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Abstract: In this article, we study the form of the deviation of geodesics (tidal forces) and the Ray-
chaudhuri equation in a Schwarzschild-Finsler-Randers (SFR) spacetime which has been investigated
in previous papers. This model is obtained by considering the structure of a Lorentz tangent bundle
of spacetime and, in particular, the kind of the curvatures in generalized metric spaces where there is
more than one curvature tensor, such as Finsler-like spacetimes. In these cases, the concept of the
Raychaudhuri equation is extended with extra terms and degrees of freedom from the dependence on
internal variables such as the velocity or an anisotropic vector field. Additionally, we investigate some
consequences of the weak-field limit on the spacetime under consideration and study the Newtonian
limit equations which include a generalization of the Poisson equation.

Keywords: Finsler geometry; modified theories of gravity; Raychaudhuri equation; geodesics
deviation; cosmology; Weak field; tangent bundle

1. Introduction

The evolution equation of the quantities that characterize the (gravitational) flow in a
given background spacetime is the Raychaudhuri equation [1,2]. The flows are integral
curves, geodesics, or they are generated by a vector field. The Raychaudhuri equation is of
significant importance since it describes the dynamical evolution of a gravitational fluid,
and it is produced by the structure of deviation of nearby geodesics which are dominated
by the curvature of space. It was originated by A. Raychaudhuri [1]. When the metric
structure of spacetime changes, the equation is modified. The deviation of geodesics and
the tidal forces play a fundamental role in general relativity, gravitation, and cosmology
because of the interaction of the curvature of spacetime with matter [3]. The profound role
of the equation of geodesic deviation (EDG) on Riemannian spacetime has been recognized
in general relativity for a long time. The observable deviation of two neighboring geodesics
(time-like or null) brings to life an appearance of the curvature of spacetime, namely, the
detection of curvature, expresses a property of the matter sector of spacetime that is given
by means of EDG, and it is connected with the polarization of gravitational waves and
their detection [4]. How does the small-length deviation vector between corresponding
points of two nearby geodesics vary as they move along the geodesics? This is the problem
of geodesics deviation, the solution of which provides a good insight into the nature and
behavior of space. In cosmology, this problem can be connected with the tidal forces and
the scale factor a(t) during the expansion of the universe between geodesic motions of
two nearby galaxies (see [5]). The form of geodesics and their deviation depend on the
spacetime metric, the connection, and the curvature. Raychaudhuri, in his articles [1,6-8],
assumes that the universe can be represented by a time-dependent geometry but does
not assume homogeneity or isotropy at early times. One of his aims is to see whether
non-zero rotation (spin), anisotropy (shear), and/or a cosmological constant can succeed
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in circumventing the initial singularity [2]. Deviation of geodesics and the Raychaudhuri
equation can be studied in a more general geometric framework than the Riemannian
one. Finsler geometry consists of a natural metric generalization of Riemannian geometry.
During the last years, rapid progress in the field of Finsler geometry and its applications to
gravity and cosmology have extended the research in on corresponding topics; some recent
works include [9-26]. In generalized metric spaces such as Finsler or Finsler-like spacetime,
where the motion/velocity/direction are incorporated in the spacetime structure, internal
anisotropy inherent in the EDG [27-29] and Raychaudhuri equations are attributed on
the framework of a tangent bundle of spacetime manifold, thus extending the concept
of volume 0, shear o, and vorticity w [30,31]. In our theory, the concept of volume ©
expresses the total volume on the tangent bundle which includes the standard form of
volume 0 and the internal anisotropic bulk that is caused by the geometrical structure and
its coupling to the standard volume 6 due to the additional degrees of freedom (Section 4.3).
Additionally, the form of EDG is modified with extra terms that are originated by the
connections, torsions, and anisotropic curvature tensors. In this geometric framework,
anisotropic tidal phenomena arise from the internal and external structure of spacetime
which are imprinted in the generalized EDG and Raychaudhuri equations. The appearance
of extra terms in these equations plays the role of additional force fields or self-gravitating
actions over spacetime which arise from the richer geometrical structure. The concept of a
nonlinear connection in Finsler or Finsler-like spacetime can be interpreted as the interaction
between the external and internal structures of spacetime. In a Finslerian gravitational
theory on the tangent bundle of spacetime, curvature effects can be considered as total tidal
forces which are produced by the external (horizontal) and internal (vertical) curvature
tensors. Different considerations for EDG and Raychaudhuri equations on Finsler and
Finsler-like spacetimes have been studied by the one of the authors in [30,31]. Einstein—
Finsler-like gravitational field equations that govern the motion of matter have been derived
in a generalized form of metric spaces on the Lorentz tangent bundle with Finsler-like
geometrical structure [18,32,33]. These equations have also been given in a different form
in [5,34—40]. In this article, as an additional motivation, we investigate the form of the
equation of geodesics deviation, the Raychaudhuri equation in a Schwarzshild-Finsler—
Randers (SFR) space adapted on the Lorentz tangent bundle of spacetime, thus extending
the investigation on the SFR framework we have given in previous works [17,41,42]. Some
physical consequences are also given in this article.

This work is organized as follows. In Section 2 we present the basic elements of the
geometrical structure of the model. In Section 3, we study and derive the form of the
deviation of geodesics and paths in completely generalized forms, we apply them to the
SFR model, and we give some additional information for the deviation equation because of
the extra degrees of freedom and the new geometrical concepts. The resulting anisotropic
tidal acceleration is of great significance to the investigation of black hole phenomena.
Additionally, we give the form of the weak-field limit of the deviation equations for the
SFR model. In Section 4, we study the generalized Raychaudhuri equations in a general
and special form for the model under consideration. We analyze the derived equations
in the horizontal and vertical parts of the Lorentz tangent bundle and we give some
interpretations to these equations. Finally, in the conclusion (Section 5) we discuss and
summarize our results.

2. Geometrical Structure of the Model

In this section, we present some basic elements of the underlying geometry of the
SER gravitational model as well as the field equations that determine the relation between
geometry and matter. A thorough study of this model can be found in [17,32].

2.1. The Lorentz Tangent Bundle

A Lorentz tangent bundle TM over a spacetime four-dimensional manifold M is a
fibered eight-dimensional manifold with local coordinates {x#, y?} where the indices of
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the spacetime variables x are x, A, u,v,... =0,...,3 and the indices of the fiber variables y

area,b,...,f =0,...,3. An extended Lorentzian structure on TM can be provided if the

background manifold is equipped with a Lorentz metric tensor of signature (-1,...,1).
Below, we present some basic geometrical structures of the model.

2.1.1. The Adapted Basis

In order to take a horizontal and vertical basis on a tangent bundle TM, we need
to define a nonlinear connection N to unequivocally divide the bundle into a horizontal
and vertical sub-bundles. The nonlinear connection defines a split of the total space TTM
into a horizontal subspace TyTM and a vertical subspace Ty TM. The total space is the
Whitney sum:

TTM =TyTM & TyTM (1)

We consider a vector field X = X“% on a base Riemannian manifold M along a curve
x#(t). If the vector field X* coincides with tangent vector of the curve X* = %#(f) then the
geodesics equation on M is the standard equation using the Levi—Civita connection. It is
written as:
d?xt
ds?

The parallel transport of X is given by the equation of geodesics (2):

+T0 272 =0 ()

u
‘% +T0 XVX* =0 (3)

where I, is the metrical connection.
We can extend the vector field X to the tangent bundle TM of M as

Jd dXx* d

X=XxXb_—_ 422 7
X= X0 Y oy @)

where the coefficients X? are one-to-one equal to the coefficients X*. Thus, X* and % are
the coefficients of the extended vector X on TM, the basis for the horizontal and vertical
subspace of the tangent bundle.

According to the considerations of proposal (4.2) of p. 28 of [43] , we can substitute
Equation (3) to Equation (4) and find:

- P, P
— YU _ (T YVYK
X = XH - — (% _X"X¥) 5y

©)

IxH
By assuming a Cartan-type connection FZ ¥’ = Ny [44] in a Finsler connection, where N
are the coefficients of a nonlinear connection, we find:
d d

X:X['I(E—Nﬁg—yu) :Xyéy (6)

where we define: P P
oulx, y) = o -Nj 2y

@)

to be an adapted basis for the tangent bundle. Therefore, the nonlinear connection induces
the basis {Ex} = {0y, da} on the total space, with

R P)
o= = N ®

and

aa = (9)
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2.1.2. Metric Structure on TM
A Sasaki-type metric G on TM is:
G = gu(x,y)dxt @ dx" +vgp(x, y) Oy ® oy® (10)

A pseudo-Finslerian metric f;;(x, y) is defined as one that has a Lorentzian signature
of (-, +,+, +) and that also obeys the following form:

1 9*F?
fav(x,y) = i§8y“8yb

(11)

where the function F satisfies the following conditions [43]:

1.  Fis continuous on TM and smooth on TM = TM \ {0}, i.e., the tangent bundle minus
the null set {(x,y) € TM|F(x,y) = 0}.
2. Fis positively homogeneous to the first degree on its second argument:

F(x*, ky®) = kF(x*, y%), k>0 (12)
3. The form
1 9%F?
far(x,y) = izw (13)

defines a non-degenerate matrix:
det[fop] £ 0 (14)
where the plus—minus sign in (11) is chosen such that the metric has the correct signature.

2.1.3. Connection

In this work, we consider a distinguished connection (d-connection) D on TM. Thisis a
linear connection with coefficients {F’gc} ={LV,, Ly, cle, C,.} that preserves the horizontal
and vertical distributions using parallelism :

D5, 0y = Ly (x, )0y, Dy 6y = Cie(x, y)dyu (15)
D5 dp = L (x,Y)da, Dgcah = CJ (x,)0a (16)

From these, the definitions for partial covariant differentiation follow as usual, e.g., for
X € TTM, we have the definitions for covariant h-derivative

X, =D, X" =0,X4 + Ly, X" 17)
and covariant v-derivative
XAy = Dy X4 = 9y X" + C4, X5 (18)
In our consideration, the d-connection is metric-compatible:
Dy Suv =0, Dyxuwp =0, D¢ Suv =0, Dcvgp =0 (19)

The d-connection coefficients of our model have the following form:
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H 1 up
Lh. = 58 (0kgpv + 0v&pr — Q) (20)
. 1 . .
LZK = 8th<l + Evac (51<Uhc — Vde¢ abN;f — Upd 85N5) (21)
1 .
C\‘lzlc = Eg‘upgcgpv (22)
1 . . .
Cpe = Evad (9cvdb +dpv4c — 9d0bc) (23)
2.1.4. Curvature and Torsion
Curvatures and torsions on TM are defined by the multi-linear maps:
R(X,Y)Z = [Dx,Dy]Z - Dixy|Z (24)
and
T(X,Y)=DxY-DyX -[X,Y] (25)

where X, Y, Z € TTM. We use the following definitions for the curvature components [43,45]:

R(61,6:)0, = RE 6, (26)
R(51,6x)9p = R{, 1 0a 27)
R(Je, 6x)0y = Pl 0y (28)
R(Je, 5x)Ip = Py _da (29)
R(Ds,0c)dy = Sh 5y (30)
R(Js,9e)dp =S¥ 50a (31)

In addition, we use the following definitions for the torsion components:

T (5, 6v) =TSy + T0a (32)
T (96, 6v) =T}y 0u + T304 (33)
T (e, dp) =T, 6, + T, 0 (34)

The h-curvature tensor of the d-connection in the adapted basis and the corresponding
h-Ricci tensor have, respectively, the components given from (26):

R} 1 = 0aLye = 0Ly, + LOLY, = Ly, L+ ChoRY, (35)
Ruy = Ry, = 0L, = 0y Ly, + Ly L — Li LS, + Cio R, (36)

where SNT 5N
Rl = ot~ @)

are the non-holonomy coefficients, also known as the curvature of the nonlinear connection.
The v-curvature tensor of the d-connection in the adapted basis and the corresponding
v-Ricci tensor have, respectively, the components (31):

Speq = 9aCh = 9:Cp, + Cp . Coy = Cp,Cl (38)

Sap =S5, = 9.CS, — IpCS, +C¢,CE, — CE.CE, (39)
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The curvature tensor mixed coefficients are:
Rien = 0Ly, = OxLy) + Ly Loy = Ly, L + Cp RE, (40)
Pl = 0cLiy = DiCle + Cl T (41)
. d
Py = deLy = DGy + Cyy T (42)
St =0aChe—a.Cl +Ci.Cl —CF,Che (43)
The generalized Ricci scalar curvature in the adapted basis is defined as
R = g" Ry +0"Ssy =R+ (44)
where
R = gﬁ”’RHV , S= v”bsgb (45)

2.1.5. Hilbert-like Action
A Hilbert-like action on TM can be defined as

K= / BU |G| R + 2K / BUN G| L (46)
N N

for some closed subspace N' € TM, where |G| is the absolute value of the metric determinant,
Ly is the Lagrangian of the matter fields, x is a constant, and

BU=dx"A.. AdPAdY AL AdY? (47)
where the eight-parallelepiped d® is considered an oriented compact element of volume.

2.2. The SFR Model

In the SFR model, the metric g, is the classic Schwarzschild one:
HAV — 342 d_rz 2102 22 2
guvdxtdx" = —fdt* + 7 +1r°d0° +r°sin“ 0 do (48)

with f =1- % and R; = 2GM the Schwarzschild radius (we assume units where ¢ = 1).
The metric v,y is derived from a metric function F, of the a-Randers type:

Fy = \[=8ab(x)yy? + Ac(x)y° (49)

where g, = g,wéf; 0, is the Schwarzschild metric, and A.(x) is a covector that expresses
a deviation from general relativity, with |A.(x)| < 1. The nonlinear connection will take
the form:

1
Ni = Eyb 8" 9ugbe (50)
The metric tensor v, of (49) is derived from (11) after omitting the higher-order terms
O(A?):
Vap (%X, Y) = &av(x) + Wap (¥, y) (D)

where
1 1
Wap = E(Abgacyc +Acgabyc +Aaghcyc) + gAcgaegbdycydyg (52)
with @ = /—gwy®y?. The total metric defined from the steps above is called the

Schwarzschild-Finsler-Randers (SFR) metric and the corresponding spacetime is called
an SFR spacetime.



Universe 2024, 10, 26

7 of 20

We remark that the term w,; represents a deviation from the pseudo-Riemannian
space. The above-mentioned term can be useful for studying gravitational waves in a locally
anisotropic framework of an SFR spacetime.

Variation in the action (46) with respect to g, vsp and Ny leads to the following field
equations:

= 5 (R+8) g+ (0110~ g8 ) (DTl ~ TeoT) = 3)
Sab——(R+S)vab+(U Ty — 657 )(D ct - cgcc“)zkyab (54)
g duLy) +27Th g C)l = 2.2 (55)
with

Ty = - o( 1) __2 Ve dm) (56)

Gl st vw %
o2 VL) o svsw) -

G|  ovl V=  oov

S(IGTLu) oz,

Zi=- Gl ON; = 25N (58)

and EHV =Ryp - Cﬁu RS, where L) is the Lagrangian of the matter fields, 65 and 6Z are the
Kronecker symbols, |G| is the absolute value of the determinant of the total metric (10), and

= op,NI - L, (59)

are torsion components, where L;  is defined in (21). From the form of (10) it follows that

\/@ = ﬁ\/—_v, with g, v the determinants of the metrics g, vap, respectively.

The local anisotropy can contribute to the energy-momentum tensors of the horizontal
and vertical space T, and Y;;. As a result, the energy—-momentum tensor T, contains the
additional information of local anisotropy of matter fields. Y}, on the other hand, is an
extra concept with no equivalent in Riemannian gravity. It contains more information about
local anisotropy which is produced from the metric v,;, which includes additional internal
structure of spacetime and can be connected to dark energy [33]. Finally, the energy-
momentum tensor Z} reflects the dependence of matter fields with respect to the nonlinear
connection N, a structure which induces an interaction between internal and external
spaces. This is a different form than of that T, and Y;;,, which depend on just the external
or internal structure, respectively.

Solving the field Equations (53)—(55) to the first order in A.(x) in a vacuum
(T = Yap = Z5 = 0), we obtain [17]:

1/2

Rs

Aclx) = | A1 - ==

0, o,o] (60)

where Ry is the Schwarzschild radius, 7 is the radial coordinate, and Ay is a constant, where
|Ao| < 1.

In the SFR model, the horizontal curvature Ricci tensor R, is zero, but the internal
vertical curvature v-Ricci tensor S, and the v-scalar S are different from zero. The
components of the v-Ricci tensor are:
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_ A f (@~ fy?)
56

Soo (61)
. 3| Rs?y3 (372 — 4f?) + sy sin? 0322 — 4f2) + 4(F — V2 fy? (o} - )| o
ns (1P )
5, = MRS [Rsyg (4f v} —3a%) ~38%(f ~1?*(@ - fy])] 6
2= 435(f — 1) (63)

. A3Rs? sin? 0| Rs?y2 sin? 0(33 — 4y?) + 383(f — 12(2* - fy?)
__ 64
? 435(f — 1) (64

. ~ 5 $2 .
Afye(fy - ﬂz)\/f | £y - 22— B (2 + 2 sin? 0|
Sor = — — (65)
a
o _ ARy (@ - fu) o
02 = 7 17 (66)
o _ AfRs™yiyy sin? 0( - fy7) o
"= (17 ©”
AZRs*yoy, [(f —1)*(@*f +4y2) +4fRs*y2 + 4fR52y§> sin? 9]
o= @1 9
A2Rs2y, y, sin? 6[( f = D2(@f +452) + 4fRs%y3 + 4f Rsy2 sin 9]
Si3 = 69
b 4a5(f — 1)*f2 ©
S = AZRs*ygyg sin® 0 (4fy* - 33?) 70)
435(f ~
and the scalar v-Ricci curvature is:
5A2 ﬁ2 _ 2

g = ol@* - fyi (71)

234

where @ = V=g y7y?, f = 1- ¢, and we have set y° = y;, y' = v, > = yo, ¥° = Yo

The internal curvature S, can give a physical meaning to the anisotropy (dependence
on direction) of gravitational waves on the SFR model.

We have derived [41] the nontrivial Kretschmann-like invariants of the metrics g, and
Ugp to the lowest non-vanishing order:

— KAUY _ 12R§
KH = RK/\va B = 6 (72)
r
2
Ky = Sabcdsude = (?) (73)

Finally, the mixed curvature coefficients are all zero in this model.
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2.3. The Newtonial Limit

In this section, we will investigate the Newtonian limit of a Finsler-like metric space on
TM. The metric on TM will take the form

G = (Muv + hyy(x))dxt @ dx” + (ap + wap(x, y))0y" & 5yF (74)

where 1, (x) and w,p(x, y) are small perturbations over the flat Minkowski metrics 7, and
Nap on the horizontal and vertical space, respectively.
The field Equations (53) and (54) for the metric are written at first order as:

1
Ruw = 5(R+8) = kT, (75)
Sap — %(R +8) = kY (76)
or equivalently
1 K K K 1 KA K 5 - ab Sa -
§(8H8,<hv + 09 = Dy - &y&,h) - Eqw(akam — 9k + Duyw™ — 9 aaw) = KTy 77)
aa@%+a@@_yamwa@g_;M@@mm_m@wmﬁww_y@@=Knb 78)

where h = hﬁ and w = wj. The third field Equation (55) gives:
9a(9°h - 3,h) = Z5 (79)

which in our case gives Z) = 0. This means that the matter fields in our space do not
directly depend on the nonlinear connection. An analytical approach on a weak-field metric
over a Lorentz tangent bundle can be found in [33].

The horizontal metric is effectively a Riemannian one, so the usual symmetries apply
to it. One can decompose this metric on a scalar part ®, a vector a;, a traceless spatial tensor
bij, and the trace W of the spatial part, where all these parts transform independently under
spatial rotations. The metric then takes the form:

G ={-(1+2®)dt* + a;(dtdx’' + dx'dt) + [(1 - 2W¥)5;; + 2b;; | dx'dx/ }dxt ® dx”
+ (Nab + wap(x, ¥))0y* ® 5yP (80)
Additionally, we can take advantage of the gauge degrees of freedom of the Riemannian

metric to set d;b77 = 0 and 9,4’ = 0. Finally, in our setting, the matter content of spacetime is
assumed to be dust in its rest frame:

Tyv = puytiy (81)

where ut is the four-velocity field of the matter fluid. We consider a static spacetime, so all
the time derivatives will vanish.
Under these assumptions, the field equations are written as:

VZ‘I’+}IS = gp (82)
V2a; =0 (83)
1
(6;V* = 9:9;)(® - W) — V?b;; — 55M;5 =0 (84)

where V is the three-dimensional spatial grad operator. Taking the trace of (84) yields:

V(D -W) = %s (85)
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Substituting (85) to (82) gives:
S
2
This equation is a direct generalization of the Poisson equation of Newtonian physics. It
has been shown in [33] that S can describe the effect of a vacuum energy density, so it can
be considered to be a dark energy candidate.

Substituting (86) to (84) gives:

V20 = gp + (86)

1
150ij —0;0;(® - W) - V?;; =0 (87)

Finally, (83) for a well-behaved field gives:
a;=0 (88)

Equations (86)—(88), together with (76) (or (78)), determine the metric (80) up to the boundary
conditions. The vertical energy—momentum tensor can be approximated by its GR limit

value, i.e.,
1

Yabzz

Tﬁlnab (89)

(see also [17]).

We remark that in the Newtonian limit of GR, only the scalar @ is nonzero, while in
our case, more degrees of freedom survive, such as the trace W, the traceless tensor b;;, and
the vertical curvature S.

3. Generalized Deviation of Geodesics and Paths

In this section, we derive a completely generalized deviation equation using all forms
of torsions for the geodesics and the paths. When there are forces acting on particles, they
are not moving on geodesics and are accelerating. In our framework, we present some
applications to the SFR model. The deviation equation of geodesics for different types of
generalized locally anisotropic spacetime has been studied for a long time [27,29]. Here, we
also present the weak deviation equation for this space.

3.1. General Equations

We assume that these geodesics and paths take the general form:

dy b
21267 =0, y' = o X (90)

Geodesics for the SFR model have been derived in a previous work [42]:

BTy, 28 + g Dt = 0 (91)
where Fﬁv are the Christoffel symbols of Riemann geometry, x* = ‘%1, Dy = Ay — duAy,
and A, is the solution Equation (60). We notice that from the definition of ®,,, we obtain a

0D
rotation form of geodesics. If A, is a gradient of a scalar field, A, = L then @, = 0, and
the geodesics of our model are identified with the Riemannian ones.

These geodesics are a specific case of (90) for

1
G = = (T} xHxY + ¢ Dy 3t (92)
5\t 8 Py

The geodesics can be explicitly written in the form:
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o A=f o o R f)
t+ Trt = —AOT’T (93)
.. f(l_f)z 1_f.2 22 2002\ e fl/z(l_f)
P+ P f 37 i —rf (0% +sin” 0¢”) = —Aof P (94)
é+§9f—%sin26<ﬁ2=0 (95)
b+ 247 +200t00 =0 (%)

The deflection angle of the SFR model has been studied in a previous work [42] and has
been calculated for the model in hand,
a? ) 4GM

(SQbSFR ~x (1 + 7 _b (97)

with a = Agb/], where b = J/JER is a composite constant formed by the ratio of the angular
momentum | divided by the energy ER of the particle moving along the geodesic. The
deflection angle 6¢ of GR is 6¢srr = 6¢gr when lim; _,5. Connecting the geometrical

concept of the curvature xy = Z—? with the quantity xy = MZ{%, we obtain the deflection

curvature of the SFR model. Comparing this result with that of the deflection angle
parameter in Shapiro et al. [46], we find the value

a2
2(14—?) ~ 1+V5hﬂp (98)

or a ~ 0.0141421.

The small difference in the deflection angle of the SFR model in comparison to the GR
deflection angle can be attributed to the Lorentz violations [9] or on the small amount of
energy which is added to the gravitational potential of SFR model.

Subsequently, we will calculate the eight-velocity tangent vector to the geodesics (90)
and define a deviation vector of the geodesics. We obtain:

U = y#dy —2G"d, = y*6, + (y'Ni —2G")0, (99)

We write the decomposition of U to its horizontal and vertical components as
{u4y = {u#, 0"}

We define the deviation vector | such that, together with U, they form a local

coordinate basis:
[U,]J]=0 (100)

After some calculations, the above commutator relation gives
UDcJ? = J°DcU® + U4 T (101)

The second covariant derivative of the deviation vector is

D] = U"Da(U’Ds]")
= UADA (1" DsU" +UPIOTL

= (]ADAUB + uA]Cf/fC)DBu’ +U*JB([Da, Dp] + DpDA)U" + UADA(UP]CT5,) (102)

We can write
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UAD4ut = ‘Z"_; " ”/\”VLil/\ +ou'Cl
=u'u'L! +0"u"Cl, - 2G¥ (103)
where we used (90). We define
A¥ = uutLh +uto" Cl, - 2GH (104)
so we obtain
UADaut = AH (105)

We can consider A* to be a vector expressing the failure of u# being parallel transported
along the geodesic.
Similarly, we find the covariant derivative of the vertical part of U:

do?
UADo? = —— + uAU”LZA + v”thZb

dA
du” dN? dG*
— A d b~d v

=Uu UﬂLa/\'i"Uu'U Cub+ﬁN{f+u d_AV_zﬁ

= A (106)
The commutator of the covariant derivatives is given by the following known relation:
[Da, DplU’ = RL, , UUATP + 7.5 DU’ (107)

I
where RC BA

is the generalized curvature tensor of the connection D on the tangent bundle.
Taking the spacetime part of (102), and after some straightforward calculations, we obtain

the result:
DA = (Rhe 4 + DaThe + T TR UAUPTC + 22U Tl DAU® + TP D" (108)

where we used the relations (104) and (107).
Similarly, the fiber part of (102) gives:

DZJ% = (Rbc + DaTge + Ton TAL ) UAUPTC +2u4 Il DU + TPDpA?  (109)

Equations (108) and (109) denote the deviation equation of horizontal and vertical paths
between two nearby time-like paths on the Lorentzian tangent bundle. If the vectors A*
and A“ are equal to zero, the trajectories of nearby observers are geodesics. Equation (108)
is reduced to the standard geodesic deviation equation of general relativity when all the
torsion components and the vector A* are equal to zero, and in that case, the curvature
tensor coincides with the Riemannian one of the Levi-Civita connection. The torsion terms
in (108) come from the geometry of our space; they play the role of a perturbation for
the geodesic deviation of GR. From a physical point of view, perturbations of geodesics
are affected by extra terms in their equations, e.g., because of additional mass, gas, or
dark matter which interact gravitationally during their motion [25]. Tidal acceleration
phenomena and anisotropic tidal-field perturbations can appear to be coming from different
sources of spacetime.

3.2. Application of the Weak-Field Limit

We investigate first-order perturbations of the deviation equation in a weak Finslerian
framework on the tangent bundle of the Riemannian space for an SFR space. A weak-field
metric takes the form

G= [gw(x) + hyuy(x, y)]dx“ Qdx" + [gap(x) + wap(x, y)]0Y* ® 6yb (110)
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with |k, | < 1Tand |w,,| < 1. From relations (40)—(43), it is straightforward to see that the

: a K a H ; a
mixed term curvatures Ry ., Py, P; ., and S|, as well as the vertical curvature S , are

first-order on the perturbations /, and wg.
At first order on hy, and w,y, the horizontal deviation equation is:

DiJ# =RY wu'Jt + HY (111)
where H" is a weak correction on the deviation equation, linear on /1, and wp:
At = THTS u ]+ Pl o]+ Sk, + DTy} Ju o]+ Dy ulu |
LT [(m]b - vb]/\)DAu" + (z;f]b - vb]C)DCu"] + /B DpAF (112)
The first-order vertical deviation equation is:
DEJ" = DaTin ] + T | (w7 = ) Daw” + (0] = w)Deu” | + P D + 7 (113)
with

Ve =88 vPvl+ Pl v+ (RE + DpT% )0 ut < + DT S ur ot )"

+ (DaTg + AT yu ut I + TA T uultJ* (114)

the perturbation on the vertical deviation equation.
We apply the above equations for the SFR model and the geodesics (91) and we obtain:
VAIH = Y ukuTh 4 ZuAu"VA(N,‘}Qa]“) + TR gV (Dt (115)
where V is the Levi—Civita connection on the base manifold, Rﬁ o 18 the Riemann curvature
tensor of the classic Schwarzschild spacetime, and we have assumed that the y-dependence
of J# on y is weak, i.e., |d,J#| < 1. Equation (115) is the first-order generalization of the

deviation equation on the SFR model.

We remark that a variation in ®@,,u" along the deviation vector ¥ can induce an
anisotropy of J# which varies along the geodesics. In the GR limit, the two last terms

in (115) vanish and we obtain the classical deviation equation.
The vertical deviation equation in the SFR spacetime is:

DZ]" = JPDpA” (116)

Relations (115) and (116) show the rate of change of anisotropic deviation equation (tidal
fields) at first order.

3.3. The Schwarzschild—Finsler—Randers spacetime

In SFR spacetime, the h-Ricci curvature tensor R, and the h-Ricci curvature scalar R,
defined in (36) and (45), respectively, are both zero. Consequently, the non-zero components
of the h-Riemann curvature tensor, defined in (35), are equal to the ones of [3]:

R
Rtrrt = 2R9r€r = 2R¢r¢)r = TQ(TS—T’) (117)
t r ¢ RS
2R 9ot = 2R 9or = R g0 = - (118)
Rgsin? 6
2R gt = 2R  gor = =R%gp0 = ———— (119)

7
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Rs(Rs —
R’y = —2R%0r = —2R? gy = c”(—i” (120)
r
The non-zero components of the h-Riemann curvature tensor are the following:
’ ’ RS
R"ppp = —RY yorey = - (121)
RY vt = RY poyr = =R g = —R gy = 3 122
tle/t/ —_ t/(r)/tl _ 9’7;/9/ —_ (7)/7,/(?)/ —_— ﬁ. ( )

It is fundamental that the geodesic deviation equation shows the tidal acceleration between
two observers who are separated by J¢. It takes the form D2J¥ /D12 = —RF ]V
The observable acceleration (Rs/r3)c?L of a body of length L in radial direction extends it
and shrinks it in the lateral direction by —(Rs/(2r%))c?L. Moving a body to the direction of
a black hole causes spaghettification on the sizes of the body. Additionally, the anisotropic
curvature S contributes to an anisotropic deformation of the body in our space.

The vertical curvature depends on the position x and the direction y; it is related to
the intrinsic mechanism of spacetime where the gravitational field is extended on the total
space of the SFR bundle. If we accept that the Schwarzschild spacetime takes an anisotropic
structure with a force field (one form) on its metric, the additional energy originates from
the internal (vertical) curvature and increases the form of tidal field around of a black hole.
Consequently, we consider that both the horizontal and vertical (anisotropic) curvatures
may affect the radial and lateral motion of an observer.

4. Generalized Raychaudhuri Equations

In this section, we investigate the generalized Raychaudhuri equations originated by
our model and we give the equations for the horizontal and vertical parts of the Lorentz
tangent bundle.

4.1. Horizontal Equations

We define the divergence tensor B, as:
B = D,ut (123)

where D, denotes the horizontal covariant derivative, and u* is a horizontal vector tangent
to the geodesic congruence. We calculate the acceleration vector along the direction of
ut as:

Dut u

—— =u' Dt =u'By (124)

In order to find the deviation of Bff we can use Equation (124):

DBf/l [ I o
Frale u°DyB;, = u’Dy(D,ut) (125)
We can use the commutator of D as:
[Do, Dylut = Ry u" — T, Daut — R, Dot (126)

where Rﬁw is the horizontal curvature tensor, 77} is the torsion tensor, and R?, is the
curvature of the nonlinear connection. If we use Equations (125) and (126), we have:
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DB,
d_’rv =u°[D,, D, Ju* + u’D,Dsu* =
DB!Vl o[pH A A a o o
— = [RY,,u" = TuDaut = RS, Daut'| + [Dy(u”Dout) — (Dyu)(Dout)] =
DBg I A0 A, ot a ,,onpkH opk
= Ry, u'u’ = T ,u’B} ~ Rj,u’B} - BB} (127)

where we have used Equation (123) and u° D,u* = 0 since u" is tangent to the geodesics.

We define the horizontal projection tensor as:
PL =06) +utu, (128)

The divergence tensor B!, can be separated in two parts: a symmetric part and an anti-
symmetric part. The symmetric part can also be separated into a part with a trace and a
traceless part. We can write the decomposition by using the projection tensor as follows:

1
Bl = gepﬁ +0b +wh (129)

Using the projection tensor in Equation (127) we obtain:

v

®dr

DB}
L= —Ryutu’ = T,u’ By — R, u’By — BIBY, (130)

and if we use the decomposition from Equation (129) we find:

a0

1
= =602 =" oy + 0" Wy (131)

= —Ryubu’ = T5,Bu’ = R, Byu” - 2

ou
The Equation (131) is the generalized Raychaudhuri equation for the horizontal space.

As we can see, Equation (131) disturbs the rate of the volume because of the presence
of the nonlinear connection N ﬁ, and the torsion functions affect the evolution of the
gravitational fluid for possible singularities/conjugate points in the universe. In the
framework of a given congruence of time-like geodesics, the expansion © and shear oy,
are described in a generalized form, provided that the generalized type of Raychaudhuri
Equation (131) gives additional information on the kinematics. This is possible due to
the perturbation of the deviation equation of nearby geodesics or trajectories, which was
described in Section 3.

4.2. Vertical Equations

As with the horizontal space, we define the divergence tensor as:
B! = Dyo” (132)

where D), denotes the vertical covariant derivative, and v* is a vertical vector tangent to the
geodesic congruence. In order to find the deviation of B}, we have:

DB;; c a c a
ra v°D By = v°D(Dyv") (133)

We can use the commutator of D as:

[De, Dylo” =S4, 0% = S%, Dyv" (134)
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where Sgcb is the vertical curvature tensor, and Sfb is the commutator of the connection
coefficients. If we use Equations (133) and (134) we have:

DBZ Cc a c a

7 =u [DC,Db]'U +0°DyD.v" =

DBy d_gd

ra v° [S;va - ScdeU“] + [Dyp(uD.0v") — (Dpv°)(D.0%)] =

DBh _ go oot st proe - pepe 135
dr Cdeb? U T opbal T By Be (135)

where we have used Equation (132) and v°D.v? = 0 since v” is tangent to the geodesics.

As with the horizontal part, we decompose the divergence tensor as follows:
1 ~a o~
B; = §9PZ +6p, + @) (136)
where the projection tensor is written as:
P} =& +0"0p (137)
If we use the projection tensor in Equation (135) we obtain:

PbD—BZ = —Sp0"0? — §¢ B2y — BCB? (138)
aTgr T ab caPyg aPc

and by using the separation from Equation (136), we find:

a6
dt

b @b (139)

1~
= —Sapv o’ -S4 B0 — 592 — 55 + @°
Relation (139) is the vertical Raychaudhuri equation.

4.3. Application to the SFR Model

The non-holonomy coefficients of the nonlinear connection R}, is given by:
RY, = 0xNy = 0,N; (140)
If we use Equations (8) and (50) we find:
6N = 9, N? - N¢9,N"
5NE = 31 0c(8" Do) ~ 39 8 Ogar el 4" i)
0Ny = %yb 98"y 8pc + 70k 0y Qe + leakfgbcavg“ (141)

So, the non-holonomy coefficients of the nonlinear connection from (140) become:

1
R = 79" (0c8" Oughe = 3v8"Oxgc) (142)
The non holonomy coefficients of the vertical connection Cj _ are:
Spe = Cpe = Cp =0 (143)

because from Equation (23), C;_ is symmetric.
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The horizontal component of the torsion tensor is given by:
A 1A -
Tou=Lou—Lis =0 (144)

because the from Equation (20) L} 4 Is symmetric.
For simplicity, we will take o} and wj, to be zero in both the horizontal and the vertical
Raychaudhuri equations. So, Equations (131) and (139) can be written as:

Z—f = —Ryyutu’ - R} Byu’ - %62 (145)
do 1~
2 = —Su'ot - 26 (146)

where Ry, = 0 because it is identified with the GR case in first-order approximation.
Furthermore, if we use Equation (142) and take the vertical vector v = (-1,0,0,0) we find:

dae 1 1

== = =7Y" (u8" s gne = 058" Orguc) Byu” - 307 (147)
~ 2

6 247 Vi 1

e =-hf(1-r| -30 (148)

Here, we have used that the time component of the vertical curvature is given by
(61), which can be interpreted as the evolution of anisotropic expansion 0. By adding
Equations (145) and (146) we find:

o do 1, 1

R 532+ §é2 = —Ryutu? = RS Bhu” — Sppo'v’ =

~ 1 ~ 2 .
%(9 +0)+ g(e +0) - 300 = ~Ryutu’ = R%, Byu’ = Sp0"0” (149)

The above-mentioned Equation (149) represents the volumes and their changes, and 6 and
0 denote the standard volume from the horizontal background part of the tangent bundle
and the internal anisotropic bulk which is caused by the anisotropic structure. Likewise,
06 can be considered to be the coupling of the background volume with its anisotropic
bulk during the evolution of world lines, and the quantity 6 + 6 expresses the total volume.

5. Discussion and Conclusions

The fully developed equations that characterize the flow in a given background
spacetime are the Raychaudhuri equations, which are fundamental since they describe
the dynamical evolution of the gravitational fluid. They are produced by the structure of
deviation of nearby geodesics, which is dominated by the curvature of space. In general,
the correspondence between fluids and gravity can be represented in a realistic way to
understanding current theoretical and observational problems.

In this article, we examine and derive the deviation equation of geodesics and paths
as well as the form of a Raychaudhuri equation in a completely generalized framework
and we apply them to a Schwarzschild-Finsler-Randers model in which we showed that
the extra terms in (108), (109), (131), and (139) anisotropically affect the acceleration tidal
vector field and the variation in the volume (expansion) during the evolution of fluid lines
(geodesics and paths). From a physical point of view, the generalized deviation geodesics
equation is influenced by extra degrees of freedom, e.g, because of additional mass, gas, dark
matter, etc. [18,25], which interact gravitationally during their motion. Tidal acceleration
phenomena and anisotropic tidal-field perturbations can appear from different sources
of spacetime. It is remarkable to mention here that acceleration geometrical concepts
constitute intrinsic properties on a tangent bundle as, e.g, a vector field. The extended
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geometrical structure of the SFR model includes the Schwarzschild spacetime and gives us
additional information on the kinematics because of the extra degrees of freedom reflected
in additional terms of torsion, nonlinear connection and S-Kretschmann-like curvature
invariants that are imprinted on the corresponding equations.

Moreover, we investigate the weak-field limit of a Finslerian perturbation on a Rieman-
nian spacetime in the cases of a deviation equation. We also study the Newtonian limit
of the model and derive a generalized Poisson equation. Additionally, we presented an
interesting application for the deviation angle on our generalized framework and compared
the result with that of GR. We also study the Raychaudhuri equation, which is extended
in the horizontal and vertical parts of the SFR spacetime. In particular, the concept of
nonlinear connection in Finsler or Finsler-like spacetime can be geometrically interpreted
as an interaction between external and internal structures on the Lorentz tangent bundle
spacetime. In a more specific case, a physical interpretation of nonlinear connection can
relate internal scalar fields with the matter sector of spacetime, as, for instance, in [18,25].
It can be understood from all the derived equations of the SFR model that they reduce to
standard GR when all the extra terms of generalized geometrical structure are omitted.
The anisotropic S-curvature is significant in our cosmological model since it can provide
addition information for the evolution of gravitational flow lines and the expansion of
the universe as well as singularities (focusing/defocusing) of spacetime. This curvature
expresses a very small source of anisotropy as is evident from the Equations (60)—(71) in
which all the terms are multiplied by a constant Ay <1 (Equation (60)); this means that all
the values of S are very small. Consequently, from a physical point of view, it is possible
that in a very early period of the universe, the anisotropies of CMB influenced the geometry
during cosmological evolution.

It is of special interest that one investigates the weak-field limit in more detail and
connect it to the anisotropic polarization of gravitational waves. This research will be the
motivation for a future work.
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