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Abstract. We use the Clifford algebra technique [1,2] for representing in an elegant way

quantum gates and quantum algorithms needed in quantum computers. We express the

phase gate, Hadamard’s gate and the C-NOT gate as well as the Grover’s algorithm in

terms of nilpotents and projectors—binomials of the Clifford algebra objects 
a with the

property f
a ;
bg+ = 2�
a b , identifying n-qubits with the spinor representations of the

group SO (1;3) for the system of n spinors expressed in terms of products of projectors

and nilpotents.

6.1 Introduction

It is easy to prove (and it is also well known) that any type of a quantum gate, op-

erating on one qubit and represented by an unitary operator, can be expressed as
a product of the two types of quantum gates—the phase gate and theHadamard’s

gate—while the C-NOT gate, operating on two quantum bits, enables to make a
quantum computer realizable, since all the needed operations can be expressed in

terms of these three types of gates. In the references[3,4] the use of the geometrical

algebra to demonstrate these gates and their functioning is presented.
In this paper we use the technique from the ref. [1,2], which represents spinor

representations of the group SO (1;3)in terms of projectors and nilpotents, which
are binomials of the Clifford algebra objects 
a . We identify the spinor represen-

tation of two one spinor states with the two quantum bits j0iand j1iand accord-

ingly n spinors’ representation of SO (1;3)with the n-qubits. The three types of
the gates can then be expressed in terms of projectors and nilpotents in a trans-

parent and elegant way. We express one of the known quantum algorithms, the
Grover’s algorithm, in term of projectors and nilpotents to see what properties

does it demonstrate and to what new algorithms with particular useful proper-

ties might it be generalized.

6.2 The technique for spinor representations

Wedefine in this section the basic states for the representation of the group SO (1;3)

and identify the one qubit with one of the spinor states. We distinguish between

the chiral representation and the representation with a well defined parity. We
shall at the end make use of the states of well defined parity, since they seem to



6 Quantum Gates and Quantum Algorithms with Clifford Algebra Technique 87

bemore appropriate for the realizable types of quantum computers. However, the
proposed gates work for the chiral representation of spinors as well. We identify

n-qubits with states which are superposition of products of n one spinor states.
We also present some relations, useful when defining the quantum gates.

The group SO (1;3)has six generators Sab : S01, S02, S03, S23 , S31, S12, fulfill-

ing the Lorentz algebra fSab;Scdg- = i(�adSbc + �bcSad - �acSbd - �bdSac). For
spinors can the generators Sab be written in terms of the operators 
a fulfilling

the Clifford algebra

f

a
;


b
g+ = 2�

ab
; diag(�)= (1;-1;-1;-1);

S
ab

=
i

2


a


b
; fora 6= b and 0 otherwise: (6.1)

They define the spinor (fundamental) representation of the group SO (1;3). Choos-
ing for the Cartan subalgebra set of commuting operators S03 and S12 the spinor

states

j0iL =
03

[-i]
12

(+); j1iL =
03

(+i)
12

[-];

j0iR =
03

(+i)
12

(+); j1iR =
03

[-i]
12

[-] (6.2)

with the definition
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are all eigenstates of the Cartan subalgebra set S03 and S12, since S03
03

(� i)=

� i

2

03

(� i), S03
03

[� i]= � i

2

03

[� i]and similarly S12
12

(� )= �1

2

12

(� ), S12
12

[� ]= �1

2

12

[� ],
what can very easily be checked, just by applying S03 and S12 on the particular

nilpotent or projector and using Eq.(6.1). The states j0iL and j1iL have handed-

ness � = -4iS03S12 equal to -1, while the states j0iR and j1iR have handedness
equal to 1. We normalize the states as follows [1]

� hijji� = �ij�� �; (6.4)

where i;jdenote 0or 1 and �;� left and right handedness.

When describing a spinor in its center of mass motion, the representation
with a well defined parity is more convenient

j0i=
1
p
2
(
03

[-i]
12

(+)�
03

(+i)
12

(+));

j1i=
1
p
2
(

03

(+i)
12

[-]�
03

[-i]
12

[-]): (6.5)

Nilpotents and projectors fulfill the following relations [1,2] (which can be checked

just by using the definition of the nilpotents and projectors (Eq.6.3) and by taking
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into account the Clifford property of 
a ’s (Eq.6.1))
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(k)= 0;
ab

(k)
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(-k)= �
aa
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[k];
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[k]
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ab

[k];
ab

[k]
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(k)
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[k]= 0;
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[k]
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(k)=
ab

(k);
ab

(k)
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[-k]=
ab

(k);
ab

[k]
ab

(-k)= 0 (6.6)

We then find that the operators

�
L�

:= -
03

(� i)
12

(� ); �
R�

:=
03

(� i)
12

(� ); (6.7)

transform the states of the same representation, left and right correspondingly,
one into another or annihilate them, while they annihilate the states of the oppo-

site handedness

�
L-
j0iL = j1iL; �

L+
j1iL = j0iL;

�
R-
j0iR = j1iR; �

R+
j1iR = j0iR; (6.8)

all the other applications �L� and �R� give zero.
We also find that the operators

�
�
:= �

L�
+ �

R�
= -

03

(� i)
12

(� )+
03

(� i)
12

(� ) (6.9)

transform the states of well defined parity (Eq.6.5) into one another or annihilate

them

�
-
j0i= j1i; �

+
j1i= j0i (6.10)

while the rest of applications give zero, accordingly (�+ + �- )j0i = j1i;(�+ +

�- )j1i= j0i.
We present the following useful properties of �� , valid for �L� and �R� as

well so that we shall skip the index L;R;,
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A n-qubit state can be written in the chiral representation as

ji1i2 � � � il� � � in i� =
Y

l= 1;n

jili� ; � = L;R; (6.12)

while in the representation with well defined parity we similarly have

ji1i2 � � � il� � � in i=
Y

l= 1;n

jiki: (6.13)
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il stand for j0il or j1il. All the raising and lowering operators �
� �

l
, � = L;R or

�
�

l
carry the index of the corresponding qubit manifesting that they only apply

on the particular k state, while they do not ”see” all the other states. Since they
are made out of an even number of the Clifford odd nilpotents, they do not bring

any sign when jumping over one-qubit states.

6.3 Quantum gates

We define in this section three kinds of quantum gates: the phase gate and the
Hadamard’s gate, which apply on a particular qubit land the C-NOT gate, which

applies on two qubits, say l and m . All three gates are expressed in terms of

projectors and an even number of nilpotents.
i. The phase gate R � l

is defined as

R � l
=

12

[+]
l
+e

i� l

12

[-]
l
: (6.14)

Statement: The phase gate R � l
if applying on j0lileaves it in state j0li, while

if applying on j1limultiplies this state with e
i� . This is true for states with well

defined parity jili and also for the states in the chiral representation jiliL and
jiliR .

Proof: To prove this statement one only has to apply the operator R � l
on jili,

jiliL and jiliR , with il equal 0or 1, taking into account equations from Sect. 6.2.
ii. The Hadamard’s gate H l is defined as

H l =
1
p
2
[
12

[+]
l
-

12

[-]
l
-

03

(+i)
l

12

(-)
l
+

03

(-i)
l

12

(-)
l
-

03

(-i)
l

12

(+)
l
+

03

(+i)
l

12

(+)
l
];

(6.15)

or equivalently in terms of �� (Eq.(6.9))

H l =
1
p
2
[
12

[+]
l
-

12

[-]
l
+�

-

l
+ �

+

l
]: (6.16)

Statement: The Hadamard’s gate H l if applying on j0litransforms it to

(
1
p
2
(j0li+ j1li));

while if applying on j1liit transforms the state to (
1p
2
(j0li- j1li)). This is true for

states with well defined parity jiliand also for the states in the chiral representa-
tion jiliL and jiliR .

Proof: To prove this statement one only has to apply the operator H l on jili,
jiliL and jiliR , with il equal 0or 1, taking into account equations from Sect. 6.2.

iii. The C-NOT gate Clm is defined as

Clm =
12

[+]
l
+

12

[-]
l
[-

03

(+i)
m

12

(-)
m
+

03

(-i)
m

12

(-)
m
-

03

(-i)
m

12

(+)
m
+

03

(+i)
m

12

(+)
m
];

(6.17)
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or equivalently

Clm =
12

[+]
l
+

12

[-]
l
[�
-

m + �
+

m ]: (6.18)

Statement: The C-NOT gate Clm if applying on j� � � 0l� � � 0m � � � itransforms it
back to the same state, if applying on j� � � 0l� � � 1m � � � itransforms it to back to the

same state. If Clm applies on j� � � 1l� � � 0m � � � i transforms it to j� � � 1l� � � 1m � � � i,

while it transforms the state j� � � 1l� � � 1m � � � ito the state j� � � 1l� � � 0m � � � i.
Proof: To prove this statement one only has to apply the operator Clm on the

states j� � � il� � � im � � � i, j� � � il� � � im � � � iL , j� � � il� � � im � � � iR , with il;im equal 0or
1, taking into account equations from Sect. 6.2.

Statement: When applying �n
i H i on the n qubit with all the qubits in the

state j0ii, we get the state j 0i

j 0i=

nY

i

H ij0ii=

nY

i

(j0ii+ j1ii): (6.19)

Proof: It is straightforward to prove, if the statement ii. of this section is taken into
account.

6.4 Useful properties of quantum gates in the technique using
nilpotents and projectors

We present in this section some useful relations.

i. One easily finds, taking into account Eqs.(6.14,6.16,6.18,6.9,6.11), the relation

R � l
H lR �l

H l =
1

2
f(

12

[+]
l
+e

i� l

12

[-]
l
)(1+ e

i�l)+ (�
+

l
+ �

-

l
)(1- e

i�l)g;(6.20)

which transforms jiliinto a general superposition of j0liand j1lilike

e
- i�l=2R (� l+ � =2)

H lR �l
H lj0li= cos(�l=2)j0li+ e

i� l sin(�l=2)j1li;

e
- i(�l- � )=2R � l

H lR �l
H lj1li= sin(�l=2)j0li- e

i� l cos(�l=2)j1li: (6.21)

ii. Let us define the unitary operator Ô p

Ô p = I- 2

pY

li= 1

[i0]li = I- 2R̂p;

Ô
2
p = (I- 2R̂p)

2
= I; (6.22)

where [i0]li projects out of the i-th qubit a particular state ji0i(with i0 = 0;1) and

where p is the number of qubits taken into account, while R̂p is defined as follows

R̂p =

pY

li

[i0]li

R̂
2
p = R̂p = R̂

y
p: (6.23)
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We define also the unitary operator D̂ p

D̂ p = -I+
2

2p

"
pY

li= 1

(Ili + �
+

li
+ �

-

li
)

#

= 2Ŝp - I;

Ŝli =
1

2
(Ili + �

+

li
+ �

-

li
); Ŝp =

pY

li= 1

Ŝli: (6.24)

We find that Ŝp is a projector

(̂Sli)
k
= Ŝli;

(̂Sp)
k
= Ŝp;

(̂Sp)
k
(̂Rp)

l
= Ŝp R̂p: (6.25)

Consequently it follows

Ŝp R̂p Ŝp =
1

2p
Ŝp;

R̂p Ŝp R̂p =
1

2p
R̂p;

Ŝp R̂p Ŝp R̂p =
1

2p
Ŝp R̂p;

(D̂ p)
2
= I: (6.26)

Let us simplify the notation

fi0gSR =
1

2

�
[+]li + �

-

li
, if [i0]li = [+]li

[-]li + �
+

li
, if [i0]li = [-]li

(6.27)

fi0gRS =
1

2

�
[+]li + �+

li
, if [i0]li = [+]li

[-]li + �-
li
, if [i0]li = [-]li

(6.28)

f0gSR =
Y

i

fi0gSR (6.29)

f0gRS =
Y

i

fi0gRS: (6.30)

then we can write

R̂p Ŝp = f0gRS;

Ŝp R̂p Ŝp = Ŝpf0gRS;

R̂p Ŝp R̂p = f0gRS R̂p;

Ŝp R̂p Ŝp R̂p =
1

2p
f0gSR: (6.31)
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Let us recognize that for p = n, where n is the number of qubits,

f0gRSj 0i= RpSpj 0i=
1

p
2p

Y

p

ji0i;

f0gSRj 0i= SpRpj 0i=
1

2p
j 0i;

Ŝpj 0i= j 0i;

R̂pj 0i=
1

p
2p

Y

p

ji0i: (6.32)

6.5 Grover’s algorithm

Grover’s quantum algorithm is designed to search a particular information out of

a data base with n qubits. It enables us to find the desired information in O (
p
2n )

trials, with a certain probability.
Let us define the operator G p

Ĝ p = D̂ p Ô p; (6.33)

with Ô p and D̂ p defined in Eqs.(6.22, 6.24) in sect. 6.4. We find, if using notation
from equations (6.25,6.23)

(Ĝ p)
k
= (D pO p)

k
=
�
(2Ŝp - I)(I- 2R̂p)

�k

=
�
2Ŝp + 2R̂p - 4Ŝp R̂p - I

�k
(6.34)

where Ŝp and R̂p do not commute.
We can further write

(Ĝ p)
k
= (-)

k
I+ N 1 f0gSR + N 2 f0gRS + N 3 Ŝp + N 4R̂p; (6.35)

where N i;i2 f1;4gare integers, which depend on p and k.
For n = p and k = 1we find N i;i2 f1;4gare -4;0;2;2, for k = 2we find

N i;i2 f1;4gare 24- p - 22;22;-23- p;-23- p .

Since, according to Eq.(6.32) the application of f0gSR;f0gRS;Ŝp and R̂p on the
state j 0igives

1

2p
j 0i,

1p
2p

Q p

i
ji0i, j 0i,

1p
2p

Q p

i
ji0i, the application of the

operator Ĝ p k times, lead to the state

G
k
j 0i= �k j 0i+ �k

Y

i

ji0i; (6.36)

where �k =
1

2p
j 0i= [(-)k + N 1 2

- p + N 3]j 0iand �k = 2-
p

2 [N 2 + N 4].

One can find the �k;�k by recognizing that

Ĝ p (�jj 0i+ �j

Y

i

ji0i)= �j+ 1j 0i+ �j+ 1

Y

i

ji0i: (6.37)
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It follows that

�j+ 1 = �j
�
1- 2

2- p
�
- 2

1-
p

2 �j (6.38)

�j+ 1 = 2
1-

p

2 �j+ �j: (6.39)

Let us calculate a few values for � and �

�0 = 1; �0 = 0 (6.40)

�1 = 1- 2
2- p

; �1 = 2
1-

p

2 (6.41)

�2 = (1- 2
2- p

)
2
- (2

1-
p

2 )
2
; �2 = 2

2-
p

2 (1- 2
1- p

) (6.42)

6.6 Concluding remarks

We have demonstrated in this paper how can the Clifford algebra technique [1,2]
be used in quantum computers gates and algorithms. Although our projectors

and nilpotents can as well be expressed in terms of the ordinary projectors and
the ordinary operators, the elegance of the technique seems helpful to better un-

derstand the operators appearing in the quantum gates and quantum algorithms.

We shall use the experience from this contribution to try to generate new quan-
tum algorithms.
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