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1 Introduction

In this paper, we investigate massless two-point correlators of composite vertices that “live”
on the light cone. The local composite vertices presented below emerge in QCD due to
applying the “factorization procedure” (or operator product expansion, OPE) to the ampli-
tudes of hard inclusive and exclusive processes. A well-known example of composite vertices
arises from the collinear factorization of “handbag” diagrams in deep inelastic scattering.
Another example related to exclusive processes is given by the 〈V (q1)V (q2)A(p)〉 triangle
diagram (V and A are the standard vector and axial fermion currents) with hard momen-
tum transfers −q2

1, −q2
2 � p2 = (q1 + q2)2. A two-point correlator with one composite
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Figure 1. Leading-twist factorization of a three-point function 〈V V A〉 into a convolution ⊗ of a
hard four-point function and soft two-point one involving a non-local composite operator, which is
denoted by the vertex ⊗.

vertex appears here as a result of factoring out V V subgraphs — the “hard subgraphs” of
the diagram (figure 1). A correlator of two composite vertices originates from the factor-
ization of a box diagram if we “contract” its hard subgraphs including the side edges of the
diagram at large values of transferred t. Such a two-point correlator is a universal object
that determines the asymptotic behavior of the initial amplitude with respect to a hard
momentum (i.e., in the leading twist). Correlators like this describe the perturbative con-
tent of the hadron distribution amplitudes (DAs) — universal hadron characteristics in the
collinear approximation, which are ordered by their twist. Besides, these two-vertex cor-
relators are important to investigate the conformal properties of composite vertices under
renormalization [1].

Let us consider some of the simplest composite bilinear fermion currents involving the
Nth derivatives of a quark field,

J µ̄X(η;N) ≡ d̄(η)Γµ̄X (iñ∇)N u(η), X = S, P, V, A, T, (1.1)

where η is a space-time point, ∇µ = ∂µ−igtaAaµ is the covariant derivative, ñµ is a light-like
vector, ñ2 = 0, and Γµ̄X is a combination of the Dirac matrices, optionally carrying a string
of the Lorentz indices µ̄. In particular, we are interested in the (pseudo)scalar, X = S and
P, vector V, axial A, and tensor T currents with, respectively,1

ΓS = 1, ΓP = γ5, ΓV = ˆ̃n, ΓA = ˆ̃nγ5, ΓµT = σµν ñν . (1.2)

Our goal in this work is to calculate two-point massless correlators containing the
composite vertices (see [2]), e.g., the tensor-tensor 〈TT 〉 correlator

i

∫
dDη eipη〈0|T̂

[
Jµ†T (η;M)JTµ(0;N)

]
|0〉 = (ñp)N+M+2 ΠT(N,M ; p2). (1.3)

Further, for simplicity, we set (ñp) = 1. Now, applying the inverse Mellin transforms
M̂−1(x→ N) and M̂−1(y →M) to ΠT(N,M ; p2), one arrives at the (x, y)-correlator

M̂−1(x→ N)M̂−1(y →M)ΠT(N,M ; p2) = ΠT(x, y; p2) (1.4a)
1â = aµγ

µ, σµν = (γµγν − γνγµ)/2.
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that depends on the longitudinal momentum fractions — the Bjorken variables 0 6 x,
y 6 1 [3]. Here and in what follows, we underline the arguments of the images of the
Mellin transform, i.e. our notation for the Mellin transform is

f(a) = M̂(x→ a)f(x) =
∫ 1

0
dxxaf(x). (1.4b)

Note that the scalar 〈SS〉 and pseudoscalar 〈PP 〉 correlators agree in the massless limit as
well as a pair of axial 〈AA〉 and vector 〈V V 〉 ones:

ΠS(x, y; p2) = ΠP(x, y; p2), ΠV(x, y; p2) = ΠA(x, y; p2). (1.5)

The (x, y)-representation allows us to obtain any kind of composite vertices by means of
convolutions ϕ(x) ⊗ Π(x, y; p2) ⊗ φ(y),2 where the functions ϕ and φ replace monomials
in the corresponding composite vertices. Moreover, the calculation becomes much easier if
we apply the inverse Mellin transforms to the composite vertices,

M̂−1(x→ N)J µ̄X(η;N) = J µ̄X(η;x),

from the very beginning [4, 5]. The Feynman rules for the vertices J µ̄X(η;x) are presented
in appendix A. In what follows, we will deal with the ΠX(x, y; p2) correlators of x and
y-vertices of different γ-matrix structures, X = S (P), V (A), T. The key technical element
necessary for our calculation — the “kite” two-loop scalar integral — was evaluated in [5].
In the calculation, we use the BPHZ R-operation in the MS renormalization scheme (for
dimensional regularization with D = 4− 2ε).

Along with ΠX(x, y; p2), we consider its Mellin moments

ΠX(x, b; p2) =
∫ 1

0
ΠX(x, y; p2)yb dy, ΠX(a, b; p2) =

∫ 1

0
ΠX(x, y; p2)ybxa dy dx, (1.6)

which are important for various applications.
The correlators calculated in this work are also important as perturbative ingredients

in evaluating meson DAs within the QCD sum rule (QCD SR) approach. In this approach,
the correlators are usually Borel transformed, which implies that only terms containing
logarithms of p2, external momentum squared, contribute to QCD SR, while the finite
parts of the correlators do not survive the Borel transform. Hence, in this paper, we are
mostly interested in the log-parts of the correlators.

The paper is organized as follows. In section 2, we discuss the results of 2-loop cal-
culations for the correlators 〈V V 〉, 〈TT 〉, and 〈SS〉. We consider some checks on these
results as well as their relation to the perturbative content of the corresponding DAs. The
log-part of the results has a direct physical meaning, while more lengthy nonlogarithmic
parts are less interesting in the scope of this paper, see the discussion in [6], and are re-
served for appendix B and .m files appended to the arXiv submission. In section 3, we
present the 3-loop expressions for the same correlators of order O(β0a

2
s). We discuss their

general structure in detail and pay attention to checking their correctness. To this end, we
2f(x)⊗ g(x) =

∫ 1
0 f(x)g(x)dx.

– 3 –
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extract some special cases of the Mellin moments (1.6) from the results of [2] and compare
them with the ones obtained by us. As an immediate application, we use ΠX(x, y; p2) to
estimate the impact of radiative corrections on different meson distribution amplitudes in
section 4. For all cases, the radiative contributions to the DAs look significant and should
be taken into account in future estimations. In section 5, we formulate our conclusions.
Some important technical details and part of the results are given in five appendices.

2 Correlators 〈V V 〉, 〈T T 〉, 〈S S〉 at NLO

In pQCD, the p2-dependence of the correlators manifests itself through the logarithm L =
ln
(
−p2/µ2) = ln

(
P 2/µ2), except for the case of 〈S S〉 (〈P P 〉) containing, also, a common

factor of P 2 = −p2 (see the definition in section 2.3):

ΠX(x, y;P 2) =
∑
i=0

ais(µ2)
i+1∑
j=0

ΠX
i,j(x, y) Lj =

∑
i=0

ais(µ2)ΠX
i (x, y;P 2), (2.1a)

ΠX
i (x, y;P 2) =

i+1∑
j=0

ΠX
i,j(x, y) Lj , as = αs

4π . (2.1b)

The generalized one-loop ERBL evolution kernels asCFVX are important and natural ele-
ments in the calculations of the corresponding ΠX

i [7]. These kernels are generated by all
subgraphs with a composite vertex that are contracted to be substituted by counterterms
as required by the BPHZ R-operation. Therefore, in our results, all the leading-log terms
ΠX
i,i+1, counterterm contributions, and some other parts of the correlators are proportional

to the kernels and their generalizations, see below. We shall start with the vector-vector
correlator and the corresponding VV kernel.

2.1 〈V V 〉(x, y) correlator

Evaluating the correlator ΠV(A)(x, y; p2),

(ñp)2 ΠV(x, y; p2) = i

∫
dDη eipη〈0|T̂

[
J†V(η;x)JV(0; y)

]
|0〉, (2.2)

where the current JX(η;x) is defined by eqs. (1.1) and (1.2), it is convinient and natural to
express the result in terms of some “building blocks” [4] — the LO function d(y; ε) (which
is proportional to the one-loop correlator) and, starting from NLO, the generalized kernels
Va(x, y; ε) and Vb(x, y; ε):3

Ŝf(x, y) = f(x, y) + f(x̄, ȳ), P̂f(x, y) = f(x, y) + f(y, x);

Va(x, y; ε)+ = 2
[
Ŝθ(y > x)

(
x

y

)1+ε
]

+
, Va(x, y) ≡ Va(x, y; 0), (2.3a)

Vb(x, y; ε)+ = 2
[
Ŝθ(y > x)

y − x

(
x

y

)1+ε
]

+
, Vb(x, y) ≡ Vb(x, y; 0); (2.3b)

3The generalized kernels appear as V (x, y; asγg) after summing up renormalon chains in the one-loop
kernels [8, 9], where the infinitesimal dimensional-regularization parameter ε is replaced with asγg.
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Figure 2. Feynman diagrams for a two-point function with two composite vertices of order as.

V (0)(x, y)+ = Va(x, y)+ + Vb(x, y)+ = 2
[
Ŝθ(y > x)x

y

(
1 + 1

y − x

)]
+

; (2.3c)

d(y; ε) = (yȳ)1+ε; d ≡ d(y) = d(y; 0), ḋ = d

dε
d(y; ε)

∣∣∣∣
ε=0

, (2.3d)

where the part Vb of the complete kernel absorbs the contributions with a gluon leg (or
a renormalon chain) attached to the composite vertex, while Va corresponds to all other
topologies contributing to the one-loop kernel. The part Va and Vb of the complete kernel
enter in ΠV

i,j in different ways. Here, asCFV (0)
+ is the one-loop ERBL kernel, which describes

the ERBL evolution of the DAs of the longitudinally polarized vector (ρ) and pseudoscalar
(π) mesons (see appendix E). The plus-distribution form of the VV kernels is the general
property for any number of loops — it is the consequence of the vector (axial) current
conservation, its anomalous dimension being γ(0) ∼

∫ 1
0 dx V (x, y)+ = 0. Therefore, the

kernel can be written as

V (x, y)+ = V (x, y)− δ(x− y)
∫ 1

0
dt V (t, y) .

Higher derivatives of Va,b(x, y; ε) and d(y; ε) with respect to ε proliferate in expressions for
higher orders in as [10].

The LO 〈V V 〉 correlator can be written as

ΠV
0,1 = − Nc

2π2d(y)δ(x− y), ΠV
0,0 = − Nc

2π2 ḋ(y)δ(x− y) (2.4)

in terms of the derivatives of the one-loop function d(y; ε).
The NLO 〈V V 〉 correlator (figure 2) obtained in an arbitrary covariant gauge reads

ΠV
1 = Nc

π2 CF

2∑
j=0

Π̃V
1,j(x, y)Lj ; (2.5a)

Π̃V
1,2 = 1

2W
(0)
+ = 1

2V
(0)

+ d, (2.5b)

Π̃V
1,1 =

(
Ẇa + Ẇb −Waḣa −Wbḣb

)
+
− ḢaWa −

1
2P̂

[
V

(0)
+(x) ḋ

]
, (2.5c)

– 5 –
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where d = d(y), ḋ = ḋ(y), and all other quantities are functions of x and y, i.e. V = V (x, y),
Wa = Wa(x, y), etc. The functions Wi = Wi(x, y), i = a, b with dots are the coefficients
of the Taylor expansion for the function Wi(x, y; ε) = Vi(x, y; ε)d(y; ε), i.e. Wi = Vid and
Ẇi = d

dεWi(x, y; ε)
∣∣∣
ε=0

. The quantities Ḣa, ḣa, ḣb are the symmetric functions presented
in appendix B together with the nonlogarithmic term Π̃V

1,0 (B.1), which, as far as we know,
has never been calculated before. The plus distributions for a function f(x, y) are defined as

f(x, y)+ ≡ f(x, y)+(x) = f(x, y)− δ(x− y)
∫ 1

0
dt f(t, y), (2.6a)

f(x, y)+(y) = f(x, y)− δ(x− y)
∫ 1

0
dt f(x, t). (2.6b)

The expressions in eqs. (2.5b) and (2.5c) coincide with the ones obtained in [7]. The 0th
moment ΠV

1,1(x, 0) was evaluated in [7, 11, 12] and a few first two-fold Mellin moments of
the complete correlator ΠV

1(2)(N,M) were computed in [2]. We will come back to that in
section 3.1.1 to verify our results.

Let us mention important features of the coefficient ΠV
n,n+1(x, y), in particular the

leading-log NLO term in (2.5):

1. The leading-log term Π̃V
1,2 ∼W

(0)
+ can be diagonalized by the “standard” Gegenbauer

polynomials {C(3/2)
k (y − ȳ)} of the index 3/2, while the other terms, Π̃V

1,1 and Π̃V
1,0,

cannot be diagonalized in this way.

2. Due to the vector-current conservation, the one-fold 0th moments of the leading-log
terms vanish,

ΠV
1,2(x) ≡ ΠV

1,2(x, 0) =
∫ 1

0
dyΠV

1,2(x, y) = 0. (2.7)

It should be stressed that the identity ΠV
n,n+1(x, 0) = 0 originates from the vector-current

conservation and (x ↔ y) permutation symmetry rather than particular properties of a
specific calculation; therefore, it holds true not only in NLO, but in any higher loop orders
as well.

The zeroth moment of the correlator,

ΠV(x;P 2) = ΠV(x, 0;P 2) =
∫ 1

0
dy ΠV(x, y;P 2), (2.8)

is the source of perturbative contributions to the QCD sum rules for the meson DAs
ϕM with appropriate meson quantum numbers [7]. We will discuss it in more details at
the beginning of section 4 and mention here only that the Borel transformed correlator
ΠV(x;P 2) determines ∆ϕM‖ — perturbative part of the DA ϕM‖

for the leading twist of π
mesons and longitudinally polarized vector mesons such as ρ‖. Indeed, applying the Borel
transform B̂(M2) to ΠV(x;P 2),4 we arrive at the well-known NLO expression [12]

∆ϕ(0+1)
M‖

(x;M2) = B̂(M2)Π
V(A)
0+1 (x, P 2) = Nc

2π2xx̄

{
1 + asCF

[
5− π2

3 + ln2
(
x̄

x

)]}
, (2.9)

4Here and below, B̂(M2) stands for the Borel transform with respect to P 2, P 2 → M2. The definition
and special cases necessary to deal with the correlators of this paper are given in section 4 and appendix D.
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where M2 is the Borel parameter. The radiative content of the π and ρ‖ meson DAs of
twist-2 will be considered further in section 4.1.

2.2 〈T T 〉(x, y) correlator

Let us recall the definition of the tensor-tensor correlator,

(ñp)2 ΠT(x, y; p2) = i

∫
dDη eipη〈0|T̂

[
J†Tµ(η;x)JµT(0; y)

]
|0〉, (2.10)

and the components of the corresponding one-loop ERBL kernels [13], VT = asCFV
(0)

T ,

V
(0)

T = Vb(x, y)+ − δ(y − x), V T
a = −δ(y − x), V T

b = Vb(x, y; 0). (2.11)

As in the case of one-loop vector kernel, V T
b designates contributions from the composite

vertices with a gluon leg, while V T
a correspond to all others. In the tensor case, however,

the part V T
a comes solely from the quark-propagator radiative corrections, which makes it

trivially “diagonal”. We write it explicitly in what follows. The 〈TT 〉 correlator at NLO
can be written in terms of the tensor kernels, the derivative Ẇb introduced in the previous
subsection, and the one-loop functions d and ḋ of eq. (2.3d):

ΠT
0,1 = Nc

π2 d(y)δ(x− y), ΠT
0,0 = Nc

π2

[
ḋ(y) + d(y)

]
δ(x− y); (2.12)

ΠT
1 = −2Nc

π2 CF

2∑
j=0

Π̃T
1,j(x, y)Lj ; (2.13a)

Π̃T
1,2 = 1

2W
(0)
T ≡ 1

2Wb+ −
1
2yȳδ(x− y), (2.13b)

Π̃T
1,1 = Ŝ [θ(z̄ > 0) ln(z̄)] +

(
Ẇb +Wb ln|x− y|

)
+
− 1

2 P̂
[(
Vb ḋ

)
+(x)

]
+ δ(x− y)

(
d− 1

2 ḋ
)
, (2.13c)

where
W

(0)
T = V

(0)
T d = Wb+ − yȳδ(x− y), z = (yx̄)/(xȳ) , (2.13d)

and the variable z is the conformal ratio [5, 14]. The nonlogarithmic part Π̃T
1,0 is presented

in (B.2) of appendix B. All the calculated parts of Π̃T
1 agree with the two-fold 0th moment

Π̃T
1 (0, 0) computed in [2].

After applying the Borel transform to it, the correlator ΠT(x;P 2) ≡ ΠT(x, 0;P 2)
constitutes the perturbative part ∆ϕM⊥

of the twist-2 DA ϕM⊥
describing the transversely

polarized vector mesons such as the ρ⊥ meson [11]:

∆ϕ(0+1)
M⊥

(x;M2) = B̂(M2)ΠT
0+1(x, P 2)

= Nc

2π2xx̄

{
1 + asCF

[
6− π2

3 + ln2
(
x̄

x

)
+ ln(xx̄) + 2LB

]}
. (2.14)

The ∆ϕ(0+1)
M⊥

depends on the logarithm of the Borel parameter, LB = ln
(
M2

µ2 e
−γE

)
, since

the tensor current is not conserved, see Π̃T
1,2 in (2.13b). The above expression for ∆ϕ(0+1)

M⊥

was first derived in [11].
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2.3 〈S S〉(x, y) correlator

The scalar-scalar correlator is defined as

p2ΠS(x, y; p2) = i

∫
dDη eipη〈0|T̂

[
J†S(η;x)JS(0; y)

]
|0〉, (2.15)

and the components of the ERBL one-loop kernel corresponding to the scalar composite
vertex are

V S
a (x, y) = 2

(
Ŝθ(y > x)

y

)
+

+ 3δ(y − x), V S
b (x, y) = 2

[
Ŝ
(
x

y

θ(y > x)
y − x

)]
+
. (2.16)

In contrast to the vector kernel, the total scalar ERBL kernel VS = asCFV
(0)

S ,

V
(0)

S (x, y) = V S
a (x, y) + V S

b (x, y) = 2
(

Ŝθ(y > x)
y − x

)
+

+ 3δ(y − x), (2.17)

is already symmetric by itself, V (0)
S (x, y) = V

(0)
S (y, x). It is diagonalized in the basis of the

Gegenbauer polynomials C(1/2)
n (y − ȳ). The eigenfunctions and corresponding eigenvalues

of V (0)
S are {C(1/2)

n (y − ȳ), γn}, where γn = 3− 4 [ψ(n+ 1)− ψ(1)].
The one-loop scalar-scalar correlator (prior to expanding it in ε) is proportional to the

function
dS(y; ε) = (yȳ)ε, (2.18)

its first Taylor coefficients being

dS ≡ dS(y; 0) = 1, ḋS = d

dε
dS(y; ε)

∣∣∣∣
ε=0

= ln(ȳy), d̈S = d2

dε2dS(y; ε)
∣∣∣∣∣
ε=0

= ln2(ȳy).

(2.19)
The components of the expansion (2.1a) for the correlator ΠS(x, y; p2) can be naturally

expressed using the functions in eqs. (2.16)–(2.19):

ΠS
0,1 = − Nc

8π2dS(y)δ(x− y), ΠS
0,0 = − Nc

8π2 ḋS(y)δ(x− y) , (2.20)

ΠS
1 = Nc

8π2CF

2∑
j=0

Π̃S
1,j(x, y)Lj ; (2.21a)

Π̃S
1,2 = V

(0)
S , (2.21b)

Π̃S
1,1 = 2P̂

{[
Ŝθ(y > x)

y − x

(
ln(y − x) + ln

(
x

y

)
− x

y

)
+ 1

2

]
+(x)

}

+ δ(y − x)
(
3ḋS − 11

)
, (2.21c)

The moments Π̃S
i,j(0, 0) for all the terms in eq. (2.21) coincide with the results in [2]. In

contrast to ΠV and ΠT cases, the correlator ΠS(x;P 2) ≡ ΠS(x, 0;P 2) might be related
to the pion DA of twist 3, ϕp3;π(x), see appendix E and, e.g. [15, 16]. Below, we present
B̂(M2)

[
P 2ΠS

0+1(x;P 2)
]
— a possible source of perturbative contribution ∆ϕp3;π to ϕp3;π:

B̂(M2)
[
−P 2ΠS

0+1(x;P 2)
]

= Nc

8π2M
2
{

1 + asCF
[
5− 3 ln(x̄x)− 6LB

]}
. (2.22)
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This radiative correction at NLO is a new result. The origin of its non-LB piece is the
trivial integral of the term with the Dirac delta function in (2.21c), while the LB part
stems from (2.21b).

The nonlogarithmic part Π̃S
1,0 of the two-loop correlator (2.21) vanishes under the Borel

transform and is given in eq. (B.3) of the appendices.

3 Correlators 〈V V 〉, 〈T T 〉, and 〈S S〉 of order a2
sβ0

Let us focus on the N2LO expansion in eq. (2.1b),

ΠX
2 (x, y;P 2) =

3∑
j=0

ΠX
2,j(x, y) Lj . (3.1)

In order a2
s, the coefficients ΠX

2,3 at L3, the highest power of L in this order, are yielded by
contracting to points all subgraphs of the diagrams involved, and so they are formed by
the one-loop renormalization of the coupling as (i.e. β0) and composite vertex (i.e. V (0)

X ).
Collecting together all subgraph contractions related to the one-loop charge and vertex
renormalization, one obtains P̂

[
β0V

(0)
X (x, y)d(y)

]
. The second kind of renormalization is

generated by the contractions of the composite vertex at the two-loop level: 2 P̂
[
V

(0)
X (x, z)⊗

V
(0)

X (z, y)d(y)
]
. Notice that the former term is proportional to β0, while the latter is not.

The same pattern can be observed in all coefficients ΠX
2,j , which is an evident example of

the β-expansion representation, see e.g. [17]:

ΠX
2,j(x, y) = β0 ΠX

2[β],j(x, y) + (β0)0 ΠX
2[0],j(x, y). (3.2)

In this paper, we calculate ΠX
2[β],j — the β0 parts of the N2LO correlators. These

pieces might be expected to dominate in this order because of the relatively large value
of β0. In the vector case, harbingers of this dominance can be seen in the lowest Mellin
moments of the correlator (see section 4). It should also be noted that to obtain the β0
parts of the three-loop correlators, it suffices to compute only two-loop-like topologies —
the NLO diagrams modified with two-point one-loop quark insertions in gluon lines. Then
the entire β0 part can be restored unambiguously via a replacement nf → −3

2β0.
We start with our results for the 〈V V 〉 correlator that is important for applications

and passes the most comprehensive independent test presented in section 3.1.1 below. Then
we turn to the 〈T T 〉 and 〈S S〉 correlators.

3.1 〈V V 〉(x, y) correlator

Explicit expressions for the β0 piece ΠV
2[β] of the vector-vector correlator at N

2LO are given
by the following formulae:

ΠV
2[β] = − Nc

2π2CF

3∑
j=0

Π̃V
2,j(x, y)Lj ; (3.3a)

Π̃V
2,3 = 1

3W
(0)
+ ; (3.3b)
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Π̃V
2,2 = −5

3W
(0)
+ +

(
Ŝθ(y > x) [(ȳ + x) ln(y − x)− (1− xȳ − yx̄) ln(yx̄)]

)
+

+
(
ln |y − x| W (0)

b

)
+

+ 1
2δ(y − x)Ŝ [x ln(x)] ; (3.3c)

Π̃V
2,1 = 13

9 W
(0)
+ + 2

3Ẇ
(0)
+ + 3

2Ẅ
(0)
+ − 2 Ŝ θ(y > x)

[
(x+ ȳ) ln (xȳ)

(
ln (xȳ) + 5

3

)]

+(1− xȳ − yx̄)
[
−π

2

2 + 1
2 ln2 (xȳ) + 1

2 ln2 (yx̄) + 10
3 ln (xyx̄ȳ)

]

+(1− |x− y|) ln |x− y|
(

ln |x− y| − 10
3

)
−W (0) Ŝ θ(y > x)

(
π2

6 − Li2(z)
)

+1
2 P̂

[(
V̇ (0)ḋ+ 1

2V
(0)d̈+ 5

3V
(0)ḋ+ Vaḋ

)
+(x)

]

+
(

ln2 |y − x|Wb −
10
3 ln |y − x|Wb + 5

3Wb −
7
3Ẇb − 2Ẅb

)
+

+δ(x− y)
(
xx̄ ln(x) ln (x̄)− 55

6 d+ 9
2 ḋ+ 3

2 d̈
)
, (3.3d)

where d̈ = d2

dε2d(y; ε)
∣∣∣
ε=0

.

As it is expected, the leading-log term ΠV
2,3(x, y) is proportional to a plus-distribution

prescribed by the vector-current conservation, which means that ΠV
2,3(x, 0) = 0. In addi-

tion, the leading-log term at this order is diagonalized by the same set of the Gegenbauer
polynomials {C(3/2)

n (y − ȳ)} as at order as.

3.1.1 Mellin moments of 〈V V 〉(x, y) as a check of the correlator

Vetting our calculation of the correlator 〈V V 〉(x, y), we must compare its lowest Mellin mo-
ments with the results of refs. [2, 6]. In doing so, we find the following linear combinations
of the moments to agree with the previous calculations:5

∫ 1

0
dxxn

∫ 1

0
dy (−ȳ)mΠV(x, y; p2) (3.4)

for (n,m) = (0, 0), (1, 0), (2, 0), (1, 1), and (2, 2).
The relation ΠV(0, 0; p2) = 2ΠV(1, 0; p2) confirmed by the explicit calculations of ref. [2]

is an immediate consequence of the symmetry ΠV(x, 0; p2) = ΠV(x̄, 0; p2). As it is seen from
eq. (2.7), the moments ΠV(n, 0) do not contain the highest possible power of L allowed at
a given order of perturbation theory. This is also confirmed in [2]. Finally, it is important
to note that the ΠV

2,2(n, 0) and ζ3 part of ΠV
2,1(n, 0) in the complete calculation in [2] are

proportional to β0 for n = 0, 1, 2. This might hint at the dominance of the β0 contribution
evaluated here, which is discussed in section 4.1 in connection with the meson DAs.

5Note the different definition of the correlator in [2] — it is a correlation function of two V -operators
(not V and V † as in the present paper) which explains −ȳ in eq. (3.4).
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3.2 〈T T 〉(x, y) correlator

The expansion eq. (3.1) for the tensor-tensor correlator reads

ΠT
2[β] = Nc

π2 CF

3∑
j=0

Π̃T
2,j(x, y)Lj ; (3.5a)

Π̃T
2,3 = 1

3W
(0)
T , (3.5b)

Π̃T
2,2 =

(
ln|x− y|Wb −

5
3Wb + Ŝ [θ(z̄ > 0) ln(z̄)]

)
+

+δ(x− y)
(

Ŝ [x ln(x)] + 19
6 d−

1
2 ḋ
)
, (3.5c)

Π̃T
2,1 = Ŝ

{
θ(x > y)

[
2 ln (z̄) ln(x− y)− ln2 (z̄)− 10

3 ln (z̄)− 2yx̄
]}

−W (0)
T Ŝ

[
θ(x > y)

(
π2

6 − Li2(z)
)]

+ 1
2 P̂

[(
V̇bḋ+ 1

2Vbd̈+ 5
3Vbḋ

)
+(x)

]

+
(

ln2 |y − x|Wb −
10
3 ln |y − x|Wb + 28

9 Wb −
5
3Ẇb −

1
2Ẅb

)
+

+δ(x− y)
(
xx̄ ln(x) ln (x̄)− 397

36 d+ 19
6 ḋ−

1
2 d̈
)
, (3.5d)

where all elements of the notation in the above formulae are defined in eqs. (2.3), (2.5),
(2.12), and (3.3).

Check of the moments of 〈T T 〉(x, y). Integrating eqs. (2.12) and (3.5) over x and
y, we can get the twofold zeroth moment ΠT(0, 0) which was also obtained in ref. [2] (see
section 4.3 therein). The moment we calculated coincides with the one in [2]. In addition,
the moment ΠT(1, 0) can be extracted from the results listed in section 4.8 of [2]. It is
precisely one-half less than the two-fold zeroth moment, ΠT(1, 0) = 1

2ΠT(0, 0), which is a
corollary of mirror symmetry of the one-fold zeroth moment ΠT(x, 0) = ΠT(x̄, 0).

3.3 〈S S〉(x, y) correlator

The expansion for the scalar-scalar correlator reads

ΠS
2[β] = − Nc

8π2CF

3∑
j=0

Π̃S
2,j(x, y)Lj ; (3.6a)

Π̃S
2,3 = 1

3V
(0)

S = 2
3

[
Ŝθ(y > x)

y − x

]
+

+ δ(y − x), (3.6b)

Π̃S
2,2 = 1

2

[
1− 1

2

(
ln|x− y|+ 5

3

)
W S
a −

1
2 P̂

{[(
ln|x− y|+ 8

3

)
W S
b

]
+(x)

}

+ δ(x− y)
(
ḋS
2 −

11
3

)]
, (3.6c)
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Π̃S
2,1 = −1

4Ẅ
S
a −

5
6Ẇ

S
a +

(1
2 ln2(|x− y|)− 5

6 ln(|x− y|) + 14
9

)
W S
a

+ P̂
{1

2
˙̃V S
a ḋS + 1

12
(
3d̈S + 10ḋS

)
Ṽ S
a

}
+ P̂

{[ 1
36
(
−9d̈S + 30ḋS + 18 ln2(|y − x|)

−96 ln(|y − x|) + 152
)
W S
b + 1

6
(
3ḋS − 5

)
Ẇ S
b −

1
4Ẅ

S
b

]
+(x)

}

−W (0)
S Ŝ

[
θ(z̄ > 0)

(
π2

6 − Li2(z)
)]

+ 2− 3
2 ln (xx̄yȳ)− 2 Ŝ [θ(z̄ > 0) ln (z̄)]

+δ(x− y)
(19

6 ln (xx̄)− 547
36 −

1
2 Ŝ

[
ln2 (x)

]
+ Ŝ [x ln(x)]

)
. (3.6d)

Here, dS, ḋS, and d̈S were defined by eqs. (2.19) and we have also introduced the generalized
“scalar” kernels Ṽ S in analogy with the definitions in eqs. (2.3) for the vector case

Ṽ S
a (x, y | ε) = 2 Ŝ

[
θ(y > x)

y

(
x

y

)ε]
, Ṽ S

b (x, y | ε) = 2Ŝ
[
θ(y > x)
(y − x)

(
x

y

)1+ε
]

+
, (3.7)

and

W S
a (x, y | ε) = 2 P̂ Ŝ

[
θ(y > x)

y
(xȳ)ε

]
, W S

b (x, y | ε) = 2 Ŝ
[
θ(y > x)
y − x

x

y
(xȳ)ε

]
, (3.8)

W S
(0)(x, y | ε) = W S

a (x, y | ε) +W S
b (x, y | ε), (3.9)

In eqs. (3.6) as throughout this paper, dots over functions without arguments designate
the coefficients of the corresponding Taylor series in ε, e.g.

W S
I (x, y | ε) = W S

I + εẆ S
I + 1

2!ε
2Ẅ S

I + . . . , I = (0), a, b. (3.10)

Note here that Π̃S
2,3(x, y) is diagonalized by the set {C(1/2)

n (ȳ − y)} due to the expected
property Π̃S

2,3(x, y) ∼ V (0)
S (x, y).

Check of the moments of 〈S S〉(x, y). If we evaluate the double zeroth moment
ΠS(0, 0) integrating the correlator ΠS(x, y) over x and y, the result coincides with the
calculation of ref. [2] (see section 4.1 therein).

4 Radiative content of meson DAs within QCD sum rules

In this section, we apply our results for the correlators to the description of exclusive
hard hadron processes in terms of DAs. Technically, these DAs are linked to the moments
ΠX(x, 0;P 2) and ΠX(a, 0;P 2), see the definitions in (1.6). These moments are obtained
from the correlators of two composite vertices, ΠX(x, y;P 2), presented in sections 2 and 3.
The expressions for the moments were given in eqs. (2.9) and (2.14) to two-loop order. Here,
we write down the final results up to order β0a

2
s and focus on the perturbative content of

– 12 –



J
H
E
P
0
2
(
2
0
2
1
)
1
9
7

the DAs to only estimate its effect, while a full-fledged analysis of the DA properties in
QCD SR will be given elsewhere.

Let us recall some elements of the Borel SR approach that is used to determine me-
son DAs. This kind of SR is based on the dispersion relation for the one-fold correlator
ΠX(x, P 2) ≡ ΠX(x, 0;P 2):

ΠX(x, P 2) = 1
π

∫ ∞
thresh

Im
[
ΠX(x, s)

]
s+ P 2 ds + “subtractions”, (4.1)

where ΠX is constructed with a current JX that has a nonvanishing projection on a me-
son state M described by the corresponding DA, see the discussion and definitions in
appendix E. The subtractions in the r.h.s. of the relation above can be polynomials in P 2.
To reinforce the contribution of the lowest-state meson in the r.h.s. and to improve the
convergence in the l.h.s., one usually applies the Borel transform B̂(M2),

B̂(M2)
[
ΠX(x, P 2)

]
= lim

P 2=nM2, n→∞

(−P 2)n

Γ(n)
dn

d(P 2)nΠX(x, P 2), (4.2a)

to both sides of (4.1), which leads to

B̂(M2)
[
ΠX(x, P 2)

]
= 1
π

∫ ∞
threshold

Im
[
ΠX(x, s)

]
exp

(
− s

M2

)
ds

M2 . (4.2b)

The Borel transform “kills” all polynomials in P 2 in the r.h.s. saving only logarithmic terms
Ln, n > 1 in the l.h.s. of (4.1). Under this transform, any powers Ln, n ∈ N turn into
a polynomial in LB = ln

(
M2

µ2 e
−γE

)
, see eq. (D.3) for the general case. To transform the

correlators at N2LO, we need the following special cases:

B̂(M2)L
0 = 0, B̂(M2)L = −1, B̂(M2)L

2 = −2LB, B̂(M2)L
3 = −3

(
L2

B −
π2

6

)
. (4.3)

Finally, it is instructive to note a useful and general property of the moments
ΠX(N, 0;P 2). All these moments (with N being a natural number) correspond to lo-
cal vertices. They do not contain terms proportional to π2 in agreement with Kotikov’s
and Baikov’s conclusions [18, 19]. At the same time, the inverse moment ΠX(−1, 0;P 2)
contains the π2-term because the moment does not correspond to a local operator.

4.1 Radiative content of twist-2 DAs for π and ρL mesons

Here, we start with ΠV correlator that determines the perturbative part of π and ρL meson
DAs. Integrating eq. (3.3) over y, taking its Borel transform, and combining the result with
eq. (2.9), we arrive at

∆ϕ(0+1+2)
M‖(A)

(x;M2) = B̂(M2)ΠV
0+1+2(x;P 2)

= Nc
2π2

{
∆ϕ̃(0)

M‖(A)
+asCF∆ϕ̃(1)

M‖(A)
+a2

sβ0CF∆ϕ̃(2[β])
M‖(A)

+a2
sCF∆ϕ̃(2[0])

M‖(A)

}
, (4.4a)

∆ϕ(0)
M‖(A)

= xx̄, (4.4b)
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     











     













Figure 3. Left panel: NLO (—) and β0N2LO (−−−) contributions to DAs for pseudoscalar or
longitudinally polarized vector mesons, Nc/(2π2) · asCF∆ϕ̃(1)

M‖(A)
and Nc/(2π2) · a2

sβ0CF∆ϕ̃(2[β])
M‖(A)

respectively, see eqs. (4.4). Right panel: the ratios NLO/LO = asCF∆ϕ̃(1)
M‖(A)

/∆ϕ̃(0)
M‖(A)

(—)
and β0N2LO/NLO = asβ0∆ϕ̃(2[β])

M‖(A)
/∆ϕ̃(1)

M‖(A)
(− − −). All curves are for the case of LB = 0,

αs(µ2 = 1GeV2) ≈ 0.494.

∆ϕ̃(1)
M‖(A)

= xx̄

[
5−π

2

3 +ln2
(
x̄

x

)]
, (4.4c)

∆ϕ̃(2[β])
M‖(A)

= Ŝ
[
−xx̄

(
5 Li3(x)−ln x Li2(x)+1

2 ln x ln2 x̄− 5
12 ln2 x̄

x
−1

6 ln3 x−π
2

3 ln x

+5π2

32 −
7
12

)
−x
(

Li2(x)−π
2

6 −
3
4 ln2 x+31

12 ln x−LB ln x
)]

, (4.4d)

which has been already presented in the proceedings [20], while the last term ∆ϕ̃(2[0])
M‖(A)

in (4.4a) is still unknown. The perturbative part ∆ϕM is common for twist-2 DAs of both
π and ρ‖ mesons. As we can see in figure 3, the impact of the contribution (4.4d) of
order a2

sβ0 looks especially significant for intermediate values of x and less important in
the vicinity of endpoints.

Phenomenologically important characteristics of ∆ϕM are its norm and normalized
moments defined as

〈f(x)〉M ≡
[∫ 1

0
dx f(x)∆ϕM (x)

]/[∫ 1

0
dx∆ϕM (x)

]
, (4.5)

N =
∫ 1

0
dx∆ϕM (x) = Nc

12π2

{
1+asCF 3+a2

sCF

[
CA−

3
2CF+β03

(11
2 −4ζ3−LB

)]}
.

(4.6)
In particular, we are interested in the inverse and second ξ moment, ξ = 2x− 1:

〈x−1〉M‖ = 1
N0

Nc

4π2

[
1 + asCF 5 + a2

sβ0CF

(
7
18 −

5
3ζ3 + 31

108π
2 − π2

9 LB

)]

≈ 1
N0

Nc

4π2

[
1 + asCF 5 + a2

sβ0CF (1.2184− 1.0966LB)
]
, (4.7)

〈ξ2〉M‖ = 1
N

Nc

60π2

{
1 + asCF 5 + a2

sCF

[ 1
72CA + 353

72 CF + β0

(1327
72 − 12ζ3 −

10
3 LB

)]}
,

(4.8)
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where N0 is the norm (4.6) with the (β0)0 piece being omitted in order a2
s since only the β0

part of the inverse moment has been calculated up to date. The norm (4.6) is essentially
the Adler D-function (up to a factor).

In eqs. (4.6) and (4.8), we have extracted the (β0)0 pieces from the correlators in ref. [2].
It is worth stressing again that all other terms of the norm and ξ2 moment calculated by
us coincide with those that can be extracted from ref. [2].

The ∆ϕ(2[β])
M‖(A)

in (4.4d) makes a minor contribution to the inverse moment with respect
to lower orders — compare the third term and the second one in eq. (4.7), their ratio is 0.085
for LB = 0 and αs(µ2 = 1GeV2) ≈ 0.494. This β0 part, however, is known to dominate
the norm (4.6) numerically in order a2

s.6 It is instructive to verify numerical validity of
large-β0 approximation for the 〈ξ2〉M‖ moment comparing it with the exact expression that
can be obtained from the complete calculations in [2],

〈ξ2〉M‖ = 1
N

Nc

60π2

{
1 + asCF 5 + a2

sCF

[
6.5787 + β0

(
4.0059− 10

3 LB

)]}
. (4.9)

It is easy to see that the β0 part is dominant in this moment also (at LB ≈ 0). In addi-
tion, we can estimate the perturbative QCD contribution to the Gegenbauer moment a2,
although one should recognize that a significant contribution to a2 could come from nonper-
turbative vacuum-condensate interactions that can vary depending on quantum numbers
of mesons. The perturbative contribution a

‖r
2 (r stands for “radiative”) is proportional

exactly to as(µ2):

a
‖r
2 = 7

12
(
5〈ξ2〉M‖ − 1

)
= asCF

7
6

1 + as [2.79 + β0 (0.97− 0.1(6)LB)]
1 + asCF 3 + a2

sCF [1 + β03 (0.69− LB)]

∣∣∣∣
LB=0

≈ 0.069 (0.074), (4.10)

where we have set µ2 = 1GeV2, αs(µ2) = 0.494, and LB = 0 in the r.h.s.; the first value
is obtained with the (underscored) non-β0 parts neglected at N2LO, while the second (un-
derscored) one is exact with accounting for all terms. The condition LB = 0 is compatible
with the “stability window” of the corresponding QCD SR for the Borel parameter M2.

It is useful to compare the estimate (4.10) with

1. QCD SR results: a‖ρ2 = 0.047(58) < a
‖r
2 = 0.069 (0.074) < aπ2 = 0.187(60) [22, 23];

2. lattice results: a‖ρ2 = 0.184(18)(33), aπ2 = 0.140(24) > a
‖r
2 = 0.069 (0.074) at µ2 =

1GeV2 (which are evolved from the values at µ2 = 4GeV2 in [24, 25]).

As we can see, the radiative contribution a‖r2 is of the same order of magnitude as the
complete a2, so that the contribution a

‖r
2 is comparable numerically with the nonpertur-

bative one and, therefore, is important to take it into account.

6This observation was a reason to invent the BLM optimization [21].
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4.2 Radiative content of ρT -meson twist-2 DAs

From the tensor correlator (3.5) we get a next-order correction to the NLO amplitude (2.14):

∆ϕ(0+1+2)
M⊥

(x;M2) = B̂(M2)ΠT
0+1+2(x;P 2)

= −Nc
π2

{
∆ϕ̃(0)

M⊥
+asCF∆ϕ̃(1)

M⊥
+a2

sβ0CF∆ϕ̃(2[β])
M⊥

+a2
sCF∆ϕ̃(2[0])

M⊥

}
, (4.11a)

∆ϕ(0)
M⊥

= xx̄, (4.11b)

∆ϕ̃(1)
M⊥

= xx̄

[
6−π

2

3 +ln2
(
x̄

x

)
+ln(xx̄)+2LB

]
, (4.11c)

∆ϕ̃(2[β])
M⊥

= 1
6 Ŝ
{

3xx̄
(
π2

6 −L
2
B

)
+x [6 (2−x̄) ln (x)+19x̄]LB−x

[
12Li2(x)−2π2

+16 ln(x)−9 ln2(x)
]
+xx̄

[
−30Li3(x)+6Li2(x) ln(x)+ln3(x)−5 ln(x) ln(x̄)

+ ln2(x) [2−3 ln(x̄)]+
(
2π2+19

)
ln(x)−5π2

6 −
193
12

]}
, (4.11d)

In comparison with the LO and NLO terms, the β0 part of the N2LO contribution is
mainly of the opposite sign and comparable in magnitude with NLO in the middle region
of x, see figure 4.

The norm, the inverse and ξ2 moments of ∆ϕ(0+1+2)
M⊥

read

N =
∫ 1

0
dx∆ϕM⊥(x) = − Nc

6π2

{
1 + asCF

(7
3 + 2LB

)

+ a2
sCF

[
CA

(
14ζ3 −

407
18 + 38

3 LB

)
+ CF

(
1075
36 − π2

3 − 4ζ3 + 2L2
B −

43
3 LB

)
(4.12a)

+ β0

(
π2

6 − 12ζ3 + 383
36 + 2LB − L2

B

)]}
, (4.12b)

〈ξ2〉M⊥ = − 1
N0

Nc

30π2

[
1 + asCF

(
2LB + 59

15

)

+a2
sβ0CF

(
26
15LB − L2

B − 12ζ3 + π2

6 + 1207
100

)]
, (4.12c)

〈x−1〉M⊥ = − 1
N0

Nc

2π2

[
1 + asCF (4 + 2LB)

+a2
sβ0CF

(
2ζ3 + 19π2

18 − 493
36 + 25− 2π2

3 LB − L2
B

)]
, (4.12d)

where N0 is the norm (4.12b) with the (β0)0 piece (4.12a) omitted, the latter one can be
obtained using the results of ref. [2]. The β0 part of the norm (4.12b) is larger in magnitude
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and has the opposite sign in comparison with the sum of non-β0 terms in (4.12a) at LB = 0.
So the β0 approximation works satisfactorily here, although it is not as reliable in this case
as in the vector one.

A significant convexity in the x-behavior of the β0 part occurs in the middle values of
x. The negative NNLO contribution to 〈x−1〉M⊥ in eq. (4.12d) is not strong in comparison
with the NLO one. The radiative contribution a⊥r2 to a⊥ρ2 can be estimated in analogy to
eq. (4.10),

a⊥r2 ≈ asCF
14
15

1 + β0as (0.89− 0.1(6)LB)
1 + asCF (2.(3) + 2LB)− a2

sβ0CF
(
2.14− 2LB + L2

B
) ∣∣∣∣
LB=0

≈ 0.05949 .

(4.13)

The estimate in the r.h.s. of (4.13) is obtained for LB = 0, µ2 = 1GeV2, αs(µ2) = 0.494.
At these conditions, a⊥r2 = 0.059 < a⊥ρ2 = 0.130 from the lattice results [25] (originally,
a⊥ρ2 = 0.101(22) at µ2 = 4GeV2). Again, the radiative contribution a⊥r2 is large and as
important as for the vector (axial) case.

4.3 Radiative content of π-meson twist-3 DA

Having further applications to QCD SRs in mind, we have obtained the one-fold scalar
correlator ΠS

0+1+2(x, 0;P 2) by integrating eqs. (2.20), (2.21), and (3.6). This correlator is
given explicitly in appendix C, eq. (C.11). Below, we present the Borel transform of this
correlator order by order:

∆ϕp(0+1+2)
3;π (x;M2) = B̂(M2)

[
−P 2ΠS

0+1+2(x, 0;P 2)
]

= Nc

8π2M
2
{

1+asCF∆ϕ̃pπ,1+a2
s·
(
β0CF∆ϕ̃pπ,2[β]+CF∆ϕ̃pπ,2[0]

)}
(4.14a)

∆ϕ̃pπ,1 = 5−3 ln(x̄x)−6LB, (4.14b)

∆ϕ̃pπ,2[β] = 3L2
B+[ln(xx̄)−14]LB−Ŝ

[
5 Li3(x)−Li2(x) ln(x)+x ln(x)

]
+1

6 ln3(xx̄)

+4
3 ln2

(
x

x̄

)
−ln(x) ln(x̄) [ln(xx̄)+1]+

(
π2

3 −
25
6

)
ln(xx̄)−10

9 π
2+239

12 .

(4.14c)

5 Conclusion

Here, we have calculated the massless correlators ΠV,T,S(x, y; p2) of two vector, tensor, and
scalar composite vertices with the Bjorken fractions x and y at orders αs and α2

sβ0 of QCD.
These correlators are universal objects appearing as a result of the collinear factorization
procedure in hard processes. We have discussed in detail the structure of the correlators and
its elements and their relation to generalized ERBL evolution kernels. Moreover, we have
verified our results by comparing them with the known particular cases for Mellin moments.
These results are used to estimate the impact of the radiative corrections following from∫ 1

0 ΠX(x, y; p2)dy on distribution amplitudes of different light mesons within QCD sum-rule
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     

-

-

-







     

-







Figure 4. Left panel: NLO (—) and β0N2LO (− − −) contributions to DAs for transver-
sally polarized vector mesons, −Nc/π2 · asCF∆ϕ̃(1)

M⊥
and −Nc/π2 · a2

sβ0CF∆ϕ̃(2[β])
M⊥

respectively,
see eqs. (4.11). Right panel: the ratios NLO/LO = asCF∆ϕ̃(1)

M⊥
/∆ϕ̃(0)

M⊥
(—) and β0N2LO/NLO

= asβ0∆ϕ̃(2[β])
M⊥

/∆ϕ̃(1)
M⊥

(−−−). All curves are for the case of LB = 0, αs(µ2 = 1GeV2) ≈ 0.494.

approach. For all cases, these radiative corrections are significant and should be taken into
account in DA calculations.
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A Feynman rules for composite vertices

The Feynman rules for composite vertices with K gluon partons can be written as follows
(all parton momenta are incoming with respect to the vertex):

k1

kK

k0

−kK+1

µ1, a1

µK , aK

p

x
= gKΓν̄X

(
K∏
i=1

ñµi

)
σa1...aK
K (x;x0, x1, . . . , xK).

Here, Γν̄X, X = S, P, V, A, T is the tensor-matrix structure defined by eq. (1.2); ai,
i = 0, . . .K+ 1 are SU(3) gluon indices; ñµ is a light-like vector normalized so that ñp = 1;
xi = ñki, i = 0, . . .K + 1 are longitudinal parton momentum fractions,

∑
xi = 1; and

σa1...aK
K (x;x0, x1, . . . , xK) is a linear combination of the Dirac delta functions. Up to order
a2
sβ0, we need composite vertices with no more than one gluon leg (K = 0, 1). The
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corresponding expressions are given explicitly below, while higher-order vertices (K > 2)
can be obtained by recursion:

σ0(x;x0) = δ (x− x0) , (A.1)

σa1
1 (x;x0, x1) = ta1

1
x1

[δ (x− x0 − x1)− δ (x− x0)] , (A.2)

σa1...aK
K (x;x0, x1, . . . , xK) = Ŝ1,...,K

taK · · · ta2

K−1∑
i=0

(−)iσa1
1 (x;x0...K−i−1, xK−i...K)

×

K−i−1∏
j=1

1
xj...K−i−1

 K−1∏
j=K−i

1
xK−i...j

 ,
(A.3)

where ta = λa/2, xi1...ik = xi1 + · · · + xik , and Ŝi1,...in designates total symmetrization
of the indices i1, . . . in of the Gell-Mann matrices and the fractions xi, e.g. Ŝ1,2f(1, 2) =
f(1, 2) + f(2, 1).

To simplify practical calculations involving the vertices given above, it makes sense to
get rid of the denominators linear in parton momenta by introducing auxiliary integrations
with the help of the Dirac deltas [10], e.g.

σa1
1 (x;x0, x1) = ta1

∫ 1

0

∫ 1

0
dy1 dy2 Θ(y1 + y2 < 1)ρ1(x; y1, y2)δ (y1 − x0) δ (ȳ2 − x0 − x1) ,

ρ1(x; y1, y2) = 1
ȳ2 − y1

[δ (x− ȳ2)− δ (x− y1)] ,

where Θ(R) is equal to 1, where the relations R are satisfied, and 0 elsewhere.

B Two-loop nonlogarithmic parts of the (x, y)-correlators

The two-loop nonlogarithmic parts of the correlators read

Π̃V
1,0 = −ẆaḢa + 1

2WaḦa +
∑

I=a, b

[
WI

(
1
2 ḧI + π2

3

)
+ 1

2ẄI − ẆIḣI

]
+

− 1
2P̂

[(
V(0)

)
+(x)

d̈

]
, (B.1)

Π̃T
1,0 = Ŝ

{
θ(x > y)

[
1
2 ln (z̄) ln(xx̄yȳ) + 1

4 ln2 (z̄) + 1
2 ln (z̄) + yx̄+ π2

12

]}

− 1
2 (yx̄+ xȳ) Ŝ

[
θ(x > y)
x− y

(
π2

6 − Li2(z)
)]

+
[
Wb

(
1
2 ḧb + π2

3

)
+ 1

2Ẅb − Ẇbḣb − 2Ẇb + 2Wbḣb

]
+
− P̂

[
(Vb)+(x)

(1
2 d̈− ḋ

)]

− δ(x− y)
[
2d− 5

4 ḋ+ 1
8 d̈−

1
4 ln(x) ln(x̄)d

]
, (B.2)
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Π̃S
1,0 = P̂


(

Ŝθ(y > x)
y − x

[
2− ln (xȳ(y − x)) + 1

2 ln2 (xȳ(y − x)) + π2

6 − ln2 (yȳ)
])

+(x)


− P̂

{(
Ŝθ(y > x)

y
[2− ln (xȳ(y − x))]

)
+(x)

}
− Ŝθ(y > x) ln (xȳ(y − x)) + 1

+ 2 ln (xx̄yȳ)− 2Ŝ
{
θ(x > y)
x− y

[Li2(1)− Li2(z)]
}

+ δ(x− y)Ŝ
{3

4 ln2(x) + x

2 ln(x)− 10 ln(x) + 25
4

}
. (B.3)

The functions Ha and hI, I = a, b in eq. (B.1) break the factorization of the two-
loop correlator to one-loop subgraphs and are given explicitly by the following expressions,
where z = (yx̄)/(xȳ):

ha = ha(x, y|ε) = ha(y, x|ε)

= Ŝ Θ(z̄ > 0)
4

{
c−2 (ε)

(x− y)ε
z̄

z

[ 1
x− y

− 2
]

+ c3(ε)
(xȳ)ε

[
2 + 2

z
− 1
x̄y

]}
, (B.4)

hb = hb(x, y|ε) = hb(y, x|ε) = sin (πε)
πε

1
|x− y|ε

, (B.5)

Ha = Ha(x, y|ε) = Ha(y, x|ε) = |x− y|
−ε

4

[
ga1(z|ε)
|x− y|

+ ga2(z|ε)
]
, (B.6)

and

ga1(z|ε) = Ŝ Θ(z̄ > 0) z̄
z

[
c+

2 (ε)− c3(ε)z̄ε + 21 + z

z̄

(
z

z̄

)ε
× [Iz̄ (1 + ε,−ε)− Iz̄ (1 + 2ε,−ε)]

]
, (B.7)

ga2(z|ε) = Ŝ 2Θ(z̄ > 0)
[
−εc3(ε)1 + z

z
z̄ε − (1− ε)

(
z̄

z

)1−ε

× [Iz̄ (1 + ε,−ε)− Iz̄ (1 + 2ε,−ε)]
]
. (B.8)

Here,

c−2 (−ε) = c+
2 (ε) = 1 + ε

Γ(1 + ε)Γ(1− ε) , c3(ε) = Γ(1 + ε)
Γ(1 + 2ε)Γ(1− ε) , (B.9)

Iz̄ (a, b) = Bz̄(a, b)
B(a, b) , (B.10)

and Bz̄(a, b) is the incomplete beta function. The corresponding Taylor series read

hI(x, y|ε) = 1 + εḣI(x, y) + 1
2ε

2ḧI(x, y) + . . . , (B.11)

Ha(x, y|ε) = Ha(x, y) + εḢa(x, y) + 1
2ε

2Ḧa(x, y) + . . . , (B.12)
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Ha(x, y) = 0, (B.13)

Ḣa(x, y) = ŜΘ(y > x)
2ȳx

{[
1 + ln(x̄)− ln

(
1− x

y

)]
− ȳx− yx̄

}
, (B.14)

Ḧa(x, y) = Ŝ
[

Θ(x > y)
z

({
z̄[ln(z̄)− 1]

2(x− y) + 1 + z

}
ln(x− y)

− z̄

4(x− y) ln2(z̄)− (1 + z) ln(z̄)− z̄ [Li2(z)− Li2(1)]

+
{
π2

12 z̄ + (1 + z) [Li2(z)− Li2(1)]
}

1
x− y

)]
. (B.15)

C (x, 0)-moments up to order a2
sβ0

Here, we write down the one-fold correlators as the following expansion:

ΠX(x;P 2) = FX
Nc

π2

{
Π̃X

0 + asCF Π̃X
1 + a2

s ·
(
β0CF Π̃X

2[β] + CF Π̃X
2[0]

)
+O

(
a3
s

)}
, (C.1)

Π̃X
i[a] = Π̃X

i[a](x, P
2) =

i+1∑
k=0

Π̃X
i[a],k(x)Lk, (C.2)

where FV = 1
2 , FT = 1, FS = 1

8 . The coefficients of the expansion are listed below:

Π̃V
0,0 = −xx̄ ln(xx̄), Π̃V

0,1 = −xx̄, (C.3)

Π̃V
1,0 = xx̄

{
2 Ŝ

[
Li3(x)− Li2(x) ln(x)− 1

3 ln3(x)
]

+
(
π2

3 − 5
)

ln(xx̄) + 9− 16ζ3

}

+ 1
4 Ŝ

[
x ln2(x)

]
, (C.4a)

Π̃V
1,1 = xx̄

[
π2

3 − 5− ln2
(
x̄

x

)]
, (C.4b)

Π̃V
1,2 = 0, (C.4c)

Π̃V
2[β],1 = xx̄

{
Ŝ
[
5 Li3(x)− Li2(x) ln(x)

]
+ 1

12 ln3(xx̄)− 1
4 ln2

(
x̄

x

)
ln(xx̄)− 5

6 ln2
(
x̄

x

)

− π2

3 ln(xx̄) + 5
18π

2 − 7
6

}
+ Ŝ

{
x

[
Li2(x)− 3

4 ln2(x) + 31
12 ln(x)

]}
− π2

6 ,

(C.5a)

Π̃V
2[β],2 = −1

2 Ŝ [x ln(x)] , (C.5b)

Π̃V
2[β],3 = 0; (C.5c)

Π̃T
0,0 = xx̄ [1 + ln(xx̄)] , Π̃T

0,1 = xx̄, (C.6)
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Π̃T
1,0 = xx̄

{
2 Ŝ
[
−Li3(x) + ln(x) Li2(x)

]
+ 1

6 ln3(xx̄) + 1
2 ln2

(
x̄

x

)
ln(xx̄) + 1

8 ln2(xx̄)

+ 9
8 ln2

(
x̄

x

)
+
(

6− π2

3

)
ln(xx̄) + 16ζ3 −

π2

3 − 8
}

− Ŝ
[
x ln(x) + 1

2x ln2(x)
]
, (C.7a)

Π̃T
1,1 = xx̄

[
6− π2

3 + ln2
(
x̄

x

)
+ ln(xx̄)

]
, (C.7b)

Π̃T
1,2 = xx̄, (C.7c)

Π̃T
2[β],1 = xx̄

{
Ŝ
[
−5 Li3(x) + Li2(x) ln(x)

]
− 1

12 ln3(xx̄) + 1
4 ln2

(
x̄

x

)
ln(xx̄) + 7

12 ln2
(
x̄

x

)

− 1
4 ln2(xx̄) + 1

3

(19
3 + π2

)
ln(xx̄)− 5

18π
2 − 193

36

}

+ Ŝ
{
x

[
−2 Li2(x) + 3

2 ln2(x)− 8
3 ln(x)

]}
+ π2

3 , (C.8a)

Π̃T
2[β],2 = 1

2xx̄
[19

3 − ln(xx̄)
]

+ Ŝ
[
x ln(x)

]
, (C.8b)

Π̃T
2[β],3 = −1

3xx̄; (C.8c)

Π̃S
0,0 = − ln(xx̄), Π̃S

0,1 = −1, (C.9)

Π̃S
1,0 = Ŝ

[
2 Li3(x)− 2 Li2(x) ln(x)− 1

2x ln(x)
]
− 2

3 ln3(xx̄)− 3
4 ln2(xx̄)

+ ln(xx̄)
(

2 ln(x) ln(x̄)− 10 + π2

3

)
− 1

2 ln(x) ln(x̄)− 16ζ3 −
π2

3 + 39
2 , (C.10a)

Π̃S
1,1 = ln(xx̄)− ln2 x

x̄
+ π2

3 − 15, (C.10b)

Π̃S
1,2 = 3, (C.10c)

Π̃S
2[β],1 = Ŝ

[
5 Li3(x)− Li2(x) ln(x) + x ln(x)

]
− 1

6 ln3(xx̄)− 4
3 ln2(xx̄)

+ ln(xx̄)
(

ln(x) ln(x̄) + 31
6 −

π2

3

)
+ 19

3 ln(x) ln(x̄) + 11
18π

2 − 479
12 , (C.11a)

Π̃S
2[β],2 = 10− 1

2 ln(xx̄), (C.11b)

Π̃S
2[β],3 = −1. (C.11c)

The expansions above as well as rather cumbersome three-loop nonlogarithmic parts
Π̃X

2[β],0 of the moments are provided in an .m file appended to the arXiv version of this
paper.
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D Borel transform

The Borel transform with a parameter µ is defined as

B̂(µ) [f(t)] = lim
t=nµ, n→∞

(−t)n

Γ(n)
dn

dtn
f(t). (D.1)

In this paper, we used the following special cases:

B̂(µ)
[
e−at

]
= δ(1− µa), a > 0, B̂(µ)

[
t−a
]

= µ−a

Γ(a) , a > 0, (D.2)

B̂(µ) [lnm(t)] = m(−)m dm−1

dεm−1

[
e−εl

Γ(1 + ε)

] ∣∣∣∣∣
ε=0

= −m
[
lm−1
B −

(
m− 1

2

)
ζ2l

m−3
B + . . .

]
,

(D.3)

where l = ln (µ) and lB = ln(µe−γE). For the case of scalar-scalar correlator, one has to
Borel transform the terms proportional to P 2 ln

(
P 2/µ2)k, which can be done with the help

of eq. (D.3) and the relation below,

B̂(µ) [p lnn(p)] = −µ
{

B̂(µ)[lnn(p)] + nB̂(µ)[lnn−1(p)]
}
. (D.4)

In particular,

B̂(µ) [p ln(p)] = µ, B̂(µ)
[
p ln2(p)

]
= 2µ (lB + 1) , (D.5a)

B̂(µ)
[
p ln3(p)

]
= 3µ

(
l2B + 2lB −

π2

6

)
. (D.5b)

E Distribution amplitudes of twist 2 and 3 for π and ρ mesons

Distribution amplitudes (DA) of hadrons appear as a result of applying factorization the-
orems to hard exclusive processes with hadrons, they describe the parton degrees of free-
dom in the soft hadron part of the factorized amplitudes. The DAs parameterize, in
the collinear direction, the matrix elements of the gauge invariant nonlocal operators sand-
wiched between the vacuum and the hadron state. The DAs are ordered by their increasing
twist. Indeed, the two particle DAs presented below describe the partition of longitudinal-
momentum fractions between the valence quark, x, and antiquark, 1− x. The twist-2 DA
ϕπ(x, µ2) for the pion and ϕL

ρ (x, µ2) for the longitudinal ρ meson, are defined as

〈0|d̄(0)γνγ5 [0, z]u(z)|π+(p)〉
∣∣∣
z2=0

= ifπpν

∫ 1

0
dx e−ix(z·p) ϕπ(x, µ2),

∫ 1

0
dxϕπ(x, µ2) = 1;

(E.1)

〈0|d̄(0)γν [0, z]u(z)|ρ(p, λ)〉
∣∣∣
z2=0

= fρpν

∫ 1

0
dx e−ix(z·p) ϕL

ρ (x, µ2),
∫ 1

0
dxϕL

ρ (x, µ2) = 1,

(E.2)
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where pν and µ2 are the meson momentum and the factorization scale (µ2 = µ2
F). The

path-ordered gauge link [0, z] with the integration along the straight line on the light cone is

[0, z] = P exp
(
−ig

∫ z

0
Aν(t) dtν

)
. (E.3)

On the other hand, the transverse ρ-meson DA, ϕT
ρ (x, µ2), is given by

〈0|d̄(0)σµν [0, z]u(z)|ρ(p, λ)〉
∣∣∣
z2=0

= ifT
ρ (ε(λ)

µ pν − ε(λ)
ν pµ)

∫ 1

0
dx e−ix(z·p)ϕT

ρ (x, µ2), (E.4)

where ε(λ)
µ is the polarization vector of the ρ meson, λ — its helicity.

Below we neglect the contributions of twist-3 three-particle DA, see [15, 16] and
eqs. (20)–(21) in [26]:

〈0|q̄(0)iγ5 [0, z]q(z)|π(p)〉|z2=0 = fπm
2
π

(md +mu)

∫ 1

0
dxe−ipzxϕp3;π(x, µ2), (E.5)

∫ 1

0
ϕp3;π(x, µ2)dx = 1, ϕp, as3;π (x) = 1, (E.6)

〈0|q̄(0)iσµαzαγ5 [0, z]q(z)|π(p)〉|z2=0 = − i6(pz)zµ
fπm

2
π

(md +mu)

∫ 1

0
dxe−ipzxϕσ3;π(x, µ2),

(E.7)∫ 1

0
ϕσ3;π(x, µ2)dx = 1, ϕσ, as3;π (x) = 6xx̄ . (E.8)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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