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Abstract

Particle physics describes particles and their interactions at many energy scales, and

different models can be characterized by the relationships between these scales. In

a natural model, particle properties are insensitive to perturbations at higher energy

scales, while in a tuned model particle properties are determined by delicate cancel-

lations between processes even at energy scales separated by large hierarchies. Is our

universe natural or tuned? The answer to this question can have dramatic conse-

quences for the interpretation of fundamental theories and for our understanding of

the inflationary birth of our universe. The discovery of a Standard Model-like Higgs

Boson at the CERN Large Hadron Collider (LHC) has made concrete the possibility

that our universe may be tuned. However, the observed particles of the Standard

Model may still form part of a natural model if new particles and symmetries are

present at energies observable at the LHC and future colliders. Supersymmetry is

one possible extension of the Standard Model motivated by the idea of naturalness,

but its minimal version is highly constrained by searches from the first run of the

LHC. We describe extensions of the minimal supersymmetric model in which a little

hierarchy between the masses of the new supersymmetric particles and the Standard

Model particles is consistent with naturalness and current LHC searches. We also

discuss the potential for discovering these models in the upcoming collisions at the

upgraded LHC and future colliders.
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cross sections from ATLAS l+l− + Emiss
T mT2 [7] and razor analyses

[8]. A monojet search was also considered [9] but did not affect limits.

The top two curves corresponds to sleptons promptly decaying to the

KK tower of a massless modulino in d = 3 (blue) and d = 6 (green)

extra dimensions. The mT2 analysis is more effective at higher masses;

below 140 GeV (170 GeV) for d = 3 (d = 6) the razor analysis sets

stronger limits. Solid red (lowest) curve gives the observed ATLAS

upper bound on the RH slepton production cross section from [7] for

decays to a massless LSP. For validation, a dashed red curve gives

the same bound using our simulation. Black curve gives the predicted

NLO direct production cross section [10] with other superpartners de-

coupled, illustrating that RH sleptons are excluded up to ∼ 225 GeV

for decays to a massless LSP. For the searches considered, present lim-

its on direct production of RH sleptons evaporate in the presence of

the auto-concealment mechanism. . . . . . . . . . . . . . . . . . . . 93

xiv



3.15 Strongest upper bound on stop pair production cross sections from

ATLAS 6 (2 b) jet +Emiss
T [11] and 2 lepton stop [12] searches. A razor

analysis [8], a one lepton stop search [13], and two monojet searches

[9, 14] were also considered but did not strengthen the exclusion limits.

The upper two curves corresponds to stops promptly decaying to a top

+ the KK tower of a massless modulino in d = 3 (blue) and d = 6

(green) extra dimensions. The all hadronic analysis is more effective at

higher masses; below ∼ 360 GeV the two lepton analysis sets stronger

limits, however it should be noted that this analysis is not yet validated

by CheckMATE. Solid red (lowest) curve gives the observed ATLAS

upper bound on the stop production cross section from [11] assuming

prompt decay to a top + a massless LSP. For validation, a dashed red

curve gives the same bound using our simulation. Black curve gives the

predicted NLO direct production cross section [15, 16], thus illustrating

that stops are excluded up to ∼ 680 GeV for a single massless LSP. For

the search considered, present limits on direct production of stops drop

to ∼ 350÷ 410 GeV in the presence of the auto-concealment mechanism. 95

xv



3.16 Strongest upper bound on pair production cross sections for degenerate

first and second generation squarks from ATLAS 2− 6 jets + Emiss
T

[17] and monojet [9] searches. A razor analysis was also considered

[8] but its limits were weaker. The top two curves corresponds to

squarks promptly decaying to the KK tower of a modulino in d = 3

(blue) and d = 6 (green) extra dimensions. The hadronic search is the

more effective of the two analysis except below ∼ 200 GeV. Solid red

(lowest) curve gives the observed ATLAS upper bound on the squark

production cross section from [17] assuming prompt decay to a LSP

with mass ∼ 40 GeV. Dashed red curve gives our bounds for a single

massless LSP for validation. Black curve gives the predicted NLO

direct production cross section when gluinos are decoupled [15, 16],

thus illustrating that degenerate squarks are excluded up to ∼ 775 GeV

for a single massless LSP. For the searches considered, present limits

on direct production of squarks drops to ∼ 450 GeV for d = 3, 6 in the

presence of the auto-concealment mechanism. . . . . . . . . . . . . . 96

3.17 (a) The general set-up we consider, with the MSSM brane embedded in

a large bulk with d compact dimensions of size L� TeV−1. The MSSM

brane may have structure at scales smaller than a TeV−1, and possible

additional extra dimensions of size . TeV−1 are not depicted. (b) The

same embedding, with the MSSM SUSY breaking shown explicitly to

occur on a nearby brane extended in a (4 + d′) dimensional subspace

of the large bulk. (c) The same embedding of the MSSM, with SUSY

breaking extended throughout the entire large bulk. Additional states

may live in the bulk or on sequestered branes of lower codimension as

shown, and are candidates for light bulk LSPs. Although the SUSY

breaking is present everywhere in the large bulk, it may be localized

in further dimensions of size . TeV−1 not shown. . . . . . . . . . . . 97

xvi



3.18 Embedding of 5d Scherk-Schwarz model in a 5 + d dimensional theory

as R3+1 × (S1/Z2 × Z′2) × Md. The MSSM states live on 3-branes

or 4-branes completely localized within the d large compact bulk di-

mensions. The boundary conditions on each end of the TeV−1-sized

dimension partially break the bulk supersymmetry, leading to a com-

plete breaking of SUSY in the theory at scales below TeV, with the

breaking spread through the entire 4 + d dimensional large bulk and

giving large ∼ TeV scale masses to the lightest gravitino KK modes.

Additional states may live extended in the large bulk but localized at

either endpoint of the TeV−1-sized dimension; they will be sequestered

from the full SUSY breaking and can lead to a bulk LSP. . . . . . . . 101

3.19 Differential distribution of KK masses for the decay ẽR → e + X̃ for
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Chapter 1

Introduction

What are the connections between physical phenomena observed at different distance

scales? The Standard Model (SM), which describes all known direct observations

of fundamental particles, can be defined as a local quantum field theory in terms of

the properties of particles observed at a distance scale 1000 times smaller than an

atomic nucleus. This scale is known as the weak scale, and corresponds to energies

of mweak ≈ 100 GeV. It is a remarkable property of quantum field theories that

observations made around a single short (UV) distance scale define in principle the

behavior of the theory at all longer (IR) distance scales. The Standard Model leads

to predictions for the properties of physics from the weak scale all the way through

the scales of hadrons, nuclei, atoms, chemistry, materials, stars, and galaxies. The

experimental and theoretical exploration of the Standard Model at the weak scale

has been the great success of the past fifty years of particle physics, culminating

in the discovery of the Higgs Boson at the Large Hadron Collider [18, 19]. This

success has also led to a puzzling question: is local quantum field theory the only

principle connecting UV and IR physics? This question is most commonly framed

as the naturalness problem, and has driven much of the experimental and theoretical

inquiry into theories of physics beyond the Standard Model (BSM).

1
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1.1 The naturalness principle

The Standard Model defined at the weak scale has a striking feature– small changes

in the properties of particles at the weak scale lead to proportionately small changes

in the physics at all longer distance scales! Such a theory is called a natural theory

[20]. In a natural theory, it appears as though the properties of particles at the weak

scale were ‘chosen’ with no special regard for the behavior at longer distance scales–

any choice of similar properties at the weak scales would lead to similar behavior at

long distances! In a natural theory, the properties in the UV ‘explain’ the properties

in the IR, while in a unnatural, or ‘tuned’ theory, the special IR properties appear as

a coincidence.

There is compelling experimental and theoretical evidence that the Standard

Model itself is part of a larger theory defined at a distance scale much shorter than

the weak scale, corresponding to an energy Λbsm > mweak. This evidence includes

observations of dark matter, matter anti-matter asymmetry, structure of quark and

lepton flavor, neutrino masses, inflationary early universe physics, and the high en-

ergy behavior of gravity. There are a number of experimental constraints on such

theories, for example precision flavor and CP observables, proton decay, dark matter

detection, BBN and CMB observations, and collider constraints. These experiments

are all more sensitive to physics at longer distance scales, and set lower bounds on

Λbsm. In many cases Λbsm could be far out of reach of any experiments, leading to a

crucial question: is there any principle that suggests upper limits on the scale Λbsm?

The principle of naturalness is one possible guide. Although the Standard Model

defined at the weak scale on its own is a natural theory, generic extensions of the

Standard Model are not natural! Theories which are natural have a scale Λbsm .
1 TeV, and generally predict new ‘partner’ particles with properties related to those

of the known SM particles. The masses of the W and Z bosons in the SM are the

most sensitive, and the concept of naturalness can be quantified with a quantity called

tuning,

∆ ∼ ∂ lnm2
Z

∂ lnλi
,

where λi are the properties of the theory at Λbsm. When ∆ is large, small changes in
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the UV parameters λi are enhanced by a factor of ∆ in the IR, and the theory is no

longer natural.

Should we expect the universe to be natural? Discovering a tuned theory of the

weak scale would challenge the notion that the only connection between physics at

different energy scales is through local quantum field theory. Anthropic landscape

selection is one well-studied example of an additional principle connecting UV and

IR observables which could explain observed tunings in field theories (for a review, see

[21]). The anthropic principle has had some success in tackling the naturalness prob-

lems of both the CC and the weak scale, while no field theory solution to the former

is known. However, the anthropic landscape still suffers from fundamental questions

about how to define a predictive measure. Recently, dynamical landscape selection

mechanisms have been proposed, using assumptions about the early cosmology of the

universe to explain a tuning of the weak scale [22, 23, 24]. More dramatic departures

from the normal point of view of the Standard Model as an effective quantum field

theory may also be possible [25]. Or perhaps there simply is no further principle

that can simplify our description of the world beyond a tuned quantum field theory.

In this context, the exclusion of natural theories of the weak scale is as interesting

as their potential discovery (though rather less decisive), with either result shedding

light on the fundamental question of the connections between UV and IR distance

scales.

1.2 Natural theories of the weak scale

The weak scale is set by the mass term m2
H in the Higgs potential at the weak scale,

V = m2
H |h|2 + λ|h|4 + ..., (1.1)

as

|〈H〉|2 ≡ v2

2
=
−m2

H

2λ
(1.2)

where the ellipses indicate non-renormalizable terms generated in the effective poten-

tial at the weak-scale, the qualitatively important effects of which can be absorbed
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in m2
H and λ, and where λ is fixed by the observed value of the Higgs pole mass mh0 .

It is the sensitivity of the Higgs mass squared parameter m2
H to physics at the scale

Λbsm which introduces the naturalness problem.

Theories of BSM physics predict new particles at the scale Λbsm. There are strong

arguments that such theories must include new partner states with couplings to the

Higgs boson of comparable strengh to the couplings of the Standard Model (for a

review of these arguments and a study of alternative possibilities see Refs. [26, 27]

and references therein). Taking into account couplings and multiplicities, the two

particles most strongly coupled to the Higgs boson in the Standard Model are the

top quark which gives loop-level contributions to the potential of order 3y2
t where

yt ≈ 0.9 is the top Yukawa coupling, and the SU(2) gauge bosons which give loop-level

contributions of order 3
4
g2

2 where g2 ≈ 0.6 is the SU(2) gauge coupling. At one-loop,

contributions from new ‘partner’ states at Λbsm feed into the Higgs potential as

∆m2
H,EW ≈

3g2
2

32π2
Λ2
bsm, (1.3)

∆m2
H,top ≈

3y2
t

8π2
Λ2

bsm. (1.4)

In ‘supersoft’ theories, the new states at Λbsm contribute to the higgs potential only

over a narrow energy range, while if the new states at Λbsm contribute to the Higgs

potential over many decades of energy up to a scale Λmess, then the contributions are

enhanced by factors of ln Λ2
mess

Λ2
bsm

until the weak coupling is saturated and ∆m2
H ≈ Λ2

bsm.

For supersoft theories the weak coupling of the SM establishes a small hierarchy

between the electroweak scale and the new states; top partner states appear at a

natural scale of ∼ 600 GeV and SU(2) partners at ∼ 2 TeV (see for example ref. [28,

27]).

A major component of the remaining experimental program for the LHC and

its upgrades is to explore the space of natural theories. The most generic feature of

such theories is that they contain new particles coupled to the Higgs boson, leading to

deviations from SM precision measurements at loop level [29, 30] and often tree-level if

the Higgs sector is non-minimal (see e.g. [31, 32]). Often even more constraining than
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Higgs property measurements are the constraints on the partners of the top quark. In

models where the top is related by a continuous symmetry to its partner, such as SUSY

or minimal composite Higgs, the top partners are colored and have a large production

cross section at the LHC. The 8 TeV LHC run has deeply probed such states up to

∼ 600 GeV [1, 2], approaching the edge of the natural window, with the detailed limits

depending on how the new states decay (for phenomenological studies of different

decays possibilities, see for example Ref. [33, 34] in the SUSY context and Ref. [32] for

the composite Higgs). On the other hand, models where the top partners are related

by a discrete symmetry to the top do not require new colored states [35, 36, 37],

and are dominantly constrained at colliders by Higgs precision measurements. Direct

limits on the partners of the SU(2) gauge states are less constraining and generally

leave open a natural mass range.

These general arguments require that new partner particles exist at a scale Λbsm .
1 TeV for the theory beyond the Standard Model to remain natural; this is the

largest natural hierarchy that can be maintained at one-loop given the strength of

the Higgs couplings. A further question is: can the full theory remain natural up

to a scale ΛUV � Λbsm? One simple solution is to study models where there are

no further scales, ΛUV ∼ TeV [38]. Such models however must address many more

problems than naturalness at the TeV scale, for example dark matter, baryogenesis,

the axion, and the UV completion of gravity, and generally suffer from far more

stringent constraints than those implied only by naturalness. On the other hand, if

ΛUV is as high as the scale of gauge coupling unification ∼ 1016 GeV or the naive

scale of the UV completion of gravity ∼ 1019 GeV, then many of these issues can be

resolved at high scales with no experimental constraints, but the sector at Λbsm must

be extended to protect the Standard Model beyond one loop order. These additional

particles are also experimentally constrained, often giving even stronger constraints

on the naturalness of the theory than direct constraints on the top partners and Higgs

properties.
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1.3 The minimal supersymmetric solution

Supersymmetric models are one such possibility. In the minimal version, the softly

broken minimal supersymmetric standard model (MSSM), partner states for all of

the SM particles (not just the most strongly coupled ones) are introduced [39]. In the

MSSM, these new states are introduced at a scale Λ2
bsm ∼ m2

soft where supersymmetry

is softly broken, and no new states enter until a scale Λmess characterizing the messen-

ger sector that communicates the spontaneous breaking of supersymmetry to MSSM

states. This framework has a number of advantages besides naturalness, including a

variety of dark matter candidates, improved gauge coupling unification, and a deep

connection with string completions of gravity [40].

In the MSSM, the dominant collider limits are on the most abundant colored par-

ticles. The 1st and 2nd generation squarks (which are motivated to be approximately

degenerate by flavor constraints) and the gluinos are constrained from 8 TeV LHC

results to haves masses & 1.5− 2 TeV assuming their simplest decay topologies [17].

If all the superpartners are at this scale including the top partners (stops), then the

theory is significantly tuned. However, the limits on the the third generation squarks

are by comparison much weaker, with limits & 600 GeV for the simplest decays [1, 2].

Modifications of the most typical decay signatures of superparticles, for example

through R-parity violation [34] or compressed spectra [41], accentuate this situation–

although the overall limits tend to decrease, the strength of limits on gluinos tends

to increase relative to limits on the third generations squarks. Since at one-loop the

mass scale of the stops is the dominant source of tuning, current experimental limits

and naturalness together strongly motivate ‘Natural SUSY’ models [28, 42, 43, 44],

where the stops are the lightest colored states, and there is a significant hierarchy

before the 1st and 2nd generation squarks and gluino appear.

While it is clear that ‘Natural SUSY’ models defined at the scale Λbsm ∼ mt̃ ∼
600 GeV satisfy the naturalness criterion while remaining consistent with experi-

mental constraints, in the softly broken MSSM framework additional complications

arise. For typical models, Λmess & 100×msoft ∼ 100 TeV. The one-loop formulae of
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Eqs. 1.3,1.4 are enhanced by a factor ln Λ2
mess/m

2
soft & 10 – these models are a fac-

tor of ten times more tuned than the naive natural model defined at the TeV scale!

Furthermore, the hierarchy between the gluino and the stop in the Natural SUSY

spectrum becomes another source of tuning, with the natural ratio mt̃ & M3/2 after

even a decade of running [45]. In fact, for a variety of realistic scenarios incorpo-

rating natural spectra and other mechanisms for hiding superpartners, the tuning of

the weak scale in MSSM-like models is ∆−1 ∼ 1% given current experimental limits

[46, 45, 47, 48, 49, 50]. The experimental absence of superpartners at a low enough

scale for the MSSM to be fully natural is part of the supersymmetric little hierarchy

problem – although SUSY can still in principle protect the SM from the big hierarchy

to the highest gravitational scales ∼ 1019GeV, it appears there is a little hierarchy

between the natural scale msoft ∼ mweak and the actual value of msoft if the MSSM is

realized in nature.

There is another significant experimental constraint on the tuning of Natural

SUSY models from the Higgsinos, the superpartners of the Higgs bosons. The Hig-

gsino mass µ is related directly at tree level to a contribution to the Higgs potential,

m2
H = µ2 + .... In MSSM-like models with a low scale Λmess, LHC8 limits on Higgsinos

decaying to light gravitinos or other lighter states give µ & 300 GeV [51], leading to

a tuning of ∼ 10%.

The observation of a mh0 ≈ 125 GeV Standard Model-like Higgs Boson at the

LHC provides another source of tension in the MSSM. For the pure MSSM particle

content, this mass requires a radiative contribution from the stop sector � 600GeV,

leading to . 5% tuning [52]. Extensions to the MSSM particle content can increase

the Higgs mass without as large contributions to the tuning of the weak scale [52, 53],

and thus naturalness combined with the Higgs properties suggests a much richer

structure than the pure MSSM at the scale m2
soft.
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1.4 Extending supersymmetry in natural directions

In the light of LHC8 results, the interplay of naturalness, Higgs properties, and ex-

perimental limits on colored particles has been well characterized for the softly bro-

ken MSSM and its simple extensions such as the NMSSM or Dirac gauginos. The

(un)naturalness of such models given current LHC results is tied to two important

structural assumptions of the softly broken MSSM:

1. The Higgs sector in the low energy theory below the scale msoft is the SM Higgs

sector or a small perturbation from it.

2. There is a hierarchy between the MSSM states atmsoft and the states responsible

for communicating SUSY breaking at Λmess.

In this work, we study supersymmetric solutions to the naturalness problem that

violate these assumptions in order to extend the natural hierarchy between the weak

scale and the observable superpartners. These models introduce a significant increase

in complexity and many new experimental constraints, but nonetheless we find models

which are calculable, satisfy all the new constraints, and decrease the tuning by a

factor of ∼ 10 compared to MSSM-like models.

In Chapter 2 we study the Twin SUSY model, which violates (1) and essentially

decreases the tuning by modifying the relationship between the scales of the Higgs

potential and the electroweak scale, Eq. 1.2. Because these models modify the IR

Higgs sector, the principle collider constraints and novel signatures are Higgs coupling

deviations, precision electroweak, and new scalar resonances. Substantial portions of

Chapter 2 have been published in Ref. [54] in collaboration with Nathaniel Craig.

K.H. made important contributions to all aspects of the work presented in this section.

In Chapter 3 we study the Maximally Natural SUSY model, which violates (2)

– the theory becomes extra dimensional at the TeV scale and the MSSM gauginos

and their extra-dimensional partners communicate SUSY breaking directly to the

3rd generation. A heavy Higgsino mass and a large splitting between the gluino and

the stops are consequences of the extra-dimensional nature of the SUSY breaking.

Limits on the third generation squarks are the dominant constraint on these models,
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while the presence of extra dimensions leads to new signatures not present in other

natural SUSY models: a unique degenerate spectrum, potentially observable KK

excitations, and in some cases novel decay topologies into large extra dimensions.

Substantial portions of Chapter 3 have been published in Refs. [55, 56] and are being

prepared for publication in Refs. [57, 58] in collaboration with Savas Dimopoulos,

John March-Russell, Isabel Garcia-Garcia, and James Scoville. K.H. made important

contributions to all aspects of the work presented in this section.

The models studied in this work demonstrate that supersymmetric solutions to

the naturalness problem can remain untuned even after the results of LHC8. The

imminent 13 TeV run of the LHC will probe these models to tunings of ∼ 10% level,

and potential future ∼ 100 TeV hadron colliders will either explore the rich dynamics

of these models discovered at 13 TeV, or very deeply probe the possibility of a fully

natural solution to the hierarchy problem even beyond the framework of the MSSM.



Chapter 2

Twin SUSY

2.1 Introduction

Just as the discovery of a Standard Model (SM)-like Higgs boson at the LHC [18, 19]

sharpens the urgency of the hierarchy problem, the onward march of null results

in searches for new physics places increasing stress upon conventional ideas for elec-

troweak naturalness. Perhaps electroweak naturalness is a dead end, with the solution

to the hierarchy problem lying somewhere in the landscape. But perhaps electroweak

naturalness is still close at hand, concealed only by its unexpected properties. This

latter possibility raises a pressing question: Can we learn anything new about elec-

troweak naturalness from null results at the LHC? More specifically,

• Are there signatures of naturalness other than conventional top partners?

• Are there wholly natural theories where the conventional signs of naturalness –

especially supersymmetric naturalness – may be out of reach of the LHC?

To a certain extent these possibilities are illustrated by composite Higgs models

[59, 60], where the Higgs mass is protected by a global symmetry and heavy reso-

nances lie in the multi-TeV range – but even here, one expects light fermionic top

partners to accommodate the observed Higgs mass [61], as well as copious production

of heavy resonances in the second LHC run. Moreover, such models are typically in

tension with precision electroweak constraints and hints of gauge coupling unification,

10
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at variance with what few indirect indications we have about physics in the ultra-

violet. While there is also still room for conventional supersymmetric models with

light superpartners whose signatures are muddled by reduced event activity [62] or

missing energy [63], these solutions are under increasing pressure from evolving search

strategies at the LHC – and, in any event, have little intrinsic connection between

naturalness and the lack of natural signals.

An attractive possibility is to consider theories enjoying double protection of the

Higgs potential, for example via both supersymmetry and a spontaneously broken

global symmetry [64, 65, 66]. This raises the prospect of partially decoupling the

signals of each symmetry mechanism without imperiling the naturalness of the weak

scale. In this work we explore the double protection provided by the combination

of the twin Higgs mechanism [35] and supersymmetry.1 In these models an exact

Z2 symmetry between the MSSM and a mirror MSSM leads to an approximate U(4)

symmetry, and the light Higgs is primarily composed of the pseudo-goldstones of

the broken U(4). Although supersymmetry plays a role in the ultraviolet comple-

tion, the stops need not be light. Moreover, the fermionic top partner furnished by

double protection is neutral under the Standard Model gauge group. Rather, the pre-

dominant signals of naturalness emerge through the Higgs portal: modifications of

Higgs couplings, an invisible Higgs width, resonant Higgs pair production, and an

invisibly-decaying heavy Higgs. Thanks to double protection of the Higgs potential,

the conventional signs of supersymmetric naturalness are absent even at the 13/14

TeV LHC, with percent-level tuning in the Higgs vev (comparable to the “fine-tuning”

of the QCD scale) compatible with stops at ∼ 3.5 TeV and higgsinos at ∼ 1 TeV.

The supersymmetric UV completion of the twin Higgs model we study has the

attractive features of maintaining perturbative gauge coupling unification, calculable

and safe precision electro-weak and flavor observables, and a light CP-even Higgs mass

naturally in the experimentally observed window. While many interesting conclusions

about twin Higgs phenomenology can be reached from an effective theory of only

the scalar Higgs and SM degrees of freedom in twin models[68], studying a full UV

1For recent work in a similar spirit combining supersymmetry and the composite Higgs, see e.g.
[67].
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completion also has the advantage of an unambiguous tuning measure to compare to

other perturbative solutions to the naturalness problem like the NMSSM and a direct

understanding of collider limits on all of the new colored and electroweak states.

Although supersymmetric completions of mirror and left-right twin Higgs models

were considered prior to Higgs discovery [69, 70], they focused on eliminating the

intrinsic tuning from supersymmetric quartics at the cost of additional model-building

complexity and a loss of MSSM-like gauge coupling unification. In this work we

explore the simplest supersymmetric mirrow twin Higgs in light of the observed mass

and couplings of the SM-like Higgs, taking the tuning arising from supersymmetric

quartics at face value. Venturing beyond the pseudo-goldstone limit and accounting

for the contributions of the full Higgs effective potential, we find that this simple

model has tuning comparable to the more complicated efforts.

This chapter is organized as follows: In section 3.3 we begin by reviewing the

simplest supersymmetric twin Higgs model and the parametrics of the Higgs potential

in the pseudo-goldstone limit. We then turn to an analysis of the Higgs mass and full

effective potential at one loop, computing the fine-tuning of the theory as a function

of the superpartner mass scales. In section 2.3, we give a more detailed discussion

of the possible UV completions of the twin Higgs singlet portal. In section 3.5 we

study the phenomenology of the model in light of the Higgs discovery, focusing on

the implications of Higgs couplings for the allowed parameter space and detailing the

most relevant signals of naturalness. In section 2.5 we consider ancillary limits from

precision electroweak, flavor, and cosmological considerations.

2.2 A Supersymmetric Twin Higgs

2.2.1 Basic Set-up

Mirror Twin Higgs models are based on the idea that a Z2 symmetry exchanging the

SM Higgs and a “mirror” Higgs field charged under a distinct identical copy of the

Standard Model gauge group leads to an accidental U(4) symmetry in the quadratic

terms of the Higgs potential [35, 68]. If the Z2 symmetry is exact – implying a
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complete mirror copy of the matter and gauge fields coupled to the mirror Higgs – then

the full quadratic effective potential including UV-sensitive mass corrections possesses

the accidental U(4) symmetry. The light SM Higgs doublet is identified with some

of the pseudo-goldstones of the spontaneously broken U(4) and is therefore protected

from quadratic sensitivity to the cutoff. The sensitivity to UV scales only re-emerges

through the (presumably small) quartic and higher order terms explicitly breaking

the U(4) symmetry, and is suppressed by the (presumably large) coefficient of the

U(4) preserving quartic terms in a perturbative completion (or equivalently ∼ (4π)2

in a composite model). As with any pseudo-goldstone mechanism for protecting the

Higgs mass, a UV completion such as supersymmetry is required for the theory above

a few TeV.

Our perturbative SUSY twin Higgs model comprises two complete copies of the

MSSM, an “A-sector” which will correspond to the observed sector with the light

fields of the Standard Model, and a “B-sector” with identical copies of the MSSM

gauge group and field content. The couplings and soft SUSY breaking masses of the

two sectors are set equal by a Z2 symmetry exchanging the A and B sectors. A single

singlet superfield S couples the A and B sectors. The combination of supersymmetry

and the Z2 symmetry yields a theory that is, in principle, complete up to the Planck

scale.

The Z2 and gauge symmetries guarantee that the singlet-Higgs interactions respect

a full U(4) global symmetry, of which gauge and Yukawa interactions preserve an

SU(2)A × U(1)A × SU(2)B × U(1)B subgroup. To make this explicit, we write the A

and B sector Higgs fields in U(4) multiplets as

Hu =

(
hAu

hBu

)
, Hd =

(
hAd

hBd

)
, (2.1)

and the superpotential of the Higgs-singlet sector becomes

WU(4) = µ(hAuh
A
d + hBu h

B
d ) + λS(hAuh

A
d + hBu h

B
d ) +MSSS

≡ µHuHd + λSHuHd +MSSS. (2.2)
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The Z2 symmetry also guarantees that the quadratic soft breaking terms preserve

the full U(4), even after radiative corrections. Assuming the singlet has a large

soft mass m2
S � µ,MS, it will decouple leaving its F-term quartic intact. The full

U(4) preserving scalar potential in the Higgs sector is then given by the sum of

supersymmetric and soft contributions,

VU(4) = (m2
Hu

+ µ2)|Hu|2 + (m2
Hd

+ µ2)|Hd|2 − b(HuHd + h.c.) + λ2|HuHd|2 (2.3)

Crucially, the Z2 symmetry automatically leads to a potential for the Higgs with

both quadratic terms and a potentially large quartic term respecting the larger U(4)

symmetry. This can be contrasted with composite twin Higgs models, where the

Z2 on its own does not guarantee that the strong sector will respect the necessary

U(4) symmetry.

The gauge and Yukawa couplings of the A and B sectors give rise to explicit

breaking of the U(4) at both tree and loop level. When the U(4)-symmetric quartic

dominates over the U(4)-breaking quartic terms (and other higher order terms), this

model provides a perturbative realization of the twin Higgs mechanism. In particular,

in the limit that the Hu and Hd vevs lie completely in the B-sector direction, the

pseudo-goldstones of the broken U(4) correspond to a light A-sector Higgs doublet

with a scalar mass protected by the twin mechanism against large radiative corrections

from the top and gauge sectors.

In the absence of supersymmetry, electroweak gauge and Yukawa interactions

would only give rise to U(4) breaking quartics at one loop, the most important of

which is the quartic δλu generated by the top sector. However, with the introduction

of supersymmetry, the D-terms of the A and B sector gauge groups necessarily gen-

erate U(4)-breaking quartic terms at tree level. For the neutral components of the

Higgs field these contributions are

V
��U(4) =

g2 + g′2

8

[
(|h0

u
A|2 − |h0

d
A|2)2 + (|h0

u
B|2 − |h0

d
B|2)2

]
+ δλu(|h0

u
A|4 + |h0

u
B|4) + . . . .

(2.4)
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The U(4)-breaking terms are important to generate a mass for the light pseudo-

goldstone Higgs, but unfortunately their form necessarily leads to symmetric vevs

between the A and B sector, vA = vB, which we find to be phenomenologically

unviable. To rectify this problem, we assume there is a small source of soft breaking

of the Z2 symmetry which we take to be of the simple form

V��Z2
= ∆m2

Hu
(|hAu |2 − |hBu |2) + ∆m2

Hd
(|hAd |2 − |hBd |2). (2.5)

2.2.2 The pseudo-goldstone limit

The Higgs sector of the SUSY twin model can be most easily understood in the limit

that all of the non-goldstone directions have decoupled. This condition is satisfied

at tree-level when b sin 2β � (g
2+g′2

4
cos2 2β)f 2 and λ2 � g2+g′2

2
cot2 2β, where f 2 ≡

〈hA〉2 + 〈hB〉2 ≡ v2
A + v2

B is the total magnitude of the U(4) breaking vev.

In this limit, f and tan βA = tan βB can be determined from the U(4) symmetric

potential (Eq. 2.3),

tan β =
µ2 +m2

Hd

µ2 +m2
Hu

(2.6)

f 2 =
1

λ2

(
m2
A − 2µ2 −m2

Hu
−m2

Hd

)
(2.7)

where mA = 2b
sin 2β

is the tree-level mass of one of the physical pseudoscalar Higgses.

To study the light Higgs state, it is convenient to work in terms of the nonlinear

realization of the uneaten goldstone direction

Hu = f sin β




0

sin φ√
2f

0

cos φ√
2f



, Hd = f cos β




0

sin φ√
2f

0

cos φ√
2f




(2.8)

where φ is the pseudo-goldstone Higgs. A potential for φ is generated by the U(4)

breaking terms Eqs. 2.4 and 2.5. The minimization conditions yield the vev in terms
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of the Z2 breaking masses

sin2 φ√
2f

=
v2

f 2
=

1

2


1− ∆m2

(
g2+g′2

8
cos2 2β + δλu sin2 β

)
f 2


 (2.9)

where we now take the canonical observed vev in the A sector vA = v ≈ 174GeV

and define ∆m2 ≡ ∆m2
Hu

sin2 β + ∆m2
Hd

cos2 β. The mass of the light state φ at the

minimum is given by

m2
φ = (m2

Z cos2 2β + 4δλuv
2 sin4 β)

(
2− 2v2

f 2

)
. (2.10)

Eqs. 2.9 and 2.10 illustrate several important points for the following more de-

tailed discussion. First, it is clear that to obtain a hierarchy in vevs v2 < f 2/2, the

Z2 breaking mass terms must be tuned against the potential generated by the U(4)

breaking quartic terms. This leads to an intrinsic tuning of the weak scale of order

f 2/2v2. Ref. [69] sought to remedy this tuning in a similar SUSY twin model by

removing the B-sector D-term quartics. This additional Z2 breaking modifies Eq. 2.9

to give a small hierarchy v2 < f 2/2 even in the absence of a Z2 beaking mass, but

we see immediately that the remaining symmetric radiative contributions δλu will re-

main important, and we find numerically that there is in fact very little to be gained

by this modification. Likewise ref. [70] sought in a left-right twin SUSY model to

introduce a natural hierarchy v2 < f 2/2 through removing the D-term contributions

by forcing tan β = 1 and including soft Z2 breaking quartics from a non-minimal

singlet sector. This mechanism can be adapted to the mirror model, but again we

find that after including the radiatively generated quartic terms there is little benefit.

In this respect, the added model-building complications of [69, 70] can be sidestepped

without substantially worsening the tuning of the theory.

Another important point is that the mass of the light Higgs state is generated by

the same quartic terms that give mass to the light MSSM Higgs, with no contributions

from the U(4) symmetric coupling λ. However, for large hierarchies of v2/f 2 there

can be up to a factor of two enhancement in the squared mass compared to the
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MSSM formula, as is evident in Eq. 2.10. Physically, in this limit the φ potential

receives contributions from both the A- and B-sector quartics. This enhancement

brings the tree-level Higgs mass prediction tantalizingly close to the observed value,

and is critical to obtain the observed mass of the SM-like Higgs in regions of small

tan β. Note also that the MSSM-like limit cannot be obtained simply by taking the

f →∞ limit of Eq. 2.10, since there are large trilinear couplings of O(f) in the Higgs

sector. The MSSM-like limit is instead obtained by taking λ → 0 and MS → ∞,

which introduces appropriate corrections to Eq. 2.10 that are not apparent in the

pseudo-goldstone limit.

2.2.3 Full effective potential and Higgs mass

Perturbativity limits the range of allowed singlet couplings λ, and the observed light

Higgs mass mh ≈ 125GeV limits the range of allowed tan β. We therefore find that

over most of the parameter space of interest there are important non-decoupling effects

in the potential and a treatment beyond the pseudo-goldstone limit is necessary.

The structure of the radiative corrections is also very important to understanding

the light Higgs mass and the minimum of the U(4) breaking potential, and we find it

is necessary to carefully include the large U(4) breaking contributions to the effective

potential. In particular, we evaluate the effective potential at the SUSY breaking

scale msoft including the full leading log plus one-loop finite contributions from both

the A and B top/stop sectors (see e.g. [71, 72]), as well as the one-loop leading log

contributions from the A and B electroweak gauge sectors. The leading contributions

of the singlet to the effective potential are U(4) symmetric and not included in our

analysis. A qualitatively important aspect of the effective potential is that it is

Z2 symmetric and has a minimum at the symmetric vev vA = vB, as can easily be

seen from inspecting the one-loop contributions. Therefore the Z2 breaking masses

remain necessary to obtain a hierarchy in vevs.

After including the effective potential contributions to the full tree-level potential

of Eqs. 2.3, 2.4, and 2.5, we numerically determine the minimum and spectrum of

Higgs states, including the wave-function renormalization of the lightest Higgs state.
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Figure 2.1: The lightest Higgs mass in the SUSY twin Higgs model as a function
of a common stop mass mt̃1 = mt̃2 ≡ mt̃ and tan β with λ = 1.4, f = 3v, and
mA = 1.5TeV. The green shaded region denotes 123GeV < mh < 127GeV.

Away from the pseudo-goldstone limit tan βA = tan βB no longer necessarily holds.

We fix the relative values of the Z2 breaking masses by requiring tan βB = tan βA−0.1,

which leads typically to a similar magnitude for ∆m2
Hu

and ∆m2
Hd

.

The light Higgs mass for f = 3v, λ = 1.4, and mA = 1.5TeV is shown in Fig. 2.1

as a function of tan β and a common stop mass mt̃1 = mt̃2 with no mixing. We

find that the non-decoupling effects decrease the mass by 5− 10% below the pseudo-

goldstone expectation of Eq. 2.10 in the region of interest. For large tan β, the

radiative corrections from mt̃ ≈ 1.3TeV stops are necessary to obtain the observed

Higgs mass, while for a heavy stop mt̃ ≈ 5TeV, tan β can be as small as 2.4.

2.2.4 Fine-tuning

The supersymmetric UV completion of the mirror twin Higgs model provides the

crucial advantage of allowing a meaningful calculation of fine-tuning in terms of soft

SUSY-breaking parameters. There are two independent sources of tuning in the twin

SUSY model. The first comes from creating a hierarchy between the A and B sector
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vevs. According to Eq. 2.9, this introduces a tuning of ∆m2 against the quartic U(4)

breaking terms,

∆v/f ≈
∂ ln(v2/f 2)

∂∆m2
=

(
f 2

2v2
− 1

)
. (2.11)

Numerically we find this relationship to be quite accurate even away from the pseudo-

goldstone limit and in the presence of additional contributions to the effective poten-

tial. This tuning is present in any twin Higgs model in which a soft Z2 breaking mass

leads to the hierarchy in vevs [68]. An important aspect of the twin mechanism is

that the Z2 breaking is soft and therefore the ∆m2 terms do not have any additive

sensitivity to other soft masses.

The second source of tuning in the twin SUSY model is the tuning of the total

U(4) breaking vev f against the quadratic contributions to the U(4) symmetric Higgs

masses. This is analogous to the tuning of the normal electroweak vev in non-twinned

SUSY models. At one loop the most important radiative corrections to the U(4)

symmetric Higgs masses arise from the stop and singlet soft masses

δm2
Hu
≈ 3y2

t

8π
(m2

t̃L
+m2

t̃R
) log

Λmess

msoft

+
λ2

8π2
m2
S log

Λmess

msoft

+ . . . (2.12)

δm2
Hd
≈ λ2

8π2
m2
S log

Λmess

msoft

+ . . . (2.13)

where Λmess is the scale of mediation of SUSY breaking. In the full RG there are also

important contributions from the effect of the gluino on the running of the stop mass

and from the running of λ if it approaches its Landau pole near the messenger scale.

In the limit m2
A � λ2f 2, the f tuning takes a simple form. When the dominant

tuning is due to the stop contributions to the up-type Higgs mass for example,

∆f ≈
∂ ln f 2

∂ ln δm2
Hu

=
δm2

Hu

2λ2f 2 cos2 β
. (2.14)

The total tuning of the the SUSY twin model is the product of the two independent

tunings:

∆twin = ∆f ×∆v/f ≈
v2�f2

δm2
Hu

4λ2v2 cos2 β
(2.15)
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where we have taken the approximate expressions Eqs. 2.11 and 2.14 in the limit

v2 � f 2.

It is interesting to measure the relative improvement in tuning of the SUSY twin

model compared to a more minimal alternative. A convenient benchmark is the

NMSSM, which can likewise accommodate the observed Higgs mass with tree-level

contributions from the singlet quartic and has been shown to compare favorably with

a number of alternative models for reducing the tuning of SUSY models in light of

recent LHC results [73]. The NMSSM tuning equation has nearly identical form to

the tuning of the SUSY twin model in the same decoupling limit,

∆NMSSM ≈
δm2

Hu

2λ2
NMSSMv

2 cos2 β
≈ δm2

Hu

m2
h/(2 sin2 β)

. (2.16)

The key difference is that in the NMSSM, the value of the quartic coupling in the

denominator is fixed by the observed light Higgs mass, mh ≈ 125GeV. In the SUSY

twin model, the twin mechanism protects the light A-sector pseudo-goldstone Higgs

mass from the large U(4) invariant quartic coupling λ in the denominator. The tuning

can therefore be substantially reduced while maintaining a light Higgs. For example,

for tan β = 2 and λ = 1.4, Eqs. 2.15 and 2.16 imply that the NMSSM is roughly

five times more tuned than the SUSY twin model for the same stop mass. Similar

relationships holds for the relative tuning with respect to the singlet soft mass and

the tree level µ-term.

This discussion also brings up an important difference between the SUSY twin

model and composite twin Higgs models. In composite twin Higgs models, the con-

nection between the tuning and the light Higgs mass re-enters only through the loga-

rithmic dependence on the cut-off scale for the radiative U(4) breaking quartic terms.

On the other hand in the SUSY twin model, the simultaneous requirement of a per-

turbative singlet coupling λ and the observed light Higgs mass introduces an indirect

constraint on the size of the effective quartic coupling setting the f tuning. In detail,

the structure of the D-term and radiative contributions to the U(4) breaking quartic

terms fixes tan β for a given Higgs mass and set of soft parameters. However, the

effective size of the tree-level U(4) preserving quartic coupling is dependent on tan β
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and enters the tuning formulae in the decoupling limit as λ2
(

sin 2β
2

)2
. For perturbative

couplings λ . 2, it’s critical that the correct Higgs mass can arise at small values of

tan β to obtain a large effective quartic.

To improve upon these rough estimates of tuning, we perform a numerical study

of the parameter space using the full one-loop RG equations and the complete Higgs

effective potential as described in Sec. 2.2.3. In particular, we define a point in the

low energy parameter space with a choice of the parameters λ, f , m2
t̃
, m2

S̃
, mA, µ,

and tan β defined at the scale m2
soft = m2

t̃
. For simplicity, at the soft scale we take

the limit of no stop mixing and degenerate stop masses mt̃L
= mt̃R

≡ mt̃ and set the

gluino degenerate with the stops, M3 = mt̃. We then determine the Z2 preserving

Higgs soft masses m2
Hu

and m2
Hd

and the Z2 breaking soft masses ∆m2
Hd

and ∆m2
Hd

by minimizing the effective potential. The tunings of the f and v
f

parameters are

evaluated by independently varying the soft masses at Λmess, running them back

down to the soft scale, and numerically evaluating the shift in the vevs,

∆f =




∑

x={m2
t̃L
,m2

˜tR
,M3,m2

Hu
,m2

Hd
,µ,m2

S̃
}

(
∂ ln f 2|msoft

∂ lnx|Λmess

)2




1
2

(2.17)

∆ v
f

=




∑

x={∆m2
Hu

,∆m2
Hd
}

(
∂ ln v2/f 2|msoft

∂ lnx|Λmess

)2




1
2

(2.18)

Note that the twin mechanism protects the running of the Z2 breaking masses from

additive contributions from the stop and singlet sectors above the soft scale, and the

running of the Z2 breaking masses is a small effect on the tuning. Again the combined

tuning of the twin model is the product ∆twin = ∆f ×∆ v
f
.

For comparison we also define a benchmark NMSSM model with the same field

content, superpotential, and soft terms as the A-sector plus singlet of the twin model.

We use the same framework to determine the low energy parameters of this model
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and to calculate the tuning, which we define as

∆NMSSM =




∑

x={m2
t̃L
,m2

˜tR
,M3,m2

Hu
,m2

Hd
,µ,m2

S̃
}

(
∂ ln v2|msoft

∂ lnx|Λmess

)2




1
2

. (2.19)

In all plots we choose a reference value of the messenger scale of Λmess = 100mt̃,

so that for each choice of mt̃ and λ at the soft scale, the value of λ at the messenger

scale is roughly the same.
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Figure 2.2: Tuning in the twin SUSY model with λ = 1.4, f = 3v, mA = 1.5TeV, and
m2
S = (1TeV)2. The left is the absolute tuning, and the right is the relative tuning

compared to the NMSSM, ∆NMSSM/∆twin, with the NMSSM parameters λ = 0.6,
mA = 0.8TeV, and m2

S = (1TeV)2. At each point, tan β is determined independently
for the twin and NMSSM models to obtain mh = 125GeV.

The dominant LHC limits on SUSY models come from constraints on the produc-

tion of colored particles. The mass of the (N)LSP is also important both for direct

searches and to determine the sensitivity to the decays of colored particles2. Direct

constraints on stops as well as constraints on other colored sparticles3 therefore enter

2For low-scale mediation models with a light gravitino LSP, the effect of the NLSP mass on limits
for colored particles is much less decisive.

3In the simplest models of SUSY breaking the mass scale for the other colored sparticles must
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the tuning through mt̃, while limits on the LSP mass enter the fine-tuning through

the tree-level contributions from µ, which must be at least as large as the (N)LSP

mass. In Fig. 2.2 we study the tuning of the twin SUSY model as a function of µ and

mt̃, both in absolute terms and compared to the NMSSM. For each value of mt̃ and

µ, tan β is determined independently for the twin and NMSSM benchmark models to

obtain mh = 125GeV. For the twin model, the parameter choices of λ = 1.4, f = 3v,

mA = 1.5TeV, and m2
S = (1TeV)2 were chosen as an approximate best-case scenario

for tuning given the perturbativity and Higgs coupling constraints, which will be dis-

cussed respectively in the Sec. 2.3 and Sec. 2.4.2. For the NMSSM we chose also a

roughly optimal parameter point of λ = 0.6, mA = 0.8TeV, and m2
S = (1TeV)2.

As discussed above, the improvement in tuning compared to the NMSSM at low

stop masses is small due to the large value of tan β necessary to obtain the correct

Higgs mass. However, at large stop masses the effective SUSY twin quartic becomes

large and the degree of tuning remains better than 1% out to mt̃ ≈ 3.5TeV and

µ ≈ 1TeV. At this point the degree of tuning for the twin model is better by a factor

of ∼ 3.5 than the NMSSM. There is also an unintuitive mild increase in tuning at

small values of µ in the SUSY twin model due to the structure of the RG equations

for the singlet and Higgs soft masses.

The consequences of the measured value mh ≈ 125GeV on the tuning of the SUSY

twin Higgs model are emphasized in Fig. 2.3. For this value of the Higgs mass, addi-

tional U(4) breaking quartic couplings actually decrease the tuning of the model by

allowing the light Higgs mass to be obtained at smaller values of tan β. An important

consequence is that the SUSY twin model is much more effective at reducing the tun-

ing for stop masses of a few TeV, where the radiative contributions to the Higgs mass

allow a small value of tan β. This also raises the interesting possibility of decreasing

the tuning at low stop masses by including extra tree-level U(4) breaking quartics. A

simple example would be to expand the singlet sector to include independent singlets

SA and SB coupling separately to the A and B sector Higgses to introduce NMSSM-

like quartics. A modest value for the new singlet couplings λ
��U(4) ∼ 0.2 − 0.4 could

be similar to the stop mass, and searches for these particles set the most stringent constraints. In
general at least the gluino mass must be within a factor of ∼ 2 of the lightest stop mass to avoid
introducing additional fine-tuning to obtain a separation after RG flow [74].
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Figure 2.3: Tuning in the twin SUSY model with λ = 1.4, f = 3v, mA = 1.5TeV,
m2
S = (1TeV)2, µ = 0.5TeV. The green shaded region is 123GeV < mh < 127GeV.

lift the Higgs mass to the measured value at low tan β. For example, for mt̃ = 1TeV,

tan β = 1.7, and λ = 1.4, we find that a tuning of better than 10% can be obtained (a

factor of ∼ 3 improvement over the NMSSM) and the Higgs mass can be accomodated

with λ
��U(4) ∼ 0.4. For simplicity we do not include this non-minimal contribution to

the Higgs mass in any of the following results unless otherwise noted.

The soft mass of the singlet plays two important roles in determining the tuning

of the twin SUSY model. First, it makes a contribution to the running of the Higgs

masses which is important especially for large values of λ. The sensitivity of the

tuning to this effect is depicted in Fig. 2.4. For λ & 1.5, the Landau pole becomes

too close to the messenger scale and the contributions to the running from the singlet

become large (see section 2.3 for further discussion of the Landau poles and UV

completion of the singlet). For smaller values λ ∼ 1.2− 1.5, a 1TeV singlet starts to

make contributions to the tuning comparable to a 2TeV stop. As small as possible

value for the singlet soft mass is therefore desirable.

On the other hand, as discussed in Sec. 2.2.1 the singlet soft mass must be consid-

erably larger than µ and the supersymmetric singlet mass MS to obtain a large tree
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Figure 2.4: Tuning in the twin SUSY model as a function of λ and m2
S with f = 3v,

mA = 1.5TeV, mt̃ = 2.0TeV, and µ = 0.5TeV. At each point, tan β is determined to
obtain mh = 125GeV.

level quartic from the singlet sector. We have therefore chosen a benchmark value of

m2
S = (1TeV)2, allowing moderately sized µ and MS terms while still generating a

large quartic and not generating too large of a contribution to the Higgs soft masses.

An interesting possiblity to circumvent this tension between radiative tuning and

generating a tree-level quartic is to modify the singlet-Higgs sector to take the form

of the Dirac NMSSM of Ref. [75], but we do not study this possibility in detail.

While we have allowed values of λ and tan β such that the singlet requires a UV

completion above the SUSY breaking scale, we have assumed large enough values for

tan β that the top Yukawa remains perturbative up to the GUT scale (see section

2.3). It is interesting to sacrifice MSSM-like gauge coupling unification and consider

how natural the SUSY twin Higgs model can be made if low scale Landau poles in

both the singlet and top Yukawa couplings are permitted, with the assumption that

a suitable fat-Higgs-like [76] composite Higgs sector can provide a UV completion.

The point mt̃ ≈ 3.5TeV and µ ≈ 1TeV provides a useful benchmark. For λ = 1.4 and

tan β = 2.6, the correct Higgs mass is obtained with a tuning of 1% and a Landau

pole for the singlet near ∼ 500TeV that can be UV-completed consistent with gauge
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coupling unification. The tuning can be improved tenfold to 10% for λ = 2 and

tan β = 1.1, which is a factor of 30 less tuned than the NMSSM benchmark for the

same point. The cost of this decrease in tuning is that the singlet Landau pole is

brought down to ∼ 50TeV, and likewise the top Yukawa must be completed before the

GUT scale. A version of the fat Higgs [76] could provide the necessary UV completion

but appears incompatible with precision gauge coupling unification. The extra U(4)

breaking quartics λ
��U(4) ∼ 0.2 must also be allowed to obtain the correct Higgs mass.

Although this is an interesting possibility for dramatically reducing the fine-tuning in

a (semi-)perturbative SUSY model, our primary interest in what follows will remain

on the case where tan β is large enough that only the singlet requires UV completion

and MSSM-like grand unification can occur.

In section 2.4.2 we will discuss the limits on v2

f2
from the observed couplings of the

light Higgs state at the LHC. From Eq. 2.15 we expect the total tuning to become

roughly independent of v/f in the limit of large µ or mt̃ and f 2 � v2. In fact, because

smaller v2/f 2 allows the Higgs mass to be obtained at smaller values of tan β, the

tuning can be slightly reduced in this limit. Fig. 2.5 demonstrates this behavior

comparing the tuning at f = 3v to f = 5v. For mt . 3TeV the f = 5v model is more

tuned because the stop masses are not yet saturating the f -tuning, but for larger

stop masses the f = 5v model accommodates the Higgs mass at smaller tan β and is

slightly less tuned.

2.2.5 An emergent Z2

The crucial aspect of the twin Higgs mechanism is that the Z2 symmetry is realized

in the gauge couplings, the large Yukawa couplings in the Higgs-top-singlet sector,

and the soft SUSY breaking terms. On the other hand, sources of Z2 breaking in

the Higgs potential are important to obtain a hierarchy in the A- and B-sector vevs,

and Z2 breaking in the small Yukawa couplings is necessary to address cosmological

complications as will be discussed in Sec. 2.5.2. An interesting possibility is that

the necessary Z2 symmetries of the large couplings are emergent in the IR while the

smaller couplings reflect an O(1) breaking of the Z2 in the UV superpotential.
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Figure 2.5: Ratio of tuning for twin SUSY models with (f = 3v, mA = 1.5TeV) versus
(f = 5v, mA = 2.0TeV). For both models λ = 1.4 and m2

S = (1TeV)2. At each point,
tan β is determined independently for each of the models to obtain mh = 125GeV.

To be concrete, consider a UV model where the Z2 symmetry of the field content

and gauge couplings is exact at ΛGUT, but the Z2 is broken by O(1) differences in

couplings in the Higgs-Yukawa and Higgs-singlet sector. The singlet must be UV

completed to a composite state to allow large values of the IR coupling λ, as will

be discussed in detail in section 2.3. The important detail for this discussion is

that the IR couplings of both the A and B sectors Higgs to the composite singlet

sector are governed by the same interacting fixed point with scaling dimensions set

by the common strong sector. Therefore the low energy Z2 in the Higgs singlet

couplings will emerge as long as sufficient time is spent in the interacting fixed point

regime. In models where the Higgses themselves are composite, the Z2 of the top

Yukawa couplings can also emerge from the interacting fixed point. Even with an

elementary Higgs-top sector, the low values of tan β preferred in the SUSY twin

model put the top Yukawa near the IR attractor value, making it insensitive to the

value at ΛGUT [77]. For example, for tan β ∼ 2.0, yt(100TeV) varies by only 5%

for yt(ΛGUT) = 0.5 − 2.0 (disregarding the contributions to the running from the

singlet sector, which will move the fixed point to a larger value of tan β). This
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corresponds to . 10% Z2 breaking in the stop contribution to the Higgs soft masses,

which is consistent with the Z2 breaking necessary to create a hierarchy in vevs.

The two-loop contributions of the top Yukawa to the gauge couplings leads to a

negligible Z2 breaking in the gauge sector, and in a pure gauge mediation model

the Z2 symmetry of the gauge couplings automatically leads to Z2 preserving SUSY

breaking masses. If direct messenger-Higgs couplings are necessary, the Z2 symmetry

in these coupling can emerge in the IR from similar attractor behavior.

The SUSY twin Higgs model therefore has the appealing property that the entire

U(4) symmetry protecting the light Higgs state results from an IR Z2 symmetry of

the Higgs-top-singlet-gauge sector which can itself emerge from a UV theory with

O(1) breaking of the Z2 in the superpotential.

2.3 UV completion and λ

The naturalness of the SUSY twin Higgs model is improved for larger values of λ,

which raises the prospect of hitting a Landau pole in λ beneath the unification scale.

A complete model that preserves the suggestive IR indications of gauge coupling

unification should therefore include a suitable UV completion for λ.

Although we are already accustomed to UV completions in the NMSSM for

λ(TeV) & 0.7, the twin Higgs λ coupling hits a Landau pole faster than its NMSSM

counterpart due to a larger β function,

βλ(Twin) =
6λ3

16π2
+ . . . (2.20)

βλ(NMSSM) =
4λ3

16π2
+ . . . (2.21)

which causes λ to increase faster in the UV. At one loop, the scale of the Landau

pole depends on the weak-scale value of λ and on tan β (via dependence on the top

Yukawa). In Fig. 2.6 we show the approximate location of the Landau pole in λ for

the SUSY twin Higgs as a function of λ(TeV) and tan β. From Fig. 2.6 it’s clear

that there is generically a Landau pole well below the GUT scale for the values of

λ(TeV) & 1 favored by naturalness.
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Figure 2.6: The approximate scale Λ of the Landau pole in λ, defined by λ(Λ) =
√

4π,
as a function of λ(1 TeV) and tan β. Contours denote log10(Λ/GeV).

Although there are various possible approaches to UV completing the Landau pole

in λ, the Slim Fat Higgs [78] provides an attractive candidate insofar as it does not

require a large amount of additional matter charged under the A- and B-sector gauge

groups. The essential idea of the Slim Fat Higgs is that the singlet S emerges as a me-

son of an SU(Nc) gauge group that is deflected from an interacting fixed point to an

s-confining fixed point by a mass term for some number of flavors. Concretely, in the

UV we introduce an SU(Nc) gauge group with SU(Nc) (anti)fundamentals φ(φc) that

are SM singlets; SU(Nc) (anti)fundamentals X(Xc) that are both A- and B-sector

electroweak doublets with a Dirac mass MD; SU(Nc) (anti)fundamentals X̃(X̃c) with

a Dirac mass MT that partner with X,Xc to fill out complete A- and B-sector SU(5)

unified multiplets; and a number of additional SU(Nc) (anti)fundamentals neutral

under both A- and B-sector groups. In the twin version of the Slim Fat Higgs, the

X, X̃ collectively account for δNf = 10 flavors (i.e., a fundamental + antifundamental

pair of both A-sector and B-sector SU(5)). The UV theory also includes superpo-

tential couplings of the form W ⊃ λ1φHuX
c + λ2φ

cHdX. At the scale MD, the fields
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X,Xc are integrated out to generate the effective operator

W → −λ1λ2

MD

φφcHuHd (2.22)

At a scale Λ at or beneath the scale MD, the theory flows to an s-confining fixed point

where S ∼ (φφc), and we identify λ(Λ) ≡ λ1λ2
Λ
MD

. The challenge is to construct a

theory that is at an interacting fixed point at high energies (to retain UV complete-

ness, and to guarantee that λ1,2 are sufficiently large) and flows to an s-confining fixed

point when X,Xc, X̃, X̃c are integrated out, while keeping Nc small enough to avoid

introducing too much matter charged under the Standard Model gauge groups. In

the conventional Slim Fat Higgs model, the unique solution to these constraints was

Nc = 4. In the twin Slim Fat Higgs model, the doubling of Standard Model gauge

groups means that the X, X̃ account for twice the number of flavors under SU(Nc),

and the requirements of asymptotic freedom in the UV, s-confinement in the IR, and

the avoidance of SM Landau poles cannot be simultaneously satisfied. However, there

is a small modification of the Slim Fat Higgs model that suffices.

A cartoon of the UV completion is shown in Fig. 2.7. We begin with an SU(Nc+3)

theory at high energy with Nf = Nc+14 flavors, which is asymptotically free for small

(Nc = 3, 4, 5) values of Nc. This ensures that the theory remains under control in the

UV. At the scale M , this theory is Higgsed to SU(Nc) when three flavors acquire vevs

and masses of order M . The remaining light flavors now transform as Nc +3×1, i.e.,

fundamental flavors plus singlets. These singlets can be given masses of order ∼M by

pairing with elementary singlets Σ via superpotential interactions W ⊃ ΣQQ̃. Thus

the theory below M now consists of an SU(Nc) gauge theory with Nf = Nc + 11

fundamental flavors, which in general is in a free electric phase. This pattern of

Higgsing ensures that the theory is asymptotically free in the UV, but also that there

are only Nc additional fundamental + antifundamentals charged under the Standard

Model gauge group beneath the scale M . The rest of the story proceeds as with

the usual Slim Fat Higgs; at the scale MT , the triplets X̃, X̃c are integrated out,

the theory has Nf = Nc + 5 flavors and is generally back in an interacting Coulomb

phase down to MD, the scale where the doublets are integrated out and the theory
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Figure 2.7: Cartoon of the scales and mass flow for the Slim Fat twin Higgs UV
completion of λ.

s-confines. Since the theory is in an interacting phase above the scale M and between

MT and MD, this generally ensures λ1,2 are sufficiently large to offer a plausible UV

completion for λ.

The primary constraint on Nc arises from Landau poles in the A- and B-sector

gauge couplings, since the X, X̃ fields collectively account for Nc fundamental +

antifundamental pairs under SU(5)A and SU(5)B. In order to avoid A- and B-sector

Landau poles, we would like Nc to be as small as possible, but it should also be large

enough that the theory is deep in the interacting Coulomb phase between MT and

MD, where the fixed point anomalous dimension γ∗ of φ, φc controls the size of λ1,2.

We may estimate the fixed point value of λ1,2 in the weak coupling limit as in [78].

The perturbative RGEs for λ1,2 are

dλ1,2

dt
= (Nc + 3)

λ3
1,2

16π2
+ γ∗λ1,2 + . . . (2.23)
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and so in the weak coupling approximation the fixed point value of the couplings

above the scale MD is λ1,2∗ ≈ 4π
√
|γ∗|/(Nc + 3). Thus the NDA estimate for λ at

the confinement scale Λ is

λ(Λ) ≈
√
Nc
λ1λ2

4π

Λ

MD

≈ 4π

√
Nc

Nc + 3
|γ∗| (2.24)

assuming Λ ∼ MD. For Nc = 3, 4, 5, we have γ∗ = −1/8,−1/3,−1/2 and so

λ(Λ) ≈ 0.45, 1.20, 1.76. Needless to say, this is only an estimate due to the pres-

ence of additional incalculable O(1) factors, but it suggests that Nc = 4, 5 both

provide suitable UV completions for the values of λ(TeV) under consideration.

The UV completion of the singlet sector can also have an important effect on the

running of the top Yukawa coupling through potentially large contributions to the

Higgs coupling, especially in the interacting Coulomb phase [79]. The one-loop beta

function for yt at the naive fixed point of the IR interacting Coulomb phase is

dyt
dt
∼





0.2yt Nc = 4

0.3yt Nc = 5
. (2.25)

With the low values of tan β preferred by the Higgs mass and tuning, Eq. 2.25 suggests

that the theory can not remain near the interacting fixed point very long without

increasing yt sufficiently to run non-perturbative before the GUT scale. Although

this introduces some tension with the notion of natural MSSM-like gauge coupling

unification in this model, we note that a value near the perturbativity bound is a

natural expectation in models where the low energy Z2 symmetry is partially emergent

as discussed in Sec. 2.2.5.

2.4 Phenomenology

The low-energy phenomenology of the SUSY twin Higgs differs radically from con-

ventional supersymmetric scenarios. Although the details of the sparticle spectrum

require a complete model for supersymmetry breaking and mediation, it is clear that
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the stops and higgsinos can be significantly decoupled in the SUSY twin Higgs with-

out increasing the tuning of the weak scale. Percent-level naturalness is consistent

with stops at 3.5 TeV and higgsinos at 1 TeV, well beyond the reach of the 13/14

TeV LHC [80]. In general, radiative corrections tie the mass of the gluino to within

a factor of 2 of the stop mass, and gluinos in the range of 3.5-7 TeV likewise lie well

beyond the reach of the 13/14 TeV LHC, although such heavy spectra would likely

be accessible at an LHC energy upgrade [81]. The avatars of double protection are

likewise inaccessible at the LHC, since the fermionic top partner – in the guise of

the B-sector top quark – is neutral under the Standard Model gauge groups and only

pair-produced with minuscule cross section through the Higgs portal.

In the absence of conventional supersymmetric signals, the primary experimental

indications of the SUSY twin Higgs come from the Higgs sector – both in modifications

of the couplings of the Standard Model-like Higgs, and in the multitude of additional

states in the extended electroweak symmetry breaking sector.

2.4.1 Higgs couplings

The principal constraints on the SUSY twin Higgs arise from tree-level modifications

to the couplings of the Standard Model-like Higgs, which we identify with the lighter

CP-even neutral Higgs of the A-sector. The couplings of the SM-like Higgs are mod-

ified by both the usual SUSY mixing within the two A-sector Higgs doublets, as well

as the mixing with B-sector Higgs doublets.4

To the extent that we would like to constrain the SUSY twin Higgs parameter

space with coupling measurements of the SM-like Higgs, the most interesting prop-

erties are those of the lightest CP even Higgs. In general, the matrix of mixings in

the CP even Higgs sector is unenlightening, but we may capture the important para-

metrics by carrying out a perturbative expansion in the U(4) limit, g2 + g′2 � λ2.

Since we are interested in a relatively high scale of sparticles, we will also focus on

the “SUSY twin decoupling limit” λ2f 2 � m2
A, akin to the usual SUSY decoupling

limit, m2
Z � m2

A. Here m2
A ≡ 2b

sin(2β)
is a mass parameter that corresponds to the

4One could also look for NLO effects coming from loops of B-sector top quarks as in [29], but
these are typically subdominant to the tree-level coupling deviations.
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usual MSSM definition, as well as the mass of one physical pseudoscalar; it provides

a convenient means of packaging results, and preserves the customary intuition that

certain additional Higgs states decouple in the limit m2
Z � m2

A.

To leading nontrivial order in the expansion g/λ,mZ/mA, λf/mA � 1, the four

CP-even masses are m2
Z cos(2β)2

(
2− 2v2

f2

)
, m2

A − λ2f 2, λ2f 2 sin(2β)2, and m2
A −

λ2f 2 sin(2β)2. The first corresponds to the Goldstone mode, primarily identified with

the A-sector light CP-even Higgs, while the remaining states are primarily identified

with the A-sector heavy CP-even Higgs, B-sector light CP-even Higgs, and the B-

sector heavy CP-even Higgs, up to inter-sector mixings of order v/f . With this in

mind, in what follows we label the corresponding mass eigenstates h1(≡ h), H1, h2,

and H2, respectively, with h identified with the recently-discovered SM-like Higgs.

We adopt a similar nomenclature for the pseudoscalars A1, A2 and the charged Higgs

pairs H±1 , H
±
2 .

The composition of h in terms of the gauge eigenstates is very nearly what one

would expect from the direct product of a supersymmetric 2HDM and the twin Higgs

mechanism, viz.

h ≈
[(

1− v2

2f 2

)
sin β +

m2
Z

4λ2f 2
cos2(2β) csc β sec2 β + 2

m2
Z

m2
A

cos2 β sin β cos(2β)

]
h0
u
A

+

[(
1− v2

2f 2

)
cos β +

m2
Z

4λ2f 2
cos2(2β) csc2 β sec β − 2

m2
Z

m2
A

cos β sin2 β cos(2β)

]
h0
d
A

+

[
v

f
sin β +

m2
Z

4λ2vf
cos2(2β) csc β sec2 β

]
h0
u
B

+ +

[
v

f
sin β +

m2
Z

4λ2vf
cos2(2β) csc2 β sec β

]
h0
d
B

Indeed, in the limit g/λ→ 0 the mixing contributions from the SUSY 2HDM and

the twin Higgs factorize such that the couplings of the Standard Model-like Higgs to
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vectors, top quarks, bottom quarks, and leptons are modified by an amount

cV ≈ 1− v2

2f 2
− m4

Z

8m4
A

sin2(4β) + . . .

ct ≈ 1− v2

2f 2
+

2m2
Z

m2
A

cos2 β cos(2β) + . . . (2.26)

cb = cτ ≈ 1− v2

2f 2
− 2m2

Z

m2
A

sin2 β cos(2β) + . . .

where ci ≡ ghii/ghSM ii.

In addition to modifications of the Higgs couplings to Standard Model states,

there is also generically an invisible width coming from decays of the Higgs to B-

sector fermions, predominantly h→ bBbB, due to the O(v2/f 2) mixing of h with the

B-sector CP-even Higgses. The B-sector bottom quark mass and couplings are fixed

by the Z2 symmetry, and so the partial width for h→ bBbB at leading order is

Γ(h→ bBbB) ≈ Γ(h→ invis.) ≈ Γ(h→ bb) tan2(v/f)




1− 4
m2

b

m2
h

f2

v2

1− 4
m2

b

m2
h




3/2

(2.27)

The modified Higgs couplings and invisible width have two novel implications. The

first is that the intrinsicO(v2/f 2) tuning of the theory is set by measurements of Higgs

couplings, much as in composite Higgs models. Since the precision of current Higgs

coupling measurements in combination approaches O(10%), this suggests f & 3v; we

will make this statement more precise in the next subsection.

The second novel implication is that the invisible Higgs width is also of order v2/f 2,

so that the invisible width of the Higgs directly probes the tree-level naturalness of

the theory. Whereas the mass scale of higgsinos and top partners in the SUSY twin

Higgs provides little concrete information regarding the naturalness of the weak scale,

the invisible width provides an unambiguous indication.
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2.4.2 Coupling Fits

To establish the allowed range of both v/f and the 2HDM mass scalemA, we construct

a combined fit to Higgs couplings using available data from both ATLAS and CMS

searches at 7 and 8 TeV.5 To do so, we adopt the methods of [87]. We construct

a likelihood for each individual exclusive channel in [87] using a two-sided gaussian

whose mean is given by the experimental value of the signal strength modifier µ

and whose width is given by the 1σ errors on µ. Where two-sided measurements are

unavailable, we use an approximate gaussian likelihood constructed from the observed

and expected limits.6

To determine the dependence of the signal strength on the relevant SUSY twin

Higgs parameters f,mA, and tan β, we use the techniques of [91] with the tree-level

coupling modifiers in Eq. 2.26 plus the invisible width in Eq. 2.27. For simplicity, we

take the limit (g2+g′2)/λ2 → 0, for which the effects due to the SUSY 2HDM and twin

Higgs sector approximately factorize. We have checked that this approximation to

the Higgs couplings always agrees with full numerical results to within a few percent

in the parameter regions of interest. We do not include any contributions from loops

of superpartners, since the mass scale of superpartners is sufficiently high that these

contributions are negligible.

Given these single-channel likelihoods, we construct a combined likelihood from

the product of the single-channel likelihoods. To perform the fit, we fix the repre-

sentative value tan β = 2.5 and compute −2∆ lnL in the f,mA plane relative to the

best-fit point of f,mA → ∞. We denote the 95% CL region by −2∆ lnL < 5.99 in

this 2D plane.

5For fits to the related left-right twin Higgs model [82, 83] using various stages of LHC Higgs
data, see [84, 85, 86].

6Note that the channels in [87] do not include direct limits on the Higgs invisible branching
ratio from e.g. [88, 89, 90]. To check the effects of the direct invisible branching ratio limit on the
fit, we construct a single-channel likelihood using the numerical values of −2 logL for the invisible
branching ratio measurement in [88]. The effects of invisible branching ratio limits [89, 90] are very
similar. The inclusion of this likelihood leads to an insignificant change in the best-fit region since
the direct limit of Br(h → invis.) < 0.65 is much weaker than the implicit limit in the SUSY twin
Higgs framework coming from measured branching ratios. We do not include this invisible branching
ratio likelihood in our final fit due to uncertainties in the shape of the likelihood in [88] for low values
of the invisible branching ratio.
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Figure 2.8: Coupling fit in the SUSY twin Higgs model as a function of mA and f for
the representative value of tan β = 2.5 in the limit (g2+g′2)/λ2 → 0. The fit procedure
is described in the text. The yellow shaded region denotes the 95% CL allowed
parameter space defined by −2∆ lnL < 5.99, not including precision electroweak
constraints. The gray dot-dashed line denotes the edge of the 95% CL allowed region
including IR contributions to the S- and T -parameters, marginalizing over the U -
parameter. The blue dashed lines indicate the contours of Br(h→ invis.) = 0.05, 0.10,
respectively.

It is well known in the case of composite Higgs models that the strongest con-

straint comes from the combination of Higgs coupling measurements and precision

electroweak data, including the IR contribution to the S- and T -parameters from the

modification of the SM-like Higgs couplings to vectors [92, 93]. As we will discuss

in the next section, the situation is substantially improved in the SUSY twin Higgs

model. For the sake of illustration, we also show the 95% best fit region includ-

ing precision electroweak limits on the IR contribution to the S- and T -parameters

(Eq. 2.28) for λ = 1.5, marginalizing over the U -parameter. This includes the lead-

ing constraints from electroweak precision tests on modified couplings of the SM-like

Higgs. We do not include UV contributions to the S- and T -parameters, which de-

pend on the details of the heavy Higgs spectrum but are numerically of the same
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order as the IR contributions and decouple as mA →∞.

The coupling fit is shown in Fig. 2.8, which illustrates that f & 3v is comfortably

allowed by current coupling measurements (recall we work in units where v ≈ 174

GeV and f is similarly normalized), with a modest invisible branching ratio of up to

∼ 10%. The invisible branching ratio in the SUSY twin Higgs consistent with current

coupling measurements is smaller than the allowed values found in e.g. [94] because

the invisible width scales similarly to the modifications of tree-level couplings, leading

to a tighter constraint.

2.4.3 Extended Higgs sector

The extended twin Higgs sector offers a plethora of additional states in the Higgs

sector, including three additional CP-even neutral scalars, two pseudoscalars, and

two pairs of charged Higgses. For the most part, these additional degrees of freedom

are kinematically decoupled. As discussed above, the masses of the the “heavy”

CP-even scalars H1, H2 are m2
H1
∼ m2

A − λ2f 2,m2
H2
∼ m2

A − λ2f 2 sin2(2β). Both

charged Higgs pairs have masses of order m2
H±1,2
∼ m2

A−λ2f 2 with subleading splittings

of order O(m2
W ,m

2
WB

). The pseudoscalars have masses m2
A1
∼ m2

A − λ2f 2,m2
A2
∼

m2
A. Consequently, all of these states are typically & TeV with correspondingly low

production cross sections at the LHC. Moreover, the additional Higgs states coming

predominantly from the A-sector enjoy the usual decoupling properties of a SUSY

2HDM, with correspondingly small couplings to Standard Model gauge bosons and

the SM-like Higgs h. Given the limited reach for narrow Higgs scalars & TeV, it

seems unlikely that these degrees of freedom can be meaningfully probed at the LHC.

However, the second-lightest CP-even neutral scalar h2 may remain relatively

light, with mh2 ≈ λf sin(2β). It possesses a coupling to top quarks of O(v/f),

so that it is produced at the LHC via gluon fusion with a cross section σ(gg →
h2) ≈ (v/f)2σ(gg → hSM), where hSM is a Standard Model Higgs of equivalent mass.

Consequently, the gluon fusion cross section can remain relatively large, O(1 pb) at
√
s = 14 TeV for mh2 ∼ 500 GeV.
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The decay of h2 is likewise promising. Although in general h2 couples to de-

grees of freedom in the B-sector, it possesses a relatively large trilinear coupling with

the SM-like Higgs h, λh2hh ≈
m2

h2

2
√

2f
. Consequently, the partial width Γ(h2 → hh)

grows as ∼ m3
h2
/f 2 with no small numerical suppression, and indeed parametrically

competes with the partial width into B-sector gauge bosons. For the range of λ of

interest, the two-body decays of h2 → ZBZB,WBWB are kinematically accessible,

so that Γ(h2 → ZBZB,WBWB) and Γ(h2 → hh) differ only by kinematic factors

and degree-of-freedom counting. Both decays dominate over decays to B-sector top

quarks – which are kinematically inaccessible for λ . 2 – and decays to lighter B-

sector fermions and gauge bosons. Note that h2 is not exceptionally wide for mh2 .
TeV, since Γtot/mh2 ∼ λ2/16π2 � 1.

Thus Br(h2 → hh) ∼ O(0.1 − 0.4) over a wide range of masses with no strong

suppression from decoupling, in stark contrast to the heavy Higgs of the MSSM.7 This

raises the tantalizing prospect of a resonant di-Higgs signal at the LHC [68, 95, 96, ?]

with cross sections of order σ · Br(pp → h2 → hh) ∼ 10 − 500 fb at
√
s = 14 TeV

for mh2 ∼ 500 − 1000 GeV. This should be compared to the Standard Model Higgs

pair production rate, ∼ 34 fb at
√
s = 14 TeV, and will be easier to distinguish from

background due to the boosted kinematics and resonant production mode. Unlike

conventional 2HDMs (SUSY or otherwise), there is no competitive signal from h2 →
WW,ZZ (i.e., the massive A-sector gauge bosons), due to the suppressed coupling

of h2 to Standard Model gauge bosons. This strongly motivates searches for resonant

di-Higgs production over a wide range of heavy Higgs masses.

Alternately (or perhaps in conjunction with the h2 → hh signal), one may look for

vector boson fusion production or Z-associated production of h2 followed by invisible

decay into B-sector states (primarily WB, ZB). The production cross section times

invisible branching ratio for e.g. σ · Br(pp→ qqh2 → jj + invis.) should be of order

10-100 fb at
√
s = 14 TeV for mh2 ∼ 500 − 1000 GeV, and could provide strong

validation of a signal in h2 → hh or serve as an independent detection mode in its

7The violation of conventional 2HDM decoupling intuition here stems from the fact that there
are two separate vacuum expectation values in the extended Higgs sector and genuine decoupling
also requires λ→ 0. The trilinear coupling still exhibits the necessary property that λh2hhv → 0 in
the appropriate alignment limit v/f → 0.



CHAPTER 2. TWIN SUSY 40

own right. Similar sensitivity to an invisibly-decaying heavy Higgs scalar should be

available in associated production with a Z boson. At present, the ATLAS invisible

Higgs search [88] and the CMS invisible Higgs search [89] present limits for heavy

Higgs masses up to mH = 300, 400 GeV, respectively, but could be meaningfully

extended to higher masses. Clearly, if the remaining SUSY states lie above 1 TeV,

these novel Higgs signatures may be the most promising direct signal of the SUSY

twin Higgs at the LHC.

2.4.4 LHC search strategy

As we have seen, the most promising signals of the SUSY twin Higgs include O(v2/f 2)

deviations in the tree-level couplings of the SM-like Higgs; a modest O(v2/f 2) invis-

ible branching ratio; resonant pair production of the SM-like Higgs from a heavier

CP-even Higgs with a large trilinear coupling and O(v2/f 2)-suppressed gluon fusion

production; and vector boson fusion and/or Z associated production of the heavier

CP-even Higgs followed by decay to invisible final states. To the extent that measure-

ments of Higgs couplings and invisible width will attain at best O(10%) precision at

the LHC, this motivates searching for resonant pair production of the SM-like Higgs

and extending Higgs invisible width searches beyond mH = 300−400 GeV. Discovery

of either process would strongly motivate construction of a Higgs factory to further

test for tree-level coupling deviations and a modest Higgs invisible width.

2.5 Ancillary constraints

2.5.1 Precision electroweak and flavor

In contrast to composite Higgs models, the precision electroweak corrections in the

SUSY twin Higgs are all calculable and, by construction, quite small. A key advan-

tage, even with respect to other natural models in which the Higgs is a goldstone

boson, is the inertness of the heavy B-sector gauge bosons with respect to A-sector

gauge bosons and fermions. There are therefore no tree-level contributions to the
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S and T parameters. This avoids the largest corrections to precision electroweak

observables present in, e.g., little Higgs models.

Unsurprisingly, here the extended Higgs sector is the principal source of new con-

tributions to precision electroweak observables. In general these contributions are

completely consistent with current limits on S and T . For the sake of simplicity and

clarity, we’ll restrict ourselves to a brief discussion of precision electroweak contri-

butions in the limit v � f . mA, in which case the Higgs sector consists of the

light SM-like Higgs, a second CP-even Higgs h2 around mh2 ∼ λf , and the remaining

Higgs scalars H1,2, A1,2, H
±
1,2 clustered around a common mass mA & TeV. In this

limit, we can simply treat the largest corrections to Standard Model expectations

from the coupling deviations of h and additional contributions of h2. In the mh,mh2

sector, the additional contributions to the S and T parameters – beyond the usual

contribution from a Standard Model Higgs of mass mh – are given by

∆S ≈ 1

6π

(
v

f

)2

log

(
mh2

mh

)
∆T ≈ − 3

16π cos2 θW

(
v

f

)2

log

(
mh2

mh

)
(2.28)

This captures the leading correction to the S and T parameters from variations

in the couplings of the SM-like Higgs in the limit mA →∞ and is quite small for the

parameter range of interest. Additional corrections arise from the remaining Higgs

scalars H1,2, A1,2, H
±
1,2 at the scale mA & TeV. However, as in the MSSM, the these

additional states decouple with increasing mA; in particular the sectors (H1, A1, H
±
1 )

and (H2, A2, H
±
2 ) are approximately degenerate so that electroweak corrections are

small. In the limit g, g′ → 0, the (H1, A1, H
±
1 ) sector is exactly degenerate, and

corrections from this sector to S and T vanish; for nonzero g, g′ this leads instead to

the customary MSSM-like contributions that are strongly suppressed by O(m2
Z/m

2
A)

in the regime of interest. Corrections from the (H2, A2, H
±
2 ) sector are additionally

suppressed by a factor of v2/f 2 due to the smallness of mixing with the A sector, but

in the g, g′ → 0 limit nonzero splitting between H2, A2, and H±2 persists. Expanding

the appropriate loop functions (e.g., [97]), in the limit m2
A � λ2f 2, the leading
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contributions to S and T from the (H2, A2, H
±
2 ) sector are parametrically of order

∆S ≈ 1

16π

λ2v2

m2
A

∆T ≈ 1

48π

λ2

g2s2
W

λ2f 2

m2
A

. (2.29)

There are also contributions from loops involving one scalar from each sector, but

these share an overall suppression factor of O(v2/f 2) due to mixing, as well as a

similar magnitude of mass splitting between states, leading to corrections of the same

order as Eq. 2.29. Taken together, the corrections to S are insignificant, while the

corrections to T are typically numerically of the same magnitude as those in Eq. 2.28,

and both show the expected decoupling as mA → ∞. However, the corrections to

T have the potential to generate (mild) tension with precision electroweak limits if

mA ∼ λf . TeV, though this depends in detail on the extended Higgs sector and

is readily susceptible to cancellations. Finally, corrections from the remainder of the

sparticle spectrum are parametrically small unless there is substantial mixing in the

squark sector.

There are no pernicious new sources of flavor violation in the SUSY twin Higgs

beyond those usually encountered at one loop. In particular, the extended Higgs sec-

tor automatically satisfies the Glashow-Weinberg condition [98] due to a combination

of holomorphy and gauge invariance, guaranteeing the absence of new tree-level con-

tributions to flavor-changing neutral currents. At one loop, the decoupling of charged

Higgs states protects against prohibitive contributions to, e.g., b → sγ. Although

sfermions may all be in the multi-TeV range, this alone is insufficient to suppress

one-loop FCNC in the presence of large flavor-violating soft masses, and so the usual

solutions to the supersymmetric flavor problem are still required.

2.5.2 Cosmology

The cosmology of mirror twin Higgs models has been discussed in detail in refs. [35,

68, 69], and for mirror models in general in refs. [99, 100, 101]. Here we review briefly

the important constraints from light degrees of freedom and dark matter abundance.

The principal cosmological constraints on mirror twin Higgs models are the CMB

and BBN bounds on extra light degrees of freedom, most stringently the recent Planck
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result Neff = 3.30 ± 0.27 [102]. The light Higgs state keeps the A and B sector in

thermal equilibrium down to temperatures Teq ∼ O(1GeV) [69]. In the limit of an

exact Z2 symmetry there is an unacceptably large contribution to Neff if the reheating

is symmetric or TRH & Teq.

The possibility of asymmetric reheating is discussed in refs. [99, 100, 101]. An

alternative solution in a high-T symmetric reheating scenario is to include Z2 breaking

contributions to the B-sector Yukawas to lift the light quarks and charged leptons

above Teq [35, 68, 69]. This can be a hard breaking in the flavor sector or spontaneous

breaking from asymmetric vevs of flavon fields; the small Yukawa couplings feed into

the RG of the Higgs-top-gauge sector at acceptably small levels and do not modify

the tuning. If only the B-sector photons, gluons and neutrinos remain below Teq,

then in the absence of entropy production in the QCD phase transition ∆Neff ∼ 1.4

[68]. This may be reduced to comfortably within bounds if the A-sector QCD phase

transition involves entropy production not present in the B-sector transition (due to

the presence of light quarks in the A-sector), or if the B-sector QCD phase transition

is raised above Teq [35, 68]. The tension may be further ameliorated if B-sector gauge

groups are spontaneously broken (via, e.g., tachyonic B-sector soft masses giving rise

to charge- and color- breaking minima).

In mirror twin Higgs models, the B-sector baryon and lepton number are indepen-

dently conserved and can lead to stable relics. If a baryon asymmetry is generated

in the B-sector, the lightest B-baryon, which may be charged or neutral, can be the

DM and naturally link the DM and SM baryon abundance [68]. The lightest B-sector

charged lepton can also make up a component of the DM if its decay to a charged

B-pion and neutrino is kinematically forbidden. The phenomenology of charged bary-

onic or leptonic B-sector DM components depends in detail on whether or not the

B-sector U(1) is broken and on the spectrum of hadronic and nuclear states. In the

SUSY twin Higgs model, the lightest superpartner can also provide a dark matter

candidate. The R-parity of the A and B sectors is shared, and a neutralino LSP can

be a mixture of A and B-sector states. The larger B-sector Higgs vev can naturally

lead to an LSP with primarily B-sector components, suppressing standard direct and

indirect detection signals.
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2.6 Conclusions

We have shown that a minimal supersymmetric completion of the mirror twin Higgs

model yields MSSM-like gauge coupling unification, a naturally light SM-like Higgs,

and small corrections to electroweak precision and flavor observables. The level of

tuning of this model is comparable to the NMSSM with a superpartner mass scale half

as large, and the observed ∼ 125GeV mass of a SM-like Higgs state is consistent with

a percent-level tuned spectrum of superpartners likely unobservable at both the 13/14

TeV LHC and a ∼ 1TeV linear collider. Provided additional U(4)-breaking quartics,

a spectrum with superpartners at current LHC limits is consistent with tuning at the

10% level. Furthermore, if we discard the requirement of perturbative MSSM-like

gauge coupling unification, a Higgs compositeness scale of ∼ 50TeV allows 10%-level

tuning with superpartners entirely out of reach of the LHC.

With the superpartners in these models out of reach, the most promising collider

signals come from the Higgs sector. The mixing of the lightest Higgs with the mir-

ror sector is proportional to the hierarchy of vevs v
f
, and constraints on the Higgs

couplings translate into a direct and unambiguous constraint on the fine-tuning of

the model, ∆−1 < 2v2

f2
. Already the measurements of the couplings of the SM-like

Higgs state at the LHC and precision electroweak measurements require a hierarchy

in vevs v
f
. 1

3
, and few-percent-level measurements of Higgs couplings at the 13/14

TeV LHC will put more stringent limits on this model. The Higgs coupling limits we

derived in the supersymmetric decoupling limit also apply equally well to any low-

energy effective twin Higgs theory. While most of the extra Higgs states can easily

be decoupled, the next-to-lightest CP-even Higgs state typically remains within reach

of the 13/14 TeV LHC and has large branching ratios to both the striking di-Higgs

channel and invisible final states. Just as the discovery of the light SM-like Higgs de-

termined the size of the effective quartic self-coupling and made concrete the natural

scale for physics cutting off the top quark contribution to the Higgs mass, measuring

the mass of the next lightest CP-even Higgs state in the mirror twin model will point

to the natural scale for the superpartners in the twin SUSY model. The presence of

this light state is also an important signal that the twin mechanism is perturbatively
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realized, rather than resulting from compositeness at the scale of a few TeV.

The SUSY twin Higgs, like any model involving a “double-protection” solution

to the hierarchy problem, clearly presents a challenge from the point of view of UV

model-building and parsimony. Compared to composite models, this issue is some-

what alleviated for the SUSY twin Higgs model; here the full approximate U(4)

symmetry emerges accidentally from a smaller Z2 symmetry which can originate far

in the UV and may in fact be partially emergent at low energies. As a minimal

supersymmetric extension of the twin Higgs, the model we have presented is also

considerably more appealing from this point of view than earlier efforts at supersym-

metrizing the twin Higgs [69, 70]. If null results in searches for superpartners persist

at the 13/14 TeV LHC, understanding in detail the signatures of models like the

SUSY twin Higgs – which trade parsimony for decreased fine-tuning – will become

crucial to interpreting the role of naturalness as a predictive principle for the next

generation of collider, dark matter, and low-energy precision experiments.

There are many possible avenues for further study. In this chapter we have focused

on the low-energy phenomenology without committing to a detailed model for super-

symmetry breaking. It would be interesting to investigate mediation mechanisms

giving rise to the appropriate combination of U(4)-symmetric and U(4)-breaking

soft terms, perhaps via gauge mediation with suitable Higgs-messenger couplings. A

SUSY-breaking mechanism that gives rise to tachyonic scalars in the B sector would

be attractive from the perspective of cosmology, where spontaneous breaking of B

sector gauge symmetries helps to alleviate constraints from Neff . We have also not

discussed dark matter candidates in detail, but the super-abundance of dark matter

candidates in the SUSY twin Higgs model could give rise to a number of interest-

ing scenarios that merit further study. Finally, while we have presented parametric

estimates for the rates of resonant di-Higgs and invisible heavy Higgs production,

a detailed study of these signals and their prospects for LHC discovery would be

worthwhile.



Chapter 3

Maximally Natural

Supersymmetry

3.1 Introduction

The LHC has set stringent limits on the masses of SUSY particles and deviations in

Higgs properties, implying a tuning of electroweak symmetry breaking (EWSB) at the

percent level or worse for traditional SUSY models [53, 73, 103, 104, 105, 106]. This

undermines the motivation for SUSY as the solution to the hierarchy problem and

the case for discovery of SUSY at the LHC or proposed future colliders. Given the

importance of this issue for current and future searches for new physics we examine the

possibility of constructing natural, untuned theories. We find a promising example

in theories where some particles propagate in a 5th dimension of physical length

πR ∼ TeV−1 and SUSY is broken by the boundary conditions (bc’s) for these bulk

fields [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. This

mechanism is known as Scherk-Schwarz SUSY breaking (SSSB), and the key features

of these models are:

• The theory is never well approximated by a 4D theory with soft supersymme-

try breaking, and many problems of the minimal supersymmetric standard model

(MSSM) and its extensions are avoided.

• The higgsinos, gauginos, and the 1st and 2nd family sfermions propagate in the

46
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5th dimension and obtain SSSB masses of size 1/2R.

• The 3rd family is localized on a 4D brane to protect the 3rd generation squarks

from a large tree-level SSSB mass, thus realizing a natural SUSY spectrum [42, 43, 44]

and significantly easing collider bounds. The super-softness of SSSB [122, 123, 124,

125, 126, 127, 128] prevents large logs in the loop-level mediation of SUSY breaking,

further protecting the weak scale and suppressing the tendency of the gluino to pull

up the stop mass [73, 103].

• Only a single Higgs doublet Hu acquires a VEV and has Yukawa couplings. The

µ and b terms are not needed, and the physical Higgs is automatically SM-like.

• An additional SUSY breaking sector is necessarily present for radius stabilization

with zero cosmological constant (CC), and SUSY breaking in this sector can naturally

be driven by SSSB. Higher dimensional couplings of the MSSM fields to this sector

play a crucial role in EWSB and collider phenomenology.

The pattern of localization of matter and Higgs multiplets and the mechanism

driving EWSB, generating Yukawa couplings, and accommodating the observed phys-

ical Higgs mass lead to important differences from previously studied models of near-

maximal SSSB near the TeV scale [107, 108, 109, 110, 111, 112, 113, 114, 115, 116,

117, 118, 119, 120, 121] and models obtaining a realistic spectrum from non-maximal

SSSB at scales 1/R� TeV [129, 130, 131].

The structure of the chapter will be as follows. In Section 3.2, we consider a toy

model that illustrates the basics of the SSSB mechanism and the role of the different

ingredients present in the minimal model. Section 3.3 contains a realistic description

of the minimal theory, featuring all necessary ingredients, as well as a discussion

of EWSB and the status of the physical Higgs mass. In Section 3.4, we consider

several extensions of the model that allow for a physical Higgs mass consistent with

observations. The phenomenology of the different versions of the model considered

is discussed in Section 3.5. An interesting possibility for decays of brane-localized

states to a bulk LSP is motivated by these models, and the associated unusual collider

phenomenology of these decays is discussed in Section 3.6.
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3.2 The basics of Scherk-Schwarz SUSY breaking

For simplicity of presentation, and after a very brief discussion in Section 3.2.1 of 5D

SUSY and the generalities of SSSB, this Section focuses on the physics of a toy model

containing just the right-handed top superfield U3 (on shell: U3 = (ũ3, u3), with u3 a

2-component Weyl fermion) localized on the orbifold y = 0 brane and the SU(3) color

gauge group in the bulk, as depicted in Figure 3.1. Although this simplified model

is inconsistent in several ways as a stand-alone theory, it forms part of the final and

fully consistent picture that will be described in Section 3.3 and contains the minimal

ingredients that will help us illustrate some of the most important features of maximal

SSSB. Specifically, these include (i) large hierarchies in soft masses generated at tree

level by the 5D geography, (ii) the very soft nature of loop communication of SSSB,

and (iii) the potential importance of extra SUSY breaking sectors associated with

radius stabilisation.

4D N = 1 SUSY
orbifold brane

4D N = 1 SUSY
orbifold brane

5D SUSY bulk

SU(3)Ū3

Figure 3.1: Schematic geography of the toy model containing bulk SU(3) interactions
and a brane-localized right-handed top superfield U3.

3.2.1 5D SUSY with Scherk-Schwarz breaking

For enhanced pedagogy and completeness we start with a short review of the rele-

vant aspects of 5D SUSY and SSSB. Readers already familiar with this material are

encouraged to jump to Section 3.2.2.

A realistic description of the world arising from an extra-dimensional theory can be

constructed provided the extra dimensions are compactified. From a 4D perspective,

fields that propagate along the bulk of the extra dimension are equivalent, upon com-

pactification, to an infinite tower of fields of ever increasing mass—the Kaluza-Klein

(KK) excitations—with a mass gap between different modes set by the compactifi-

cation scale. For example, if an extra spatial dimension is compactified on a circle
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S1 of radius R, KK modes have masses that are multiples of the compactification

scale 1/R. Nevertheless, to obtain chiral fermions in the low energy theory the ex-

tra dimension needs to be compactified not on a circle but on an ‘orbifold’ where

discrete identification(s) of the extra-dimensional coordinate, such as y ∼ −y with

associated fixed points (here y = 0, πR), imply the presence of 4D branes violating

the higher-dimensional bulk Lorentz symmetry. For example, an extra spatial dimen-

sion compactified on an orbifold S1/Z2 has physical length πR, with the two orbifold

fixed-points at y = 0, πR corresponding to 4D branes where fields and interactions

may be localized. This Z2 orbifold action is then extended to an action on the bulk

fields; e.g. for a bulk scalar the indentification φ(xµ, y) = ±φ(xµ,−y) can be made,

which translates to Neumann (for +) or Dirichlet (for −) boundary conditions for the

bulk field at the fixed points.

It is important for our entire construction that the minimal representation of SUSY

in 5D corresponds to N = 2 extended SUSY from a 4D perspective, i.e. the theory

has 8 rather than 4 supercharges. After such an extra dimension is compactified on

an S1/Z2 orbifold just a minimal N = 1 4D SUSY survives (4 supercharges) as the

other supercharges are automatically removed by the action of the orbifold boundary

conditions. In addition, on the two 4D orbifold branes, 4D N = 1 supersymmetric

field content and interactions may be localized. On the other hand an S1/(Z2 × Z′2)

orbifold has two inequivalent fixed points (and thus branes) and can, depending on

the choice of field parities under the Z2 × Z′2 actions, break SUSY completely in the

IR theory.

To understand this crucial point we briefly review how N = 2 SUSY can be

expressed in N = 1 superfield notation. An N = 2 vector superfield Va may be

written in terms of oneN = 1 vector superfield V a plus oneN = 1 chiral superfield χa,

both transforming under the adjoint representation of the corresponding gauge group

(on shell: Va = {V a, χa} with V a = (V a
µ , λ

a) and χa = (σa, λ
a
) respectively, with the

complex adjoint scalar σa containing V a
5 ). On the other hand, a hypermultiplet H,

the N = 2 generalization of the familiar N = 1 chiral multiplet, can be described

in terms of two N = 1 chiral superfields with on shell content H = {H,Hc} with

H = (h, h̃) and Hc = (hc, h̃c). Notice λa and λ
a
, as well as h̃ and h̃c, denote two
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different 2-component Weyl fermions. Additionally the bulk N = 2 SUSY theory

possesses an enhanced R-symmetry, SU(2)R, which is broken to the usual U(1)R of

minimal 4D N = 1 SUSY upon compactification on S1/Z2.

As explained in detail in e.g. [109], SSSB consists in breaking SUSY non-locally by

imposing on the 5D fields a non-trivial periodicity condition under translation around

the 5th dimension – in fact an SU(2)R twist upon translation – that is different

for the bosonic and fermionic components of a given supermultiplet. As it treats

fermions and boson components differently the twist breaks the remaining N = 1 4D

SUSY. Crucially, the twist is only defined globally, with any local physical observable

being unaffected by the twist, and SUSY is unbroken locally. In particular, only

Feynman diagrams that stretch all the way around the (finite sized) extra dimension

are sensitive to SUSY breaking, and such diagrams are finite and free from even

logarithmic sensitivity to UV scales above 1/R. This non-local nature of SSSB is the

fundamental reason why SUSY breaking parameters are UV insensitive, for above the

scale 1/R the theory is supersymmetric.

In this work we will exclusively focus on the case where the Scherk-Schwarz twist

is maximal, namely with values on component fields ±1, in which case the spectrum of

the theory is equivalent to compactification on an S1/(Z2×Z′2) orbifold with R→ 2R,

and with a particular choice of Z2 × Z′2 field parities1. In fact, for our purposes, it

will be more convenient to refer to the spectrum of the model as arising from such a

compactification on S1/(Z2 × Z′2), with the circle having radius 2R. The 5D theory

always locally preserves at least N = 1 SUSY (this is true at the fixed points; in

the bulk, N = 2 SUSY is locally preserved) but, in this way of formulating SSSB, is

broken down to two inequivalent and incompatible N = 1 SUSYs on the two orbifold

fixed-points. Thus the maximal SSSB mechanism completely breaks the remaining

N = 1 SUSYs in the effective 4D theory below the scale ∼ 1/R, with the transition

from the 5D theory to the 4D theory happening at the same scale as that at which

SUSY is fully broken. We emphasise that there is no regime where the theory is

describable as a softly broken 4D SUSY theory. In this respect, as in many others,

1Parities under the two Z2 symmetries given by (+,+), (+,−), (−,+) and (−,−) correspond to
a KK spectrum of modes given by mn = n/R, (2n+ 1)/2R, (2n+ 1)/2R and (n+ 1)/R respectively
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4D theories based upon SSSB radically differ from the MSSM and its variants. The

case of SSSB with maximal twist is a symmetry enhanced point, for the IR theory

possesses a U(1)R R-symmetry, the details of which will be discussed in Section 3.3.3.

3.2.2 Bulk States

Going back to our toy model, depicted in Figure 3.1, we now proceed to illustrate

the physics of the SSSB mechanism. The field content of this toy model is an N = 2

vector supermultiplet that propagates in the bulk and transforms under the adjoint

representation of SU(3) together with a 4D N = 1 chiral superfield U3 localized in

the y = 0 brane. The parities under the two Z2 symmetries of the bulk field are

chosen such that the gauge field has a massless KK 0-mode (to be identified with the

4D gluon), and can be summarized as follows: (+,+) for V a
µ , (+,−) for λa, (−,+) for

λ
a

and (−,−) for σa. Since these parities lead to the lightest KK mode gluinos being

massive, but keep the gluons massless, SUSY is, as advertised, fully broken. From

a phenomenological point of view, we will be interested in the lightest KK modes of

the 5D states. The gauginos λa and λ
a

obtain purely Dirac masses, and their lightest

modes form a Dirac gluino with mass M3 = 1/2R. The Dirac nature of the gaugino

masses is a consequence of the U(1)R symmetry preserved by the maximal Scherk-

Schwarz twist. The adjoint scalars and KK excitations of the 4D vector fields begin

to appear at 1/R.

In the following, it will be important to recall that a 5D gauge theory is necessarily

an effective theory valid up to a scale M∗. The bulk 5D gauge couplings are dimen-

sionful (1/g2
I,5 has dimensions of mass; the 4D gauge couplings at the matching scale

µ ' 1/R are given by 1/g2
I,4 = πR/g2

I,5 up to small brane-kinetic-term corrections),

and 5D perturbative unitarity bounds for g3 requires M∗πR . 25 [132, 133, 134], or

M∗ ∼ 30−100 TeV for the TeV-scale radii we consider. We will parameterise potential

strong-coupling UV effects by HDOs with coefficients evaluated by the standard naive

dimensional analysis (NDA) treatment of extra-dimensional theories with branes (see

e.g. Section 3.2 of [135]).
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For example, SUSY-preserving brane-localized kinetic terms are the lowest dimen-

sion derivative operators that can be generated, and have no analog in the 4D MSSM.

For bulk vector fields they appear in the superpotential in the form

W ⊃ Z̃

M∗
WαW

αδ(y), (3.1)

where Wα refers to the superfield strength of the N = 1 vector supermultiplet. The

choice of bulk boundary conditions guarantees the existence of a zero mode for the

gauge bosons and the absence of zero modes for the gauginos and extra N = 2 scalar

superpartners, but the spectrum of the bulk superpartners and KK excitations can be

perturbed by these operators. NDA estimates for the size of these terms give Z̃ ∼ 3π
2

[135] which leads to . 10% deviations in the masses of the superpartners and KK

modes for M∗πR ∼ 25, and brane-localized operators with transverse derivatives have

comparable effects [136]. This perturbation of the spectrum can be important for the

phenomenology of the heavy bulk superpartners and KK modes. However, we will

mostly be focused on the spectrum and phenomenology of brane-localized superpart-

ners and bulk zero modes, and for these purposes the effects of these perturbations

of the bulk KK spectrum can be safely disregarded.

3.2.3 Brane-Localized States

Because the right-handed top is localized on the y = 0 brane, it has no KK excitations

and need only form part of a supermultiplet, U3, consistent with the N = 1 SUSY

preserved on the brane (just as in the MSSM). At tree level, locality in 5D protects

the U3 multiplet from the breaking of this N = 1 SUSY by the incompatible N = 1′

SUSY on the y = πR brane, and a SUSY-breaking mass for the scalar will only be

generated by SSSB at loop level.

The 1-loop contributions to the scalar mass involve SUSY breaking bulk loops of

the gluons and gluinos propagating between the y = 0 and y = πR brane. The 1-loop
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contribution gives a finite, and positive, mass squared,

m̃2
U3

=
7ζ(3)

16π4

4g2
3

3

1

R2
≈
(

1

10R

)2

≈
(

1

5
M3

)2

. (3.2)

The gluino is naturally five times heavier than the stop! In MSSM-like models, even

a small amount of running from the messenger scale pulls the stop mass to within a

factor of two of the gluino mass unless the parameters are specially tuned to give a

hierarchy [45], and the comparatively large built-in gluino-stop hierarchy in SSSB is

attractive. The softness of SSSB arises because loops communicating SUSY breaking

must propagate between both branes and are exponentially suppressed at large 4-

momenta |p4| > 1/(πR) [107], giving an effective messenger scale for SUSY breaking

of ∼ 1/(πR).

If only SSSB effects are present, then the spectrum for both the brane-localised

superpartners and the bulk superpartners is very predictive, with the dominant effects

determined completely by the scale 1/R and the choices of boundary conditions.

However, there is a generic possibility for additional sources of SUSY breaking from

the dynamics of radius stabilisation which we discuss in Section 3.2.4. While this will

have a small effect on the spectrum of bulk superpartners like the SU(3) gauginos,

we will find it can have an O(1) effect on the spectrum of brane-localized sfermions.

3.2.4 SUSY Breaking from Radius Stabilisation

A phenomenologically consistent theory requires that the scale of the compactified 5th

dimension ∼ 1/R ∼ TeV�M∗ must be dynamically stabilised, otherwise a massless

radion mode with excluded couplings would exist in the spectrum. In pure SSSB,

the only ingredients in the radion potential are supersymmetric brane tensions, a

supersymmetric 5D cosmological constant (CC), and SUSY-breaking Casimir energies

induced by the Scherk-Schwarz boundary conditions. Although these ingredients can

stabilise the radion, they generically do so at a non-vanishing (and negative) value of

the 4D CC, and additional sources of SUSY-breaking contributions to the potential

are needed to lift the minimum to a vanishing 4D CC.
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For example, if the brane tensions, bulk CC, and the Casimir energy of the minimal

bulk matter content are the only ingredients in the stabilisation sector, then the brane

and bulk tensions must break SUSY to stabilise the radius with vanishing 4D CC

[137]. With non-minimal field content the radius can have meta-stable minima with

SUSY preserving brane tensions, for example if the theory contains additional quasi-

localized states [137], but generic stable minima with vanishing 4D CC require SUSY

breaking tensions [138]. If the radius is stabilised by additional tree-level dynamics

for bulk fields [139], then the brane dynamics also generically lead to brane-localized

F -terms.

While it is not necessary to fully specify the radion stabilisation dynamics to

study the properties of the SM fields and their superpartners in SSSB models, we

find it is important to parameterise the effects of the additional sources of SUSY

breaking which may be present to cancel the 4D CC. We thus study the effects of

a brane-localized SUSY-breaking tension, which we parameterise by a hidden sector

field X with F -term FX . The Casimir energy of the bulk gravitational, gauge, and

matter states VC ∼ −(πR)−4 [137] sets the typical scale for contributions to the radion

potential, and therefore sets a typical scale of FX ∼ 1/(πR)2 to cancel against other

contributions and give a vanishing 4D CC.

Operators coupling the SM superpartners to X can generate additional soft SUSY

breaking masses beyond those originating at tree and loop-level from the Scherk-

Schwarz boundary conditions. For example, if X is localized on the same brane as

U3, then there are dimension six Kähler operators coupling these states,

K ⊃ δ(y)
c3

M2
∗

(
X†XU

†
3U3

)
, (3.3)

which gives a SUSY breaking scalar mass of size

∆m̃2
U3
≈ f 2

X

( c3

16π2

)( 25

πM∗R

)2

×
(

1

10R

)2

. (3.4)

where the dimensionless O(1) quantity fX is defined as FX ≡ fX/(πR)2. When this

operator saturates the NDA value at the fundamental scale M∗, the contribution to
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the SUSY breaking mass of ũ3 is comparable to the 1-loop minimal Scherk-Schwarz

contribution Eq.(3.2).

Therefore the on-brane spectrum can be perturbed by contributions from FX

comparable to the 1-loop SSSB masses, leading to a prediction for the overall scale of

masses of on-brane states with O(1) uncertainty. This has important phenomenolog-

ical consequences for the production and decay of brane-localized superpartners, and

we will also find that the extra contribution to the stop mass can be important to

radiatively drive EWSB. (SUSY breaking effects from the radius stabilisation sector

can also be communicated by anomaly mediation, but these are negligible compared

to the direct FX terms and the loop-level SSSB effects.)

3.3 Minimal Model

The discussion so far of the SU(3) gauge multiplet and right-handed top chiral super-

multiplet U3 has illustrated some key features of SSSB. The gauge multiplet propa-

gates in the bulk, and its N = 2 superpartners obtain large tree-level SUSY breaking

masses from the maximal SUSY breaking boundary conditions, with gluinos obtain-

ing a Dirac mass M3 = 1/(2R). The U3 multiplet is localized on the brane, and the

stop squark obtains a mass from SUSY breaking gluino bulk loops m̃2
U3
≈
(

1
10R

)2
. The

stop can also obtain a comparable contribution to its mass from additional sources

of SUSY breaking FX associated with cancelling the 4D CC. In this section, we ex-

tend the previous toy model to a realistic theory that includes the absolute minimal

ingredients. (Though, as we will argue, fails to give the correct physical Higgs mass

in the parameter regime of low tuning. We discuss ways to correct this deficit in

Section 3.4.)

3.3.1 Full matter content and gauge interactions

The results discussed in Section 3.2 can be easily generalized in order to build a

model that contains the full SM matter and gauge interactions at low energies – the

minimal ingredients of such model are depicted in Figure 3.2. The gauge and Higgs
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4D N = 1 SUSY
orbifold brane

4D N = 1 SUSY
orbifold brane

5D SUSY bulk

F3
SU(3) ⇥ SU(2) ⇥ U(1)

F1,2 = {F1,2, F
c
1,2} Hu,d = {Hu,d, H

c
u,d}

Figure 3.2: Schematic geography of natural spectrum embedded in a 5D Scherk-
Schwarz model. Gauge and Higgs sectors, together with the 1st and 2nd generation
of matter, propagate in the extra dimensional bulk. Each SM state is accompanied
by a full 5D SUSY multiplet and KK excitations, and SUSY breaking is felt by these
states at tree level from the Scherk-Schwarz boundary conditions. The 3rd generation
states are localized on the brane at y = 0 and fill out multiplets of the locally preserved
N = 1 SUSY; SUSY breaking is communicated to these states at loop level by their
interactions with the 5D gauge and Higgs fields. Fi referes to the usual N = 1 chiral
supermultiplets needed for each generation, i.e. Fi = Qi, U i, Di, Li, Ei (i = 1, 2, 3).

sectors propagate in the bulk, with the former extended to include the full SM gauge

group SU(3) × SU(2) × U(1). As before, gauginos get Dirac masses at tree-level of

size M1,2,3 = 1/(2R) from maximal SSSB. Regarding matter content, the 1st and

2nd generations also propagate in the 5D bulk, and therefore five hypermultiplets for

each of the two families are present: Fi = {Fi, F c
i } (i = 1, 2), where Fi refers to the

usual N = 1 chiral superfields present in the MSSM (Fi = Qi, U i, Di, Li, Ei). SSSB

boundary conditions are such that chiral fermions (the 1st and 2nd generation SM

quarks and leptons) remain in the low energy theory whereas sfermions of the 1st and

2nd generation get tree-level masses of size 1/2R (degenerate with gauginos, and, as

we will soon argue, Higgsinos) and the first conjugate fermion partner appears paired

with the first KK excitation of the SM fermion with a Dirac mass of 1/R. Because

the first two generations appear as bulk states, the spectrum of superpartners and

KK excitations can be perturbed at the . 10% level by brane-localized kinetic terms

without significant consequences, just as described for the gauge multiplets.

The Higgs sector includes two hypermultiplets Hu,d = {Hu,d, H
c
u,d}, albeit only the

scalar component of Hu gets a non-zero vev, which automatically results in a SM-

like Higgs sector at low energies2 and Hd is therefore left as an inert Higgs doublet3.

2This fact will become apparent once we discuss the structure of the Yukawa interactions in
Section 3.3.2.

3In Section 3.4.3 we argue that one of variant models that accommodates the Higgs mass, mh '
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At tree-level, an accidental global U(1)Hd
symmetry (or Zk) acting on Hd is present,

which can be chosen to remain exact. Notice that a µ-term, either in the bulk or brane-

localized, can be forbidden by both the IR U(1)R symmetry (see Section 3.3.3) and

the U(1)Hd
if chosen to remain unbroken. Despite the absence of µ-terms, Higgsinos,

similar to gauginos, get a Dirac tree-level mass of size 1/2R due to the SSSB boundary

conditions, whereas the contribution to the mass-squared parameters of the scalar

components of the Higgs multiplets is strictly zero at tree-level. This elegantly solves

the µ-problem! Notice that although a few examples of 4D solutions to the µ-problem

exist [140, 141, 142], SSSB with maximal twist provides a 5D realisation and in fact

the choice of maximal boundary conditions corresponds to an enhanced U(1)R and

U(1)Hd
symmetry. On the other hand, as we will see in detail in Section 3.3.4, the

radiative part of the tuning is irreducible, and we will of course find that at loop level

the Higgs zero modes do obtain SUSY breaking masses.

The boundary conditions for all the fields that propagate in the extra dimensional

bulk are summarised in Table 3.1 and are chosen to be consistent with the two in-

equivalent and incompatible N = 1 SUSYs that are preserved by the gauge multiplet

boundary conditions at, respectively, y = 0 and y = πR.

(+,+) (+,−) (−,+) (−,−)

Va = {V a, χa} V a
µ λa λ

a
σa

Hu,d = {Hu,d, H
c
u,d} hu,d h̃u,d h̃cu,d hcu,d

F1,2 = {F1,2, F
c
1,2} f1,2 f̃1,2 f̃ c1,2 f c1,2

Table 3.1: Boundary conditions at y = (0, πR) for 5D fields with ± corresponding
to Neumann/Dirichlet. Only the (+,+) fields have a zero mode, and the KK mass
spectrum (n > 0) is: mn = n/R for (+,+) fields; (2n+ 1)/2R for (+,−) and (−,+);
and (n + 1)/R for (−,−). f1,2 stands for all 1st/2nd generation fermions and f̃1,2

their 4D N = 1 sfermion partners. States in the last two columns correspond to the
extra 5D SUSY partners.

On the other hand, the 3rd generation of matter is fully localized on the y = 0

brane and therefore 3rd generation sfermions only pick up masses at 1-loop from

125 GeV, involves an NMSSM-like structure with both Hu and Hd acquiring vevs. However, the
simplest and most natural models for the physical Higgs mass maintain the feature that only Hu

acquires a vev.
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radiative corrections involving bulk fields. Notice that due to the different localization

of the 1st and 2nd generations compared to the 3rd, a natural hierarchy between

sfermions is present in the theory. Due to the N = 2 structure of the bulk, Yukawa

interactions between Higgs and matter supermultiplets cannot be written as bulk

terms but need to be localized on the y = 0 brane – the detailed structure of the

Yukawa couplings in MNSUSY will be explored in Section 3.3.2.

The 1-loop contributions to the scalar masses of brane localized fields, as well

as to the mass-squared parameters of the scalar components of Hu,d, are given by

similar expressions to Eq.(3.2) but generalized to include extra gauge and Yukawa

interactions:

δm̃2
i '

7ζ(3)

16π4R2

( ∑

I=1,2,3

CI(i)g
2
I + Ct(i)y

2
t

)
, (3.5)

where C(U3) = {4/9, 0, 4/3, 1}, C(D3) = {1/9, 0, 4/3, 0}, C(E3) = {1, 0, 0, 0}, C(L3) =

{1/4, 3/4, 0, 0}, C(Q3) = {1/36, 3/4, 4/3, 1/2} and for the 0-mode Higgs scalar com-

ponents C(Hu,d) = {1/4, 3/4, 0, 0} [107, 108]. As mentioned in Section 3.2.3, 3rd

generation squarks receive the dominant part of their mass from bulk SU(3) loops,

giving m̃2
Q3,U3

≈ 1/(10R)2, with a splitting between Q3 and U3 due to the top-Yukawa

and SU(2) contributions. On the other hand, the right-handed stau gets the smallest

1-loop SSSB mass due to its SM gauge quantum numbers and tiny Yukawa interac-

tions,

m2
τ̃R
≈
(

1

40R

)2

≈
(

1

4
mt̃

)2

. (3.6)

However, while the pure SSSB limit is an interesting spectrum to study, couplings to

FX of the form of Eq.(3.3) can contribute to the masses of all of the third generation

brane-localized sfermions. This sets a scale m̃2
f3
∼ ∆m̃2

U3
for the third generation

sfermion masses with a non-predictive ordering of the spectrum.

Although in this work we will only consider the case where the 3rd generation is

fully localized on the brane whereas the 1st and 2nd propagate on the bulk, small

variations of this localization, motivated for instance by flavor constraints [143], are

possible provided the spectrum is locally in the 5th dimension free of gravitational

anomalies (rather than just globally free once integrated across the extra dimension)
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Figure 3.3: The schematic spectrum of new states in the 5D SSSB model with an
example KK scale of 1/R ∼ 6 TeV. The MSSM-like gauginos and Higgsinos get
tree-level SSSB Dirac masses at the scale 1/(2R) by pairing with their 5D conjugates.
The lightest modes of the MSSM-like 1st and 2nd generation sfermions also appear at
1/(2R), along with their 5D SUSY conjugate scalar partners. The brane-localized 3rd
generation sfermions get masses from SSSB at loop level, making the 3rd generation
squarks about five time lighter than the gauginos. Although the SSSB tree-level
and 1-loop contributions are fixed relative to 1/R, higher dimensional operators can
contribute to the 3rd generation sfermion masses at a similar order of magnitude and
with undetermined coefficients, so that only the overall scale of the 3rd generation
sfermion spectrum is predicted. At the KK scale 1/R the first SM KK excitations
and additional 5D SUSY partners appear.
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in order to avoid generating brane-localized Fayet-Illiopoulos terms [144, 145, 116],

which would lead to power-sensitivity of EWSB to the UV scale. As discussed in

[143], some convenient possibilities consist of allowing part of the 3rd generation

multiplets to propagate in the bulk, or to make part or all the 1st and 2nd generation

content brane-localized. Although the latter possibility would no longer correspond to

a strictly ‘natural SUSY’ spectrum [42], the limits on 1st and 2nd generation squarks

can still be rather weak when the gluino is heavy, and this model provides a simple

realisation of the ‘super-safe’ Dirac gluino scenario [146].

Notice that we focus on the case where all states are either exactly localized on

one of the branes or are allowed to propagate uniformly in the bulk. However, when

bulk masses are allowed for the bulk hypermultiplets, states can be quasi-localized

toward the y = 0 or y = πR brane [147, 113]. Forbidding these masses in our model

is technically natural since the bulk parity P5 [113] (a symmetry that corresponds to

a reflection about any point of the bulk in the limit R→∞) is broken only globally

by the inequivalence of the y = 0 and y = πR branes, but interesting properties

arise in models where these mass terms are included and the 3rd generation is only

quasi-localized. For example, as studied in Refs. [113, 112], the propagation of quasi-

localized 3rd generation sfermions into the bulk allows small tree-level SUSY breaking

masses from the Scherk-Schwarz boundary conditions in addition to the loop-level

contributions from bulk multiplets. Phenomenologically, such contributions play a

very similar role to the FX shifts in the brane-localized masses we consider in this

work, and most of our results apply straightforwardly to the quasi-localized models.

3.3.2 Yukawa Couplings

Up-Type Yukawas

Yukawa interactions for up-like states cannot be written as bulk interactions, since

they are forbidden by the extended bulk N = 2 SUSY, and must be generated instead
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as HDOs localized on the orbifold branes. For example, Yukawa couplings for the up-

like quark sector are given in the superpotential by (here i, j = 1, 2)

W ⊃ δ(y)Hu

{
ỹ33

M
1/2
∗

Q3U3 +
ỹ3i

M∗
Q3U i +

ỹi3
M∗

QiU3 +
ỹij

M
3/2
∗

QiU j

}
. (3.7)

These bulk-brane interactions are volume suppressed, as reflected in the dimen-

sionality of the couplings, and the 4D effective top Yukawa will naturally take a

parametrically larger value than those involving the 1st and 2nd generation, due

to the brane-localization of the top sector. The effective 4D Yukawas of the top,

charm and up quarks can be written in terms of the fundamental 5D parameters as

yt = ỹ33(M∗πR)−1/2 and yc,u = ỹ22,11(M∗πR)−3/2 respectively, such that

yc,u
yt

=
ỹ22,11

ỹ33

1

M∗πR
∼ O(

1

25
) (3.8)

for ỹ33 ∼ ỹ11,22. A natural hierarchy between yt and yc,u arises due to the 3rd genera-

tion being brane-localized. For NDA estimates, ỹ33 ∼ 4π, a sufficiently large effective

coupling yt can easily be generated that is consistent with the cutoff M∗πR ∼ 25

of the 5D gauge theory. Of course the extreme lightness of the up quark relative to

the charm quark is not explained by this geometrical arrangement of multiplets, but

extensions to 6D orbifold models [148] (with one dimension having a SSSB twist),

or the inclusion of traditional Frogert-Nielsen style broken flavor symmetries [149]

acting on the 1st and 2nd generations can accommodate/explain the peculiarities of

the up quark and the other 1st generation SM fermion states and their mixings.

Non-Holomorphic Down-Type Yukawas

The fact that the scalar component of Hd does not get a vev implies that down-type

quark and lepton masses and mixings cannot arise from interactions with Hd. We in-

stead consider the case where down-type Yukawas are generated via non-holomorphic

HDOs in the Kähler potential involving both Hu and the SM-singlet X. For example,
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for down-type quarks

K ⊃ δ(y)(X†H†u)

{
ŷ33

M
5/2
∗

Q3D3 +
ŷ3i

M3
∗
Q3Di +

ŷi3
M3
∗
QiD3 +

ŷij

M
7/2
∗

QiDj

}
+ h.c. (3.9)

(i, j = 1, 2) and similarly for leptons. As for up-type Yukawa couplings, this struc-

ture implies a 1/(M∗πR) suppression of the down-type couplings of the 1st and 2nd

generation compared to that of the 3rd. Moreover, the different structure of the up-

and down-type Yukawas implies that the latter are naturally suppressed compared to

the former. For example, the ratio of the 4D effective bottom and top couplings is

naturally (taking FX ∼ 1/(πR)2)

yb
yt
≈ ỹb
ỹt

1

(M∗πR)2
∼ 10−3. (3.10)

This strong suppression of the down-like and lepton couplings relative the up-like

couplings is an interesting generic feature of our model, though O(10−3) is of course

somewhat too small, so that either ỹb ∼ 10ỹt or FX ∼ 1/R2, or possibly a combination,

is required. Nevertheless we see that there are new opportunities for flavor model

building in MNSUSY models, a large topic that is beyond the scope of this work.

Finally we remark that although we do not utilise the possibility here, Yukawa

couplings for the 1st and 2nd generations may also be written as brane-localized

interactions on the y = πR brane, making use of the different N = 1 SUSY that is

preserved there [115]. This would involve superpotential terms of the form

W ⊃ δ(y − πR)
ŷij

M
3/2
∗

Hc′
uQ
′
iD
′
j (i, j = 1, 2) (3.11)

where Hc′
u = (h†u, h̃

c
u), and F ′i = (f̃ †i , fi) for F = Q,D (the unusual combinations

of multiplet components being due to the different N = 1 SUSY on the y = πR

brane). A third possibility for flavor arises if exact localization of the 3rd generation

is given up and, instead, one assumes it is exponentially localised towards the y = 0

brane [113] (this may be achieved by writing sufficiently large bulk masses for the

3rd generation states [147]). In this case, down-type Yukawa couplings for the 3rd
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generation may also be written as localized in the y = πR brane, and the 4D effective

couplings would be exponentially suppressed compared to the up-type ones which

remain localised to the y = 0 brane.

In summary, because the Yukawa couplings can be realised with only a vev for Hu,

the structure of the Higgs sector can be substantially different than in the MSSM. We

will focus mostly on this limit where Hd does not obtain a vev and behaves as an inert

doublet, corresponding to an enhanced U(1)Hd
(or Zk) symmetry of the theory. Note

that despite the fact that 〈H0
u〉 / 〈H0

d〉 → ∞ the physics differs substantially from the

tan β → ∞ limit of the MSSM. In particular rare flavor processes are not enhanced

by powers of tan β even though the Higgs sector itself is realising the tan β → ∞
limit.

3.3.3 U(1)R Symmetry and Dirac Gauginos

The choice of bc’s required for maximal SSSB preserves a U(1) subgroup of the

SU(2)R R-symmetry present in N = 2 SUSY so long as gravitational interactions are

ignored. The R-charges of the different fields are shown in Table 3.2.

N = 1 superfield Boson Fermion
V a = (V a

µ , λ
a) 0 +1

Σa = (σa, λ
a
) 0 −1

Hu,d = (hu,d, h̃u,d) 0 −1

Hc
u,d = (hcu,d, h̃

c
u,d) +2 +1

F1,2,3 = (f̃1,2,3, f1,2,3) +1 0

F c
1,2 = (f̃ c1,2, f

c
1,2) +1 0

X = (x, x̃) +2 +1

Table 3.2: R-charges of relevant fields present in the theory (in N = 1 language).
The pairs (λa, λ

a
) and (h̃u,d, h̃

c
u,d) have opposite R-charges and partner resulting in

Dirac gaugino and Higgsino masses. Note that R(hu,d) = R(FX) = 0.

This U(1)R symmetry ensures that the two Weyl fermions present in an N = 2

vector supermultiplet (λa and λ
a
) and in Higgs hypermultiplets (h̃u,d and h̃cu,d) pair

into Dirac fermions, giving Dirac gauginos and Higgsinos with tree-level masses of
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size 1/(2R). Moreover, A-terms are forbidden because of the exact R-symmetry in

maximal SSSB, in contrast to models with a small R-symmetry twist, which generate

large A-terms [130]. Notice that the remaining R-symmetry is not broken by the vev

of hu (or of hd if it was non-zero), by Yukawa interactions, or by the non-zero vev of

the F -term of X.

However, once supergravity (SUGRA) is included into the picture, the hitherto

exact R-symmetry can be broken by anomaly mediated contributions to Majorana

gaugino masses, sfermion soft masses and A-terms appear, all of them proportional

to the vev of the SUGRA conformal compensator F -term, Fφ (see e.g. [150, 151]).

We expect Fφ ∼ 1
R

1
(πRMg)3

[138] and therefore the effects of anomaly mediated contri-

butions to SUSY breaking parameters are highly suppressed compared to those from

SSSB or from HDOs involving FX , even for Mg ∼M∗. Consequently, in the following

we ignore R-symmetry breaking effects arising from SUGRA.

It is worth emphasising the contrast between Dirac gauginos in maximal SSSB

and in 4D models that contain partial N = 2 SUSY [152]. In 4D, the adjoint scalars

present phenomenological difficulties: their imaginary components can be tachyonic

unless protected from certain operators [153] and the real components can remove the

D-term contributions to the Higgs quartic unless gauginos obtain Majorana masses,

thus breaking the R-symmetry [152, 140]. On the other hand, in 5D maximal SSSB

both the real and imaginary components of the scalar are lifted without breaking

the R-symmetry—the scalar adjoints obtain a mass through the SUSY Stueckelberg

mechanism with the KK gauge bosons [154], which removes the tachyons, introduces

pure Dirac masses for the gauginos, and preserves the D-term contributions to the

Higgs quartic. The qualitative difference between the 5D and 4D implementations of

Dirac gaugino masses arises from the fact that partial breaking of N = 2 to N = 1

is a possibility in the former but forbidden in the latter. In 4D models with Dirac

gauginos, the logarithmic sensitivity to the messenger scale can also be removed and

similar hierarchies can be attained, but a logarithmic sensitivity to the mass of the

adjoints remains [152, 140].

Notice that if the radius stabilisation sector broke the R-symmetry then A-terms

would be generated through couplings to FX , and their sizes would be comparable
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to 3rd generation sfermion masses (see Eqs.(3.3) and (3.4)). Similarly, gluino brane-

localized Majorana masses would be generated, but they would be volume suppressed

(due to the brane-bulk overlap factor 1/(M∗πR)) and would only amount to a small

perturbation on the large tree-level gluino Dirac mass M3 = 1/(2R).

3.3.4 The Scale of EWSB

In the absence of SSSB loop contributions and HDOs, the Higgs scalar zero modes

are exactly massless and their quartic interactions are given by the standard tree-

level MSSM D-terms. Radiative contributions are therefore crucial both to connect

the scale of EWSB to the SSSB scale 1/R and to determine the viability of a mh ≈
125 GeV Higgs.

The structure of the corrections to the Higgs mass-squared parameter in com-

parison with the standard MSSM results is most easily organized in the framework

of matching the 5D theory to an effective 4D theory, and this approach will make

incorporating additional contributions to the Higgs potential from extended sectors

and other sources of SUSY breaking particularly simple. The 5D SUSY theory valid

at scales & 1/R can be matched to an effective 4D theory containing only the SM

(including the Higgs zero modes) and 3rd generation superpartners at lower energies.

The leading contributions to the Higgs potential in this effective theory are similar to

those of the MSSM, and the properties of the 5D physics are all encapsulated in the

matching. As is well known, there are further important log-enhanced IR corrections

to the Higgs potential that can be encapsulated by integrating out the scalars at scale

mt̃ and running to match the measured SM couplings at the Z and top poles. In the

case where only Hu gets a vev, we find that there is a natural hierarchy between the

EWSB and SSSB scales, with v ∼ 1/(20R). However, the radiative potential does

not favor EWSB and additional contributions from HDOs, as discussed later, are

required.

To be concrete, our calculation of the Hu zero-mode mass-squared parameter,

m2
Hu

, in the effective theory includes a 1-loop EW contribution, m2
Hu,EW

, and a two-

loop Yukawa-mediated piece, m2
Hu,yt

, of order ∼ y4
t , g

2
3y

2
t that also includes three-loop
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leading log terms ∼ (y6
t , y

4
t g

2
3, y

2
t g

4
3)× log(x)2 where log(x) = log

(
m̃t

1/πR
, mt

m̃t
, mt

1/πR

)
are

treated as formally of the same order. The 1-loop EW piece can be understood by

integrating out the bulk Higgs and gauge KK modes at scale 1/(πR), which generates

the 1-loop positive mass-squared parameters in the effective theory given in Eq.(3.5),

and for the Higgs is a positive contribution dominated by the SU(2) sector,

m2
Hu,EW =

7ζ(3)

16π4R2

(
1

4
g2

1 +
3

4
g2

2

)
≈ 7ζ(3)

16π4R2

3

4
g2

2 ∼
(

1

20R

)2

(3.12)

Matching to the effective theory at 2-loops using the fixed order results of Ref. [112]

generates the non-logarithmically enhanced (y4
t , g

2
3y

2
t ) contribution to m2

Hu,yt
. Run-

ning the soft masses down from 1/πR to the stop threshold, and running and matching

the gauge couplings down through the stop threshold to the measured SM couplings

at the top pole generates the remaining 2-loop and 3-loop leading log contributions.

As the log enhanced contributions are generated from running of the soft masses just

as in the MSSM, it is not surprising that loops of stops generate a negative contri-

bution to the Higgs mass of comparable size to that expected from a stop of similar

mass in the MSSM with a low mediation scale. The three-loop leading log terms are

an important contribution, giving a ∼ 50% shift in the result compared to the fixed

order calculation of Ref. [112], which can be understood as due to the significant run-

ning of yt and g3 between 1/R and mt and the quartic dependence of the fixed-order

result on these couplings. To within the theoretical error, we find the full result is

numerically well approximated by evaluating the usual 1-loop MSSM formula at scale

µ = 1/(πR), using the 1-loop stop mass given by Eq.(3.5) and the Yukawa and gauge

couplings all evaluated at the DR value given by SM running to the scale µ = 1/(πR),

m2
Hu,yt ≈ −

3y2
t,SM(µ)

16π2

[
m̃2
Q3

(µ) + m̃2
U3

(µ)
]

log

[
µ2

m̃Q3(µ)m̃U3(µ)

]∣∣∣∣
µ=1/πR

. (3.13)

The results of the full numerical evaluation of our calculation of EWSB are sum-

marized in Figure 3.4. As shown in Figure 3.4, these minimal contributions given by

the pure SSSB contributions to m2
Hu

do not lead to EWSB; the positive 1-loop EW

contribution Eq.(3.12) is about twice the size of the negative radiative contribution
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Figure 3.4: Contributions to the Higgs soft mass m2
Hu

in units of 1/R2. The positive
1-loop EW contribution (blue) and the negative 2-loop + leading log top-stop sector
contribution (red) combine to give a positive, but tiny, mass squared (black), implying
that the minimal model is close to EWSB. Contributions from HDOs can lead to
successful EWSB, indicated by the dotted black curve. The dashed bands show the
uncertainty for MS top mass mt(Mt) = 160+5

−4 GeV.

from the Yukawa coupling Eq.(3.13).

Nevertheless, the size of the resulting Higgs mass-squared parameter is tiny com-

pared to the basic SUSY-breaking scale, 1/(πR), of the theory, with m2
Hu
R2 ∼ 5·10−4,

and thus the theory is very close to criticality with small perturbations to the basic

picture being capable of triggering EWSB with the correct vev. Specifically we find

an EWSB vacuum with the observed vev 〈Hu〉 = v/
√

2 (v ≈ 246 GeV) is obtained by

taking into account HDOs that couple the stop (and to a lesser extent Hu) to SUSY

breaking effects in the radius stabilisation sector, as described in Section 3.2.4.

The operators coupling directly to Hu, suppressed by scale M∗, are of the form

K ⊃ δ(y)
cH
M3
∗
X†XH†uHu, (3.14)

and give a mass-squared of size

∆m2
Hu,X ≈ f 2

X

( cH
24π2

)( 25

M∗πR

)3

×
(

1

25R

)2

. (3.15)
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For NDA values of coefficients, this contribution is of the same order as the radiative

piece from the bulk EW sector given in Eq.(3.12). Moreover, FX can also feed into the

Higgs potential radiatively by shifting the stop masses, as can be seen from Eq.(3.3).

The shift in m̃2
Q3,U3

due to FX is enhanced by a factor of M∗πR because there is no

volume suppression, since the stops are brane localised, and this soft mass feeds in

to m2
Hu

with the usual large 1-loop coefficients, although now including a logarithmic

sensitivity to the UV scale M∗,

∆m2
Hu,t̃
≈ − 3y2

t

16π2
log

(
M2
∗

m̃Q3m̃U3

)
(∆m̃2

Q3
+ ∆m̃2

U3
). (3.16)

This contribution is enough to drive EWSB when coupling to FX increases m2
t̃

from

the pure SSSB value of mt̃ ∼ 1/(10R) to roughly mt̃ ∼ 1/(8R). This contribution can

also be viewed as a larger than NDA coefficient for cH in Eq.(3.14) generated from

the operator Eq.(3.3) when running to low scales.

Therefore we can use the O(1) freedom in the coefficients of the FX contributions

to the squark masses to drive EWSB. The natural scale for the soft mass set by SSSB

is m2
Hu
≈ 1/(20R)2, and the correct value for EWSB is obtained by including the FX

contributions to the Higgs potential. These two cancelling contributions are naturally

of comparable size, and it is only when 1/R� 4 TeV that the residual value of m2
Hu

is too large and a tuning is introduced to cancel the two contributions to give the

observed weak scale. Phenomenologically, this approach has very similar effects to

giving the 3rd generation squarks small tree-level SSSB masses by quasi-localization

[113, 112].

3.3.5 The SM-like 125 GeV Higgs

The radiative contributions to the Higgs pole mass are IR dominated, and at leading-

log match exactly the MSSM radiative corrections. We include the 1-loop leading-log

(LL) g2
1,2 log(x) EW contributions to the Higgs potential and up to the two-loop

next-to-leading-log (NLL) contributions from the stop sector (y4
t , y

4
t g

2
3, y

6
t ) × log(x).

We define an effective Higgs quartic interaction by m2
h = V ′′eff(|Hu|2)v2 ≡ 2λ̂v2, with
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〈Hu〉 = v/
√

2 and the SUSY tree-level value λ̂0 =
g21+g22

8
. The leading 1-loop EW

contribution δλ̂EW has at order (g4
1,2, g

2
1,2y

2
t )×log(m2

t̃
/m2

t ) the same form as the MSSM

values given in Ref. [155], and because of the structure of the Higgs sector there are

no Higgs mixing effects and the yb-dependent corrections are negligible (unlike the

MSSM at large tan β). The leading EW piece reads

δλ̂EW = − 3y2
t

64π2
(g2 + g′2) log

[
m̂2
t̃

m2
t

]
(3.17)

and the stop contribution is given by the fixed-order calculation in Ref. [112] as

δλ̂yt =
3ŷ4

t

16π2
log

[
m̂2
t̃

m2
t

]
+

6ŷ4
t

(16π2)2

{
y2
t

(
3ŷ2

t

4
log

[
m̂2
t̃

m2
t

]2

+ ŷ2
t log

[
m̂2
t̃

1/(πR)2

]2
)

−8g2
3

3

(
1

2
log

[
m̂2
t̃

m2
t

]2

− 2 log

[
m2
t

1/(πR)2

]2

− 2 log

[
m2
t

1/(πR)2

]
log

[
m̂2
t̃

1/(πR)2

])

+
ŷ2
t

4

(
11 log

[
m̂2
t̃

1/(πR)2

]
+ 3 log

[
m2
t

1/(πR)2

])

−8g2
3

3

(
(2− 12 log(2)) log

[
m̂2
t̃

m2
t

]
− 3 log

[
m2
t

1/(πR)2

])}
(3.18)

where we have taken equal masses m̃2
Q3
≈ m̃2

U3
for the stops, which holds to a good

approximation in the pure SSSB model, and define ŷt = mt

v/
√

2
and m̂2

t̃
= m̃2

Q3,U3
+m2

t ,

with mt the pole mass of the top. Here we briefly describe the origin of these terms

in the language of matching to the effective 4D theory to illuminate the connection

with MSSM results and to clarify how we will incorporate other corrections beyond

the minimal SSSB spectrum.

To obtain the two-loop NLL result, the heavy KK modes can be integrated out at

1-loop at the scale 1/(πR), generating the 1-loop 3rd generation sfermion masses and

Higgs soft mass in the effective theory, and non-supersymetric shifts in the Yukawa-

like couplings of the top and the stop. These threshold corrections to the Yukawa-like

couplings are sensitive to the 5D physics, and are responsible for the deviations from

the MSSM result starting at two-loop NLL order. The one and two-loop LL terms are
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generated by running through and integrating out the stop thresholds then running to

match the SM couplings, and clearly will have the same form as the MSSM with heavy

Higgsinos and gauginos. When the stop masses are increased by HDOs involving FX

as given by Eq.(3.4), the effect on the radiatively generated quartic can be completely

included at this order by replacing m̃2
Q3,U3

→ m̃2
Q3,U3 (SSSB) + ∆m2

Q3,U3
in Eq.(3.18).

Thus we find that the Higgs mass prediction in the pure SSSB model, shown in

Figure 3.5, matches well with the large tan β MSSM predictions. Unfortunately this

implies that stops & 3 TeV are necessary to obtain mh ≈ 125 GeV, corresponding to a

compactification scale 1/R & 30 TeV. At such large stop masses the natural value for

the Higgs vev is far above the measured weak scale, and the theory will be tuned to the

few percent level. Although this is significantly less tuning than typical MSSM-like

theories with comparable stop masses, we will be motivated to consider extensions

that can increase the Higgs pole mass without requiring such large contributions

from the stop sector. The stops can also be lighter if large A-terms are generated,

A2
t & m2

t̃
, which can occur if the X couplings break the R-symmetry. Because the

leading radiative contributions to the Higgs pole mass are generated in the effective

4D theory containing the third generation squarks, the effects of including such A-

terms can be incorporated using the appropriate 1-loop MSSM formula, and the

range of viable parameters is similar to the MSSM. However, when large A-terms are

generated by FX , they feed into the Higgs soft mass with large logarithms sensitive

to the fundamental scale M∗ and will dominate the tuning for A2
t & m2

t̃
, removing the

UV insensitivity that is one of the principle advantages of SSSB and leading to little

improvement in the tuning. Instead, we focus in the following sections on extensions

to the minimal field content that can increase the Higgs mass for light stops without

substantially effecting the tuning or reintroducing further log sensitivity to M∗.

Notice that HDOs coupling Hu to SUSY breaking effects in the radius stabilisation

sector, i.e. to FX , can also contribute to the effective Higgs quartic, with the leading

term being a brane-localized Kähler operator of the form

K ⊃ δ(y)
cλ
M6
∗
X†X(H†uHu)

2 (3.19)
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Figure 3.5: Higgs pole mass in pure SSSB with two-loop NLL calculation of Yukawa
contributions and 1-loop EW contributions. The horizontal axis is the lightest stop
soft mass. Here we have taken the FX contribution to the stop masses to vanish, so
the stop mass is related to the compactification radius 1/R giving mt̃ ≈ 1

10
1
R

. The

dashed bands show the uncertainty for MS top mass mt(Mt) = 160+5
−4 GeV.

that results in a contribution to the quartic

δλ̂X ∼ 10−4 f 2
X

cλ
(24π2)2

(
25

M∗πR

)6

, (3.20)

which can be related to the FX contribution to the Hu mass-squared parameter in

Eq.(3.14) as (for NDA values of the corresponding coefficients)

δλ̂X ∼ 10−4

(
25

M∗πR

)3 ∆m2
Hu,X

1/(25R)2
. (3.21)

Thus, even for an NDA value of the coefficient (cλ ≈ (24π2)2), the HDO in Eq.(3.19)

results in a negligible contribution to the effective Higgs quartic, unless SUSY break-

ing from FX is so large that it dominates completely over the SSSB effects in the

Higgs potential, leading to a large tuning of the weak scale.
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3.4 Extended Sectors

This sections describes extensions to the minimal model which can lift the Higgs pole

mass to mh ≈ 125GeV.

3.4.1 Vector-like Fermions Extension

A simple mechanism to raise the physical Higgs mass mh consists in adding vector-

like (VL) pairs of superfields with Yukawa couplings to the Higgs. As noted in [156],

a contribution to the Higgs quartic coupling, and therefore to mh, will be radiatively

generated with size depending on the mass gap between the fermion and scalar com-

ponents and the size of the new Yukawa. We consider the simple case of adding

two colorless SU(2)L doublets and singlets localized on one of the branes. The extra

field content, in N = 1 superfield notation, with their SM quantum numbers is the

following:

L̃ : (1,2,−Y ) Ẽ : (1,1, Y + 1/2)

L̃′ : (1,2, Y ) Ẽ ′ : (1,1,−Y − 1/2) .
(3.22)

With this field content, we can write a superpotential for the VL sector as follows4:

W ⊃ δ(y)

{
k̃u

M
1/2
∗

HuL̃
′Ẽ ′ − µLL̃′L̃− µEẼ ′Ẽ

}
, (3.23)

where we have chosen to localise the new states on the y = 0 brane (albeit the follow-

ing discussion applies equally to the case of localization in the y = πR brane), and

the 4D effective Yukawa coupling ku is given in terms of the fundamental parameters

as ku = k̃u(πRM∗)
−1/2.

The new field content consists of two Dirac fermions with electric charge ±(Y +

1/2) that couple to the Higgs and one Dirac fermion with charge ±(Y − 1/2) that

does not, together with their corresponding scalar partners. We will concentrate in

the case Y = 1/2, which means that the mass eigenstates are two fermions with

4A Yukawa coupling involving L̃ and Ẽ could also be written in the same way as lepton and down-
type quark Yukawas. However, as we saw in Section 3.3.2, their size is parametrically suppressed
compared to the up-type ones and therefore we neglect it here for simplicity.
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charge ±1 (τ ′1, τ ′2) and one neutral fermion (ν ′) whose tree-level mass is equal to µL.

For O(1) values of the 4D effective coupling ku, the masses of the new fermions are

such that mτ ′1
< mν′ = µL < mτ ′2

. For simplicity, we impose an extra Z2 symmetry

on these new states to avoid their mixing with SM leptons5. For obvious reasons, we

will refer to this version of the model as the VL-lepton scenario.

A simple way to dynamically generate the VL masses µL and µE is to introduce

a SM singlet in the 5D bulk, K, that couples to the new VL states as follows:

W ⊃ δ(y)
λ̃K

M
1/2
∗

K(L̃′L̃+ Ẽ ′Ẽ) . (3.24)

At 1-loop, this interaction contributes to the soft masses of the scalar partners of the

VL states. Including all 1-loop contributions, these are given by the usual expression:

δm̃2
i '

7ζ(3)

16π4R2

( ∑

I=1,2,3

CI(i)g
2
I + Cku(i)k2

u + CλK (i)λ2
K

)
(3.25)

with C(L̃) = {1/4, 3/4, 0, 0, 1/2}, C(L̃′) = {1/4, 3/4, 0, 1/2, 1/2},
C(Ẽ) = {1, 0, 0, 0, 1/2}, C(Ẽ ′) = {1, 0, 0, 1, 1/2} [107, 108] and where

λK = λ̃K(πRM∗)
−1/2 is the 4D effective coupling. In turn, at two-loop order, the

VL states generate a scalar potential for the K field, in much the same way as the

brane localized top sector does for the Higgs, with a negative soft mass and an O(1)

quartic coupling. This results in the 4D-normalized scalar component of K getting a

vev 〈k〉 ∼ 102 GeV, which leads to VL masses arising from Eq.(3.24) as

µL = µE =
λ̃K

(πRM∗)1/2
〈k〉 = λK〈k〉 ≡ µV L . (3.26)

We take λK ≈ 2.0 at the scale of the VL masses, which is consistent with a value

for λK equal to the NDA limit at scale M∗. From now on, we also fix µV L = 350 GeV

for illustration, a reasonable value given the size of λK and 〈k〉. Figure 3.6 shows

the extra field content and its location. Notice that this extension of the model that

5The Z2 symmetry can be slightly broken to allow the new states to decay.
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includes a bulk SM-singlet K coupling to the VL fermions as specified in Eq.(3.24) is

particularly appealing because it generates both VL masses by the above mechanism,

and, at 1-loop, SUSY breaking masses for the scalar components. This allows us to

localise the VL states in a different brane from the SM-singlet, X, avoiding SUSY

breaking contributions to the scalar masses from FX that would result in the Higgs

mass-squared parameter being UV sensitive (cf, Section 3.3.4).

L̃, L̃0, Ẽ, Ẽ0K

4D N = 1 SUSY
orbifold brane

4D N = 1 SUSY
orbifold brane

5D SUSY bulk

Figure 3.6: Extra field content needed to implement the VL lepton variation. A
5D bulk SM singlet hypermultiplet K and a pair of vector-like SU(2)L doublets and
singlets on the y = 0 brane.

In order to compute the contribution from the VL sector to the Higgs mass we

use the 1-loop effective potential formalism. The result will depend mostly on the

size of the gap between fermion and scalar masses, i.e. on 1/R, and crucially on the

size of the new Yukawa coupling, as δm2
h ∝ k4

u. We add this contribution from the

VL sector to the one from the top-stop sector discussed in Section 3.3.5.

As well as a contribution to the Higgs quartic coupling, the new VL states also

contribute to the Higgs mass-squared parameter, and therefore somewhat affect the

physics of EWSB. Specifically, Figure 3.7 shows the different contributions to the soft

mass-squared of the Higgs, showing how the new sector gives a negative contribution

to m2
H of approximately the same size as that from the top-stop sector, leading to a

total contribution closer to the true EWSB value compared to the previous version of

the model, cf, Figure 3.4. As a rather conservative and intuitive way of measuring

the level of fine tuning we adopt the following definition:

∆ =





(
m2
H,EW +m2

H,top

m2
H,exp

)2

+

(
m2
H,VL

m2
H,exp

)2




−1/2

(3.27)

where m2
H,top is the contribution to the Higgs soft mass from the top sector, m2

H,VL
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Figure 3.7: Contributions to the Higgs soft mass squared, m2
H , normalized to 1/R2

as a function of 1/R. The blue line represents the 1-loop contribution from the
EW sector, the dashed orange line the contribution from the top-stop sector and the
dotted orange line that from the VL sector. The green line is the sum of all three
together and the dotted black line represents the correct value of the Higgs soft mass
for successful EWSB (as achieved after adding the contributions from HDOs).

the contribution from the VL sector and m2
H,exp ≈ −(125 GeV)2/2 the experimentally

measured value.

Finally, Figure 3.8 shows the region of parameter space where one can achieve

a 125 GeV Higgs together with the level of fine tuning, quantified as specified in

Eq.(3.27). It is apparent that a model with the correct value of the Higgs mass and

∼ 10% tuning is possible in the VL-lepton variation.

3.4.2 U(1)′ Extension

If the Higgs is charged under an additional gauge sector, the D-term generates addi-

tional contributions to the Higgs quartic that decouple as ∼ m2
soft/f

2, where f is the

scale of the gauge group breaking and m2
soft is the SUSY breaking mass coupling to

the multiplet breaking the gauge group [157, 158, 159]. We will focus on the simple

case of a new bulk U(1)′ gauge group with gauge coupling gX,5 ≡ gX,4
√
πR. Collider

and precision observables constrain the Z ′ mass to be MV & 3TeV, which means
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Figure 3.8: The green area represent the region of parameter space where a 125 GeV
mass for the Higgs is predicted, within the combined theoretical and experimental
(mainly on yt) uncertainty. The pink area is excluded by precision electroweak con-
straints, forbiding the region with too large ku. Dashed lines represent contours of
given tuning, as specified in the labels, and dotted lines denote the regions where stop
masses are 0.7 TeV (around the current LHC limit) and 1.4 TeV (approximately the
maximum stop mass to be probed by LHC14).

SUSY breaking must be felt at scales ∼ 1/R for a sizeable non-decoupling effect. A

simple model where this occurs has the U(1)′ breaking driven by on-brane dynamics

for bulk hypermultiplets φ1, φ2 that feel tree-level Scherk-Schwarz SUSY breaking and

have charge Qφ = ±1 under the U(1)′. To be concrete we identify the U(1)′ with T3R

normalized to QHu,d
= ±1/2, introducing sterile neutrinos to cancel anomalies. We

find that the Higgs pole mass can be lifted to 125 GeV with gX,4 ≈ g2 and M ′
Z ∼ 1/R

without substantially increasing the tuning of the weak scale.

In detail, a vev for φ1,2 can be induced by an interaction with a brane-localized

singlet,

W ⊃ λ̃S
M∗

S

(
φ1φ2 −

f 2

πR

)
δ(y) . (3.28)

If the scalar components of φ did not have SUSY-breaking boundary conditions, this

potential would introduce a SUSY preserving vev for φ1,2 and the D-term would



CHAPTER 3. MAXIMALLY NATURAL SUPERSYMMETRY 77

decouple. In the presence of the SUSY breaking boundary conditions, the boundary

action can induce a SUSY breaking background and the D-term does not decouple.

Some intuition for the behavior of φ1,2 can be obtained by truncating to the lightest

scalar KK modes. The lightest modes have a SSSB mass m̃2
φ(0)

= 1/(2R)2 and a

potential generated from FS,

L4 ⊃
(

λ̃S
πM∗R

)2 ∣∣∣φ(0)
1 φ

(0)
2 − f 2

∣∣∣
2

. (3.29)

For λ̃Sf
2

πM∗R
&
(

1
2R

)2
, a vev in the D-flat direction φ

(0)
1 = φ

(0)
2 ∼ f will be generated.

However, in this regime the brane-perturbation is strong and a truncated treatment

of the lightest KK modes is no longer justified. Instead a full 5D calculation gives a

kinked profile

φ1(y) = φ2(y) = φ0
y − πR
πR

, φ2
0 =

(
f 2 − 2M2

∗

λ̃2
S

)
1

πR
(3.30)

when φ2
0 > 0. This results in an F-term for the singlet FS = M∗

λ̃πR
and an F-term

for the conjugate bulk fields proportional to the gradient Fφ1,2 = φ0
πR
. The surviving

D-term for the Higgs zero mode can be determined by integrating out the tree-level

fluctuations of φ1 and φ2 on this y-dependent background. Defining a dimensionless

ω = gX,5φ0πR = gX,4φ0(πR)3/2 this contribution to the Higgs quartic has the form

∆λ =
g2
X,4

8

(
4

9
− 8

2835
ω2 + ...

)
. (3.31)

An interesting feature of this model is that because the SUSY-breaking background

Fφ1,2 never parametrically exceeds the vev φ(y) breaking the gauge group, there is no

regime where the D-term is completely re-coupled.

The parameter ω can be related directly to the mass of the lightest mode of the

Z ′ gauge boson in this background. For ω � 1, the mass approaches the 4D result,

M2
Z′ = 4

3
ω2

(πR)2
, while for ω � 1 the lightest Z ′ state becomes localized away from the

y = 0 brane and asymptotically has mass m2
Z′ → ω

(πR)2
. In the parameter range of
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interest ω ∼ 1 and we evaluate ∆λ and MZ′ numerically.

In addition to the tree-level contribution to the Higgs pole mass from the non-

decoupling D-terms, there will be new contributions to the Higgs soft mass from

couplings to the U(1)′ gauge sector. If the gauge group were not broken, the contri-

bution would have the same form as the SSSB loop contribution from the SM gauge

groups, ∆m2
Hu, U(1)′ =

7ζ(3)g2X,4

64π4R2 . When the gauge group is broken, the gauge states

become localized toward the y = πR brane, and the pure SSSB contribution is par-

tially screened. However, new sources of radiative SUSY breaking are introduced with

φ1,2 acting as messengers to communicate FS and Fφ1,2 to the Higgs sector. These

contributions are cut-off at the scale of the φ1,2 masses ∼ φ0

√
πR ∼ 1/R and do not

introduce any logarithmic sensitivity to M∗. We evaluate the 5D propagators numer-

ically in the φ(y) background to obtain the loop contributions to the Higgs mass, and

find, in the parameter range of interest,

∆m2
Hu, U(1)′ ' 10−3 × g2

X,4M
′2
Z . (3.32)

We evaluate the tuning of this model with respect to the shifts in the stop mass

through HDOs and shifts in the parameters of the U(1)′ sector as

∆ =

√√√√
(

∂ ln v2

∂ ln ∆m2
t̃

)2

+

(
∂ ln v2

∂ lnm2
Z̃′

)2

(3.33)

The result is shown in Figure 3.9. The tuning is driven by limits on direct production

of stops, and the model is tuned at a level of ∼ 25% (for rough LHC8 limits of

∼ 700 GeV stops and ∼ 3 TeV gluinos).

So far we have discussed how the extended gauge sector can lift the Higgs pole

mass to the observed value. In fact, in the model described the extra states can play

all the roles of the extra source of SUSY breaking so far parameterised by FX . When

λ̃S has its NDA value ∼
√

24π3, FS ∼ 1/(πR)2 is a brane-localized F-term that

can communicate soft masses through additional HDOs in addition to the predictive

loop level IR communication we have discussed. The tree-level potential due to Fφ1,2
and FS will generate a contribution to the radion potential of the Goldberger-Wise
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Figure 3.9: Fine-tuning ∆−1 (solid lines) as function of 1/R and the Z ′ mass. Iso-
contours of stop mass are dashed. Limits from LHC8 searches for t̃→ t+ MET[1, 2]
(red) and Z ′ resonance searches [3, 4] (green) are shaded. Subdominant limits mg̃ ≈
1/(2R) & 1.3TeV from g̃ → tt/bb+ MET searches (blue) are also shaded [5, 6].

form [139], which can allow the radion to be stabilised at vanishing CC. A hierarchy

between f and M∗ is technically natural, and the role of the tree-level potential in

stabilising the radius may allow the relationship between scales f ∼ 1/R�M∗ to be

dynamically realised. Thus we see that the U(1)′ extension is both minimally tuned,

and possesses attractive features from a theoretical persepctive.

3.4.3 Singlet Extension

It is well known that when the MSSM is extended to include a SM singlet coupling

to both Hu and Hd, and when both Higgs doublets get a non-zero vev, an additional

tree-level contribution to the Higgs mass is present. In view of the simplicity of this

idea, one could try to implement a similar mechanism in the current 5D framework.

The reason why such possibility has not been explored yet is that in the context of



CHAPTER 3. MAXIMALLY NATURAL SUPERSYMMETRY 80

the original MNSUSY theory [55] the doublet Hd was assumed not to get a vev and,

since there is no need for a µ or Bµ term, an accidental U(1)Hd
(or Zk) symmetry

acting on Hd exists which can remain unbroken, as discussed in Section 3.3.1.

However, once the U(1)Hd
symmetry acting on Hd is given up, an NMSSM-like

solution to the Higgs mass problem can be implemented. A simple option adds a

bulk hypermultiplet S = (S, Sc), which is a SM singlet, with bc’s (+,−)/(+,+) for

the scalar/fermion components of the chiral multiplet S and (−,+)/(−,−) for those

of Sc. In this case, it is possible to write a brane-localized term in the superpotential:

W ⊃ δ(y)
λ̃S

M
3/2
∗

SHuHd , (3.34)

and one might naively expect that this gives a tree-level contribution to the lightest

Higgs mass proportional to λ2
S, with λS = λ̃S(πRM∗)

−3/2 being the 4D effective

coupling. However, the effective theory below the scale ∼ 1/(2R) does not contain a

contribution to the Higgs quartic and therefore to its physical mass. This surprising

result does not match the intuition obtained from truncating to the 4D case but can

be computed explicitly and is intrinsic to the 5D setup6.

On the other hand, one can consider the case where the chiral multiplet S is local-

ized on one of the branes7. In this situation, both its scalar and fermion components

are massless at tree-level but at 1-loop the scalar gets a mass due to its interaction

with the Higgs doublets given by m2
s̃ ≈ 7ζ(3)λ2

S/(16π4R2) [107, 108]. In addition

there is now a contribution to the physical Higgs mass given by

δm2
h =

v2

2
λ2
S sin(2β)2 . (3.35)

A 125 GeV physical Higgs mass is then achievable for moderately light stop masses.

For example, when the compactification scale is 1/R ≈ 4 TeV, a coupling λS ≈ 0.7

6In particular, integrating out the scalar component of Sc, with a mass of ∼ 1/(2R) is crucial
for the λ2S contribution to the Higgs quartic to vanish. Notice that an analogous situation does not
happen in 4D, where we only add a chiral multiplet S but no 5D SUSY partners.

7The superpotential term would be as in Eq.(3.34) but with a suppression of M−1
∗ rather than

M
−3/2
∗ .
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and a value of tan β ≈ 2 lifts the Higgs to its observed mass.

This lifting, however, has a consequence for EWSB and tuning, as both soft masses

m2
Hu

and m2
Hd

receive a positive 1-loop contribution proportional to λ2
S, on top of the

EW and top sector contributions previously discussed . Whereas the latter is negative

and only contributes to m2
Hu

, the other two are positive and are of the same size for

bothHu andHd. Despite this, we find that both Higgs doublets can achieve a non-zero

vev thanks to the effect of HDOs

K ⊃ δ(y)
cHa

M3
∗
X†XH†aHa (a = u, d) . (3.36)

In order to estimate the tuning of this version of the model, we assume the decou-

pling limit is realised, such that only a light Higgs boson remains in the low energy

theory. In such a case, the condition for successful EWSB can be written as

m2
Hu

sin2 β +m2
Hd

cos2 β = m2
H(exp) , (3.37)

and the λ2
S contribution to m2

Hu,d
can be estimated, compared to the EW piece, as

m2
H(S)

m2
H(EW)

≈ 2λ2
S

3g2
(3.38)

which for λS ≈ 0.7 results in m2
H(S) ≈ 0.8 m2

H(EW). In the spirit of the previous

section, we then estimate the tuning as

∆ '





(
m2
H,EW + sin2 β m2

H,top

m2
H,exp

)2

+

(
m2
H,S

m2
H,exp

)2




−1/2

(3.39)

which is a mild ∆ ∼ 25% tuning for 1/R ∼ 4 TeV.
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3.5 Basic Phenomenology

In this Section we briefly discuss the most interesting phenomenological consequences

of MNSUSY theories.

The main phenomenological signature of MNSUSY theories is production of spar-

ticles at LHC and future hadron colliders. In particular, stops should be discovered

at LHC for the theory to have its best possible level of fine-tuning. The hierarchy

between stops and gluinos means the latter will not be probed in the near future:

observation of a stop well below a gluino at LHC is a prediction of MNSUSY theo-

ries with low tuning. Moreover, the fact that Higgsinos are much heavier than 3rd

generation sfermions means that usual t̃ and b̃ decays (to Higgsino plus SM fermion)

characteristic of 4D SUSY theories are absent in our case. Alternatively, the most

likely decay channels for t̃ and b̃ are 3-body decays to the lightest 3rd generation

sfermion (likely to be either τ̃R or ν̃τL , as discussed in Section 3.3.1). However, details

of the exact decay channels for 3rd generation sfermions depend on both how the

theory is extended to include gravitational interactions and on the physics of SUSY

breaking in the radius stabilization sector, as explained in [55].

Needless to say, the discovery of resonances of SM particles, or the presence of

1st and 2nd generation sfermions that are degenerate with gauginos and Higgsinos,

would be strong evidence in favor of an MNSUSY setup. The minimum value of

the compactification scale required for a model consistent with current constraints

(1/R & 4TeV) means that while the first and second generation squarks and gluinos

may be in reach of the 14 TeV LHC, the KK excitations of SM states, which have

a suppressed single production cross section due to the approximate KK parity, are

likely out of reach.

Another phenomenological feature of interest in the simplest version of the model

is the presence of contributions to flavor changing neutral currents (FCNC) at tree-

level due to exchange of gauge boson KK modes, which has its root in the fact that

the 3rd generation of matter is localized on one of the branes whereas the first two

propagate in the bulk. As a result, deviations of experimental measurements from

SM predictions regarding flavor violation are expected [143], in particular concerning
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processes that involve 3rd generation fermions (e.g. B-meson mixing) or flavor vio-

lation in the lepton sector, unless one of the versions of the model with an enhanced

flavor symmetry is implemented. As discussed in [143], some of those variations re-

quire allowing part of the 3rd generation to propagate in the bulk or localize on the

brane part (or all) the 1st and 2nd generations.

Finally, another feature of the model is the presence of a nearly massless fermion

x̃, the fermion component of the SM-singlet X. Given the extremely weak coupling

between this state and normal matter (remember it only couples to matter via HDOs,

of the form of those in Eq(3.3)), a vanishing value for its mass seems to be perfectly

allowed by LEP and LHC data [160] 8. Similarly, bounds from anomalous cooling of

supernovae seem consistent with a massless x̃ [161]. Moreover, given the weakness of

its coupling to normal matter, we expect x̃ to decouple from the thermal plasma in

the early Universe at high temperatures, of around a few GeV (so well above the QCD

phase transition temperature). This results in a small contribution to the number of

effective neutrino species, ∆Neff ≈ 0.01, that lies well within the uncertainty of the

current experimental measurement by Planck [162].

3.6 Phenomenology of Decays to Bulk

The maximally natural SUSY models are embedded in a 5D theory with a low fun-

damental scale M∗ . 100TeV. One possibility for accomodating Mpl � M∗ is the

presence of large gravitational extra dimensions, with the 5D SUSY theory localized

in the gravitational bulk. If SUSY breaking is localized or partially localized to the

5D brane in the gravitational bulk, there are interesting new candidates for LSPs

from states that propagate in the full supersymmetric gravitational bulk. In this

section, we analyze this possibility in more detail, focusing on the phenomenological

consequences of decays to such states.

For as much generality as possible, we consider a framework in which the SM

8Comparing with the case of a massless bino-like neutralino, whose coupling to matter is already
much larger than the effective coupling of x̃, lower bounds on sfermion masses are only a few hundreds
of GeV.
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particles and their SUSY-partners live on a brane that is embedded in a (flat) 4 + d-

dimensional supersymmetric bulk whose dimensions are bigger than ∼ 10−14cm ∼
1/(few GeV). SUSY breaking is felt softly on the brane, and the MSSM superpartners

may be produced at colliders9. As we will show, many realizations of this scenario

have additional light bulk states that are associated with SUSY breaking or additional

sequestered sectors. In such cases, the lightest R-parity odd sparticle, the ‘bulk LSP’,

will propagate in the 4 + d extra dimensions, and the lightest ordinary-sector SUSY

particle (LOSP) will decay to this state – in the case of maximally natural SUSY, the

lightest third generation state localized on the brane can decay to the gravitational

bulk LSP.

Couplings between bulk and brane states are necessarily higher dimensional op-

erators, and if the fundamental scale, M∗, is not too high, decays of the LOSP can

occur on collider timescales. From a 4d perspective, the LOSP decays to a distribu-

tion of KK modes of the bulk LSP of mass mn with bulk phase space factor ∼ md−1
n .

This favors decays to the heaviest KK states, thus suppressing both visible energy

and Emiss
T in the decay, and so, as we will argue in detail, severely weakening LHC

limits on SUSY for certain classes of visible sparticle spectra. The basic mechanism

is illustrated in Figure 3.10.

Specifically, we show that two-body decays of the brane-localized LOSP of mass

M to a SM state and a bulk LSP are typically dominated by decays to bulk KK

modes with masses mn & 0.4M ÷ 0.8M depending on the nature of the coupling

and the dimension of the bulk. This leads automatically to signatures similar to a

compressed spectrum, where super-partners with large production cross sections are

concealed if they decay to a nearly degenerate invisible LSP10 [172, 173, 62, 41, 174,

175, 176, 177]. In this work, we focus primarily on limits from searches for prompt

decays, which restricts M∗ from above depending on the nature of the bulk LSP

(modulino, axino, gaugino, gravitino) and the identity of the LOSP. For higher scales

of M∗, searches for displaced vertices and out-of-time stopped decays become relevant,

9In contrast, studies of brane-worlds with supersymmetric bulks have focused mostly on the case
that SUSY is realized only non-linearly on the brane [163, 164, 165, 166, 167, 168, 169, 170].

10Ref. [171] provides another example of a theory that dynamically reduces missing and visible
energy, reproducing signatures similar to compressed spectra.
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Figure 3.10: Schematic representation of the basic idea behind the auto-concealment
mechanism, in which the LSP is a bulk state propagating in d ≥ 1 extra dimensions.
The visible sparticle spectrum has a lightest state, the LOSP, which decays promptly
to the full tower of KK excitations of the LSP. As the spectral density of KK excita-
tions behaves as ∼ md−1

n (as a function of the KK mass, mn), decays to the heavier
KK states are favored, dynamically realising the compressed spectrum mechanism
of hiding SUSY with reduced Emiss

T and visible energy. As the masses of the KK
tower of the LSP extend from ∼ 0 GeV to the underlying gravitational scale M∗ the
LOSP mass is automatically within this tower without additional tuning. Transitions
from visible sector to the bulk sector are prompt if M∗ is not too high depending on
the nature of the bulk LSP. In the case that transitions are not prompt, the auto-
concealment mechanism no longer functions, but instead the decays of the LOSP can
provide a powerful search method for extra dimensions.
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Figure 3.11: Colored regions display the form of LOSP decay as a function of the
LOSP mass, M , and the fundamental gravitational scale, M∗. The bulk LSP is taken
to be a modulino, the LOSP to be a sfermion, and we show the case d = 4. The
auto-concealment mechanism applies in the region of prompt decays. In the regions
of displaced decays or stopped LOSP out-of-time decays the auto-concealment mech-
anism no longer functions, but the decays of the LOSP can provide a new search
mechanism for extra-dimensions with reach much greater than that provided by con-
tact operators. In the grey hatched region to the far right, the splitting between KK
states becomes large compared to the mass of the LOSP, 1/(ML) & 0.1 (all of the
decays to the left of this region have lifetimes τ . 1 yr). The hatched region to the
far left shows the range of M∗ excluded by current LHC contact operator searches for
extra-dimensions.

and their sensitivity is also likely to be affected, though a study of this possibility is

beyond the scope of this work.

3.6.1 Decays to the bulk

We now turn to a detailed discussion of the mechanism. The decay of a brane-

localised LOSP of mass M into a bulk state propagating in d extra dimensions of

size L� 1/M can be described by an effective theory for the bulk-brane interactions

[178, 179, 180, 154, 181, 182, 183]. The description of the brane states as point-

localized objects in the d bulk dimensions is taken to be valid up to a scale Λb < M∗,
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where M∗ is the fundamental gravitational scale of the theory, and M < Λb by

assumption so that the decay is well described by the effective theory.11

To be concrete we start by studying the decays of a brane-localized ẽR LOSP to

the fermion ψ of a bulk chiral multiplet12 Φ, and then generalize to other interesting

cases. While we now focus on this case as a simple example, there are a variety of

other strongly motivated possibilities. In addition to a slepton LOSP, the case of a

stop/sbottom LOSP and the case of degenerate first and second generation squark

LOSPs provide particularly interesting examples from the point of view of collider

phenomenology which we study in detail in the following section. The results derived

in this section apply to any sfermion decaying to its massless SM fermion partner

and a bulk modulino. In Section 3.6.3 we describe the form of the distribution for a

general set of possible LOSPs and a variety of bulk LSP candidates.

Bulk spectrum and profiles

We study the bulk states by expanding in KK modes in the extra dimensions,

ψ =
∑

n

1√
V
fn(yi)ψn(x),

where x are the (3+1) coordinates, yi are the extra bulk coordinates, V is the volume

of the bulk, and each KK mode has mass mn. In flat extra dimensions and in the

absence of any bulk mass terms for the state, there is a zero mode, m0 = 0 and the

splittings between KK modes are of order the size of the bulk ∆mn ≈ 1/L. We will

be interested in cases where the decays from the brane states are highly-localized

compared to the size of the bulk; in this case, the decays are insensitive to the exact

11At distances shorter than 1/Λb, the embedding of the brane in the d bulk dimensions may
be non-trivial; these effects could be taken into account by the presence of higher dimensional
operators including terms with bulk derivatives. The scale Λb could correspond to the fundamental
gravitational scale M∗ or to an intermediate scale related to the extension of the brane embedding
in the transverse directions.

12The bulk theory has at least N = 2 extended SUSY from the 4d perspective, and this N=1 ‘chiral
multiplet’ must in fact have bulk partners that fill out a full higher dimensional hyper-multiplet or
vector multiplet, although these states need not couple to the brane. We use the N=1 superfield
field notation of Ref. [180].
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form of the boundary conditions for bulk fields far away from the MSSM brane and

can be well described in the continuum approximation, ∆mn → 0.

The spectrum of KK masses and profiles of a bulk multiplet will be perturbed by

the presence of mass terms, which may be spread along the entire 4 + d dimensional

space occupied by the bulk state or be localized in some of the extra dimensions

(for example localized on the MSSM brane). A mass term m4+d spread along the

full (4 + d) dimensional space lifts the start of the KK tower to m4+d. We assume

such terms are negligible compared to the mass scale of the decays, and will describe

scenarios where this occurs in Section 3.6.3. Mass terms that are localized in some of

the d dimensions have their effects suppressed by the volume of the remaining space,

and are generally only relevant if they are localized near the MSSM brane, in which

case they can affect the wavefunction profiles near the brane fn(0).

For example, a mass term for the fermion components of Φ localized on the MSSM

brane has the form

L = δd(y)
(µψψ)

Λd
b

+ h.c. (3.40)

where the fermion ψ is normalized as a bulk field with mass dimension (3 + d)/2.

The effect of the on-brane mass is to suppress the profile fn(0) of the KK states near

the brane, which suppresses the coupling to brane-localized states. For KK masses

mn � Λb and co-dimension d ≥ 3, the perturbation of the wave function at the brane

fn(0) is independent of mn: for small perturbations µ . Λb, fn(0) is unsuppressed,

while for large perturbations µ � Λb, fn(0) → 0 and the leading operators coupling

brane fields to the bulk field will be those containing bulk derivatives ∼ ∇yψ

Λb
(this

latter case is the correct description for instance when orbifold conditions in the

fundamental theory force the wavefunction to vanish on the brane). For co-dimension

d = 1, fn(0) ∼ mn

µ
for mn . µ, and for d = 2 there is a logarithmic dependence

on mn. Overall, the localized mass terms typically increases the efficiency of auto-

concealment by decreasing the relative coupling of lighter KK modes to the MSSM

brane states. As the sizes of the localized mass terms µ are only weakly constrained,

to be conservative we assume they are negligible for the rest of this work.
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Figure 3.12: Differential distribution of KK masses for the decay ẽR → e + ψ for
d = (3, 6) (solid curves with peaks from left to right, respectively). Also shown
dashed is the distribution for a 500 GeV stop decaying in d = 6 as t̃R → t+ ψ, with
the definition x ≡ mn/(mt̃R

−mt).

Brane couplings and decays

For a simple and well-motivated example, we take Φ to couple to the MSSM states

as a modulus in the Kahler potential with a gravitationally suppressed coupling

L = δd(y)
1

2

[
(Φ + Φ∗)eR

∗eR

M
(d+2)/2
∗

]∣∣∣∣
θ4

. (3.41)

After making the KK expansion, the decay rate of a selectron with mass M to each

individual mode of mass mn < M that follows from Eq.(3.41) is

Γn =
M3

8πM2+d
∗ V

m2
n

M2

(
1− m2

n

M2

)2

. (3.42)

For co-dimension d, the number of states with mass ∼ mn grows as ∼ md−1
n (this

assumes the extra d-dimensions are flat—we later comment on the more general case

[184]). For this particular example, the rate to heavier KK states is further enhanced

by a factor m2
n/M

2 due to a helicity suppression of decays to lighter modes. Therefore
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even in d = 1 the distribution will be peaked towards higher KK masses– the extra-

dimensional nature of the LSP is still crucial to provide the continuum of accessible

states, but the enhancement of decays to heavier states is due completely to the

matrix element. Going to the continuum limit, the total decay rate is

Γtot =
mn<M∑

n

Γn =
M3+d

8πM2+d
∗

Ωd

(2π)d

∫ 1

0

xd+1(1− x2)2dx, (3.43)

where Ωd is the surface area of a (d − 1)-sphere and x ≡ mn/M . The resulting

differential decay rate with respect to the KK mass of the modulino is shown in

Figure 3.12. The most likely KK mass is ∼ (0.6÷ 0.8)M , and this can have striking

observable consequences for collider phenomenology. (For the case of a stop LOSP

with decay t̃→ t+ψ, the non-negligible top mass modifies the distribution as shown

in Figure 3.12.)

3.6.2 SUSY limits and auto-concealment

To understand the effect of auto-concealment on collider searches, it is useful to

consider the limit that the LOSP decays to a very narrow distribution of bulk LSP

KK states peaked at mn ≈M . In this case there is no visible energy from the LOSP

decay13, and events involving only direct pair production of the LOSP are invisible at

colliders. This is identical to the case of exactly degenerate compressed spectra [41].

In this kinematic limit, missing and visible transverse energy arise only when the

system recoils against a radiated jet or photon–dominantly initial state radiation

(ISR)–and SUSY searches are significantly weakened.

A realistic distribution of KK masses as shown in Figure 3.12 does not completely

realize this limit; the distributions peak below M and they have a non-negligible

width. Nonetheless, they remain in the regime where most LOSP decays produce little

visible energy and pair production events with large missing and visible energy are still

dominantly due to hard ISR. The effect on experimental limits remains substantial.

13Decays of the bulk KK states among themselves producing visible energy on the brane are
possible, but they are irrelevant on collider time scales due to the volume suppression of couplings
to the brane.
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To illustrate this, we re-interpret existing 8 TeV LHC sparticle searches for three

interesting cases of LOSP pair production followed by decays to a bulk modulino

LSP: a right-handed slepton LOSP ẽR/µ̃R → e/µ + ψ, a right-handed stop LOSP

t̃R → t + ψ, and degenerate first and second generation squarks q̃u,d,c,s → q + ψ. We

simulate sfermion pair production processes with MadGraph5 [185] with shower and

decays14 in Pythia6 [186] and MLM matching of up to one additional jet. With one

exception,15 experimental limits were recast using validated analyses in CheckMATE

[187, 188, 189, 190, 191, 192]. While we expect the results of these simulations

to broadly characterize how auto-concealment affects current supersymmetry search

limits, it is up to the experimental collaborations to set definitive bounds.

The first process we consider is pair production of degenerate right-handed slep-

tons decaying to a bulk modulino ẽR/µ̃R → e/µ + ψ. The dominant limit is from

a 20.3 fb−1 ATLAS l+l− + Emiss
T search [7] based on the kinematic variable mT2

[193, 194, 195]. The effect of auto-concealment on missing energy-related observables

is dramatic, as illustrated in Figure 3.13, which shows the signal mT2 distribution

after typical cuts used to reduce backgrounds. For the case of d = 3, the number of

events satisfying the signal region cuts is very significantly reduced, while for d = 6 es-

sentially no events pass cuts for the illustrated case of Ml̃R
= 150 GeV and 20.3 fb−1.

The effect on exclusion limits is predictable. Figure 3.14 shows the strongest cross

section exclusion limit (at 95% CLS) from the ATLAS searches [7, 8]. A monojet

search [9] was also considered to pick up ISR but the analysis had no effect on limits

as it vetoed events with isolated leptons. The existing LHC8 limits of Ml̃R
>∼ 225 GeV

for direct production of right handed sleptons decaying to a massless LSP are com-

pletely eliminated, with only the much weaker LEPII limit of Ml̃R
>∼ 95 GeV for very

compressed slepton decays still applying [196, 197, 198, 199, 200].16

14To implement LOSP decays to a KK tower of fermion LSPs we introduced N ∼ 20 new gauge
neutral spin 1/2 states in Pythia. The masses of these states mj fell into N evenly spaced bins from
0 to the LOSP mass M . The mass mj of the jth state was given by the branching ratio-weighted
average of masses in the jth bin, and the branching fraction to this state was determined by the
integrated width over the bin.

15With the exception of [12], all of the analysis used in this paper to recast limits have been
validated by CheckMATE. It was felt important to include this unvalidated analysis since it provided
the only exclusion limits for stops decaying to a modulino in d = 6.

16Note that direct production of left-handed sleptons is already concealed independent of the
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Figure 3.13: Differential distribution in stranverse mass mT2 for the decay ẽR → e+ψ
for a slepton of mass M = 150 GeV to a single massless LSP (black) and a bulk
modulino LSP (blue and green) for d = 3, 6. The preselections of Ref. [7] have been
applied, including a cut on missing energy, Emiss,rel

T > 40 GeV, which leads to the
different total number of events for each case. Shown by a dashed line is the signal
region cut mT2 > 90 GeV used to reduce backgrounds such as W+W− production.
Definitions of Emiss,rel

T and mT2 can be found within Ref. [7].
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Figure 3.14: Strongest upper bound on degenerate µ̃R, ẽR slepton pair production
cross sections from ATLAS l+l− + Emiss

T mT2 [7] and razor analyses [8]. A monojet
search was also considered [9] but did not affect limits. The top two curves corresponds
to sleptons promptly decaying to the KK tower of a massless modulino in d = 3
(blue) and d = 6 (green) extra dimensions. The mT2 analysis is more effective at
higher masses; below 140 GeV (170 GeV) for d = 3 (d = 6) the razor analysis sets
stronger limits. Solid red (lowest) curve gives the observed ATLAS upper bound on
the RH slepton production cross section from [7] for decays to a massless LSP. For
validation, a dashed red curve gives the same bound using our simulation. Black curve
gives the predicted NLO direct production cross section [10] with other superpartners
decoupled, illustrating that RH sleptons are excluded up to ∼ 225 GeV for decays to
a massless LSP. For the searches considered, present limits on direct production of
RH sleptons evaporate in the presence of the auto-concealment mechanism.
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Limits on 3rd generation squark production can also be dramatically reduced.

We studied t̃R pair production with t̃R → t + ψ. As depicted in Figure 3.12, the

distribution of KK states in the decay is slightly modified from the result for a massless

SM fermion fermion, Eq.(3.43), due to the non-negligible top mass. The dominant

validated analysis in CheckMATE was the ATLAS 20.3 fb−1 all hadronic 6 (2 b) jet +

Emiss
T search [11], while the unvalidated 2 lepton stop search [12] provided the strongest

limits below ∼ 360 GeV. Figure 3.15 shows cross section limits for these searches.

For prompt decays to a massless LSP the limit is mt̃ & 680GeV, while limits reduce

to ∼ 350 ÷ 410 GeV for decays to a bulk modulino in d = 3, 6. A number of other

searches are expected to provide similar limits, for example the ATLAS and CMS

semi-leptonic searches [201, 13] and the most recent all-hadronic searches [201, 202]

which perform better than [11] at low stop masses in the compressed region.

We finally study pair production of degenerate first and second generation squarks

with q̃i → qi+ψ assuming the gluinos and 3rd generation squarks are decoupled. The

dominant limits shown in Figure 3.16 are from the ATLAS 20.3 fb−1 2− 6 jets +Emiss
T

analysis [17], except for squarks below 200 GeV where limits are driven by the monojet

search [9]. These searches have hard cuts on missing and visible energy and are

substantially affected by auto-concealment. While for a decay to a single massless

LSP the limit is M & 800 GeV, for decays to a bulk modulino in d = 3, 6 the limit is

reduced to only ∼ 450 GeV. We have assumed no D-term splitting leading to decays

between the left handed squarks, but we do not expect that these soft decays would

significantly affect the results.

We have seen that auto-concealment significantly reduces bounds on direct pro-

duction of superpartners, dynamically realizing the signatures of a compressed spec-

trum where a single LSP is nearly degenerate with the LOSP. This mechanism is

particularly effective in models like maximally natural SUSY, where a large hierarchy

between the lightest colored sparticles and heavier states gives a highly suppressed

cross section for cascade decays of the heavier colored states.

existence of a bulk LSP as the EW symmetry breaking mass splitting between the heavier charged
and lighter neutral members of the LH slepton doublet is small enough that a compressed spectrum
is automatically realised.
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Figure 3.15: Strongest upper bound on stop pair production cross sections from
ATLAS 6 (2 b) jet +Emiss

T [11] and 2 lepton stop [12] searches. A razor analysis [8], a
one lepton stop search [13], and two monojet searches [9, 14] were also considered but
did not strengthen the exclusion limits. The upper two curves corresponds to stops
promptly decaying to a top + the KK tower of a massless modulino in d = 3 (blue)
and d = 6 (green) extra dimensions. The all hadronic analysis is more effective at
higher masses; below ∼ 360 GeV the two lepton analysis sets stronger limits, however
it should be noted that this analysis is not yet validated by CheckMATE. Solid red
(lowest) curve gives the observed ATLAS upper bound on the stop production cross
section from [11] assuming prompt decay to a top + a massless LSP. For validation,
a dashed red curve gives the same bound using our simulation. Black curve gives the
predicted NLO direct production cross section [15, 16], thus illustrating that stops
are excluded up to ∼ 680 GeV for a single massless LSP. For the search considered,
present limits on direct production of stops drop to ∼ 350÷ 410 GeV in the presence
of the auto-concealment mechanism.
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Figure 3.16: Strongest upper bound on pair production cross sections for degenerate
first and second generation squarks from ATLAS 2− 6 jets+Emiss

T [17] and monojet [9]
searches. A razor analysis was also considered [8] but its limits were weaker. The top
two curves corresponds to squarks promptly decaying to the KK tower of a modulino
in d = 3 (blue) and d = 6 (green) extra dimensions. The hadronic search is the more
effective of the two analysis except below ∼ 200 GeV. Solid red (lowest) curve gives
the observed ATLAS upper bound on the squark production cross section from [17]
assuming prompt decay to a LSP with mass ∼ 40 GeV. Dashed red curve gives our
bounds for a single massless LSP for validation. Black curve gives the predicted NLO
direct production cross section when gluinos are decoupled [15, 16], thus illustrating
that degenerate squarks are excluded up to ∼ 775 GeV for a single massless LSP.
For the searches considered, present limits on direct production of squarks drops to
∼ 450 GeV for d = 3, 6 in the presence of the auto-concealment mechanism.
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Figure 3.17: (a) The general set-up we consider, with the MSSM brane embedded
in a large bulk with d compact dimensions of size L � TeV−1. The MSSM brane
may have structure at scales smaller than a TeV−1, and possible additional extra
dimensions of size . TeV−1 are not depicted. (b) The same embedding, with the
MSSM SUSY breaking shown explicitly to occur on a nearby brane extended in a
(4 + d′) dimensional subspace of the large bulk. (c) The same embedding of the
MSSM, with SUSY breaking extended throughout the entire large bulk. Additional
states may live in the bulk or on sequestered branes of lower codimension as shown,
and are candidates for light bulk LSPs. Although the SUSY breaking is present
everywhere in the large bulk, it may be localized in further dimensions of size . TeV−1

not shown.

3.6.3 Varieties of bulk LSPs

We are interested in models where the MSSM particles are confined to a brane in

a gravitational bulk with d additional compact dimensions of size L � TeV−1. At

distances � TeV−1, the bulk and the MSSM brane are locally supersymmetric, with

at least an N = 1 subset of the bulk supersymmetries realized on the MSSM brane.

While the MSSM brane must be localized within the large compact dimensions, at dis-

tances . TeV−1 some or all of the MSSM states may extend around additional small

dimensions or cycles, and other branes of various dimensions may also be present.

This set-up is illustrated in Fig. 3.17(a), and allows the realization of a variety of

extra-dimensional SUSY breaking mechanisms, sequestered sectors, and string em-

beddings of the MSSM structure.

The breaking of the supersymmetry remaining on the MSSM brane should be

felt softly, giving superpartner masses msoft ∼ TeV. As depicted in Fig. 3.17(b),

the MSSM SUSY breaking can occur over any subspace of the bulk with dimension
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4 + d′ (d′ ≤ d), leaving the SUSY breaking localized in the d − d′ transverse large

dimensions. The goldstino degrees of freedom from this breaking will also propagate

in 4 + d′ dimensions. After considering the mixing with the gravitino these degrees

of freedom are lifted, but as we will show, for low SUSY breaking scales or d′ < d− 2

they can generically remain lighter than the MSSM states, providing a candidate for a

bulk LSP. We discuss this case first, and then discuss other candidates for bulk LSPs

which naturally occur in sequestered sectors and are particularly relevant when decays

to the goldstino degrees of freedom become suppressed or kinematically inaccessible.

Goldstino Bulk LSP

Take the MSSM SUSY breaking to be parameterized by an F-term for a field localized

on a brane in a 4 +d′ subspace of the bulk, 〈F4+d′〉. In a theory without gravitational

degrees of freedom, there is a massless goldstino propagating in 4 + d′ dimensions.

First we study directly the decays of MSSM particles to this degree of freedom, and

then we will discuss the effects of mixing the goldstino degree of freedom with the

gravitino.

The couplings of the 3-brane localized MSSM states to the bulk goldstino η can

be inferred as usual from the soft masses, for example for couplings to a MSSM chiral

multiplet (f, f̃),

Lsoft = m2
ff
†f δ(y)→∼

m2
f

〈F4+d′〉
f †f̃η δ(y) + h.c. (3.44)

Note we use the canonical normalizations of a (4 + d′)-dimensional field for η and

〈F4+d′〉. In comparison to our earlier results for a bulk modulino Eq. 3.43, the decay

ẽR → e+ η has the rate,

Γtot ≈
M5+d′

8π〈F4+d′〉2
Ωd′

(2π)d′

∫ 1

0

xd
′−1(1− x2)2dx. (3.45)

The distribution of KK masses in these decays is slightly softer than decays to a bulk

modulino, and the overall rate depends on a higher power of M . This decay has the

usual 1/〈F 〉2 rate expected for decays to a goldstino in 4d models.
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An important consequence is that if SUSY breaking is localized on a 3-brane

like the MSSM, then decays to the goldstino will not appear extra dimensional and

will often dominate over decays to any bulk LSPs present. For example, even if

SUSY breaking is at the fundamental scale, 〈F4〉 ∼ M2
∗ , decays to the 4-dimensional

goldstino are parametrically enhanced by powers of M
M∗

compared to decays to a

modulino living in more than six dimensions. Thus decays to a bulk state with large

codimension only occur generically when SUSY breaking is extended in the bulk.

These results for the decays to a goldstino hold exactly in the limit that gravity

decouples, M∗ → ∞ with 〈F4+d′〉 held fixed. In the supergravity theory with finite

M∗, the goldstino degree of freedom will mix with the gravitino; if there is a single

source of SUSY breaking, the goldstino will be completely eaten by the gravitino,

while if there is additional SUSY breaking elsewhere in the bulk some combinations

will be left as a pseudo-goldstinos with perturbed mass spectra.

The diagonalization of the full gravitino bulk+brane equations of motion and

determination of the masses and couplings of gravitino KK modes is beyond the scope

of this work, but fortunately the equivalent goldstino approximation provides good

intuition, and further we expect it to provide accurate results for many scenarios.

We can understand when the equivalent goldstino approximation remains valid by

considering the locality of decays from the MSSM brane. A 3-dimensional MSSM

state of mass M will couple to gravitino states localized to a distance ∆ ∼ 1/M within

the full bulk. We can therefore expect qualitatively correct results from considering

only the light modes in the 4 + d′ dimensional theory after compactifying the d− d′
bulk dimensions tranverse to the SUSY breaking brane to a size ∼ 1/M . If the 4 + d′

dimensions are approximately flat, there is a 4 + d′ dimensional gravitino mass term

related to the mixing with the goldstino,

m3/2, (4+d′) ∼
F4+d′√

M2+d
∗ /Md−d′

(3.46)

This mass sets the start of the gravitino KK tower in the 4d theory, and the equivalent

goldstino approximation holds when m3/2 �M .

For a sufficiently small SUSY breaking scale 〈F4+d′〉 this can always be satisfied,
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but a particularly interesting case is when the breaking is at the fundamental scale,

〈F4+d′〉 ∼M
2+d′/2
∗ . This occurs for example when the MSSM SUSY is broken by the

presence of a nearby D-brane extended in 4 + d′ dimensions, with the U(1) gaugino

on the D-brane realizing the goldstino degree of freedom [203, 168, 167, 204]. Then

we find

m3/2, (4+d′)

M
∼
(
M

M∗

) d−d′
2
−1

. (3.47)

For d′ < d− 2, the perturbation is vanishing as M∗ →∞ with brane soft masses M

fixed, and we expect the goldstino equivalence theorem to hold. We therefore expect

our results for the decays to the goldstino degrees of freedom to be a good description

of a wide class of models where the goldstino is the bulk LSP. On the other hand

for the cases d′ = d − 2 and d′ = d − 1 the decays to all of the components of the

gravitino become important unless the SUSY breaking scale is parametrically below

M∗; there may be interesting cases where such a gravitino is the LSP but these cases

are subtle and left for future work (the super-higgs mechanism for the d′ = d− 1 case

has been studied in 5d models in refs. [205, 206]). In the case d′ = d, the lightest

gravitino KK mode can be heavier than the MSSM LOSP even for 〈F4+d′〉 well below

the fundamental scale. We discuss this case in the following section, focusing on

decays to the variety of other motivated light bulk LSPs which may still arise even

when the gravitino is heavy.

Heavy Gravitino

In models where SUSY breaking occurs throughout the entire large d-dimensional

bulk, as depicted in Fig. 3.17(c), the gravitino can obtain a large bulk mass lifting

its lowest KK states to masses & msoft if the bulk SUSY breaking is communicated

to the MSSM fields via gravitationally coupled operators and states, for instance via

radion or dilaton mediation in additional R . TeV−1 sized extra dimensions. In such

models, sequestered sectors with further suppressed soft masses propagating in ≤ d

large dimensions can naturally occur, providing candidates for bulk LSPs.

As a simple example, we consider the class of models including maximally nat-

ural SUSY and those models studied in refs. [107, 108, 109, 112, 113, 114, 115,
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Figure 3.18: Embedding of 5d Scherk-Schwarz model in a 5+d dimensional theory as
R3+1×(S1/Z2×Z′2)×Md. The MSSM states live on 3-branes or 4-branes completely
localized within the d large compact bulk dimensions. The boundary conditions
on each end of the TeV−1-sized dimension partially break the bulk supersymmetry,
leading to a complete breaking of SUSY in the theory at scales below TeV, with
the breaking spread through the entire 4 + d dimensional large bulk and giving large
∼ TeV scale masses to the lightest gravitino KK modes. Additional states may
live extended in the large bulk but localized at either endpoint of the TeV−1-sized
dimension; they will be sequestered from the full SUSY breaking and can lead to a
bulk LSP.
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116, 117, 118], where some of the MSSM states propagate in a ∼ TeV−1 sized 5th

dimension given by a segment S1/Z2 × Z′2 which breaks SUSY by Scherk-Schwarz

boundary conditions [207, 208]. If this is embedded trivially in a large gravitational

bulk as R3+1× (S1/Z2×Z′2)×Md, as illustrated in Fig. 3.18, then the SUSY break-

ing boundary conditions on S1 give a d-dimensional mass ∼ TeV to the gravitino

uniformly in the large bulk and generates soft masses ∼ TeV for the MSSM states.

This can equivalently be described as radion mediation with FT,4+d ∼ TeV×M1+d/2
∗

[209, 210, 154, 211, 212]. Additional states living on branes localized in the 5th

dimension and extended in the bulk dimensions obtain soft masses through the grav-

itational couplings only at loop level [212], and can naturally arise as the bulk LSP.

This scenario is illustrated in Figure 3.18.

The bulk LSP in this scenario can have a variety of forms. We have all ready

discussed in detail the coupling to a bulk modulus field, which may arise for example

due to branes wrapping additional M−1
∗ sized dimensions or cycles. Other motivated

possibilities for bulk LSPs living on a sequestered brane include a U(1)′ gaugino, a

bulk axino, or a bulk sneutrino.

Bulk Axino

If the strong CP problem is solved by the axion in a model with a low fundamental

scale, then the axion multiplet must propagate in some of the bulk dimensions. A

simple possibility for the form of the effective couplings of the axino to the chiral

multiplets of the MSSM is

Laxino = δ(y)
cf1

f
(d′+2)/2
∗

ãf f̃ † + δ(y)
cf2

f
(d′+2)/2
∗

ãf f̃ c + h.c. (3.48)

where cf1 ∼ (10−3 − 10−4)Mg̃ is radiatively generated from the anomaly couplings

[213] and cf2 ∼ mf is generated if the Higges are charged under the PQ symmetry

(DFSZ axion) [214, 215]. More general forms of the axion supermultiplet couplings to

the visible-sector fields [216, 215] lead to qualitatively similar results. The two-body

decays mediated by the interactions of Eq.(3.48) dominate over 3-body decays through

off-shell gauginos [213] and can easily dominate over rates into gravitationally coupled
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states if scales are chosen to give a (3+1)-dimensional axion scale fa . 1016 GeV.

Bulk U(1)′ gaugino

Another interesting candidate for a bulk LSP is the gaugino of a bulk U(1)′ coupling

to the MSSM fields through the B−L current or kinetic mixings [217, 218]. In terms

of a dimensionless gauge coupling, g̃, the couplings to the chiral brane fields are of

the form,

Lgaugino = δ(y)
g̃

M
d′/2
∗

λ̃f f̃ † + h.c. (3.49)

Note that this coupling is of lower dimension than the decays to gravitational states

or an axino, and naturally can dominate over other channels if present. The U(1)′

can be broken supersymmetrically on the 3-brane or elsewhere in the bulk to evade

constraints on the gauge bosons. Limits on the scale M∗ from direct single production

of bulk KK gauge bosons will be enhanced compared to the KK graviton limits, while

limits from contact operators will not be substantially changed.

Bulk sneutrino

A final well-motivated bulk LSP candidate is a sneutrino superpartner of one of

the sterile neutrinos that can exist in the extra-dimensional bulk. Such bulk sterile

neutrinos can explain the observed neutrino masses and mixings by way of a volume-

enhanced effective (3+1)-dimensional Majorana mass leading to a see-saw like formula

[219]. The details of the brane-bulk couplings, and particularly their flavour structure,

are potentially interesting in the regime discussed in Section 4 probing extra dimen-

sions, as they may give additional clues to the structure of the underlying neutrino

model.

Parameterized Distribution

We have discussed a variety of motivated possibilities for decays to a bulk LSP: a

goldstino of SUSY breaking extended in the bulk, a modulino, a U(1)′ gaugino, and

an axino. We have focused on the case of the decays of a massless sfermion, but we

can more generally consider the decay of any MSSM LOSP to a bulk LSP.
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Figure 3.19: Differential distribution of KK masses for the decay ẽR → e + X̃ for
differing candidate bulk LSPs, X̃, X̃ = η, a bulk goldstino (leftmost, blue curve), or,
X̃ = ψ, a bulk modulino (rightmost, red curve). A bulk U(1)′ gaugino or axino has
the same distribution as the goldstino. For both cases we fix d = 6. This illustrates
that auto-concealment is slightly more effective for the modulino coupling than other
bulk LSPs.
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Figure 3.20: Strongest upper bound on degenerate µ̃R, ẽR pair production cross
sections from ATLAS l+l− + Emiss

T mT2 [7] and razor analyses [8]. A monojet search
was also considered [9] but sets weaker limits. The top two curves corresponds to
sleptons promptly decaying to the KK tower of a modulino (ψ, green) or goldstino
(η, orange), in d = 6 extra dimensions. The mT2 analysis is the more effective of
the two searches except below 170 and 150 GeV for decays to bulk modulinos and
goldstino respectively. Solid red (lowest) curve gives the observed ATLAS upper
bound on the RH slepton production cross section from [7] for decays to a massless
LSP. For validation, the dashed red curve gives the same bound using our simulation.
Black curve gives the predicted NLO direct production cross section [10] illustrating
that RH sleptons are excluded up to ∼ 225 GeV for a single massless LSP. For the
searches considered both the modulino and goldstino eliminate present limits on direct
RH slepton production.
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ψ η/ã λ̃′

(α, β, δ) (α, β, δ) (α, β, δ)

f̃L/R → f + X̃ (2, 2, 0) (0, 2, 0) (0, 2, 0)

H̃ → h/Z + X̃ (0, 2, 1) (0, 2, 1) (0, 2, 1)

λ̃→ V/g + X̃ (0, 3, 0) (0, 3, 0) –

Table 3.3: Possibilities for the kinematic distribution in the decays of sfermion (f̃),
higgsino-like (H̃), and wino/bino/gluino-like LOSPs (λ̃) to variety of bulk LSPs X̃:
a modulino ψ, a goldstino η, an axino ã, a U(1)′ gaugino λ̃′. These distributions hold
in the massless limit for the SM particle in the decay, (M −mn)� mh,mV ,mt.

From an observational point of view, these various possibilities for bulk LSPs

can be simply summarized. The general form for the differential distribution of KK

masses in the decay of a brane-localized LOSP to a bulk LSP and a massless SM

particle is a sum of terms of the form

dΓ

dx
∼ xd−1+α(1− x2)β(1 + x2)δ; x ≡ mn/M, (3.50)

where the (1− x2)β factor captures the 3D phase space dependence, and the xd−1+α

factor includes the bulk phase space factor. The remaining freedom in α, β, δ comes

from the matrix element for a given process. Typically a single term of the form

Eq.(3.50) dominates the distribution; qualitatively, α and β are the most important

for determining the shape of the distribution because of their zeros – a large α and

a small β corresponds to a distribution of decays peaked at the largest kinematically

allowed KK masses. Table 3.3 surveys the forms of the distribution for a variety

of combinations of brane LOSP and bulk LSP candidates decaying to an effectively

massless SM state. The decays to a goldstino, axino, and U(1)′ gaugino have similar

matrix elements and all follow the same kinematic form. They do not share the he-

licity suppression of decays to lighter KK modes found for the modulino-like coupling

Eq. 3.41, leading to distributions slightly softer than decays to a modulino.

Figure 3.19 compares the distributions of KK masses for the decays of a RH slepton

(µ̃R, ẽR) to a goldstino or modulino LSP, and Figure 3.20 compares the corresponding

effects on experimental limits in slepton searches.
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3.6.4 Summary

We have presented a mechanism—auto-concealment in extra dimensions—which sig-

nificantly weakens present search limits for some SUSY models. Auto-concealment

applies to theories like maximally natural SUSY where the LOSP is a brane localized

state while the LSP is a bulk state, producing a dense KK tower of LSP excitations

with increasing mass, mn, that automatically brackets the LOSP mass without fur-

ther tuning. The increased density of states at higher mass due to the bulk phase

space factor ∼ md−1
n favours LOSP decays to the heaviest KK states, dynamically

generating a quasi-compressed spectra, as discussed in Section 3.6.1 and shown in

Figures 3.10 and 3.12. If the scale M∗ is such that decays from the LOSP to the LSP

are prompt, typical handles used in SUSY searches such as visible energy and Emiss
T

are then dynamically suppressed as we discussed in Section 3.6.2. This reduces both

Emiss
T and visible energy in SUSY events (unlike R-parity violation for example, which

increases visible energy).

Auto-concealment can occur for a variety of visible-sector LOSP candidates. In

particular, we find that LHC limits on right-handed slepton LOSPs evaporate in the

case of prompt decays to a bulk modulino (see Figure 3.14), while the LHC limits

on stop LOSPs weakens to ∼ 350 ÷ 410 GeV (see Figure 3.15). Present LHC limits

on direct production of degenerate first and second generation squarks similarly drop

to ∼ 450 GeV (see Figure 3.16). This can reduce the limits on natural theories like

maximally natural supersymmetry for low scales of 1/R and light stops, even after

bounds on more easily detected decay topologies increase at the 14 TeV LHC.

3.7 Conclusions

The crucial ingredient behind the success of maximally natural SUSY is the Scherk-

Schwarz mechanism (with maximal twist) of SUSY breaking in 5D. The non-local

nature of this breaking ensures that SUSY breaking parameters are only sensitive to

scales up to the compactification scale 1/R (& 4TeV satisfies all constraints), and

are insensitive to the UV cutoff. The 5D geography of fields also plays a major role:
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whereas gauge and Higgs sectors propagate in the 5D bulk (often, but not absolutely

necessarily, together with the 1st and 2nd matter generations), the 3rd generation

remains localized on one of the branes. These two features act together leading to a

4D effective theory where the usual problems of SUSY theories are solved (for example

the µ and Bµ problems, and the problem of the radiative sensitivity of EWSB to the

gluino mass) with a low level of tuning.

The minimal implementation of the model predicts, however, a Higgs mass mh <

125GeV if the theory is restricted to the low fine tuning region. Simple extensions

of the minimal theory solve this problem and do not significantly affect the physics

of EWSB. We have explicitly discussed three qualitatively different extensions: the

addition of extra U(1) gauge structure under which the Higgs is charged; the presence

of a family of brane-localized vector-like leptons that couple to the Higgs with an

O(1) Yukawa coupling; and an NMSSM-like extension where both Higgs fields get a

non-zero vev and the presence of a brane-localized singlet chiral superfield provides

an additional tree-level contribution to the Higgs mass. We have shown that all of

them give a successful theory of the weak scale with a level of fine-tuning that is

10%−30%. At the 13 TeV LHC, limits on third generation squarks may significantly

increase the tuning of these models; one novel possibility for evading strengthened

constraints that arises naturally in these models is the possibility of decays to an LSP

in a large gravitational dimension. These possibilities are by no means a complete set

of extensions of the minimal model, but rather illustrate how simple extensions that

do not significantly alter the physics of EWSB result in attractive, viable theories.
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