

y1 − y5,2 = −1

2
, y2 − y6,2 = 0 , y3 − y6,2 = −1

2
+

(2k3 + k4 + k5 + 2k6)x

2ρ
,

y4 − y6,2 = −1

2
+

(k3 + 2k4 + k5 + 2k6)x

2ρ
, y5,1 − y6,2 = −1

2
− (k1 − k2)x

2ρ
,

y5,2 − y6,2 = −1

2
, y6,1 − y6,2 = −1 +

(k3 + k4 + k5 + 2k6)x

ρ
.

Region 5: 2µ
2k2+3(k3+k4+2k5+2k6)

≤ x ≤ 2µ
2k2+3k3+5k4+4k5+6k6

ρ = µ+ xk1 ;

y1 − y5,2 = −1

2
, y2 − y6,2 = 0 , y3 − y6,2 =

(3k3 + k4 + 2k6)x

4ρ
,

y4 − y6,2 =
(k3 + 3k4 + 2k6)x

4ρ
, y5,1 − y6,2 =

1

2
,

y5,2 − y6,2 = −1

2
, y6,1 − y6,2 =

(k3 + k4 + 2k6)x

2ρ
.
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Region 6: 2µ
2k2+3k3+5k4+4k5+6k6

≤ x ≤ 2µ
2k2+5k3+3k4+4k5+6k6

ρ =
3µ

2
+
x

4
(6k1 − k3 − 3k4 − 2k6) ;

y1 − y5,2 = −1

2
, y2 − y6,2 = 0 , y3 − y6,2 =

1

6
+

(2k3 + k6)x

3ρ
,

y4 − y6,2 =
1

2
, y5,1 − y6,2 =

1

2
, y5,2 − y6,2 = −1

2
,

y6,1 − y6,2 =
1

3
+

(k3 + 2k6)x

3ρ
.

Region 7: 2µ
2k2+5k3+3k4+4k5+6k6

≤ x ≤ 2µ
2k2+3k3+3k4+4k5+6k6

ρ = 2µ+ x (2k1 − k3 − k4 − k6) ;

y1 − y5,2 = −1

2
, y2 − y6,2 = 0 , y3 − y6,2 =

1

2
, y4 − y6,2 =

1

2
,

y5,1 − y6,2 =
1

2
, y5,2 − y6,2 = −1

2
, y6,1 − y6,2 =

1

2
+
k6x

2ρ
.

Finally, the last saturation occurs at the end of this region with y6,1 = y6,2 +1.

C.3 Exceptional Quivers

We have also solved the matrix models for the exceptional quivers Ê6, Ê7 and
Ê8. They consist of eleven, seventeen and twenty-nine regions, respectively.
Here we give the corresponding free energies for a particular ordering of the
CS levels. In Figure C.2, we show our conventions in labelling the nodes.

k1 k2 k3 k4 k5

k6

k7

k1 k2 k3 k4 k5 k6 k7

k8

k1 k2 k3 k4 k5 k6 k7

k8

k9

Figure C.2: Labelling of Chern-Simons levels for Ê6, Ê7 and Ê8.
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Ê6. The matrix model for Ê6, with the assumptions k6 ≥ k5 ≥ k4 ≥ k3 ≥
k2 ≥ 0 and k7 > 3k2 + 6k3 + 4k4 + 2k5 + 4k6, gives:

2

µ2
=

2(4k2 + 11k3 + 8k4 + 4k5 + 6k6 + 4k7)

(2k2 + 5k3 + 4k4 + 2k5 + 3k6 + 2k7)2

− 1

42(3k2 + 6k3 + 4k4 + 2k5 + 5k6 + k7)

− 1

77(13k2 + 12k3 + 8k4 + 4k5 + 3k6 + 2k7)

− 1

3(3k2 + 6k3 + 4k4 + 2k5 + 5k6 + 4k7)

− 9

6k2 + 14k3 + 13k4 + 6k5 + 9k6 + 6k7

− 9

11(6k2 + 14k3 + 13k4 + 12k5 + 9k6 + 6k7)
.

Ê7. The matrix model for Ê7 gives:

2

µ2
=

8k2 + 24k3 + 42k4 + 4(8k5 + 6k6 + 3k7 + 5k8)

(2k2 + 6k3 + 10k4 + 8k5 + 6k6 + 3k7 + 5k8)2

− 1

2k2 + 7k3 + 10k4 + 8k5 + 6k6 + 3k7 + 5k8

− 1

2k2 + 6k3 + 10k4 + 9k5 + 6k6 + 3k7 + 5k8

− 1

180(2k2 + 3k3 + 4k4 + 3k5 + 2k6 + k7 + 2k8)

− 4

15(4k2 + 11k3 + 2(9k4 + 8k5 + 7k6 + 6k7) + 9k8)

− 27

7(6k2 + 17k3 + 28k4 + 24k5 + 20k6 + 9k7 + 15k8)

− 32

21(8k2 + 25k3 + 42k4 + 32k5 + 22k6 + 12k7 + 27k8)
,

assuming that k7 ≥ k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0 along with

k4 + k5 > k6,

k3 + 2k4 + k5 > k7,

4k3 + k4 > 2k5 + k6, and

3k8 > 6k3 + 12k4 + 15k5 + 10k6 + 5k7.
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Ê8. The matrix model for Ê8 gives:

2

µ2
=

8k2 + 24k3 + 48k4 + 74k5 + 92k6 + 48k7 + 64k8 + 32k9

(2k2 + 6k3 + 12k4 + 18k5 + 23k6 + 12k7 + 16k8 + 8k9)2

− 1

3150(2k2 + 3k3 + 4k4 + 5k5 + 6k6 + 3k7 + 4k8 + 2k9)

− 1

2(k2 + 3k3 + 6k4 + 9k5 + 12k6 + 6k7 + 8k8 + 4k9)

− 1

2k2 + 6k3 + 13k4 + 18k5 + 23k6 + 12k7 + 16k8 + 8k9

− 27

7(6k2 + 18k3 + 35k4 + 52k5 + 69k6 + 38k7 + 48k8 + 24k9)

− 108

35(12k2 + 36k3 + 70k4 + 104k5 + 138k6 + 69k7 + 103k8 + 48k9)

− 36

55(12k2 + 36k3 + 70k4 + 104k5 + 138k6 + 69k7 + 103k8 + 68k9)

− 9

154(6k2 + 17(3k3 + 4k4 + 5k5 + 6k6 + 3k7 + 4k8 + 2k9))
,

with assumptions that

k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0,

k7 > 3k4 + 6k5 + 4k6,

2k4 + 4k5 + 6k6 + 9k7 > k8,

2k3 + 4k4 + 6k5 + 8k6 + 4k7 + 6k8 > k9, and

2k9 > 6k3 + 12k4 + 18k5 + 24k6 + 16k7 + 11k8 .

C.4 Mathematica® Code

Most of the matrix model calculations were preformed using Mathematica®.
Here we give the basic code used to generate the volume in terms of k's. Let
us take the example of D̂5 again to do the initial setup. First, we de�ne the
nodes and edges of the extended Dynkin diagram.

n={1,1,1,1,2,2};

e={{1,5},{2,5},{5,6},{6,3},{6,4}};

Then we construct the Lagrangian with `independent' k's and specify the re-
lations among them.

k[1]=-(k[2]+k[3]+k[4]+2k[5]+2k[6]);
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Lm=(f0[x,n]+f1[x,n,e]-2\[Pi]\[Mu]\[Rho][x]+Nf\[Pi]\[Rho][x]x);

assumk={k[6]>=k[5]>=k[4]>=k[3]>=k[2]>=0&&\[Mu]>0&&Nf>=0};

The functions depending on the Dynkin diagram data are de�ned separately.

f[x_]:=(2\[Pi]Floor[-x+1/2]+2\[Pi]x)^2

f0[x_,n__]:=2\[Pi]x\[Rho][x]Sum[k[a]y[a,i,x],{a,1,Length[n]},

{i,1,n[[a]]}]

f1[x_,n__,e__]:=\[Rho][x]^2/(4\[Pi])(Sum[f[y[a,i,x]-y[a,j,x]-1/2],

{a,1,Length[n]},{i,1,n[[a]]},{j,1,n[[a]]}]-Sum[f[y[e[[a,1]],i,x]

-y[e[[a,2]],j,x]],{a,1,Length[e]},{i,1,n[[e[[a,1]]]]},

{j,1,n[[e[[a,2]]]]}])

A function to generate all the required inequalities (5.2.1) for a given region
is crucial and looks as follows:

GenReg[RegO__,Rp_:1,satin__:{},ysat__:{}]:=Block[{RegN=RegO,n,e,m,

satinq,satvars,satval,eqTchg,bifvar,slope,inqTchk,inqpos},

If[Rp==1,n=RegN[[1]];e=RegN[[2]];RegN={Table[y[a,i,x]==y[a,j,x],

{a,1,Length[n]},{i,1,n[[a]]-1},{j,i+1,n[[a]]}],

Table[Less[-1/2,y[e[[a,1]],i,x]-y[e[[a,2]],j,x],1/2],

{a,1,Length[e]},{i,1,n[[e[[a,1]]]]},{j,1,n[[e[[a,2]]]]}]}

//Flatten;, If[Head[satin[[1]]]===Inequality,satinq={Less[

satin[[1,1]],satin[[1,3]],satin[[1,5]]]};,satinq=satin;];

satinq=(satinq/.Less[L_,a_+y[x__]-y[z__],U_]:>

Less[L-a,y[x]-y[z],U-a]);

satvars=Cases[satinq,y[x__]:>y[x],\[Infinity]];

eqTchg=Table[Select[Select[RegN,(Head[#]===Equal)&],

MemberQ[#,satvars[[m]], \[Infinity]]&], {m,1,2}]//Flatten;

If[Length[eqTchg]!=0,bifvar=

Intersection[(List@@@eqTchg)//Flatten,satvars];

If[Length[bifvar]>1,PrintTemporary["Region "<>ToString[Rp]<>": 

Colliding Degeneracies: Choose another xmin."]; Return["R"],

bifvar=bifvar[[1]];];

satinq=satinq/.Less[L_,y__,U_]/;Coefficient[satinq[[1,2]],

bifvar]==-1:>Less[-U,-y,-L]; satval=satinq[[1,2]]/.ysat;];

For[m=1,m<=Length[eqTchg],m++, If[(satval<0)&&(satinq[[1,-1]]<0),

If[Position[satinq[[1]],satval,1][[1,1]]==1,

RegN=ReplacePart[RegN,Position[RegN,eqTchg[[m]]]->Less[0,bifvar

-DeleteCases[List@@eqTchg[[m]],bifvar][[1]],1]];,

RegN=ReplacePart[RegN,Position[RegN,eqTchg[[m]]]->Less[0,

DeleteCases[List@@eqTchg[[m]],bifvar][[1]]-bifvar,1]];];,

If[(satval>=0)&&(Position[satinq[[1]],satval,1][[1,1]]>1),

RegN=ReplacePart[RegN,Position[RegN,eqTchg[[m]]]->Less[0,

DeleteCases[List@@eqTchg[[m]],bifvar][[1]]-bifvar,1]];,

RegN=ReplacePart[RegN,Position[RegN,eqTchg[[m]]]->Less[0,
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bifvar-DeleteCases[List@@eqTchg[[m]],bifvar][[1]],1]];];];];

RegN=DeleteCases[RegN/.ysat//Simplify,False];

inqTchk=Select[Tally[chkreg[RegN]],#[[2]]>1&];

For[m=1,m<=Length[inqTchk],m++,

inqpos=Position[chkreg[RegN],inqTchk[[m,1]]];

RegN=Delete[RegN,inqpos[[2;;-1]]];];

If[(And@@RegN//FullSimplify)===False, Print["Region 

"<>ToString[Rp]<>": Impossible Region: Something went horribly 

wrong."]; Return["R"]];]; Return[RegN]]

chkreg[reg__]:=(Replace[DeleteCases[List@@@reg,_Symbol,2],

{a_,b_,c_}:>Cases[b,y[x__]:>y[x],

\[Infinity]],2])/.{a_+y[x__]:>y[x],b_-y[x__]:>y[x]}

chgeq[reg__,satval__,eqTchg__,bifvar__]:=If[satval<=0,

ReplacePart[reg,Position[reg,eqTchg]->Less[0,bifvar

-DeleteCases[List@@eqTchg,bifvar][[1]],1]],

ReplacePart[reg,Position[reg,eqTchg]->Less[0,

DeleteCases[List@@eqTchg,bifvar][[1]]-bifvar,1]]]

We can use this on its own but its usefulness is manifest only when we want
to automatize all the steps outlined in Section 5.2.1 to solve the matrix model.
So we hand over our basic setup directly to the following recursive function:

SolMatModRec[Regions__,assuk__,L__,satinqP__:{},ysatsP__:{y[0]->0},

solYRsP__:{{}},xminsP__:{0},P_:1]:=Module[{Regs=Regions,

assuK=assuk,p=P,n,e,j,s,nRegs,LR,vars,str,solYR,eqsYR,reginq,xlist,

xpos,xgrt,xmin,reclen,assutp,satinq,satvar,sateq,satval,solYRs,

xmins,\[Rho]s=\[Rho][x]/.solYRsP,ysats={},sol\[Mu],volMM=0},

n=Regs[[1,1]]; e=Regs[[1,2]]; nRegs=Plus@@n-1;

Regs=Append[Regs,GenReg[Regs[[p]],p,satinqP,ysatsP]];

If[Regs[[p+1]]==="R",Return[{assuk,

Regs[[1;;-2]],solYRsP,"x",\[Rho]s,ysatsP,0}]];

Monitor[str={"Evaluating Lagrangian..."};

LR=Assuming[{And@@Regs[[p+1]]},FullSimplify[L//.ysatsP]];

vars=Sort[DeleteDuplicates[Cases[LR,y[a__]->y[a],\[Infinity]]]];

str={"Solving equations of motion..."};

eqsYR={Sequence@@(vars/.y[a__]:>D[LR,y[a]]),D[LR,\[Rho][x]]};

solYR=Select[Solve[eqsYR==0,{Sequence@@(vars[[1;;-2]]),\[Rho][x]}],

!MatchQ[\[Rho][x]/.#,0]&]//Flatten; If[Length[solYR]==0,

xmins="x"; str={"No Non-trivial Solutions Found."};

Pause[1];Return[]]; If[Length[solYRsP[[-1]]]!=0,

If[((\[Rho][x]/.solYRsP[[-1]]/.x->xminsP[[-1]])/

(\[Rho][x]/.solYR/.x->xminsP[[-1]])//Simplify)!=1,xmins="x";

str={"Discontinuity Encountered in \[Rho]."};

Pause[1];Return[]];]; str={"Finding upper x-limit (xmin) for this 
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region..."};

reginq=DeleteDuplicates[DeleteCases[Assuming[{And@@Regs[[p+1]]},

Simplify[Regs[[p+1]]//.solYR]]//.solYR//Simplify,_Symbol,2]];

xlist=If[Length[reginq]!=1,Replace[DeleteCases[List@@@reginq,

_Symbol,2], {{a_,b_,c_}:>{(x/.Solve[b==a,x]),

(x/.Solve[b==c,x])},{a_,b_}:>(x/.Solve[a==b,x])},2]//Flatten,

DeleteCases[List@@@reginq//Flatten,_Symbol]/.{a_,b_,c_}:>

{(x/.Solve[b==a,x]),(x/.Solve[b==c,x])}//Flatten];

xpos=DeleteCases[Select[xlist,Assuming[assuK,

Simplify[NonNegative[#]]]&],0]; If[Assuming[assuK,

(xminsP[[-1]]!=0)//FullSimplify],xgrt=Extract[xpos,

Position[Table[Assuming[assuK,

Simplify[1/xpos[[j]]<1/xminsP[[-1]]]],{j,1,Length[xpos]}],

Except[False],{1},Heads->False]],xgrt=xpos];

If[Length[xgrt]==0,Print["Region May Not Exist!"];

xgrt={xminsP[[-1]]};]; xmin=Assuming[assuK, Min[xgrt]//Simplify];

If[Head[xmin]===Piecewise,xmin=Min@@({Table[xmin[[1,m,1]],

{m,1,Dimensions[xmin[[1]]][[1]]}],xmin[[2]]}//Flatten)];

If[Head[xmin]===Min,reclen=Length[xmin];,reclen=1;];

Monitor[For[j=1,j<=reclen,j++, Print["Region:",p,"xmin:",j];

If[reclen!=1,assutp={assuK[[1]]&&Assuming[assuK,

And@@Delete[Table[Reduce[xmin[[m]]>xmin[[j]]],{m,1,reclen}],

j]]}//FullSimplify; If[assutp[[1]]===False,xmins="x";

Continue[],xmins=xmin[[j]];],assutp=assuK;xmins=xmin;];

str={"Identifying the saturated inequality..."};

satinq=If[Length[Regs[[p+1]]]!=1,Extract[Regs[[p+1]],

Position[(Simplify[Regs[[p+1]]//.solYR]//Flatten)/.x->xmins

//Simplify,False]],Regs[[p+1]]]; For[s=1, s<=Length[satinq]-1,

s++,satinq[[s]]=satinq[[s]]//.ysats//Simplify;

satvar=Cases[List@@satinq[[s]],y[a__,x]:>y[a,x],\[Infinity]];

sateq=satvar[[1]]-satvar[[2]]; satval=sateq//.solYR/.x->xmins

//Simplify; ysats=Append[ysats,Solve[sateq==satval,

Sort[satvar][[1]]]]//Flatten//Simplify; Regs=Append[Regs,

GenReg[Regs[[-1]],p+s,{satinq[[s]]},{ysatsP,ysats}//Flatten]];

If[Regs[[-1]]==="R",Return[{assuk,Regs[[1;;-2]],solYRsP,"x",

\[Rho]s,ysatsP,0}]];]; satinq={satinq[[s]]}//.ysats//Simplify;

satvar=Cases[List@@satinq,y[a__,x]:>y[a,x],\[Infinity]];

sateq=satvar[[1]]-satvar[[2]];

satval=sateq//.solYR/.x->xmins//Simplify; ysats={ysatsP,ysats,

Solve[sateq==satval,Sort[satvar][[1]]]}//Flatten//Simplify;

solYRs=PadRight[solYRsP,p+s,{solYR}];

xmins=PadRight[xminsP,p+s,xmins]; str={"Done."}; If[p+s<=nRegs,

{assutp,Regs,solYRs,xmins,\[Rho]s,ysats,volMM}=
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SolMatModRec[Regs,assutp,L,satinq,ysats,solYRs,xmins,p+s];

If[volMM===0,Continue[],assuK=assutp;Break[]];];];,

Refresh["xmins: "<>ToString[j]<>"/"<>ToString[reclen],

TrackedSymbols->{j}]];, Refresh["Region "<>ToString[p]<>": 

"<>str, TrackedSymbols->{str}]]; If[xmins==="x", Return[{assuk,

Regions,solYRsP,xmins,\[Rho]s,ysatsP,0}]]; If[p==nRegs,

PrintTemporary["Calculating Volume..."];

\[Rho]s=\[Rho][x]/.solYRs;

sol\[Mu]=Solve[(Sum[Integrate[\[Rho]s[[m+1]],{x,xmins[[m]],

xmins[[m+1]]}],{m,1,Length[\[Rho]s]-1}])==1/2,\[Mu]];

volMM=1/(8\[Mu]^2)/.sol\[Mu][[2]];]; Return[{assuK,Regs,

solYRs,xmins,\[Rho]s,ysats,volMM}]]

This function is called via the command

{assumkM,Regions,solYs,Xmins,\[Rho]s,ySats,volD5}=

SolMatModRec[{{n,e}},assumk,Lm];

whose output contains

assumkM Modi�ed (if at all) assumptions (assumk),

Regions y-inequalities (5.2.1) de�ning each region,

solYs ya,I(x) in each region,

Xmins Boundaries (xi's in Table 5.1) of each region,

ρs ρ(x) in each region,

ySats Saturated y-inequality for each region, and (�nally)

volD5 Vol(Y ) in terms of k's. We can use Apart[] function to achieve partial
function decomposition and then convert k's to p's as explained in the
beginning of this Appendix.
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