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Abstract: The thermodynamic and magnetic properties of weakly interacting electron gas

localized in a CdSe cylindrical core–shell quantum dot in the presence of axial magnetic

field are investigated. The entropy, mean energy, and heat capacity of such a gas are

determined, and its magnetic properties (magnetization and diamagnetic susceptibility)

are studied. The possibilities of controlling thermodynamic parameters by changing

the geometric parameters of quantum dots are shown. Calculations show that this gas

has diamagnetic properties. These results provide insights into the features of physical

processes occurring in thin core–shell quantum systems, which have potential applications

in opto- and nanoelectronics.
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1. Introduction

The study of ring-shaped, layered axially symmetric nanostructures and 2D quantum

materials is a subject of interest for specialists both from the point of view of purely applied

problems and from the point of view of the fundamental issues of quantum physics [1–6].

A striking example of this is the experimental confirmation of the Aharonov–Bohm effect

for bound states of an electron in ring-shaped InAs nanostructures [7] as well as for the

description of new types of topological superconductors [6].

From a practical point of view, cylindrical core–shell nanolayers and ring-shaped

structures and 2D quantum materials find wide application in optoelectronic devices and

various sensors operating on the basis of quantum effects [6,8–11]. A remarkable property

of cylindrical core–shell nanolayers compared to spherical nanolayers is the presence, in

addition to the outer and inner radii of the quantum dot cross-section, of another additional

geometric parameter, namely, the height of the cylindrical nanolayer. By varying the

geometric parameters of the quantum dot, it is possible to implement a subband structure

of energy bonds: In the case of a thin nanolayer, a family of axial quantization levels is

associated with each radial quantization level, and vice versa, at small heights, a family

of radial motion levels will be associated with each axial quantization level [12,13]. This

nature of energy bands leads to a rich picture of optical transitions of both intraband

and interband types, which creates conditions for the flexible manipulation of the optical

properties of these systems [14–17].

By synthesizing these quantum dots, as shown in the articles [18,19], we can manipu-

late their geometric parameters, including the size, shape, and aspect ratio, which directly

Quantum Rep. 2025, 7, 13 https://doi.org/10.3390/quantum7010013

https://doi.org/10.3390/quantum7010013
https://doi.org/10.3390/quantum7010013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://orcid.org/0009-0003-5471-9555
https://doi.org/10.3390/quantum7010013
https://www.mdpi.com/article/10.3390/quantum7010013?type=check_update&version=2


Quantum Rep. 2025, 7, 13 2 of 12

influence their optical, electronic, and surface properties. While [18] explores various syn-

thesis techniques, including colloidal synthesis, the article [19] highlights the hydrothermal

and microwave-assisted synthesis methods, which offer advantages in the scalability and

uniformity of QD properties. Such control enables the fine-tuning of quantum confinement

effects, bandgap energies, and emission wavelengths, making them highly versatile for

applications in optoelectronics, bioimaging, and quantum computing.

In addition to the optical characteristics of axially symmetric nanolayers and quantum

rings, the study of the magnetic and thermodynamic parameters of such structures is

of interest [20–24]. Particularly, it is important to note that the axial symmetry of the

studied structures allows an analytical description of the physical properties of cylindrical

nanolayers and quantum rings in the presence of a uniform magnetic field directed along

the axis of symmetry. It is clear that in the presence of a magnetic field in the single-

particle Schrödinger equation, the axial part of the Hamiltonian is separated, and the

influence of the magnetic field is reflected in the states of the particle in the plane of the

nanolayer section. In this case, if we consider a nanolayer of small thickness, then the

radial quantization levels will be separated from each other significantly further than the

angular quantization levels. Then, the nature of the energy levels in the quantum dot plane

will again be subband when each radial quantization level is associated with a family of

angular quantization levels. The angular states of particles can be successfully described

within the framework of a flat rotator model with some fixed radius Re f f , the value of

which will be determined by the point of maximum probability density of radial states. In

addition to one particle, a multiparticle gas can also be localized in a core–shell cylindrical

nanolayer of small thickness. If the density of such a gas is not high, then the interactions

between particles can be neglected and the statistical characteristics of such a gas can be

considered within the framework of the single-particle approximation. Such a model is

relatively simple but allows for an accurate analytical description of the thermodynamic

and magnetic parameters of the gas being studied.

In this work, the behavior of a weakly interacting electron gas in the presence of an

axial magnetic field is studied for the case of a thin cylindrical core–shell nanolayer. The

thermodynamic and magnetic characteristics of the system are determined.

2. Theory

Let us consider the behavior of an electron in a thin cylindrical core–shell nanolayer

with an internal radius of R1 and an external radius of R2 (Figure 1). The conditions for the

thinness of the nanolayer consider the fulfillment of the following inequality:

R2 − R1

R1
≪ 1 (1)

At the initial stage of the theoretical modeling of quantum nanostructure, an important

issue is to construct a realistic model of the system’s confining potential under study.

Various models of confining potentials have been proposed for layered and ring-shaped two-

dimensional systems, considering the presence of both an internal and external boundary.

When considering this issue, the symmetry of the quantum dot under study plays a

remarkable role. Thus, if in the case of a spherical core–shell quantum dot, the system

has a central symmetry and is characterized by two geometric parameters, R2—the outer

radius and R1—the inner radius, then, to describe a cylindrical core–shell quantum dot, it

is necessary to take into account that the system has axial symmetry and is characterized

by three geometric parameters: R1 and R2, the inner and outer radii, as well as the height

of the cylindrical nanolayer L.
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The radial motion of particles in a cylindrical core–shell quantum dot is confined

by an inner and outer boundary, and the following models have been proposed for

the mathematical description of the radial confinement potential: the two-dimensional

shifted oscillator model of Chakraborty–Pietilaien, radial analogue of the two-dimensional

Winternitz–Smorodinsky potential, two-dimensional analogue of the Kratzer potential, and

radial model of an infinitely high rectangular well with width, the rectangular stepped

well [25–28].

Since this paper investigates a quantum dot of small thickness and the radial quanti-

zation is very strong, we can assume that the particles will be at the lower level of radial

quantization, and the system can be considered effectively two-dimensional. For this

reason, within the framework of this article, we will be satisfied with a simple model of a

radial rectangular infinitely high well with a thickness of R2 − R1.

In the axial direction, one can consider the model of a one-dimensional infinitely deep

well [28], the model of a parabolic well [28], the Pechy–Teller potential [29], etc. For a

cylindrical CdSe core-shell quantum dots, the confinement potential is often considered as

an infinitely high rectangular impermeable wall in the axial direction. The abovementioned

model was used in this work. Another argument that allowed us to consider models of rect-

angular infinitely deep radial and axial potentials is the close connection of thin cylindrical

CdSe core–shell quantum dots with CdSe nanoplatelets. As discussed in [30], experiments

show that using the rectangular infinitely deep walls model for optical experiments with

CdSe nanoplatelets is very successful. If we do not consider a thin cylindrical core—shell

CdSe quantum dot as rolled into a tube CdSe nanoplatelet, this further supports using this

model for the confinement potential.

Let us consider an electron in a cylindrical nanolayer of small thickness, in the pres-

ence of an axial magnetic field. It should be noted right away that we are considering a

core/shell cylindrical quantum dot of small thickness; when we assume that the effect of

radial quantization is very significant, this leads to a pronounced axial symmetry of the

system under study in which the axially directed field does not violate the symmetry of

the problem. Changes in the direction of the magnetic field lead to an insignificant rear-

rangement of the energy spectrum of the system. The presence of an axial field within the

framework of this model allows us to give an exact analytical solution to the single-particle

Schrödinger equation. When a magnetic field is applied at an angle to the Oz axis of a

cylindrical core/shell quantum dot, it significantly complicates the mathematical descrip-

tion of single-electron states, and the solution of the corresponding Schrödinger equation

requires a separate and comprehensive consideration. At the same time, we can say purely

qualitatively that the presence of a planar component of the magnetic field can significantly

modify the energy spectrum of single-electron states since this component of the magnetic
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field will rearrange the spectrum of axial states of the electron. This circumstance will affect

both the thermodynamic and magnetic properties of the gas under study. We approxi-

mate the confining potential of the nanolayer within the framework of the impenetrable

wall model.

Vcon f (ρ, z) = Vcon f
(1)(ρ) + Vcon f

(2)(z), (2)

where

Vcon f
(1)(ρ) =

{

0, R1 ≤ ρ ≤ R2

∞, ρ < R1 , ρ > R2
, (3)

Vcon f
(1)(z) =

{

0, |z| ≤ L
2

∞, |z| > L
2

, (4)

The dimensional quantization in the radial direction is very strong, because of which

the character of the electron energy levels in the plane perpendicular to the Oz axis will

have the form of subbands. Each level of radial quantization will be associated with a

family of angular states. From the above-mentioned equation, it follows that to describe the

states of the electron, we can use the model of a flat two-dimensional rotator in a magnetic

field. Then, the Hamiltonian of the system can be represented as follows:

Ĥ =
1

2µ

(

→̂
p − e

c

→
A

)2

+ Vcon f
(1)(ρ) + Vcon f

(2)(z), (5)

where
→
A =

{

Aρ = Az = 0, Aϕ = Bρ

2

}

and µ is the effective mass of the electron. In the

axial direction, the electron moves in a one-dimensional infinitely deep well. For the axial

wave functions and the electron energy, we can write

χnz(z) =

√

2

L
sin

(πnz

L
z + δnz

)

, (6)

Enz =
π2ℏ2nz

2

2µL2
, (7)

where δnz is the initial phase, for even states δnz = π
2 , while for odd states, δnz = 0,

nz—axial quantum number. For the radial part of the Schrödinger equation, we will

assume that the particle is at the ground level of radial quantization. Then, within the

framework of the flat rotator model, we can assume that the electron rotates in a magnetic

field with an effective radius Re f f =
R1+R2

2 . The corresponding Schrödinger equation for

the angular part will have the following form:

ℏ2

2µRe f f
2

d2Φ

dϕ2
+

eB

2µc

dΦ

dϕ
+

e2B2Re f f
2

8µc2
Φ = ErotΦ, (8)

Considering the symmetry of the problem, as well as the periodicity condition of the

angular wave function Φ(ϕ + 2π) = Φ(ϕ) for Φ(ϕ), we can write

Φ(ϕ) = Φm(ϕ) =
1√
2π

eimϕ, (9)

where m = 0;±1;±2 is the magnetic quantum number. Substituting expression (9) into the

Schrödinger Equation (8) for the energy Erot ≡ Em, we obtain

Em =
ℏ2

2µRe f f
2

(

m − F
F0

)2

, (10)
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where F = BπR2 is the magnetic field flux through a circle of radius Re f f , and F0 = 2π ℏc
e

is the magnetic flux quantum. Thus, for the total energy of an electron, measured from the

first level of radial quantization, we can write

Em,nz =
π2ℏ2nz

2

2µL2
+

ℏ2

2µRe f f
2

(

m − F
F0

)2

. (11)

Now, let us assume that the nanolayer under consideration contains a weakly interact-

ing electron gas. Our goal will be to study the thermodynamic and magnetic characteristics

of such a gas within the framework of Boltzmann statistics. In this approximation, we have

the following expression for the partition function Z = 1
N! [Z0]

N , where

Z0 = ∑
+∞
m=−∞ ∑

∞
nz=1 e−β(Em+Enz ), (12)

while β = 1
KT . Let us proceed to the calculation of the specified partition function. In the

axial direction, we have a sum of the following type:

S1 = ∑
∞
nz=1 e

−β π2ℏ2nz
2

2µL2 , (13)

If we introduce the notation γ1 = β πℏ2

2µL2 , then, taking into account the definition of

Ramanujan’s theta function ϕ(q) = ∑
+∞
n=−∞ qn2

, for S1, we will have

S1 = ∑
∞
nz=1 e−γ1πnz

2
=

ϕ(e−γ1π)− 1

2
, (14)

Note that ϕ(q) also has an integral representation of the following form:

ϕ(q) = 1 +
∫ ∞

0

e−
1
2 t2

√
2π

[

4q
(

1 − cosh
(√

2log qt
))

q4 − 2q2cosh
(√

2log qt
)

+ 1

]

dt, (15)

where q, with the consideration of the Equation (16), is defined as q = e−γ1π . Let us turn to

the second sum in the expression for Z0:

S2 = ∑
+∞
m=−∞ e

−πγ2[m− F
F0

]
2

, (16)

where γ2 = β ℏ2

2πµRe f f
2 . Let us note that for S2, we can write the following:

S2 = e
−πγ2(

F
F0

)
2

+ ∑
+∞
m=1 e

−πγ2[m− F
F0

]
2

+ ∑
+∞
m=1 e

−πγ2[m+ F
F0

]
2

, (17)

We can represent the first sum in Equation (18) in the following form:

S2
′
= ∑

+∞
m=1 e

−πγ2[m− F
F0

]
2

= ∑
m
′

m=1 e
−πγ2[m− F

F0
]
2

+ ∑
∞

m=m
′+1

e
−πγ2[m− F

F0
]
2

, (18)

In Equation (19), we are considering that m
′ ≫ F

F0
, and starting from m

′
+ 1, the

following approximate equality takes place:

m − F
F0

≈ m, (19)

Adding and subtracting the sum to the right side of Equation (19), we can obtain

∑
m
′

m=1 e−πγ2m2
, (20)
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for S2
′
, we will have

S2
′
= ∑

m
′

m=1 e
−πγ2[m− F

F0
]
2

− ∑
m
′

m=1 e−πγ2m2
+ ∑

∞
m=1 e−πγ2m2

. (21)

Let us introduce the following notations:

K−(m
′
) = ∑

m
′

m=1 e
−πγ2[m− F

F0
]
2

, (22)

K(m’) = ∑
m’

m=1 e−πγ2m2
, (23)

and considering the form of Ramanujan’s theta function, for S2
′
, we finally find

S2
′
= K−

(

m
′)− K

(

m
′)

+
ϕ(e−γ2π)− 1

2
, (24)

Similarly, for the second sum S2
′′

in Equation (17), we obtain

S2
′′
= ∑

+∞
m=1 e

−πγ2[m+ F
F0

]
2

≈ K+
(

m
′)− K

(

m
′)

+
ϕ(e−γ2π)− 1

2
, (25)

where K+
(

m’
)

= ∑
m’

m=1 e
−πγ2[m+ F

F0
]
2

. Based on the above results for Z0, we can finally

write

Z0 =

{

K+
(

m
′)

+ K−
(

m
′)− 2K

(

m
′)

+ ϕ
(

e−γ2π
)

− 1 + e
−πγ2(

F
F0

)
2
}

×
{

ϕ(e−γ1π)− 1

2

}

, (26)

Considering the equality that we introduced for the partition function, we have the

following relationship:

Z =
1

N!
{K+(m

′
) + K−(m

′
)− 2K(m

′
) + ϕ

(

e−γ2π
)

− 1 + e
−πγ2(

F
F0

)
2

}
N

×
{

ϕ(e−πγ1)− 1

2

}N

. (27)

Having the expression for Z, we can proceed to the calculation of the thermodynamic

and magnetic parameters of the given gas:

Heat Capacity:

Cv = − 1

kT2

∂2Z(N)

∂(kT)−2
, (28)

Entropy:

S =
∂

∂T
(kTlnZ(N)), (29)

Magnetization:

M =
kT

Z(N)

∂Z(N)

∂H
, (30)

Magnetic Susceptibility:

χ =
∂⟨M⟩

∂H
, (31)

3. Discussion

Based on the data obtained, it is possible to calculate the thermodynamic parameters

of a given gas. Below, you can find the calculation for the mean energy < E >, entropy

S, heat capacity CV , magnetization M, and magnetic susceptibility χ. Calculations are

performed for the CdSe cylindrical core–shell quantum dot with the parameters presented

in Table 1. Re f f changes in the following range: 1.9 < Re f f < 2.1. CdSe structures, whether

core–shell quantum dots or nanoplatelets, are among the most effectively implemented by
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various synthesis methods [30,31]. The material parameters of these systems have been

well studied, and various geometric models have been constructed to describe the states of

electrons, impurities, and excitons in such structures [32,33]. Basic knowledge of the band

structure of CdSe core–shell quantum dots or nanoplatelets allows one to study in detail

the various physical characteristics of such systems, in particular, intraband and interband

optical transitions. At the same time, as calculations show, exciton states can significantly

affect the nature of optical transitions. Meanwhile, the band gap in the case of CdSe is

relatively large, unlike that of PbS, which allows for the implementation of optical sensors

that operate in higher frequency ranges [34].

Table 1. Parameters of considered material. These parameters are taken from [34]. Some of these data

points interpolated using available data.

Parameter CdSe

d0, nm 0.3

me
⊥, m0

0.144 (4.5 ML)

0.138 (5.5 ML)

0.13 (7.5 ML)

mhh
⊥ , m0

0.92 (4.5 ML)

0.9 (5.5 ML)

0.88 (7.5 ML)

µ∥, m0

0.09 (4.5 ML)

0.081 (5.5 ML)

0.076 (7.5 ML)

2.15 (4.5 ML)

Eg, eV 2.0 (5.5 ML)

1.76 (7.5 ML)

Figure 2 shows the dependency of the mean energy of the gas under study on the Re f f

at different temperatures. As expected, with increasing temperature, the average energy of

the gas increases. At the same time, with the growth of the effective radius, the distance

between the levels of angular motion decreases and the electron gas at a higher temperature

is more sensitive to changes in the geometric parameters of the quantum dot, because of

which the graph of the dependence < E >

(

Re f f

)

corresponding to a higher temperature

undergoes more significant changes. The latter circumstances are a direct consequence of

the quantum nature of the energy spectrum of the particle.

Figure 3 shows the dependency of the entropy of the gas under study on the Re f f at

different temperatures. For higher temperature, the corresponding curve of dependence

is higher. On the other hand, as it was stated above, with increase in Re f f , the distance

between energy levels decreases, which leads to an increase in number of states on the unit

energy segment. This, in turn, leads to increase in entropy of gas. The abovementioned

relationship is shown by numerical calculations.
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With the growth of the magnetic field, the current caused by the rotation of the electron

on the surface of the nanolayer increases; this follows from the expression for the quantum

current of a spinless particle in a magnetic field:

→
j =

ieℏ

2µ

(

ψ∇ψ∗ − ψ∗∇ψ
)

− e2

µc

→
A|ψ|2. (32)

Thus, with the growth in H, the current will grow, and consequently, the electron

magnetic moment pm will also grow. This leads to an increase in the magnetization of the

system in modulus.

On the other hand, an increase in the temperature leads to an increase in the orbital

current of the electron on the surface of the nanolayer. Considering the abovementioned

relationship, we obtain the dependences M(H) at different temperatures, shown in Figure 5.

It should be noted that the dependences are linear; consequently, the diamagnetic suscepti-

bility χ practically does not change with increasing H. However, a higher temperature will

correspond to a larger value in modulus of χ (Figure 6).
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In addition to the thermodynamic properties, studying the optical and transport

characteristics of low-dimensional structures provides valuable insights into the physical

processes occurring within them. Notably, in [35,36], both theoretical and experimental

research on the optical and magneto-optical characteristics of two-dimensional and quasi-

two-dimensional systems demonstrated the feasibility of implementing the generalized

Kohn theorem in electron and hole subsystems.
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Beyond magneto-optical effects, magneto-transport phenomena in low-dimensional

structures are also of significant interest. This topic is explored in [37–40], where it was

shown that the electronic and transport properties of these systems are highly sensitive to

factors such as material composition, quantum confinement, and magnetic interactions.

Studies have demonstrated that anisotropic behavior, doping effects, and the interplay

between electronic states and external fields play a crucial role in shaping the magneto-

transport characteristics of low-dimensional materials. These findings highlight the com-

plex and tunable nature of transport phenomena, offering new possibilities for advanced

electronic and spintronic applications.

Thus, the study of thermodynamic characteristics, along with the optical and ki-

netic properties, is an effective tool that allows us to identify the behavioral features of

multiparticle systems within low-dimensional structures.

4. Conclusions

Thus, in this work we have determined the thermodynamic and magnetic characteris-

tics of a weakly interacting electron gas in a thin cylindrical CdSe nanolayer in the presence

of an axial magnetic field. Calculations show that with an increase in the temperature

and Re f f of the core–shell quantum dot, the mean energy and entropy of the electron gas

increases. On the other hand, the heat capacity of the gas decreases with an increase in

temperature and effective radius. The magnetization of the electron gas increases with an

increase in the magnetic field and temperature. It important to note that the electron gas has

a pronounced diamagnetism. It is noteworthy that the relationship between magnetization

and the value of the magnetic field is almost linear, as a result of which, the value of

diamagnetic susceptibility practically does not change.

Our results are tightly connected with those of previous works on CdSe-based quan-

tum dots and nanoplatelets. The article [31] demonstrated the synthesis and characteri-

zation of (CdSe)ZnS core–shell quantum dots, revealing how quantum confinement and

passivation influence optical properties such as photoluminescence efficiency, and exci-

tonic transitions. Additionally, the article [30] investigated exciton dynamics in CdSe

nanoplatelets, highlighting the impact of lateral quantum confinement on optical absorp-

tion and energy level quantization. The correlation between these effects and weakly

interacting electron gases in core–shell quantum dots remains an open question, yet our

results suggest that the thermodynamic and magnetic properties could be experimentally

observed through techniques like magneto-optical spectroscopy, temperature-dependent

photoluminescence, and calorimetry. These insights could contribute to the development of

tunable quantum dot-based devices for optoelectronics and spintronics (QD-LEDs, spin-QD

transistors, solar cells, etc.) [41,42].
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