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Abstract In this paper, we explore the quantum proper-
ties of three-flavor neutrino propagating in a Schwarzschild
metric. It is found that the different strength of gravita-
tional effects are obtained by adjusting the magnitude of
GM arising in the oscillation phase. Using the weak field
approximations, we show that the gravitational effects can
make the entanglement oscillates over a large rage when
GM = 5.1 × 108 Km and GM = 7 × 107 Km, respectively,
Moreover, for GM = 4.8×108 Km and GM = 9.3×107 Km,
the suppression of the entanglement can be observed due
to the gravitational effects. Meanwhile, in this case, the
gravitational effects also make the distribution of entangle-
ment tighter through investing the entanglement complete
monogamy relation. Furthermore, we examine the gravita-
tional effects on the violation of the Svetlichny inequality
to study the nonlocality of the system. It is shown that when
GM = 6×108 Km and GM = 7×107 Km, the gravitational
effects make the Svetlichny parameters always greater than
4, implying that the genuine tripartite nonlocality of the sys-
tem is always present. However, the gravitational effects also
restrain the violation of the Svetlichny to make the regions of
the absence of nonlocality increase. The gravitational effects
on the monogamy property of nonlocality lies in the change
of the effective bound of the maximum bipartite nonlocality
of the neutrinos system. Therefore, our investigations may
be helpful to understanding of quantumness of the neutrinos
system in curved space-time.

a e-mail: songxk@ahu.edu.cn (corresponding author)
b e-mail: dwang@ahu.edu.cn

1 Introduction

The unification of quantum mechanics with gravitation is
one of the most challenging problems in theoretical physics.
One of the main causes is the absence of experimental evi-
dence of quantum features of gravitation. Only a few exper-
iments have been used to detect quantum mechanics in a
classical gravitational field. Collela et al. [1] first proposed
an experiment in which gravity-induced quantum phase shift
of neutrons is obtained to show the neutrons follow quan-
tum mechanics in a gravitational field. Since then, Stodol-
sky [2] further studied the quantum mechanics in a gravi-
tational, obtaining the quantum mechanics phase concerned
with the propagating of a free particle in an external gravi-
tational field using semiclassical approximation. Except for
the interferometry of neutrons and photons, the other subject
characterizing the coupling effect of gravitational effects and
quantum mechanics is neutrino oscillations which is a well
known phenomenon and establish the nonzero mass of neutri-
nos. Today it is generally accepted that neutrinos is weakly
interacting particles with the ability to penetrate into ordi-
nary matter with minimum interactions, and that they take
the variation among three flavors ve, vμ, vτ during propaga-
tion [3–7]. These properties render neutrinos most charming
particles of the stand model and make them special probes
for the applications of quantum scales.

In multipartite quantum system, one of the most impor-
tant properties in studying multipartite entanglement is that
entanglement is monogamous, which means that quantum
entanglement in general cannot be shared by different parties.
This limited shareability of entanglement was first quantified
by Coffman et al. [8], using a three-qubit monogamy relation
for the squared concurrence, C2

A|BC ≥ C2
AB + C2

AC , gener-
ally known as CKW inequality. Since then, several similar
monogamy relations of other quantum entanglement mea-
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sures have been established [9–15]. Recently, Guo et al.
[16] proposed a complete monogamy relation which adds
the global entanglement in ABC and the bipartite entangle-
ment in part BC that the original CKW inequality is missed.
On the other hand, Bell nonlocality [17] as a property of
quantum correlations have been studied by various avatars of
Bell inequality in multipartite system, such as Mermin and
Svetlichny inequalities. Such manifestation of Bell inequality
plays an important role, for example, when deeling with the
three-flavor neutrino oscillations. Similar to entanglement,
the nonlocality cannot be arbitrarily shared among subsys-
tems, which means that nonlocality is also monogamous.
The notion of monogamy of nonlocality has motivated some
theoretical research to explore how effectively bipartite non-
locality is shared in multipartite system [18–23].

One of the subjects in neutrino physics is investing quan-
tum properties of mixed flavor state, which contribute to
explore the possibility of utilizing neutrino as a resource
in quantum information processing. In this line, harness-
ing the tools of quantum resource theory to explore the
quantum nature of neutrino oscillations in terms of oscil-
lation probabilities has been analyzed widely [24–41]. The
effects of gravitational field on neutrino oscillation have been
studied through reckoning the transformation of quantum-
mechanical phase for neutrino propagation in curved space-
time [42–44]. On the other hand, studying the effect of gravity
on the phase shift of neutrino oscillation is also a fascinating
topic [45–52]. Furthermore, one can investigate the gravita-
tional effect on the quantumness of neutrino oscillation. In
this context, Ettefaghi et al. [53] have studied the gravitational
effects on quantum coherence in neutrino oscillation analyz-
ing from the perspectives of qualitative (through investing
the violation of Leggett–Garg inequality) and quantitative
(by calculating l1-norm coherence). In that work, they find
that the gravitational effects change the ranges of time evolu-
tion of the violation of Leggett–Garg inequality but dose not
alter the maximum amount of the quantum coherence, pro-
viding the signs of a nontrivial role of gravitational effects on
quantum correlations in the context of neutrino oscillations.
Besides, it is worth to explore gravitation effects on quan-
tumness of neutrino oscillation from other types of quantum
correlation measures.

Although the gravity induced neutrino oscillations has
invited many investigations conducted from the differ-
ent aspects of neutrino oscillations, there have been few
researches concerning the gravity effect on the quantum
nature of neutrino oscillation, which will be helpful to study
the performances of the quantum resources in the curved
space-time. This promoted us to analyze how various quan-
tum correlations measures to be reassessed in the neutrino
system via gravitational effects. In this paper, we focus on
the gravitational effects on spatial correlations exhibited by
the neutrino-system employing entanglement and nonlocal-

ity measures and their distributions in three-flavor neutrino
oscillations in a Schwarzschild background via the plane
wave approach. Here, by adjusting the gravity parameter aris-
ing in the oscillation phase to control different gravitational
strength, we show that the value of entanglement and nonlo-
calty correlations shows different behaviors in the presence
of gravitational effects. For example, in the case of the neu-
trinos propagating radially outwards the gravitational source,
when GM = 5.1 × 108 Km, the entanglement can oscillate
over a wide range while there exist a decrease in its maxi-
mal value in comparison to that in the flat space-time when
GM = 4.8 × 108 Km. Moreover, when GM = 6 × 108 Km,
the Svetlichny parameters is always greater than 4 while the
time regions of the Svetlichny parameters greater than 4 are
decrease for GM = 4.8 × 108 Km. The results show that the
gravitational effects can facilitate and suppress the entangle-
ment and nonlocality rather than just generate a phase shift
in correlation measures. This work provides an insight into
the better understanding of the role of gravitation effects in
the study of quantumness of neutrino oscillations.

The plan of this paper is organized as follows: in Sect. 2 we
give a brief description of the model of three-flavors neutrino
oscillation in flat and curved space-time. In Sect. 3 we will
study properties of tripartite quantum correlations in radial
propagation of neutrinos in a Schwarzschild metric, where
we use the tripartite entanglement of formation (EOF) and the
complete monogamy relation to investigate the entanglement
property of the system, and exploit the Svetlichny inequality
and nonlocality monogamy to study the nonlocality property
of the system. Finally in Sect. 4, we will discuss our result
and make the conclusion.

2 Three-flavor neutrino oscillations in flat and curved
space-time

In this section, we will briefly introduction the three-neutrino
mixing framework considered in flat and curved space time.
The flavor state |να〉 (α = e, μ, τ) of a neutrino emitted via

weak interaction at a space-time point A(tA,
→
x A) is obtained

from a coherent superposition of mass eigenstates, |νk〉 (k =
1, 2, 3),

|vα〉 =
∑

k

U∗
αk |vk〉 , (1)

whereU is the unitary PMNS (Pontecorvo-Maki-Nakagawa-
Sakata) mixing matrix characterized by three mixing angles
(θ12, θ23, θ13) and a charge conjugation and parity (CP) vio-
lating phrase δcp and in case of the three flavors it can be
shown as
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U =
⎛

⎝
c12c13 s12c13 s13e−iδcp

−s12c23 − c12s13s23e−iδcp c12c23 − s12s13s23eiδcp c13s23

s12s23 − c12s13c23eiδcp −c12c23 − s12s13s23eiδcp c13c23

⎞

⎠ , (2)

where ci j = cos θi j and si j = sin θi j (i, j = 1, 2, 3). The
CP violating can be ignored due to the failure of observing it
experimentally. There exist a relative shift of mass eigenstate
phases when they reach the detector located in space-time

point B
(
tB,

→
x B

)
, which can be described within the plane

wave approach

∣∣∣νk(t,
→
x B)

〉
= e−iΦk |νk〉 , (3)

where the relative phase shift is given by

Φk = Ek (tB − tA) − →
p k · (

→
x B − →

x A). (4)

Therefore, if a neutrino is produced with a given flavor α at

the space-time point A(tA,
→
x A), using the Eqs. (1) and (3),

the probability detected with flavor β at the detection point

B
(
tB,

→
x B

)
is given by

Pα→β =
∣∣∣
〈
να | νβ

(
tB,

→
x B

)〉∣∣∣
2

= δαβ − 4
∑

k> j

Re
(
Û∗

αkÛβkÛα j Û
∗
β j

)
sin2

(
Φk j

2

)

+ 2
∑

k> j

Im
(
Û∗

αkÛβkÛα j Û
∗
β j

)
sin

(
Φk j

2

)
, (5)

where Φk j = Φk−Φ j . Note that the difference of phase shift
incapably cause the decoherence of the flavor eigenstates due
to the propagation which means that the coherence length is
larger than the corresponding oscillation length.

For relativistic neutrinos in flat space-time described by
the Minkowski metric, one can obtain that

Φk j � Δm2
k j

2E0
|xB − xA| , (6)

where Δm2
k j ≡

∣∣∣m2
k − m2

j

∣∣∣ is the mass-squared difference

and E0 is the energy of the massless neutrino measured by
the observer at rest at infinity.

In the scenario where the above formalism generalize to
a curved spacetime, the quantum phase given by Eq. (4) can
rewriting as its covariant form

Φk =
∫ B

A
p(k)
μ dxμ, (7)

where p(k)
μ = mkgμν

dxν

ds is the canonical conjugate momen-
tum corresponding to the coordinate xμ, with gμv the met-
ric tensor and ds the line element. Now, we focus on the
case of neutrino propagating in a gravitational field within a
Schwarzschild spacetime metric

ds2 = B(r)dt2 − B(r)−1dr2 − r2dθ2 − r2 sin2 θdφ2, (8)

where

B(r) =
(

1 − 2GM

r

)
(9)

Here G is the Newtonian constant and M represents the mass
of the source of the gravitational field. Further, due to the
gravitational field is isotropic, the motion of neutrinos may
be selected on the equatorial plane (θ = π/2 and dθ = 0).
Therefore, the accumulated phase of the each mass eigenstate
that propagate from the production point A (tA, rA, φA) to the
detection point B (tB, rB, φB) may be represented as

Φk =
∫ B

A
[Ekdt − pk(r)dr − Jkdφ] , (10)

where Ek ≡ p(k)
t , pr ≡ −p(k)

r , and Jk(r) ≡ −p(k)
φ are the

components of the canonical momentum p(k)
μ . In the presence

of gravity, it is applicable to take the neutrino propagation
over its proper distance L p, which is in general taken the
form

L p ≡
∫ rB

rA

√
grrdr

= rB

√

1 − 2GM

rB
− rA

√

1 − 2GM

rA

+ 2GM
[
ln

(√
rB − 2GM + √

rB
)

− ln
(√

rA − 2GM + √
rA

)]
. (11)

For the simplicity of following discussion, considering the
weak field approximation where L p is directly approximated
to

L p � rB − rA + GM ln
rB
rA

, (12)

where rA and rB are the position of the source and detector
relative to the reference frame of the gravitational source.
In order to use this result, the propagation of neutrinos can
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then be studied in a radial direction in a Schwarzschild
gravitational field, which corresponds to dφ = 0 and the
vanish of angular momentum. As for the flat-space time,
applying the relativistic expansion mk 	 Ek and assum-
ing 0 < B(r) � 1, we can calculate the phase of the kth
mass eigenstate defined in Eq. (10) as follows [42]

Φk � m2
k

2E0
|rB − rA| . (13)

The phase shift that are responsible for the oscillation is,
therefore, obtained by subtraction from Eq. (13) the corre-
sponding expression for the j th mass eigenstate as

Φk j � Δm2
k j

2E0
|rB − rA| . (14)

Note that the energy measured by the observer at the detector
at rB is not E0, but rather the local energy E loc

0 (rB), which
is defined by the relation

E loc
0 (rB) =

(
1 + GM

rB

)
E0. (15)

Inserting the Eqs. (12) and (15) into the Eq. (14), the resulting
phase shift is given by

Φk j �
(

Δm2
k j L p

2E loc
0 (rB)

)[
1 − GM

(
1

L p
ln

rB
rA

− 1

rB

)]
(16)

Note that the second square parenthesis stands for the cor-
rection due to the gravitational effects where gravity effect
term GM = 0 reduce to the case of the flat space time. In the
following, we wish to study the effects of gravitational on
quantum entanglement and nonlocality and their distribution
in three flavor neutrino oscillation. For an appropriate eval-
uation, the best values of three flavor oscillation parameters
are given by

Δm2
21 = 7.50 × 10−5eV 2,

Δm2
31 = 2.457 × 10−3eV 2,

20Δm2
32 = 2.382 × 10−3eV 2,

θ12 = 33.48◦, θ23 = 42.3◦, θ13 = 8.50◦. (17)

Consequently, when neutrino radially propagate in the
gravitational field, using the Eqs. (1)–(3) and (16), the neu-
trino flavor states evolution can be described as

|ψ(L p)〉α = aαe(L p) |ve〉 + aαμ(L p)
∣∣vμ

〉 + aατ (L p) |vτ 〉 ,

(18)

where aαβ(L p) = ∑
k U

∗
αke

−iφk(L p)Uβk is the transition
amplitude. Here we used the flavor-qubit correspondence

|ve〉 ≡ |1〉e ⊗ |0〉μ ⊗ |0〉τ ,
∣∣vμ

〉 ≡ |0〉e ⊗ |1〉μ ⊗ |0〉τ and
|vτ 〉 ≡ |0〉e ⊗ |0〉μ ⊗ |1〉τ .

3 Quantum correlations in radial propagation of
neutrino in a schwarzschild metric

In this section we are going to study the gravitational effect
on the quantum entanglement and nonlocality in NO, and
analyse the distribution of them by using the corresponding
monogamy relations. In order to better facilitate the gravi-
tational effect on the entanglement and nonlocality, we will
be considering the following two different situations that the
neutrinos propagate radially outwards and towards the grav-
itational source:

(i) For the case of neutrino propagate radially outward
the gravitational source, the distance rB that detector with
respect to the gravitational source, as defined in Eq. (12), can
be expressed in the form

rB = L p + rA − GM ln

(
L p

rA
+ 1

)
. (19)

Therefore the oscillation phases may be expressed in the
weak field approximation as

Φk j
(
L p

) � Δm2
k j L p

2E loc
0[

1 − GM

(
1

L p
ln

(
L p

rA
+ 1

)
− 1

L p + rA

)]
. (20)

(ii) For the case of neutrino propagation radially towards
the gravitational source, the radial distance of detector takes
the form

r ′
B = r ′

A − L p − GM ln

(
1 − L p

r ′
A

)
. (21)

Here we use the notation r ′
A and r ′

B to represent the radial dis-
tance of the neutrino source and detector in this case, respec-
tively. Therefore, we can again obtain the oscillation phase
as

Φk j
(
L p

) � Δm2
k j L p

2E loc
0[

1 − GM

(
1

L p
ln

(
L p

r ′
A

+ 1

)
− 1

L p + r ′
A

)]
. (22)

In order to obtain the entanglement and nonlocality in
terms of the propel distance L p, we take E loc

0 (rB) = 3 ×
102TeV, and assume that rA = 108 Km and 2 × 108 Km ≤
L p ≤ 4 × 108 Km for neutrino propagating outwards and
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Fig. 1 The survival probabilities Pve→ve as a function of L p , for neutrinos radially propagating a outwards and b inwards to the gravitational
source for different GM, where GM = 0 corresponds to the flat space time and nonzero GM corresponds to curved space time

r ′
A = 4 × 108 Km and 2.5 × 108 Km ≤ L ′

p ≤ 3.5 × 108 Km
for neutrino propagating inwards.

3.1 Entanglement for neutrino oscillation in schwarzschild
metric

Assuming a neutrino emission source and hypothetical detec-
tor respectively situated in the radial distance rA and rB from
the center of the gravitational field source which is described
by spherically symmetric Schwarzschild metric. Consider-
ing the case that the initial flavor state is |νe〉 in which the
evolution of the state can be obtained from Eq. (18) as

∣∣ψe(L p)
〉 = aee(L p)|100〉 + aeμ(L p)|010〉 + aeτ (L p)|001〉,

(23)

Here the square of transition amplitude terms aeβ(L p) (β =
e, μ, τ ) represent the oscillation probabilities which are con-
strained by the normalization condition that

∑
β Peβ = 1,

where the survival probabilities Pve→ve versus the proper
distance L p with different values of GM are plotted in Fig. 1.
It can be seen that for the case of the flat space-time, i.e.
GM = 0, the survival probability can arrive at maximal value
1 as well as the case for the gravity effect term GM = 3×107

Km in both outwards and inwards propagation. However, for
the case of GM = 6 × 108 Km and GM = 7 × 107 Km cor-
respond to outwards and inwards propagation, respectively,
there exists a damping in the maximum value of the survival
probabilities, which implies that the gravitational effects sup-
press the survival probability respect to certain values of GM.

Now, to measure the entanglement of three flavor neutrino
state, of form Eq. (23), we use the tripartite entanglement of
formation (EOF) defined as follows [16]

E(ρ) = 1

2
[S (ρA) + S (ρB) + S (ρC )] , (24)

where S (ρi ) = − Tr (ρi log ρi ) is the von Neumann
entropy of the reduced density matrix ρi = Trk j (ρ) (i, j, k ∈
{A, B,C}) of the pure state ρ. Accordingly, we can calcu-

late the systemic entanglement measured by tripartite EOF
in terms of the transition probabilities, i.e.,

E(ρe
eμτ ) = −1

2

[
Pee(L p) log2 Pee(L p)

+ Peμ(L p) log2 Peμ(L p) + Peτ (L p) log2 Peτ (L p)

+ (
Peμ(L p) + Peτ (L p)

)
log2

(
Peμ(L p) + Peτ (L p)

)

+ (
Pee(L p) + Peτ (L p)

)
log2

(
Pee(L p) + Peτ (L p)

)

+ (
Peμ(L p) + Pee(L p)

)
log2

(
Peμ(L p) + Pee(L p)

)]
.

(25)

Figure 2 shows the tripartite EOF versus the proper dis-
tance L p for different gravity effect terms GM in both the
case of neutrinos propagating radially outward and inward.
We can observe that there exists a phase shift in the evolution
of EOF in the curved space-time compared to the correspond-
ing one in the flat space-time (GM = 0) due to the gravi-
tational effects. This lead to some range of the parameter in
which the value of entanglement in the curved space-time is
larger than the one in the flat space-time. Nevertheless, it is
interesting that, for the case of some certain values of GM,
such as GM = 5.1 × 108 Km and GM = 7 × 108 Km for
neutrinos radially propagating outwards and inwards, respec-
tively, this behavior disappears and replaced by oscillating at
some large value intervals of EOF, as observed numerically
that the EOF is larger than 1.1 in the ranges [2×108, 4×108]
and [2.6 × 108, 3.5 × 108] for neutrinos radially propagat-
ing outwards and inwards, respectively. A notable result is
that the gravitational effects lead to a damping in the max-
imum values of the EOF in the curved space-time in com-
parison to the corresponding one in the flat space-time when
GM = 4.8 × 108 Km and GM = 9.3 × 107 Km correspond-
ing to outwards and inwards propagation respectively. The
reason of causing above different cases is as follows: we
treated neutrinos in the plane waves way in this study and
the corresponding phases have been revised by the gravi-
tational effects. Therefore, when we choose different val-
ues of GM, the phase of constructing entanglement presents
two diverse cases that they are summed constructively or
summed destructively, which causes different magnitudes of

123



 1127 Page 6 of 10 Eur. Phys. J. C          (2024) 84:1127 

Fig. 2 Variations of tripartite EOF as a function of L p for different
GM, where GM = 0 corresponds to the flat space time and nonzero
GM corresponds to curved space time. Top: corresponding to neutri-

nos radially propagating outwards to the gravitational source. Bottom:
corresponding to neutrinos radially propagating inwards to the gravita-
tional source

Fig. 3 Complete monogamy of entanglement with respect to the
proper distance (L p) traveled by neutrinos with different GM, where
GM = 0 corresponds to the flat space time and nonzero GM corre-

sponds to curved space time. Top: corresponding to neutrinos radially
propagating outwards to the gravitational source. Bottom: correspond-
ing to neutrinos radially propagating inwards to the gravitational source
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the entanglement during propagation. The multipartite entan-
glement can also be seen from the complete monogamy rela-
tion, which reads [16]

E2 (ρABC ) � E2 (ρAB) + E2 (ρAC ) + E2 (ρBC ) , (26)

Here EρAB is the bipartite EOF as well as EρAC and
EρBC , which is described as E f (ρAB) = min{pi ,|φi 〉AB}∑

i pi E f
(|φi 〉AB

)
. The minimum is taken over all decom-

positions of ρAB = ∑
i pi |φi 〉AB 〈φi | with pi ≥ 0,∑

i pi = 1. For two-qubit mixed state, there has an
analytical formula of calculation of bipartite EOF that

E (ρAB) = H

(
1+

√
1−|C(ρAB )|2

2

)
with H(x) = −x log2 x−

(1 − x) log2(1 − x) the binary entropy and C(ρAB) =
max

{√
λ1 − √

λ2 − √
λ3 − √

λ4, 0
}

the quantity called con-
currence of ρAB , and λi s represent the eigenvalues of the
matrix

(
σy ⊗ σy

)
ρ∗
AB

(
σy ⊗ σy

)
with decreasing order. Note

that the complete monogamy relation is saturated when tri-
partite EOF corresponds only to bipartite entanglement.

Therefore, the next multipartite entanglement for three-
flavor neutrino system can be established based on the com-
plete monogamy relation as

M3 = E2 (
ρe
ABC

) − E2 (
ρe
AB

) − E2 (
ρe
AC

) − E2 (
ρe
BC

)
,

(27)

which is different from zero if we have entanglement beyond
the entanglement of its pairs. Figure 3 shows the value of M3

for the cases under study with different GM. We can observe
that M3 is always greater than or equal to zero, which further
confirms the existence of genuine tripartite entanglement of
the three-flavor neutrino system and suggests that the entan-
glement distribution follows in a complete monogamy way
even in the presence of gravity effects. For neutrinos radi-
ally propagating outwards with GM = 4.8 × 108 Km, M3

oscillates between 0 and 0.646, and for the case of neutrinos
radially propagating inwards with GM = 9.3 × 107 Km, M3

oscillates between 0 and 0.632. This implies that the entan-
glement distribution depending on complement monogamy
relation can be constrained tighter due to the presence of
gravitational effects.

3.2 Nonlocality for neutrino oscillation in schwarzschild
metric

To probe the gravitational effects to genuine nonlocal corre-
lations of three-flavor neutrino system when neutrinos travel
over proper distance L p in the gravity field, we consider the
Svetlichny inequality, a generalized form of Bell inequality,
which is based on the hybrid local nonlocal form of proba-
bility correlations, as follows:

PM (a1a2a3) =
3∑

k=1

Pk

∫
dλρi j (λ)Pi j

(
ai a j | λ

)
Pk (ak | λ) ,

(28)

where λ is the shared local variable, and a1, a2, a3 are the
outcomes of the measurements. Here the subscript M stands
for bipartition sections. If correlations fair to write in this
form, then such correlations are considered to exhibit gen-
uine tripartite nonlocality, which is referred to as Svetlichny
nonlocality. For a three qubit system, the Svetlichny [54]
parameter is defined as

S3 = ABC + AB ′C + ABC ′ − AB ′C ′

+ A′BC − A′B ′C − A′BC ′ − A′B ′C ′. (29)

Here X and X ′ (X = A, B,C) are two different mea-
surements performing to each qubit. The classical bound of
Svetlichny parameter is S3 ≤ 4 and its violation implies that
the all the parties are are nonlocally correlated, i.e. the gen-
uine tripartite nonlocality is exhibited, suggesting in turn the
existence of genuine tripartite entanglement. Figure 4 depicts
the Svetlichny parameter S3 for the time evolution of an ini-
tial electron neutrino with respect to L p with different values
of GM. In the case of the flat spce-time, we find regions in the
time evolution with S3 fairs to cross the classical bound in our
system, which means the absence of the genuine nonlocality,
whereas for the curved space-time the evolution behavior of
S3 depends on the magnitude of GM, such that for neutrinos
propagation outwards with GM = 6 × 108 Km and inwards
with GM = 7 × 107 Km, S3 is always larger than 4 (expect
for few separable state). These results show that the genuine
nonlocality is largely present in the time evolution, while for
the GM = 4.8 × 108 Km and GM = 9.3 × 107 Km pertain-
ing to outwards and inwards propagations, respectively. The
gravitational effect surpasses the violation of the Svetlichny
inequality, which is implied by the augmenting of the param-
eter range that the absence of genuine nonlocality in compar-
ison to the case of the flat space-time. It is notable that since
the violation of Svetlichny inequality is only a sufficient wit-
ness of genuine nonlocality but not a necessary condition,
there exists the regions with absence of genuine nonlocal-
ity where the genuine tripartite entanglement is exhibited, as
shown in Fig. 2.

Further, the monogamy of nonlocality is based on the
maximun violation of Bell inequality, and the well known
Bell inequality is Clauser–Horne–Shimony–Holt (CHSH)
inequality (say for two-qubit state) represented as

|Tr (ρBCHSH )| � 2, (30)
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Fig. 4 Variations of the Svetlichny S3 with respect to the proper dis-
tance (L p) traveled by neutrinos with different GM, where GM = 0 cor-
responds to the flat space time and nonzero GM corresponds to curved
space time. Top: corresponding to neutrinos radially propagating out-

wards to the gravitational source. Bottom: corresponding to neutrinos
radially propagating inwards to the gravitational source. The system
detects genuine multipartite nonlocality if the value of S3 is above 3

Fig. 5 Monogamy of nonlocality with respect to the proper distance
(L p) traveled by neutrinos with different GM, where GM = 0 corre-
sponds to the flat space time and nonzero GM corresponds to curved

space time. Top: corresponding to neutrinos radially propagating out-
wards to the gravitational source. Bottom: corresponding to neutrinos
radially propagating inwards to the gravitational source

Here BCHSH is the CHSH operator

BCHSH = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2,

(31)

with Aj
(
Bj

) = aj
(
bj

) · σ are measurement settings pertain-
ing to each qubit, where a j (b j ) are unit vectors in R

3 and
σ = (

σx , σy, σz
)

are Pauli matrices. The maximum violation
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of the CHSH inequality (30) is

max〈BCHSH 〉ρ = max |Tr (ρBCHSH)| = 2
√
M(ρ), (32)

where M(ρ) = max j<k
{
μ j + μk

}
, j, k ∈ {1, 2, 3}, μ j , μk

are the two largest eigenvalues of the real symmetric matrix
T T T , Here the matric T with the entries ti j = Tr ρ

(
σi ⊗ σ j

)
.

For a three qubit system the nonlocality monogamy measure
[21] is defined as

Σ3 = max 〈BAB〉2 + max 〈BAC 〉2 + max 〈BBC 〉2 , (33)

where BAB is the CHSH operator for parties A and B, and
some with BAC , BBC . Note that the quantity Σ3 is always
be bounded such as 0 ≤ Σ3 ≤ 12. The pairwise maximum
violations of the CHSH Bell inequality of three-flavor neu-
trino system can be expressed in terms of the transition and
survival probabilities among different flavor modes written
in terms of propel distance L p. Therefore, if the initial flavor
state is |νe〉, we have

max
〈
Be
eμ

〉 = 8Pee(L p)Peμ(L p)

+ 2max
[
4Pee(L p)Peμ(L p), (2Peτ (L p) − 1)2

]
,

max
〈
Be
eτ

〉 = 8Pee(L p)Peτ (L p)

+ 2max
[
4Pee(L p)Peτ (L p), (2Peμ(L p) − 1)2

]
,

max
〈
Be

μτ

〉 = 8Peμ(L p)Peτ (L p)

+ 2max
[
4Peμ(L p)Peτ (L p), (2Pee(L p) − 1)2

]
. (34)

In Fig. 5, we depict the distribution of the monogamy mea-
sure Σ3 for different values of GM. Although Σ3 ranges
from 0 to 12, the effective range is not start at 0. For
the flat space-time, the effective range of Σ3 is limited to
[8, 12]. It is notable that the upper bound of Σ3 decreases
to around 10.67 in the presence of gravitational effects with
GM = 6 × 108 Km and GM = 7 × 107 Km correspond-
ing to outwards and inwards, respectively, while the genuine
tripartite nonlocality is presented, as shown in Fig. 4. This
shows the close relation between maximum bipartite nonlo-
cality and global nonlocality. It is possible to find that when
GM = 5.3 × 108 Km for neutrinos inwards propagation, the
effective range is limited to around [8.88, 10.67], where the
effective lower bound has a decrease in comparison to other
cases under study. Summing up, the gravitational effects
can give rise to manifest change in the effective bounds of
the nonlocal monogamy relation, where the low nonlocality

monogamy measure max
(〈
Beμ

〉2 + 〈Beτ 〉2 + 〈
Bμτ

〉2) cor-

respondings to high bipartite correlations.

4 Conclusions

Gravity as one of the most fundamental physical effects
has many potential applications in modern physics. Using
quantum correlations can investigate the role of gravitational
effect in quantum information. In this paper, we have stud-
ied the gravitational effect on entanglement, nonlocality, and
their monogomy properties for three-flavor neutrino system.
Here, we have considered the plane wave approach treated for
neutrino oscillation and the wave packet decoherence effects
have been ignored, which is applicable for our discussion
because the modifications induced by neutrino localization
(wave packet approach) only play a crucial role when the
propagation length is of the order of the coherence one. We
have shown that the gravitational effects cause the occurrence
of phase shift of entanglement compared to one in flat space-
time when GM = 3×107 Km, leading to a local dependence
in wave lengths of the oscillation for entanglement. Further-
more, the gravitational effects can not only make the entan-
glement oscillate around a large value but also suppresses the
entanglement, which is witnessed in the form of the decrease
in the maximum value of the entanglement in curved space-
time when GM = 4.8 × 108 Km and GM = 9.3 × 107 Km,
because of the constructive and destructive effects in some
terms of entanglement. Also, we have analyzed the com-
plete monogamy relation of entanglement to show the distri-
bution of entanglement among neutrino system. It is found
that the distributions of entanglement satisfy the complement
monogamy relation for all cases and the limitation of the
entanglement shareability will be tighter in the curved space-
time for GM = 4.8×108 Km and GM = 9.3×107 Km corre-
sponding to outwards and inwards propagation respectively.
Furthermore, The gravitational effects facilitate the violation
of Svetlichny inequality to make the genuine nonlocal corre-
lations (nonlocality shared among all parties) always present
for the full-time evolution when GM = 6 × 108 Km and
GM = 7 × 107 Km. However, For GM = 4.8 × 108 Km
and GM = 9.3 × 107 Km corresponding to outwards and
inwards propagation, respectively, the gravitational effects
suppress the violation of Svetlichny inequality, resulting that
the regions of the absence of the genuine nonlocal correla-
tions increase. On the other hand, the nonlocality monogamy
relation shows that the effective bound of the maximum
bipartite nonlocality of the neutrino system has been changed
in curved space-time due to the gravitational effects. We hope
that our investigations could provide a significant applica-
tions for using quantum resources to study the gravitational
effects on the oscillations of neutainos in the future and facil-
itate the connection between the gravitational effects and
quantum information.
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