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Abstract. We use the Clifford algebra technique [1,2] for representing in an elegant way
quantum gates and quantum algorithms needed in quantum computers. We express the
phase gate, Hadamard'’s gate and the C-NOT gate as well as the Grover’s algorithm in
terms of nilpotents and projectors—binomials of the Clifford algebra objects ° with the
property £ *; °g = 2 °”, identifying n-qubits with the spinor representations of the
group SO (1;3) for the system of n spinors expressed in terms of products of projectors
and nilpotents.

6.1 Introduction

It is easy to prove (and it is also well known) that any type of a quantum gate, op-
erating on one qubit and represented by an unitary operator, can be expressed as
a product of the two types of quantum gates—the phase gate and the Hadamard’s
gate—while the C-NOT gate, operating on two quantum bits, enables to make a
quantum computer realizable, since all the needed operations can be expressed in
terms of these three types of gates. In the references|3,4] the use of the geometrical
algebra to demonstrate these gates and their functioning is presented.

In this paper we use the technique from the ref. [1,2], which represents spinor
representations of the group SO (1;3) in terms of projectors and nilpotents, which
are binomials of the Clifford algebra objects . We identify the spinor represen-
tation of two one spinor states with the two quantum bits Piand jiand accord-
ingly n spinors’ representation of SO (1;3) with the n-qubits. The three types of
the gates can then be expressed in terms of projectors and nilpotents in a trans-
parent and elegant way. We express one of the known quantum algorithms, the
Grover’s algorithm, in term of projectors and nilpotents to see what properties
does it demonstrate and to what new algorithms with particular useful proper-
ties might it be generalized.

6.2 The technique for spinor representations

We define in this section the basic states for the representation of the group SO (1;3)
and identify the one qubit with one of the spinor states. We distinguish between
the chiral representation and the representation with a well defined parity. We
shall at the end make use of the states of well defined parity, since they seem to
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be more appropriate for the realizable types of quantum computers. However, the
proposed gates work for the chiral representation of spinors as well. We identify
n-qubits with states which are superposition of products of n one spinor states.
We also present some relations, useful when defining the quantum gates.

The group SO (1;3) has six generators s2°: 0%, %2, 593 323 g3 st2 fulfill-
ing the Lorentz algebra £52° ;5°4g = i( @dgbc+ Pegad_ acgbd_ bdgac) For
spinors can the generators S*° be written in terms of the operators @ fulfilling
the Clifford algebra

£2; g =2°%"; diag( )= 1;-1;-1;-1);

2P = Z @ P. fora 6 band 0 otherwise: (6.1)

They define the spinor (fundamental) representation of the group SO (1;3). Choos-
ing for the Cartan subalgebra set of commuting operators s°° and S*? the spinor
states

03 12 03 12
Pl = Fil+); Ja =GDETL
03 12 03 12
Pig = (+DH+); Jizg =[F1il-] (6.2)
with the definition
03' B 1 0 3., 12 B 1 | 2.
( 1)72( )i ( )72( i%);
03 1 12 1
1= =(1 0 3 ; =2 (1 12 ; .
[ i)+ 5 oL g i) (6.3)

03
are all eigenstates of the Cartan subalgebra set s°? and s'?, since s%° ( i)=
. 03 03 . 03 12 12 12 12

2 ( 4,9 [ ir 1 [ ilandsimilarly % ( = I ( ),$*[ ¥ [ ]
what can very easily be checked, just by applying s°° and S*? on the particular
nilpotent or projector and using Eq.(6.1). The states 9i, and 11, have handed-
ness = -4is’?s'? equal to - 1, while the states iz and 1iz have handedness

equal to 1. We normalize the states as follows [1]
hljjl = ij H (64)

where i;jdenote Oor 1and ; left and right handedness.
When describing a spinor in its center of mass motion, the representation
with a well defined parity is more convenient

1 03 12 03 12
ﬁi:p—z([—i](ﬂ (+ 1)+ ));

1 03 12 03 12

fi= p=(DE] FAED: (6.5)

Nilpotents and projectors fulfill the following relations [1,2] (which can be checked
just by using the definition of the nilpotents and projectors (Eq.6.3) and by taking
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into account the Clifford property of 2’s (Eq.6.1))

ab ab ab ab ab abab ab ab ab

(k)k)= 0; k)-k)= ** k] KlkEKk] kl-k¥E 0;

abab abab ab ab ab ab ab ab

k)kl= 0; klk)=(k); kK)-kE k); kl-k)=0 (6.6)

We then find that the operators
03 12 03 12

R (D (D PR G ) G Y (6.7)

transform the states of the same representation, left and right correspondingly,
one into another or annihilate them, while they annihilate the states of the oppo-
site handedness

TPk = i M ik = Ph;
Pk = dk; N ik = P (6.8)

all the other applications * and * give zero.
We also find that the operators
03 12 03 12
= 0+ B o= (A )+ AX ) (6.9)
transform the states of well defined parity (Eq.6.5) into one another or annihilate
them

S Pi= 4i;  t4i= i (6.10)

while the rest of applications give zero, accordingly ( * + ~)Pi = Ji;(* +
T)di= Pi
We present the following useful properties of , valid for * and * as
well so that we shall skip the index L;R ;

( F=0;
« V=
12 12
To=RYy T T =ET
("+ TP=1;
12 12 12 12
T 1= 0; TEFEO 1T =0; F17T=0;
12 12 12 12
EI= Ty T FE G BRI = "5 BT = 0 (61D)
A n-qubit state can be written in the chiral representation as
Y
Jad 1 i E Ji s = LiR; (6.12)
1=1;n

while in the representation with well defined parity we similarly have
Y
Bl 1 dni=i Jx 1: (6.13)
1=1;n



6 Quantum Gates and Quantum Algorithms with Clifford Algebra Technique 89

i stand for Pi, or ji;. All the raising and lowering operators ;, , = L;R or

, carry the index of the corresponding qubit manifesting that they only apply
on the particular k state, while they do not “see” all the other states. Since they
are made out of an even number of the Clifford odd nilpotents, they do not bring
any sign when jumping over one-qubit states.

6.3 Quantum gates

We define in this section three kinds of quantum gates: the phase gate and the
Hadamard’s gate, which apply on a particular qubit 1and the C-NOT gate, which
applies on two qubits, say 1and m . All three gates are expressed in terms of
projectors and an even number of nilpotents.

i. The phase gate R | is defined as

12 12

R =p)+et '] (6.14)

Statement: The phase gate R | if applying on §,ileaves it in state 1, while
if applying on 3, imultiplies this state with e* . This is true for states with well
defined parity f11 and also for the states in the chiral representation i, and
Jadr-

Proof: To prove this statement one only has to apply the operatorR | on fu1,
14, and fuiz, with 4 equal 0 or 1, taking into account equations from Sect. 6.2.
ii. The Hadamard’s gate H ; is defined as

1 12 12 03 12 03 12 03 12 03 12
H,= ?—E[H - FLl- D=0+ G- D+ D D
(6.15)
or equivalently in terms of  (Eq.(6.9))
1 12 12
Hi=pslr)-EL+ 1+ 1% (6.16)

Statement: The Hadamard'’s gate H , if applying on ), i transforms it to

P

(= (Pri+ J11));

[\

while if applying on ,1iit transforms the state to (191—5 (P1i- 3.11)). This is true for
states with well defined parity 3;iand also for the states in the chiral representa-
tion i, and iz

Proof: To prove this statement one only has to apply the operator H, on i1,
Jui; and iz, with i equal 0 or 1, taking into account equations from Sect. 6.2.
iii. The C-NOT gate Cy,, is defined as

12 12 03 12 03 12 03 12 03 12
Cim = FI+FLE (1), )y + 1), )y — D)y )y + (F1)y ) b

(6.17)
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or equivalently

12 12
Com =B 1+ Ll + ok (6.18)
Statement: The C-NOT gate Cy,, ifapplyingonj ; 0, O itransforms it
back to the same state, if applyingon§ ;1 0, 1 itransforms it to back to the
same state. If C,, applies on j 1 1n, O i transforms it to j S i,
while it transforms the state j 1 1, 1 ito the state j n D i
Proof: To prove this statement one only has to apply the operator Cy,, on the
states § 1 i, 1 i, o 11,311 dn 1igr,withi;i, equalOor

1, taking into account equations from Sect. 6.2.
Statement: When applying % H; on the n qubit with all the qubits in the
state P:1i, we get the state j o1
Y Y
j oi= H ij)ii= (:@ii+ j].ll) (619)

i i

Proof: 1t is straightforward to prove, if the statement ii. of this section is taken into
account.

6.4 Useful properties of quantum gates in the technique using
nilpotents and projectors

We present in this section some useful relations.
i. One easily finds, taking into account Eqgs.(6.14,6.16,6.18,6.9,6.11), the relation

1 12 ' 12 i )
R HR H;= 5f([+]l+el PED@+ et )+ (] + D)1 - et )g(6.20)

which transforms §;iinto a general superposition of f;iand ,ilike

e PR, pHIR JH Pii= cos( 1=2)Pi+ e sin( 1=2)1,1;

e - ):ZR lH 1R 1H ]_jlli: Sin( l=2)j)li— ei +cos ( 1=2)jl]_i: (621)

ii. Let us define the unitary operator §,

e
Cp=T1-2 ol = I- 2R,;
=1
6= (@-2R, )V =1; (6.22)

where [iy ], projects out of the i-th qubit a particular state j,i(with i, = 0;1) and
where p is the number of qubits taken into account, while R, is defined as follows

P
ﬁp = [10 }Li

B2 - R, - RY: (6.23)
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We define also the unitary operator D

n #
2 Y
]ﬁp:_1+2_P (Ill+ l-+ ll) 72§p—1,
Li=1
1 P
§li:§(lli+ T I 8y, :
1,=1
We find that 8, is a projector
(éll )k = éll ’
(ép )k = ép ’
) Rp) = 8, Ry :
Consequently it follows
1
SpRp 5o 2_p§p Z
1
Rp SpRp oo P

A
S
e}
s
Il
—

Let us simplify the notation

. _ 1 mho+ |, ifloh = BL
Hogr = 5 Fho+ 1L iflodh = FL
. _ 1 i+ ], ifloh = B L
Fodks = 3 Fho+ 3 iflol, = 1
Y
Oxr = figgr
v
Oxs = figgrs :
then we can write
§p§p = fOxs;

8,8,8, = &, O ;
88,8, = Dgish,;

SoRp SRy = im%R :

91

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)
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Let us recognize that for p = n, where n is the number of qubits,
1Y
Oxks] ol= Rpspj 0l= ?? Joi;

P

. A S

OgrJ 0li= SpRpJ oi= oo Jodi
803 0= 3 odj
1Y

ﬁpj ol= ?? Joi: (6.32)
P

6.5 Grover’s algorithm

Grover’s quantum algorithm is designed to search a particular information qut of
a data base with n qubits. It enables us to find the desired information in 0 (* 2")
trials, with a certain probability.

Let us define the operator G ,

6, =8,0,; (6.33)

with §, and ', defined in Egs.(6.22, 6.24) in sect. 6.4. We find, if using notation
from equations (6.25,6.23)

Eo) = D0 = (28, - I(I- 2By)
- 28, + 2R, - 48R, - T " (6.34)

where &, and R, do not commute.
We can further write

Gp)= (=) I+N;fgg+ N, f0gs + N3 8, + N4R,; (6.35)

where N ; ;i2 fl;4qgare integers, which depend on p and k.

Forn = pand k = 1we find N ;;i2 fl;4gare —4;0;2;2, for k = 2 we find
N;;i2 fljdgare 2*7P — 22;2% ;- 237 P ;- 237 P,

Since, according to Eq.(6.%22) the application ocg Ogr ;0Gs ;5 and R, on the
state j o1 gives z%j 0l P% Y Joi F o, P% ¥ o1, the application of the
operator G, k times, lead to the state

Y
G¥Foi= xJoi+ « Joi; (6.36)

i
where k = 2%] ol= [(- )k+ N127P+N31j Oiand k = 27%|_Ng+N41
One can find the ; x by recognizing that

Y Y
G\p( 53 0it 5 Joi)= 13 0it+t 41 Joi: (6.37)
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It follows that

1 = 5 1- 227p - 217 2 5 (638)
1 = 217 2_ j+ - (639)

Let us calculate a few values for and

0o=1; 0=0 (6.40)
p=1-2%P; =2"% (6.41)
p= (1-22PP - ER; =225 a- 2y (6.42)

6.6 Concluding remarks

We have demonstrated in this paper how can the Clifford algebra technique [1,2]
be used in quantum computers gates and algorithms. Although our projectors
and nilpotents can as well be expressed in terms of the ordinary projectors and
the ordinary operators, the elegance of the technique seems helpful to better un-
derstand the operators appearing in the quantum gates and quantum algorithms.
We shall use the experience from this contribution to try to generate new quan-
tum algorithms.
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