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Abstract

It is well known that there must be a physics beyond the Standard Model of elementary particles.
Among all the evidences, the mass of the neutrinos, the matter-antimatter asymmetry of our
Universe and the dark matter constitute the three general contexts of this thesis.

The fact that neutrinos are massive is the first clearest evidence for a new physics beyond
the Standard Model. Neutrino masses can find an explanation in the context of the famous and
favorite “Seesaw models”. These models also generate processes in which the flavor of the charged
leptons changes, as in the decay of a muon into an electron and a photon, or the conversion of
a muon into an electron in atomic nuclei without neutrino emission. These processes are very
appealing because future experiments will reach impressive sensibilities on the measurement of
their branching rate, and because their observation would confirm the existence of a new physics
and could even potentially discriminate between different theoretical models. It is therefore
important to have reliable expressions for their rate in each kind of Seesaw mechanism. In the
first part of this thesis, we compute the rate of the conversion of a muon into an electron in the
framework of type-1 Seesaw models, and we analyze the phenomenology it leads to.

The Seesaw models, on top of generating small neutrino masses and new interesting pro-
cesses, also contain remarkably all the necessary ingredients to create enough matter-antimatter
asymmetry in our Universe through the “leptogenesis” mechanism. This latter consists in generat-
ing a lepton asymmetry which is partially transferred in a baryon asymmetry. In the second part
of this thesis, we study the leptogenesis in the context of type-2 Seesaw models, determining and
analyzing for the first time the effect of the flavors and the spectator processes.

Finally, the third and last part of this thesis focuses on the possibility of generating not only
the baryons in an asymmetric way but also the dark matter. To this end we consider the “inert
doublet” model, as it contains an interaction which could generate dark matter in an asymmetric
way. We therefore address the following question : is it possible to generate all the observed dark
matter of our Universe in an asymmetric way in the inert doublet model ?
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Résumé

Il est clair que le Modèle Standard des particules élémentaires n’est pas complet. Parmi tous les
indices d’une physique au-delà du Modèle Standard, la masse des neutrinos, l’asymétrie matière-
antimatière de notre Univers et la matière noire constituent les trois contextes généraux de cette
thèse.

Le fait que les neutrinos soient massifs constitue la plus claire évidence d’une physique au-
delà du Modèle Standard. La masse des neutrinos peut trouver une explication notamment dans
le cadre des modèles favoris dits “modèles Seesaw”. Ces modèles, en plus de générer une petite
masse pour les neutrinos, génèrent aussi des processus dans lesquels la saveur d’un lepton chargé
est changée, comme la désintégration d’un muon en un électron et un photon, ou la conversion
d’un muon en un électron au sein d’un atome sans émission de neutrino. Ces processus sont
importants car les expériences futures devraient atteindre des sensibilités impressionnantes sur
leurs taux, mais aussi parce que leur observation confirmerait l’existence d’une physique nouvelle
et pourrait peut-être discriminé parmi les différents modèles. Il est donc important d’avoir une
expression analytique fiable du taux de ces processus dans le cadre de ces modèles Seesaw favoris.
Dans la première partie de cette thèse, nous calculons l’expression du taux de conversion d’un
muon en un électron au sein d’un atome dans le cadre des modèles Seesaw de type 1, et analysons
la phénoménologie s’y rapportant.

Ces modèles Seesaw, en plus de générer une petite masse pour les neutrinos et des processus
changeant la saveur leptonique, permettent aussi la création de l’asymétrie matière-antimatière
dans l’Univers, à travers le mécanisme dit de “leptogenèse”. Selon ce mécanisme, une asymétrie
leptonique aurait d’abord été créée, avant d’être partiellement transférée en une asymétrie baryo-
nique. Dans la seconde partie de cette thèse, nous calculons et analysons la leptogenèse dans le
cadre des modèles Seesaw de type 2 avec, pour la première fois, la prise en compte des effets de
saveurs.

Finalement, la troisième et dernière partie de cette thèse se concentre sur la possibilité de
générer non seulement la matière baryonique à partir d’une asymétrie, mais aussi la matière noire.
À cette fin, nous considérons le modèle dit “doublet inerte”, car il contient une interaction qui
pourrait à priori générer de la matière noire à partir d’une asymétrie. Nous adressons dès lors la
question suivante et y répondons : est-il possible de générer toute la matière noire à partir d’une
asymétrie de matière noire dans le contexte du modèle doublet inerte ?
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Introduction

What else ? This is the question which is in everybody’s mind since thousands of years, concerning
any kind of field, scientific or not. This is particularly true in physics nowadays. After each
improvement in our understanding of the physical phenomenon around us, it is each time more
shadow zones that are discovered. This was and this will be surely like that forever. However,
we are today very far in the elucidation of mysteries of Nature, thanks to the scientific input
of thousands of people since thousand of years, thanks to wonderful mathematical tools and
increasingly sophisticated experiments.

At the microscopic level, the building blocks of the Standard Model of elementary particles
(SM) physics have been progressively assembled until to reach in the 1960-1970’s his present form
after the placement of the keystone, the Brout-Englert-Higgs boson which has been discovered
experimentally in 2012 at the Large Hadron Collider (LHC). At the macroscopic level, the adjunc-
tion to the SM of the General Relativity (GR), the dark matter (DM) and dark energy (DE) has
allowed to build the Standard Model of cosmology (§CDM), which amazingly describes very well
the evolution of the Universe as confirmed by observations.

But we know that the monument is not yet achieved. As a first example, neutrinos are
massless in the Standard Model while experiments have put forward the fact that neutrinos are
actually massive particles. Second, our Universe is matter dominated so that an asymmetry
between matter and antimatter should have been created in the early times, and unfortunately the
Standard Model fails to generate it. Thirdly, on top of ordinary matter, there are clear evidences
that the Universe is also composed by an invisible dark matter whose origin is still unknown.
Finally, on top of these three examples, there are several other theoretical hints to believe that
there exists a new physics beyond the Standard model (BSM) as : the hierarchy problem, the
unification of forces, the inclusion of gravity, the strong C P problem, inflation, the origin of the
dark energy, the smallness of the cosmological constant, the Big Bang singularity,. . .

Despite these facts and these hints, it is very difficult to put in evidence new physics beyond
the Standard Model at the particle level, giving hard time to physicists. For now, all laboratory
experiments are in impressive agreement with the Standard Model of elementary particles and
don’t show any evidence for new BSM particles. The neutrino masses have been put in evidence by
both Universe observational means and laboratory experimental means, but its origin in terms of
particles is still unknown. All the other hints, as for example dark matter, are purely observational.
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So what’s next ? At the experimental level, the present and future experiments should bring
new discoveries soon. For example, the LHC second run could hopefully highlight the existence
of new elementary or composite particles (if this is not already done), neutrino experiments
should bring light on the nature of these particles, dark matter searches will also continue to bring
hope on its discovery, and more and more experiments are planed so as to lighten the real new
physics. At the theoretical level, lots of extensions to the Standard Model have been considered
for years, which generally all predict new particles and phenomena to be discovered. Among all
theses possibilities, Nature may be mild with us and could have chosen the ones that are within
experimental reach.

This thesis lies in such an exciting context and focuses on three of the above puzzles which
point towards new physics, namely neutrino masses, the matter-antimatter asymmetry of our
Universe and dark matter. Even if each puzzle can be solved in many possible ways and may not
be linked, clearly it is of special interest to see whether they could find an explanation from a
common origin. This is the point of view and the guiding principle we will adopt all along this
thesis. Actually, there are good reasons to believe that at least two or even the all three enigmas
could be related. For instance, the small neutrino masses can be explained in the framework of the
favorite Seesaw models, which are the most simple extensions of the Standard Model to account
for it. As we will show in this thesis, these models not only generate interesting charged lepton
flavor violation processes which we will study, but they also contain quite remarkably all the
necessary ingredients to explain the matter-antimatter asymmetry of the Universe, as we will see
too. The smallness of the mass of the neutrinos may therefore be related to the matter-antimatter
asymmetry of the Universe. As another example, it is particularly intriguing that the quantity of
visible matter and the quantity of dark matter in our Universe are very close to each other. It is
thus important to study if such apparent coincidence could not be explained in various ways, as
we will also discuss in this thesis. The thesis is structured as follows.

In chapter 1, we review the experimental evidence for neutrino oscillations. Since these
necessarily imply that neutrinos are massive particles, we discuss how the Standard Model can
be enlarged in order to account for their mass. In particular, we introduce the three types of
Seesaw models, which are very attractive extensions of the Standard Model that can generate
small neutrino masses and at the same time new processes that violate the charged lepton flavors.
Furthermore, these models can generate enough matter-antimatter asymmetry in our Universe
and they are very well motivated by Grand Unified Theories.

In chapter 2, we focus on the charged lepton flavor violation processes in the context of
type-1 Seesaw models. First, we review the experimental and theoretical status of these promising
processes, particularly the conversion of a muon into an electron in atomic nuclei since future
experiments should reach impressive sensitivities on its rate. Second, we compute the analytical
expression of the muon to electron conversion rate in the type-1 Seesaw models, on which there
was actually no agreement in the literature. Finally, we show how the charged lepton flavor
violation processes could lead to pretty nice predictions, how they could allow to determine the
Seesaw scale and how they could allow to distinguish between the various kinds of Seesaw models.
The computation of the conversion rate and the study of the phenomenology have lead to an
original publication [1].
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In chapter 3, we review the cosmological evidence for a matter-antimatter asymmetry in our
Universe. Among all the possibilities, the Seesaw models possess quite remarkably all the ingre-
dients to explain the matter-antimatter asymmetry, on top of generating small neutrino masses.
The way the matter asymmetry is generated in the Seesaw models is via the so-called leptogenesis
mechanism. We show how it works in the framework of the type-1 Seesaw models, and discuss
the effect of the lepton flavors in the asymmetry production. Flavors are important because they
could change dramatically the way leptogenesis occurs, but also because the structure of flavors
is in fact directly related to another puzzle in the Standard Model, that is : why are there three
families of fermions with such different masses and why are the flavor mixings in the lepton sector
so different from the ones in the quark sector ?

In chapter 4, we focus on the leptogenesis mechanism in the framework of the type-2 Seesaw
model. Because the way leptogenesis works in this case is in many ways different from the type-1
leptogenesis considered in the previous chapter, we first study the scalar triplet leptogenesis
within the one-flavor approximation. Subsequently we show the importance of the lepton flavors
and why they actually always matter in the scalar triplet leptogenesis mechanism. We then give all
the necessary ingredients for computing the baryon asymmetry of the Universe, starting from the
elementary interactions of the scalar triplet. In order to show how leptogenesis works within this
framework, we finally analyze the effect of flavors in several new scenarios. The computation of
the flavor effect in type-2 Seesaw leptogenesis and the study of the new scenarios have lead to an
original publication in Ref. [2].

In the last chapter 5, we first review very briefly the evidence for dark matter in our Universe.
Since here too the Standard Model doesn’t posses any dark matter candidate, it also needs to be
enlarged to account for it. In particular, in the so-called Inert Doublet Model (IDM), a second
scalar doublet is introduced which can account for the dark matter relic density. In the last part of
this thesis, we wonder if, alike to the baryonic matter in the previous chapters, dark matter can be
generated in an asymmetric way within this model. The answer of this question has lead to an
original publication in Ref. [3].
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Part I
Seesaw models as the origin of 

 neutrino masses and
charged lepton flavor violation 





1 Neutrino masses and BSM physics

Since the assumption of its existence by Wolfgang Pauli in 1930 [4], neutrinos are still fascinating
the world. The “desperate” remedy to save energy conservation in the Ø-decay is a neutral particle
of spin 1/2 and, at that time, supposed massless. Because of its very feeble interactions with the
other particles of the Standard Model (SM), it is only years after that we had a proof of its existence.
Chronologically, first was discovered the electron neutrino ∫e at Hanford [5] in 1956, then the
muon neutrino ∫µ at Brookhaven [6] in 1962, and finally the tau neutrino ∫ø at Fermilab [7] in
2000. Three flavors of neutrinos were discovered, corresponding to the three charged lepton
families. Experimentally, the number of neutrinos species lighter than mZ /2 has been determined
by measuring the cross-section of the e+e° annihilations near the Z mass. Adjusting the results
from the experiments ALEPH, DELPHI, L3 and OPAL, the number of light neutrino families N∫ is
in agreement with N∫ = 2.92±0.05 [8].

In the SM of elementary particles, together with its associated left-handed charged lepton,
each neutrino is a part a doublet `L ¥ (∫L eL)T , which is charged under the gauge group SU (2)L £
U (1)Y . Since they are electrically neutral and colorless, they can only interact through the Z
and the W ± gauge bosons of the weak interaction. Because they are supposed massless, no
right-handed neutrino has been introduced in the SM in order to give a mass to the neutrinos
through the Brout-Englert-Higgs mechanism. At the same time, no right-handed neutrino has
never been observed in nature so far.

As a consequence of the absence of right-handed neutrinos, the SM contains by construction
three lepton flavor global symmetries U (1)LÆ , with Æ = e,µ,ø, in addition to the lepton and
baryon global symmetries U (1)L and U (1)B . From now on, greek letters Æ,Ø, . . . will denote the
different flavors (e,µ,ø). From Noether theorem, to each of these global symmetries corresponds
a conserved quantity, which are respectively the electron Le , the muon Lµ and the tau Lø flavor
numbers, and the lepton L and baryon B numbers. As a consequence, no lepton flavor changing
interactions should exist, according to the SM.

In this section, we will fist review the physics of neutrino oscillations whose observation
brought clear evidence that lepton flavor is violated in Nature and that neutrino are massive
particles. We then present the present values of the mixing parameters and the best bounds on
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the absolute neutrino mass from non-oscillation experiments. We will also discuss the prospects
of future neutrino experiments. Finally, we will show how one can extend the SM in order to give a
mass to the neutrinos. In particular, we will introduce the Seesaw mechanisms which constitute
the framework of the main works of this thesis.

1.1 Neutrino oscillations

1.1.1 Puzzles from neutrino fluxes

Collisions between cosmic rays and nuclei produce lots of pions in the upper atmosphere. These
pions decay mostly into muonic neutrinos and muons, which in turn decay into electrons, muonic
neutrinos and electron neutrinos. As a result, an important flux of electron and muon neutrinos
arrives at the surface of the earth. By measuring the muon neutrino flux coming from the top
atmosphere, the Super-Kamiokande collaboration highlighted the existence of muonic neutrino
oscillations in 1998 [9]. They detected a deficit of muon neutrinos compared to the predictions,
which can find as an explanation the fact that some muon neutrinos oscillate to another neutrino
flavor. Other explanations, as neutrino decay or decoherence, were ruled out. Few years after,
several experiments confirmed that neutrinos coming from the sun [10], from nuclear reactor [11],
and from accelerator beams [12] do oscillate as well.

Neutrino oscillations arise if the flavor eigenstates (the basis of the weak interactions) are
not the mass eigenstates (the basis in which neutrino propagates). The discovery of neutrino
oscillations has therefore drastic consequences : the global lepton flavor symmetries LÆ are
violated, and more important, at least two of the three left-handed neutrinos do actually have
masses, as we will show in the next section. These both consequences are clearly not consistent
with the SM, which therefore need to be extended in order to account for this phenomenon.

1.1.2 Theory of neutrino oscillations

The neutrinos which take part in weak interactions are the three flavor eigenstates ∫Æ (and
the associated antiparticles ∫̄Æ). By definition, these are the particles that interact with the
corresponding charged leptons eÆ (and ēÆ respectively) through emission or absorption of W
bosons. Their quantum states form an orthogonal basis |∫Æi, such that h∫Æ|∫Øi= ±ÆØ. However,
the neutrino states that are relevant for propagation are the mass eigenstates ∫i , where i = 1,2,3,
which coincide with the flavor eigenstate only if neutrinos are massless, or if the mass matrix
is flavor diagonal in the flavor eigenstate basis. The mass eigenstates also form an orthogonal
basis |∫i i, such that h∫i |∫ j i= ±i j . If in the flavor basis the mass matrix is non-diagonal, one has in
general

m∫ =

0

B

@

m∫ee m∫eµ m∫eø

m∫µe m∫µµ m∫µø

m∫øe m∫øµ m∫øø

1

C

A

, (1.1)
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and the flavor and mass eigenstates basis differ by a unitary transformation :

|∫Æi=
3

X

i=1
UÆi |∫i i , with Æ= e,µ,ø , (1.2)

such that

U †m∫U = m̂∫ = diag
°

m∫1 ,m∫2 ,m∫3

¢

. (1.3)

The matrix U is called PMNS, for Pontecorvo-Maki-Nakagawa-Sakata. As what was done for the
CKM matrix of the quark sector, one can parametrized U as

U =

0

B

@

1 0 0
0 c23 s23

0 °s23 c23

1

C

A

0

B

@

c13 0 s13e°i±

0 1 0
°s13ei± 0 c13

1

C

A

0

B

@

c12 s12 0
°s12 c12 0

0 0 1

1

C

A

0

B

@

eiÆ1 0 0
0 eiÆ2 0
0 0 1

1

C

A

, (1.4)

where si j = sinµi j and ci j = cosµi j . The µi j ’s are the mixing angles. The angles µ23 and µ12 are
also called atmospheric and solar angles respectively, in relation with the experiments that have
measured them. The phases ± and Æ1,2 are the Dirac and Majorana C P-violating phases, whose
values are still unknown. The presence of the Majorana phases comes from the fact that neutrinos
could be a priori of Dirac or Majorana type. In this latter case, neutrinos are there own antiparticles
up to a phase. After redefinition of the fields, one ends up with the two phases Æ1,2. If neutrinos
are of Dirac type, these latter are unphysical and can be put to zero in the above matrix.

Let’s have a look to the production, propagation and detection of a neutrino in the plane wave
approximation. Let’s assume that a neutrino is produced at some space coordinate x = 0, t = 0.
Just after being created through an EW interaction, it is in some flavor state |∫Æi. This state is a
superposition of mass eigenstates, and from Eq. (1.2), one has

|∫Æi=
X

i
UÆi |∫i i . (1.5)

The produced neutrino will propagate in some direction x. After some distance L, the flavor state
is given by

|∫Æ(L)i=
X

i
UÆi |∫i (L)i=

X

i
UÆi ei pi L |∫i i , (1.6)

where pi =
q

E 2
i °m2

∫i
is the momentum in the direction x of the neutrino of mass m∫i and energy

Ei . The last equality has been obtained using the Schrödinger equation. We detect a neutrino
through its weak interaction with matter. By measuring the state of the neutrino, one projects it
into some flavor eigenstate |∫Øi. The corresponding transition amplitude is thus giving by

AÆØ = h∫Ø|∫Æ(L)i=
X

i , j
h∫ j |U §

Ø j UÆi ei pi L |∫i i=
X

i
U §

Øi UÆi ei pi L . (1.7)

The probability to detect a flavor state ∫Ø after a distance L, given that the produced neutrino was
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a flavor state |∫Æi, reads therefore

P
°

∫Æ! ∫Ø,L
¢

= |AÆØ|2 =
X

i , j
U §

Øi UÆi U
§
Æ j UØ j ei(pi°p j )L . (1.8)

If we assume that the neutrino has a well-defined energy E ¥ Ei , 1 and taking into account that
the produced neutrinos are generally always ultra-relativistic E ¿ m∫i , one has pi º E °m2

∫i
/2E ,

so that Eq. (1.8) can be expressed as

P
°

∫Æ! ∫Ø,L
¢

=
X

i , j
U §

Øi UÆi U
§
Æ j UØ j e°i

¢m2
i j

2E L , (1.9)

where¢m2
i j ¥ m2

∫i
°m2

∫ j
. Using the unitarity of the PMNS matrix U , Eq. (1.9) can also be expressed

as

P
°

∫Æ! ∫Ø, t
¢

= ±ÆØ°4
X

i> j
<e

≥

U §
Æi UØi UÆ j U

§
Ø j

¥

sin2
µ

º
L

Li j

∂

+2
X

i> j
=m

≥

U §
Æi UØi UÆ j U

§
Ø j

¥

sin
µ

2º
L

Li j

∂

. (1.10)

where the oscillation length Li j ¥ 4ºE/¢m2
i j is the distance scale over which the oscillations

effects can be appreciable. From this formula, we see that neutrino oscillations depend on the
mass splitting between the neutrino mass eigenstates ¢m2

i j , on the travel distance L and on the
mixing parameters through UÆi . This means that if neutrinos are massive, and if the mixing
parameters are non-vanishing, one should be able to observe experimentally the oscillation of
neutrinos. And this is actually the case.

Before going on, it should be stressed that in order to oscillate, the neutrino that has been
produced must propagate coherently. A coherent propagation means that the wave packets of the
mass eigenstates are superposed along the path, i.e. the group velocities vgi of the neutrino mass
eigenstates are close to each other. Since |vgi ° vg j | ' ¢m2

i j /2E 2, this is the case if ¢m2
i j ø E 2,

which is indeed satisfied by most of the neutrino experiments since the energy of the produced
neutrinos is much bigger than their mass difference.

1.1.3 Experimental framework

There are mainly four sources that are used in neutrino oscillation experiments, depending on
whether the detected neutrinos come from the sun, from the top atmosphere, from nuclear
reactors or from accelerators. Each of these kind of experiment has specific travel distance L
and neutrino energy spectrum E , which are more or less suitable for the measurement of mixing
parameters. The experimental framework is generally conceived to measure the appearance or
disappearance probability of some neutrino flavor.

Neutrinos are produced in the sun by the fusion reactions. In the late 1960s, the Homestake
Experiment has observed a neutrino deficit from the sun compared to what was expected [14]. This

1This assumption leads to the correct result. However, this assumption is, strictly speaking, wrong. A more detailed
analysis should be needed in order to account precisely for the wave packets propagation and coherence [13].
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Normal hierarchy (±1æ) Inverted hierarchy (±1æ)

sin2µ12 0.304+0.013
°0.012 0.304+0.013

°0.012

µ12(±) 33.48+0.78
°0.75 33.48+0.78

°0.75

sin2µ23 0.452+0.052
°0.028 0.579+0.025

°0.037

µ23(±) 42.3+3.0
°1.6 49.5+1.5

°2.2

sin2µ13 0.0218+0.0010
°0.0010 0.0219+0.0011

°0.0010

µ13(±) 8.50+0.20
°0.21 8.51+0.20

°0.21

±C P (±) 306+39
°70 254+63

°62

¢m2
21(£10°5 eV2) 7.50+0.19

°0.17 7.50+0.19
°0.17

¢m2
3k (£10°3 eV2) +2.457+0.047

°0.047 °2.449+0.048
°0.0.47

Table 1.1 – Oscillation parameters from Ref. [19], in which they performed a fit to the global
data, which come from 24 experiments. These are the solar experiments Gallex & GNO, SAGE,
SK1-4, SNO and Borexino ; the combined data from the SK1-4 experiment for the atmospheric
experiments ; KamLAND, CHOOZ, Palo Verde, Double Chooz, Daya Bay, RENO and SBL for
the reactor experiments ; and MINOS and T2K for the accelerator experiments. In the last line,
¢m2

3k =¢m2
31 in case of Normal Hierarchy, and ¢m2

3k =¢m2
32 in case of Inverted Hierarchy.

deficit can be explained by the disappearance of ∫e through the ∫e $ ∫µ oscillations. Experiments,
as for example SNO and KAMLAND, were in turn able to determined the solar mixing parameters
µ12 and ¢m2

21. In the late 1980s, it is a deficit of ∫µ atmospheric neutrinos that is observed by
several experiment as IMB, MACRO, and Kamiokande II, and it is well explained by the ∫µ $
∫ø oscillations. Experiments, as Super-Kamiokande, have determined the atmospheric mixing
parameters µ23 and¢m2

31. Finally, very recently, experiments as Daya Bay in 2012 [16, 15], followed
by Double Chooz [17] and T2K experiment [18] have determined the last mixing angle µ13, by
measuring the electron neutrino disappearance from nuclear reactors. Until now, experiments
have allowed the measurement of all three mixing angles µ12, µ23 and µ13, and two mass splittings
¢m2

21 and |¢m2
31|.

The present best fit values of the mixing parameters [19] are given in Table 1.1. It is re-
markable that a so large variety of experiments can all be fitted so well in the picture of three
light neutrinos. The fit is performed for normal and inverted hierarchy. Indeed, the knowledge
of the parameters ¢m2

21 and |¢m2
31| allows two possibilities for the mass hierarchy. Either the

hierarchy is “normal” and one has m∫1 < m∫2 < m∫3 with ¢m2
31 > 0, either it is “inverted” and one

has m∫3 < m∫1 < m∫2 with ¢m2
31 < 0. The mass hierarchy is still to be determined experimentally.

From Eq. (1.10), we see that only the third term from the right-hand side of the equation could
allow to determine it. Future experiments as Daya Bay 2, INO and Reno-50 should be sensitive
on the mass hierarchy, and hopefully should allow to determine the mass spectrum in around 10
years [20, 21, 22].

The last mixing parameters that are still unknown are the C P-violating phases. Only the
Dirac C P-violating phase ±C P could be determined thanks to neutrino oscillations experiments.
For example, we can show that the probability of ∫µ! ∫e oscillation contains C P-violating terms
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at next order [23]

P
°

∫µ! ∫e
¢

3 c2
13s13s23c23s12c12

¢m2
21L

E

"

c± sin

√

¢m2
31L

2E

!

°2s± sin

√

¢m2
31L

4E

!#

, (1.11)

where c± ¥ cos±C P and s± ¥ sin±C P . For antineutrinos, the probability of ∫̄µ! ∫̄e oscillations is
obtained by replacing ±C P !°±C P . By comparing neutrino-induced and antineutrino-induced
oscillations, one should therefore be able to determine the ±C P phase. Note however that matter
effect also introduces a neutrino-antineutrino asymmetry because of the presence of electrons
and absence of positrons in the Earth. To disentangle the leptonic C P-violation effect from
the matter effect, it is adequate to place the detector at ª 1000 km from the neutrino source.
Future experiments, as LBNO, LBNE and Hyper-K [24, 25, 26] should be able to determine the
mass hierarchy and to measure the C P-violating phase ±C P by observing ∫µ ! ∫e oscillations
coming from accelerators, through a precise measurement of the neutrino energy spectrum and
by comparing neutrino-induced and antineutrino-induced oscillations. These long-baseline
neutrino experiments could ideally determine the ±C P phase at 5æ after 10 years of exposure
(at least for ªhalf of the ±C P possible values and more likely around º/2 and 3º/2 where the
C P-violating effect is maximized).

Let’s mention that all the neutrino experiments have for now determined that at least two
neutrinos are massive, so that there is the possibility that one of the three neutrinos is actually
massless. Since they measure only squared mass differences, the oscillation experiments are not
able to determine the absolute mass scale of the neutrino. However, one can already derive an
obvious lower bound on the heaviest neutrino :

mmax
∫ &

q

|¢m2
31|' 0.05 eV . (1.12)

Several experiments, not based on neutrino oscillations, brought precious bounds on the neutrino
masses, as we will now briefly discuss.

1.2 Non-oscillation experiments

1.2.1 Ø-decay

By measuring the highest possible energy in the tail of the energy spectrum of the electron emitted
in a Ø-decay n ! p e° ∫̄e , one should be able to determine the neutrino mass. Experiments of this
kind are sensitive to neutrino masses that are typically large hm∫i¿ 0.05 eV, in which case all the
neutrino are quasi degenerate hm∫i ¥ m∫1 ' m∫2 ' m∫3 . Experiments as MAINZ and TROITSK,
based on Tritium Ø-decay, have provided an upper bound at 95% C.L. [27, 28] on the “effective
electron neutrino mass” given by

mØ ¥
r

X

i
m2

∫i
|Uei |2 . 2.2 eV . (1.13)

For quasi degenerate spectrum, one has mØ ' hm∫i. In the next future, the KATRIN experiment
should reach sensitivities of the order of 0.2 eV at 90% C.L. on hm∫i [29].
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Figure 1.1 – Left : Feynman diagram of the 0∫2Ø process. Right : |mee | as a function of the
lightest neutrino mass, in case of Normal (black) and Inverted (gray) hierarchy. The width of
the bands reflects the uncertainties in phases, mixing angles and squared mass splittings at 1æ.
The horizontal dot-dashed line correspond to the present best bound from 0∫2Ø process, while
the vertical dot-dashed line comes from cosmological bounds. We used the fact that we have
P

i m∫i ' 3mmin
∫ in the quasi-degenerate region.

1.2.2 Neutrinoless double Ø-decay (0∫2Ø)

If neutrinos are Majorana particles, i.e. they are their own antiparticles, then a process such as the
one depicted in Fig. 1.1 could be observed. This process consists in the decay of two neutrons into
two protons and two electrons without emission of any neutrino. Its amplitude is proportional to
neutrino mass matrix element

mee =
X

i
m∫i

°

U 2¢

ei , (1.14)

which according to Eq. (1.4) contains the Majorana C P-violating phases Æ1,2. The observation
of such process would confirm the Majorana nature of neutrinos, and it could also determine
the Majorana mass scale and potentially the hierarchy spectrum, as can be seen from the right
panel of Fig. 1.1. The present best bounds come from the experiment GERDA, IGEX, EXO, NEMO,
KamLAND-Zen and CUORICINO, which obtained that the half-time of the process should be
grater than ª 2 ·1025 years at 90% C.L. [30, 31, 32, 33, 34, 35]. The corresponding upper bound on
|mee | is given by

|mee |. 2 ·10°1 eV . (1.15)

Future experiments, as SuperNEMO, Majorana, NEXT or SNO+ for exemple, should reach sensitiv-
ities as low as |mee |. 2 ·10°2 eV [36, 37, 38, 39].

1.2.3 Cosmology

Neutrinos have played several role in the evolution of our Universe. In particular, on the one hand
their mass should have played a role in the structure formation of galaxies. Indeed, when becoming
non-relativistic at a temperature around T ª m∫, neutrinos do agglomerate and participate to the
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Chapter 1. Neutrino masses and BSM physics

structure formation of galaxies. The heavier they are, the earlier they participate. On the other
hand, if they were non-relativistic at the decoupling epoch at a redshift of z ª 1100, they should
also have contributed to distort the Cosmic Microwave Background (CMB) spectrum.

The present best bound on the sum of the neutrino masses is provided by the Planck collab-
oration [40]. Using Planck, WMAP, baryon acoustic oscillation (BAO) and CMB data sets, they got
the upper bound :

X

i
m∫i . 2.3 ·10°1 eV . (1.16)

Planck also provided no evidence for additional neutrino-like relativistic particles beyond the
three families of neutrinos in the SM. They find that the effective number of relativistic degrees of
freedom is Neff = 3.30±0.27, consistent with the SM prediction N SM

eff = 3.046.

1.3 Neutrino mass, effective Lagrangian and Seesaw mechanisms

As illustrated by neutrino oscillations, it is now clear that at least two of the three neutrinos are
massive particles. This constitutes an outstanding evidence for BSM physics. The SM needs
therefore to be enlarged in order to account for the neutrino masses. A first question which arises
is how to give mass to neutrinos ? The smallness of the neutrino masses is also quite disrupting,
since these are of the order of ª 106 lighter than the electron. So a second question is why are the
neutrinos so light ?

There are many possibilities to generate neutrino masses, but let’s first see if one cannot
proceed as for the other fermions. In the SM, the mass of the quarks and the charged leptons are
generated through the usual Brout-Englert-Higgs mechanism. To each left-handed doublet of
particles, one has a right-handed particle that is a singlet under SU (2)L , except for the neutrinos.
Together with the Brout-Englert-Higgs scalar boson (quoted as SM scalar hereafter), they form
Yukawa interactions that will generate Dirac mass for the quarks and charged leptons after Spon-
taneous Symmetry Breaking (SSB). So the way of generating a mass for the neutrinos which comes
immediately to minds is to add right-handed neutrinos ∫R . By doing this, one can construct
Yukawa interactions for the neutrinos :

LYuk =°∫R ¡̃
† Y∫ `L +H.c. , (1.17)

where `L = (∫L eL)T are the SU (2)L lepton doublets and¡=
°

¡+¡0¢T is the SM scalar doublet. One
has defined √̃= iø2√

§ where ø2 is the second Pauli matrix. After SSB, the scalar field acquires a
vacuum expectation value (vev), h¡0i= v/

p
2 with v = 246 GeV, and the above operator therefore

generates Dirac masses for the neutrinos given by mD
∫ = Y∫ v/

p
2.

This seems to be an easy and perfectly fine way of giving mass to the neutrinos. However, one
is faced with some deeper questions. Indeed, the present bounds on the neutrino masses would
require extremely small Yukawa couplings, typically of the order Y∫ ª 10°12. This scale has to be
compared to Yukawa coupling of the electron, muon and tau, whose value is approximately given
by Ye ª 10°6, Yµ ª 10°3 and Yø ª 10°2 respectively. There are thus six to ten orders of magnitudes
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1.3. Neutrino mass, effective Lagrangian and Seesaw mechanisms

that separate the mass of the two components of a same doublet. By comparison, the components
of the quark doublets have Yukawa couplings that are about of the same order. The smallness of
the neutrino Yukawa coupling seems therefore puzzling in this way.

Another question is the following. If one adds right-handed neutrinos to SM, these would be
electrically neutral and singlets under all the gauge groups. So no fundamental symmetry would
forbid them to have the following Majorana term :

LMaj =°1
2
∫R M ∫c

R +H.c. , (1.18)

where √c = C√̄T is the charged-conjugate of the field √. 2 Together with Eq. (1.17), this term
violates lepton number by 2 units, but since lepton number is an accidental symmetry of the SM,
this is not problematic. This small adjunction has a lot of interesting implications as we will see in
the next sections. Let’s just mention here that the mass M in Eq. (1.18) is a new energy scale that is
not linked to the SM electroweak scale, i.e. it isn’t linked to the vev of the SM scalar field. For this
reason, it is not protected by the EW scale as the other SM fermion masses in the SM and it can be
much more larger than the EW scale§EW ª 100 GeV. It constitutes therefore the energy scale of a
new physics. Before going on, let’s see how a new physics can manifest itself through the neutrino
mass.

1.3.1 Effective Lagrangian and new physics

The neutrinos are Weyl spinors, and each neutrino is a left-handed particle with 2 degrees of
freedom. Without adding any new particle to SM (as the right-handed neutrinos), one cannot
construct any gauge invariant renormalizable interaction (as the Yukawa interactions) that will
generate neutrino masses after SU (2)L £U (1)Y symmetry breaking. The only way is to add non-
renormalizable higher dimension operators to the SM Lagrangian, i.e. operators whose field
dimensions are bigger than [E ]4. Since they are not renormalizable, we expect these operators to
be effective operators that come from beyond the SM physics. In this case, the low energy effective
Lagrangian would read

Leff =LSM +L d=5 +L d=6 +·· · =LSM + 1
§d=5

Od=5 + 1

§2
d=6

Od=6 + . . . , (1.19)

where §i are the scale suppression of the associated operator. These scales are not especially
connected. If these are much larger than the EW scale, one expects the higher dimension operators
to be more and more suppressed, i.e. Eq. (1.19) is a series expansion. If one or more of these
operators actually generate neutrino masses, the scale suppression would naturally explains their
smallness.

This is the same idea as in the Fermi V-A theory. Before the discovery of the W ’s and Z bosons,
the muon decay was explained by a non-renormalizable dimension-6 operator, the four-fermion
Fermi interaction. The theory of EW interactions, by Glashow, Weinberg and Salam, has shown

2The charge conjugation matrix C satisfied the following equalities C°1∞µC =°∞T
µ , C † =C°1, and C T =°C . One

has also the following useful relations (√c )c =√, √c =√T C°1, and √c
L,R ¥

°

√L,R
¢c =

°

√c ¢

R,L .
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Chapter 1. Neutrino masses and BSM physics

that this operator is in fact an effective operator that comes from the exchange of new heavy
particles, the W ± bosons which has been discovered experimentally in 1983. The smallness of
the Fermi coupling was therefore partially explained by the scale suppression in 1/m2

W in front of
dimension-6 operator.

Interestingly, there is a single dimension-5 operators (allowed by gauge symmetries) that we
can construct with the SM fields. This is the so-called Weinberg operator [41] :

L d=5 = 1
2

cd=5
ÆØ

≥

`c
LÆ¡̃

§
¥≥

¡̃†`LØ

¥

+H.c. , (1.20)

where cd=5
ÆØ

are coefficients with dimension [E ]°1. This operator violates lepton number L by 2
units. After SSB, it leads to the following Majorana mass matrix for the neutrinos

m∫ =° v2

2
cd=5 . (1.21)

This matrix can then be diagonalized by redefining the neutrino fields, according to Eq. (1.2). In
order to generate neutrino masses of the order of 10°1 eV, which is the typical scale expected
from experimental constraints, the dimension-5 coefficients should be of the order of cd=5

ÆØ
ª

10°14 GeV°1. Together with its non-renormalisability, the dimension-5 operator should then be
an effective operator coming from BSM physics whose scale could be has high as§d=5 ª 1014 GeV.
But how could this dimension-5 operator be generated ?

A way to generate the Weinberg operator is by adding new fields to the SM. The easiest
possibility is to connect the lepton and scalar doublets through the exchange of new heavy particles
at tree-level. In this case, since one needs fields that couple to both scalar and left-handed lepton
doublets, see Eq. (1.20), the only possibilities are to add either fermionic singlets, scalar triplets or
fermionic triplets to the SM. 3 These are the three kinds of Seesaw mechanisms, respectively the
type-1, type-2 and type-3 Seesaw mechanisms [43]. Each one generates a dimension-5 operator
through the exchange of new heavy particles at tree-level. Since they constitute the framework of
most of this thesis, we will further develop their main characteristics in the next sections. These
Seesaw mechanisms also generate higher dimension operators, as the dimension-6 one. These
latter are very interesting since they imply the existence of new observables, as the Charged Lepton
Flavor Violation (CLFV) processes. These will be discussed in details in chapter 2.

Other possibilities do actually exist, where the dimension-5 operator is generated at loop-
level. Let’s mention for example the “scotogenic model” [44], where a new scalar doublet (the
“inert” doublet) and new fermions singlets (right-handed neutrinos), both odd under a discrete Z2

symmetry, are added to the SM. This model, where neutrinos masses are generated at one-loop,
share common points with another part of this thesis, as we will see in chapter 5. Let’s also
mention the Zee model [46], where a charged scalar singlet is added to the SM which generates
neutrino masses via one-loop diagrams, or the Zee-Babu model [47, 48, 49], in which two SU (2)L

scalar singlets are introduced, one singly charged and one doubly charged, such that neutrino
masses are generated at two-loop level.

3In principle, one could also add a single scalar singlet which couples to two lepton doublets. However, one can
easily show that it cannot generate the dimension-5 Weinberg operator in Eq. (1.20) [42].
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1.3. Neutrino mass, effective Lagrangian and Seesaw mechanisms

1.3.2 Type-1 Seesaw mechanism

The type-1 Seesaw mechanism consists in adding to the SM nN right-handed fermions, singlets
under SU (2)L and electrically neutral. They are called right-handed neutrinos and will be labelled
by NR instead of ∫R in what follows. As was anticipated before, we are in this case allowed to write
new Yukawa and Majorana interaction terms for the neutrinos, so that the full Lagrangian reads

L type-1 =LSM + i NR /@NR °
∑

NR ¡̃
† YN `L +

1
2

NR MN N c
R +H.c.

∏

, (1.22)

where YN is a complex nN £3 matrix, and MN is a complex symmetric nN £nN matrix. After SSB,
the Lagrangian in Eq. (1.22) contains the mass terms

L
type-1
mass =°NR mD `L °

1
2

NR MN N c
R +H.c. , (1.23)

where mD = YN v/
p

2 is the Dirac mass matrix. Using the properties of the charge conjugation
matrix (see footnote 2), this equation can also be expressed as

L
type-1
mass =°1

2

≥

∫c
L NR

¥

√

03£3 mT
D

mD MN

!√

∫L

N c
R

!

+H.c. . (1.24)

Since MN is not protected by any scale, it is generally assumed that MN ¿ mD . In this case, the
diagonalization of the total neutrino mass matrix,

M∫ ¥
√

03£3 mT
D

mD MN

!

, (1.25)

leads to 3 light Majorana neutrinos whose mass matrix reads

m∫ =°mT
D

1
MN

mD +O
°

m4
D /M 3

N

¢

'° v2

2
Y T

N
1

MN
YN , (1.26)

and to nN heavy Majorana neutrinos whose matrix reads

mN = MN +O
°

m2
D /MN

¢

. (1.27)

A more detailed analysis of the diagonalization will be done in chapter 2. It is straightforward to
show that the matrix m∫ has rank equal or smaller than min[3,nN ] and possesses therefore the
according number of eigenvalues. One needs in turn at least 2 right-handed neutrino singlets in
order to account for neutrino experiments, i.e. nN ∏ 2.

A graphical way to see how neutrino masses are generated is from Fig. 1.2(a), which induces
nothing but the dimension-5 operator in Eq. (1.20) with

cd=5
ÆØ =

µ

Y T
N

1
MN

YN

∂

ÆØ
. (1.28)

The suppression scale is therefore given by the right-handed mass scale§d=5 ª MN . Compared to
the standard picture in Eq. (1.17), the presence of the Majorana mass in Eq. (1.22) allows m∫ to
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Figure 1.2 – Feynman diagrams responsible of the generation of the neutrino masses in the three
Seesaw mechanisms. From left to right, these correspond to the exchange of fermionic singlets,
scalar triplet(s) and fermionic triplets.

undergo an extra suppression from YN v/MN . So the larger is the new scale, the lighter are the
neutrinos. Within this framework, neutrinos are naturally very light, and their Yukawa couplings
are not especially small compared to the other SM particles. These latter can even be large. For
example, m∫ º 10°1 eV would need MN /Y 2

N ª 1014 GeV, which can be fulfilled for YN ª 1 and
MN ª 1014 GeV, but also for YN ª 10°5 and MN ª 104 GeV.

Parameter counting. In the leptonic sector, one has the charged lepton Yukawa matrix Ye , which
is a 3£3 complex matrix, the neutrino Yukawa matrix YN , which is a nN £3 complex matrix, and
the Majorana matrix for the right-handed neutrinos MN , which is a nN £nN complex symmetric
matrix. All together, this makes a total of 9+nN (nN +7)/2 moduli and phases. However, we are
free to redefine the fermion fields using unitary matrices. It is straightforward to show that this
reduces considerably the number of physical parameters to [50] :

3+4nN moduli, and 3(nN °1) phases. (1.29)

Note that the moduli contain the 3 masses for the charged leptons, the nN light neutrino masses,
the nN heavy neutrino masses and the different mixing angles in the light and heavy neutrino
sectors. So in particular for nN = 2, there are 14 parameters (3 charged lepton masses, 2 light
neutrino masses, 2 heavy neutrinos masses, 3 low energy mixing parameters and 2 low energy
C P-violating phases, one high energy mixing parameter and one high energy C P-violating phase),
while for nN = 3, there are 21 parameters.

Remark on lepton number violation. The presence of both Yukawa and Majorana interactions
in Eq. (1.22) does violate lepton number by 2 units, as expected since the Weinberg operator is
generated. The Majorana interaction is not forbidden by any fundamental principle here, but one
could easily forbid it by imposing a B °L symmetry to the Lagrangian. In this case, we recover the
standard situation where the neutrino would be a Dirac particle with a mass m∫ = mD . However,
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1.3. Neutrino mass, effective Lagrangian and Seesaw mechanisms

this situation requires an extra symmetry which has no reason to necessarily exists, and it is in
this sense less minimal. Moreover, we have clear indications that the B °L symmetry should be
violated in Nature in order to generate a baryon asymmetry in the Universe – see chapter 3 – so
that the presence of the Majorana term is actually well motivated by cosmology. The generation of
the baryon asymmetry through the leptogenesis mechanism in the framework of type-1 Seesaw
models will be discussed in section chapter 3.

Note that the B °L symmetry is an anomaly-free global symmetry in the SM. Also, the global
B °L can be easily gauged just by adding 3 right-handed neutrinos. These must carry a lepton
number L(N ) = 1 in order to cancel the U (1)3 gauge anomaly. In this case, the B °L symmetry
could easily be spontaneously broken through the vev of a new complex scalar field ª carrying
L(ª) = °2, which also generate a Majorana mass term for the right-handed neutrinos. More
precisely, let’s consider the following Lagrangian

L
type-1
ª

=LSM + i NR /DNR °
∑

NR ¡̃
† YN `L +∏ª

1
2

NR ª
§ N c

R +H.c.
∏

, (1.30)

where the covariant derivative reads

Dµ = @µ° i gB°L
QB°L

2
Z 0
µ , (1.31)

with gB°L the new gauge coupling, QB°L the B °L charge associated to the particle, and Z 0
µ the

new gauge boson associated to the B °L gauge symmetry. If the potential allows for a SSB of
the B °L symmetry through the Brout-Englert-Higgs mechanism, ª acquires a vev hªi= vª/

p
2

and a mass mZ 0 = gB°L vª/2 for the new gauge boson Z 0 is generated. In this case, the type-1
Seesaw Lagrangian in Eq. (1.22) appears with MN =∏ª vª/

p
2, and Majorana neutrino masses are

generated via Eq. (1.26). This simple example is very interesting since (i) it generates the type-1
Seesaw and a small neutrino masses, (ii) it predicts the existence of a new massive gauge boson Z 0

which could be probed at colliders, (iii) new interactions with the SM particles are predicted too
that could also be probed by experiments, (iv) a new complex scalar singlet is introduced which
could be responsible for the inflation [51, 52], and (v) it is motivated by Grand Unified Theories
(GUT) as SO(10) which contains U (1)B°L as a subgroup, as we will discuss below.

1.3.3 Type-2 Seesaw mechanism

Instead of adding fermion singlets, one can add one or more scalar triplets ~¢k =
°

¢1
k ,¢2

k ,¢3
k

¢

,
where k = 1, . . . ,n¢. Even if only one scalar triplet is in principle enough to generate three masses
for the light neutrinos, we will consider here a general situation where we add n¢ scalar triplets.
In this case, the general Lagrangian reads

L type-2 =
°

Dµ~¢k
¢† °

Dµ~¢k
¢

°~¢†
k m2

¢k
~¢k °Vpot

+Y ÆØ
¢k

`T
LÆC iø2

√

~ø ·~¢kp
2

!

`LØ+µ¢k ¡̃
†

√

~ø ·~¢kp
2

!†

¡+H.c. , (1.32)

where~ø= (ø1,ø2,ø3) is a vector composed by the three Pauli matrices. Here, Y¢ are n¢ complex
symmetric 3£3 matrices, and µ¢k are n¢ complex numbers. The hypercharge of the scalar triplet
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is Y (¢) =°2Y (`), so that the covariant derivative in (1.32) reads

Dµ = @µ° i g~T · ~Wµ° i g 0Bµ , (1.33)

where ~T are the dimension-3 representations of the SU (2) generators. The most general scalar
triplet potential is given by

Vpot =∏2

≥

~¢†~¢
¥2
+∏3

≥

~¢†~¢
¥≥

¡†¡
¥

+∏4

≥

~¢†T i~¢
¥2
+∏5

≥

~¢†T i~¢
¥≥

¡†øi¡
¥

, (1.34)

where the indices are left implicit. In this notation, the SU (2) components of the fundamental
scalar triplet representation have not all well defined electric charges. Electric charge eigenstates
are instead given by

¢k ¥
~ø ·~¢kp

2
=

0

@

¢+
kp
2

¢++
k

¢0
k °¢+

kp
2

1

A , (1.35)

with the different components reading as

¢0
k = 1

p
2

°

¢1
k + i¢2

k

¢

, ¢+
k =¢3

k , ¢++
k ¥ 1

p
2

°

¢1
k ° i¢2

k

¢

. (1.36)

After SSB, because of their interactions with the SM scalar doublet, the neutral component of each
scalar triplet acquires a vev h¢0

ki ¥ v¢k 'µ¢k v2/2m2
¢k

. The interactions of the triplets with the 2
lepton doublets then contains

L type-2 3°∫c
LÆ

Y ÆØ
¢k

h¢0
ki ∫LØ +H.c. , (1.37)

which give rise to a Majorana mass matrix for the neutrinos, given by

m∫ =
X

k
m¢k

∫ =
X

k
2 v¢k Y¢k =

X

k
µ¢k

v2

m2
¢k

Y¢k . (1.38)

For any general symmetric matrix Y¢k , this mass matrix has three eigenvalues, which shows that
a single triplet is enough to generate any neutrino mass matrix that could be measured. The
smallness of the neutrino masses is here too quite natural. Indeed, because µ¢/m¢ and Y¢ are
bounded by the perturbativity conditions, one has v¢ø v provided that m¢¿ v.

A graphical way to see how m∫ is generated in Eq. (1.38) is from Fig. 1.2(b), which induces
nothing but the dimension-5 operator in Eq. (1.20) with

cd=5
ÆØ =

√

2
X

k
µ¢k

1

m2
¢k

Y¢k

!

ÆØ

. (1.39)

The suppression scale is therefore given by the combination§d=5 ª m2
¢/µ¢, and neutrino masses

are naturally suppressed if this factor is large. Note that unlike the type-1 Seesaw, in the case
where there is only one scalar triplet (n¢ = 1), the neutrino mass matrix is directly proportional to
the Yukawa matrix Y¢. The measurement of m∫ gives therefore the fundamental Yukawa matrix
up to a multiplicative constant, rather than a complicated combination of it as in Eq. (1.26).
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Let’s note that since the scalars are triplets under SU (2)L , they interact directly via gauge
interactions and are therefore very interesting to probe experimentally. Indeed, certainly one
of the main differences between the type-1 and type-2 Seesaws resides on the feasibility of on-
shell collider production of the Seesaw states. At LHC scalar triplet production proceeds mainly
via Drell-Yan processes, with a cross-section which, depending on the triplet mass, can be as
large as ª 1pb [53, 54]. Subsequent decay of the scalar triplet, in particular to the di-lepton
channel, combined with possible displaced vertices may eventually allow the reconstruction of
the Lagrangian parameters, as has been shown in [53]. Production, however, requires the scalar
triplet to be below ª 1TeV.

Parameter counting. Without the potential part of the Lagrangian, one has 9 moduli and phases
in Ye , 6 moduli and phases in each Y¢k , and n¢ moduli and phases in µ¢k . This makes a total of
8n¢ moduli and 6n¢°3 phases. Let’s note that m¢k has already been diagonalized, but there is
still the freedom to redefine the individual phases of the triplets. So by redefining the lepton fields
by unitary matrices and redefining the triplet phases, one are left with

3+8n¢ moduli, and 3(2n¢°1) phases. (1.40)

The moduli contains the 3 masses for the charged leptons, the 3 light neutrino masses, the n¢
scalar triplet masses. The rest corresponds to the different low energy mixing angles and phases,
and the high energy couplings µ¢k and Y¢k . For n¢ = 1, one has therefore 14 parameters (as in the
type-1 Seesaw with nN = 2, and so less than the case with nN = 3).

Remark on lepton number violation. The presence of both lepton and scalar interactions in
the second line of in Eq. (1.32) does violate lepton number by 2 units. As in the type-1 Seesaw
case, one could forbid one of the two term by imposing a B °L symmetry. However, there is an
interesting situation where the dimension-full couplings µ¢k would come from the vev of some
new neutral scalar singlet fields ª with lepton number Lª = °2. Indeed, in this case the B °L
conserving Lagrangian reads

L
type-2
ª

3 `T
L C iø2 Y¢

√

~ø ·~¢kp
2

!

`L +∏ª ª ¡̃†

√

~ø ·~¢
p

2

!†

¡+H.c. . (1.41)

By acquiring a vev hªi = vª/
p

2, the scalar singlet breaks spontaneously the B ° L symmetry
and generates the type-2 Seesaw Lagrangian in Eq. (1.32) with µ¢k = ∏ª vª/

p
2. Unlike in the

expanded type-1 Seesaw model in Eq. (1.30), it is not possible to gauge the B°L symmetry without
introducing new fermion fields to cancel the anomalies (but this could be done easily by adding
the right-handed neutrinos). As a result, the model in Eq. (1.41) with a broken global B°L predicts
the existence of a quasi massless Majoron [55]. In the case where vªø m¢k , one has an interesting
situation where neutrino masses undergo an extra vª/m¢k suppression compared to Eq. (1.38)
since vª/m¢k is naturally suppressed compared to Y¢k . This will motivate in particular the Purely
Flavored Leptogenesis (PFL) scenario in section 4.5.
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Chapter 1. Neutrino masses and BSM physics

1.3.4 Type-3 Seesaw mechanism

The third possibility is to introduce nß fermionic triplets~ßk =
°

ß1
k ,ß2

k ,ß3
k

¢

to the SM Lagrangian.
This scenario is very similar to the type-1 Seesaw case. In this case, the general Lagrangian,
omitting the indices, reads

L type-3 =LSM + i~ßR /D~ßR °
∑

~ßR Yß
≥

¡̃†~ø`L

¥

+ 1
2
~ßR Mß~ß

c
R +H.c.

∏

, (1.42)

where Yß is a nß£3 complex matrix, and Mß is a nß£nß. Since the triplets carry zero hypercharge
Y (ß) = 0, the covariant derivative reads

Dµ = @µ° i g~T · ~Wµ . (1.43)

The three components of each fermion triplet have the same Majorana mass term and have not
well-defined electric charge. The eigenstates of the electric charge are instead given by

ß°
k = 1

p
2

°

ß1
k + iß2

k

¢

, ß0
k =ß3

k , ß+
k ¥ 1

p
2

°

ß1
k ° iß2

k

¢

. (1.44)

As in the type-1 Seesaw mechanism, the light neutrino mass matrix after SSB is given by

m∫ '° v2

2
Y T
ß

1
Mß

Yß , (1.45)

and the heavy neutrino mass matrix reads

mß ' Mß . (1.46)

The neutrino mass matrix in Eq. (1.45) is not surprising since the neutral component ß0
k has

the same Yukawa interaction than a right-handed neutrino. A graphical way to see how m∫ is
generated in Eq. (1.45) is from Fig. 1.2(c). Being charged under SU (2)L , fermionic triplets have
interesting phenomenology at colliders as LHC [53]. Since we won’t consider this mechanism
anymore in this thesis, we will stop here the analysis of the type-3 Seesaw model.

1.4 Dimension-6 operators and CLFV processes

The three types of Seesaw mechanisms do also generate dimension-6 operators, on top of the
dimension-5 one. From the Lagrangian in Eq. (1.22),(1.32) and(1.42), one can show that these are
given by [50, 56]

L d=6
type-1 = cd=6

ÆØ

≥

`LÆ¡̃
¥

i /@
≥

¡̃†`LØ

¥

, with cd=6
ÆØ =

√

Y †
N

1

M †
N

1
MN

YN

!

ÆØ

, (1.47)

for the type-1 Seesaw, and

L d=6
type-3 = cd=6

ÆØ

≥

`LÆ~ø¡̃
¥

i /D
≥

¡̃†~ø`LØ

¥

, with cd=6
ÆØ =

√

Y †
ß

1

M †
ß

1
Mß

Yß

!

ÆØ

, (1.48)
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Figure 1.3 – Feynman diagrams responsible of the generation of dimension-6 operators in the
three Seesaw mechanisms. From left to right, these correspond to the exchange of fermionic
singlets, scalar triplet(s) and fermionic triplets.

for the type-3 Seesaw. These operators are generated by the diagrams (a) and (c) in Fig. 1.3, i.e. the
same (a) and (c) diagrams as in Fig. 1.2 but with no lepton number flip from a Majorana mass
insertion. The 6 p part of the propagator contributes rather than the MN or Mß part, which explains
the presence of the derivatives in these operators. As a consequence, these two operators do not
break lepton number.

In the scalar triplet(s) case, there are several ones (as well as a dimension-4 one). Since
we will need it in chapter 4, let’s just mention the dimension-6 operator that involves 4 charged
leptons, induced by the diagram (b) of Fig. 1.3, which can be written as

L d=6
type-2 3 cd=6

ÆØ∞±

≥

`LÆ∞µ`L∞

¥≥

`LØ∞
µ`L±

¥

, with cd=6
ÆØ∞± =°

X

k

1

m2
¢k

≥

Y §
¢k

¥

ÆØ

°

Y¢k

¢

∞± . (1.49)

This operator too doesn’t break lepton number L.

From Eqs. (1.47)-(1.49), or equivalently from Fig. 1.3, we see that to these different operators
correspond new observable processes, such that µ! e∞ and µ! e conversion, that violate the
lepton flavor LÆ but not the lepton number L. These are called Charged Lepton Flavor Violation
processes (CLFV), and will be discussed at length in chapter 2.

Note that, in the type-1 Seesaw, it has been shown in Ref. [50] that the knowledge of all the low
energy dimension-5 and dimension-6 coefficients is in principle enough to be able to reconstruct
the high energy parameters in YN and MN . 4 This is quite remarkable and not necessarily out
of reach of future experiments. Unfortunately, from Eq. (1.19), the dimension-6 coefficients
are in general expected to be small. Indeed, they involve the same number of couplings as the
neutrino mass matrix but they scale as§2

d=6 and, if§d=6 '§d=5, they undergo an extra high scale
suppression compared to the neutrino mass suppression, see for example Eqs. (1.26) and (1.47)
for the type-1 Seesaw. However, this is not always the case as we will show now.

4At least when the number of heavy neutrinos is less than or equal to the number of light lepton generations.
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Chapter 1. Neutrino masses and BSM physics

1.5 Inverse Seesaw models

An interesting class of Seesaw models are the so-called Inverse Seesaw models [57, 58], which are
based on the approximate conservation of the lepton number L [59, 57, 60, 61, 62, 63, 64, 65, 56,
66, 67, 68]. In these models, the dimension-6 operators are not necessarily more suppressed than
the dimension-5 ones. This is basically because Majorana neutrino mass requires lepton number
violation, while CLFV processes do not.

In the type-1 Seesaw, lepton number is conserved by the Lagrangian in Eqs. (1.22) either if the
Majorana mass matrix MN is vanishing, or if the Yukawa and Majorana mass matrices YN and
MN have peculiar structures. In the first case, taking MN ø mD allows to have large dimension-6
coefficients, but then neutrinos are (quasi) Dirac particles and their small mass remains un-
explained. In the second case, it has been shown that by assigning lepton number L(N1) = 1,
L(N2) =°1, L(N3) = 0 to the right-handed neutrinos, the Lagrangian is lepton number conserving
if the neutrino mass matrix has the following structure [68, 69] :

M∫ =
√

03£3 mT
D

mD MN

!

, with mD = v
p

2

0

B

@

Y
0
0

1

C

A

, and MN =

0

B

@

0 § 0
§ 0 0
0 0 ≠

1

C

A

. (1.50)

This case shows that it is possible to conserve L while having both non zero mN and non zero
Yukawas YN . It is thus not surprising that the light neutrinos are massless but the dimension-6
coefficient in Eq. (1.47) is actually non vanishing. To generate masses for the light neutrinos, one
needs to add small perturbations that break lepton number to the above matrix, which becomes

M∫ =
√

03£3 mT
D

mD MN

!

, with mD = v
p

2

0

B

@

Y
"Y 0

"Y 00

1

C

A

, and MN =

0

B

@

µ0 § Æ

§ µ Ø

Æ Ø ≠

1

C

A

, (1.51)

where ≤ø 1 and µ,µ0,Æ,Øø§,≠. In this case, keeping only dominant terms, the dimension-5
and dimension-6 coefficients in Eqs. (1.28) and (1.47) are given by

cd=5 ' 1
µ0µ°§2

£

Y TµY °"
°

Y T§Y 0+Y 0T§Y
¢§

' "

µ

Y T 1
§

Y 0+Y 0T 1
§

Y
∂

, (1.52)

cd=6 ' 1
°

µ0µ°§2
¢2

h

Y † °

§2 +µ2¢
i

' Y † 1
§2 Y . (1.53)

We see that the dimension-5 coefficient is proportional to the small parameter ". Therefore, one
can have at the same time large dimension-6 coefficients and small dimension-5 ones, provided
that "ø 1 and Y ª 1. Note that in this scenario, two heavy neutrinos have quasi-degenerate
masses :

mN1 '§° (µ+µ0)/2 , and mN2 '§+ (µ+µ0)/2 . (1.54)

The third heavy neutrino N3 with mN3 '≠, already not mandatory to explain neutrino oscillation
data, is nearly totally decouple from the rest since it only couples through small parameters.
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1.5. Inverse Seesaw models

In other words, we have seen that in the case of type-1 Seesaw, we have naively that the
dimension-5 and dimension-6 coefficients go like cd=5 / Y 2

N /MN and cd=6 / Y 2
N /M 2

N respectively.
In order to generate neutrino masses of the order of m∫ ª 0.1 eV, one would need roughly YN ª
10°5 . . .1 for MN ª 104 . . .1014 GeV, what leads in general to an extremely suppressed dimension-6
coefficient, and therefore extremely small rate for the charged lepton flavor violation processes
(CLFV). However, since the cd=5 and cd=6 don’t involve the same combination of YN and MN ,
we can take much larger values of YN while keeping mN at the TeV scale which give larger cd=6

without implying large cd=5 and thus too large m∫. Even if clearly less likely than the usual Seesaw,
this offers a unique opportunity to probe the physics BSM through CLFV processes which is
presumably the most likely to exist.

Comment on Extended Seesaw models. An important remark concern the µ0 parameter in the
type-1 Inverse Seesaw model. In order to generate a small mass for the light neutrinos and to have
large dimension-6 coefficients, the difference between the right-handed neutrino masses can not
be a priori too large. For example in the Inverse Seesaw introduced above, if the mass splitting
is large, the parameters µ and/or µ0 should be large, so that one expects from Eqs. (1.52)-(1.53)
to have a small dimension-6 operator, since now µ,µ0 ¿§. There is however an exception if one
has µøµ0, in which case one could a priori take larger values for µ0 and still have small neutrino
masses and large dimension-6 coefficients. This can be seen easily : if µ= ≤= 0, the determinant
of M∫ in Eq. (1.51) remains equal to zero, leading to no masses for the light neutrinos even if µ0

does break L. In this case, the conservation of the lepton number L is strongly violated and the
heavy neutrino masses are no more degenerate. In fact, in the limit where µ0 ¿ §, Eqs. (1.54)
should be replaced by

mN1 'µ°§2/µ0 , and mN2 'µ0+§2/µ0 . (1.55)

This kind of model, where µ0 >§, is called “Extended Seesaw models”, and presents additional
attractive features that can help to achieve successful low-scale leptogenesis [70]. In this case, one
has to be careful with possibly large one-loop corrections to the neutrino masses and 0∫2Ø decay
parameter mee , since there is no more symmetry protecting the neutrino masses [71, 72]. However,
lepton number symmetry is actually restored at low energy for µ0 ¿§, so that one can actually
have the Inverse Seesaw features with non-degenerate right-handed neutrino masses [72].

In the type-2 Seesaw, unlike the type-1 Seesaw, the cd=6 coefficients have no reason to be
small from the start. Indeed, L is violated by the existence of both µ¢ and Y¢ in the Lagrangian,
see Eq. (1.32). As a result, the dimension-5 and dimension-6 coefficients go respectively like
cd=5 / (µ¢/m¢)(Y¢/m¢) and cd=6 / Y 2

¢/m2
¢. But µ¢/m¢ and Y¢ have no reasons to have the

same value. So if µ¢! 0, neutrinos are massless since these are proportional to µ¢, see Eq. (1.38),
but the dimension-6 operator in Eq. (1.49) is non vanishing since it involves only the Yukawa
matrix Y¢ and the mass scale m¢. As a consequence, by taking µ¢ ø m¢, lepton number is
nearly conserved and one can have light neutrino masses together with large CLFV processes. No
peculiar matrix structure is needed.

Finally, in the type-3 Seesaw, the situation is quasi-similar to the type-1 case.
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Chapter 1. Neutrino masses and BSM physics

1.6 SO(10) GUT and L-R symmetry motivations for Seesaw models

1.6.1 SO(10) GUT group

In the type-1 and type-2 Seesaw scenarios, we have discussed the possibility to enlarge the SM
group with a new B °L group. But the Seesaw mechanisms are in fact well motivated by a plethora
of Grand Unified Theories (GUT), as for example the GUT group SO(10) [73], that we now discuss
briefly. An interesting aspect of SO(10) is that each family of fermions is unified in a dimension-16
spinorial representation, which also contains generically the right-handed neutrinos. These are
therefore naturally present in SO(10). Furthermore, the SO(10) group contains two maximal
continuous subgroups which are

SO(10) æ SU (5)£U (1)B°L , (1.56)

SO(10) æ SU (4)c £SU (2)L £SU (2)R . (1.57)

We recognize in Eq. (1.56) the SU (5) GUT group [74], and the B °L symmetry. The subgroup
in Eq. (1.57) contains the left-right (L-R) symmetric model SU (2)L £SU (2)R £U (1)B°L [75, 76].
The breaking of SO(10) to the SM group can be achieved in many ways through one of the two
subgroups above. If we break SO(10) according to Eq. (1.56), the following chain of symmetry
breaking is possible

SO(10)
{16}°°°!
§B°L

SU (5)
{45}°°!
§5

SU (3)c £SU (2)L £U (1)Y
{10}°°°!
§EW

SU (3)c £U (1)E M . (1.58)

The scalar boson representation of SO(10) responsible of the SSB is displayed above the arrows,
while the associated energy scale is displayed below the arrows. In the above chain, the breaking of
the B°L symmetry is expected to occur at§B°L ¿§EW ' mW , scale at which a Majorana mass for
the right-handed neutrino is generated. In this scenario, we have therefore naturally MN ¿ mD

and the type-1 Seesaw is at work. This motivates for example the Lagrangian introduced in
Eq. (1.30). Unfortunately, it has been shown that the SU (5) group as a GUT group, embedding the
SM group, doesn’t provide the good running of the coupling constant, at least in usual realizations.

Another possible chain of spontaneous symmetry breaking is through the subgroups of
Eq. (1.57), that is

SO(10)
{54}°°!
§10

SU (4)c £SU (2)L £SU (2)R £Z2
{45}°°!
§c

SU (3)c £SU (2)L £SU (2)R £U (1)B°L

{126}°°°!
§R

SU (3)c £SU (2)L £U (1)Y
{10}°°°!
§EW

SU (3)c £U (1)E M . (1.59)

Here too, the breaking of B °L is expected to occur above the EW scale. An important remark
to be done is that in order to generate a Majorana mass MN for the right-handed neutrinos in
a renormalizable way, one needs the vev of a 126 scalar representation. 5 This representation

5Given that 16£16 = 10+120+126, fermion bilinears can be formed via their couplings with the symmetric 10 and/or
126, and/or with the antisymmetric 120. To get correct masses for the quarks and charged leptons, it has been shown
that one could in principle use any of the combination (10,120), (10,126), (120,126) or (10,120,126). To get the Seesaw
mechanism at work, the 126 representation is however needed [77]. Under the gauge group SU (4)£SU (2)L £SU (2)R ,
the symmetric scalar representation 126 can be decomposed as 126 = (6,1,1)+ (10,3,1)+ (10,1,3)+ (15,2,2), which
contains scalar triplets under SU (2)L and SU (2)R .

26
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contains a scalar triplet under SU (2)L (¢L) and a scalar triplet under SU (2)R (¢R ). On the one hand,
if the neutral component of ¢R acquires a vev, a heavy Majorana mass matrix MN is generated.
On the other hand, the scalar triplet ¢L is nothing but a type-2 scalar triplet with Y (¢L) = 2
which generates a Majorana mass for the left-handed neutrinos below SSB. Thus, unless one
generates MN from non-renormalizable interactions, the Seesaw framework is a type-1+2 one in
SO(10) [78, 79, 77]. Furthermore, this scenario is peculiarly interesting since it contains the L-R
symmetric model, that we now discuss.

1.6.2 L-R symmetric model

The gauge group of this model is SU (2)L £SU (2)R £U (1)B°L . As the left-handed sector of the SM,
the right-handed particles are here embedded in doublets `R = (NR eR ) and QR = (uR dR ), which
transform under SU (2)R . In this case, the electric charge formula has the attractive form

Q = I 3
L + I 3

R + B °L
2

, (1.60)

where I 3
L,R are the left and right isospins respectively. After SU (2)R £U (1)B°L !U (1)Y symmetry

breaking, the hypercharge Y is in this case simply given by Y = 2I 3
R +B °L, which is interestingly

in agreement with the SM if the leptons carry a charge B °L =°1 and the quarks carry a charge
B °L = 1/3.

The breaking of the L-R symmetric model to the SM gauge group can be done via different
ways. A necessarily ingredient is the bi-doublet © which transforms under both SU (2)L and
SU (2)R , that is needed in order to give a mass to the fermions,

©=
√

©0 ©0+

©° ©00

!

. (1.61)

After SSB, the electrically neutral component of the bi-doublet acquire vev’s h©0i= v0 and h©00i=
v00, and fermions become massive. However, other scalars are needed to break the residual

U (1)L+R £U (1)B°L to U (1)E M , where the U (1)L+R symmetry is left because the neutral©0 and©00

carry I 3
L + I 3

R = 0.

A possibility is to introduce two scalar ¡L and ¡R , doublets under SU (2)L and SU (2)R respec-
tively and with charge B °L = 1 [75, 76, 80, 81, 82, 83, 84]. By acquiring a vev, one of the doublet,
let say ¡L , could therefore break U (1)L+R £U (1)B°L !U (1)E M . This possibility is perfectly fine,
but in this case it was shown that the neutrinos are Dirac particles whose small mass can not be
explained easily.

Another interesting possibility is to introduce two scalar triplets ¢L and ¢R with B °L = 2
on top of the scalar bi-doublet © [85], as in the case of SO(10) breaking from Eq. (1.59) with
renormalizable interactions to induce the right-handed Majorana mass MN . Here, the breaking of
U (1)L+R £U (1)B°L is done via the vev h¢0

Ri= v¢R of the electrically neutral component of ¢R . In
this case, a Majorana mass MN / v¢R for the right-handed neutrinos is generated. One ends up
therefore with the type-1 Seesaw scenario in Eq. (1.22), but also with the type-2 Seesaw scenario
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Chapter 1. Neutrino masses and BSM physics

in Eq. (1.32) [86]. 6

The L-R symmetric model could therefore easily generate both the type-1 and the type-
2 Seesaw model. In this case, the total Lagrangian is the sum of the Lagrangian in Eqs. (1.22)
and (1.32), and the neutrino mass is the sum of Eqs. (1.26) and (1.38). Following the value of the
different parameters, one or both types of Seesaw will be favored.

Final remark. Let’s note that a more complicated possibility, based on the two previous ones,
could lead to both Seesaw type-1 and type-2 Lagrangians in Eqs. (1.22) and (1.32). Indeed, let’s
take the scalar content of the L-R symmetric model to be constituted by 1 scalar bi-doublet
©= (2,2,0), 2 scalar doublets ¡L = (2,1,1) and ¡R = (1,2,1), and 2 scalar triplets ¢L = (3,1,2) and
¢R = (1,3,2). In the brackets are given the corresponding SU (2)L £SU (2)R £U (1)B°L charges. 7 In
this case, the general L-R symmetric Lagrangian contains

°LLR 3Y` `L © `R + Ỹ` `L ©̃ `R

+Y¢L`
T
L C iø2¢L`L +Y¢R`

T
R C iø2¢R`R +µ¢L ¡̃L¢

†
L¡L +µ¢R ¡̃R ¢

†
R¡R +H.c. , (1.62)

where ©̃= ø2©
§ø2 transforms as ©. The rest of the scalar potential is not explicitly written, but

it is assumed to be such that at least © and ¡L acquire vev’s. Let’s note that it contains term
proportional to ¡†

L © ¡R , which could be forbidden by imposing some discrete symmetry as Z2.
There are several possibilities of symmetry breaking, but let’s assume that©, ¡R and ¡L acquire
vev’s

h¢©i ¥
√

∑ 0
0 ∑0

!

, h¡0
Ri=

v¡Rp
2

, h¡0
Li=

v¡Lp
2

. (1.63)

In this case, scalar interactions also generate a vev for ¢L,R given by

h¢0
L,Ri= v¢L,R = 1

2
µ¢L,R

v2
¡L,R

m2
¢L,R

. (1.64)

As a consequence, a Majorana mass for the heavy right-handed neutrinos is generated with
MN = 2Y¢ v¢R , as well as a type-2 Majorana mass term for the light left-handed neutrinos, given
by Eq. (1.38). The neutrino mass matrix reads therefore

M∫ =
√

2Y¢L v¢L mT
D

mD 2Y¢R v¢R

!

, (1.65)

where here mD = Y`∑+ Ỹ`∑0. Then, if v¢R ¿ v¢L , one also have that a type-1 Seesaw mechanism
is at work, and the final light neutrino masses matrix is given by the sum of the two types of Seesaw

6The point is that the scalar potential of the Lagrangian contains a term ∞Tr[¢†
L©¢R©

T ] which give rise to a vev for

¢L given by v¢L / ∞ v2
0/ v¢R .

7This configuration has already been considered in [82]. We will here discuss briefly a scenario that is somehow
slightly different.
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m∫ '°mT
D

1
2Y¢R v¢R

mD +2Y¢L v¢L . (1.66)

Here too, both type-1 and type-2 Seesaw mechanisms are at work.

Another interesting possibility is that ©, ¡L and ¢R acquire a vev. In this case, if we also
impose a Z2 symmetry to ¡R in order to forbid the ¡†

L © ¡R term such that ¡R doesn’t acquire any
vev, one ends up with a type-1+2 Seesaw with an inert scalar doublet ¡R as in the Inert Doublet
Model, see section 5.2.

29





2 Muon to electron conversion in nu-
clei in type-1 Seesaw models

Muon conversion to electron in atomic nuclei – that in the following we will call µ! e conver-
sion – is a process that is not present in the SM (without neutrino oscillations). However, it is
predicted to exist in some extension of the SM so that the observation of such a process would be
a clear evidence for new physics. 1 Experimentally, this process is very appealing because future
experiments should probe very high sensitivities on its rate, up to several orders of magnitude
better than the present upper bound. It is therefore mandatory that minimal extensions of the SM
own robust expressions for this rate.

The goal of this chapter is to compute the rate of this process in the type-1 Seesaw framework.
We first write the type-1 Seesaw Lagrangian in the mass eigenstate basis, then introduce the
Charged Lepton Flavor Violation processes, to which belong the µ! e conversion. Subsequently
we compute the analytical expression of the rate of this process, valid for any type-1 Seesaw
model. In the next sections, we analyze the phenomenology one could derive from our result, and
compare the predictions to the other kind of Seesaw mechanism.

2.1 Type-1 Lagrangian in the mass eigenstate basis

The type-1 Seesaw Lagrangian was introduced in section 1.3.2, Eq. (1.22). As anticipated, by
redefining the different neutrino fields, the neutrino mass matrix in Eq. (1.25) can be diagonalized.
This redefinition of the fields also leads to modifications in the neutrino interactions. To take
care of that, one needs to write down the Lagrangian in the neutrino mass eigenstate basis. We
perform in this first section the diagonalization step by step. We remind that the mass interactions
of the type-1 Seesaw Lagrangian, as given in Eq. (1.23), can be expressed in terms of matrices as

L
type-1
mass =°1

2

≥

∫c
L NR

¥

M∫

√

∫L

N c
R

!

+H.c. , (2.1)

1Including neutrino oscillations, this process does actually exist. However, it is extremely rare – and experimentally
unreachable – since its rate goes like the neutrino mass over the W mass to the 4th power.
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where

M∫ ¥
√

03£3 mT
D

mD MN

!

. (2.2)

Here, ∫L =
°

∫Le ∫Lµ ∫Lø

¢T and NR =
≥

NR1 . . . NRnN

¥T
, with nN the number of right-handed neu-

trinos. Without loss of generality, we will assume in what follows that the matrices MN and Ye

have already been diagonalized after redefinition of respectively the right-handed neutrinos fields
NR and the charged lepton fields through unitary transformations. The matrix M∫ is symmetric
and, according to the Takagi’s factorization, can be diagonalized by block thanks to a unitary
matrix UN :

M̂∫ =U T
N M∫ UN . (2.3)

Taking care of normalizing correctly the kinetic terms, this matrix UN is in the limit where MN ¿
mD given by [88, 56]

UN =
√

13£3 ° ≤N
2

°

M°1
N mD

¢†

°M°1
N mD 1nN£nN ° ≤0N

2

!

+O
°

m3
D /M 3

N

¢

, (2.4)

where

≤N ¥
°

M°1
N mD

¢†
(MN mD ) and , ≤0N ¥

°

M°1
N mD

¢°

M°1
N mD

¢†
. (2.5)

The presence of the ≤N term in the diagonal can be understood as the following. Let’s consider
the low energy Lagrangian made of the dimension-5 Weinberg operator and the dimension-6
one in Eq. (1.47). The latter involves a derivative so that, after replacing the scalar field ¡ by its
vev, it gives a correction to the kinetic term which takes the form ∫̄L 6 @(1+ ≤N )∫L . In order to
get back the canonical kinetic term, one must therefore perform a non-unitary transformation
∫L ! ∫L(1+ ≤N /2), which leads to the form of the diagonal terms of the UN matrix in Eq. (2.4)
and explains at the same time why ≤N is nothing but proportional to the dimension-6 coefficient
in Eq. (1.47). After having performed the unitary transformation of Eq. (2.4), the block-diagonal
matrix is approximately given by [88, 56]

M̂∫ =
√

°mT
D M°1

N mD +O
°

m4
D /M 3

N

¢

O
°

m3
D /M 2

N

¢

O
°

m3
D /M 2

N

¢

MN +O
°

m2
D /MN

¢

!

'
√

m∫ 0
0 mN

!

. (2.6)

where m∫ ' °mT
D M°1

N mD and mN ' MN . The light neutrino mass matrix m∫ can finally be
diagonalized by a matrix U , the PMNS matrix. All in all, the mass matrix M∫ is fully diagonalized
by a unitary matrix U given by

U =UN diag
°

U ,1nN£nN

¢

'
√

U∫∫ U∫N

UN∫ UN N

!

, (2.7)
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where

U∫∫ =
≥

13£3 °
≤N

2

¥

U , U∫N =
°

M°1
N mD

¢†
,

UN∫ =°M°1
N mD U , UN N = 1nN£nN °

≤0N
2

. (2.8)

The neutrino flavor eigenstates are related to the mass eigenstate ni , with i = 1 to 3+nN , through

∫LÆ =
3+nN
X

i=1
UÆi PL ni and NRk =

3+nN
X

i=1
U§

ki PR ni , (2.9)

where k = 1 to nN . All the mass eigenstates are Majorana particles, i.e. nc
i = ni . Explicitly, we write

ni =
°

∫1 ∫2 ∫3 N1 . . . NnN

¢T , where the three first mass eigenstates ∫i are the light neutrinos, and
the nN last ones are the heavy neutrinos Ni . In this chapter, the indices i , j , . . . will denote the
mass eigenstates, and the indices Æ,Ø, . . . still denote the flavor eigenstates e, µ and ø.

The presence of the terms ≤N and ≤0N in Eq. (2.4) are crucial in order to have well defined
kinetic terms. Because of these, the U∫∫ entry of the matrix U is not a unitary matrix. In the mass
eigenstate basis, the various gauge boson and scalar interactions read [67]

L W ± = g
p

2
W °
µ `Æ∞

µUÆi PLni +H.c. , (2.10)

L Z = g
4cw

Zµ ni∞
µ
h

Ci j PL °C§
i j PR

i

n j , (2.11)

L ¡± = ° g
p

2mW
¡° `ÆUÆi

°

mlÆPL °mni PR
¢

ni +H.c. , (2.12)

L ¡3 = ° i g
4mW

¡3 ni

h

Ci j
°

mni PL °mn j PR
¢

°C§
i j

°

mni PR °mn j PL
¢

i

n j , (2.13)

L h = ° g
4mW

h ni

h

Ci j
°

mni PL +mn j PR
¢

+C§
i j

°

mni PR +mn j PL
¢

i

n j , (2.14)

where the Majorana properties of the neutrino fields ni have been used to obtain the above form
of their coupling to bosons. In the above expressions, g is the weak isospin coupling constant, cw

is the cosine of the weak mixing angle, and C and mn are (3+k)£ (3+k) matrices defined as :

Ci j ¥
3

X

Æ=1
U †

iÆUÆ j , mn = Diag
°

mni

¢

= Diag(m∫1 ,m∫2 ,m∫3 ,mN1 , ...,mNnN
) , (2.15)

where mni are the mass eigenvalues of the mass eigenstates ni . The electromagnetic and Z
interactions of the charged leptons are not modified by the basis change, so there are no flavor
changing neutral current at tree-level.

These modified interactions have interesting consequences. Indeed, from Eq. (2.10) we see
that the W ’s couplings to lepton is no more diagonal. Worse, because the matrix U∫∫ is not unitary,
the Fermi constant GF measured in experiments is no more the one defined as GSM

F =
p

2g 2/8m2
W .
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Chapter 2. Muon to electron conversion in nuclei in type-1 Seesaw models

The Fermi constant extracted from the decay µ! e∫̄e∫µ is actually given by [89]

GF 'GSM
F

µ

1°
(≤N )ee + (≤N )µµ

2

∂

. (2.16)

Since ≤N ª m2
D /M 2

N , see Eq. (2.5), one expects small deviation from the SM value. Another
clear consequence of the modified interactions is the Charged Lepton Flavor Violation (CLFV)
processes.

2.2 Charged Lepton Flavor Violation processes

Through the dimension-6 operator effects on the Lagrangian, from Eqs. (2.10)-(2.14) new inter-
esting processes are predicted that violate lepton flavor but conserve lepton number. As we will
illustrate below, the ones involving charged leptons as µ! e∞, µ! eee or µ! e conversion are
experimentally very interesting. This new class of processes, in which lepton flavor is violated,
are called Charged Lepton Flavor Violation processes (CLFV). For example in the type-1 Seesaw
model introduced above, we see that the charged leptons don’t have any flavor changing neu-
tral interactions, but they still can change flavor through the emission and absorption of W ’s at
loop-level, with a neutrino flavor transition in the loop.

The recent experimental evidences for neutrino masses has shown that lepton flavor is in
fact violated in the neutrino sector. These implies that CFLV processes do already exist thanks
to neutrino oscillations. However, proceeding through neutrino masses m∫, they need two
neutrino mass m∫ insertions in the diagram, which lead to a branching ratio proportional to
(m∫/mW )4, which is extremely suppressed. For example, it has been shown in Ref. [90] that,
assuming only neutrino oscillations, the branching ratio of the process µ! e∞ is of the order of
Br (µ! e∞) ª 10°56, which is several tens of order of magnitude smaller than the present and
future experimental bounds, see below.

The CLFV processes are not specific to type-1 Seesaw models. In fact, a lot of models
do actually predict them, like the other two kinds of Seesaw models. This is because once a
model generates a dimension-5 operator, it is generally expected to generate dimension-6 ones
as well, see section 1.4. For example, as already mentioned above, the type-1 Seesaw generates
a dimension-6 operator given by Eq. (1.47). We here write again the associated dimension-6
coefficient cd=6

ÆØ
[50] :

cd=6
ÆØ =

√

Y †
N

1

M †
N

1
MN

YN

!

ÆØ

=
nN
X

i
Y §

NiÆ

1

m2
Ni

YNiØ , (2.17)

where we used the fact that MN can be taken without loss of generality as a diagonal matrix of real
elements. Here and in what follows, we denote by YNiÆ the matrix elements of YN . We have shown
that this dimension-6 coefficient cd=6 is remarkably nothing else than the ≤N in Eq. (2.5), up to a
factor v2/2. As we will see, it is in fact involved in all CLFV processes.
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2.2. Charged Lepton Flavor Violation processes

2.2.1 Experimental status

The CLFV processes are very promising because new experiments will reach very high sensitivities
on the branching of some of them. One distinguishes the following processes.

± `Æ! `Ø∞

The decay of a charged lepton `Æ in another charged lepton `Ø with emission of a photon. The
rate of such process reads °(`Æ! `Ø∞), and its branching ratio is normalized according to

Br
°

`Æ! `Ø∞
¢

=
°

°

`Æ! `Ø∞
¢

°`Æ
, (2.18)

where °`Æ is the total decay rate of the charged lepton `Æ. The present best bounds on the different
branching ratios are provided by the experiments MEG for µ! e∞ [91] and BABAR for ø! e∞ and
ø!µ∞ [92]. In the near future, the upgrade of the MEG experiment, MEG-II, should increase the
sensitivity by nearly one order of magnitude on the µ! e∞ process [93]. Concerning ø! `Ø∞,
SuperB and Belle II should also improve the sensitivity by approximately one order of magnitude
in a near future (ª2021) [94, 95, 96].

± `Æ! `Ø`∞`±

The decay of a charged lepton `Æ in 3 charged leptons `Ø, `∞ and `±. The rate of such a process is
given by °(`Æ! `Ø`∞`±) and the associated branching ratio by

Br
≥

`Æ! `Ø`∞`±
¥

=
°

≥

`Æ! `Ø`∞`±
¥

°`Æ
. (2.19)

The present best bounds on this branching ratio are provided by SINDRUM I [97], BABAR [98] and
BELLE experiments [99]. In the future, the experiment Mu3e is expected to improve the sensitivity
by about ª4 orders of magnitude with respect to the present bound [100]. For ø! `Ø`∞`±, the
SuperB experiment should improve the sensitivity by one to two orders of magnitude [95].

± µ(A, Z ) ! e (A, Z ) in an nucleus A
Z N

The conversion of a muon into an electron in a nucleus N which has Z protons and A ° Z
neutrons. This process will also be referred to “µ! e conversion” in what follows. Explicitly, when
a muon is stopped by some material, it is trapped by an atom and a muonic atom is formed. The
muon falls from energy levels until it reaches the 1s ground state. From this moment, the muon
has different possibilities : either it decays in orbit through µ! e∫µ∫̄e , or it is captured by the
nucleus through µ(A, Z ) ! ∫µ (A, Z °1), or it is converted into an electron without emitting any
neutrino and this is the exotic µ! e conversion process µ (A, Z ) ! e (A, Z ). In µ! e conversion,
the final state of the nucleus could be the ground state or an excited state. However, the transition
to the ground state, called “coherent” capture, is in general enhanced with respect to the other
transition (“incoherent” capture) by a factor equal to the number of nucleons in the nucleus [101].
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Chapter 2. Muon to electron conversion in nuclei in type-1 Seesaw models

Process Upper bound (95% C.L.) Experiment/Collaboration Ref.
µ+ ! e+ ∞ 5.7£10°13 MEG [91]
µ+ ! e+ e+ e° 1.0£10°12 SINDRUM I [97]
ø+ !µ+ ∞ 4.4£10°8 BABAR [92]
ø+ ! e+ ∞ 3.3£10°8 BABAR [92]
ø+ !µ+ µ+ µ° 3.2£10°8 BELLE [99]
ø+ ! e+ e+ e° 3.6£10°8 BELLE [99]
ø+ !µ+ e+ e° 2.7£10°8 BELLE [99]
ø+ ! e+ µ+ µ° 3.7£10°8 BABAR [98]
ø+ !µ+ µ+ e° 2.3£10°8 BELLE [99]
ø+ ! e+ e+ µ° 2.0£10°8 BELLE [99]
µ° T i ! e° T i 4.3£10°12 SINDRUM II [102]
µ° Au ! e° Au 7£10°13 SINDRUM II [104]
µ° Pb ! e° Pb 4.6£10°11 SINDRUM II [103]

Process Future sensitivities Experiment/Collaboration Ref.
µ! e ∞ 4£10°14 MEG [93]
ø!µ ∞ 2.4£10°9 SuperB, Belle II [102, 104, 103]
ø! e ∞ 3.0£10°9 SuperB, Belle II [102, 104, 103]
µ! e e e ª 10°16 Mu3e [100]
ø! ``` 2.3°8.2£10°10 SuperB, Belle II [102, 104, 103]
µ T i ! e T i ª 10°18 PRISM [105],[106]
µ Al ! e Al ª 10°17 Mu2e [108]
µ Al ! e Al ª 10°17 COMET [105],[106]

Table 2.1 – Present upper bound and expected sensitivities on different CLFV processes. The
bounds are on the rate RN

µ!e , as defined in Eq. (2.20) for µ! e conversion processes, and on the
branching ratios, as defined in Eqs. (2.18) and (2.19), for the other processes.

The rate of such an event is °(µN ! eN ), and it is generally normalized according to

RN
µ!e =

°
°

µN ! eN
¢

°N
capt.

, (2.20)

where °N
capt. is the capture rate of the muon by the nucleus N . The present best bounds on the

rate RN
µ!e for different nuclei are provided by the SINDRUM II experiment [102, 103, 104]. In the

next future, new experiments like COMET, PRISM and Mu2e should reach fantastic sensitivities
on µ! e conversion in Titanium and Aluminum [105, 106, 107, 108, 109]. They are planned to
improve the sensitivities on such processes by up to ª6 orders of magnitude. This is very exciting
since these processes are in general not expected to be more suppressed than the others. The
reason why they will reach such sensitivities is multiple. First, there is only one particle produced,
the electron. This one carries an energy

Ee = mµ°Bµ°RN , (2.21)

where Bµ ' Z 2Æ2mµ/2 is the binding energy of the 1s muonic atom and RN ' m2
µ/2mN is the

recoil energy of the nucleus [110]. For Titanium, one has typically Bµ ' 1.27 MeV and RN '
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Process Present upper Experiment/ Ref. Future Experiment/ Ref.
bound (95% C.L.) Collaboration sensitivities Collaboration

Z !µe 7.5£10°7 ATLAS [114] 4.1£10°7 LHC [116]
Z ! øe 9.8£10°6 OPAL [112] 3.5£10°6 LHC [116]
Z ! øµ 1.2£10°5 DELPHI [113] 3.5£10°6 LHC [116]
h ! øµ 1.57£10°2 CMS [116]
ø!µ¥ 2.3£10°8 Belle [117] 10°10 SuperB [95]
ø!µ¥0 3.8£10°8 Belle [117] 10°10 SuperB [95]
ø!µº0 2.2£10°8 Belle [117] 10°10 SuperB [95]
B 0

d !µø 2.2£10°5 Babar [118]
B 0

d !µe 6.4£10°8 CDF [119] 1.5£10°8 LHCb [120]
B 0

s !µe 2.0£10°7 CDF [119] 6.5£10°8 LHCb [120]
K 0

L !µe 4.7£10°12 BNL 871 [121]

Table 2.2 – Present and expected sensitivities for some other CLFV observables.

0.12 MeV [111], so that the experimental signature of such a process is in good approximation a
single mono-energetic electron with an energy Ee º mµ ' 106 MeV. This signature is very clear
and far above the end-point energy of the muon decay spectrum, which is around ª52.8 MeV. The
only relevant backgrounds come from muon decay in orbit (whose energy endpoint is around
mµ because of the presence of the nucleus [110]), from cosmic rays, and from beam particles. In
this latter case for example, the muon may decays in flight and produce background events. In
order to decrease it, future experiments will use different methods, like for example using a pulsed
beam [106].

± Summary

The three kinds of processes above constitute promising way of searching for new physics. We
summarize in Table 2.1 the present bounds at 95% C.L. and the expected sensitivities of the
future experiments on these CLFV processes. Let’s note there are also plethora of other CLFV
processes that could be probed, for which we summarize in Table 2.2 the present bounds and
future sensitivities and on which we will not focus on this thesis, for example :

• Z ! `Æ`Ø. The best bound on this process is provided by OPAL [112], DELPHI [113], and
ATLAS experiments [114]. According to estimations [115], the LHC with a luminosity of
20 fb°1 could improve the sensitivity by a factor ª2.

• h ! `Æ`Ø. The best bound on this process is provided by the CMS experiment at LHC [116],
which should also improve the sensitivity in the future.

• ø ! µ¥,µ¥0,µº0. The best bounds on this processes are provided by the Belle experi-
ment [117], and SuperB should improve the sensitivity by ª2 orders of magnitude [95].

• B 0
d ,s ! µø,µe. The best bounds on this process are provided by the Babar and the CDF

experiments [118, 119]. LHCb at LHC should improve the sensitivity by a factor ª4 [120].
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Chapter 2. Muon to electron conversion in nuclei in type-1 Seesaw models

2.2.2 Theoretical status in the Seesaw models

It is clear that the CLFV processes represent great hope of new physics discovery. As we shown, this
is on the one hand because future experiments should reach great sensitivities on their detection,
and on the other hand because a multitude of theoretical models do predict them, as the Seesaw
models. It is therefore very important to have the expressions of the branching ratios of these CLFV
processes in each theoretical model. These have been extensively studied in the literature for all
the Seesaw mechanisms. In particular, the rate of CLFV processes in type-2 Seesaw have been
computed in Refs. [124, 125, 126, 127, 128], and the ones in the type-3 Seesaw in Refs. [56, 129].
Let’s now focus on the rate of these processes in the type-1 Seesaw model.

± `Æ! `Ø∞ in type-1 Seesaw

The analytical expression of the rate `Æ ! `Ø∞ in the type-1 Seesaw models, °(`Æ ! `Ø∞), is
well-known [130, 131, 132, 133, 134]. Since we will need it in what follows, we show the analytical
expression of the branching ratio of µ ! e∞ (neglecting tiny corrections proportional to the
electron mass) :

Br
°

µ! e∞
¢

=
Æw s2

w

128º4

G2
F m5

µ

°µ

Ø

ØGµe
∞

Ø

Ø

2 , (2.22)

where °µ º 2.996£10°19 GeV is the total decay rate of the muon, and Gµe
∞ is a loop form factor

whose analytical expression is given in Eq. (B.121) of Appendix B.4. The general expression for
Br (`Æ! `Ø∞) is easily obtained from the above formula by replacing {µ,e} ! {`Æ,`Ø}.

± `Æ! `Ø`∞`± in type-1 Seesaw

The analytical expression of the rate °(`Æ ! `Ø`∞`±) has been computed in Ref. [67]. Since we
will need it below, one has for example that the branching ratio of the decay µ! eeē is given by :
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. (2.23)

The expression of the various loop form factors above are given in Eqs. (B.120)-(B.129) of Ap-
pendix B.4. The expression for Br (`Æ! `Ø`Ø ¯̀

Ø) can be obtained by replacing {µ,e} ! {`Æ,`Ø}.

± µ(A, Z ) ! e(A, Z ) in an nucleus A
Z N in type-1 Seesaw

While the expression of the branching ratio for `Æ! `Ø∞ and `Æ! `Ø`∞`± were well established
in the type-1 Seesaw models, it was actually not the case of the µ! e conversion rate RN

µ!e .
It has been calculated in the literature for the various possible types of Seesaw : with right-
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2.3. µ! e conversion rate for type-1 Seesaw models

handed neutrinos in Refs. [136, 137, 138, 139, 140, 141, 142], scalar triplet(s) in Refs. [143, 144, 145]
and fermion triplets in Ref. [129]. However, for the type-1 Seesaw, a comparison of the various
calculations showed that there were no agreement on what is actually the result. This issue is also
relevant for references using calculations in previous articles [145, 146]. Some of the discrepancies
have a very significant impact on the predictions. Given both these experimental and theoretical
situations, in this thesis, we first recalculate the µ! e conversion rate for the type-1 Seesaw
model. Subsequently we will check and compare our result with the previous calculations. The
corresponding phenomenology it leads to is done in the next section 2.4.

Comments. Before going on, let’s note that all the loop form factors involved in the expressions
of these CLFV processes invoke the product of the mixing elements :

Fµe
∞ ,Gµe

∞ ,Fµe
Z ,Fµeee

box /
X

Ni

UeNi U
§
µNi

f
≥

m2
Ni

¥

/
X

Ni

Y §
Niµ

mNi

YNi e

mNi

f
≥

m2
Ni

¥

, (2.24)

where we recognize the cd=6
µe coefficient in Eq. (2.17), as anticipated. Note that in order to have

observable rates for say µ! e∞, i.e. Br (µ! e∞) & 10°14, the combination YN /mN should be
roughly larger than ª 10°5 GeV°1, or equivalently

YN & 10°2 · mN

1 TeV
. (2.25)

For TeV right-handed neutrino masses, this requires quite large Yukawa couplings (YN & 10°2).
This could at first sight be in contradiction with the neutrino mass, which roughly requires
YN ª 10°6 · (mN /1 TeV)1/2 if one fixes the neutrino mass scale to m∫ ª 0.1 eV. However, we have
shown in section 1.5 that the neutrino mass matrix can undergo an extra suppression in some
peculiar models as the Inverse Seesaw, based on an approximate lepton symmetry, so that one
can have observable rate for the CLFV processes together with small neutrino masses. Even if
clearly less likely than the usual Seesaw, this offers a unique opportunity to probe the physics BSM
which is presumably the most likely to exist.

2.3 µ! e conversion rate for type-1 Seesaw models

We have derived in section 2.1 the type-1 Seesaw Lagrangian in the neutrino and charged lepton
mass eigenstates, and this now allows us to compute the µ! e conversion rate. This computation
was made in collaboration with Rodrigo Alonso, Belen Gavela and Thomas Hambye [1]. Since the
goal of the paper was to obtain a new formulae for the rate, one had to make sure that our result
was totally correct. We therefore paid attention to take certain precautions, in particular:

1. all the steps of the computation have been cross-checked independently ;

2. several methods have been used to confirm the result, as the comparison with results
obtained in the quark sector ;

3. the final result was carefully compared with the previous results, and the differences were
highlighted.
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Chapter 2. Muon to electron conversion in nuclei in type-1 Seesaw models

Since this is a complex process that involves nuclear physics, we first present the general expression
of the conversion rate, explaining briefly how to handle the nuclear part of the problem. We next
present the methodology of the computation, i.e. the answer to the questions “How should we
proceed ?”. Finally, the different amplitudes are given, associated to the different contributions,
and they are plugged in the formula that take care of nuclear physics and the final result is derived.
The reader who would like to go to the original calculation of the type-1 Seesaw contribution can
go directly to section 2.3.2.

2.3.1 General expression of the conversion rate and approximations

The muon interacts with a nucleus N by exchanging some particles with it. As Fig. 2.1 shows, the
exchanged particle will probe different layers : the nucleus level, the nucleon level, and the quark
level. But what is actually the typical momentum of the exchanged particle ? By making a fast
analysis of the kinematics, the 4-momenta of the initial and final states are approximately given by

p º
°

mµ,~0
¢

, p 0 º
°

mµ,mµ~1n
¢

, (2.26)

pN º
°

mN ,~0
¢

, p 0
N º

°

mN ,°mµ~1n
¢

, (2.27)

where p and pN are the momenta of the initial muon and nucleus state, while p 0 and p 0
N

are the
momenta of the final electron and nucleus state.~1n is the direction of the outgoing electron. In
Eq. (2.26)-(2.27), we assumed that the initial states are at rest, and we have neglected the mass of
the electron compared to the nucleus mass mN and muon mass mµ. The transferred momentum
is thus in good approximation given by

q = p °p 0 º
°

0,°mµ~1n
¢

. (2.28)

Therefore, the exchanged particle probes the nucleus with an energy of the order of the muon
mass, i.e. |q |ª106 MeV. Since this momentum is smaller than 1 GeV, in a first approximation it
doesn’t probe the inner structure of the nucleons, and from this point of view the nucleons are
made of 3 valence quarks, each one carrying one third of the nucleus momentum. However, as we
will see, the strange quark contribution may bring significant correction. We now detail the main
steps in calculating the conversion rate. We will mainly follow the approach of Ref. [153].

± General expression of the rate

The general expression of the rate of some nuclear transition i ! f is given by Fermi’s golden rule

°
°

i ! f
¢

= 2º Ω
°

E f
¢

Ø

Øh f |Heff|i i
Ø

Ø

2 . (2.29)

where Ω(E f ) is the density of final states of energy E f and h f |Heff|i i is the matrix element of the
effective Hamiltonian Heff between the final and the initial states. In the present case of µ! e
conversion, this expression becomes [149]

°
°

µN ! eN
¢

=
√

pe Ee

m2
µ

!

1
2

X

final states
|M |2 (2.30)
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µ(p) e(p )

N (pN ) N (pN )

µ e

N N

�

(a) Photonic contribution

µ e

q q

N N

N NNucleus

Nucleon

quark

(b) Non-photonic contribution

Figure 2.1 – Photonic and non-photonic contributions to the nuclear µ! e conversion process. In
the first case, the conversion occurs via an interaction with the electromagnetic field of the nucleus.
In the second case, the muon interacts with one quark q of a nucleon N , which constitutes one
part of the total nucleus N .

where the factor (pe Ee /m2
µ) involves the density of the final states, such that the electron wave

packet is well normalized (the factor 2º is absorbed in this normalization). From Eq. (2.26), one
has that (pe Ee /m2

µ) º 1. The muon bound state wave function is normalized to unity, and we also
averaged on the initial spin and summed over the final states of the electron. The interacting
Hamiltonian is related to the effective Lagrangian through

M = he,N |Heff|µ,N i=°
Z

d 3x he,N |Leff|µ,N i . (2.31)

In any general model, one can compute the effective Lagrangian at the quark level. Once this is
done, one needs to compute the matrix element in Eq. (2.31) at the nucleus level. This pathway, of
going to the quark to the nucleus level, involves nuclear physics and has been studied in details,
see e.g. Refs. [147, 148, 149, 150, 151, 152, 153]. Here are the main steps.

At the quark level. The 4-fermions interaction of the µ ! e conversion is described by an
effective Lagrangian Leff. For a rigorous calculation of the rate, it is necessary to separate the local
contributions from the long-ranged ones. This stems from the fact that long-ranged contributions,
unlike local ones, are sensitive to the atomic electric field effect. The Lagrangian contains therefore
two distinct parts, respectively called usually “photonic” (long-ranged) contribution and “non-
photonic” (local) contribution [147, 150, 151, 153]

Leff =Lphot +Lnon-phot . (2.32)

The general form of the photonic part is given by

Lphot =°4GFp
2

≥

mµAR µ̄æ
ÆØPLe FÆØ+mµAL µ̄æ

ÆØPR e FÆØ+H.c.
¥

, (2.33)

41



Chapter 2. Muon to electron conversion in nuclei in type-1 Seesaw models

where the coefficients AR,L are model-dependent. This part describes the interaction with the
electromagnetic field of the nucleus. The non-photonic part is generically given by

Lnon-phot =°GFp
2

X

q=u,d ,s

h

°

gLS(q) ē PRµ+ gRS(q) ē PLµ
¢

q̄ q

+
°

gLP (q) ē PRµ+ gRP (q) ē PLµ
¢

q̄ ∞5q

+
°

gLV (q) ē ∞ÆPLµ+ gRV (q) ē ∞ÆPRµ
¢

q̄ ∞Æq

+
°

gL A(q) ē ∞ÆPLµ+ gR A(q) ē ∞ÆPRµ
¢

q̄ ∞Æ∞5q

+1
2

≥

gLT (q) ēæÆØPRµ+ gRT (q) ēæÆØPLµ
¥

q̄æÆØq +H.c.
i

, (2.34)

and describes the interactions with the quarks of the nucleus. Following our conventions, Fµ∫ =
@µA∫°@∫Aµ and æµ∫ = (i /2)[∞µ,∞∫]. The various gLX (q) and gR X (q) are coefficients that need to
be determined for each specific model. Here, X stand for S,P,V , A,T , respectively denoting scalar
(S), pseudo-scalar (P ), vector (V ), axial-vector (A) and tensor (T ) interactions.

At the nucleon level. Once the effective Lagrangian at the quark level has been computed in a
given model, it must be sandwiched in nucleon matrix elements to rewrite the Lagrangian in terms
of the nucleon fields (also called “hadronization”). It has been shown in Refs. [154, 148, 155] that
this can be done by replacing the quark currents q̄ °X q , where °X stands for

©

1,∞5,∞µ,∞µ∞5,æµ∫
™

,
by the corresponding nucleon currents :

hN |q̄ °X q |Ni=G (q,N )
X ™̄N °X ™N , (2.35)

where ™N stands for the wave functions of N = p,n and G (q,N )
X are nuclear form factors, which

have been determined for example in Refs. [148, 152, 156, 153]. Since the typical momentum
transferred by the current is of the order of the muon mass which is small compared to typical
nucleon structure scales ª 1 GeV, see Eq. (2.28), the q2 dependence of the nucleon form factors
G (q,N )

X can be neglected. In the limit in which strong isospin is a good symmetry, that is up to
terms proportional to the up and down mass difference, the neutron and proton form factors are
related through

G (u,p)
X =G (d ,n)

X , G (u,n)
X =G (d ,p)

X and G (s,p)
X =G (s,n)

X . (2.36)

It can be shown that only the scalar and vector contributions do actually contribute to the coherent
transition rate. This stems from the fact that the axial, pseudo-scalar and tensor nucleon currents
couple to the nuclear spin and therefore to incoherent contributions. 2 As a consequence, we will
neglect these latter in what follows. The scalar and vector form factors have been computed in
Refs. [152, 156, 153] and are given by

G (u,p)
S =G (d ,n)

S º 5.1(3.74) , G (d ,p)
S =G (u,n)

S º 4.3(2.69) , G (s,p)
S =G (s,n)

S º 2.5(0.64) , (2.37)

G (u,p)
V =G (d ,n)

V = 2 , G (d ,p)
V =G (u,n)

V = 1 , G (s,p)
V =G (s,n)

V = 0 . (2.38)

2As previously mentioned, the coherent conversion process, in which the final state of the nucleus is the same as the
initial one, gives generally a larger contribution than incoherent one approximately by a factor of the mass number of
the target nuclei. We will consider only the coherent process in what follows.
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The scalar form factors have been extracted from the baryon octet B mass spectrum, in combina-
tion with the data on the pion-nucleon scattering [152]. We show in bracket the smaller values
obtained in Ref. [157], in which another method was used. Clearly, scalar nucleon form factors
contain appreciable theoretical and experimental uncertainties. Conservation of vector current
implies that the vector charge is equal to the number of valence quarks of the nucleon. From
Eq. (2.37), one sees that the strange quarks of the nucleon sea can significantly contribute to the
scalar nucleon form factor, so the first approximation of considering only valence quarks in the
process is actually not so good, and one needs to take into account the strange quark contribution.
However, as we will see below, only vector current receives a contribution in the type-1 Seesaw so
that the strange quark will finally not contribute to the conversion rate.

At the nucleus level. The matrix element of the effective Hamiltonian with respect to the nucleus
states is given by Eq. (2.31). From the above general Lagrangian in Eqs. (2.32)-(2.34) together with
Eq. (2.35), we see that the matrix element can be divided in two contributions : a leptonic and a
nucleonic part. So once the Lagrangian is known in a given model in terms of nucleon fields, it
must still be sandwiched in the lepton and nucleus matrix elements. This will allow to rewrite
the Lagrangian in terms of lepton fields and nucleon densities. The leptonic part contains matrix
elements as he|ē °X µ|µi, which will give :

he|ē °X µ|µi= ™̄e (~r ) °X ™µ(~r ) , (2.39)

where ™e (~r ) and ™µ(~r ) are the wave functions of the electron and the muon respectively. The
initial muon state is the 1s state of the muonic atom, and the final electron state is a a plane wave
with an energy Ee ' mµ, see Eq. (2.21). The wave function of the muon state can be determined by
solving the Dirac equations in the electric field of the nucleus [153].

From Eq. (2.35), the nuclear part contains elements as hN |™̄N ™N |N i and hN |™̄N ∞µ™N |N i.
Since the nucleus N = (A, Z ) contains Z protons and A°Z neutrons, these nuclear matrix ele-
ments give [153, 158]

hN |™̄p ™p |N i= Z Ωp , (2.40)

hN |™̄n ™n |N i= (A°Z ) Ωn , (2.41)

hN |™̄p ∞
0 ™p |N i= Z Ωp , (2.42)

hN |™̄n ∞
0 ™n |N i= (A°Z ) Ωn , (2.43)

hN |™̄N ∞i ™N |N i= 0 , (2.44)

where Ωp (~r ) and Ωn(~r ) are the proton and neutron densities of the nucleus. In good approximation
the nucleus is spherically symmetric, and these densities are normalized as

Z1

0
4ºr 2dr Ωp,n(r ) = 1 . (2.45)

The matrix element of spatial components of the vector current is proportional to the velocities
of the constituents and is negligible in the present problem. The time component of the vector
current counts the number of nucleons in the nucleus.
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Summary. All in all, we can use the different results in Eq. (2.31)-(2.35),(2.39)-(2.44), to derive
the final form of the matrix element, which reads

M =Mphot +Mnon-phot (2.46)

where

Mphot =
4GFp

2
mµ

Z

d 3r
≥

A§
R™̄e æ

ÆØPR™µ+ A§
L™̄e æ

ÆØPL™µ

¥

hN |FÆØ(~r )|N i , (2.47)

and

Mnon-phot =
GFp

2

X

q=u,d ,s

Z

4ºr 2dr

"

°

gLS(q)™̄e PR™µ+ gRS(q)™̄e PL™µ
¢

≥

ZG (q,p)
S Ωp + (A°Z )G (q,n)

S Ωn

¥

+
°

gLV (q)™̄e ∞
0PL™µ+ gRV (q)™̄e ∞

0PR™µ
¢

≥

ZG (q,p)
V Ωp + (A°Z )G (q,n)

V Ωn

¥

#

.

(2.48)

The form factors G (q,N )
S,V are given in Eq. (2.37)-(2.38). The matrix element hN |FÆØ(~r )|N i in

Eq. (2.47) has still to be determined. Assuming that the electric field of the nucleus is also spheri-
cally symmetric, and neglecting the contribution of the magnetic field compared to the electric
one (since we assume a spherical symmetry), this element will give a contribution proportional to
the total electric field of the nucleus E(r ).

The transition rate of the coherent conversion is given by Eq. (2.30). After squaring the
amplitude, averaging on the initial muon spin and summing over the final states of the electron,
the branching ratio RN

µ!e , defined in Eq. (2.20) as the final conversion rate over the capture rate
°N

capt., reads [153]

RN
µ!e =

2G2
F m5

µ

°N
capt.

h

Ø

Ø

Ø

A§
R D + g̃ (p)

LS S(p) + g̃ (n)
LS S(n) + g̃ (p)

LV V (p) + g̃ (n)
LV V (n)

Ø

Ø

Ø

2

+
Ø

Ø

Ø

A§
L D + g̃ (p)

RS S(p) + g̃ (n)
RS S(n) + g̃ (p)

RV V (p) + g̃ (n)
RV V (n)

Ø

Ø

Ø

2 i

, (2.49)

where we defined

g̃ (p)
LS,RS =

X

q
G (q,p)

S gLS,RS(q) , g̃ (n)
LS,RS =

X

q
G (q,n)

S gLS,RS(q) , (2.50)

g̃ (p)
LV ,RV =

X

q
G (q,p)

V gLV ,RV (q) , g̃ (n)
LV ,RV =

X

q
G (q,n)

V gLV ,RV (q) . (2.51)

In Eq. (2.49), D , S(p,n) and V (p,n) are dimensionless overlap integrals. More precisely, D is a spatial
integral involving the lepton fields and the electric field E(r ) of the nucleus, and S(p,n) and V (p,n)

are spatial integrals involving the lepton fields and the nucleon densities ZΩp and (A°Z )Ωn . We
won’t write their analytical expressions here for shortness, but these can be found in Ref. [153].
Let’s however discuss how one can evaluate them numerically.
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Nucleus A
Z N D S(p) V (p) S(n) V (n) °N

capt. (106s°1)
27
13Al 0.0357 0.0153 0.0159 0.0163 0.0169 0.7054
48
22Ti 0.0870 0.0371 0.0399 0.0462 0.0495 2.59

197
79 Au 0.167 0.0523 0.0859 0.0610 0.108 13.07
208
82 Pb 0.162 0.0495 0.0838 0.0575 0.107 13.45

Table 2.3 – Nuclear form factors and capture rates for various nuclei. For Aluminum, Gold and
Lead the overlap integrals have been obtained using neutron distributions from pionic atom
experiments [161]. For Titanium the values have been obtained using neutron distributions from
polarized proton scattering data [162, 163].

In order to evaluate these overlap integrals, the proton and the neutron densities are needed.
While the proton density is precisely determined from electron scattering experiments [159, 160],
the neutron distribution is less known. There are therefore two main sources of uncertainty in the
calculation of the transition rate : (i) the scalar form factors in Eq. (2.37) and (ii) the neutron density.
This latter uncertainty has been carefully discussed in Ref. [153], where several approaches have
been reviewed to determine the neutron density, and to compute the overlap integrals. Whenever
data from polarized proton scattering exists, the uncertainty on the overlap integrals S(p,n) and
V (p,n) can be reduced to a few percent. Otherwise, it should be considered to be of the order
of ª10%.

Numerical estimations of the overlap integrals can be found in Ref. [153]. We show in
Table 2.3 their values for various relevant nuclei used in experiments. 3 For Aluminum, Gold, and
Lead, the values have been obtained using pionic atom experiments [161], while for Titanium the
values have been obtained from polarized proton scattering data [162, 163]. We also include in this
table the associated muon capture rate found in Ref. [164]. Let’s note that future experiments like
AlCap aim to provide precision measurements of the products of nuclear capture on Aluminum,
which is the target material for both COMET and Mu2e [165]. Also, improved knowledge of the
neutron distribution in nuclei should improve the overlap integral values.

± Light nuclei approximation

Following Ref. [153], an approximation consists in taking the neutron density to be the same as
the proton density Ωp = Ωn . For light nuclei, this is a good approximation because the number
of neutrons and protons are approximately equal. We show in Fig. 2.2 from Ref. [153] the values
of D, S(p,n) and V (p,n) obtained using this assumption. We see that for Z . 30, one has in good
approximation that S(n) 'V (n) and S(p) 'V (p) ' D/8e. If, in addition, we neglect the relativistic
effect of the muon bound state and we replace the muon wave function by its average value in
the nuclei, the conversion rate doesn’t depend on the details of the neutron distribution, and the
overlap integrals can be expressed as

V (p) º S(p) º 1
8º

h¡µi Fp Z , V (n) º S(n) º 1
8º

h¡µi Fp (A°Z ) , D º 8eV (p) , (2.52)

3The normalization of the overlap integrals used here is not the same than the one in Ref. [153]. The two differ by a
factor m5/2

µ .
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Nucleus A
Z N D S(p) V (p) S(n) V (n) Zeff |Fp (°m2

µ)|
27
13Al 0.0362 0.0155 0.0161 0.0167 0.0173 11.5 0.64
48
22Ti 0.0864 0.0368 0.0396 0.0435 0.0468 17.6 0.54

197
79 Au 0.189 0.0614 0.0974 0.0918 0.146 33.5 0.16
208
82 Pb 0.161 0.0488 0.0834 0.0749 0.128 34.0 0.15

Table 2.4 – Nuclear form factors in the approximation of equal densities for proton and neutron,
and taking the average value of the muon wave function in the nucleus. The values are taken from
Ref. [153].

where Fp is some nucleus-dependent nuclear form factor, and h¡µi is the average value of the
muon wave function in the nucleus divided by m3/2

µ ,

h¡µi=

s

4Æ3Z 4
eff

Z
, (2.53)

with Zeff the effective charge of the muon in the 1s state, and Æ= e2/4º the fine structure constant.
In the light nuclei approximation, the branching ratio RN

µ!e reads

RN
µ!e '

Æ3F 2
p

8º2

Z 4
eff

Z

G2
F m5

µ

°N
capt.

"

Ø

Ø

Ø

8e Z A§
R +Z

≥

g̃ (p)
LS + g̃ (p)

LV

¥

+ (A°Z )
≥

g̃ (n)
LS + g̃ (n)

LV

¥

Ø

Ø

Ø

2

+
Ø

Ø

Ø

8e Z A§
L +Z

≥

g̃ (p)
RS + g̃ (p)

RV

¥

+ (A°Z )
≥

g̃ (n)
RS + g̃ (n)

RV

¥

Ø

Ø

Ø

2
#

. (2.54)

We show in Table 2.4 the evaluation of the form factors Fq and the effective charge of the muon Zeff

for relevant nuclei. The values are taken from Ref. [153]. We see that for light nuclei, as Aluminum
or Titanium, the values of the overlap integrals are quite similar to the ones in Table 2.3, which
have been obtained using experimental neutron densities. However, this is no more the case for
heavier nuclei as Gold or Lead, where both results deviate by up to ª 30%, especially concerning
the neutron form factors S(n) and V (n).

Validity of the approximation. It is important to stress that, firstly, the approximation Ωn = Ωp is
not necessarily a good approximation for S(n) and V (n), as can be seen by comparing their values
in Table 2.4 with the one shown in Table 2.3 obtained from experiments. Secondly, from Fig. 2.2,
taking S(n) ' V (n) and S(p) ' V (p) is clearly not consistent for heavy nuclei with Z & 30. Finally,
by taking the average value of the muon wave function in the nucleus in Eq. (2.53), we assume
actually that the nucleus is point-like, which is equivalent to not separate the photonic and the
non-photonic contributions. When does this last approximation ceases to be valid ? To answer this
question, one needs to compare the different scales of the problem [150]. The wave function of the
muon bounded in the lowest orbit is characterized by the Bohr radius rB = (ÆZ mµ)°1. This radius
has to be compared with the nucleus radius, rN . Using the Fermi model, one has approximately
rN º Z 1/3 fm. The nucleus can be considered as point-like only if the Bohr radius is much larger
than the radius of the nucleus. The requirement rB ¿ rN implies Z ø 60. As a consequence, all
in all the above expression (2.54) is valid for relatively light nuclei, typically Z . 30.
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Figure 2.2 – Numerical values of the overlap integrals for various nuclei, using the approximation
of equal densities for proton and neutron. The figure is taken from Ref. [153].

Comments. In Fig. 2.2 from Ref. [153] for example, we see that the values of the overlap integrals
increase with Z until they reach a plateau around Z ' 30, and then decrease for Z & 60. One
expect therefore the conversion rate RN

µ!e to be larger for nuclei with Z 2 [30,60]. However, as
seen previously in for example Table 2.1, future experiments plan to use Aluminum and Titanium
nuclei, which have Z = 13 and Z = 22 respectively. Why ? The reason is the background reduction.
First, the larger the Z , the smaller the Bohr radius rB , and the larger is the capture rate. As a
consequence, the muon in heavy nuclei has a shorter lifetime than in light nuclei, as can be seen
in Table 2.3. This is not convenient experimentally because long lifetimes are required in order to
eliminate the beam-related background. Secondly, the smaller the binding energy, the farther the
electron energy is in the tail of the energy spectrum of the background. Since the binding energy
increases with Z , light nuclei are again favored. This is why future experiments will use Aluminum
and Titanium nuclei.

2.3.2 Methodology

How should we proceed ? From previous section, the methodology to follow is the following.

1. One needs to compute the effective Lagrangian at the quark-level in Eqs. (2.32)-(2.34), in
order to derive the gX (q) coefficients and so the final result in Eq. (2.49). Starting from the
general type-1 Seesaw Lagrangian in Eqs. (2.10)-(2.14), this is achieved by computing the
amplitudes of the processes µq ! eq , to get the photonic and non-photonic parts.

2. The result must be verified. Several methods can be use to check the amplitudes and their
relative factors. Also, several papers have provided other methods to get the conversion
rate, which are generally approximations of the result presented in Eq. (2.49), as the one in
Eq. (2.54). Finally, our result is compared with the various one obtained previously in the
literature, and the origin of the inconsistencies are traced back.

47



Chapter 2. Muon to electron conversion in nuclei in type-1 Seesaw models

�

W

�
W

�

n

i

µ

e

d,ud,u

(a) Photon Penguin Diagram

Z

W

�
W

�

n

i

µ

e

d,ud,u

(b) Z Penguin Diagram

Z

n

i

n

j

W

�

µ

e

d,ud,u

(c) Z Penguin Diagram

n

i

uu

µ

e

d

j

W W

(d) Box Diagram

n

i

dd

µ

e

u

j

W

W

(e) Box Diagram

Figure 2.3 – The five classes of diagrams contributing to µ! e conversion in the type-1 Seesaw
model.

2.3.3 Computation of the rate in type-1 Seesaw models

± Amplitudes

In the type-1 Seesaw framework, violation of charged lepton number arises at the one loop level,
as was anticipated in section 2.2. The µ! e conversion is induced by a series of gauge boson
mediated diagrams given in Fig. 2.3. The various contributions to the process can be divided in
those in which the momentum is transferred by the photon, by the Z boson or via two W bosons.
The first two proceed via penguin diagrams, whereas the latter proceeds via box diagrams. Alike
to the quark case, the internal fermions in the loop must have non-degenerate masses and non
trivial mixings, in order to avoid a GIM cancellation.

The detailed amplitudes associated to all the different parts of the process are given in
Appendix B. In order to simplify the computation, we fixed the gauge ª= 1, i.e. we went in the
Feynman-t’Hooft gauge. 4 The only approximations used in our calculation are to neglect : i) the
electron mass compared to the muon mass ; ii) higher orders in the external momentum over the
W mass ; iii) the value of the three light neutrino masses compared to the heavier ones. 5 The
first two approximations are accurate at a level better than O (10°4), that is to say better that what
can be expected from higher loop contributions, and much better than the uncertainties on the
nuclear form factors. The third approximation becomes excellent as soon as the right-handed
neutrino masses are a few orders of magnitude above the light neutrino masses. We next show the
contributions to the amplitude from the photon and then from the W and Z bosons.

4For specific diagrams, as the boxe ones, we made a computation of the amplitudes without fixing the gauge, in
order to have supplementary check of the consistency of the result.

5This latter approximation is not made in the first equality of Eqs. (B.120)-(B.129), only in the second equality of
these equations. One could therefore use those results for any value of the right-handed neutrino masses.
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Note that, as we have seen in the previous section, for a rigorous calculation of the rate it is
necessary to separate the local contributions (non-photonic) from the long-ranged (photonic)
ones. This stems from the fact that long-ranged contributions, unlike the local ones, are sensitive
to atomic electric field effects. The W and Z mediated diagrams are obviously all local. The
∞-mediated diagrams contribute in fact to both classes of transitions, local and long-ranged. The
word “photonic” must therefore be understood for long-ranged interactions, and not for all the
QED contributions.

Photon contribution. The contribution from the photon exchange has a common basis with
the µ! e∞ process. It is computed in Appendix B.3.2. The general matrix element of the µ! e∞
process can be written as

iM∞ =
i eg 2

2(4º)2m2
W

≤Æ∏(q)ue (p 0)
h

Fµe
∞ (q2∞Æ°6qqÆ)PL°iæÆØqØGµe

∞ (me PL+mµPR )
i

uµ(p) , (2.55)

where qÆ denotes the photon momentum, qÆ = pÆ°p 0
Æ. The analytical expressions for Gµe

∞ and
Fµe
∞ can be found in Appendix B, Eqs. (B.120) and (B.121).

The second term in this equation (2.55) – mediated by the photon-lepton “dipole” Gµe
∞

coupling – is the only one contributing for an on-shell photon and is long-ranged, whereas the
“monopole” term Fµe

∞ is local (i.e. it only accounts for off-shell photon exchange and it involves
2 powers of the photon momentum in the numerator which compensate the long range 1/q2

propagator of the photon between the lepton and nuclei lines [150]). Let’s note that the µ! e∞
decay amplitude is obtained for on-shell photons, i.e. for q2 = 0. In this case, obviously, only the
dipole term survives. Therefore, the knowledge of the µ! e∞ amplitude, calculated long ago to
determine the µ! e∞ branching ratio, is not sufficient. One needs to calculate the Fµe

∞ part.

In the case of µ! e conversion, both dipole and monopole terms do contribute to the
photonic and non-photonic effective Lagrangian respectively. The photonic contribution to the
effective Lagrangian is given by the dipole term : 6

L
∞
phot =

Æw emµ

4(4º)m2
W

ē Gµe
∞ æÆØPRµ FÆØ . (2.56)

To get the non-photonic contribution from Eq. (2.55), one has to include the quark line and use
the fact that the exchanged photon has momentum q2 =°m2

µ, see Eq. (2.28). From the amplitude
in Eq. (B.88) of the Appendix B.4, one gets : 7

L
∞
non-phot =

X

q=u,d ,s

ÆwÆ

2m2
W

ē Fµe
∞ ∞ÆPLµ q̄ ∞ÆQq q , (2.57)

where Qq is the electric charge of the quark q = u,d (Qu = 2/3,Qd =°1/3), and Æw = g 2/4º.

6To get the effective Lagrangian from Eq. (2.55), one just has (i) to multiply the amplitude by °i , (ii) to replace the
≤Æ
∏

(q) by AÆ, uµ(p) by µ , and ūe (p 0) by ē, and (iii) to use the fact that @ØAÆ = i qØAÆ.
7The term proportional to qÆ in Eq. (2.55) drops because of quark current conservation.
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Z and W contributions. These are non-local diagrams, that therefore contribute only to the
non-photonic effective Lagrangian. Their contributions are obtained from the amplitudes in
Eqs. (B.89)-(B.90) in Appendix B.4, and are given by

L Z
non-phot =

X

q=u,d ,s

Æ2
w

2m2
W

ē Fµe
Z ∞ÆPLµ q̄ ∞Æ

≥

I 3
q PL °Qq s2

w

¥

q , (2.58)

L W
non-phot =

X

q=u,d ,s

Æ2
w

4m2
W

ē Fµeqq
box ∞ÆPLµ q̄ ∞ÆPL q . (2.59)

where I 3
q is the weak isospin (I 3

u = 1/2, I 3
d = I 3

s = °1/2) and sw is the sinus of the weak mixing
angle. The analytical expressions of Fµe

Z and Fµeqq
box for the up and down quarks can be found in

Appendix B, Eqs. (B.122), (B.124) and (B.127). Let’s note that, as said above, whatever the loop
form factors of the strange quark, since the associated scalar nuclear form factor vanishes, the
strange quark doesn’t contribute to the conversion rate, so that we omit its contribution in what
follows.

Final photonic and non-photonic contributions to the effective Lagrangian. Putting all the
contributions together, the total photonic part of the effective Lagrangian is therefore given by
Eq. (2.56),

Lphot =°4GFp
2

∑

mµ

µ °e
2(4º)2 Gµe

∞

∂

ēæÆØPR µ FÆØ+H.c.
∏

, (2.60)

and the total non-photonic part is obtained by summing Eqs. (2.57)-(2.59),

Lnon-phot =°GFp
2

X

q=u,d

h≥°Æw

º

¥

ē ∞ÆPL µ q̄∞Æ
≥

V µe
q + Aµe

q ∞5

¥

q +H.c.
i

, (2.61)

where V µe
q contains the contribution of the monopole Fµe

∞ term as well as that from the weak
gauge-boson exchange diagrams. The term proportional to Aµe

q is an axial-vector interaction, and
therefore it doesn’t contribute to the coherent conversion process. One has, from Eqs. (B.92) of
Appendix B.4,

V µe
q =Qq s2

w Fµe
∞ +

√

I 3
q

2
°Qq s2

w

!

Fµe
Z + 1

4
Fµeqq

box , (2.62)

Aµe
q =°

I 3
q

2
Fµe

Z ° 1
4

Fµeqq
box . (2.63)

The coefficients V µe
q , Aµe

q and Gµe
∞ encode all the dependence on the internal fermion masses and

mixing angles.

± Expression of the µ! e conversion rate in type-1 Seesaw models

The effects of the nuclear form factors and of the average over the atomic electric field can be taken
into account in the way described in section 2.3.1. A careful comparison with Eqs. (2.33)-(2.34)
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allows to make the following replacements

A§
R =° e

2(4º)2 Gµe
∞ , gLV (q) =°Æw

º
V µe

q , gL A(d) =°Æw

º
Aµe

d . (2.64)

From these last two correspondences, we see that only the left-handed vector and axial-vector
interactions do actually contribute to the non-photonic conversion rate, i.e. only the first terms
of the third and fourth line of Eq.(2.34). However, as said above, only the vector interaction do
actually contribute to the coherent conversion rate. The final expression for the ratio of the
coherent µ! e conversion over the capture rate °N

capt. is given by Eq. (2.49) and reads

RN
µ!e =

2Æ2
w

º2

G2
F m5

µ

°N
capt.

Ø

Ø

Ø

Ø

s2
w

8e
Gµe
∞ D +

°

2V µe
u +V µe

d

¢

V (p) +
°

V µe
u +2V µe

d

¢

V (n)
Ø

Ø

Ø

Ø

2

. (2.65)

The nuclear information is encoded by the D, V (p) and V (n) overlap integrals whose values are
given in Table 2.3, taken from Ref. [153]. The values of °N

capt. are given in the same table and come
from Ref. [164]. In the following, we will use Eq. (2.65) for all numerical results.

Let’s note that the comparison of this equation with the analytical expression of the decays
µ ! e∞ and µ ! eeē in Eqs. (2.19) and (2.18), illustrates the fact that RN

µ!e , Br (µ ! e∞) and
Br (µ! eeē) are sensitive to different combinations of the same form factors, which contain the
dimension-6 coefficient as it should.

Light nuclei approximation. For low atomic number, Z . 30, and for comparison with other
calculations, the result can be nevertheless simplified using the approximation in Eq. (2.54), in
which case the branching ratio reads

RN
µ!e '

Æ2
wÆ

3F 2
p

8º4

Z 4
eff

Z

G2
F m5

µ

°N
capt.

Ø

ØZ
°

2Ṽ µe
u + Ṽ µe

d

¢

+ (A°Z )
°

Ṽ µe
u +2Ṽ µe

d

¢

Ø

Ø

2
, (2.66)

where we defined, see Eq. (B.138)-(B.139) of the Appendix B.4,

Ṽ µe
q ¥V µe

q +Qq s2
wGµe

∞ . (2.67)

The values of Zeff and Fp are given in Table. 2.4, taken from Ref. [153]. Since in this light nuclei
approximation we do not separate the photonic and non-photonic contributions, the result in
Eq. (2.66) can also be obtained taking the long range contribution proportional to Gµe

∞ to be
non-photonic, in which case the effective Lagrangian reads, using Eq. (B.96)

Lnon-phot '°GFp
2

X

q=u,d

h≥°Æw

º

¥

ē ∞ÆPL µ q̄∞Æ
≥

Ṽ µe
q + Ãµe

q ∞5

¥

q +H.c.
i

. (2.68)

This effective Lagrangian leads indeed to Eq. (2.66), after the replacement

A§
R = 0 , gLV (q) =°Æw

º
Ṽ µe

q , gL A(d) =°Æw

º
Ãµe

d . (2.69)
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± Cross-checks and comparison with the literature

We gather here together the result of comparing our formula with those in previous literature.
These latter are most often given in the approximation of low atomic number, although the first
two items below hold for the exact formulae. A number of comments can be made :

• Sign of the G∞ contribution. Our results agree with the sign indicated in Refs. [137, 141, 142],
and is opposite to that in Refs. [138, 139]. Note that G∞ contributes both to µ! e conversion
and to µ! e∞ decay – see Eq. (2.22) – and the loop integrals involved can be related with
analogous amplitudes in the quark sector, once the internal quark charge is switched off :
this allows to check that our results are consistent with those for K transitions [166] and for
b ! s`+`° decay [167].

• Box diagrams. Refs. [137, 138, 139] also exhibit differences in the relative size and/or sign
of the crossed and not crossed box contributions, that is, in the amplitudes resulting from
the last two diagrams in Fig. 2.3. As shown in the Appendix, we obtain a °4 factor between
these contributions, in agreement with for instance the quark results for ¢S = 2 or ¢B = 2
processes in Ref. [168], and Refs. [141, 142]. Also, we obtain half the contribution considered
in Ref. [146] for all box diagrams.

• Constant terms in the F∞ and FZ form factors. In the case of right-handed neutrino masses
heavier than the W mass, mN ∏ mW , the different form factors can be expanded as in
the right-handed Eqs. (B.130)-(B.135) of Appendix B.4. The associated expressions contain
constant terms and terms proportional to ln(m2

N /m2
W ). For right-handed masses sufficiently

low to result in observable µ! e conversion rates, the constant terms are numerically
competitive with logarithmic ones and cannot be neglected. We get different results for
them, though, than in Ref. [142], where some of them have been neglected. On the contrary,
our results agree with the full expressions for those form factors given in Ref. [67] for the
computation of the µ! eee rate, to which they also contribute, see Eq. (2.23). Furthermore,
the µ! e conversion rate has been also calculated in the framework of the supersymmetric
type-1 Seesaw model in Ref. [141] ; we checked that its non-supersymmetric limit results
in logarithmic terms which agree with ours, but there too the constant terms have been
neglected. 8

• Decoupling limit. In the limit of infinite right-handed neutrino masses and fixed Yukawa
couplings, the low-energy theory is renormalizable (e.g. the Standard Model with massless
left-handed neutrinos) and, in consequence, the extra singlet degrees of freedom introduced
must decouple, leaving no impact on low-energy observables, see for example [169]. We
have checked explicitly that this condition is indeed fulfilled by our µ ! e conversion
expression, but also by all the other rates mediated by right-handed neutrinos as for example
µ! e∞ and µ! eee. This is in disagreement with the non-decoupling behavior obtained in
Ref. [145] for the µ! e conversion rate in the type-1 Seesaw models. 9

8Numerically, to neglect the constant terms for these form factors can lead to rates which can differ by several orders
of magnitude in the few TeV range.

9The analytic expressions used in Ref. [145] are the same ones that are valid for the case of a fourth generation of
quarks and leptons [170] (that is, with an active extra neutrino instead of a singlet right-handed neutrino, which cannot
decouple as the remaining low-energy theory would not be renormalizable).
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• Cross-checks using other methods. The derivation of the rate from the expression of the
amplitude can also be obtained from the effective Lagrangian following methods developed
in other papers. For example we can use the result obtained in Ref. [151] or in Ref. [148],
where they don’t separate the photonic and the non-photonic part, so that their results
are strictly correct in the light nuclei approximation. We have carefully checked that their
methods also provide exactly the result in Eq. (2.66).

• Finally, let’s note that with respect to the results in Ref. [140], we get different coefficients for
several logarithmic and constant terms.

2.4 Predictions and constraints : degenerate case

The µ! e transition rates expected in the type-1 Seesaw framework are clearly highly model
dependent. For right-handed neutrino masses above the eV scale – as those considered in this
work – for which the Seesaw approximation U∫N ª Y †

N v/mN in Eq. (2.8) holds – they scale in
particular as the inverse of the right-handed neutrino masses at the fourth power, and contain four
Yukawa couplings in the numerator, 10 bringing each one a flavor dependence. Nevertheless, it
turns out that the models which can naturally give measurable rates are models which involve two
or more quasi-degenerate right-handed neutrinos and for these models one can make remarkably
clear predictions. The quasi-degenerate case is particularly natural, as it takes place for instance
in scenarios in which lepton number (L) is approximately conserved [59, 57, 60, 61, 62, 63, 64, 65,
56, 66, 67, 68] : the degeneracy is protected by the symmetry. This assumption allows a natural
decoupling between large Yukawa couplings (inducing L-preserving large rates) and small Yukawa
couplings (guaranteeing small neutrino masses) and results in viable scenarios, even for low
Seesaw scales. In other words, large Yukawa couplings to get large CLFV rates goes with quasi-
degeneracy. This class of models is generically called Inverse Seesaw models [57, 58], which have
been introduced in section 1.5.

For this quasi-degenerate case, we have found that the model lead to remarkable predictions.
These predictions hold for the ratios of two rates where a same flavor transition occurs, for
example RN

µ!e /Br (µ! e∞) or Rµ!e /Br (µ! eee). The point is simply that if at least two right-
handed neutrinos are quasi degenerate, only one right-handed neutrino mass scale is relevant in
the rates and the dependence on the elements of the mixing matrix (which contain the Yukawa
dependence) factorizes from the mass dependence. For instance, for mN1 ' mN2 ' ... ¥ mN , the
rates in Eq. (2.65) for µ! e conversion takes the factorized form

RN
µ!e '

2Æ2
w

º2

G2
F m5

µ

°N
capt.

∑

s2
w

8e
G∞ D + (2Vu +Vd )V (p) + (Vu +2Vd )V (n)

∏2 Ø

Ø

Ø

Ø

Ø

nN
X

i
UeNi U

§
µNi

Ø

Ø

Ø

Ø

Ø

2

, (2.70)

10In this phenomenology section, higher orders in Yukawa couplings will be neglected, assuming a perturbative
expansion holds, although this might not be the case for couplings larger than unity [141, 67]. This assumption is
required for the factorization of the Yukawa (mixing) structure in the rates and the simple relations that follow as
discussed below.
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and Eq. (2.22) for µ! e∞ factorizes as

Br (µ! e∞) '
Æw s2

w

128º4

G2
F m5

µ

°µ
G2
∞

Ø

Ø

Ø

Ø

Ø

nN
X

i
UeNi U

§
µNi

Ø

Ø

Ø

Ø

Ø

2

, (2.71)

where G∞(xN ), Vu(xN ) and Vd (xN ) are functions of xN ¥ m2
N /m2

W given in Appendix B.4, Eqs. (B.99),
(B.136) and (B.137). In consequence, the flavor dependence in the mixing parameters drops in the
ratio of both rates, leaving only a dependence on the mass mN of the heavy neutrinos [171] :

Rµ°e(N )
µ!e∞ (xN ) ¥

RN
µ!e

Br (µ! e∞)
= 256º2Æw

s2
w

°µ

°N
capt.

2

4

s2
w

8e G∞ D + (2Vu +Vd )V (p) + (Vu +2Vd )V (n)

G∞

3

5

2

.

(2.72)

Note that the cancellation of the mixing parameters dependence in the ratio is valid at the domi-
nant order in the mixing angle expansion, that is to say that in Eqs. (2.71)-(2.72) we neglected terms
which involve four insertions of light-heavy mixing in the amplitudes, see Eqs. (B.130)-(B.135) in
Appendix B.4. This approximation is justified for the range of low right-handed neutrino masses
we contemplate (i.e. mN from 10°2 GeV to mW ) in view of the experimental constraints on the
mixing, whereas for the large mass regime (i.e. mN above mW ) it relies on the perturbativity of the
Yukawa couplings.

In this first phenomenological section, we will show the predictions concerning the ratios
of rates in the case where all the heavy neutrinos are degenerate. The result can in particular be
applied to the Inverse Seesaw models, where two right-handed neutrino are quasi-degenerate
and the third one provides tiny contribution to the CLFV rates, since it has very small mixings, see
Eq. (1.51) in section 1.5. The non-degenerate case is analyzed in next section 2.5 below.

2.4.1 Ratios of rates involving one same flavour transition

If all the heavy neutrinos are degenerate, mN1 ' mN2 = ... ¥ mN , the expressions in Eqs. (2.22),
(2.23) and (2.65) allow to compare the relative strength of µ! e conversion to the µ! e∞ branch-
ing ratio, Rµ°e(N )

µ!e∞ , and to the µ! eee branching ratio, Rµ°e(N )
µ!eee . As explained above, these ratios

depend only on the right-handed neutrino mass scale mN (at leading order in YN v/MN ). The
results are illustrated in Fig. 2.4 as a function of mN for various nuclei, in the large mN regime. 11

We see that the ratios to µ! e∞ and µ! eee for Titanium, Gold and Lead fall on top of
each other. Numerically the agreement holds at the % level. This is due to the conversion ratio
RN
µe in these nuclei being approximately equal, at the percent level (modulo possible nuclear

physics uncertainties). The ratios entering this quantity vary from atom to atom solely through
the square of the variables V (p),V (n),D divided by °N

capt., see Eq. (2.65), which differ by about 10%
for Lead versus Titanium, and similarly for Gold for instance, see Table 2.3. But the combination in
which these variables enter in Lead, Titanium and Gold, via the form factors V µe

u,d ,Gµe
∞ in Eq. 2.65,

11For mN º 100 GeV, we get RT i
µ!e º 6.9 ·Br (µ! e∞) and Br (µ! eee) º 0.033 ·Br (µ! e∞). The first result differs

numerically by two orders of magnitude with Eq. (3.21) of Ref. [142], by a factor 4 with the value we get from the analytic
formulas of Refs. [142, 141], and by a factor 45 from the value we get from the analytic formula given in Ref. [139].
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Figure 2.4 – Rµ!e(N )
µ!e∞ = RN

µ!e /Br (µ! e∞) (left panel) and Rµ!e(N )
µ!eee = RN

µ!e /Br (µ! eee) (right
panel) as a function of the right-handed neutrino mass scale mN , for µ! e conversion in various
nuclei.

happens to be very close numerically. The coincidence at the % level of the µ! e conversion
ratios RN

µe in Titanium, Gold and Lead in all the mass range is a prediction of the quasi-degenerate
right-handed neutrino scenario. It is worth noting that the future experiment’s choice of using
Titanium and Aluminum is nicely not redundant, since the present scenario provides very different
predictions .

One distinctive feature of these ratios is that they vanish for some value of mN , when the
µ! e conversion rate in Eq. (2.65) vanishes. This peculiar feature is due to the up quark V µe

u and
down quark V µe

d contributions in Eq. (2.65), having opposite signs as an outcome of their different
charge and weak isospin, as can be seen from Eq. (2.62). The value where the µ! e conversion
rate vanishes is nuclei-dependent and, in the limit where mN ¿ mW , it is given by

m2
N

Ø

Ø

Ø
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@
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w
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V (p) ° s2
w
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3 ° 3
8
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V (p)

1

C

A

. (2.73)

This shows that small variations on the nuclear form factor (i.e. the overlap integrals) may result
in sizable variations on the value of m2

N

Ø

Ø

0, which is therefore sensitive to the nuclear physics
uncertainties. The uncertainty in the ratio V (p)/V (n) translates, for instance for 5-10% variations,
into O (TeV) shifts on the value of the right-handed neutrino mass at which the conversion rate
vanishes. With the overlap integral values given in Table 2.3, the rate vanishes for mass values
typically in the 2-7 TeV range, respectively 6.6, 4.1, 4.0 and 3.8 TeV for Al, Ti, Au and Pb respectively,
as Fig. 2.5 shows. 12

The left panel of Fig. 2.6 depicts the ratio RT i
µ!e /R Al

µ!e . Sweeping over increasing mN values,
the ratio first vanishes when RT i

µ!e does, and later goes to infinity when R Al
µ!e vanishes. On the

right panel, we show the ratios Br (`Æ ! `Ø∞)/Br (`Æ ! `Ø`Ø ¯̀
Ø) for the electron, muon and tau

charged leptons. These ratios only differ by an overall factor, since the loop functions are the same.
This ratio is continuous and don’t display any mN degeneracy for mN & 100 GeV.

12Note that a plot of the same ratio is displayed in Ref. [145], with quite different results, in particular vanishing rates
for much lower mN values, see footnote 8 above.
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Figure 2.5 – Taking the nuclear form factor for each nuclei from Ref. [153], we show the mass
values for which the µ! e conversion rate vanishes for different nuclei. If possible, the values of
the nuclear form factors D , V (p) and V (n) come from pionic atom experiment or proton scattering
experiments. Otherwise, these are taken by using the approximation of taking equal proton and
neutron densities, see Table. (2.4) and the associated discussion.

The fact that for the degenerate case the ratios depend only on the mass scale mN , leading
to very clear predictions, has been first pointed out in Ref. [171] precisely for the ratios Br (`Æ!
`Ø∞)/Br (`Æ! `Ø`Ø ¯̀

Ø). The µ! e conversion rates provide other ratio predictions, which lead to
a very interesting situation. Indeed, from the experimental determination of two µ°e transition
processes, and up to discrete degeneracies, it is possible to determine the scale mN of the generic
framework considered. That pair of processes could be any two among the four processes which
will be probed with improved sensitivity in near future : µ! e∞, µ! eee, R Al

µ!e and RT i
µ!e . To

lift possible degeneracies, a third measurement may need to be considered. As an example,
assume that from the MEG and COMET experiments, Rµ°e(Al )

µ!e∞ is measured to be ª 0.1 : the values
mN º 2.5 TeV or mN º 16.5 TeV would then be singled out, see Fig. 2.4. To lift this degeneracy,
the observation of a third µ! e transition process would be necessary : for instance RT i

µ!e at
PRISM or µ! eee at µ3e °PSI [172]. If the ratio is as predicted by one of the two mass values,
this would be a strong indication for this scenario. Alternatively, the measurement of two rates
might be incompatible with the upper bound or the measurement of a third one, which would
rule out the scenario. Similarly, the measurement of a single rate, together with the upper bound
or measurement of another one, could exclude this scenario for ranges of mN values (eventually
excluding the whole mass range). Note also that, analogously, the measurement of ø! `∞ decay
and of ø! ``0`0 decay would also allow to determine the mN scale [171]. That determination
could be compared with the µ! e results above, to rule out or further confirm this scenario.

Although the full range of right-handed neutrino masses will be analyzed, we next discuss in
detail the maximum and minimum right-handed neutrino mass scales that future sensitivities
may reach, as well as the sensitivity reach for the charged-current mixing of steriles with the
electrons and muon sector of the SM. We will denote by “large” mass regime the one in which the
right-handed neutrino scale is larger than the electroweak scale, mN ∏ mW , while the “low” mass
regime will be the one in which the heavy right-handed neutrinos are lighter than mW (although
always much larger than the usual three light neutrinos). Let us consider first in detail the regime
of singlet fermion masses larger than the electroweak scale.
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Figure 2.6 – Left : RT i
µ!e /R Al

µ!e as a function of mN . The horizontal dot-dashed line show the

large mN asymptotic value of RT i
µ!e /R Al

µ!e . The vertical dot-dashed lines correspond to the mass

values for which RT i
µ!e and R Al

µ!e vanish. Right : Ratios Rµ!e∞
µ!eee = Br (µ! e∞)/Br (µ! eee) (solid),

Rø!e∞
ø!eee = Br (ø! e∞)/Br (µ! eee) (dotted) and Rø!µ∞

ø!µµµ = Br (ø!µ∞)/Br (µ!µµµ) (dashed) as a
function of the mass mN .

2.4.2 Large mass regime (mN ∏ mW ) and constraints on the mixing parameters

± Analytical results

Expanding Eqs. (B.120-B.129) to lowest order in inverse powers of xNi ¥ m2
Ni

/m2
W , the terms

relevant for the ratio of the µ! e conversion rate to the capture rate – see Eq. (2.65) – read
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whereas for the particular case of light nuclei in Eq. (2.66), it results
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As an illustration of the well-behaved decoupling limit, consider the up quark contribution in
Eq. (2.74). Although the loop integral exhibits a logarithmic m2

N /m2
W dependence, the 1/mN

dependence of the elements of the mixing matrix U∫N ª Y †
N v/mN – see Eq. (2.8) – ensures a total

rate scaling as ª 1/m4
N ln2(m2

N /m2
W ) for mN ¿ mW . In other words, a rate that vanishes in the

decoupling limit as it should.

Using the analytical expression of the other processes in Eqs. (2.22) and (2.23), in the large
mass regime xN = m2

N /m2
W ¿ 1, the leading term in the three types of rate under discussion scales
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Figure 2.7 – Present bounds and future sensitivity on |PNi
YNiµYN§

i e
| (left) and |PNi

UeNi U
§
µNi

|
(right) as a function of the right-handed mass for scenarios characterized by one right-handed
neutrino mass scale mN . The solid lines are obtained from present experimental upper bounds
in Table 2.1, that is Br (µ! e∞) < 5.7 ·10°13 [91], Br (µ! eee) < 10°12 [97]. The dashed lines are
obtained from the expected experimental sensitivities Br (µ! e∞) < 4 ·10°14 [93], Br (µ! eee) <
10°16 [100].

therefore as

°ª (ln xN )2/x2
N , for µ! eee and µ! e conversion, (2.79)

°ª1/x2
N , for µ! e∞ . (2.80)

± Maximum Seesaw scales that future experiments could probe

Fig. 2.7 shows the lower bounds resulting for the Yukawa couplings (left) and mixing parameters
(right), if the various rates are required to be large enough to be observed in planned experiments.
It also shows the upper bounds which hold today on these quantities from the non-observation
of these processes. This figure illustrates well the impact of future µ! e conversion measure-
ments/bounds, as they will become increasingly dominant in exploring flavor physics in the µ°e
charged lepton sector. Values of the Yukawa couplings as low as 10°1, 10°3 and 10°4 could be
probed, for mN = 100 TeV, mN = 1 TeV and mN = 100 GeV, respectively, with Titanium experiments
being the most sensitive. If the Yukawa couplings are required to lie in the perturbative regime,
i.e. that each Yukawa coupling is smaller than

p
4º, the bounds of Fig. 2.7 can be rephrased as

upper bounds on the mN scale:

mN . 3.4 ·102 TeV ·
∑

4 ·10°14

Br (µ! e∞)

∏

1
4

, (2.81)

mN . 1.7 ·103 TeV ·
∑

10°16

Br (µ! eee)

∏

1
4

, (2.82)
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mN . 9.7 ·103 TeV ·
"

10°18

RT i
µ!e

#

1
4

, (2.83)

mN . 3.9 ·103 TeV ·
"

10°17

R Al
µ!e

#

1
4

. (2.84)

Imposing instead that the Yukawa couplings should be smaller than 1 would lead to bounds
smaller by about a factor of ª 3. Overall, this exercise shows that future experiments may in
principle probe the type-1 Seesaw model beyond the ªfew 1000 TeV scale.

2.4.3 Low mass regime (mN ∑ mW ) and constraints on the mixing parameters

± Analytical results

In the low mass regime, expanding in powers of the small parameter xN = m2
N /m2

W ø 1, the
leading terms of the different form factors relevant for µ! e conversion in an arbitrary nucleus
– see Eq. (2.65) – are given by

V µe
u =

nN
X

i=1
UeNi U

§
µNi

Vu(xNi ) , Vu(x) =
µ

2
3

s2
w

4ln(x)+6
4

+ 3+6ln(x)
8

∂

x , (2.85)

V µe
d =

nN
X

i=1
UeNi U

§
µNi

Vd (xNi ) , Vd (x) =
µ

°1
3

s2
w

4ln(x)+6
4

+ 3
8

∂

x , (2.86)

Gµe
∞ =

nN
X

i=1
UeNi U

§
µNi

G∞(xNi ) , G∞(x) = x
4

, (2.87)

whereas for conversion in light nuclei, Eq. (2.66), they take the form

Ṽ µe
u =

nN
X

i=1
UeNi U

§
µNi

Ṽu(xNi ) , Ṽu(x) =
µ

2
3

s2
w

4ln(x)+7
4

+ 3+6ln(x)
8

∂

x , (2.88)

Ṽ µe
d =

nN
X

i=1
UeNi U

§
µNi

Ṽd (xNi ) , Ṽd (x) =
µ

°1
3

s2
w

4ln(x)+7
4

+ 3
8

∂

x . (2.89)

As a consequence, for xN = m2
N /m2

W ø 1 the leading terms in the transition rates vanish as : 13

° ª x2
N (ln xN )2 , for µ! eee and µ! e conversion, (2.90)

° ª x2
N , for µ! e∞ . (2.91)

This is in contrast with the leading behaviour found for the large mass regime xN ¿ 1, Eq. (2.79),
with the scaling law being inversely proportional to x2

N , ensuring decoupling. Note that to get
Eqs. (2.90)-(2.91) we assumed fixed U∫N mixing parameters, as it is customary to express con-

13In the low mass regime, the amplitude for µ! e∞ is analogous to that for b ! s∞, while those for µ! e conversion
and µ! 3e exhibit only a GIM cancelation quadratic in the light neutrino masses instead of the logarithmic one for
quark transitions such as b ! se+e°, which are proportional to fermion electric charges inside the loop.
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straints on sterile neutrino models in terms of these mixing parameters. 14

± Minimum Seesaw scales that future experiments could probe

Taking µ! e conversion experiments by themselves, the sensitivity to low singlet fermion masses
is outstanding. This is illustrated in Fig. 2.8(a) (dashed lines), which shows a sensitivity down to 2
MeV for Titanium for large mixing. Nevertheless, a series of existing experimental bounds curtails
the expected impact, to wit :

• Unitarity bounds. The mixing matrix elements U`N entering the rates are constrained by
the bounds on the unitarity of the leptonic mixing matrix [89, 173]. The relevant bounds
here are those holding for mN < mW , in which the strong constraint from µ! e∞ present
for masses above mW is lost due to the restoration of the GIM mechanism under the mW

scale. In the region ª 100 MeV< mN < mW the bounds are dominated by the constraints
on Ø decay (lost under the GeV regime), kaon decays, universality constraints from ø and
º decays, and tree-level µ decays. For very light Ni , under the pion and muon masses, the
constraints from the decays of the latter are lost, since all eigenstates are then available
in the decay, so that unitarity is recovered. Nevertheless, below 100 MeV the absence of
zero distance effects in short baseline oscillation experiments (such as KARMEN [174] and
NOMAD [175] ) also sets constraints on the mixing elements [89]. Stronger constraints
follow nevertheless in that region, mainly from “peak" and “decay" search experiments.

• Peak experiments explore the direct production of light (< mK ,mº) extra singlet fermions in
two-body (`Ni ) particle decays of light mesons. From pion [176] and kaon decays [177, 178],
the absence of a monochromatic line – or peak – in the charged lepton energy spectrum at
(m2

K ,º+m2
`
°m2

Ni
)/2mK ,º, 15 excludes at present the 30 MeV< mN < 400 MeV region. Decay

searches provide even stronger constraints.

• Decay experiments including more than 2 particles in the final state look for the effects of
the production and decay of massive neutrinos. The relevant processes for constraining
P

i UeNi U
§
µNi

are K ,º,D ! `Ni ! ``0∫`0`
00 with `,`0,`00 = e,µ. Their non observation sets

very strong constraints in the range 1 MeV< mN < 2 GeV [179, 180, 181, 182]. Similarly
searches for a Z ! Ni∫ decay sets interesting constraints below the mZ mass [183]. For a
more detailed discussion of both decay and peak experimental bounds see Ref. [184], and
also Refs. [185] and [186].

• Supernovae and BBN limits. Upper and lower bounds on the mixing can be obtained from
supernova SN1987A data [187], since the known duration of the blast would be modified
if the right-handed neutrinos are produced in the core and escape carrying energy away,
and that depends on the mixing. BBN limits have also been explored for the very low mass
region [186, 188, 189, 190].

14For small sterile masses above the eV, the Seesaw approximation U∫N / Y †
N v/mN (ø 1) in Eq. (2.8) still holds, and

an extra x°2
N factor has to be added in Eqs. (2.90)-(2.91), so that the rates have a logarithmic or constant dependence on

mN . Below this range one enters the Dirac-dominated regime, where the mixing angles become free parameters, and
the asymptotic behaviour is that in Eqs. (2.90)-(2.91).

15In the rest frame of the decaying meson.
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• LHC search for the decay of a 125 GeV scalar boson via the channel h ! ∫N ! ∫∫`` provides
new bounds on the Seesaw parameters [191, 192, 193, 194, 195], which can be translated
into bounds on rare processes. The branching ratio of the SM scalar boson decaying into
Majorana neutrinos enters the implementation of these bounds, which in the general
Seesaw considered here reads

Br (h ! ∫N ) = Æw

8
mh

°tot
h

nN
X

i

≥

Ø

ØUeNi

Ø

Ø

2 +
Ø

ØUµNi

Ø

Ø

2 +
Ø

ØUøNi

Ø

Ø

2
¥ m2

Ni

m2
W

√

1°
m2

Ni

m2
h

!2

, (2.92)

where the decay into all three light neutrinos ∫ j and all heavy ones Ni is considered. °tot
h

denotes the total decay width of the scalar boson including the SM channels plus those
producing the extra heavy neutrinos. The different decay widths of the heavy neutrinos also
enter the analysis, mainly all N ! ∫`+`° channels.

Following Ref. [184] (see also Refs. [185, 186, 190, 196]), Fig. 2.8(a) provides an approximate
drawing of the regions excluded by these constraints (depicted as shaded areas). We included :
non-unitarity bounds, kaon and pion peak searches, kaon decay searches by the PS191 experiment,
D meson decay searches by the CHARM [181] and NuTeV [182] experiments, 16 Z decay searches
by the Delphi experiment [183], and SM scalar decays data from LHC. The exclusion lines for
the mixing parameter |PNi

UeNi U
§
µNi

| are valid at 90% C.L., for the present (continuous curves)
and future (dashed curves) reach of the three types of measurements under discussion : µ! e∞,
µ! eee and µ! e conversion. Note the impressive sensitivity expected from µ! e conversion in
Titanium taken by itself, reaching Seesaw masses down to 2 MeV. Nevertheless, the very stringent
PS191, CHARM and NuTeV bounds on decay searches into Ni determine a lower bound on the
mass at which conversion experiments would be competitive : 2 GeV. The SHiP experiment should
further increase this lower bound to 5 GeV.

Fig. 2.8(b) shows the maximum rates allowed by the bounds on mixing depicted in Fig. 2.8(a)
(shaded areas), as a function of the mass mN , at the 90% C.L.. Horizontal lines in Fig. 2.8(b)
indicate the present (continuous) and future (dashed) sensitivities of the different experiments :
their intersection with the corresponding rate (depicted with the same color) determines the
lowest mass for which the new experiments would improve present bounds.

About the SM scalar boson decay constraints, Fig. 2.8(a) depicts a model-independent
bound, except for the assumption of degenerate heavy neutrinos. This bound is obtained [193] by
translating the absence of an excess over the SM expectation for the channel h ! ∫∫̄`+`° into an
upper bound on Br(h ! ∫N ) < 0.51 (90% C.L.) [195] in Eq. (2.92), and employing then the general
Cauchy-Schwarz inequality |PNi

UeNi U
§
µNi

| <P

Ni ,Æ |UÆNi |2. 17 Figs. 2.8(a) and 2.9 illustrate that

16 The bounds from meson decay searches for masses below 2 GeV depicted in Fig. 2.8 are those provided by the
experimental collaborations which assume decaying Dirac neutrinos ; for Majorana neutrinos they may differ by factors
ª
p

2 or less, depending on whether the decay channel is or is not self-conjugate [179]. The inclusion of those factors
would require a reanalysis of the experimental data for masses lighter than 2 GeV, which we refrain from attempting
here as that region turns out to be out of reach for the µ! e conversion experiments under discussion.

17In Fig. 2.8(a) this bound is plotted down to 20 GeV, a point below which the typical cuts in the invariant mass of the
lepton pair would remove the events coming from the scalar boson decay via the right-handed neutrino [193]. The
equivalent bounds shown in [193, 194], which we used, do not extend further down than 50 GeV : in the region 20°50
GeV what Fig. 2.8(a) depicts is an extrapolation.
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Figure 2.8 – The left panel shows the |PNi
UeNi U

§
µNi

| versus mass sensitivity regions for present
(continuous curves) and future (dashed curves) e°µ flavor experiments. Black, red, green and blue
curves result from Br (µ! e∞), Br (µ! eee), R Al

µ!e and RT i
µ!e , respectively. The regions already

excluded by non-unitarity limits, º and K peak searches, º, K , D , Z decay searches, BBN, SN1987A
and LHC collider searches (dotted lines) are also indicated. Shaded areas signal the regions already
excluded experimentally. We also include the future SHiP experiment sensitivity [197]. The right
panel shows the maximum allowed flavor changing rates compatible with the bounds of the first
panel. The horizontal lines give the present (solid [102, 91, 97]) and future (dashed [198, 172, 106,
108, 105, 107]) sensitivities of the different experiments.

it turns out to be less stringent than for example the present MEG bound on Br (µ! e∞). In the
future, if LHC can reach a ª 1% sensitivity on Br(h ! ∫N ), the constraint would be comparable to
the present MEG one.

More stringent bounds follow in concrete realizations of the Seesaw. For instance, the Inverse
Seesaw scenario with just two right-handed neutrinos added to the SM and approximate lepton
number L conservation in section 1.5 [68, 69] (see also Refs. [62, 63, 64, 66]) is very predictive. The
mixing-dependence of Br(h ! ∫N ) – the term between parenthesis in Eq. 2.92 – reduces in this
case to an overall scale dependence, which can then be bounded from Fig. 2.8(a). Furthermore,
in these scenarios the mixing elements |UÆNi | are not arbitrary, but explicit functions of a few
observable quantities such as the measured light neutrino mass differences and mixing angles,
the overall scale and the Dirac (±) and Majorana (Æ) phases. This allows to express bounds on
|UeNi U

§
µNi

| from SM scalar decay as a function of the values of those C P phases. This interesting
fact is illustrated in Fig. 2.9, whose bands depict the maximum and minimum bounds obtained
by varying those phases. The values of the neutrino parameters used in this figure are the ones
given in Table 1.1, from Ref. [19]. For normal hierarchy (NH), the maximum and minimum
boundary lines of the bands correspond approximately to (±,Æ = 0,º/2) and (±,Æ = 0,°º/2),
respectively, while the equivalent values for the case of inverted hierarchy (IH) are (±,Æ= 3º/2,º)
and (±,Æ= 0,°º/4). The allowed values never reach the absolute bound, also depicted. On the
other side, note that the plot for IH allows some points in which the µ°e mixing tends to vanish :
this is expected and well-known (first pointed out in Refs. [199, 200]), because in this class of
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(a) Normal hierarchy (b) Inverted hierarchy

Figure 2.9 – Bounds on |PNi
UeNi U

§
µNi

| from LHC scalar decay data and comparison with flavor
violation searches. The constraints from LHC data are illustrated for a sensitivity of Br (h ! ∫N ) <
0.51 (90% C.L.) [195], and a future one improved to the % level [194]. For these values, isolated
purple curves are the absolute bounds for a generic Seesaw model. Bands in orange and red
show instead the variation with the unknown values of the Dirac and Majorana CP phases, for
the approximately L conserving scenario in Ref. [68], for normal (left panel) and inverted (right
panel) hierarchy. The present (black) and future (dashed black) MEG sensitivities and the expected
one for conversion in Titanium (blue), in Aluminum (green) and µ! eee (red) are shown for
comparison.

models some entries of the Yukawa couplings may vanish (and therefore the entry in the mixing
UÆNi would vanish too) for certain values of the C P phases and light neutrino mixing and mass
differences within their 90% C.L. region [171]. As an example of the impact of the analysis for
this type of models, with the present limit on Br (h ! ∫N ), if MEG observes a signal of order the
present sensitivity, only particular ranges of the phases would be allowed in this model. In any
case, for the µ-e channel it is not expected that LHC data will allow to approach, even from far, the
sensitivities one expects in the new generation of µ! e conversion experiments.

2.4.4 Comments

It is worth to remark that the sensitivities and exclusion plots obtained apply not only to the (quasi-
degenerate) type-1 Seesaw scenario object of this section, but also to any BSM renormalizable
theory containing Dirac or pseudo-Dirac singlet fermions, which mix with SM light leptons with
strength U`N .

Also, the predictions on the ratios of rates, such as that in Eq. (2.72) and the figures above,
hold as well for the case where only one right-handed neutrino would dominate the rates, because
in this case the Yukawa dependence also drops, leaving the same dependence on a unique mass.
This situation is quite generic of scenarios where the right-handed neutrino mass spectrum
is hierarchical, since in the large mN > mW (low mN < mW ) mass regime all but the lightest
(heaviest) Ni contributions can be in general neglected, see Eqs. (2.79), (2.80), and Eqs. (2.90) and

63



Chapter 2. Muon to electron conversion in nuclei in type-1 Seesaw models

(2.91) above. However, the price to obtain measurable flavor-changing rates with hierarchical
spectra is to induce in general unacceptably large neutrino masses, disregarding eventual large
fine-tuning between the various parameters.

Nevertheless, we have shown in section 1.5 that one could a priori take larger values of the
µ0 parameter in the Inverse Seesaw model, while still keeping the advantages of having small
neutrino masses and large CLFV rates. In this case, one could have a large mass splitting between
the two right-handed neutrinos, see Eq. (1.54). The price to pay is that this Extended Seesaw
model is not anymore motivated by a nearly conserved lepton symmetry. Furthermore, one has to
pay attention to possibly large one-loop corrections to neutrino masses and neutrinoless double
beta decay parameter mee , see e.g. Refs. [191, 139, 71, 72]. This case is therefore less interesting a
priori because there is no simple symmetry to explain it, but it is perfectly possible. This is why
the next section is dedicated to the possibility that right-handed are not degenerate.

2.5 Ratios of rates involving one same flavor transition : non degener-

ate case

We now tackle the more general case where the right-handed neutrinos are no more degenerate.
In this case, we will see that one can still factorize the mixing matrix element from the mass
dependent terms. The reason is more subtle, and one needs first to parametrize correctly the
Yukawa matrix elements. In this section, we will for simplicity restrict ourself to the two right-
handed neutrinos case, nN = 2, and our analytical study will focus on the situation where the
right-handed neutrino masses are larger than the W mass, mNi ¿ mW , even if we will cover the
whole mass range for the numerical results.

An important comment concerns the observability of the CLFV processes in the case where
the right-handed neutrinos are not degenerate. Indeed, as shown above, it is easy to have large
CLFV rates and small neutrino masses when at least two right-handed neutrinos are quasi-
degenerate. Now, it is important to stress that such a situation can also be obtained with non-
degenerate right-handed neutrinos, as in the Extended Seesaw mode, introduced in section 1.5.
To show that, we will use the Casas-Ibarra parametrization that allows us to see that easily.

2.5.1 Casas-Ibarra parametrization

In order to analyze the non-degenerate case, we need to parametrize the various parameters that
enter in the mixing elements UeNi and U§

µNi
. Indeed, as shown in Eq. (2.24), it is the combination

X

i
UeNi U

§
µNi

f
≥

m2
Ni

¥

/
X

i

Y §
Niµ

mNi

YNi e

mNi

f
≥

m2
Ni

¥

¥
X

i
cNi f

≥

m2
Ni

¥

, (2.93)

that enters in the various form factors of the concerned rates. To this end, it is useful to introduce
the Casas-Ibarra matrix [201]

R ¥ v
p

2
(MN )°1/2 YN U (m̂∫)°1/2 , (2.94)
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where m̂∫ is the diagonal matrix of the light neutrinos mass eigenstates, and U is the PMNS matrix.
The matrix R is a complex nN £3 matrix (where nN is the number of right-handed neutrinos),
which contains all the high energy parameters, i.e. the parameters that are not contained in the
neutrino mass matrix m∫ = v2/2(Y T

N M°1
N YN ) =U §m̂∫U

†. As a result, R is totally unknown except
for the fact that it is complex orthogonal :

RRT = 1nN£nN , RT R = 13£3 . (2.95)

This matrix is very useful since, by inverting Eq. (2.94), it allows to factorize in the Yukawa matrix
YN the low energy parameters, in m∫ and U , from the high energy ones, in MN and R :

YN =
p

2
v

(MN )1/2 R (m̂∫)1/2 U † . (2.96)

Or in component, using the fact that MN can be taken diagonal MN = diag(mNi ),

YNiÆ =
p

2mNi

v

√

X

j
RNi j

p

m j U
§
jÆ

!

, (2.97)

where m j is the mass of the neutrino eigenstate ∫ j . That is to say this parametrization allows us to
scan all the YN which could account for the data. To do so, one needs to enter the mixing data in
U , the neutrino mass difference in m j , and vary the other parameters (the 3 C P-violating phases,
mmin

∫ and the unknown high energy parameters in MN and R) in their allowed range. It allows
therefore to see easily how one can get large YN with still small neutrino masses. Clearly, large YN

must come from large R entries, i.e. large imaginary part in R as we will see.

2.5.2 nN = 2 non-degenerate right-handed neutrinos

The two right-handed neutrinos case is particularly interesting as it is the one which contains the
minimum number of independent parameters.

± Parametrization

In this case, the 2£3 matrix R contains only 1 complex angle µ̂ ¥Æ+iØ, and it can be parametrized
as [202]

R =
√

0 cos µ̂ sin µ̂
0 °sin µ̂ cos µ̂

!

(NH) , R =
√

cos µ̂ sin µ̂ 0
°sin µ̂ cos µ̂ 0

!

(IH) , (2.98)

in the case of normal and inverted hierarchies respectively. Since R is any complex orthogonal
matrix, one has

cos µ̂ = cosÆcoshØ° i sinÆsinhØ and sin µ̂ = sinÆcoshØ+ i cosÆsinhØ , (2.99)

where Æ 2 [0,2º] is an angle, while Ø can take any value in <. The Yukawa matrix YN has therefore
only 6 unknown parameters (see Eq. (1.29)) : the low energy C P-violating phases Æ 2 [0,2º]
and ± 2 [0,2º], the 2 heavy neutrino masses mN1 and mN2 , and the complex high-energy angle
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µ̂ ¥Æ+ iØ with Æ 2 [0,2º] and Ø 2<. On top of that, the neutrino mass hierarchy is also unknown.
Since there are 2 right-handed neutrinos, only 2 light neutrinos receive masses so that the absolute
neutrino mass scale is actually known, mmin

∫ = 0 eV. Nevertheless, the number of unknown
parameters is too large to make generic predictions on the various CLFV rates separately. However,
as we will show now, one can still make remarkable prediction on the ratios of branching ratio,
provided that the rates are not too suppressed.

± Ratio of rates

From Eq. (2.98) and (2.99), we see that the CLFV processes are proportional to some combination
of coshØ and sinhØ. For large Ø, one has coshØ' sinhØ, so that all the Yukawas scale as YN /
coshØ. 18 The combination coshØ is therefore nothing else but the overall scale of the Yukawa
couplings. In order to have observable rates, one needs quite large Yukawa couplings YN &
10°2 ·mN /1 TeV, see Eq. (2.25). From Eq. (2.96), this roughly requires Ø& 6+ ln

p
mN /1 GeV so

that, in order to have observable rates, one has indeed in a good approximation

YN / coshØ with Ø¿ 1 . (2.100)

This parametrization therefore shows that indeed one can have large YN and small m∫, provided
that Ø is large. This shows also that this is possible even if mN1 and mN2 are not degenerate. More
remarkable, one can see after development that in this case the different terms entering in the
sum in Eq. (2.93) share a common factor. For example in the case of normal hierarchy, one has

cN1 ¥
Y §

N1µ

mN1

YN1e

mN1

= 2
v2mN1

√

X

j
R§

N1 j
p

m∫ j U jµ

!√

X

k
RN1k

p

m∫k U
§
ke

!
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cN2 ¥
Y §

N2µ

mN2

YN2e

mN2

/ 2
v2mN2

√

X

j
R§

N2 j
p

m∫ j U jµ

!√

X

k
RN2k

p

m∫k U
§
ke

!

= 2cosh2Ø

v2mN2

£

m∫2U2µU
§
2e +m∫3U3µU

§
3e + i

p

m∫2 m∫3

°

U2µU
§
3e °U3µU

§
2e

¢§

. (2.102)

That is, c2 = c1 ·mN1 /mN2 . One can easily show that the same relation stands for the inverted
hierarchy. The combination in Eq. (2.93) can therefore be written as

X

i
cNi f
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m2
Ni
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' cN1

∑

f
≥

m2
N1

¥

+
mN1

mN2

f
≥

m2
N2

¥

∏

. (2.103)

As a consequence, one can still factorize most of the unknown parameters contained in cN1 from the
branching ratios, so that the ratios of branching ratios will now only depend on both mN1 and mN2

(or equivalently on mN1 and r ¥ mN2 /mN1 ).

18More precisely, the approximation coshØ' sinhØ holds at better than 1% for Ø& 3.
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Figure 2.10 – Mass values of the lightest right-handed neutrino for which the µ! e conversion rate
vanishes for Aluminum and Titanum, as a function of r ¥ mN2 /mN1 . We required the conversion
rates to be observable by future experiments.

Before commenting the results, it is instructive to compute the values mN |0 where the µ! e
conversion rate vanishes, which are shown in Fig. 2.10. For mNi ¿ mW , these are now given by
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, (2.104)

where r ¥ mN2 /mN1 . The values of mN
Ø

Ø

0 vary by few TeV around the one obtained in the degen-
erate case, which is recovered for r = 1 as well as for large r , as expected from the decoupling
theorem. The maximum deviation is obtained for rmax º 3.6 whatever the nucleus, which is the
value that maximizes the function lnr /(1+ r ). Quite remarkably, this value is also the value for
which one has a maximum deviation for all the other rates, still for mNi ¿ mW . This can be
understood because, for mNi ¿ mW , the different form factors only depend on the logarithm of
xNi = m2

Ni
/m2

W , see Eqs. (2.74)-(2.75). From Eq. (2.103), one has therefore
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+ 2B
r
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∏

, (2.105)

where A and B are some constants. We see that here too, the maximum deviation from the case
r = 1 is obtained for rmax maximizing the function in the second term of the bracket, which gives
also approximately rmax º 3.6.

Let’s note that for mNi ∑ mW , one expects things to be much less simple, since the different
form factors depend now on xNi and xNi · ln xNi , see Eqs. (2.85)-(2.86), and one has

X

i
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'
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°
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¢

= cN1 xNi

£°
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¢

(1+ r )+2Br lnr
§

. (2.106)

We see that in this case, the deviation increases with increasing r , and no simple prediction can
be done.
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Figure 2.11 – Upper panels : Rµ!e(N )
µ!e∞ = RN

µ!e /Br (µ ! e∞) (upper left panel) and Rµ!e(N )
µ!eee =

RN
µ!e /Br (µ! eee) (upper right panel) as a function of the lightest right-handed neutrino mass

scale mN1 , for µ ! e conversion in Aluminum (green) and Titanium (blue). Lower panels :
RT i
µ!e /R Al

µ!e (lower left panel) and Rµ!e∞
µ!eee = Br (µ ! e∞)/Br (µ ! eee) (lower right panel) as a

function of mN1 . In all the figures, the solid line corresponds to the degenerate case, while the
dashed line corresponds to the maximum deviation for mN1 &mW . The points has been obtained
varying all the unknown parameters of the model, under the requirement of observable rates, and
taking r ¥ mN2 /mN1 in the range r 2 [1,103].

In the upper panels of Fig. 2.11, we show the ratios Rµ!e(N )
µ!e∞ (upper left panel) and Rµ!e(N )

µ!eee

(upper right panel) as a function of the lightest mass mN1 , for Aluminum (green) and Titanium
(blue) nuclei. The various points have been obtained by varying all the unknown parameters
according to their domain, and r in the range r 2 [1,103]. We also required the different branching
ratios to be observable in the near future, that is we took RT i

µ!e ∏ 10°18, R Al
µ!e ∏ 10°17, Br (µ! e∞) ∏

4 ·10°14 and Br (µ! eeee) ∏ 10°16, see Table 2.1. The solid line corresponds to the degenerate
case r = 1, while the dashed line corresponds to the maximum deviation obtained analytically
rmax º 3.6, which fit well the points for mN1 &mW .

The lower panels of Figure 2.11 show, as a function of mN1 , the ratio RT i
µ!e /R Al

µ!e (lower left
panel) and Br (µ! e∞)/Br (µ! eee) (lower right panel), varying all the unknown parameters and
requiring rates that could be observable by the future experiments. Here too, the solid and dashed
lines correspond to r = 1 and rmax º 3.6 respectively.
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2.6. Comparison between the different types of Seesaw

As we can see from these figures, the ratios of rates is only mildly sensitive to the mass splitting
of the right-handed neutrinos, at least for mN1 & mW . As a consequence, the measurement of
ratios would in this case provide a narrow range of possible values for mN1 . The measurement of
several ratios could even potentially lead to the determination of the two mass scales mN1 and mN2 .
However, this should be very difficult in practice because : first, the measurement of the ratios
goes always with uncertainties and, second, the nuclear overlap integrals have also associated
uncertainties as we discussed before. Assuming for example mN1 & mW , the measurement of
ratios with their associated uncertainties could allow to determine a range of values for mN1 and
therefore also a (wide) range of possible values for mN2 see Fig. 2.11. All together, this would lead
in practice to uncertainties on the determination of the Seesaw scales mN1 , but more hardly to the
determination of the second scale mN2 .

2.5.3 nN = 3 non-degenerate right-handed neutrinos

In this case, the 3£3 matrix R contains 3 complex angles µ̂i ¥Æi + iØi with i = 1,2,3, and it can be
parametrize as [201]

R =

0

B

@
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ĉ2 ŝ3 ĉ1ĉ3 ° ŝ1 ŝ2 ŝ3 °ŝ1ĉ3 ° ĉ1 ŝ2 ŝ3

ŝ2 ŝ1ĉ2 ĉ1ĉ2

1

C

A

. (2.107)

Here, the number of unknown parameters is 13, see Eq. (1.29). The situation is more complicated
than the previous case with only nN = 2 right-handed neutrinos. However, one doesn’t expect in
general any simplification in ratios of rates, since now there are 3 complex angles in the R matrix.
We won’t go further into analytical details here. Let’s just note that if one of the right-handed
neutrinos is much heavier than the others, it will decouple from the rest so that one recovers the
previous situation with nN = 2. This is also the case if 2 of the 3 right-handed are degenerate.

2.6 Comparison between the different types of Seesaw

One question which naturally arises is the following : how could we determine which kind of
Seesaw is at work ? The distinction between the different types of Seesaw can not be done only
from the neutrino mass matrix, because the three types of Seesaw generate the same dimension-5
operator in Eq. (1.20), and any neutrino mass matrix that could be observed could be generated
by any of the three Seesaw. One needs therefore informations coming from other experiments.

A way to distinguish between them is thus precisely through observations of CLFV processes
they induce. This can be simply understood from the fact the dimension-6 operators of each kind
of Seesaw are different, see Eqs. (1.47), (1.48) and (1.49). 19 This requires the CLFV processes to be
not too suppressed, as in particular in the Inverse Seesaw models – see section 1.5. We will now
show that the CLFV processes can indeed distinguish between the Seesaw types.

19Another way of distinction is to look at the direct production of the associated heavy particle at colliders. In the
case of type-1 Seesaw, this is hardly feasible because they couple only to the fermions and the SM scalar through the
Yukawas couplings. On the contrary, in the case of type-2 and type-3 Seesaw, since the heavy particle couple to gauge
bosons, they are expected to be more easily detected.
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2.6.1 Type-2 Seesaw ratios and maximum scales

In type-2 Seesaw with only one scalar triplet, the CLFV branching ratio are given by [203, 131, 124,
125, 127, 56, 145] : 20
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where the conversion rate is given in the light nuclei approximation. In the second equalities
of the µ! e∞ and µ! e expressions, we have neglected the mass splitting between the triplet
components, i.e. we took m¢ ¥ m¢0 = m¢+ = m¢++ . This approximation is generically justified
only for high triplet mass, in which case the relative splittings |±m|/m¢ is small because of the
perturbativity of the quartic couplings. 21 Let’s note that on the one hand, since the scalar triplet
couples to two fermions, the process µ! eee is generated at tree-level from the exchange of a
scalar triplet, see Fig. 1.3(b). On the other hand, the processes µ! e∞ and µ! e conversion come
at loop-level. One expects therefore the µ! eee rate (and the `Æ! `Ø`∞ ¯̀

± in general) to be larger
than the other rates.

We see from the above formula that the rates RN
µ!e and Br (µ! e∞) depend on the same

combination of the Yukawa couplings |Y †
¢Y¢|µe /

P

Æ cd=6
µÆÆe , contrarily to the µ! eee rate which

depends on |Y †
¢ |µe |Y¢|ee / cd=6

µeee . As a result, the ratio Rµ!e(T i )
µ!e(Al ) is fixed to

RT i
µ!e

R Al
µ!e

' 1.8 , (2.111)

and in the same way as in the type-1 Seesaw case, the ratio Rµ!e(N )
µ!e∞ = RN

µ!e /Br (µ! e∞) depend
only on the masses m¢+ and m¢++ . In the approximation of degenerate triplet component masses,
the various ratios depend only the unique mass scale m¢.

We show in Fig. 2.12 the ratio Rµ!e(N )
µ!e∞ as a function of the mass m¢ ¥ m¢+ for various nuclei.

20Note that these expressions can be expressed in terms of the dimension-6 coefficient, see section 1.4. One has
indeed that Br (µ! e∞) / |PÆ cd=6

ÆµÆe |2, Br (µ! eee) / |cd=6
µeee |2 and RN

µ!e / |PÆ cd=6
ÆµÆe |2.

21The mass splitting goes like |±m|'∏m2
W /g 2m¢, where ∏ is some quartic coupling. Requiring |∏| <

p
4º (4º), one

has for example |±m|/m¢. 0.05 (0.2) for m¢& 1 TeV. Below typically 1 TeV, the mass splitting may be larger so that
the µ! e∞ and the µ! e conversion rates depend in general on both m¢+ and m¢++ , and the approximation is less
consistent. However, experimentally the ATLAS and CMS collaborations have provided lower bounds on the doubly
charged scalar through its dilepton signature ¢±± ! `±`±. At 7 TeV, with a luminosity of L = 4.7 · fb°1 and assuming
Br (¢±± ! `±`±) ª 100%, ATLAS [204] excluded m¢±± below 409, 398, 375 GeV at 95% C.L. in the ee, µµ, eµ channel
respectively. With the same assumption, CMS [205] set a lower bound ranging from 204 GeV to 459 GeV. Assuming for
concreteness m¢++ & 400 GeV implies the upper bound |±m|/m¢. 0.3 (1.2), requiring ∏<

p
4º (4º).
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Figure 2.12 – Rµ!e(N )
µ!e∞ = RN

µ!e /Br (µ! e∞) as a function of the scalar triplet mass m¢ ¥ m¢+ ,
for Aluminum and Titanium nuclei. The upper solid curve corresponds to the degenerate case
m¢+ = m¢++ , while the lower dashed curve has been obtained varying the mass splitting in its
allowed range.

The band has been obtained varying m¢++ in its allowed range for perturbative quartic couplings
|∏| < 4º. We see that for m¢ & 900 GeV the ratios are monotonous increasing functions. The
determination of a ratio by experiments, typically above ª 0.5 for Aluminum and ª 1 for Titanium,
leads to the determination of the mass scale m¢. As in the type-1 Seesaw, the determination of a
second ratio could confirm or rule out the type-2 Seesaw scenario. For m¢. 900 GeV, the allowed
mass splitting doesn’t allow the determination of the mass scale.

As in the type-1 Seesaw, one can compute the sensitivity on m¢ we get from the various
processes. Using the approximation m¢ ¥ m¢+ = m¢++ and the perturbativity of the Yukawa
couplings Y¢ ∑

p
4º, the maximum scalar triplet mass scales that future experiments could probe

are given by

m¢. 4.1 ·102 TeV ·
∑

4 ·10°14

Br (µ! e∞)

∏1/4

, (2.112)
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∏1/4

, (2.113)
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"

10°18

RT i
µ!e

#1/4

, (2.114)

m¢. 3.9 ·103 TeV ·
"

10°17

R Al
µ!e

#1/4

. (2.115)

Imposing instead that the Yukawa couplings should be smaller than 1 would lead to bounds
smaller by about a factor of ª 3.

2.6.2 Type-3 Seesaw ratios and maximum scale

In type-3 Seesaw, the µ! eee and µ! e conversion CLFV processes arise all at tree-level. This is
because the fermionic triplets ßk induce flavor mixings at the level of charged fermions, contrarily
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to the type-1 Seesaw where flavor mixings arise only at the level of neutral fermions. Such a
charged lepton flavor mixing simply comes from the fact that the Yukawa interaction of the

Lagrangian contains L 3~ßR Yß¡̃†~ø`L 3 Yß vß+
R`

°
L . Therefore, a muon can go to a ßR which can

go to an electron without passing through neutral leptons. Nevertheless, µ! e∞ arises at loop-
level because the electromagnetic couplings are still flavor diagonal in the charged lepton mass
eigenstates basis. The expressions of the various rates, in the limit where mßk ¿ mW , are given
by [129, 56]
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where we neglected the light neutrino mass contributions in the last equality of the first equation,
and where the conversion rate is given in the light nuclei approximation. These three expressions
depend on the same combination of the mixing parameters via the dimension-6 coefficient
cd=6
µe = (Y †

ßM †°1
ß M°1

ß Yß)µe , see Eq. (1.48). As a result, the ratio of two processes involving a same
flavor transition doesn’t depend on cd=6

µe anymore. Even better, in the limit where mßi ¿ mW , the
ratios are fixed and are given by [129] : 22

Br (µ! e∞)
Br (µ! eee)

º Br (ø!µ∞)
Br (ø!µµµ)

º Br (ø! e∞)
Br (ø! eee)

º 1.4 ·10°3 , (2.119)

RT i
µ!e

Br (µ! e∞)
º 1.5 ·104 , (2.120)

R Al
µ!e

Br (µ! e∞)
º 6.7 ·103 . (2.121)

Contrarily to the other kind of Seesaw models, one has Br (µ! eee) > Br (µ! e∞) becauseµ! eee
arises at tree-level and µ! e∞ at loop-level. The predicted fixed ratios have drastic consequences,
since the determination of a single ratio could rule out the type-3 Seesaw scenario as the one
generating CLFV processes. Similarly, the measurement of one or better several ratios as predicted
in Eqs. (2.119)-(2.121) would be a very strong indication for the type-3 Seesaw. Let’s note that
contrarily to the other kind of Seesaw, one cannot predict the mass scale from the determination
of one ratio.

If all the triplets are degenerate in mass, one can finally compute the sensitivity of the future
experiments on the mass scale mß ¥ mßk . Using the perturbativity of the Yukawa couplings
Yß ∑

p
4º, the maximum fermionic triplet mass scales that future interesting experiments could

22Let’s note that expression of RT i
µ!e agrees with the one obtained in Eq. (40) of Ref. [129], but we get a ratio

RT i
µ!e /Br (µ! e∞) which is ª 4 times larger compared to their Eq. (42).
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probe are given by

mß. 2.5 ·102 TeV ·
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∏1/4
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"
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#1/4
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2.6.3 Distinction between the Seesaw

From the above results in Fig. 2.11, Fig. 2.12, and Eqs.(2.111), (2.119)-(2.121), we can now compare
the various ratios for the three kinds of Seesaw. The ratios Rµ!e(N )

µ!e∞ and Rµ!e(T i )
µ!e(Al ) are the only

ones that can be used to distinguish between the three types of Seesaw. Moreover, it is also
possible to make the distinction between the type-1 and type-3 Seesaw via the ratios Rµ!e(N )

µ!eee =
RN
µ!e /Br (µ! eee) and Rµ!e∞

µ!eee = Br (µ! e∞)/Br (µ! eee).

We show in Fig. 2.13, as a function of the mass scales of the heavy particles mN1 , m¢+ and
mß, the various ratios for the type-1 Seesaw (black), type-2 Seesaw if possible (blue) and type-3
Seesaw (green). We focus on the region mX ¿ mW , since it is the most predictive one. The solid
lines correspond to the degenerate case in each Seesaw. The bands have been obtained varying all
the unknown parameters in their allowed range. The regions that won’t be probed by the future
experiments are shown in red and are delimited by the dotted horizontal lines.

For Titanium, the present sensitivity on the ratio is Rµ!e(T i )
µ!e∞ º 7.5. MEG will improve the

sensitivity on µ! e∞ to Br (µ! e∞) ª 4 ·10°14, so that the sensitivity on the ratio will increase
to Rµ!e(T i )

µ!e∞ º 107.5. Then, thanks to the PRISM experiment, the sensitivity on the ratio should

progressively decrease by ª 6 orders of magnitudes to reach Rµ!e(T i )
µ!e∞ º 2.5 ·10°5. For Aluminum,

there is actually no bounds on the µ! e conversion process. As the Mu2e and COMET will get
in sensitivities, the sensitivity on the ratio will progressively decrease until reaching Rµ!e(Al )

µ!e∞ º
2.5·10°4. The PRISM experiment, using Titanium, should therefore not be able to probe the type-3
Seesaw through the ratio Rµ!e(T i )

µ!e∞ .

From Fig. 2.11, we see that it is in principle possible to distinguish between the various Seesaw
mechanisms. Both measurements of Rµ!e(T i )

µ!e∞ and Rµ!e(Al )
µ!e∞ could be necessary in order to remove

the possible degeneracy. As an example, let’s assume that experiments measure Rµ!e(T i )
µ!e∞ º 1. To

this value corresponds two type-1 mass scales mN1 º 330 GeV and mN1 º 120 TeV, and a type-
2 mass scale around 6 TeV, but the type-3 is ruled out as the one generating mainly the CLFV
processes. To remove the degeneracy, the measurement of the Rµ!e(T i )

µ!e∞ would be needed. This
latter value could confirm either the type-1 or type-2 Seesaw, or rule out both possibilities.
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Figure 2.13 – Various ratios (i) for the type-1 Seesaw as a function of the lightest right-handed
neutrino mass mN1 (black), (ii) if possible for type-2 Seesaw as a function of the scalar triplet mass
m¢+ (blue), and (iii) for type-3 Seesaw as a function of the scalar triplet mass mß (green). The solid
lines correspond to the degenerate case in each Seesaw model. The bands have been obtained
varying the various parameters, allowing the non-degenerate case. The region above or below the
dotted red lines could not be probed by future experiments.
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2.7 Summary

In this chapter, we have analyzed the CLFV processes induced by the type-1 Seesaw models,
as µ! e∞, µ! eee and µ! e conversion. Concerning this latter process, since there were no
consensus on the expression of its rate, we have carefully computed it. We have found a new
expression valid for any kind of nucleus. Our result is given in full generality by Eq. (2.65) with the
form factors given in Eqs. (2.62) and (B.120)-(B.129). In the light nuclei approximation, it is given
by Eq. (2.66) with the form factor given by Eq. (2.67). Although quite close to the one obtained in
the literature, the new expression gives rise to a different phenomenology, that we have studied.

In particular, firstly we have analyzed the phenomenology in the case where all the right-
handed neutrinos are degenerate. This case is well motivated by the Inverse Seesaw models,
based on an approximate lepton conservation symmetry, in which one can have small masses for
the light neutrinos, and at the same time observable CLFV rates. This is generally not the case
because in the standard Seesaw mechanism, CLFV process rates are expected to be proportional
to m2

∫/m2
N , thus very suppressed. In this context, where there is only one mass scale mN , we have

shown that the ratio of two CLFV rates involving a same flavor transition does depend on this
unique mass scale mN . This result has very interesting consequences since, on the one hand, it
should allow us to get information on the energy scale of the Seesaw just from the knowledge of
two (or three) CLFV rates (a third one may be needed to remove a potential degeneracy). On the
other hand, the knowledge of only one rate and a bound on another one may be enough to rule
the type-1 Seesaw as the main mechanism that generates CLFV processes. Taking into account
that the processes µ! e∞ and µ! eee will not reach sensitivities better than other low-energy
experiments for mN . 40 GeV and mN . 50 GeV respectively (see Fig. 2.8), we show in Fig. 2.14 as
a summary the ratios RN

µ!e /Br (µ! e∞) (solid) and RN
µ!e /Br (µ! eee) (dashed) as a function of

the mass for various nuclei. Subsequently, we have analyzed the present and future constraints on
the mixing parameters for the low and large mass regimes, and compared them to the sensitivities
of other experiments. These will provide the best constraints for right-handed neutrino masses
above ª2 GeV (before SHiP) and ª5 GeV (after SHiP). We have shown that future experiments
could probe type-1 Seesaw masses as high as mN ª 103 TeV.

Secondly, we have analyzed the non-degenerate case with two right-handed neutrinos. We
have shown analytically that, requiring observable rates, the ratio of two rates now depends on
both neutrinos masses mN1 and mN2 ∏ mN1 . For mN1 &mW , the results are very close to the ones
obtained before, since they are just shifted by few TeV with respect to the degenerate case. The
measurement of the ratios could in this case provide a narrow range of possible values of mN1 ,
see Fig. 2.11. In the 3 right-handed neutrinos case, it seems not possible to make any compact
analytical analysis. We didn’t compute the various ratios numerically, but the situation is expected
to be very similar to the two right-handed case.

Finally, we have compared the ratios obtained in the type-1 Seesaw with the ones in the
other kind of Seesaw mechanisms, see Fig. 2.13. We have shown that the ratios have different
expressions in all three types of Seesaw. In particular, for m¢¿ mW , the type-2 Seesaw predicts a
ratio RN

µ!e /Br (µ! e∞) that increases monotonically, and a fixed ratio RT i
µ!e /RT i

µ!e . It doesn’t allow
to make similar prediction on the other ratios because the expression of µ! eee depends on
another combination of the mixing parameters. Concerning the type-3 Seesaw, only fixed ratios
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Figure 2.14 – Ratio of the µ! e conversion rate over the µ! e∞ (solid) and over the µ! eee
(dashed) as a function of the degenerate mass mN , for Aluminum (green), Titanium (blue), Gold
(red) and Lead (gray) nuclei. Lines are dotted when they require, for µ! e∞ and µ! eee, a
sensitivity better than the one expected at planned experiments.

are predicted. As a consequence, it is in principle possible to distinguish between the various
types of Seesaw mechanism from the knowledge of two or, better, more rates. We have also shown
that future experiments could probe mass sensitivities as high as 104 TeV for both type-2 and
type-3 Seesaw.

Let’s note, as a final remark, that in practice things may be more complicated, since the µ! e
conversion rates possess various uncertainties, in particular from nuclear physics which could
shift the various curve by ª1 TeV order. In this case, the uncertainties should be treated correctly
and would enlarge the bands in the various plots. Nevertheless, we don’t expect any drastic impact
the above conclusions, since the uncertainties could lead at most to order ª 1 TeV shifts, as in the
non-degenerate case.
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Part II
Seesaw models as the origin of 

the Baryon asymmetry of 
the Universe





3 The Baryon Asymmetry of the Uni-
verse and standard leptogenesis

Since the discovery of the positron in1932 by Carl D. Anderson, it is clear that either a particle has
an associated antiparticle as predicted by Paul Dirac few years before, or it is its own antiparticle.
For example, a charged particle as the electron and its associated anti-particle (the positron) have
exactly the same quantum numbers, except for their electric charge which are opposite. One
could think naively that a perfect symmetry exists between particles and antiparticles in Nature.
However, all what is made arounds us is made of matter, and not anti-matter. Protons, neutrons
and electrons are the elementary blocks that constitute all the usual matter on earth. Antimatter
can only be seen from creating it in accelerators or in the high atmosphere from cosmic rays
interactions. Even beyond the earth, observations actually lead to the same verdict : there is
no trace of any structure made of antimatter in the Universe. How is this possible ? Clearly, the
matter-antimatter symmetry is broken. To understand this point, let’s introduce very briefly the
history of our Universe as it is actually understood.

The Standard Model of cosmology is the Lambda Cold Dark Matter (§C DM) model where
Lambda denotes the dark energy. It is based on the theory of General Relativity using the
Friedmann-Lemaître-Robertson-Walker metric. According to this model and using Planck ob-
servational data, our Universe seems to be constituted of approximately 4.9% of ordinary matter,
26.8% of Dark Matter (DM) and 68.3% of dark energy [40]. These two latter elements constitute
the dark sector whose associated origin and nature has not yet been determined, which means
that most of our Universe has still to be understood. The§C DM model is in excellent agreement
with various properties of the cosmos, especially :

• the measurement of the Hubble-Lemaître expansion and the acceleration of the expansion
of the Universe through the dark energy,

• the Cosmic Microwave Background (CMB) power spectrum, thanks in particular to the
various density of ordinary matter and dark matter,

• the abundances of Hydrogen, Helium, and Lithium atoms, through the Big Bang Nucleosyn-
thesis.
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Figure 3.1 – Sketch of the evolution of our Universe since the Big Bang. ©Max Planck Institute for
Physics

The existence of a CMB means that our Universe started in a hot, dense state and has been
expanding over time. As we go back in time, our Universe was more and more hot and compact.
Around 14 billion years ago, the Universe is expected to have been so hot and compact that the
temperature could have reached a temperature close to the Planck temperature TPlanck ª 1032 K,
or in terms of energy EPlanck ª 1019 GeV. This was the Big Bang era.

A sketch of the evolution of our Universe is presented in Fig. 3.1 . At early times, between the
Big Bang era and the CMB decoupling which occurred about ª 3 ·105 seconds after, the Universe
was constituted by a plasma of elementary particles. But what kind of elementary particles ? This
depends on the temperature. Basically, for temperature values above the mass mX of some particle
X , the plasma will be populated by these particles X but also by the associated antiparticles X̄ .
For example, for temperatures above ª500 keV, the kinetic energy of particles in the thermal
bath is large enough for electron and positron species to be created in pairs and to populate
the plasma. One could therefore naively expect that, at early times, our Universe was in good
approximation symmetric regarding the particle and antiparticle abundances. However, following
a totally symmetric cosmological evolution for both kind of particles, one can show that the
present matter density would have been much less than the observed one, by approximatively
ª 9 orders of magnitudes. This means that at some point in our Universe, either the matter-
antimatter symmetry must have been violated in order to account for the observed matter density,
or the antimatter is living apart somewhere in the Universe. However, such a separation of
population cannot be accounted by the §C DM model. Moreover, this would allow matter-
antimatter annihilations to SM particles at the boundary between the matter and antimatter
regions. In particular, high energy photons are expected to be created and since such annihilations
have never been observed, the matter-antimatter symmetry violation is favored.

By matter asymmetry, one generally means baryon asymmetry because it dominates, since
the baryons are much heavier than the leptons, and because it is known unlike the lepton asymme-
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try (due to the neutrino asymmetry whose amount is not known). This is the Baryon Asymmetry
of the Universe (BAU). The BAU is usually given as a ratio between the baryon number density nB

over the entropy density s, which doesn’t vary due to the expansion and is constant in time. The
analytical expression of these two quantities can be found in Appendix C.1. The present value of
the baryon density, and therefore the baryon asymmetry, as measured by Planck is at 1 sigma level
given by [206]

Y today
B ¥ nB

s

Ø

Ø

Ø

Ø

today
'

nB °nB̄

s

Ø

Ø

Ø

Ø

today
= (9.2±0.1) ·10°11 . (3.1)

The BAU is sometimes instead defined as the ratio ¥B between the baryon density and the photon
number density n∞, whose value is related to the previous one and is given by

¥B ¥ nB

n∞

Ø

Ø

Ø

Ø

today
'

nB °nB̄

n∞

Ø

Ø

Ø

Ø

today
= (6.5±0.1) ·10°10 . (3.2)

In this chapter, we will present the main experimental methods used to determine the baryon
density of our Universe, and so the BAU. We discuss the ingredients needed in order to generate a
baryon asymmetry, i.e. the Sakharov conditions. The generation of the baryon asymmetry is called
baryogenesis. We discuss some of the various possible scenarios, in particular the leptogenesis one
which consists in generating a baryon asymmetry through the production of a lepton asymmetry.
This leptogenesis scenario is well motivated since it is naturally present in the different Seesaw
models that we introduced previously. In order to understand more deeply the way leptogenesis
proceeds, we focus on the type-1 Seesaw leptogenesis, firstly without distinguishing between the
lepton flavors, and secondly taking into account the effect of the lepton flavors.

3.1 Experimental determination of the baryon density

The baryon density as defined in Eq. (3.1) or (3.2) can also be expressed in terms of the density
parameters≠B . This quantity is generally the one furnished by experiments, and it is the one that
enters in the Friedmann equations. It is defined as the ratio between the present baryon energy
density ΩB over the critical energy density Ωc

≠B ¥ ΩB

Ωc
, where Ωc ¥

3H 2
0

8ºG
, (3.3)

with H0 = (67.74±0.46)km/s/Mpc the present value of Hubble rate H [206], and G the gravitational
constant. Let’s note that H0 is often given in terms of the reduced Hubble constant h according to
H0 = 100 ·h·(km/s)/Mpc. The baryon density parameters≠B is related to YB and ¥B through

YB =
n∞(T0)

s0
¥B = 3

8ºGmp

H 2
0

s0
≠B , (3.4)

where s0 = s|today is the present value of the entropy density and n∞(T0) = n∞|today is the present
value of the photon number density, whose analytical expression can be found in Appendix C.1.
In Eq. (3.4), we have used the fact that the energy and the number density are related through
ΩB = nB mB ' nB mp , with mp the mass of the proton.
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Figure 3.2 – Left : The most precise plots of the angular power spectrum of the CMB, as given by
the Planck collaboration [206]. Right : effect of the variation of the baryon density on the CMB
power spectrum. This figure is taken from [207].

The most precise determination of ≠B has been performed by the Planck collaboration,
which has provided, at 68% C.L., [206]

≠B h2 = 0.02230±0.00014 . (3.5)

This is the value used to get Eqs. (3.1) and (3.2) through Eq. (3.4). To get this value, the Planck
collaboration has combined data coming from the CMB spectrum and external sources as from
Lensing and from Baryon Acoustic Oscillation (BAO). Let’s now briefly discuss two of the several
ways of determining the baryon asymmetry of our Universe.

3.1.1 From the Cosmic Microwave Background (CMB)

A possible way to determine≠B experimentally is from the angular CMB power spectrum, which
basically gives us the amplitude of the temperature fluctuations of the CMB in function of the
angular frequency `. We show in left panel of Fig. 3.2 the power spectrum given by the Planck
collaboration [206]. We will not provided here all details, just mention that the shape of the curve
does in particular depend on≠B . In a sake of illustration, we show the effect of the baryon density
variation on the CMB power spectrum in the right panel of Fig. 3.2, taken from Ref. [207].

3.1.2 From Big Bang Nucleosynthesis (BBN)

The Big Bang Nucleosynthesis describes how the various light element abundances have been
generated as the Universe was cooling down. By light elements we mean the Deuterium D, the
Helium 3He and 4He, and the Lithium 7Li . Without going into details, let’s mention the main
steps of the scenario. For T & 1 MeV, the weak interactions are in equilibrium, and processes as
n+∫e $ p+e° maintain the p, n, e and ∫e particles in thermal equilibrium (the notion of thermal
equilibrium is explained in Appendix C.1.5). If the protons and neutrons are non-relativistic,
which is the case for T < mp,n , this process implies that their abundances are directly related
through np /nn ' e±m/T , where ±m is the mass splitting ±m ¥ mn °mp º 1.3 MeV. At T ª 0.7 MeV,
these weak interactions freeze out, so that the p and n abundance ratio is fixed to np /nn º 6.
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For 0.1 MeV. T . 1 MeV, processes involving light nuclei are in thermal equilibrium. The
Deuterium appears through p +n $ D +∞, the Tritium through D +D $ T +n, p, the Helium
through D +T $ 4He +n, p and D +D $ 4He +∞. The abundances of the various nuclei are thus
directly related, but these are not definitively fixed since the inverse processes as D+∞! p+n still
occur (because they are faster than the Hubble rate) and dissociate the nuclei. Below T ª 0.1 MeV,
these inverse processes are no more possible and the various light nuclei abundances are fixed,
and related to each other. The sum of these light nuclei abundances is nothing but the total
baryonic abundance nB present in our Universe, and their relative abundances depend in fact on
the ratio nB /n∞, since the rates of the above nuclear reactions depend on the density of baryons.
Therefore, by measuring the light nuclei abundances fractions nX /nH with X = D, 3He, 7Li , one
could determine the value of ¥B .

A summary plot of the species abundances in function of the baryonic fraction ¥10 ¥ 1010 ·¥B

of the Universe is given in the left panel of Fig. 3.3 [8]. The bands show the 95% C.L. range.
The yellow boxes represent the observed light abundance fractions at 95% C.L.. The largest
vertical band indicates the BBN concordance range without the lithium constraint, 5.7. ¥10 . 6.7
(95% C.L.), and the narrow band represent the more precise CMB measurement of the cosmic
baryon density, 6.4. ¥10 . 6.6 (95% C.L.).

The fraction of Deuterium D is the most precise one, because it could only have been
produced during BBN. It has been measured from the observation of the absorption spectra of
high redshift object as quasars, whose light has been partially absorbed by clouds of gas. The 4He
is not a so good indicator of the baryon density because it depends on the expansion rate. Indeed,
since two neutrons are needed to produce one 4He atom, the neutrons must not have decayed
before they have been captured. Finally, the 3He and 7Li abundances are less precise since their
determination is more complex and model dependent.

Finally, let’s note that there are other ways to determine the baryon density of our Universe.
Even if they are less precise than the CMB method, let’s mention in particular methods based on :
type-1 Supernovae (the velocity of these candles depends on the matter density), gravitational
lensing (the matter density bends the light and acts as a lens), Baryon Acoustic Oscillation (BAO)
(acoustic waves were generated as the plasma constituted by photons and baryons was attracted
in dense regions, composed by ordinary and dark matter, and these sound waves have decoupled
after the epoch of recombination, what can be seen from large scale structure of matter using as-
tronomical surveys). The right panel of Fig. 3.3 shows a summary plot of the various experimental
data, taken from Ref. [208]. It gives the preferred values of≠§ and≠M densities from various kind
of experiments, where the quantity≠§ denotes the dark energy density and≠M =≠B +≠DM the
total matter density. To get baryon density≠B , one can subtract≠DM as provided by the CMB.

3.2 Needed ingredients for baryogenesis

If we start with a B-symmetric Universe at early times, i.e. nB = n̄B , then at T . 1 GeV a large
amount of nucleons N = (p,n) and anti-nucleons N̄ = (p̄, n̄) are formed from quarks. From
QCD interactions, one has therefore efficient N + N̄ ! SM annihilations, which are in thermal
equilibrium until T º 20 MeV. As a consequence, the final fraction density after the thermal
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Figure 3.3 – Left : light nuclei abundance fractions as a function of the baryonic fraction ¥10 ¥
1010 ·¥B , with ¥B = nB /n∞. The plot has been taken from Ref. [8]. Right : summary plot of the
various experimental measurement of≠§ vs≠M , taken from Ref. [208].

decoupling of these annihilations at Tfo º 20 MeV is given by

Y today
B =

nEq
N

s

Ø

Ø

Ø

Ø

today
=

nEq
N (Tfo)

s0
=

nEq
N̄

(Tfo)

s0
º 10°20 ø 10°10 . (3.6)

which is well below the observed value given in Eq. (3.1). One needs therefore an asymmetry
before T º 20 MeV, given the fact that it would be difficult to create one after due to kinematical
reasons.

A baryon asymmetry exists in our Universe, and it must have been generated at some epoch
earlier than the BBN era. The generation of the baryon asymmetry is called “baryogenesis”.
Baryogenesis requires three basic elements to work. These are the Sakharov conditions [209]
which say that, starting from a Universe composed by an equal amount of baryons and antibaryons
(¢B = 0) and assuming C PT invariance, the processes that generated the baryon asymmetry must

1. violate the baryon number B. This is obvious since we start with ¢B = 0 and finish with
¢B 6= 0. There should thus exist a process a ! b where a and b are initial and final states
carrying different baryon number, Bb °Ba 6= 0.

2. violate Charge (C ) and the Charge·Parity (C P) symmetries. If it is not the case, the B-violating
processes a ! b would occur at the same rate than ac ! bc or acp ! bcp , where the c (cp )
superscript denotes the C (C P ) conjugate states, so that even if the baryon number B is
violated in the process, it is in fact globally conserved.

3. have departed from thermal equilibrium. Otherwise, not only a ! b processes do occur
but also b ! a do occur, and once a baryon asymmetry is generated it would be directly
destroyed. The notion of thermal equilibrium is discussed in Appendix C.1.5.
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Figure 3.4 – Shape of the scalar potential as a function of the scalar field in case of a first order (left)
and a second oder (right) phase transition. The curves go from bottom to top as the temperature
increases.

These three ingredients must be fulfilled in order to generate the BAU. Interestingly, the SM
satisfies the three conditions. Indeed, (i) the baryon number B , even if conserved globally, is
violated at the quantum level by the sphalerons, which are non-perturbative processes (instantons)
that violate the B +L number. We will further discuss the sphalerons in section 3.3.3 below. (ii) C
and C P are violated by weak interactions. (iii) The departure from thermal equilibrium may be
assured by the ElectroWeak Phase Transition (EWPT) or by the expansion of the Universe.

However, as we will now see, the SM seems not to be able to produce enough BAU. This is
on the one hand because C P-violation in the SM seems not to be sufficient to produce enough
baryon asymmetry, and on the other hand because departure from thermal equilibrium requires
a first order electroweak phase transition (see Fig. 3.4) while in the SM it is actually a crossover
transition. These two failures are clear motivations for beyond the SM physics (BSM). We will next
discuss briefly some of the well known baryogenesis scenario of BSM physics.

3.3 Baryogenesis possibilities

3.3.1 Electroweak baryogenesis

We know that the scalar potential of the SM is such that the scalar field has a vev, given by
h¡i= v/

p
2, with v = 246 GeV. However, at high temperature, one must include the quantum loop

corrections to the scalar potential. One can show that above some critical temperature TEW , the
minimum of the scalar potential is such that the scalar field ¡ has actually no vev, while below
TEW it gets a vacuum expectation value through the Brout-Englert-Higgs mechanism [210]. There
is therefore an ElectroWeak Phase Transition (EWPT) at some temperature TEW .

In the left panel of Fig. 3.5, we show the vev of the scalar field as a function of the temperature,
computed in the SM framework. From this figure, one sees that the critical temperature is
approximately given by TEW ' 165 GeV, and one has therefore :

T & 165 GeV ! h¡i= 0 , (3.7)

T ø 165 GeV ! h¡i= v
p

2
. (3.8)
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Figure 3.5 – Left : SM evolution of the vev of the scalar field, expressed as v2/T 2, as a function
of the temperature T using different methods. Right : SM evolution of the EW sphalerons rate
°EW ¥ °/T 4 as a function of the temperature, using different methods. Both plots are taken from
Ref. [210].

One can show that if the phase transition is a first order transition, that is the vev of the scalar
field jumps from v = 0 to v 6= 0 at some precise temperature (see the left panel of Fig. 3.4), it is
in principle possible to generate a baryon asymmetry. 1 However, as already mentioned, the EW
transition in the SM is not first order, in which case the vev changes smoothly from v = 0 to the
v = 246 GeV as the temperature decreases (see the right panel of Fig. 3.4). In order to get a first

order transition, one need to act on the EWPT, for example by adding new scalar particles as in the
Two Scalar Doublet model (2HDM) or Supersymmetry.

3.3.2 GUT Baryogenesis

Grand Unified Theories, see section 1.6, on top of all the other advantages, also provide all the
ingredients needed for baryogenesis. Indeed, they usually contain new heavy particles X , with new
interactions that breaks B , C and C P , as in SO(10) and L-R GUT theories. One expects generally
(in particular from proton decay bounds) that the heavy particle masses should lie around the
GUT scale, so that the out-of-equilibrium decays of these particle fulfill all the Sakharov conditions
and can account for all the observed baryon asymmetry.

3.3.3 Sphalerons and baryogenesis through leptogenesis

The gauge symmetries and the particle content of the SM Lagrangian imply that the baryon
number B and the three flavor numbers LÆ are conserved at tree-level in the SM. From the

1Indeed, for a first order phase transition, most likely regions of non-zero vev nucleate bubbles at different space-
time coordinates. When growing in the empty space with v = 0, bubbles with v 6= 0 filled progressively the whole
Universe. During the conquest of the empty space, bubbles should have collided and it is these collisions that could be
at the origin of the BAU. This is obviously not a thermal equilibrium process. For more details concerning this scenario,
see for example Ref. [211, 212].
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conservation of the three lepton flavor numbers LÆ, the total lepton number L is (accidentally)
conserved at tree-level as well. However, baryon and lepton numbers are anomalous : B and
L numbers are in fact broken at the quantum level. Indeed, the SM contains non-perturbative
processes called sphalerons [213] that break the B +L number while conserving separately the
B/3°LÆ numbers and so the total B °L one.

Sphalerons are complex processes, and our goal here is not to enter in the details of the way
they are induced. For now, let’s just say that they violate B +L number but conserve B/3°LÆ (and
B°L), and that they are active for temperature within the range T 2 [132,1012] GeV. The lower value
can be seen from the right panel of Fig. 3.5, taken from Ref. [210]. The higher value is obtained
from Eq. D.44 in Appendix C.2 [214]. Therefore, since they break B +L but conserve B °L, if
some BSM physics has generated a lepton asymmetry ¢L above 132 GeV, a baryon asymmetry ¢B
should have been generated too. As an example, let’s suppose that a lepton asymmetry¢Lini = Lini

is generated above 132 GeV by some BSM physics. A naive computation allows us to determine
the baryon asymmetry transferred by sphalerons :

(B +L)fin ' 0 ! Lfin '°Bfin , (3.9)

(B °L) f i n ° (B °L)ini = 0 ! Bfin = Lfin °Lini '°Lini

2
. (3.10)

In the first equation, we assumed that the EW sphalerons violates B +L by typically bringing
it to zero, and in the second equation we used the fact that sphalerons conserve B °L so that
¢(B °L) = 0. The naive result Bfin '°Lini/2, even if not rigorous, does still provide the good order
of magnitude, and we see that, starting from a zero initial baryon asymmetry Bini = 0, we actually
end up with Bfin 6= 0. The correct relation between the B °L, L and B asymmetries is computed in
Appendix C.5. Taking into account the various spectator processes, it is given by [215]

¢YB =28
79
¢YB°L =°28

51
¢YL for T & TEW , (3.11)

¢YB =12
37
¢YB°L =°12

25
¢YL for Tsphal . T . TEW , (3.12)

where Tsphal ' 132 GeV is the temperature below which sphalerons are not active anymore. The
above ratios are close to the naive result obtained in Eq. (3.10). For T < Tsphal, sphalerons freeze
out and if no baryon number violating process occurs the baryon asymmetry remains unchanged
and given by Eq. (3.12). It is therefore the Eq. (3.12) that must be used in order to relate the present
baryon asymmetry ¢Y today

B with the B °L asymmetry produced above Tsphal.

This scenario, of generating a baryon asymmetry starting from a lepton asymmetry, is called
baryogenesis through leptogenesis, or just leptogenesis. Along this mechanism, the three Sakharov
conditions become :

1. the lepton number L must be violated,

2. C and C P must be violated,

3. the process must depart from thermal equilibrium.
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Leptogenesis is very appealing since all the above conditions are actually fulfilled in the now
well-known Seesaw mechanisms, which contains new heavy particles whose out-of-equilibrium
decays may violate L, C and C P . Thus, on top of generating small neutrino masses, Seesaw
models could also provide an explanation for the baryon asymmetry of the Universe. This idea
of leptogenesis has originally been carried in Ref. [216], where they considered leptogenesis in
the framework of type-1 Seesaw models. We will now introduce in the next section the basics of
leptogenesis in the type-1 Seesaw context. Leptogenesis in the framework of the type-2 Seesaw
will be discussed in detail in chapter 4.

Definition of the total lepton and baryon asymmetries. In Eq. (3.11) and (3.12), the total lepton
asymmetry is defined as ¢YL = YL °YL̄ , where the total lepton abundance YL ¥ nL/s is equal to
the sum of the lepton flavor densities YLÆ = Y`Æ +YeÆ (without Dirac right-handed neutrino) :

¢YL =
N f
X

Æ
¢YLÆ =

N f
X

Æ

°

¢Y`Æ +¢YeÆ
¢

, (3.13)

with N f = 3 is the number of flavor families. In the same way, taking as usual 1/3 for the baryon
number of the quarks, the total baryonic asymmetry ¢YB = YB °YB̄ is defined by

¢YB = 1
3

N f
X

Æ

°

¢YQÆ +¢YuÆ +¢YdÆ

¢

, (3.14)

The quantities conserved by sphalerons are the B/3°LÆ and so the B °L ones, which are thus
defined as

¢YB/3°LÆ =
1
9

N f
X

Ø

≥

¢YQØ +¢YuØ +¢YdØ

¥

°
°

¢Y`Æ +¢YeÆ
¢

, (3.15)

¢YB°L =
N f
X

Æ

∑

1
3

°

¢YQÆ +¢YuÆ +¢YdÆ

¢

°
°

¢Y`Æ +¢YeÆ
¢

∏

. (3.16)

3.4 Basics of Leptogenesis : the unflavored type-1 Seesaw case

We now introduce pedagogically the type-1 Seesaw leptogenesis mechanism because we will need
it for the type-2 Seesaw leptogenesis in the next chapter. For a question of clarity, we first study the
unflavored leptogenesis, i.e. we neglect the effects of the lepton flavors and the spectator processes.
The flavor issue is addressed in the next section. The reader familiar with these concepts can
directly go to chapter 4.

3.4.1 Lagrangian and interactions

The type-1 Seesaw mechanism contains right-handed neutrinos Ni that are expected to be heavy
in order to generate small neutrino masses, see section 1.3. By heavy, here we mean typically
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mNi > 1 TeV. The right-handed neutrino interactions read, see Eq. (1.22),

L type-1 3°NRi ¡̃
† YNiÆ`LÆ °

1
2

NRi mNi N c
Ri
+H.c. . (3.17)

As usual, we choose a right-handed neutrino basis such that the Majorana mass matrix is diagonal
and real. We remind that lepton number is violated in the type-1 Seesaw Lagrangian because of the
presence of both Yukawa and Majorana terms. From the above Lagrangian, we see that the right-
handed neutrinos interact with the other SM particles through the Yukawa interactions. For a mass
typically above the electroweak scale, they can decay in a lepton `Æ and a scalar boson ¡ through
the Yukawa interactions Ni ! `Æ¡. 2 As seen in section 1.3.2, because the Yukawa couplings YNiÆ

are complex matrices, these decays, on top of being L-violating, contain also in general a C and
C P violating part. The first two Sakharov conditions are therefore satisfied from the start in the
type-1 Seesaw Lagrangian. The third one is also satisfied as soon as the right-handed neutrino
decays out-of-equilibrium. In particular, all along these next sections, we assume that the lepton
asymmetry is generated by the out-of-equilibrium decay of the right-handed neutrino N1, which
is much lighter than the other right-handed neutrinos Tsphal ø mN1 ø mNk 6=1 .

3.4.2 Unflavored statement and general scenario

In order to understand the main ideas behind leptogenesis, we will in this section consider the
simple but representative scenario of the “unflavored leptogenesis”. In this latter :

• the effects of the lepton flavors are neglected, i.e. the right-handed neutrino N1 is assumed
to decay into only one lepton ` (carrying lepton number L(`) = 1) which encompasses all the
lepton flavors,

• the effects of the spectator processes are also neglected, i.e. the SM reactions in the thermal
bath as the quark Yukawa interactions don’t play any role during the leptogenesis era.

We will now illustrate the main steps in the generation of the B °L asymmetry from the N1 decays
by considering a simple example where the N1 are initially in thermal equilibrium with the thermal
bath. Chronologically, one has typically the following steps as the temperature cools down.

1. At T ¿ mN1 , right-handed neutrinos N1 are in thermal equilibrium. Their number is
therefore known and given by the thermal distribution.

2. At T ª mN1 , the N1’s will progressively disappear from the thermal bath. If the decay/inverse
decays are in thermal equilibrium N1 $ `¡ (i.e. they are faster than the Hubble rate), the
N1’s disappear by following a Boltzmann suppressed thermal equilibrium distribution. If
the inverse decay reaction is not in thermal equilibrium, they disappear simply by decaying
N1 ! `¡. In both cases, since the decays violate L, C and C P , a total B °L asymmetry
¢YB°L is progressively generated. As long as processes like the inverse decays `¡! N1 are

2From now on, `Æ and eÆ designate the left-handed doublet `LÆ and the right-handed singlet eRÆ respectively.
In the quark sector, we also designate QÆ, uÆ and dÆ as the left-handed quark doublet, right-handed up-type quark
singlet, and right-handed down-type quark singlet.
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in thermal equilibrium, until some decoupling temperature Tdec, the production of a final
B °L asymmetry may be slowed down.

3. At T ª Tdec, the inverse processes `¡! N1 effectively stop. From this moment, all the N1’s
left decay out-of-equilibrium and produce a net B °L asymmetry.

4. At Tsphal . T ø Tdec, all the right-handed neutrinos have decayed, and the present baryon
asymmetry is related to the final B °L asymmetry through

¢Y today
B = Y today

B =Csphal ·
Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

, (3.18)

where Csphal = 12/37 is the conversion factor due to sphalerons, given in Eq. (3.12) and
determined explicitly in Appendix C.5.

This is the basic general picture, which gives an idea of how things work. From the above scenario,
it is clear that the decays/inverse decays play a crucial role in leptogenesis. We now give the
analytical expression of the tree-level decay rate and then the analytical expression of the C P-
asymmetry in the unflavored leptogenesis.

3.4.3 Tree-level decay rate

From the Lagrangian in Eq. (1.22), it is straightforward to compute the tree-level partial decay rate
in lepton (antilepton) :

°(N1 ! `¡) = °(N1 ! ¯̀¡§) = 1
16º

≥

YN Y †
N

¥

11
mN1 , (3.19)

which is nothing but the sum over Æ of the flavored decay rates. The total tree-level decay rate is
then given by the sum of the two partial decay rates :

°N1 ¥ °(N1 ! `¡)+°(N1 ! ¯̀¡§) = 1
8º

≥

YN Y †
N

¥

11
mN1 . (3.20)

To know how fast are these decays, this rate has to be compared to the Hubble rate H . It is
convenient to express the ratio °N1 /H at T = mN1 as

KN1 =
°N1

H(z = 1)
= m̃1

m§ , (3.21)

where m̃1 is the effective neutrino mass

m̃1 ¥ 4º
v2

m2
N1

°N1 =
v2

2
1

mN1

≥

YN Y †
N

¥

11
, (3.22)

which depends on the high energy parameters YN , and where m§ is the “equilibrium neutrino
mass”,

m§ ¥ 4º
v2

m2
N1

H(z = 1) = 20º
3

·pg§ ·
v2

mPlanck
' 1.08 ·10°3 eV , (3.23)
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Figure 3.6 – Feynman diagrams needed in order to compute the C P-asymmetry ≤`ÆN1
.

which is a fixed quantity remarkably quite close to the expected neutrino mass value. It is worth to
note that the quantity m̃1 looks very similar to the neutrino mass expression in Eq. (1.26). From
the Cauchy-Schwartz inequality |Y T

N YN |∑ |YN |2, one can actually have an idea on the lower bound
on m̃1 :

m̃1 ∏ mmin
∫ , (3.24)

with mmin
∫ the smallest neutrino mass, whose value has still to be determined experimentally.

This gives the lower bound KN1 &mmin
∫ /(10°3 eV). Since the second Sakharov condition is clearly

not fulfilled by the tree-level expression in Eq. (3.19), we now compute the C P-asymmetry in N1

decays.

3.4.4 Evaluation of the C P-asymmetry

In the unflavored regime, the C P-asymmetry of the decay N1 ! `¡ is simply given by the sum of
the flavored C P-asymmetries :

≤N1 ¥
°

°

N1 ! `¡
¢

°°
°

N1 ! ¯̀¡§¢

°N1

=
X

Æ

°
°

N1 ! `Æ¡
¢

°°
°

N1 ! ¯̀
Æ¡

§¢

°N1

¥
X

Æ
≤`ÆN1

. (3.25)

Obviously, using the tree-level decay rate in Eq. (3.19) gives ≤N1 = 0, and one needs to go at the
loop level. In the type-1 Seesaw, the Feynman diagrams that are involved in the C P-asymmetry
are given in Fig. 3.6. There are two kinds of loop diagrams : a “vertex” (second diagram) and
a “self-energy” (third and fourth diagram). The self-energy part receives two contributions :
a lepton number violating part (third diagram) and a lepton number conserving part (fourth
diagram). Assuming |mN1 ° mN j | ¿ |°N1 ° °N j |, a straightforward computation leads to the
expression [217, 218]

≤`ÆN1
= 1

8º
1

≥

YN Y †
N

¥

11

X

j 6=1
=m

∑

YN1ÆY §
N jÆ

≥

YN Y †
N

¥

1 j

∏

g (x j )

+ 1
8º

1
≥

YN Y †
N

¥

11

X

j 6=1
=m

∑

YN1ÆY §
N jÆ

≥

YN Y †
N

¥

j 1

∏

1
1°x j

, (3.26)

where x j ¥ m2
N j

/m2
N1

and where the function g (x) is given by

g (x) =
p

x
∑

1
1°x

+1° (1+x) ln
µ

1+x
x

∂∏

°°°!
x¿1

° 3

2
p

x
, (3.27)
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and contains the contributions from the second and third diagrams of Fig. 3.6. The contribution
from the lepton number conserving one is contained in the second line of Eq. (3.26). This latter
vanishes when summing over the flavor indices, so that the unflavored C P-asymmetry is given by

≤N1 =
1

8º
1

≥

YN Y †
N

¥

11

X

j 6=1
=m

∑

≥

YN Y †
N

¥2

1 j

∏

g (x j ) . (3.28)

In the limit where mN j ¿ mN1 and using the type-1 neutrino mass expression in Eq. (1.26), ≤N1

can also be recast in the form

≤N1 =° 3
32º

m3
N1

v4°N

X

j 6=1
=m

(

Tr

"

≥

mN1
∫

¥

·
≥

X

j 6=1
m

N j
∫

¥†
#)

. (3.29)

where mNi
∫ is the contribution of the right-handed neutrino Ni to the light neutrino mass matrix

m∫ =
P

Ni
mNi

∫ .

± Upper bound on the C P-asymmetry and lower bound on the heavy neutrino mass

From the expression in Eq. (3.29), one can evaluate an upper bound on the C P-asymmetry, as
Davidson and Ibarra shown [219] :

Ø

Ø≤N1

Ø

Ø. 3
8º

mN1

v2

¢m2
atm

m∫3

, (3.30)

where m∫3 is the largest neutrino mass, and m2
atm = |¢m2

31| is the atmospheric mass splitting. This
bound is very interesting because it allows us to determine a lower bound on the mass scale mN1 .
Indeed, using Eq. (3.18), we will show below that the present baryon asymmetry can be expressed
as

¢Y today
B =Csphal

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

= 12
37

≤N1 ¥N1 Y Eq
N1

°

T ¿ mN1

¢

, (3.31)

where Y Eq
N1

(T ) is the equilibrium abundance of N1, and ¥N1 is the so-called efficiency that reflects
the out-of-equilibrium character of the N1 decays. Basically, if all the right-handed neutrino
decays N1 ! `¡ occur out-of-equilibrium, one has ¥N1 = 1. Otherwise, and that is generally
the case, 0 < ¥N1 < 1. The efficiency is the quantity that must be determined by solving to the
Boltzmann equations, see below. Since the quantities ¢Y today

B and Y Eq
N1

(T ¿ mN1 ) are fixed, one
can express the C P-asymmetry in term of the efficiency :

≤N1 =
Y today

B

12/37 ·¥N1 Y Eq
N1

°

T ¿ mN1

¢

(3.32)

In the best situation, the efficiency is maximal ¥N1 = 1, so that in order to get the observed value of
the BAU in Eq. (3.1), the C P-asymmetry must be bigger than

≤N1 ∏
Y today

B

12/37 ·Y Eq
N1

°

T ¿ mN1

¢

' 5.7 ·10°8 . (3.33)
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This translates, using Eq. (3.30) and the atmospheric mass splitting value given in Table 1.1 of
section 1.1, into a lower bound for the mass mN1 given by : 3

mN1 & 5.9 ·108 GeV . (3.34)

This means that, in the unflavored limit, the right-handed neutrino scale should lie far beyond
the EW scale if we want it to explain both leptogenesis and neutrino masses. Unfortunately, this
scale is hardly testable by future experiments. However, this bounds can be lowered, for example
by including the different lepton flavors or changing the right-handed neutrino mass spectrum,
as in the resonant leptogenesis scenario. In this latter case, as can be seen from the self-energy
diagram contribution in Eq. (3.26), the C P-asymmetry can be largely enhanced and the bound in
Eq. (3.30) doesn’t hold anymore [217, 220, 221, 222, 139].

± Comment on the upper bound on the heavy neutrino mass

Let’s note that one generally assumes that, in order to be produced by the thermal bath, the right-
handed neutrinos must be lighter than the reheating temperature mN1 . Treheat. Indeed, in order
to explain the Universe homogeneity, it is generally assumed that there were a period of inflation at
the early stage of our Universe, such that the Universe expanded by a factor bigger than ª e50. This
inflation can be explained by the “slow-roll” slope of a scalar field in some particularly flat potential.
At the end of inflation, when the field reaches the minimum of the potential, we expect that this
field begins to oscillate and to decay in SM particles, which populate and reheat the Universe –
this is what is called the reheating period. The reheating temperature is actually unknown, but
following most inflationary models it may lie in the range 10 TeV. Treheat . 1016 GeV [223, 224].
As a consequence, one should have mN1 . 1016 GeV in order that the thermal bath (or the dilation
field) could populate and maybe thermalize the right-handed neutrinos.

3.4.5 Boltzmann equations

Now that we have the analytical expression of the C P-asymmetry in Eq. (3.28) which differs in
general from zero, we can write down the Boltzmann equations that will allow us to determine the
value of the efficiency ¥N1 . These equations describe the time evolution of the various densities
by counting the number of particles which are destroyed/created. In fact, it is the solution of the
Boltzmann equations that gives the final form of the B °L asymmetry as introduced in Eq. (3.31).

The formalism of the Boltzmann equations is explained in Appendix C.4. We will closely
follow the notation of Ref. [225]. Here, we will just write the final expressions. For the sake of
illustration, we will only consider the contributions of the dominant interactions, as the decays
N1 ! `¡, inverse decays `¡! N1, and the on-shell contribution of the¢L = 2 scatterings `¡$ `¡

which must be included in order to have a correct thermodynamical behavior. A more complete
approach consists in including also other processes as the off-shell contribution of the ¢L = 2
scatterings or the¢L = 1 scatterings `N1 $ t̄b. These can be important in some cases as discussed
in section 3.7 below, but this is not necessary in this introductory section.

3This lower bound stands in the case where the initial right-handed abundance is the equilibrium one. In case of a
vanishing initial abundance, the lower bound becomes mN1 & 109 GeV, see below.
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Neglecting the spectator processes, 4 the Boltzmann equations that describe the evolution of
the N1 comoving number density YN1 ¥ nN1 /s (also just called “density” or “abundance” in this
thesis) and the evolution of the B °L asymmetry ¢YB°L as defined in Eq. (3.16), 5 read

ẎN1 =°

0

@

YN1

Y Eq
N1

°1

1

A∞D , (3.35)

¢ẎB°L =°

0

@

YN1

Y Eq
N1

°1

1

A≤N1∞D ° 1
2
¢YB°L

Y Eq
`

∞D , (3.36)

where Ẏ ¥ sH z dY /d z can be interpreted as a time derivative, s(z) is the entropy density, and
z ¥ mN1 /T . The decay/inverse decay reaction rate ∞D , which is nothing but the number of decays
which occurs per unit time and unit volume, is given by

∞D ¥ nEq
N1

K1(z)
K2(z)

°N1 = nEq
N1

K1(z)
K2(z)

KN1 H(z = 1) . (3.37)

The functions K1(z) and K2(z) are Bessel functions of the first and second kind – these must not
be mixed up with the decay parameter KN1 as defined in Eq. (3.21). In what follows, we take the
Hubble rate and the entropy density to be

H(z) = 2
3

s

º3g§
5

T 2

mPlanck
, s(z) = 4

º2 g§ T 3 , (3.38)

where g§ = 106.75 is the total number of relativistic degrees of freedom contributing to the energy
density of the Universe, and mPlanck = 1.22 · 1019 GeV is the Planck mass. We also make the
approximation of taking Maxwell-Boltzmann equilibrium distributions : 6

nEq
N1

(z) = gN1

m3
N1

2º2

K2(z)
z

, nEq
`

(z) = g`
m3

N1

2º2

2
z3 , (3.39)

where we used K2(z ø 1) ' 2/z2 for the relativistic lepton species `. In this thesis, the number
of degrees of freedom of the species X is taken to be gX = 1,2,3 for Dirac singlets, doublets (so
g` = 2) and triplets respectively, while gN = 2 for the Majorana fermions singlets Ni , and g∞ = 2 for
the two polarization states.

4As shown in Appendix C.5.2 the inclusion of spectator processes, even in the case of unflavored leptogenesis, can
lead to a different numerical factor in front of the term proportional to ¢YB°L in the r.h.s. of Eq. 3.36. For example, for
T & 1015 GeV, the factor 1/2 should be replaced by 1, and for T 2 [1012,1015] GeV, it should be replaced by 5/3. The
inclusion of spectator processes thus in general increases the washout of the asymmetry. The effect of the spectator
processes will be discussed in section 3.6.

5Since the sphalerons violate the lepton number L, it is rigorously not correct to write a Boltzmann equation for L
without taking into account the effects of complex sphalerons reactions. Dealing with B °L instead, which is conserved
by sphalerons, allows us to not include these complex reactions in the Boltzmann equations. Let’s note that we already
took into account the effect of the chemical potential equilibrium conditions in Eq. (3.36), that relate the L and B °L
asymmetry – see the so-called C` matrix elements in Appendix C.5.

6Rigorously, one should take the Fermi-Dirac distribution for the fermions, and the Bose-Einstein distribution for
the bosons. However, in this case, the Boltzmann equations would be more complexes and one would only gain few
percent in precision. In contrast, the fact of using classical Boltzmann equations instead of quantum ones gives the
same answer up to ª 10 percent deviations.
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Let’s now analyze the physics behind the above Boltzmann equations. The r.h.s. of the
equation for YN1 contains two parts, proportional to the reaction rate ∞D . The first term in the
bracket represents the total decays of N1, given by the sum of N1 ! `¡ and N1 ! ¯̀¡§, and is
therefore negative while the second term represents the total inverse decays to N1, i.e. `¡! N1

and ¯̀¡§ ! N1, and is then positive. As the N1’s decay/inverse decay, some lepton asymmetry
(and then an opposite B °L asymmetry) is produced/erased. This is represented by the first term
of the r.h.s. of the equation for ¢YB°L , which has therefore exactly the same form of as the r.h.s. of
Eq. (3.35), but weighted by the C P-asymmetry ≤N1 . Finally, the equation for ¢YB°L also contains a
term proportional to¢YB°L , which reflects the fact that if there is more ` than ¯̀ for example, there
will be more inverse decay `¡! N1 than ¯̀¡§ ! N1, having consequently the effect of diminishing
the asymmetry. 7 This is the “washout term”.

The Boltzmann equation for the B °L asymmetry contains therefore two distinct kind of
terms : the “source term” that is responsible of an increase of the absolute B °L asymmetry
(the term proportional to ≤N1 ), and the “washout term” that tends to prevent the enhancement
of the lepton asymmetry. Starting with an equilibrium number density for N1, the final B °L
asymmetry produced will be maximal if the washout terms are minimal. 8 Note that if the initial N1

abundance is zero, the washout term is crucial for a B °L asymmetry to develop. These washouts
play therefore a crucial role in the leptogenesis scenario. But how fast are they ?

To answer this question, one needs to compare the reaction rates with the Hubble rate.
Looking at the Boltzmann equations, the relative rapidity of the total decay of N1 ! `¡ can be
evaluated by the quantity ∞D /(HnEq

N1
), with ∞D /nEq

N1
being the number of decays a single N1 has per

unit time, while the relative rapidity of the inverse decay `¡! N1 can be evaluated by ∞D /(HnEq
`

),

with ∞D /nEq
`

being the number of inverse decays a single ` (or a single ¡) has per unit time. These
reactions densities play a crucial role in the understanding of the evolution of the B°L asymmetry,
because they allow us to know if a reaction effectively occurs or not.

For example, we show in Fig. 3.7 the reaction densities as a function of z = mN1 /T for the
decays (left) and inverse decays (right), fixing the decay parameter to KN1 = 50 (solid), KN1 = 1
(dashed), and KN1 = 1/50 (dashed). From the left panel, we see that N1 starts to decay typically
around T ª mN1 . From the right panel, more interestingly we see that the `¡! N1 inverse decay
rate is always slower than the Hubble rate for KN1 . 1 (in which case we say that the reaction never
reaches thermal equilibrium). This means that for KN1 = 1/50 for example, the inverse decays
`¡! N1 basically not occur, and one can safely neglect the corresponding washout term in the
Boltzmann equation for B °L (at least if one starts with a thermal N1 density).

We show in Fig. 3.8 the evolution of the YN1 (left) and¢YB°L abundances (right), for the same
choice of KN1 . These curves have been obtained by solving numerically the Boltzmann equations,
fixing ≤N1 = 1 and taking at z0 ø 1 the initial conditions YN1 (z0) = Y Eq

N1
(z0) and ¢YB°L(z0) = 0. Let’s

have a quick look at the evolution of the B °L asymmetry.

7Let’s note that the factor 1/2 in front of the third term of Eq. (3.36) comes from the fact that the decay rate°(N1 ! `¡)
is half of the total rate °N1 .

8Note that by washout we here mean the term proportional to ¢YB°L in Eq. (3.36). and not the total inverse decays
to N1.
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Figure 3.7 – Thermalization rates ∞D /(HnEq
N1

) (left) and ∞D /(HnEq
`

) (right) for different values of
KN1 . These represent how fast are the decay and inverse decay rate with respect to the Hubble
rate.

First, for z . 1, we see that the B °L asymmetry increases progressively as the N1’s decay.
For KN1 = 50, it reaches a maximum around z ª 1 before decreasing until z ª 10. Looking at the
right panel of Fig. 3.7, this value corresponds to the moment at which the inverse decay `¡! N1

washout leaves thermal equilibrium. For z & 10, the fraction ∞D /(HnEq
`

) is always smaller than 1
and the B °L asymmetry remains constant. For KN1 = 1/50, we see on the contrary that the B °L
asymmetry never decreases. This is because the inverse decays never reaches thermal equilibrium
as can be seen on the right panel of Fig. 3.7. The case where KN1 = 1 lies at the boundary between
the two above situations.

From the left panel of Fig. 3.8, we also see that the more the N1’s decay out-of-equilibrium
(the more YN1 deviates from Y Eq

N1
), the more B°L asymmetry will be produced. This clearly reflects

the third Sakharov condition : the process that generates the lepton asymmetry must leave thermal
equilibrium in order to have a non-zero lepton asymmetry at the end of leptogenesis.
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Figure 3.8 – Evolution of the N1 density (left) and the B°L asymmetry (right), for different values of
the KN1 parameter. The right panel also shows the equilibrium density Y Eq

N1
in white dotted-dashed,

which is in fact quasi superposed to the KN1 = 50 curve.
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3.4.6 Analytical solutions to the Boltzmann equations

It is in general difficult to get a simple expression for the final B °L asymmetry by solving the
system of Boltzmann equations analytically. Indeed, integrating Eq. (3.35) and (3.36) from z0 to z
using the integrating factor technique, the exact solution reads

¢YB°L(z) =¢YB°L(z0) e°
Rz

z0
d z 0W1(z 0) °

Zz

z0

d z 0≤N1

dYN1

d z 0 e°
Rz

z0 d z 00W1(z 00) . (3.40)

where ¢YB°L(z0) is the initial asymmetry, and where we defined

W1(z) ¥ 1

2Y Eq
`

∞D (z)
s(z)H(z)z

. (3.41)

Starting with zero initial asymmetry ¢YB°L(z0) = 0 at z0 ø 1, the final asymmetry at the end of
leptogenesis is given by

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

'
Ø

Ø

Ø

¢YB°L(z !1)
Ø

Ø

Ø

= ≤N1 ¥N1 Y Eq
N1

(z0) , (3.42)

where we recover the efficiency ¥N1 which is now defined as

¥N1 ¥
1

Y Eq
N1

(z0)

Z1

z0

d z 0 dYN1 (z0)

d z 0 e°
R1

z0 d z 00W1(z 00) . (3.43)

This justifies the form introduced in Eq. (3.31). Note that in the case of thermal initial abundance
YN1 (z0) = Y Eq

N1
(z0), in the best case there is no washout, W1(z) ! 0, and the efficiency is maximal

¥N1 = 1, since YN1 (1) ! 0. The larger the washout, the closer to zero is the efficiency.

In some peculiar situations, the integral in Eq. (3.43) can be solved analytically at the cost
of some approximations. For example, if one can neglect some terms compared to others in
the Boltzmann equations, one can eventually derive a simple analytical expression for the final
B °L asymmetry that is physically understandable. As an illustration, we consider the analytical
solutions in the weak and the strong washout regimes, corresponding to KN1 ø 1 and KN1 ¿ 1
respectively.

Weak washout regime (KN1 ø 1). Depending on the initial condition for YN1 , we can have
different analytical results. Firstly, let’s take the initial density to be the thermal one YN1 (z ø 1) =
Y Eq

N1
(z ø 1). In this case, as we illustrated in the example above for KN1 = 1/50, the washouts from

`¡! N1 basically never occur since the inverse decay are much slower than the Hubble rate. The
term proportional to ¢YB°L in Eq. (3.36) can thus be neglected with respects to the source term.
Injecting Eq. (3.35) in Eq. (3.36), one has simply

¢ẎB°L ' ≤N1 ẎN1 , (3.44)

and integrating from z = z0 to z, the B °L asymmetry at z is given by

¢YB°L(z) '¢YB°L(z0)+≤N1

£

YN1 (z)°YN1 (z0)
§

. (3.45)
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For z !1, YN1 (z) is Boltzmann suppressed YN1 (z !1) ø 1, so that taking ¢YB°L(z0) = 0 and
YN1 (z0) = Y Eq

N1
(z0) as initial conditions, we have finally

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

'
Ø

Ø

Ø

¢YB°L(z !1)
Ø

Ø

Ø

' ≤N1 Y Eq
N1

(z0) . (3.46)

We see that this expression is nothing but Eq. (3.31) or (3.42) with a maximal efficiency ¥N1 = 1, as
it should be since there are no washout effects in this case. For KN1 = 1/50, this analytical result is
in very good agreement (at the ª0.2% level) with the numerical solution, see Fig. 3.8.

Secondly, by taking YN1 (z0) = 0 as an initial condition in Eq. (3.45), one would have obtained
¢YB°L(z ¿ 1) = 0, which is in fact not in agreement with the numerical solution. Starting with
YN1 (z0) = 0, one cannot neglect the washout effects because it is actually thanks to them that a
non-zero B °L asymmetry can develop. In this case, we can show that it is also possible to get an
approximate analytical result given by [226]

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

' 27
16
≤N1 K 2

N1
Y Eq

N1
(z0) . (3.47)

This is again nothing but the form given in Eq. (3.31) or (3.42) with an efficiency ¥N1 = 27/16K 2
N1

.

Strong washout regime (KN1 ¿ 1). Here, in good approximation the initial N1 doesn’t matter
since even if one starts with YN1 (z0) = 0 the inverse decays are so fast that the abundance YN1

has the time to reach the equilibrium density before the right-handed neutrinos start to decay at
z ª 1. In this case, as in the KN1 = 50 example above, the washouts are very fast until some z = zdec

value at which the inverse decays become slower than the Hubble rate. For z < zdec, the ∞D /nEq
`

inverse decay rate is in thermal equilibrium and occur so fast that one has a balance between the
production and the destruction rate of B °L asymmetry. This means that, for z < zdec and in the
limit where °D ¿ H , the washout term maintains the r.h.s. of Eq. (3.36) to zero and one has

¢YB°L(z) ' 2 ·≤N1 Y Eq
`

ẎN1

∞D
. (3.48)

The above relation holds until the inverse decays decouple at z = zdec ¿ 1, time at which the B °L
asymmetry freezes. Using YN1 (z) ' Y Eq

N1
(z) and dY Eq

N1
/d z '°Y Eq

N1
(z) for z ¿ 1, the asymmetry at

z = zdec can be expressed as

¢YB°L (zdec) '°2 ·≤N1 Y Eq
`

H znEq
N1

∞D

Ø

Ø

Ø

Ø

Ø

zdec¿1

'°2 ·≤N1

1
zdecKN1

Y Eq
`

(zdec) , (3.49)

and the final B °L asymmetry is therefore given by

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

'
Ø

Ø

Ø

¢YB°L (zdec)
Ø

Ø

Ø

' ≤N1

2
zdecKN1

Y Eq
N1

(z0) , (3.50)

where we used the fact that Y Eq
`

is a constant whose values is equal to Y Eq
N1

(z ø 1). This expression
corresponds to the form given in Eq. (3.31) or (3.42) with an efficiency ¥N1 = 2/(zdecKN1 ). For
KN1 = 50, one has zdec º 11 and this analytical result gives the correct answer at the level of ª 20%.
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3.4.7 Some results of successful leptogenesis

Efficiency. From Eqs. (3.22), (3.37), (3.41) and (3.43), we see that the efficiency depends in a
first approximation on only one unknown parameter, that we choose to be m̃1, and on the
initial condition Y Eq

N1
(z0). We show in the left panel of Fig. 3.9 the efficiency ¥N1 as a function of

m̃1 for initial conditions between YN1 (z0) = 0 (dashed) and YN1 (z0) = Y Eq
N1

(z0) (solid). This plot
is taken from Ref. [227] and also includes thermal corrections (RGE corrections), ¢L = 1 and
¢L = 2 scatterings (see section 3.7) and finite temperature effects (possibility of absorption and
re-emission of the loop particles by the plasma). 9

We see that in the strong washout regime, i.e. for m̃1 & m§ with m§ ' 1.08 · 10°3 eV (or
equivalently KN1 & 1), the efficiency doesn’t depend on the initial condition, and decreases
linearly with m̃1 / KN1 , as expected from Eq. (3.50). On the contrary, in the weak washout regime,
i.e. for m̃1 . m§ (or equivalently KN1 . 1), the efficiency depends on the initial condition. For
zero initial abundance YN1 (z0) = 0, the efficiency increases linearly with m̃1, while for thermal
initial abundance, the efficiency is quasi maximal ¥N1 º 1, as expected from Eqs. (3.45) and (3.47)
respectively. Any initial condition between the two last possibilities will give an efficiency lying
in the gray region. Note that for YN1 (z0) = Y Eq

N1
(z0) the efficiency decreases for m̃1 ø m§ because

in that case the N1 decays out-of-equilibrium at a temperature so low that it actually reheats the
thermal bath, which has the effect of decreasing the efficiency, see Ref. [227] for further details.

In section 3.4.3 we have shown that the parameter m̃1 has nearly the same form as the
expression of the neutrino mass matrix. In Eq. (3.24) we have shown that there is actually a lower
bound on it : m̃1 ∏ mmin

∫ . Accordingly, one could expects m̃1 to be of the order of the atmospheric
(¢m2

atm)1/2 º 0.05 eV or solar mass splitting (¢m2
sol)

1/2 º 0.01 eV. Quite remarkably, in this both
cases the efficiency doesn’t depend on the initial conditions and the suppression is not too large,
as can be seen from the left panel of Fig. 3.9.

Bounds on the right-handed neutrino mass mN1 and on m̃1. From Eq. (3.32), in order to generate
the right amount of BAU, we see that the C P-asymmetry is now directly related to the parameter
m̃1 and the initial condition YN1 (z0) through the efficiency. Using Eq. (3.30), this can be translated
on bounds on the m̃1 and mN1 parameters. This is what we show in the right panel of Fig. 3.9. This
plot is also taken from Ref. [227] and includes thermal corrections, ¢L = 1 and ¢L = 2 scatterings,
and finite temperature effects. As a result, one has a lower bound on mN1 that now depends on
m̃1 as expected, and the absolute lower bound on the mass of the lightest right-handed neutrino
N1 is given by :

mN1 &

8

>

<

>

:

2.9 ·109 GeV, in case YN1 (z0) = 0 ,

5.9 ·108 GeV, in case YN1 (z0) = Y Eq
N1

(z0) .
(3.51)

Note that we recover the result of Eq. (3.34) in the case of thermal initial abundance. 10

9A consequence of this is that the efficiency in fact also depends on the mass mN1 , which has been fixed to
mN1 = 1010 GeV in the plot, but one can actually show that for mN1 . 1014 GeV the efficiency depends almost only on
m̃1 [227], see the discussion on the ¢L = 2 scatterings below.

10The values in Eq. (3.68) however differ by a factor ª 1.3 with respect to the ones given in Ref. [227]. This is because,
in the whole thesis, we use the Maxwell-Boltzmann distribution for the equilibrium number density of N1, which
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Figure 3.9 – In the case of thermal (solid) and zero initial abundance for YN1 (z0) (dashed), the left
panel shows the efficiency ¥N1 as a function of m̃1 for mN1 = 1010 GeV, and in the right panel the
lower and upper bound on mN1 as a function of m̃1. The two plots have been taken from Ref. [227].
The upper bound is obtained including the ¢L = 2 scatterings – see section 3.7. In both plots, the
lightest neutrino mass has been fixed to be mmin

∫ = 0 eV.

Comment on ¢L = 2 scatterings. Let’s just mention why the ¢L = 2 scatterings can be particularly
dangerous in some cases for successful leptogenesis. One can show that these scatterings enter in
thermal equilibrium for typically mN1 & 1014 GeV and since their rate goes like∞¢=2 / mN1 (

P

i mi ),
they strongly suppress the efficiency ¥N1 . This explains the upper bound on mN1 in the right panel
of Fig. 3.9. Furthermore, since the rate of the ¢L = 2 scatterings is also proportional to the sum of
the light neutrino masses mi , the requirement of successful leptogenesis also leads to an upper
bound on the maximum light neutrino mass [228]. As can be seen from the right panel of Fig. 3.9,
it is given by :

mmax
∫ . 0.12 eV . (3.52)

Above this value, washouts are too strong and one cannot generate enough baryon asymmetry.
However, this bound is of relatively little interest. Indeed, remember that all these results apply
when mN1 ø mN2,3 , and if for example mmax

∫ ª 0.12 eV, this assumption is not much likely because
it is difficult to explain the degenerate spectrum of the light neutrino from a hierarchical spectrum
of heavy neutrinos, see Eq. (1.26). In the case where the heavy neutrinos are quasi-degenerate, all
the bounds are not valid anymore due to a (resonant) enhancement of the C P-asymmetry – see
self-energy diagram contribution in Eq. (3.26) – and they get considerably relaxed [217, 220, 221,
222, 139].

So far we have considered just one Boltzmann equation for the total number of lepton
produced, and what has been done for now is valid within this approximation. However, as we will
now see this is not always justified since lepton flavors should in some case be taken into account.
But when do flavors matter in type-1 leptogenesis ?

differs by a factor ª 3/4 with respect to the Fermi-Dirac distribution for T ¿ mN1 – see Appendix C.1.
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3.5 Flavor issue in type-1 leptogenesis

An important issue concerns the flavors. Indeed, until now we have considered the general case
where the right-handed neutrino N1 decays into only one lepton `, which by definition contains
all the lepton flavors. However, following the temperature at which leptogenesis takes place, two
or three flavors must actually be considered. Indeed, the SM Lagrangian extended by the type-1
Seesaw Lagrangian contains the interaction of N1 with the leptons `Æ in Eq. (3.17), but also the
charged lepton Yukawa interactions :

L 3°
X

Æ
N1 ¡̃

† YN1Æ `Æ°
X

Æ
eÆ¡

† Y`Æ `Æ+H.c.

=°N1 ¡̃
†
µ

X

Æ
YN1Æ `Æ

∂

°
X

Æ
eÆ¡

† Y`Æ `Æ+H.c. . (3.53)

Without loss of generality, we choose as usual a charged lepton basis such that the charged lepton
Yukawa matrix is diagonal and real, see the parameter counting in Eq. (1.29).

If one considers only the first interaction term above, i.e. we forget about the charged Yukawa
interaction, we see that the right-handed neutrino N1 actually decays into a scalar ¡ and into a
state `1 carrying L(`1) = 1, which is a superposition of the three lepton flavors :

|`1i=
1

p
N

°

YN1e |`ei+YN1µ |`µi+YN1ø |`øi
¢

, (3.54)

with N ¥P

Æ |YN1Æ |2 a normalization factor such that h`1|`1i= 1. This is equivalent of performing a
rotation in the flavor basis. Indeed, one has the freedom to define a new basis `0 = R `= (`1,`2,`3),
with R a unitary matrix, such that the heavy right-handed neutrino does effectively decay in
|`1i =

P

ÆR1Æ|`Æi through an effective Yukawa coupling given by YN11 =
°

YN R†¢

11 =
p

N , and
such that it doesn’t decay in either |`2i or |`3i. From the above equation, we already know the first
line of R which is R1Æ = YN1Æ/

p
N .

Therefore, by decaying, N1 actually produces effectively a ¢Y`1 asymmetry. This massless
lepton state |`1i is coherent, 11 in the sense that it is a superposition of undistinguishable massless
flavor states. This is quite analogous to the coherent neutrino propagations, see section 1.1.
Let’s now consider the effect of the Yukawa interactions, i.e. the second term in Eq. (3.57). As
propagating, one has two possibilities for the evolution of |`1i.

On the one hand, if the state |`1i undergoes only interactions that doesn’t make the distinc-
tion between the flavors |`Æi, this state propagates coherently until it eventually undergoes an
inverse decay `1¡! N1. In this case, all the three flavors should obviously not play any role in
the leptogenesis scenario, since all the interactions in the game are sensitive to only one flavor `1,
which constitutes therefore the only relevant flavor. One needs in this case only one Boltzmann
equation which simply counts the number of `1 created and annihilated. We recover therefore the
unflavored leptogenesis situation studied in the previous section, with `¥ `1.

11Above TEW ' 165 GeV, the scalar field has no vev, so that all the fermions are massless, except the right-handed
neutrinos that are massive due to there Majorana mass term, see Fig. 3.5.
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On the other hand, the state |`1i may loose its coherence if it undergoes an interaction that is
not flavor-blind, i.e. an interaction that makes the distinction between the flavors, as the charged
Yukawa interactions (the second term in Eq. (3.57)) or the N2,3 Yukawa interactions. These latter
are in general much slower than the Hubble rate because Boltzmann suppressed since the N2,3 are
taken much heavier than N1, so that they should not a priori be responsible of the decoherence of
the state |`1i. This is not the case of the charged Yukawa interactions, which are not Boltzmann
suppressed and are even much faster than the Hubble rate below some specific temperatures that
can be easily determined. Quantitatively, the charged Yukawa interaction rate is given by

°`Æ(T ) ' 5 ·10°3 Y 2
`Æ

T . (3.55)

To see if this interaction has the time to happen, this rate must be compared to the Hubble rate
H , but also to the appropriate inverse decay (ID) rate °I D

`
¥ °(`Æ¡! N1), which for `1¡! N1 is

simply given by Eq. (3.19). One has the following distinct possibilities :

1. For T & 1012 GeV, one has always °`e,µ,ø < H , and basically no charged lepton Yukawa in-
teractions occur. In this case, the lepton state |`1i propagates without loosing its coherence,
and could possibly undergo an inverse decay `1¡! N1. In other terms, one can define a new
orthonormal interaction basis (|`1i, |`2i, |`3i), with h`2,3|`1i = h`3|`2i = 0 and h`i |`i i = 1,
such that a right-handed neutrino N1 only decays and inverse decays in `1 and never in `2,3.
In this regime, called “unflavored regime”, only one lepton “flavor” `1 participates to the
leptogenesis mechanism and one needs one Boltzmann equation for `1. This is the regime
we considered in details in the last section 3.4, with `¥ `1.

2. For 109 . T . 1012 GeV, one has °`ø > H but still °`e,µ < H . Here, one has two cases :

(a) If °`ø <°I D
`1

, the lepton state |`1i will more likely inverse decay `1¡ ! N1 before
interacting through the tau charged Yukawa interaction. This case reduces to the
unflavored regime in item 1, i.e. there is a unique flavor `1 participating to the lepto-
genesis.

(b) If °`ø >°I D
`1

, the lepton state |`1i has the time to decohere thanks to the `ø¡$ eø
processes. In this case, the new interaction basis is (|`ai, |`bi, |`øi), with h`a,b |`øi =
h`b |`ai= 0 and h`i |`i i= 1. The states |`ai and |`bi are coherent superpositions of e
and µ flavors. One can choose a basis such that N1 decays in either `a or `ø, but not
in `b , i.e. the orthogonal combination `b doesn’t enter into the game. In this case the
state |`ai is given by

|`ai=
1

p
N 0

°

YN1e |`ei+YN1µ |`µi
¢

, (3.56)

with N 0 ¥P

Æ=e,µ |YN1Æ |2 a normalization factor such that h`a |`ai= 1. In this “2-flavor

regime”, only the 2 flavors `a and `ø do actually participate to the leptogenesis sce-
nario, and one needs two Boltzmann equations for `a and `ø.

3. For 105 . T . 109 GeV, one has °`ø >°`µ > H but still °`e < H . Here too, there are several
possible cases :
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(a) If °`ø <°I D
`1

, we recover the unflavored regime.

(b) If °`ø >°I D
`1

and °`µ <°I D
`a

, we recover the 2-flavor regime in item 2.(b), since the
coherent lepton state |`ai undergoes inverse decays `a¡ ! N1 before loosing its
coherence.

(c) If °`ø >°I D
`1

and °`µ >°I D
`a

, the lepton states |`1i and also |`ai loose their coherence
through the `ø¡$ eø and `µ¡$ eµ interactions respectively. The interaction basis
is now given by (|`ei, |`µi, |`øi) and it is such that the right-handed neutrino N1 can
decay to one of the three flavor states (through the usual Yukawa couplings YN1Æ).
This regime is therefore called the “3-flavor regime” and one needs three Boltzmann
equations for `e , `µ and `ø.

4. For T . 105 GeV, one has °`ø >°`µ >°`e > H , we recover exactly the same flavor regimes
as the in the previous temperature range, plus a fourth case “4.(d)” where `e¡$ ee is faster
than the inverse decays and the Hubble rate. This case corresponds also to a 3-flavor regime
as in item 3.(c) but with different chemical equilibrium conditions, see Appendix C.5.

In practice, the analysis of a leptogenesis scenario must be done in one of the above flavor regimes
if, during the creation of the major part of the B °L asymmetry, the associated conditions are
fulfilled. Since one has in good approximation that the major part of the asymmetry is created
around T ª mN1 , we generally consider that the temperature TLepto at which the leptogenesis takes
place is given by the mass of the heavy particle that generates the asymmetry, that is TLepto = mN1 .
In this approximation, the above temperature regimes in items 1-4 can be associated to mass
regimes, replacing T by TLepto = mN1 .

It is worth to remark that it is not sufficient to have a charged Yukawa interaction faster
than the Hubble rate to guarantee a specific flavor regime : it must also be faster than the inverse
decays `Æ¡! N1. These considerations are very important since, following the flavor regime, the
final lepton asymmetry can change by orders of magnitudes. In the previous section, we have
analyzed the type-1 leptogenesis in the unflavored regime. Since the production of the B °L
essentially occurs at T ª mN1 , this approach is typically valid for a right-handed neutrino mass
larger than mN1 & 109...12 GeV. However, the unflavored regime may still be used in the whole
temperature range T & Tsphal in order to have a general idea on how things works and on the final
B °L asymmetry that can be reached.

Before going on, let’s note too that, in this thesis, we will perform the analysis using classical
Boltzmann equations to describe the evolution of the various quantities as the temperature cools
down from T ¿ mN1 to T ø mN1 . However, if the B °L production covers different flavor regimes,
one can wonder which is the flavor regime one needs to choose, and how one could account for
the transition from one regime to another. In order to take care of this, a more rigorous but more
complicated approach consists in using the density matrix formalism to describe the evolution of
the B/3°LÆ asymmetries, see for example Refs. [230, 231]. However, it has been shown that away
from the transitions between the regimes, the two approaches (density matrix formalism and
classical Boltzmann equations) essentially lead to the same results, in particular in the case where
only the lightest right-handed neutrino species is assumed to be responsible for the generation of
the asymmetry [232], as it is the case here.
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3.6 Flavored type-1 leptogenesis

We now discuss what happens in the flavored leptogenesis scenario. We will proceed basically as
in the unflavored case. The main difference, in the structure, is that now we also need to introduce
the chemical equilibrium conditions, which relate in particular the flavor abundances Y`Æ with
the B/3°LÆ one, taking into account the effect of the spectator processes. We will in this end
closely follow the approach of Ref. [233].

By definition of the flavored regime, the right-handed neutrino N1 can now effectively decay
in two or more flavors. We denote by n f the number of “active” flavors, i.e. the number of flavors
participating in leptogenesis. The effective right-handed interaction Lagrangian reads now

L
type-1
flavored 3°

n f
X

Æ
N1 ¡̃

† YN1Æ`Æ°
nN
X

i 6=1

3
X

Æ
Ni ¡̃

† YNiÆ`Æ°
1
2

nN
X

i
Ni mNi N c

i +H.c. , (3.57)

where we have defined the effective Yukawa coupling YN ¥ YN R† with R the unitary matrix of
the corresponding flavor regime. In the case where only one flavor is active (the `1 flavor of the
unflavored case), the effective Yukawa couplings is YN11 = (

P

Æ |YN1Æ|2)1/2, see Eq. (3.54). When
two flavors are active (the `ø and the “`a” flavors), the effective Yukawa couplings are YN1ø = YN1ø

and YN1a ¥ (
P

Æ=e,µ |YN1Æ|2)1/2, see Eq. (3.56). Finally, in the 3-flavor case, these are the usual
Yukawa couplings YN1Æ = YN1Æ with Æ = e,µ,ø. In what follows, we don’t specify the number
of flavors labelled by the index Æ. We now give the analytical expression of the decay rates,
C P-asymmetries and Boltzmann equations.

3.6.1 Tree-level decay rates

In analogy with section 3.4.3, we can compute the tree-level decay rate °(N1 ! `Æ¡) of N1 into
one flavor `Æ, which is given by

°(N1 ! `Æ¡) = °(N1 ! ¯̀
Æ¡

§) = 1
16º

Ø

ØYN1Æ

Ø

Ø

2 mN1 . (3.58)

The total tree-level decay rate into the flavor `Æ reads

°ÆN1
¥ °(N1 ! `Æ¡)+°(N1 ! ¯̀

Æ¡
§) = 1

8º

Ø

ØYN1Æ

Ø

Ø

2 mN1 = B`Æ°N1 , (3.59)

where for practical reasons we introduced the branching fractions

B`Æ ¥
°ÆN1

°N1

=
Ø

ØYN1Æ

Ø

Ø

2

≥

YN Y †
N

¥

11

, that satisfy
X

Æ
B`Æ = 1 . (3.60)

The total decay rate °N1 is obtained by summing over the flavor in Eq. (3.59). Let’s note that
it doesn’t depend on the flavor regime since YN Y †

N = YN Y †
N , as it should, so it is still given by

Eq. (3.20).

104



3.6. Flavored type-1 leptogenesis

3.6.2 Evaluation of the C P-asymmetry

The analytical expression of the C P-asymmetries in the decay N1 ! `Æ¡, as defined in Eq. (3.25),
are already given in Eq. (3.26). Let’s note that now the lepton number conserving diagram in
Fig. 3.6 may contribute to each individual flavor C P-asymmetry ≤`ÆN1

. As a consequence, the
Davidson-Ibarra bound in Eq. (3.30) on the separated flavored C P-asymmetries doesn’t hold
anymore. It however still applies on the sum of the flavored C P-asymmetries, obviously. As
a consequence, flavored C P-asymmetries can be larger (but still smaller than 1), and smaller
right-handed neutrino masses are allowed. In practice, it is nevertheless difficult to go sizably
below ª 109 GeV, see Eq. (3.68) below. Note that there exists still an upper bound on the individual
C P-asymmetries, proportional to the absolute neutrino mass scale, given by [231]

Ø

Ø

Ø

≤`ÆN1

Ø

Ø

Ø

∑ 3
8º

mN1

v2 hm∫i , (3.61)

where we assumed for simplicity a quasi-degenerate light neutrino spectrum hm∫i= m1 ' m2 '
m3 (even if not likely for mN1 ø mN2,3 ). This allows to decrease a little bit the lower bound on mN1 ,
as we will see below.

3.6.3 Boltzmann equations

The evolution of the total B °L must now be determined through the evolution of the N1 density
YN1 and through the evolution of the separate B/3°LÆ asymmetries ¢YB/3°LÆ , which are the
quantities that sphalerons preserve. Using the formalism given in Appendix C.4 and keeping only
the dominant contributions for the sake of illustration, one can easily derive the set of flavored
Boltzmann equations :

ẎN1 =°

0

@

YN1

Y Eq
N1

°1

1

A∞D , (3.62)

¢ẎB/3°LÆ =°

0

@

YN1

Y Eq
N1

°1

1

A≤`ÆN1
∞D + 1

2

¢Y`Æ +¢Y¡

Y Eq
`

B`Æ ∞D , (3.63)

where we use the equilibrium density Y Eq
`

= Y Eq
¡ , since ` and ¡ have the same number of degrees

of freedom and are relativistic. 12 This is not the final expression of the Boltzmann equations.
Indeed, we see that to integrate Eq. (3.63) one needs to know what are the expressions of ¢Y`Æ
and ¢Y¡. These asymmetries are in fact directly related to the B/3°LÆ ones through the chemical
equilibrium conditions. As explained in Appendix C.5, following the temperature regime (and
in particular in the temperature range where the lepton flavors have to be taken into account
T . 1012 GeV), some SM interactions are in thermal equilibrium, i.e. they are much faster than
the Hubble rate, and then enforce relations between the chemical potentials of the various species
and thus between the asymmetries of the involved particles. These thermal processes are called
“spectator processes”. As a consequence, all the particle asymmetries can be expressed in terms
of a single set of variables. Above TEW , we choose this set to be {¢YB/3°LÆ}, since these are the
quantities entering in the Boltzmann equations and are conserved by sphalerons. Therefore, the

12As in the unflavored case, we make the approximation of taking Maxwell-Boltzmann equilibrium distributions.
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Chapter 3. The Baryon Asymmetry of the Universe and standard leptogenesis

asymmetries ¢Y`Æ and ¢Y¡ are in fact related to the ¢YB/3°LÆ through

¢Y`Æ =°
X

Ø

C`
ÆØ ¢YB/3°LØ and ¢Y¡ =°

X

Æ
C¡
Æ ¢YB/3°LÆ . (3.64)

The matrices C` and C¡ have different expressions following the temperature regime at which
leptogenesis takes place. The exact expressions can be found in for example in Ref. [233], and are
given in Appendix C.5.2. 13 Inserting Eqs. (3.64) in the Boltzmann equations one gets

ẎN1 =°

0

@

YN1

Y Eq
N1

°1

1

A∞D , (3.65)

¢ẎB/3°LÆ =°

0

@

YN1

Y Eq
N1

°1

1

A≤`ÆN1
∞D ° 1

2

X

Ø

≥

C`
ÆØ+C¡

Ø

¥ ¢YB/3°LØ

Y Eq
`

B`Æ ∞D . (3.66)

These equations can be compared to the unflavored Boltzmann equations in Eqs. (3.35)-(3.36).
We see that there are now n f equations for the B/3°LÆ, which are inter-related. 14

On top of the source terms, a major difference lies now in two flavor effects in the washout
terms : (i) the branching fraction B`Æ , and (ii) the chemical equilibrium matrices C`

ÆØ
and C¡

Æ .
These have important consequences and can affect considerably the final B °L asymmetry that
could be reached.

3.6.4 Analytical solutions to the Boltzmann equations

Proceeding as in the unflavored case in section 3.4.6, it is straightforward to show that the final
B °L asymmetry produced at the end of leptogenesis has the form :

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

=
Ø

Ø

Ø

Ø

X

Æ
¢Y end

B/3°LÆ

Ø

Ø

Ø

Ø

=
n f
X

Æ
≤`ÆN1

¥`ÆN1
Y Eq

N1

°

T ¿ mN1

¢

, (3.67)

with ¥`ÆN1
the efficiencies for each flavor in the game. As in the unflavored case, it is possible to

derive analytical expressions for these ones. However, we won’t make an analytical study of the
efficiency and the improvements with respect to the unflavored case, since this goes beyond our
scope. This can be found in for example Ref. [234]. We will here just show some results, for specific
parameter values.

13In a first approximation, the matrix C` is quite close to the identity matrix 1n f £n f , where n f is the number of

lepton flavors participating in leptogenesis. However, the vector C¡ is not close to zero even for T > 1012 GeV, where
lepton flavors are undistinguishable. This means that spectator processes induce modifications to the unflavored
regime considered in the previous section, as already mentioned in footnote 4 in page 94.

14Let’s note that in the 2-flavor regime {`ø,`a }, one has actually a third Boltzmann equation which concerns the
inactive flavor `b , which reads trivially¢ẎB/3°`b

= 0. Any asymmetry in the b flavor that has been previously generated,
by for example the N2 and/or N3 right-handed neutrino, will therefore remain unchanged. In this case its contribution
must be added to the final B °L asymmetry produced in the N1 driven leptogenesis.
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Figure 3.10 – In the case of thermal and zero initial abundance YN1 (z0), the left panel shows the
efficiency ¥N1 as a function of K1 ¥ m̃1/m§, and in the right panel the lower bound on mN1 as a
function of K1 ¥ m̃1/m§. In both plots, the one-flavor approximation is shown in solid black, while
the dashed curve shows the flavor solution when taking equal C P-asymmetries and branching
ratios. The two plots have been taken from Ref. [235].

3.6.5 Some results of successful leptogenesis

Efficiency. Since the parameter space is large, there are lots of specific cases leading to various
values of the flavored efficiencies ¥`ÆN1

. Let’s restrict ourselves here to a simple and limiting
case where all the flavored C P-asymmetries and branching ratios are equal. In this case, from
Eq. (3.67), one can define a total efficiency ¥N1 =

P

Æ¥
`Æ
N1

. Since now the B °L asymmetry receive
contributions from n f flavors, one would expect roughly an enhancement of a factor ª n f of
the efficiency with respect to the unflavored case. But it doesn’t work like that since the C P-
asymmetries are also divided by n f compared to the unflavored case. However, because of the
presence of the branching ratios in Eq. (3.60), the washout is now reduced by a factor n f . As a
result, in this case the overall effect of the washout – controlled by the m̃1 parameter – is shifted by
a factor ª n f .

We show in the left panel of Fig. 3.10 the value of the efficiency as a function of the decay
parameter K1 ¥ m̃1/m§, in the case where three lepton flavors participate in leptogenesis. The
plot has been taken from Ref. [235]. We see that the efficiency is shifted by a factor ª3 to the right
with respect to the unflavored case, as expect in this particular case.

Bounds on the mass mN1 and on m̃1. We show in the right panel of Fig. 3.10 the lower bound
on the right-handed neutrino mass mN1 as a function of K1 ¥ m̃1/m§ in the case where all the
flavored C P-asymmetries and branching ratios are equal. Here too, in this particular case the
bounds are shifted by a factor ª 3 to the right with respect to the unflavored case. Furthermore, as
in the unflavored scenario, one can derive in this case lower bounds on the right-handed neutrino
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Figure 3.11 – The upper (lower) plots show the bounds on mN1 in the case of zero (thermal) initial
N1 abundance. Left panels shows the unflavored approximation, while the right panels show the
results when flavors are taken into account. These plots have been taken from Ref. [234].

masses, given by [235, 234] :

mN1 &

8

>

<

>

:

2.5 ·109 GeV , in case YN1 (z0) = 0 ,

4.1 ·108 GeV , in case YN1 (z0) = Y Eq
N1

(z0) ,
(3.68)

which are very close to the unflavored values in Eq. (3.68).

For more general flavor configurations, we show in Fig. 3.11 – taken from Ref. [234] – the
parameter space values allowed by the requirement of successful leptogenesis, with (right-handed
panels with black dots) or without (left-handed panels with gray dots) the inclusion of the flavor
effects, and for thermal (upper plots) and zero (lower plots) initial N1 abundance. We see that m̃1

can take much larger values than in the unflavored case. This is because, in the flavored regime, the
bound in Eq. (3.52) no longer holds because the upper-bounds on the separate C P-asymmetries
are different. The bound has been estimated to be mmax

∫ . 2 eV [236] (as confirmed by Fig. 3.11), to
be compared with the unflavored result in Eq. (3.52), which is above the cosmological constraint
given in Eq. (1.16). Note that all the points lie below mN1 . 1012 GeV in Fig. 3.11 because of the
requirement to lie in a flavor regime.
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3.7 Additional scattering processes

We previously considered only the dominant rates in the Boltzmann equations, i.e. only the
decays and inverse decays on top of the C P-asymmetries. Since the latter are induced at the
one-loop level, they involve 4 insertions of Yukawa couplings : ≤N1 / Y 4

N . However, as already
mentioned in section 3.4.7, other processes can have in some cases an important impact on
the asymmetry production/washout in which case they must also be taken into account in the
Boltzmann equations. For example, there are processes that are at the same order than the C P-
asymmetries, as well as processes that are of the order Y 2

N Y 2
t , where Yt is the top Yukawa coupling.

In particular, one has :

1. ¢L = 0 scatterings mediated by a right-handed neutrino Ni , as the s, t ,u-channel scatterings
`Æ¡$ `Ø¡ and ¡¡§ $ `Æ ¯̀

Ø ;

2. ¢L = 1 scatterings mediated by a SM scalar ¡, as the s-channel scattering `ÆNi $Q3 t̄ , the
t-channel and u-channel scatterings `ÆQ̄3 $ Ni t̄ and `Æt $ Ni Q3 ;

3. ¢L = 2 scatterings mediated by a right-handed neutrino Ni , as the s, t ,u-channel scatterings
`Æ¡$ ¯̀

Ø¡
§ and ¡§¡§ $ `Æ`Ø. 15

We show in Fig. 3.12 below the associated Feynman diagrams. These processes can bring signifi-
cant corrections in the final B°L asymmetry produced. Indeed, for example the¢L = 0 scatterings
may have an impact on the relative washout of the B/3°LÆ asymmetries, the ¢L = 1 scatterings
can act as source term for heavy right-handed neutrino production and may have an impact on
the washout, and finally the ¢L = 2 scatterings may also contribute dramatically to the washout
of the total B °L asymmetry as we have discussed previously in section 3.4.7, page 100. Finally,
let’s note that there are also additional processes, as the ¢L = 1 ones involving gauge bosons,
or the 1 $ 3 and 2 $ 3 scatterings as N j $ Q̄t`i and ` j¡$ Q̄t`i . These are in general even
smaller contributions, either because of the couplings involved or because of a phase space factor
suppression, and can safely be neglected.

It is not the goal of this thesis to go furthermore in the details of these scatterings in the
type-1 Seesaw leptogenesis scenario. A proper derivation of the Boltzmann equations, as well as a
consistent computation of the C P-asymmetry, has been carefully done in Ref. [225].

15Only the off-shell part of the s-channel scatterings `Æ¡$ ¯̀
Ø¡

§ has to be considered since the on-shell one is

already taken into account by the chain of processes `Æ¡! N1 followed by N1 ! ¯̀
Ø¡

§.
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Figure 3.12 – Feynman diagrams of the additional processes that need to be taken into account
in the type-1 Seesaw leptogenesis. We don’t show the u-channel diagrams associated to the
t-channel ones.

110



4 Type-2 Seesaw leptogenesis

As already discussed in chapter 1, the type-2 Seesaw is a simple scenario in which Majorana neu-
trino masses are generated by the exchange of a heavy scalar electroweak triplet, see section 1.3.4.
A single scalar triplet is enough in order to generate neutrino masses and mixings. At first sight,
it also contains all the needed ingredients for leptogenesis, i.e. lepton number violation, C P-
violating complex couplings and a heavy scalar triplet ¢ that should have left thermal equilibrium
at T ª m¢.

However, leptogenesis is not feasible in the standard type-2 Seesaw mechanism with only
one scalar triplet added to the SM, because in this case the C P-asymmetry is expected to be
generated only at higher loops than one-loop and is thus highly suppressed [237]. Indeed, the
C P-asymmetries must be computed from the interference between the tree-level and the loop-
level decay. In order to get non-zero C P-asymmetries at one-loop, we can show that this means
that the one-loop diagrams must involve at least two heavy states with unequal couplings to
leptons and/or scalar bosons, and both heavy states must have different masses, see for example
Ref. [229]. If there is only one heavy state, or if for example there are several ones with exactly the
same couplings to leptons and scalar bosons, the C P-asymmetry vanishes, since each coupling to
leptons is automatically accompanied by its complex conjugate in the C P-asymmetry.

To activate leptogenesis in type-2 Seesaw framework, one needs to endow it with addi-
tional heavy fields, such as extra scalar triplets or right-handed neutrinos. In this case, the
C P-asymmetries are no more vanishing and the type-2 leptogenesis can provide a compelling
framework for baryogenesis via leptogenesis [229, 238, 239, 240, 241]. From now on, by type-2
leptogenesis we mean production of the BAU through the decays of the lightest scalar triplet,
which are C P-violating thanks to heavier BSM fields. All along this chapter, we will mainly consider
two representative possibilities :

(A) models featuring several scalar triplets, or in other words extended pure type-2 Seesaw
models [238]. As we will see, the associated flavored C P-asymmetries contain in this case a
lepton conserving part which will allow a Purely Flavored Leptogenesis (PFL) scenario, see
section 4.5 below ;
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(B) models involving a scalar triplet (minimal type-2 Seesaw) and heavier other Seesaw states,
as for example right-handed neutrinos. In this general case, the C P-asymmetries generically
break lepton number. This is particularly relevant for models where the generation of a
B °L asymmetry becomes possible due to the interplay between type-1 and type-2 Seesaws,
scenarios arising in many well-motivated gauge extensions of the SM, see section 1.6.

For several reasons, the type-2 leptogenesis scenario is more intricate than the standard scenario
based in the type-1 Seesaw introduced in sections 3.4-3.6. Let’s already now specify the main
differences with respect to the type-1 Seesaw leptogenesis scenario.

(1) Gauge reactions. First of all, while leptogenesis in type-1 Seesaw is driven by right-handed
neutrinos which do not couple to gauge bosons, in type-2 Seesaw (as well as in type-3
Seesaw) the state which dynamically generates the B °L asymmetry does have electroweak
interactions. Because for temperatures below T ª 1014 GeV gauge reactions are much
more faster than the Universe Hubble expansion, one may be tempted to believe that the
third Sakharov condition is not fulfilled in scalar triplet leptogenesis so that leptogenesis
is not viable, since gauge coupling seems to maintain the scalar triplet density in thermal
equilibrium. As we will see in section 4.1, this is actually not the case [239, 237, 254, 241,
242, 243, 229]. Once the temperature of the heat bath decreases and reaches the mass of the
decaying triplet, gauge reactions – being doubly Boltzmann suppressed – rapidly decouple
and the dynamics becomes dominated by Yukawa reactions which then operate to a large
extent as in the type-1 Seesaw case.

(2) Triplet asymmetry. Secondly, since the scalar triplet is not a self-conjugated particle as a
right-handed neutrino is, a scalar triplet-antitriplet asymmetry develops [241, 229], thus
calling for an additional Boltzmann equation accounting for the new asymmetry populating
the heat bath. As a consequence, while the scalar doublet asymmetry in the type-1 case is
fully determined by the evolution of the B °L asymmetry, here it is determined in addition
by the evolution of the triplet scalar asymmetry.

(3) Decay channels. Thirdly, while a right-handed neutrino decays via only one kind of channel
N ! `¡, a scalar triplet can decay via two channels : a “di-lepton” ¢! `` and a “di-scalar”
one ¢!¡¡, and this has important implications in particular concerning the flavor issue.

These three differences render leptogenesis much more difficult to understand. The chapter is
organized as follow. In order to understand how the scalar triplet leptogenesis works, we first
study in section 4.1 the scalar triplet leptogenesis within the “one-flavor approximation”, which
is a regime equivalent to the unflavored regime in the type-1 leptogenesis. The reason why we
call it one-flavor approximation and not unflavored will appear in the next section 4.2, where we
discuss the important flavor issue. Finally, in section 4.3 and after, we study the flavored type-2
leptogenesis scenario, which constitutes the original contribution of this chapter [2]. There were
indeed no study of the effects of flavors in the type-2 leptogenesis when we started this project.
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4.1 One-flavor approximation of the type-2 leptogenesis

We first remind the general expression of the type-1 and type-2 Lagrangian and the various
interactions terms. Then, in order to understand the main features of the scalar triplet leptogenesis,
we study in detail the one-flavor approximation, already well studied in the literature (see e.g.
Ref. [241]). The reader familiar with this regime can directly go to the next section.

4.1.1 Lagrangians and interactions

The type-1 Seesaw Lagrangian with nN right-handed neutrinos and the type-2 Seesaw Lagrangian
with n¢ scalar triplets are given by Eqs. (1.22) and (1.32) in sections 1.3.2 and 1.3.3. We remind
here their expressions :

L type-1 =i Ni �@Ni °Ni YNiÆ¡̃
†`Æ°

1
2

Ni MNi i C N̄ T
i +H.c. (4.1)

L type-2 =
°

Dµ~¢k
¢† °

Dµ~¢k
¢

°~¢†
k m2

¢k
~¢k +`T

ÆC iø2 Y ÆØ
¢k

√

~ø ·~¢kp
2

!

`Ø+µ¢k ¡̃
†

√

~ø ·~¢kp
2

!†

¡+H.c. ,

(4.2)

where `T = (∫L ,eL) and ¡T = (¡+,¡0) with ¡0 = (v +h0 + i¡0
3)/

p
2 are the lepton and scalar SU (2)

doublets. One has also ¡̃= iø2¡
§,~øT = (ø1,ø2,ø3) (with øi the 2£2 Pauli matrices) and the scalar

¢k triplets given in the SU (2) fundamental representation ¢k =
°

¢1
k ,¢2

k ,¢3
k

¢

. The n¢ matrices
Y¢k are 3£3 symmetric matrices, while µ¢k are n¢ complex numbers. Since scalar triplets carry
hypercharge Y (¢) =°2, the covariant derivative in Eq. (4.2) reads

Dµ = @µ° i g~T · ~Wµ° i g 0Bµ , (4.3)

where ~T are the dimension three representations of the SU (2) generators. The scalar triplet
interactions with the leptons and scalars can be recast as

L type-2 3
n¢
X

k

X

Æ,Ø
Y ÆØ
¢k

`T
ÆCiø2¢k`Ø°µ¢k¡

T iø2¢
†
k¡+H.c. (4.4)

where¢k is expressed in terms of electric charge eigenstates components
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@
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A , (4.5)

with the different components reading as

¢0
k = 1

p
2

°

¢1
k + i¢2

k

¢

, ¢+
k =¢3

k , ¢++
k ¥ 1

p
2

°

¢1
k ° i¢2

k

¢

. (4.6)

As said already in section 1.3.3, lepton number is broken in Eq. (4.2) because of the existence
of both lepton and scalar interactions with the scalar triplet. The scalar interactions in Eq. (4.2)
induce non-vanishing triplet vacuum expectation values which can be calculated from the mini-
mization of the scalar potential : h¢0

ki= v¢k 'µ¢k v2/2m2
¢k

.
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Both Lagrangians in Eqs. (4.1) and (4.2), involving lepton number violating sources (from
the coexistence of YN and MN and of Y¢ and µ¢), induce tree-level light neutrino Majorana
masses through the standard type-1 (assuming vYN M°1

N ø 1) and type-2 Seesaw mechanisms.
The structure of the full neutrino mass matrix will of course depend on whether a single or both
mechanisms is at work. Since here we will be dealing with scenarios determined by either the
setup of Eq. (4.2) or an interplay between (4.1) and (4.2), in what follows we write the effective
neutrino mass matrix in each case, namely

mtype-2
∫ =

X

k
m¢k

∫ =
X

k
µ¢k

v2

m2
¢k

Y¢k , (4.7)

mtype-1+2
∫ =

X

k
m¢k

∫ +mN
∫ =

X

k
µ¢k

v2

m2
¢k

Y¢k °
v2

2
Y T

N M°1
N YN . (4.8)

The light neutrino mass spectrum is thus derived from these matrices by diagonalization through
the leptonic mixing matrix U =U (µ23)U (µ13,±)U (µ12)P̂ , with µi j being the neutrino mixing angles,
± the Dirac C P phase and P̂ = diag(eiÆ1 ,eiÆ2 ,1) containing the Majorana C P phases, see Eq. (1.4).

4.1.2 One-flavor approximation statement

In order to understand the main ideas behind the scalar triplet leptogenesis, we will in this section
consider the simple but representative scenario of the “one-flavor approximation” of the scalar
triplet leptogenesis. Similarly to the type-1 Seesaw leptogenesis, in this case :

• each component of the lightest scalar triplet¢¥¢1 is assumed to decay in only one coherent
lepton state `, which encompasses all the lepton flavors,

• the effect of the spectator processes are neglected.

That is to say, this case doesn’t distinguish the 3 flavors, and the associated Boltzmann equation for
` just counts the number of ` and ¯̀ created or destroyed. An example of a general scenario of the
production of a B °L asymmetry will be given in section 4.1.5. The full one-flavor approximation
analysis of the scalar triplet leptogenesis was first performed in detail in Ref. [241]. We will
here follow closely the approach adopted in Ref. [229]. As in the type-1 Seesaw leptogenesis,
decays/inverse decays play a crucial role during the leptogenesis era, so we first give the analytical
expressions of the tree-level decay rate and of the C P-asymmetries.

4.1.3 Tree-level decay rates

Tree-level triplet decays involve leptonic and scalar final states. The Feynman diagrams are shown
in Fig. 4.1 for the ¢+ component, and the associated decay widths are computed in Appendix D.1.
In the one-flavor approximation, the scalar triplet is assumed to decay into only one lepton state
`, which is constituted by the sum over the other flavors. The tree-level decay rates of each scalar
triplet component to leptons and scalar are in this case given by, see Eqs. (D.9) and (D.11) in
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Figure 4.1 – Diagrams of the tree-level decay of the scalar triplet into leptons and into scalars.

Appendix D.1,

°
°

¢! ¯̀ ¯̀¢¥ °
°

¢Q ! ¯̀ ¯̀¢= B`°¢ = m¢

8º
Tr

h

Y¢Y †
¢

i

, (4.9)

°
°

¢!¡¡
¢

¥ °
°

¢Q !¡¡
¢

= B¡°¢ =
Ø

Øµ¢
Ø

Ø

2

8ºm¢
, (4.10)

where Q stands for the electric charges of the different SU (2) triplet components, i.e. ¢Q
k =

(¢0
k ,¢+

k ,¢++
k ). The parameters B` and B¡ are the branching fractions to two lepton doublets and

two scalar doublets respectively (B`+B¡ = 1), and °¢ ¥ °
°

¢! ¯̀ ¯̀¢+°
°

¢!¡¡
¢

is the total decay
width of one scalar triplet component ¢Q . The total decay width can also be parametrized as :

°¢ = 1
8º

m2
¢

v2 m̃eff
¢ , (4.11)

where we defined the “effective neutrino mass-like” parameter m̃eff
¢ by

m̃eff
¢ ¥ m̃¢

1
p

B`B¡
, (4.12)

in which the “neutrino mass-like” parameter m̃¢ is given by

m̃2
¢ ¥ Tr[m¢

∫m¢†
∫ ] = |µ¢|2

v4

m4
¢

Tr
h

Y¢Y †
¢

i

. (4.13)

As compared to the type-1 Seesaw leptogenesis, the decay rates depends on m¢ and m̃¢, but
also on an extra parameter which is the branching ratio B¡ (or B` = 1°B¡). The total decay rate
exhibits a minimum for B` = B¡ = 1/2 and the farther we are from this situation, the faster the
scalar triplet decays, so that the decay rate obeys :

°¢ ∏ 1
4º

m2
¢

v2 m̃¢ . (4.14)

If the neutrino masses in Eqs. (4.7) or (4.8) are dominated by the light scalar triplet ¢, one has
m∫ 'µ¢Y¢ v2/m2

¢ and the neutrino mass like parameter is simply given by

m̃2
¢ ' Tr[m∫m†

∫] =
X

i
m2

i & |¢m2
atm|º (0.05 eV)2 , (4.15)

where mi are the light neutrino masses and where ¢m2
atm is the atmospheric mass difference

whose value is given in Table 1.1.

115



Chapter 4. Type-2 Seesaw leptogenesis

�

j

�

�

�

N

j�

�

�

�

�

�

Figure 4.2 – One-loop diagrams contributing to the C P-asymmetry in scalar triplet decays (left).
For heavy field value, they contain their contribution to the neutrino mass matrix.

4.1.4 Evaluation of the C P-asymmetry

Within this one-flavor approximation, the C P-asymmetry is simply given by the sum of the
flavored C P-asymmetries, see Eq. (D.15)-(D.17) in Appendix D.2,

≤¢ ¥ 2
°

°

¢̄! ``
¢

°°
°

¢! ¯̀ ¯̀¢

°¢+°¢§
=

X

Æ
≤`Æ¢ , (4.16)

where the factor 2 comes from the fact that there are two leptons in the final state. This expression
is nothing but the average lepton asymmetry¢L produced per triplet decay. As already discussed at
the beginning of this chapter, one needs one or more new heavy fields X in order to generate a non-
vanishing C P-asymmetry. The Feynman diagrams where X =¢ j , N j are shown in Fig. 4.2. In the
limit of hierarchical spectrum of heavy state m¢ø mX , we can show – see also Eqs. (4.74), (4.75)
and (4.78) below – that the C P-asymmetry is given by [241]

≤¢ =° 1
2º

m¢

v2

q

B`B¡

=m
n

Tr
h

m¢
∫mX †

∫

io

m̃¢
, (4.17)

where the contribution of the heavy state comes only through its contribution to the neutrino
mass matrix mX

∫ , as can be understood from Fig. 4.2. Therefore, for m¢ø mX , leptogenesis in the
one-flavor approximation can be studied in a fully general way independent of the exact heavy
state which induces mX

∫ , i.e. whether it is a right-handed neutrino, a scalar triplet or a fermionic
triplet. With this C P-asymmetry and from C PT invariance, the decay rates at one-loop read

°
°

¢̄! ``
¢

= °¢ (B`+≤¢/2) , (4.18)

°
°

¢! ¯̀ ¯̀¢= °¢ (B`°≤¢/2) , (4.19)

°
°

¢̄! ¡̄¡̄
¢

= °¢
°

B¡°≤¢/2
¢

, (4.20)

°
°

¢!¡¡
¢

= °¢
°

B¡+≤¢/2
¢

. (4.21)

As can be seen from the type-2 Seesaw Lagrangian in Eq. (4.2), in the situation where either B` = 0
or B¡ = 0, the lepton number is conserved and one cannot generate any lepton asymmetry.
This is indeed confirmed by the above expression of the C P-asymmetry in Eq. (4.17), since
≤¢/ (B¡B`)1/2.
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4.1. One-flavor approximation of the type-2 leptogenesis

In a way similar to what has been done for type-1 Seesaw leptogenesis in section 3.4.4, it is
possible to derive from Eq. (4.17) a Davidson-Ibarra-like bound given by [241] : 1

Ø

Ø

Ø

≤¢

Ø

Ø

Ø

∑ 1
2º

m¢

v2

r

B`B¡

X

i
m2

i , (4.22)

where as usual mi stands for the light neutrino masses. Also, from perturbativity constraints,
i.e. by requiring that the one-loop contribution to the various decay widths doesn’t exceed the
tree-level one, from Eqs. (4.18)-(4.21) one can derive another “model-independent” upper bound
on the C P-asymmetry given by

Ø

Ø

Ø

≤¢

Ø

Ø

Ø

∑ 2 ·min
°

B`,B¡
¢

. (4.23)

This bound is an absolute bound from unitarity, while the one in Eq. (4.22) has been obtained
assuming that the C P-asymmetry arises from heavier sources of neutrino masses. Now that
we have computed the various C P-asymmetries, we are ready to write down the Boltzmann
equations.

4.1.5 Boltzmann equations

In what follows we first present the main reactions involved in scalar triplet leptogenesis. Next, we
derive the appropriate set of Boltzmann equations and we explain the origin of each term in these
equations. Subsequently, in order to understand how scalar triplet leptogenesis works, a general
leptogenesis scenario is analyzed, and the differences with respect to type-1 Seesaw leptogenesis
are highlighted.

Reactions. In the hot plasma, triplets are subject to reactions that either tend to washout the
B °L asymmetry or to generate it. Depending on the interaction inducing the process, one can
distinguish – at tree-level – four kind of reactions : pure Yukawa, pure scalar, pure gauge and
Yukawa-scalar reactions. Explicitly, we have in general : 2

• Yukawa and scalar-induced decay and inverse decays, ¢$ ¯̀ ¯̀ and ¢$¡¡, described by
the reaction densities : ∞`D ¥P

Æ,Ø∞
¢
`Æ`Ø

and ∞
¡
D ¥ ∞¢¡¡. The total decay reaction density is

given by

∞D = ∞`D +∞¡D = s
K1(z)
K2(z)

Y Eq
ß °¢ , (4.24)

where we summed over the scalar triplet components (question of convention).

1This bound can be obtained by parametrizing the diagonal matrix of the light neutrino mass eigenstates as
m̂¢
∫ = Æ · m̂∫ and m̂¢

∫ = Æ · m̂∫, where Æ is a real and diagonal matrix. From Eq. (4.17), looking just at the fraction,
one get therefore that |≤¢|∑ . . .

P

i (1°Æ§
i )Æi m2

∫i
/(

P

i |Æi |2m2
∫i

)1/2. From Cauchy-Swartz inequality, one then obtains

that |≤¢|∑ . . . (
P

i |1°Æi |2m2
∫i

)1/2, and the upper bound reads therefore |≤¢|∑ . . .m̃X where m̃2
X ¥ Tr[mX

∫ mX †
∫ ]. If one

doesn’t have any information about the structure of the light neutrino mass matrix (i.e. we don’t know the Æi ), this
expression is bounded from above by |≤¢|∑ . . . (

P

i m2
∫i

)1/2.
2Expressions for all the intervening reaction densities can be found in Appendix D.3.
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• Gauge-induced 2 $ 2 scatterings as follows : s-channel gauge-boson-mediated: ¢¢$ F F
(F standing for SM fermions), ¢¢$¡¡ and ¢¢$V V (V standing for SM gauge bosons) ; t
and u channel triplet-mediated : ¢¢$V V and four-point vertex ¢¢$V V reactions. All
together they are characterized by the reaction density ∞A .

• Lepton flavor and lepton number (¢L = 2) violating Yukawa-scalar-induced and triplet-
mediated s and t channel 2 $ 2 scatterings ¡¡$ ¯̀

Æ
¯̀
Ø and ¡`Ø $ ¡̄ ¯̀

Æ , which are ac-

counted for by the reaction densities ∞¡¡
`Æ`Ø

and ∞
¡`Ø
¡`Æ

. In the one-flavor approximation, these

become ∞¡¡
``

=P

Æ,Ø∞
¡¡
`Æ`Ø

and ∞
¡`
¡`

=P

Æ,Ø∞
¡`Ø
¡`Æ

.

• Lepton-flavor-violating Yukawa-induced and triplet-mediated s and t channel 2 $ 2 scat-
terings : `∞`± $ `Æ`Ø and `Ø`∞ $ `Æ`±, with reaction densities given by ∞

`∞`±
`Æ`Ø

and ∞
`Ø`∞
`Æ`±

.
In the one-flavor approximation, when summing over lepton flavors, theses interactions
clearly don’t affect the ` asymmetry and do not play any role. These reactions are therefore
inherent to scalar flavored leptogenesis, see section 4.3.

Boltzmann equations. As said above in page 112, an important difference with the type-1
Seesaw leptogenesis is that the scalar triplet is not its own antiparticle. As a consequence, a triplet
asymmetry ¢Y¢ can generate, leading to an additional Boltzmann equation. The network of
Boltzmann equations for scalar triplet leptogenesis corresponds therefore to a system of coupled
differential equations accounting for the temperature evolution of the triplet density Yß = Y¢+Y¢̄,
the triplet asymmetry ¢Y¢ = Y¢°Y¢̄ and the ¢YB°L charge asymmetry, where L = ` within this
section. The resulting network will of course – and unavoidably – involve the scalar doublet
asymmetry ¢Y¡. All together, the above reactions lead to the following network of classical
Boltzmann equations [241] :

Ẏß =°
√

Yß

Y Eq
ß
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"√
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Y Eq
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∞A , (4.25)
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Y Eq
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∞D , (4.26)

¢ẎB°L =°
√
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Y Eq
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!

≤¢∞D +2

√

¢Y¢

Y Eq
ß

° ¢YB°L

Y Eq
`

!

B`∞D +2

√

¢Y¡

Y Eq
`

° ¢YB°L

Y Eq
`

!

≥

∞
0¡¡
``

+∞¡`
¡`

¥

,

(4.27)

where we have adopted the following conventions (details can be found in Appendix C.1). We
use the particle number density-to-entropy ratio defined as ¢YX =¢nX /s = (nX °nX̄ )/s, where
nX (nX̄ ) is the number density of species X (X̄ ) and s is the entropy density. We have defined
Y¢ ¥ 3 ·Y¢Q , with ¢Q denoting one of the three components of the scalar triplet, and Y¡ ¥ 2 ·Y¡Q ,
with ¡Q denoting one of the two components of the scalar doublet. 3 The derivative is denoted
according to Ẏ ¥ sH zdY /d z, with H the expansion rate of the Universe, and as usual z = m¢/T .
In order to avoid double counting, primed s-channel scattering reaction densities refer to the
rates with resonant intermediate state subtracted : ∞0 = ∞°∞on-shell. Finally, we use the Maxwell-

3The triplet densities Y¢ and Y¢̄ contain therefore all the three triplet components, i.e. g¢ = g¢̄ = 3.
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4.1. One-flavor approximation of the type-2 leptogenesis

Boltzmann equilibrium distribution, and one has Y Eq
`

= Y Eq
¡ since both have the same number of

degrees of freedom and are ultra-relativistic for the whole temperature range at which leptogenesis
takes place.

In the above set of Boltzmann equations, one has still to determine the expression of the
scalar doublet asymmetry ¢Y¡. One can derive a Boltzmann equation for it, but as we show
in Appendix D.5, it is in fact directly related to the triplet and B ° L asymmetry through the
hypercharge neutrality condition

2¢Y¢+¢Y¡+¢YB°L = 0 . (4.28)

That is, the ¡ asymmetry is therefore fully determined by the triplet and the B °L asymmetries
through chemical equilibrium conditions, as it is done in the standard leptogenesis case [244, 245]
(see Eq. (C.51) in the Appendix and the associated discussion). It is thus not necessary to consider
it, but it is however very useful for our understanding to show the corresponding Boltzmann
equation in the one-flavor approximation :
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. (4.29)

Let’s now try to understand the physical meaning of this set of Boltzmann equations (4.25)-(4.27)
and (4.29). To this end, let’s first describe the origin of each term.

1. The first equation, describing the evolution of Yß, involves two terms : the first one, pro-
portional to ∞D and also present in the type-1 leptogenesis, describes the decays/inverse
decays of ¢. The second term, proportional to ∞A and not present in the type-1 leptoge-
nesis, describes the gauge scatterings of the triplets ¢¢$ SM SM (with SM denoting a
SM particle), and it involves therefore the square of the triplet density. Because of this, for
T ø m¢ the gauge reaction rate is doubly Boltzmann suppressed ∞A / e°2m¢/T and the
thermalization rate goes like ∞A/nEq

ß H / e°m¢/T /
p

m¢T . The rate is maximum for T º m¢,
where one has

∞A

nEq
ß H

º 1014 GeV
m¢

. (4.30)

This means that for m¢. 1014 GeV, the gauge scatterings do enter in thermal equilibrium.
The smaller the m¢, the larger the rate. As a consequence, for m¢ . 1014 GeV, the gauge
reactions thermalize the triplet density, even if the decay reaction ∞D is small.

2. When decaying at one-loop, the scalar triplet produces a B °L (and a ¡) asymmetry. The
amount of asymmetry produced is proportional to the C P-asymmetry ≤¢. This is repre-
sented by the usual source term in the first term in Eq. (4.27) (and Eq. (4.29)).

3. The scalar triplet can decay/inverse decay at tree-level in/from either leptons or scalars,
with a rate proportional to B` and B¡ respectively. On the one hand, this means that once
a B °L (and so a ¡) asymmetry is produced, the inverse decays ``! ¢̄ (and ¡̄¡̄!¢) will
create a triplet asymmetry. This is represented by the second term / B` (third term / B¡)
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Chapter 4. Type-2 Seesaw leptogenesis

in the r.h.s. of Eq. (4.26) describing the evolution of the triplet asymmetry, and by the first
term (second term) in the second bracket in the r.h.s. of Eq. (4.27) for the B °L asymmetry
(Eq. (4.29) for the ¡ asymmetry). On the other hand, it goes also the other way around, i.e. if
there is a triplet asymmetry, the tree-level decays of the triplet will also generate B °L and ¡
asymmetries. This is represented by the first term / B`+B¡ in the r.h.s. of the Eq. (4.26)
describing the evolution of the triplet asymmetry, and by the first (second) term in the
second bracket in the r.h.s. of Eq. (4.27) describing the evolution of the B °L asymmetry
(Eq. (4.29) for the ¡ asymmetry).

4. Finally, the last terms in Eqs. (4.27) and (4.29) represent the ¢L = 2 scattering processes
¡¡$ ¯̀ ¯̀ and ¡`$ ¡̄ ¯̀. As in the type-1 Seesaw leptogenesis (see discussion at the bottom
of page 99), the rates of theses scattering are proportional to the Seesaw mass scale m¢

and to the light neutrino mass scale, since they involve the neutrino mass diagram. As a
consequence, here too their effects are small for m¢. 1014 GeV, and we will neglect them in
what follows. A quite accurate calculation of the resulting B °L asymmetry can therefore
be done by considering only decays, inverse decays and gauge induced reactions. As a
justification example, fixing m¢ = 1010 GeV, m̃¢ = 0.05 eV – parameter which drive the
decay/inverse decay rate, see Eq. (4.13) – and B¡ = 10°2, we see in the left panel of Fig. 4.3
that these scatterings never reach thermal equilibrium. 4

Gauge interactions. Before going on, an important remark concerns the gauge scatterings.
Indeed, if the gauge reactions are active, in the sense that they are faster than the decay/inverse
decay rate, the triplets will more likely gauge scatter than decay, and one doesn’t expect an
important production of B °L asymmetry, as anticipated from page 112. However, because the
decay/inverse decay rate ∞D is only one time Boltzmann suppressed (because they involve one
triplet) contrarily to ∞A which is two times Boltzmann suppressed for T ø m¢ (because they involve
two triplets), the gauge reactions become slower than the inverse decays at some temperature
zA = m¢/TA. This is also illustrated in the left panel of Fig. 4.3. From this moment zA , the scalar
triplet will more likely decay than gauge scatter, so that a more important B °L can generate. This
is why scalar triplet leptogenesis is feasible even in the presence of fast gauge reactions. We will
come back to this point after.

General scenario. As an example, fixing m¢ = 1010 GeV, m̃¢ = 0.05eV and B¡ = 10°2, we show
in Fig. 4.3 as a function of z = m¢/T the reaction densities (left) and the evolution of the various
densities (right). The latter figure has been obtained solving numerically the Boltzmann equa-
tions, taking a C P-asymmetry ≤¢ = 1 for illustration purpose, and Yß(z0) = Y Eq

ß (z ø 1) as initial
condition. The general scenario of the generation of the B °L asymmetry is thus the following.

• For z ø 1, whatever the initial triplet abundance, since m¢. 1014 GeV the gauge reactions
thermalize the triplet density, so that Yß(T ¿ m¢) = Y Eq

ß (T ¿ m¢). There is therefore
generally no dependence on the initial condition for the triplet abundance, unlike in type-1

4More precisely, in the example of Fig. 4.3, the inclusion of these scattering processes leads to ª0.01% correction
on the final B °L asymmetry at the end of leptogenesis. That is to say, much less than the error we do by considering
classical Boltzmann equations and Maxwell-Boltzmann equilibrium densities.

120



4.1. One-flavor approximation of the type-2 leptogenesis

10-2 10-1 1 10 102
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
1
10
102
103
104
105

�� ���� ���

�=��/�

�/
�
� �

���
������

��

��
�

�� � ��
�

��

10-2 10-1 1 10 102
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
1

�� ���� ���

�=��/�

��
��
��
��
	

�

� ��

� ��

�� � ��
��

�� �� - ��

Figure 4.3 – Fixing the various parameters according to m¢ = 1010 GeV, m̃¢ = 0.05eV and B¡ = 10°2

(which corresponds to m̃eff
¢ º 5eV ), we show in the left panel the thermalization rates ∞/(Hn∞) for

the different processes involved in scalar triplet one-flavor leptogenesis, and in the right panel we
show the evolution of the various densities as a function of z = m¢/T . For this r.h.s. plot, we also
fixed the C P-asymmetry to ≤¢ = 1 and the initial abundance to Yß(z0) = Y Eq

ß (z0).

leptogenesis. This is why in what follows we will always assume a thermal initial abundance
for the ß=¢+ ¢̄ abundance. Also, during all the leptogenesis scenario, the density follows
closely the equilibrium density and one has approximately Yß(z) º Y Eq

ß (z).

• For 1 ∑ z < zA , the gauge reactions are faster than the decay/inverse decay rate (and faster
than the Hubble rate). However, some triplets decay and produce slowly a B °L asymmetry
¢YB°L as well as a ¡ asymmetry ¢Y¡. At the same time, the creation of the B °L and ¡

asymmetries automatically induces that a triplet asymmetry ¢Y¢ can develop.

• At z = zA , the gauge reaction ∞A becomes slower than the decay/inverse decay ∞D . From
this moment, all the triplets left decay and produce a B °L asymmetry ¢YB°L , as well as a ¡
asymmetry ¢Y¡.

• For 1 ø z ∑ zdec, the triplet density is Boltzmann suppressed and, at some moment zdec, the
lepton number violating inverse decay reactions become slower than the Hubble rate. From
this moment, all the triplets left decay without inverse decay and the triplet asymmetry
decreases progressively to reach zero.

• At z ¿ zdec, all the triplets have decayed, and the produced B°L stays constant. The present
baryon asymmetry of the Universe is as usual related to the B °L asymmetry generated at
the end of leptogenesis through

Y today
B =¢Y today

B = 12
37
¢Y end

B°L . (4.31)

This is a basic example and one could have different situations as we will see. For example, with
the chosen parameter values one had zA < zdec, but one could also have zA > zdec, in which case
the final asymmetry is more suppressed since the decay/inverse decays are always overshadowed
by the gauge reactions.
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Chapter 4. Type-2 Seesaw leptogenesis

4.1.6 Analytical resolution of the Boltzmann equations and maximum B ° L asym-
metry reachable

It is in general difficult to solve analytically the set of Boltzmann equations, because the point
is that now the various equations are intricate. However, as in the type-1 Seesaw leptogenesis
scenario, the final B °L asymmetry can here too be expressed as

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

= ≤¢ ¥¢ Y Eq
ß (T ¿ m¢) , (4.32)

where ¥¢ is the efficiency, to be determined by solving the Boltzmann equation. In order to get an
analytical expression of the efficiency, we now proceed by switching on the various interaction
step by step, what will allow us to understand the main results.

Neglecting the washout terms. First, let’s consider only the source term in the B °L Boltzmann
equation (4.27), i.e. we neglect the washout of the B °L asymmetry from the inverse decay ``! ¢̄.
In this case, using Eq. (4.25), one gets

¢ẎB°L =°
√

Yß

Y Eq
ß

°1

!

≤¢∞D = ≤¢ Ẏß

1+2
µ

Yß
Y Eq
ß

+1
∂

∞A
∞D

º ≤¢ Ẏß
1+4 ∞A

∞D

, (4.33)

where we used Yß º Y Eq
ß . Let’s consider two different situations :

1. If ∞A/nEq
ß < H or ∞A < ∞D /4, the gauge scatterings are never active and the second term in

the denominator can be neglected. One gets in this case ¢Y end
B°L ' Yß (z ø 1). Like in the

type-1 leptogenesis, we recover the usual result that the efficiency is maximal ¥¢ = 1 if one
starts with a thermal abundance Yß (z0) = Y Eq

ß (z0).

2. If ∞A > ∞D /4, the triplet will more likely undergo gauge scatterings before decaying, and the
first term in the denominator can be neglected, so that one has

d¢YB°L

d z
' ≤¢

dYß
d z

∞D

4∞A
. (4.34)

This equation remains valid until the gauge scatterings decouple at some z = zA . The value of
zA is determined by the moment at which 4∞A becomes smaller than ∞D or, in the case where
at the intersection 4∞A/nEq

ß H = ∞D /nEq
ß H < 1, by the moment at which the gauge reactions

become slower than the Hubble rate. This means 4∞A(zA) = ∞D (zA) or 4∞A(zA)/nEq
ß H |z=zA =

1, see below. For z > zA , the gauge reactions are no more active, and all the triplets left decay
and produce a net B °L asymmetry (negative following our convention). In this case, the
final B °L asymmetry is given by the sum of the two contributions :

Y end
B°L ' ≤¢

ZzA

z0

dY Eq
ß

d z
∞D

4∞A
d z °≤¢Y Eq

ß (zA) . (4.35)

If we take take the limit z ¿ 1 in the integrand, which is justified by the fact that the integrand
differs significantly from zero only for z & 1, we find that the integrand scales as z3, and
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4.1. One-flavor approximation of the type-2 leptogenesis

Eq. (4.35) becomes : 5

Ø

Ø

Ø

Y end
B°L

Ø

Ø

Ø

' ≤¢

√

3
g 2
¢º

2

cs g§

°¢
m¢

z4
A

4
+Y Eq

ß (zA)

!

. (4.37)

Unless °D is quite small, for example if m̃¢ is small, one has always that 4∞A/nEq
ß H |z=zA =

∞D /nEq
ß H |z=zA > 1, so that zA is in general given by the condition 4∞A(zA) = ∞D (zA). This

condition implies that the analytical value of zA is approximately given by the solution of
the equation :

zA ' ln
∑

cs

6 · g¢ · (2ºzA)3/2

m¢

°¢

∏

, (4.38)

which for zA ¿ 1 gives approximately

zA ' ln
∑

cs

6 · g¢ · (2º)3/2

m¢

°¢

∏

° 3
2

ln
∑

ln
∑

cs

6 · g¢ · (2º)3/2

m¢

°¢

∏∏

. (4.39)

Using Eq. (4.38) in Eq. (4.37), one gets finally a simple expression for the final B °L asym-
metry,

Ø

Ø

Ø

Y end
B°L

Ø

Ø

Ø

' ≤¢
≥ zA

4
+1

¥

Y Eq
ß (zA) , (4.40)

to which corresponds an efficiency given by

¥¢ '
≥ zA

4
+1

¥

r

º

8
z3/2

A e°zA . (4.41)

The first term in this equation represents the B °L asymmetry fraction produced before zA ,
when the gauge scatterings are active, and the second term of this equation represent the
B °L asymmetry produced after. The faster the gauge reactions, the larger the zA and the
smaller the efficiency. Compared to ¥¢ = 1, this gives the gauge scattering suppression. This
confirm the original intuition that the gauge scatterings slow down the production of the
B °L asymmetry, but we see that it is not so drastic (e.g. ¥¢ = 0.2. . .0.003 for zA = 4. . .10).

We show in the left panel Fig. 4.4 the thermalization rates ∞D (solid) and ∞A (dotted) normalized to
nEq
ß H as a function of z = m¢/T for different values of m¢ and m̃eff

¢ , which is the effective neutrino
mass parameter defined in Eq. (4.12) : m̃eff

¢ = m̃¢/
p

B`B¡. In the right panel of Fig. 4.4, we show
the value of zA as function of m̃eff

¢ for different mass values. The dot-dashed line shows the limit
between the value of zA determined by 4∞A(zA) = ∞D (zA) (the region on the r.h.s. of the curve)
and by 4∞A/nEq

ß H |z=zA = 1 (the region on the l.h.s. of the curve). The dashed line represent the
solution using Eq. (4.38), and we see that it is in very good agreement with the numerical solution
in the region where zA is determined through 4∞A(zA) = ∞D (zA).

5Indeed, for z ¿ 1 one has, with cs = 2 · g¢(15C1 °3C2)/72º given in Appendix D.3 :

dY Eq
ß

d z
!° g¢

p
º

4
p

2g§
z3/2 e°z , ∞D ! 2 · g¢

√

m2
¢

2º

!3/2

°¢ z°3/2 e°z , ∞A !
m4
¢

96º3 cs z°3 e°2z . (4.36)
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Figure 4.4 – Left : Decay (solid) and gauge (dotted) thermalization rates ∞/HnEq
ß as a function of

z = m¢/T for different values of m¢ and m̃eff
¢ . Right : zA as a function of m̃eff

¢ for different mass
values. The dot-dashed line represent the limit between zA being determined by 4∞(zA) = ∞D (zA)
and by 4∞A/nEq

ß H |z=zA = 1. The dashed lines represent the solution of Eq. (4.38).

Including the washout terms. The washouts will obviously have the effect of decreasing the
efficiency. This means that Eq. (4.41) is actually an upper bound on the reachable efficiency :

¥¢. ¥max
¢ =

≥ zA

4
+1

¥

r

º

8
z3/2

A e°zA . (4.42)

In the example above, associated to Fig. 4.3, we chose m¢ = 1010 GeV, m̃¢ = 0.05 eV and B¡ = 10°2

which corresponds to m̃eff
¢ º 0.5 eV. From Fig. 4.3 or Fig. 4.4 we see that for these values one has

zA º 3.5. This means from Eq. (4.42) that even when neglecting the washouts, the maximum
efficiency reachable is ¥max

¢ º 0.23. Taking into account the washouts, the efficiency we got in this
example is in fact ¥¢ º 0.005, which is much smaller than ¥max

¢ reachable.

Quantitatively, the washout of the B°L asymmetry occurs through the inverse decays¡¡!¢

and ``! ¢̄, which are active when ∞
¡
D /nEq

∞ ∏ H and ∞`D /nEq
∞ ∏ H . Indeed, it is the presence of

both interactions that violates lepton number, so if one of these two interactions is not in thermal
equilibrium, lepton number is effectively conserved by the inverse decays and there is no washout
of the B °L asymmetry. More precisely, the source terms in Eq. (4.27) and (4.29) generate a lepton
asymmetry ¢` and a scalar doublet asymmetry ¢¡ respectively. If for example one has B` > B¡,
a negative triplet asymmetry can develop thanks to ``! ¢̄ reactions. On the one hand, if the
¡¡!¢ reaction is in thermal equilibrium, the lepton asymmetry will be depleted through the
chain ¡¡$ ¢$ ¯̀ ¯̀. On the other hand, if the ¡¡$ ¢ is never in thermal equilibrium, which
is the case when B` ¿ B¡, the scalar triplet ¢ carries in this case an effective lepton number
L =°2 and the total lepton asymmetry doesn’t undergo any washout. In this case, at the end of
leptogenesis when all the triplets have decayed, the whole triplet asymmetry is transferred back
to a ¢` asymmetry – see also Eq. (4.28) – and the efficiency is large. A sketch of this scenario is
depicted in Fig. 4.5. The same reasoning can be applied in the case where B` < B¡. However, here
when the reaction ``$ ¢̄ is never in thermal equilibrium, which is the case for B` ø B¡, one
directly sees from Eq. (4.27) that the B °L doesn’t undergo any washout and the efficiency is large,
see also Fig. 4.5.
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Figure 4.5 – Sketch of the washout in the situation B` > B¡. The case where B` ¿ B¡, for which
the B °L asymmetry doesn’t undergo any washout, is depicted by the white box. A sketch of the
situation B` < B¡ can be obtained by the exchange ¢YB°L $¢Y¡.

The inverse decays ¡¡!¢ and ``! ¢̄ play therefore a crucial role in the washout of the
B °L asymmetry. In parallel with Fig. 4.4, we show in the left panel of Fig. 4.6 the inverse decay
∞D /nEq

∞ H and the gauge ∞A/nEq
∞ H thermalization rates as a function of z for various parameter

values. The thermalization rate for ∞¡D and ∞`D is obtained by multiplying ∞D /nEq
∞ H by B¡ and B`

respectively. Contrarily to decays, the inverse decays are Boltzmann suppressed for z & 3. As we
will discuss now, the washout effect of the ¡¡!¢ and ``! ¢̄ inverse decays can in some case
be overshadowed by gauge reactions. One distinguishes two distinct regimes, following that the
inverse decays are active or not when the gauge reactions decouple :

1. Gauge regime. If ∞¡D /nEq
∞ < H or ∞`D /nEq

∞ < H when the gauge reactions decouple at z = zA ,
then for z > zA the inverse decays don’t play any role in the evolution of the B°L asymmetry
and they can be neglected, so that the efficiency is still given in a good approximation by
Eq. (4.41). This regime is called the “gauge regime”, and from Eq. (4.42) if zA ¿ 4 one has in
good approximation that

¥¢ ' 1
4

r

º

8
z5/2

A e°zA =
g 2
¢º

2

2cs

°¢
m¢

z4
A , (4.43)

where in the second equality we expressed the efficiency in terms of the decay rate as in
Eq. (4.37).

2. Yukawa regime. If now ∞
¡
D /nEq

∞ > H and ∞`D /nEq
∞ > H at z = zA , the inverse decays will

substantially decrease the amount of B °L produced, as discussed above. This regime
is called the “Yukawa regime”, for which the washout from inverse decays is important.
In this regime, the efficiency can be determined in a way similar to the one used for the
strong washout regime in the type-1 Seesaw leptogenesis, see page 98. Indeed, since
∞
¡,`
D /nEq

∞ > H , one can reasonably assume that there is a balance between the production
and the destruction of the B °L asymmetry until the inverse decays decouple at z = zdec,
which is determined by the condition : min(B`,B¡) ·∞D /nEq

∞ H
Ø

Ø

z=zdec
= 1. For zA < z < zdec,

one has therefore that the washouts maintain the r.h.s. of Eq. (4.27) to zero :

2

√

¢Y¢

Y Eq
ß

° ¢YB°L

Y Eq
`

!

B`∞D '°≤¢Ẏß ' ≤¢sH zY Eq
ß . (4.44)
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Figure 4.6 – Left : Same as the left panel of Fig. 4.6 but concerning the thermalization rates
normalized to HnEq

∞ . Right : Gauge versus Yukawa regimes as a function of m̃eff
¢ and m¢, for

B¡ = (0.5,10°2,10°4). The plot is symmetric in the exchange B¡$ B`.

Note that we used Eq. (4.25) with the gauge term neglected, and dYß/d z ' dY Eq
ß /d z '°Y Eq

ß

for z ¿ 1. Similarly, the washouts maintain the r.h.s. of Eq. (4.26) to zero too and one has

B`
¢Y¢

Y Eq
ß

' B`

°

1°B¡
¢ ¢YB°L

Y Eq
`

+B`B¡
¢Y¡

Y Eq
`

. (4.45)

Putting these two equations together, one gets

2

√

¢Y¡

Y Eq
`

° ¢YB°L

Y Eq
`

!

B`B¡∞D ' ≤¢sH zY Eq
ß . (4.46)

This equation applies until the slower inverse decays decouple at z = zdec. At this moment,
one has in good approximation that ¢Y¢(zdec) º 0 so that ¢Y¡(zdec) '°¢YB°L(zdec) from
the hypercharge relation in Eq. (4.28), and one gets

¢YB°L(zdec) '°≤¢
Y Eq
`

4B`B¡

H znEq
ß

∞D

Ø

Ø

Ø

Ø

Ø

zdec¿1

'°≤¢
zdec

4B`B¡

H(zdec)
°¢

Y Eq
`

(zdec) , (4.47)

and the final B °L asymmetry is therefore given by

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

'
Ø

Ø

Ø

¢YB°L(zdec)
Ø

Ø

Ø

' ≤¢
1

12B`B¡z2
decK¢

Y Eq
ß (z0) , (4.48)

where we used the fact that Y Eq
`

is a constant whose value is equal to Y Eq
ß (z ø 1)/3 (there are

3 triplet components). For convenience, we defined K¢ ¥ °¢/H(z = 1) = z2°¢/H(z) so that
this expression can be compared with the one obtained in Eq. (3.50) for the strong washout
regime in type-1 leptogenesis. The factor 24 between the two expressions accounts for : (i)
the 3 triplet components, (ii) the presence of B` and B¡ (one tends to the type-1 case in the
limit where B` = B¡ = 1/2), (iii) the two ` in the final state of the process ¢̄! ``.
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4.1. One-flavor approximation of the type-2 leptogenesis

The efficiency in this Yukawa regime can finally be expressed as

¥¢ ' zdec

12B`B¡

H(zdec)
°¢

. (4.49)

To each regime (gauge and Yukawa) corresponds a different efficiency behavior. Indeed, from
Eqs. (4.43) and (4.49), we see that ¥¢/ m̃eff

¢ in the gauge regime while ¥¢/ 1/m̃eff
¢ in the Yukawa

regime. From the above discussion, the delimitation between the gauge and the Yukawa regimes
is given by the condition :

min
°

B`,B¡
¢

· ∞D

nEq
`

H

Ø

Ø

Ø

Ø

Ø

z=zA

= 1 . (4.50)

We show in the right panel of Fig. 4.6 the delimitation between the two regimes as a function of
m̃eff
¢ and m¢, for B¡ = (0.5,10°2,10°4) (solid, dashed, dotted). The plot is symmetric with respect

to B` $ B¡. Note that below some values of m̃eff
¢ , corresponding to m̃eff

¢ . (0.001,0.04,4) eV for
B¡ = (0.5,10°2,10°4), one of the two inverse decays ``! ¢̄ or ¡̄¡̄! ¢̄ never reaches thermal
equilibrium, and so it is the gauge regime that applies there (for all the mass values below m¢ ª
1014 GeV, since above gauge reactions never reach thermal equilibrium).

4.1.7 Some results of successful leptogenesis

Efficiency as a function of m̃eff
¢ . Firstly, from Eqs. (4.11) and (4.12), the total decay rate ∞D de-

pends on m̃eff
¢ and m¢. Secondly, the gauge scatterings ∞A depends on m¢. Finally, the quantities

B¡ and B` = 1°B¡ enter in the Boltzmann equations in Eqs. (4.25)-(4.27). This means that, ne-
glecting the ¢L = 2 scatterings, one can obtain the efficiency as a function of m̃eff

¢ , m¢ and B¡.
This is illustrated in Fig. 4.7, which gives the efficiency as a function of m̃eff

¢ for different values of
the mass m¢ and the fraction B¡. The plot is symmetric under the exchange B¡$ B`. The curves
have been obtained by solving numerically the set of Boltzmann equations.

The maximum of each curve corresponds approximately to the transition value between the
gauge and the Yukawa regimes, as can be seen from the right panel of Fig. 4.6. On the one hand,
on the l.h.s. of these maxima, the efficiency goes approximately like m̃eff

¢ and it doesn’t depend on
B¡ for a fixed m̃eff

¢ , as expected from Eq. (4.43) in the gauge regime. On the other hand, on the r.h.s.
of the maxima, we see that the efficiency goes approximately like (m̃eff

¢ )°1 and doesn’t depend on
the mass m¢ as also expected from Eq. (4.49) in the Yukawa regime. This confirms our analytical
results as well as our physical interpretation of the scalar triplet leptogenesis mechanism.

Efficiency as a function of B¡. From the left panel of Fig. 4.7, there is clear tendency that the
efficiency increases as B¡ or B` departs from B¡ = B` = 0.5 in the Yukawa regime. We show in
the right panel of Fig. 4.7 the efficiency as a function of B¡ for m¢ = (106,1010,1014) GeV, fixing
m̃eff
¢ = 1 eV. We see that the efficiency tends to a maximum when B¡ . (10°1,10°3,10°3) for

m¢ = (106,1010,1014) GeV respectively. The plot is symmetric under the exchange B¡$ B`, with a
pivot point at B¡ = B` = 1/2. There are two questions one can address.
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Figure 4.7 – Left : Efficiency as a function of m̃eff
¢ , for m¢ = (106,1010,1014) GeV and B¡ =

(0.5,10°2,10°4) (solid, dashed, dotted). The maximum of each curve corresponds in good approx-
imation to the transition value between the gauge and the Yukawa regime, see Fig. 4.6. Right :
Efficiency as a function of B¡ for m¢ = (106,1010,1014) GeV and fixing m̃eff

¢ = 1 eV. The minimum
of each curve is obtained for B` = B¡ = 0.5.

First, why is the situation symmetric under B¡$ B` ? Analytically, this is because the decay
rate in Eq. (4.11) and the set of Boltzmann equations in Eq. (4.25)-(4.27) are actually symmetric
under B¡$ B`, as can be seen from the sum rule in Eq. (4.28). However, at first sight one could
think from Eq. (4.27) that for large B`, the washout would be more important than for small B`.
As already mentioned above in page 125, the point is that lepton number violating washouts
occur if both `` $ ¢̄ and ¡¡ $ ¢ are in thermal equilibrium. If one of these two processes
never reaches thermal equilibrium, i.e. if B`¿ B¡ or B¡¿ B`, the scalar triplet carries effectively
lepton number °2 or 0 respectively and the efficiency tends to a maximum. This happens when
B¡. (10°1,10°3,10°3) for m¢ = (106,1010,1014) GeV respectively, see Fig. 4.6.

Second, in the limit where B¡ ! 0 or B` ! 0, lepton number is effectively conserved and
the efficiency is maximal. But if lepton number is conserved, shouldn’t we get a vanishing B °L
asymmetry ? The point here is that even if the efficiency is large, when B¡ ! 0 or B` ! 0 the
C P-asymmetry is in this case suppressed since it goes like ≤¢ /

p

B`B¡, as can be seen from
Eq. (4.17), and so is the B °L asymmetry. There is thus no contradiction and one has a correct
behavior of the B °L asymmetry produced, going to zero for B¡! 0 or B`! 0, as we will see next.

Successful leptogenesis. The contours in Fig. 4.8 show the values of the C P-asymmetry param-
eter ≤¢/

p

4B`B¡ needed in order to generate the baryon asymmetry of the Universe, as a function
of the Yukawa coupling parameter (Y¢Y †

¢)1/2 and the triplet mass m¢, fixing m̃¢ = 10°3 eV (left)
and m̃¢ = matm º 0.05 eV (right). The plots have been taken from Ref. [241]. The light green region
is obtained assuming that the C P-asymmetry is bounded from above by unitarity consideration,
see Eq. (4.23). The dark green region is obtained assuming that the C P-asymmetry arises from
heavier sources of neutrino masses, see Eq. (4.22). Pertubativity of the coupling µ¢/m¢ implies
that the dark grey region is excluded. The diagonal black line corresponds to B¡ = B`. As expected,
one cannot generate enough baryon asymmetry far from this line, even if the efficiency is larger,
because in this case the C P-asymmetry is too suppressed. The further we are from this line, the
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Figure 4.8 – Iso-curves of ≤¢/
p

4B`B¡ needed in order to have successful leptogenesis in the
q

Y¢Y †
¢ plane, for m̃¢ = 10°3 eV (left) and m̃¢ = 0.05 eV (right). The light green region is obtained

assuming that the C P-asymmetry is bounded only by unitarity, i.e. fulfilling Eq. (4.23). The dark
green region is the allowed region assuming that the C P-asymmetry arises from heavier sources
of neutrino masses, i.e. fulfilling Eq. (4.22). The grey region is not allowed by pertubativity of the
scalar coupling µ¢/m¢ ∑ 1. The plots have been taken from Ref. [241].

bigger the efficiency but the smaller the C P-asymmetry. As a consequence, the maximum baryon
asymmetry producible lies in fact around the line B` = B¡ = 0.5, but not necessarily on it as shown
by the right panel of Fig. 4.8.

From these figures, one can see that there is a minimal value of the triplet mass below
which there is not enough baryon asymmetry generated. In the case where the C P-asymmetry is
bounded from above by Eq. (4.22), i.e. in the case where the C P-asymmetry arises from heavier
sources of neutrino masses, since ≤¢/ m¢ one has

m¢& 2.8 ·1010 GeV for m̃¢ = 10°3 eV , (4.51)

m¢& 1.3 ·1011 GeV for m̃¢ = 0.05 eV . (4.52)

In the case where the C P-asymmetry is bounded from above by unitarity in Eq. (4.23), i.e. not for
m¢ ø mX but for example for two degenerate triplets, the lower bound get relaxed. If we also
consider the Sommerfeld corrections, which account for the effect of a potential on the interaction
cross section in case where particles are non-relativistic, the lower bound reads [246]

m¢& 1.6 TeV . (4.53)

This result can be visualized in Fig. 4.9, taken from Ref. [246], which shows the needed C P-
asymmetry as a function of the triplet mass for B` = B¡ = 0.5 and for different values of the
parameter m̃¢. The gray region is the region excluded by unitarity, i.e. |≤¢|∏ 2 ·min(B`,B¡).
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Figure 4.9 – Needed C P-asymmetry as a function of the triplet mass, for different values of m̃¢ and
for B` = B¡ = 0.5. The gray region is the region excluded by unitarity, i.e. one necessarily needs
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Now that we have analyzed how things work in the one-flavor approximation, we can tackle
the more general analysis of the flavored scalar triplet leptogenesis, including the effect of spectator
processes. But when do we need to consider the lepton flavors in scalar triplet leptogenesis ?

4.2 Flavor issue in type-2 leptogenesis

In the previous section, we have described the mechanisms and the properties of the type-2
leptogenesis in the one-flavor approximation. We can now go a step further and study the effect of
the lepton flavors and spectator processes. But when do flavors matter in type-2 leptogenesis ? As
in section 3.5 for the type-1 Seesaw leptogenesis scenario, this question needs to be addressed in
order to determine the various flavor and temperature regimes. As we will show next, the situation
differs drastically from the type-1 Seesaw leptogenesis scenario.

Indeed, let’s already mention that the three flavors actually always matter in the scalar triplet
leptogenesis, whatever the temperature at which leptogenesis takes place. This issue was first
pointed out in Ref. [247], where they show, by solving the Boltzmann equations using the density
matrix formalism, that there are flavor effects even above T ª 1012 GeV, i.e. even when no charged
Yukawa interaction is active. Strictly speaking, this issue could have only been clarified using this
density matrix formalism, that describes rigorously the (de)coherence of the lepton states. We will
here follow the semi-classical approach, equivalent to the one in section 3.5, which is based on
simple arguments and which leads to the same conclusion.

Let’s denote as usual by ¢ ¥ ¢1 the lightest scalar triplet responsible for the leptogenesis.
The SM Lagrangian, extended with the type-2 Seesaw Lagrangian, contains the interaction of the
lightest triplet ¢with the leptons `Æ in Eq. (4.4), but also the charged lepton Yukawa interactions :

L 3
X

Æ,Ø
`T
ÆCiø2 ¢ Y ÆØ

¢ `Ø°
X

Æ
eÆ¡

† Y`Æ `Æ+H.c. . (4.54)

As usual, we choose a charged lepton basis such that the charged lepton Yukawa matrix is diagonal
and real, see the parameter counting in Eq. (1.29). We remind that Y¢ is a general 3£3 symmetric
matrix.
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The main difference with the type-1 Seesaw case is that now the scalar triplet doesn’t decay
into one, but into two coherent lepton states. As a consequence, if leptons don’t undergo any other
flavor interaction, all what we can do is to perform a rotation in the flavor space such that the
matrix Y¢ becomes diagonal. Indeed, in that case one can define a new flavor basis |`0i= R |`i,
with R a unitary matrix, such that the scalar triplet interaction becomes

L 3 `0T Ciø2 ¢Y¢ `
0 , (4.55)

where the new coupling matrix Y¢ is diagonal and is given by Y¢ = R§ Y¢ R† with R a unitary
matrix. In the new basis |`0i ¥ (|`1i, |`2i, |`3i), since in general all the diagonal elements of Y¢

are non-vanishing, the scalar triplet ¢ effectively decays via the di-lepton channels : ¢̄! `1`1,
¢̄! `2`2 and ¢̄! `3`3, where all the three states |`1,2,3i are a superposition of the three lepton
flavors e, µ and ø.

Accordingly, if leptons don’t undergo any other flavor interaction, the scalar triplet decays
effectively via only 3 di-lepton channels instead of the 6 from the original symmetric matrix Y¢.
Even if the states |`1,2,3i stay coherent, one has therefore in general always three flavors in the
scalar triplet leptogenesis, whatever the temperature regime. It seems thus not possible to define an
unflavored regime as in the type-1 Seesaw leptogenesis.

4.2.1 Flavor regimes

Even if there are always three flavors in the game, one still has different flavor regimes as in
the type-1 leptogenesis. Indeed, the states |`1,2,3i can loose their coherence if they undergo an
interaction that is not flavor-blinded. Among them, one has the charged Yukawa interactions
(the second term in Eq. (4.54)), the ¢2,3,... di-lepton interactions (in the case of pure scalar triplet
scheme) or N1,2,... Yukawa interactions (in the case of mixed type-1+2 scheme). These two latter
interactions are in general much slower than the Hubble rate because Boltzmann suppressed,
since the extra heavy states are taken much heavier than ¢, so that they should not a priori be
responsible of the decoherence of the states |`1,2,3i.

On the contrary, the charged Yukawa interactions are not Boltzmann suppressed and are
even much faster than the Hubble rate below some specific temperatures, as already discussed
for type-1 leptogenesis in section 3.5. If they are fast, they could in principle decohere the states
|`1,2,3i and another lepton flavor base must be used. As in the type-1 Seesaw case, to see if this
interaction has the time to happen, the charged Yukawa interaction rate °`Æ(T ) must be compared
to the Hubble rate H , but also to the appropriate inverse decay (ID) rate °I D

`
¥ °(``! ¢̄1). One

has the following possibilities :

1. For T & 1012 GeV, one has always °`e,µ,ø < H , and basically no charged lepton Yukawa
interactions occur. In this case, the three lepton states |`1,2,3i propagate without loosing
their coherence, and could possibly undergo an inverse decay `Æ`Æ! ¢̄. In this regime, by
performing a rotation R of the flavor basis, the scalar triplet interactions with the letpons
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Chapter 4. Type-2 Seesaw leptogenesis

are effectively flavor diagonal in the flavor basis given by (|`1i, |`2i, |`3i) :

Y¢ = R§ Y¢ R† =

0

B

@

Y 11
¢ 0 0
0 Y 22

¢ 0
0 0 Y 33

¢

1

C

A

. (4.56)

This regime will be denoted as “full-diagonal regime” in what follows.

2. For 109 . T . 1012 GeV, one has °`ø > H but still °`e,µ < H . Here, one has two possible
cases :

(a) If °`ø <°I D
`Æ

, with Æ= 1,2,3, the lepton states |`Æi will more likely inverse decay
`Æ`Æ! ¢̄ before interacting through the tau charged Yukawa interaction. This case
reduces to the full-diagonal regime in item 1.

(b) If °`ø >°I D
`1

> H , where °I D
`1

stands for the smallest of the three inverse decay rates
°I D
`1,2,3

, whatever the value of °I D
`2,3

the lepton state |`1i has the time to decohere thanks
to the `ø¡$ eø processes. In this case, the new interaction basis is (|`ai, |`bi, |`øi),
with h`a,b |`øi= h`b |`ai= 0 and h`i |`i i= 1. The states |`ai and |`bi are coherent su-
perpositions of e and µ flavors. Even if the other states `2,3 didn’t loose their coherence
through the charged Yukawa interaction, i.e. even if °`ø < °I D

`2,3
, the thermal bath con-

tains now pure ø leptons which can interact with `2,3 through `ø`2,3 ! ¢̄ and these
interactions break the coherence of the states `2,3. In this case, one can define the
new interaction basis such that the scalar triplet doesn’t decay via ¢̄! `a`b , i.e. one
can still define a flavor basis such that the scalar triplet interactions has the following
structure

Y¢ = R§ Y¢ R† =

0

B

@

Y aa
¢ 0 Y aø

¢

0 Y bb
¢ Y bø

¢

Y aø
¢ Y bø

¢ Y øø
¢

1

C

A

. (4.57)

This regime will be denoted as “semi-diagonal regime” in what follows. In this regime,
the scalar triplet has 5 di-lepton channels.

3. For 105 . T . 109 GeV, one has °`ø >°`µ > H but still °`e < H . Here too, there are several
possible cases :

(a) If °`ø <°I D
`Æ

, with Æ= 1,2,3, we recover the full-diagonal regime.

(b) If °`ø >°I D
`1

and °`µ <°I D
`a,b

, we recover the semi-diagonal regime in item 2.(b), since

the coherent lepton states |`a,bi undergo inverse decays `a`a ! ¢̄ or `b`b ! ¢̄ before
loosing their coherence.

(c) If °`ø >°I D
`1

and °`µ >°I D
`a

> H , where °I D
`a

stands for the smallest of the two inverse
decay rates °I D

`a
< °I D

`b
, the lepton state |`ai looses its coherence through the `µ¡$ eµ

interactions. The interaction basis is now given by (|`ei, |`µi, |`øi) and their inter-
actions with the scalar triplet are given by the original matrix Y¢. This regime will
therefore be denoted as “general regime”.
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4.2. Flavor issue in type-2 leptogenesis

4. For T . 105 GeV, one has °`ø >°`µ >°`e > H , and one recover exactly the same flavor
regimes as the in the previous temperature range, plus a fourth case where `e¡$ ee is faster
than the inverse decays and the Hubble rate. This last case corresponds also to a general

regime. Only the chemical equilibrium conditions do actually change, see below.

The fact that one cannot define a general unflavored regime explains why we called the previous
section “one-flavor approximation”. This one-flavor approximation is the analog of the unflavored
regime of the type-1 Seesaw leptogenesis, and its study has allowed us to understand the main
feature of the scalar triplet leptogenesis. Strictly speaking, this situation only applies when specta-
tor processes are neglected and when the flavored C P-asymmetries and the various branching
ratios to leptons are aligned, i.e. ≤`Æ¢ ¥ ≤¢/3 and B`ÆØ ¥ ±ÆØB`/3, see below. We now determine
more precisely the parameter space where each flavor regime applies.

4.2.2 Parameter space of the flavor regimes

Now that we have defined the different flavor regimes, we can determine explicitly to which
parameter values they correspond. We remind that lepton flavor decoherence is a delicate issue
which requires a pure quantum treatment, which in full generality does not even exist for the
more widely considered standard leptogenesis picture. Here in this section, rather than providing
an exhaustive treatment of this issue, we will consider a simplified treatment by considering the
two most relevant processes : SM lepton Yukawa reactions (given approximately by Eq. (3.55))
and the total lepton-related triplet inverse decays, basically along the lines of Ref. [248]. 6 We will
proceed starting from the “full-diagonal” regime, which is the analog of the unflavored regime in
type-1 leptogenesis, and then consider the domain of validity of the “semi-diagonal” and “general”
regimes.

Full-diagonal regime and tau-decoherence temperature T ø
decoh. In the full-diagonal regime,

the lepton basis reads |`0i= (|`1i, |`2i, |`3i). In this case, the flavors that need to be treated in the
Boltzmann equations are the B °LÆ, with LÆ = `Æ where Æ = 1,2,3. The interactions between
the scalar triplet and these coherent states are diagonal and described by the diagonal matrix
Y¢ = R§ Y¢ R† as in (4.56), where R is a unitary matrix. 7 Let’s now determine more precisely for
which parameter value this regime holds.

The charged tau Yukawa interactions `ø $ eø¡ are faster than the Hubble rate for Tø º
1012 GeV. This temperature is determined by the condition °`ø(Tø) = H(Tø), where the charged
lepton Yukawa interaction rate °`ø(T ) is approximately given by Eq. (3.55). However, as explained
above, if at the time when a lepton Yukawa interaction rate becomes faster than the Hubble rate,
all the triplet inverse decay processes `Æ`Æ! ¢̄ are much faster than this reaction, the coherent

6As highlighted previously, one should in fact compare the Yukawa interaction rate with the slowest inverse decay
rate. However, in this case one cannot make any general statement since the slowest inverse decay rate depends on the
matrix element values Y¢. Therefore, in what follows, for illustrative purpose and in order to compare with the other
flavor regimes, we make the approximation of considering instead the total inverse decay ``! ¢̄ to determine the
flavor regimes.

7It is worth to mention that one can choose the unitary transformation so that the matrix elements of Y¢ are real
numbers.

133



Chapter 4. Type-2 Seesaw leptogenesis

superposition of leptons produced from the decay of a scalar triplet will inverse decay before
it has the time to undergo any charged lepton Yukawa interaction. In this case, it is expected
that decoherence is fully achieved only later, when the inverse decay rate (which is Boltzmann
suppressed at low temperatures) gets smaller than the SM lepton Yukawa rate, at a temperature
T ¥ T ø

decoh.

Since the rate of the process ``! ¢̄ is proportional to B`°¢, the parameters which determine
T ø

decoh are m¢ and the inverse leptonic decay effective parameter B`m̃eff
¢ , where m̃eff

¢ = m̃¢/
p

B`B¡

is the effective neutrino mass-like parameter defined in Eq. (4.12). Imposing that charged tau
Yukawa reaction never get faster than the lepton-related triplet inverse decays at a given tempera-
ture :

°`ø .B`
∞D

nEq
`

, (4.58)

in the same way it has been done in the type-1 seesaw case [248], one can derive a lower bound on
the triplet mass m¢ as a function of B`m̃eff

¢ which fixes the values that these parameters should
have in order to assure that triplet dynamics takes place in the “full-diagonal” flavor regime,
namely : 8

m¢&min

"

1 ,
10°3eV

B`m̃eff
¢

#

·1012 GeV . (4.59)

Semi-diagonal regime and muon-decoherence temperature T µ
decoh. In this flavor regime, the

basis reads |`00i= (|`ai, |`bi, |`øi), where |`ai and |`bi are coherent superpositions of |`ei and |`µi
states. In this case, the flavors that need to be treated in the Boltzmann equations are the B°La,b,ø,
with La,b = `a,b and Lø = `ø+eø. The interactions between the scalar triplet and these coherent
states are now “semi-diagonal” and described by the matrix Y¢ = R§ Y¢ R† as in (4.57), where
R = diag[S,1] is a unitary matrix such that S diagonalizes the (e,µ) bloc of the matrix Y¢.

As in the full-diagonal regime, the lepton states |`ai and |`bi can loose their coherence
at a temperature T µ

decoh if they undergo a charged muon Yukawa interaction `µ $ eµ¡. This
interaction is faster than the Hubble rate for Tµ º 109 GeV, which is obtained by the condition
°`µ(Tµ) = H(Tµ). But this interaction must also be compared with the inverse decays ``! ¢̄. The
analytical condition to lie in the semi-diagonal regime reads thus

°`µ .B`
∞D

nEq
`

. °`ø , (4.60)

which translates in a condition on the mass of the scalar triplet :

min

"

1 ,
10°3eV

B`m̃eff
¢

#

·109 GeV .m¢. min

"

1 ,
10°3eV

B`m̃eff
¢

#

·1012 GeV . (4.61)

8In relation with footnote 6, rigorously, B` should be replaced by B`11 in this expression. However, since B`11 ∑ B`,
this bounds constitutes in fact an absolute condition for lying in the full-diagonal regime.
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Figure 4.10 – Regions determining the different flavor regimes as a function of B`m̃eff
¢ and m¢.

The region above the solid red line is obtained by the requirement that the ø Yukawa rate is never
faster than the `` ! ¢̄ inverse decay rate, determining the full-diagonal regime. The region
between the red and orange solid lines is obtained by the requirement that the ø(µ) Yukawa rate
is faster (slower) than H and the ``! ¢̄ inverse decay rate, and corresponds therefore to the
semi-diagonal regime. Finally, the region below the dashed line corresponds to the general regime.
The horizontal dot-dashed lines correspond to the value of m¢ above which the ø, µ and e Yukawa
never reach thermal equilibrium. The vertical dot-dashed line corresponds to the value of B`m̃eff

¢
below which inverse decays never reach thermal equilibrium.

General regime. In this regime, the flavor basis is |`i = (|`ei, |`µi, |`øi), and the Boltzmann
equations must be written in terms of B °LÆ asymmetries, with Le = `e (+ee ), Lµ = `µ+ eµ and
Lµ = `ø+eø. 9 The absolute condition to lie in the general regime reads simply

m¢.min

"

1 ,
10°3eV

B`m̃eff
¢

#

·109 GeV . (4.62)

Summary. We show in Fig. 4.10 a summary of the regions corresponding to each specific flavor
regime, in function of m¢ and B`m̃eff

¢ . The white, red and orange region correspond to the full-
diagonal, semi-diagonal and general regimes. The horizontal lines show the temperature (and
thus m¢) value for which the tau (T ª 1012 GeV), muon (T ª 109 GeV) and electron (T ª 105 GeV)
charged Yukawa interactions are faster than the Hubble rate. To the left of the vertical line one has
B`m̃eff

¢ º 10°3 eV, and one lies therefore in the “weak washout” regime (in analogy with the type-1
Seesaw leptogenesis), where the inverse decays ``! ¢̄ never reach thermal equilibrium.

9Let’s note that here one has two possibilities since the charged electron Yukawa interaction may or not be in thermal
equilibrium.
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4.3 Flavored type-2 leptogenesis

In this section, we aim to study the generation of the B ° L asymmetry arising from the C P-
violating and out-of-equilibrium decays of a scalar triplet, taking into account in a systematic
way any relevant effect that a SM interaction could have at a given temperature. This includes
the flavor effects of the charged lepton Yukawa couplings and the “spectator” effects of the quark
Yukawa couplings and the sphalerons processes. To this end, we first write the expressions of the
decay rates and the C P-asymmetries valid in every regime, then consider the redistribution of
the B/3°LÆ asymmetries in the heat bath, which in turn requires considering the conservation
laws and chemical equilibrium conditions implied by slow and fast reactions, as has been done in
type-1 Seesaw leptogenesis. Finally, we derive the full network of flavored classical Boltzmann
equations that included all the above effects.

This study was made in collaboration with Diego Aristizabal Sierra and Thomas Hambye [2].
At the time of writing our paper, the role played by lepton flavor effects in production as well as
the evolution of the flavored B/3°LÆ asymmetries have been partially considered in Ref. [250].
In particular, the author of Ref. [250] first published a paper in which they just computed the
C P-asymmetries, and then updated later their paper including Boltzmann equations and short
discussions. While we agree with their result concerning the C P-asymmetries, a careful analysis
of their paper shows many clear discrepancies for example in their analytical expressions of the
Boltzmann equations.

Few months ago, i.e. in March 2015, another paper has been published in which they analyze
the type-2 flavored leptogenesis using the density matrix formalism [247]. In this paper, they
highlighted the fact that the lepton flavors actually always play a role in leptogenesis. This
interesting result was not found in our original paper [2], since we analyzed flavored leptogenesis
in the semi-classical approach. Indeed, a rigorous treatment of the flavor (de)coherence can
only be done through density matrix formalism, which was beyond our scope. However, the
consequences of Ref. [247] can be straightforwardly applied to all what has been done in Ref. [2].
They basically just mean that all the results and scenarios in Ref. [2] still apply but with extended
temperature windows.

Taking into account the considerations of Ref. [247], the precise determination of the flavor
regimes as a function of the various parameters is a delicate task which has been addressed in
section 4.2. We have seen that to each flavor regime corresponds a specific flavor basis, and
therefore a specific effective Yukawa coupling matrix Y¢. Accordingly, one has to consider specific
decay rates, C P-asymmetries and B/3°LÆ asymmetries for each flavor regime. Here, we will
derive general expressions that hold whatever the flavor regime, whatever the triplet ¢k .

The reader who would like to compute the baryon asymmetry in a scalar triplet leptogenesis
can find in the next section 4.4 a summary of the procedure to follow. We now detail the main
steps in the determination of the flavor effects.
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Figure 4.11 – Feynman diagrams of tree-level decay of the scalar triplet component ¢+
k to leptons

and scalars respectively.

4.3.1 Tree-level decay rates

Tree-level triplet decays involve leptonic and scalar final states. The Feynman diagrams are shown
in Fig. 4.11 for the¢+

k component, and the associated decay widths are computed in Appendix D.1.
The leptonic partial decay widths, depending on the lepton flavor composition of the final states,
involve extra factors of 1/2 which avoid double-counting : 10

°
≥

¢
Q
k ! ¯̀

Æ
¯̀
Ø

¥

=
m¢k

8º

Ø

Ø

Ø

Y
ÆØ
¢k

Ø

Ø

Ø

2
£

1+|Q °1|
°

1°±ÆØ
¢§

, (4.63)

where Q stands for the electric charges of the different SU (2) triplet components,¢Q
k = (¢0

k ,¢+
k ,¢++

k ).
The matrix Y¢k is related to the matrix Y¢k through the transformation Y¢k = R§ Y¢k R†, where
R is a unitary matrix that diagonalize totally or partially the Yukawa matrix Y¢1 of the triplet
responsible for leptogenesis ¢¥¢1, following that the full-diagonal or the semi-diagonal regime
applies. On the other hand, scalar triplet decay modes can be written according to :

°
≥

¢
Q
k !¡¡

¥

=
Ø

Øµ¢k

Ø

Ø

2

8ºm¢k

, (4.64)

Since Tr[Y¢Y †
¢ ] = Tr[Y¢Y †

¢ ], the total decay rate to leptons doesn’t depend on the flavor regime, as
it should. It is given as in Eq. (4.11) by

°¢k ¥ °¢0
k
= °¢+

k
= °¢++

k
= 1

8º

m2
¢k

v2 m̃eff
¢k

, (4.65)

where the effective neutrino mass-like parameter m̃eff
¢k

is defined as in Eq. (4.12) :

m̃eff
¢k

¥ m̃¢k

1
q

B k
`

B k
¡

, (4.66)

with

m̃2
¢k

¥ Tr[m¢k
∫ m¢k †

∫ ] = |µ¢k |2
v4

m4
¢k

Tr
h

Y¢k Y †
¢k

i

. (4.67)

10One could think in a first sight that the total decay rate of the three triplet components are not the same, which
would not be gauge invariant. This is actually not the case, because a peculiar attention has to be taken when summing
over the lepton channels, see Appendix D.1.
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Figure 4.12 – One-loop Feynman diagrams responsible for the flavored C P asymmetry ≤`Æ¢k
in the

pure type-2 Seesaw scenario.

The B k
`

and B k
¡ stand for the ¢k triplet decay branching ratios to lepton and scalar final states :

B k
` =

X

Æ=e,µ,ø
B k
`Æ

=
X

Æ,Ø=e,µ,ø
B k
`ÆØ

=
X

Æ,Ø=e,µ,ø
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ÆØ
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Ø

Ø

Ø

2
,

B k
¡ =

Ø

Øµ¢k

Ø

Ø

2

8ºm¢k°¢k

, (4.68)

where of course the relation B k
`
+B k

¡ = 1 holds. As in the one-favor approximation in Eq. (4.14), one

sees directly from Eqs. (4.65) and (4.66) that °¢k exhibits a minimum at B k
`
= B k

¡ = 1/2, for fixed

m̃¢k and m¢k . Thus, the farther we are from B k
`
= B k

¡ = 1/2, the faster the scalar triplet decays.

4.3.2 Computation of the C P-asymmetries

The one-loop corrections to the tree-level decay depend on the details of the corresponding model.
As mentioned at the beginning of the chapter in page 111, we focus here on (A) models featuring
several scalar triplets (“pure type-2 Seesaw states”), and (B) models involving a scalar triplet and
heavier right-handed neutrinos (“type-1+2 Seesaw states”).

± Pure type-2 Seesaw states

In purely triplet models, that is to say models entirely determined by the Lagrangian in Eq. (4.2),
the corrections to the leptonic tree-level decay mode involve only wave-function type correc-
tions [238]. The C P-asymmetry follows from the interference between the tree-level and wave-
function corrections shown in Fig. 4.12. The computation of the C P-asymmetries is done explicitly
in Appendix D.2. The final C P-asymmetry therefore consists of two pieces : a lepton number
and flavor violating one (first diagram with scalars in the loop) and a purely flavor violating part
(second diagram with leptons in the loop). The total flavored C P-asymmetry in ¢k decays can
then be written as

≤`Æ¢k
= ≤`Æ(6L, 6F )

¢k
+≤`Æ(6F )

¢k
, (4.69)

where the two pieces read

≤`Æ( 6L, 6F )
¢k

= 1
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m2
¢k

/m2
¢ j

¥

, (4.70)
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and
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, (4.71)

with

g (x) = x(1°x)
(1°x)2 +x y

(4.72)

and y = (°¢ j /m¢ j )2. Note that the C P-asymmetry in Eq. (4.70) is in-line with what has been
found in Ref. [251], and that the one in Eq. (4.71) is in-line with what has been found in Ref. [250].
This piece, which we refer to as purely flavored C P-violating asymmetry, satisfies the total lepton
number conservation constraint

X

Æ
≤`Æ(6F )
¢k

= 0 , (4.73)

and so the total C P-asymmetry can consequently be written as

≤¢k =
X

Æ=e,µ,ø
≤`Æ¢k

=
X

Æ=e,µ,ø
≤`Æ(6L, 6F )
¢k

. (4.74)

For m2
¢ j

¿ m2
¢k

, the total flavored asymmetries can be recast in terms of triplet decay observables
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) , (4.75)

with m¢k
∫ given in Eqs. (4.7).

Important comment on a purely flavored scenario. If flavor effects are operative, the purely fla-
vored C P-asymmetry in (4.71) will play a role in the generation of the B °L asymmetry. These
asymmetries, conserving total lepton number, involve only the Yukawa couplings Y¢ and not the
lepton number violating parameter µ¢. Hence, as also noted in Ref. [250], they are not necessarily
suppressed by the smallness of the neutrino masses. As can be seen by comparing (4.70) and
(4.71), when the condition

µ§
¢k
µ¢ j ø m2

¢k
Tr[Y¢k Y †

¢ j
] (4.76)

is satisfied, the purely flavored C P-asymmetry overshadows the lepton number violating piece.
This opens the path to a special regime where leptogenesis could be entirely driven by flavor
dynamics. In terms of scalar triplet interactions, this means that a purely flavored scalar triplet
leptogenesis scenario naturally emerges whenever the triplets couple substantially less to SM
scalars than to leptons, B k

¡ ø B k
`

for at least one value of k. This can for example be motivated
from symmetry arguments, see the discussion associated to Eq. (1.41) in page 21.
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Figure 4.13 – One-loop Feynman diagrams accounting for the flavored C P asymmetry ≤`i
¢Æ

in
scenarios featuring type-1 and type-2 interplay.

Note that although Purely Flavored Leptogenesis (PFL) scenarios in type-1 Seesaw can be
defined as well, they differ significantly from the purely flavored scalar triplet leptogenesis scenario
in that the latter just requires suppressed lepton number violation in a single triplet generation,
i.e. suppression of lepton number breaking interactions in the full Lagrangian is not mandatory,
as can be seen by noting that condition (4.76) can be satisfied even if µ¢k /m¢k ø Y¢k for a single
value of k. PFL scenario in type-2 leptogenesis is thus much more “natural” and straightforward
than in type-1 leptogenesis. This possible scenario will be considered in section 4.5.

± Type-1+2 Seesaw states

We now turn to the case where the new states beyond the scalar triplet are right-handed neutrinos,
which is a scenario well-motivated by GUT, see section 1.6. In these scenarios the tree-level triplet
decay involves only a vertex one-loop correction as shown in Fig. 4.13. The interference between
the tree and one-loop level diagrams leads to the following C P-asymmetry [240, 241] :

≤`Æ¢ =° 1
4º

X

i ,Ø
mNi

=m
h

µ¢Y
ÆØ
¢ Y §

NiÆ
Y §

NiØ

i

m2
¢Tr

h

Y¢Y †
¢

i

+|µ¢|2
ln

√

1+
m2
¢

m2
Ni

!

. (4.77)

Here the triplet generation index, being superfluous, has been dropped. In contrast to what has
been found in the previous case, the resulting flavored C P-asymmetry violates lepton flavor as
well as lepton number. So, unless a specific (and somehow arbitrary) flavor alignment is assumed,
so that

P

Æ ≤
`Æ
¢ = 0, in these “hybrid” schemes PFL scenarios are not definable.

In the hierarchical case, m¢ø mNi , the flavored C P-asymmetry can be recast in terms of
triplet decay observables, namely

≤`Æ¢ =° 1
2º

m¢

v2

q

B`B¡

=m
h≥

m¢
∫mN †

∫

¥

ÆÆ

i

m̃¢
, (4.78)

with m¢
∫ and mN

∫ given by Eqs. (4.7) and (4.8). Note that in type-1+type-2 scenarios, opposite to
the scenario we consider here, it is also possible to generate the B °L asymmetry from the decay
of right-handed neutrinos via a vertex diagram involving a virtual scalar triplet, see in particular
Refs. [240, 252, 253].
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4.3. Flavored type-2 leptogenesis

± Upper bound on the C P-asymmetries

The upper bounds in Eqs. (4.22) and (4.23) on the sum of the flavored C P-asymmetries still hold.
As was done in the one-flavor approximation in Eq. (4.23), from perturbativity constraints, i.e. by
requiring that the one-loop contribution to the various decay widths doesn’t exceed the tree-level
one, one can derive an upper bound on the C P-asymmetry given by

Ø

Ø

Ø

≤`Æ¢k

Ø

Ø

Ø

∑ 2 ·min
≥

B k
`Æ

,B k
¡

¥

. (4.79)

However, it seems in general not possible to derive any model-independent upper bound on the
separated flavor C P-asymmetries from light neutrino mass values. For example, in the pure type-2
Seesaw with 2 scalar triplets, we find that the C P-asymmetry in Eq. (4.69) is bounded from above
by

Ø

Ø

Ø

≤`Æ¢1

Ø

Ø

Ø

∑ 1
2º

m¢1

v2

r

B`B¡

X

i
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∫i
+2
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m2
¢2

"

X

Ø

X

∞,± 6=Æ

q

B`ÆØ

q

B`∞± +
X

Ø 6=Æ

q

B`ÆÆ

q

B`ÆØ

#

, (4.80)

where we assumed perturbative Yukawa couplings for the second triplet generation, i.e. |Y¢2 |∑p
4º. 11 Note that the second term comes from the L-conserving C P-asymmetry in Eq. (4.71).

In the mixed type-1+2 scheme, we find that the upper bound on the separated flavor C P-
asymmetries is given by the first term of the above equation, which is nothing but the general
upper bound on the sum of the flavored C P-asymmetries in Eq. (4.22), to wit

Ø

Ø

Ø

≤`Æ¢

Ø

Ø

Ø

∑ 1
2º

m¢

v2

r

B`B¡

X

i
m2

i . (4.81)

We see therefore that the upper bound on each flavored C P-asymmetry depends on which kind of
heavy particles activates leptogenesis.

Now that we have computed the various C P-asymmetries, we can compute the chemical
equilibrium conditions that are needed to write down the set of flavored Boltzmann equations.

4.3.3 B/3°LÆ asymmetries and chemical equilibrium conditions

In order to set the Boltzmann equations, one needs to derive the chemical equilibrium conditions,
as what has been done in section 3.6.3 for type-1 leptogenesis. As also already discussed in
section 4.2.2, in each flavor regime the associated flavor asymmetries that need to be treated in the
Boltzmann equations are the ¢YB°LÆ , with LÆ = `Æ(+eÆ) where eÆ are the right-handed charged
leptons. The¢YB°LÆ are directly related to¢Y`Æ through chemical equilibrium conditions. Indeed,
following the temperature some SM processes can be in thermal equilibrium. These spectator
processes induce relations between the chemical potentials and so between the asymmetries of
various species.

11The upper bound on the C P-asymmetry depends crucially on the perturbativity condition. Taking instead |YØ|∑ 1
would lead to the same expression divided by 4º.
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Chapter 4. Type-2 Seesaw leptogenesis

As explained in Appendix C.5, there is in principle a chemical potential (an asymmetry)
for each particle in the thermal bath, which implies that a priori there are as many chemical
potentials as particles in the plasma : 61. This number is however largely reduced due to the
constraints imposed by the set of chemical equilibrium conditions. These constraints depend on
the temperature regime where the B °L asymmetry is generated. For T > TEW (which is required
in order to generate a B °L asymmetry before the sphalerons decouple), one has that the possible
constraints on the chemical potentials are, in this type-2 Seesaw case : 12

1. Chemical potentials for gauge bosons vanish µW i =µB =µg = 0, and so the components of
the electroweak and color multiplets have the same chemical potentials [215].

2. Regardless of the temperature regime, cosmological hypercharge neutrality must be obeyed,
namely

Y =
X

Æ

°

µQÆ +2µuÆ °µdÆ
°µ`Æ °µeÆ

¢

+2µ¡+6µ¢ = 0 . (4.82)

Compared to the type-1 Seesaw expression in Eq. (C.55) in Appendix, since the scalar triplet
carries a hypercharge, this equation involves now the chemical potential of the scalar triplet
µ¢. These two first items already reduce to 16 the number of independent asymmetries.

3. Non-perturbative QCD instanton and electroweak sphaleron reactions – if in thermal equi-
librium – enforce the following constraints :

X

Æ

°

2µQÆ °µuÆ °µdÆ

¢

= 0 (QCD) ,
X

Æ

°

3µQÆ +µ`Æ
¢

= 0 (EW) . (4.83)

The temperature range at which the QCD instanton reactions attain equilibrium has been
estimated to be T QC D

sphal 2 [132,1013] GeV [255, 214] while for electroweak sphaleron processes,
being controlled by ÆEW rather than ÆS , it has been found to be about a factor 20 smaller
for the upper value [214] so that T EW

sphal 2 [132,1012] GeV. For a question of simplicity, we will
here assume that they both are in thermal equilibrium for Tsphal 2 [132,1012] GeV.

4. Finally, when the SM charged Yukawa reactions are in thermal equilibrium, i.e. they are
faster than the Hubble rate and faster than any other rate involving the charged fermion,
one has the following chemical equilibrium constraints :

Up-type quarks: µuÆ °µQÆ °µ¡ = 0 , (4.84)

Down-type quarks: µdÆ
°µQÆ +µ¡ = 0 , (4.85)

Charged leptons: µeÆ °µ`Æ +µ¡ = 0 . (4.86)

Top Yukawa-induced reactions are faster than the Hubble rate for T . 1015 GeV. Bottom,
charm and tau Yukawa-induced processes are faster than the Hubble rate for T . 1012 GeV,
strange and muon for T . 109 GeV, and the first generation Yukawa-induced processes for
T . 105 GeV [230, 233, 231].

12Theses ranges are based on the assumption that all SM interactions that approximately enter in thermal equilibrium
at a similar temperature do it effectively at the same temperature. We stress that some of these temperature “windows”
differ from those used in Ref. [233], in particular in what regards the charged lepton Yukawa reaction equilibrium
temperatures. They however match with those pointed out in Ref. [230].
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4.3. Flavored type-2 leptogenesis

Following the temperature regime, the effective Lagrangian possesses global symmetries and
the associated charges, the asymmetries, are conserved. This means that if at early stage there
were zero initial asymmetry for all the species present in the thermal bath (which is a reasonable
assumption) some of the chemical potentials can be set to zero, see discussion in Appendix C.5.2.
As a consequence, the exact number of non-vanishing chemical potentials as well as the number
of chemical equilibrium conditions are thus fixed only when a specific temperature window is
settled. Once this is done, the resulting system of equations is solved in terms of a single set of
variables, which we take to be µB/3°LÆ and µ¢, since it is the evolution of these quantities on which
we are interested in. The solution thus provides the relations between the asymmetries of all the
particles in the heat bath with the independent asymmetries ¢Y¢ and ¢YB/3°LÆ .

In particular, the scalar asymmetry ¢Y¡ and the lepton flavor asymmetries ¢Y`Æ are deter-
mined by the triplet asymmetry ¢Y¢ and the ¢YB°LÆ asymmetries through

¢Y¡ =°
X

k
C¡

k ¢Yk and ¢Y`Æ =°
X

k
C`
Æk¢Yk , (4.87)

where the asymmetries ¢Yk are given by the components of the asymmetry vector

¢~Y =
≥

¢Y¢ ¢YB/3°LÆ

¥T
. (4.88)

The matrices C` and C¡ depend on the flavor regime and on the temperature at which leptogenesis
takes place (i.e. the mass of the scalar triplet m¢), and their value are given in Table 4.1 for all the
flavor and temperature regimes, see next page. 13 Indeed, in each flavor regime, the structure of
the C` and C¡ matrices are determined by the constraints coming from the global symmetries of
the effective Lagrangian and the chemical equilibrium conditions enforced by those SM reactions
which in the relevant temperature regime (the regime at which the B °L asymmetry is generated)
are faster than the Universe Hubble expansion rate. All in all, one has a set of 5 pairs of matrices
for the full-diagonal regime, 3 for the semi-diagonal and 3 for the general regime. This makes a
total of 11 different matrices for C` and C¡.

We are now in a position to compute the set of classical Boltzmann equations that describes
how the scalar triplet leptogenesis works taking into account the lepton flavors and the spectator
processes, whatever the flavor or temperature regime.

m¢ (GeV) Regime C` C¡

& 1015 Full-diag.

0

@

0 1 0 0
0 0 1 0
0 0 0 1

1

A

°

2 1 1 1
¢

. . . see next page for the other regimes. . .

13Note that some of these matrices reduce to those found in the type-1 Seesaw case when removing their first column.
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m¢ (GeV) Regime C` C¡

[1012,1015] Full-diag.

0

@

0 1 0 0
0 0 1 0
0 0 0 1

1

A

°4
3

2
3

2
3

2
3

¢

[109,1012] :

[T ø
decoh,1012] Full-diag.

0

@

0 13
15 ° 2

15 ° 2
15

0 ° 2
15

13
15 ° 2

15
0 ° 2

15 ° 2
15

13
15

1

A

°1
2

1
4

1
4

1
4

¢

[109,T ø
decoh] Semi-diag.

0

@

° 4
359

307
359 ° 52

359 ° 36
359

° 4
359

°52
359

307
359 ° 36

359
26

359 ° 21
359

°21
359

234
359

1

A

°172
359

82
359

82
359

112
359

¢

[105,109] :

[T ø
decoh,109] Full-diag.

0

@

0 13
15 ° 2

15 ° 2
15

0 ° 2
15

13
15 ° 2

15
0 ° 2

15 ° 2
15

13
15

1

A

°1
2

1
4

1
4

1
4

¢

[T µ
decoh,T ø

decoh] Semi-diag.

0

@

° 4
359

307
359 ° 52

359 ° 36
359

° 4
359

°52
359

307
359 ° 36

359
26

359 ° 21
359

°21
359

234
359

1

A

°172
359

82
359

82
359

112
359

¢

[105,T µ
decoh] General

0

@

° 4
179

151
179 ° 20

179 ° 20
179

11
179 ° 25

358
344
537 ° 14

537
11

358 ° 25
358 ° 14

537
344
537

1

A

° 82
179

37
179

52
179

52
179

¢

. 105 :

[T ø
decoh,105] Full-diag.

0

@

0 13
15 ° 2

15 ° 2
15

0 ° 2
15

13
15 ° 2

15
0 ° 2

15 ° 2
15

13
15

1

A

° 4
11

2
11

2
11

2
11

¢

[T µ
decoh,T ø

decoh] Semi-diag.

0

@

° 2
244

209
244 ° 35

244 ° 24
244

° 2
244 ° 35

244 °209
244 ° 24

244
13

244 ° 33
488 ° 33

488
156
244

1

A

° 86
244

41
244

41
244

56
244

¢

[T e
decoh,T µ

decoh] B/3°Le,µ,ø

0

@

° 8
481

407
481 ° 52

481 ° 52
481

22
481 ° 1

13
70

111 ° 4
111

22
481 ° 1

13 ° 4
111

70
111

1

A

°164
481

2
13

8
37

8
37

¢

. T e
decoh General

0

@

3
79

442
711 ° 32

711 ° 32
711

3
79 ° 32

711
442
711 ° 32

711
3

79 ° 32
711 ° 32

711
442
711

1

A

°26
79

16
79

16
79

16
79

¢

Table 4.1 – C` and C¡ matrices for all the flavor regimes and temperature ranges.
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4.3.4 Flavored Boltzmann equations

The network of Boltzmann equations for scalar triplet leptogenesis, no matter whether lepton
flavor effects are active or not, corresponds to a system of coupled differential equations ac-
counting for the temperature evolution of the triplet density Yß = Y¢+Y¢̄, the triplet asymmetry
¢Y¢ = Y¢°Y¢̄ and the ¢YB/3°LÆ charge asymmetries. We give in Appendix D.4 the details of the
derivation of the set of Boltzmann equations, which ultimately reads

Ẏß =°
√
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Y Eq
ß

°1

!

∞D °2
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Y Eq
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∞A , (4.89)
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(4.91)

The matrices C`
ÆØk and C`

ÆØ∞±k are defined according to

C`
ÆØk =C`

Æk +C`
Øk and C`

ÆØ∞±k =C`
Æk +C`

Øk °C`
∞k °C`

±k , (4.92)

where the C` and C¡ matrices relate the asymmetry in lepton and scalar doublets with the
B/3°LÆ and triplet asymmetries according to Eqs. (4.87). The asymmetries ¢Yk are given by
the components of the asymmetry vector in Eq. (4.88) : ¢~Y = (¢Y¢ , ¢YB/3°LÆ). The final baryon
asymmetry is as usual given by

¢Y today
B = 12

37

X

Æ
¢Y end

B/3°LÆ
, (4.93)

where ¢Y end
B/3°LÆ

are the flavor asymmetries at the end of leptogenesis. The various rates have al-
ready been introduced in section 4.1.5, page 117. In particular, in the second line of the Boltzmann
equation (4.91), we took into account : (i) the lepton flavor and lepton number (¢L = 2) violat-
ing Yukawa-scalar-induced and triplet-mediated s and t channel 2 $ 2 scatterings ¡¡$ ¯̀

Æ
¯̀
Ø

and ¡`Ø $ ¡̄ ¯̀
Æ , which are accounted for by the reaction densities ∞¡¡

`Æ`Ø
and ∞

¡`Ø
¡`Æ

; (ii) the
lepton-flavor-violating Yukawa-induced and triplet-mediated s and t channel 2 $ 2 scatterings
`∞`± $ `Æ`Ø and `Ø`∞ $ `Æ`±, with reaction densities given by ∞

`∞`±
`Æ`Ø

and ∞
`Ø`∞
`Æ`±

. The analytical
expression of the rate of these scattering processes are given in Appendix D.3.

We show in Fig. 4.14 the different reaction densities as a function of z ¥ m¢/T by fixing
the relevant parameters according to m¢ = 109 GeV, m̃¢ = 10°2 eV and B¡ = 10°4 (B¡ = 0.5) for
the plot on the left (right). For the scattering rates, for convenience we summed over all the
initial and final flavor configurations. We see that the various 2 $ 2 scattering rates are always
smaller than the Hubble rate for these parameter choices. This is actually the case for most of the
parameter space. Accordingly, as in the one-flavor approximation, from now on and throughout
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Figure 4.14 – Reaction densities for the different processes involved in scalar triplet flavored
leptogenesis. In the left-hand side plot B¡ = 10°4 while in the right-hand side plot B¡ = B` = 0.5
(B` = 1°B¡). The remaining parameters have been fixed according to m¢ = 109 GeV and m̃¢ =
10°2 eV.

the numerical calculation we will drop the third and fourth term in the r.h.s. of Eq. (4.91) (i.e. the
second line). For the numerical example we will consider below, this approximation is valid up to
better than ª1%.

4.3.5 Formal integration of Boltzmann equations

Now that we know the Boltzmann equations for each flavor regime, it must be explained how
to deal with them to get the final asymmetry produced. We here try to solve analytically the set
of Boltzmann equations. Keeping only leading order terms in Eq. (4.91), i.e. dropping third and
fourth terms, an analytic formal integration of the equations responsible for the B °L asymmetry
can be accomplished, basically along the same lines of the type-1 Seesaw case [256]. In all the
flavor regimes, one has to consider 3 flavors, that we will label a, b and c . 14 The asymmetry vector
introduced in Sec. 4.3.3 (see Eq. (4.88)) is given by

¢~Y =
≥

¢Y¢ ¢YB/3°La ¢YB/3°Lb ¢YB/3°Lc

¥T
. (4.94)

In terms of this vector, Eqs. (4.89) and (4.91) can be casted in matricial form, namely

d
d z
¢~Y (z) =°

√

Yß

Y Eq
ß

°1

!

D(z)~"°D(z)M (z)¢~Y (z) , (4.95)

with

D(z) = ∞D (z)
s(z) H(z) z

, (4.96)

14The flavors (`a ,`b ,`c ) correspond to (`1,`2,`3) In the full-diagonal regime, (`a ,`b ,`ø) in the semi-diagonal regime,
and (`e ,`µ,`ø) in the general regime.
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Figure 4.15 – P eigenvectors-third-component P3i as a function of z. The eigenvectors have been
evaluated for the flavor configuration B`ÆÆ = 0 and B`ab = B`ba = (1°B¡)/2, with B¡ = 10°4, in the
two-flavor approximation for simplicity. We have checked that this result is quite insensitive to
changes in the flavor configuration. The vertical yellow stripe indicates the range where the matrix
P slightly depends upon z.

and where the C P-asymmetry vector~" is defined as

~"=
≥

0 ≤`a
¢ ≤`b

¢ ≤`c
¢

¥T
, (4.97)

while the matrix M according to
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In the case M (z) =M , the system of equations in (4.95) can be decoupled via a rotation of the
asymmetry vector ¢~Y , the matrix accounting for the rotation being determined by the similarity
transformation

P °1 M P = M̂ , (4.99)

which brings M to diagonal form. Strictly speaking, M does depend on z, but it turns out that the
z dependence of the rotation matrix P is quite moderate (only the first colon of M do actually
depend on z). As can be seen in Fig. 4.15, in the high as well as in the low temperature regime
P (z) =P whereas within the window z Ω [0.2,7] there is a rather soft dependence.

Thus, we will make the approximation to take a z independent change-of-basis-matrix P

and rotating the asymmetry vector, as

¢~Y 0(z) =P °1¢~Y (z) . (4.100)
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In this way, we finally get a decoupled system of differential equations :

d
d z
¢~Y 0(z) =°

√

Yß

Y Eq
ß

°1

!

D(z)~"0 °D(z)M̂ (z)¢~Y 0(z) , (4.101)

where the rotated C P-asymmetry vector ~"0 has been introduced:

~"0 =P °1~" . (4.102)

The decoupled system of equations in (4.101) can then be formally integrated through their
integrating factor. By doing so, and assuming vanishing primordial asymmetries, ¢~Y (z0) = 0 with
z0 ø 1, the solution reads

¢~Y 0(z) =°
Zz

z0

d z 0 ∞D (z 0)
∞D (z 0)+4∞A(z 0)

dYß(z 0)
d z 0 e°

Rz
z0 d z 00D(z 00)M̂ (z 00)~"0 . (4.103)

We used Eq. (4.90) and the fact that Yß(z) follows quite closely the equilibrium distribution
function. In terms of the “new” asymmetries, and due to the diagonal structure of the matricial
damping factor M̂ , one can define efficiency functions ¥0i (z), which account for the evolution of
the primed asymmetries and their corresponding values at freeze-out (z !1), namely

£

¢~Y 0(z)
§

i =°¥0i (z)"0i Y Eq
ß (z0) , (4.104)

where the efficiency functions can be directly read from (4.103) by taking into account that, as
usual, they have been normalized to the scalar triplet equilibrium distribution evaluated at z0.

The evolution of these asymmetries, however, does not describe the evolution of the actual
B/3°LÆ asymmetries but instead, as can be seen in (4.100), of a superposition which involves the
triplet asymmetry as well. A meaningful description requires switching back to the non-primed
variables, which yields

¢~Y (z) =°
Zz

z0

d z 0 ∞D (z 0)
∞D (z 0)+4∞A(z 0)

dYß(z 0)
d z 0 e°

Rz
z0 d z 00D(z 00)M (z 00)~" , (4.105)

where we used P eM̂ P °1 = eM . In the non-primed basis the matricial damping factor is no longer
diagonal and therefore defining efficiency functions, as it was done in the primed basis, is no
longer possible : B/3°La,b,c are a superposition of three terms weighted by the corresponding
C P-asymmetries ≤`a,b,c

¢ . Let us discuss this in more detail. The i -th component of the asymmetry
vector in (4.105) can be written as

£

~Y¢(z)
§

i =°
Zz

z0

d z 0 ∞D (z 0)
∞D (z 0)+4∞A(z 0)

dYß(z 0)
d z 0

X

k=1,2,3

h

e°
Rz

z0 d z 00D(z 00)M (z 00)
i

i k
"k , (4.106)
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thus implying that the flavored asymmetries become

¢YB/3°La (z) =°
h

¥aa(z)≤`a
¢ +¥ab(z)≤`b

¢ +¥ac (z)≤`c
¢

i

Y Eq
ß (z0) ,

¢YB/3°Lb (z) =°
h

¥ba(z)≤`a
¢ +¥bb(z)≤`b

¢ +¥bc (z)≤`c
¢

i

Y Eq
ß (z0) ,

¢YB/3°Lc (z) =°
h

¥ca(z)≤`a
¢ +¥cb(z)≤`b

¢ +¥cc (z)≤`c
¢

i

Y Eq
ß (z0) , (4.107)

with the flavored efficiency functions defined as :

¥ÆØ(z) = 1

Y Eq
ß (z0)

Zz

z0

d z 0 ∞D (z 0)
∞D (z 0)+4∞A(z 0)

dYß(z 0)
d z 0

h

e°
Rz

z0 d z 00D(z 00)M (z 00)
i

ÆØ
. (4.108)

It is interesting to note that even if one (or even two) C P-asymmetry vanishes, e.g. ≤`c
¢ ! 0, an

asymmetry will develop in this flavor anyway, provided that the efficiency is not zero. So, once
lepton flavors are taken into account the efficiencies are in general no longer flavor diagonal. The
presence of the flavor off-diagonal efficiencies is a manifestation of flavor coupling which persists
even when C` = 1 due to the intricate structure of the matrix M .

More precisely, as already said above, this occurs because, in contrast to the type-1 Seesaw
leptogenesis case, an asymmetry in the state generating the B °L asymmetry develops (¢Y¢), and
so an additional Boltzmann equation accounting for this asymmetry turns out to be mandatory.
Due to the presence of this equation the asymmetries in flavor a,b,c are indirectly coupled, and
such coupling becomes manifest in the exponential function in Eq. (4.108). In other words, this is
the precise reason why, unlike standard leptogenesis, flavor coupling effects are unavoidable in
scalar triplet leptogenesis ! 15

15A specific case where flavored efficiency functions, in the same sense of (4.104), can be properly defined corresponds
to a purely flavored leptogenesis (PFL) scenario, see section 4.5.
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Figure 4.16 – Sketch of the procedure to follow to take into account flavor effects in any given
type-2 Seesaw model, where the lightest triplet ¢ is responsible for the generation of the baryon
asymmetry.
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Chapter 4. Type-2 Seesaw leptogenesis

4.4 Summary : leptogenesis procedure to follow in any given type-2

Seesaw model

As we have seen, the type-2 leptogenesis is clearly more complex that the standard type-1 lep-
togenesis. On top of the fact that scalar triplet undergoes gauge reactions, carries in general an
asymmetry and decays through two different channels (di-lepton and do-scalar ones), we have
shown in section 4.2 that flavor effects are always present during all the leptogenesis era. It is
therefore necessary to provide a clear procedure to follow for a reader who would need to compute
the baryon asymmetry produced from some given parameter inputs.

The procedure is summarized in Fig. 4.16 below. From the knowledge of the fundamen-
tal parameters of the Lagrangian m¢, Y¢ and µ¢, where ¢ is the scalar triplet responsible for
leptogenesis, one must follow the following steps :

1. From Eqs. (4.9) and (4.10) in page 115, one can determine the partial decay rates to leptons
and scalars respectively. As a consequence, one can determine the B` and B¡, as well as m̃¢

and m̃eff
¢ from Eqs. (4.12) and (4.13), page 115.

2. From Fig. 4.10 in page 135, one can determine what is the flavor regime to be considered.

• In the case where the full-diagonal regime applies, one must compute the new Yukawa
matrix Y¢ = R§Y¢R†, where R is a unitary matrix that diagonalizes Y¢, i.e. Y¢ must be
brought into the form as in Eq. (4.56).

• In the case where the semi-diagonal regime applies, one must compute the new
Yukawa matrix Y¢ = R§Y¢R†, where R = diag[S,1] is a unitary matrix such that S
diagonalizes the (e,µ) bloc of the matrix Y¢, i.e. Y¢ must have the form as in Eq. (4.57).

• In the case where the general regime applies, one has simply Y¢ = Y¢.

Now that the matrix elements of Y¢ are known, one can determine the B`ÆØ matrix elements
from Eq. (4.68), page 138.

3. Together with the mass value m¢, one has also access to the value of the C` and C¡ matrices
for the associated temperature regime from Table 4.1, page 144.

4. One must then compute the values of the flavored C P-asymmetries, using the triplet’s
Yukawa matrix Y¢. These depend on the extra heavy states (scalar triplet or right-handed
neutrinos) which allow to have non-vanishing C P-asymmetries.

• In the case these are extra scalar triplets, flavored C P-asymmetries are given by
Eqs. (4.69)-(4.71), page 138.

• In the case these are extra right-handed neutrinos, flavored C P-asymmetries are given
by Eq. (4.77), page 140.

5. One has now all the ingredients to compute numerically the B/3°LÆ asymmetries produced
at the end of leptogenesis from the Boltzmann equations in Eqs. (4.89)-(4.91), page 145.

6. The final baryon asymmetry as observed today is finally related to the B/3°LÆ asymmetries
through Eq. (4.93), page 145.
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4.5. Purely Flavored Leptogenesis

We will now study the phenomenology of the flavored scalar triplet leptogenesis. In order to
illustrate how scalar triplet flavored leptogenesis works, we will analyze two scenarios in the next
sections. 16

(i ) A scenario where the extra degrees of freedom correspond to additional scalar triplets,
with the lepton number conserving flavored C P-asymmetries naturally dominating the
generation of the B °L asymmetry : this is the Purely Flavored Leptogenesis (PFL) scenario
we will analyze in section 4.5 [257, 258, 259, 260].

(i i ) General triplet leptogenesis models involving lepton number violating C P-asymmetries
stemming from the presence of any Seesaw state heavier than the decaying scalar triplet
(right-handed neutrinos or extra scalar electroweak triplets). This will be analyzed in sec-
tion 4.6.

4.5 Purely Flavored Leptogenesis

As previously argued (see Eq. (4.76) and the corresponding discussion in section 4.3.2), when the
scalar triplet C P-asymmetries arise from the presence of another scalar triplet, there exists an
overall regime in which the purely flavored C P-asymmetries are larger than the lepton number
violating C P-asymmetries, thus leading to a natural realization of a PFL successful scenario
(to a very good approximation). Strictly speaking, PFL scenarios are defined by the condition
P

Æ ≤
`Æ
¢ = 0 [257]. However, in a more general fashion, whenever the condition |PÆ ≤

`Æ
¢ | < |≤`Ø¢ |

(for any given value of Ø) is satisfied a PFL scenario can be defined as well. This is actually the
condition which is generically satisfied, as soon as Eq. (4.76) holds, i.e. if one or both scalar
triplets couple substantially less to scalars than they do to leptons, µ¢k /m¢k ø Y¢k or equivalently
B k
¡ø B k

`
. This condition is interesting since it is also the one needed to provide large rate for the

Charged Lepton Violation processes, as we will discuss in section 4.7 below.

Since there are a lot of parameters in the game, it is in general difficult to make a general
analysis. This is why, for concreteness and in order to analyze as well as to demonstrate the
viability of this scenario, we will fix the triplet mass spectrum to be hierarchical (m¢1 ø m¢Ø with
1 <Ø) and assume that the B °L asymmetry is entirely due to the dynamics of the lightest state
¢¥¢1 (henceforth we drop the triplet generation index). For simplicity, we will also consider the
example of a two-flavored regime situation where the B °L asymmetry is distributed along the ø
and a lepton flavor directions (a being an admixture of µ and e flavors). That is, we suppose that
the semi-diagonal regime applies, in which the third lepton flavor “b” doesn’t play any role during
leptogenesis. 17 This could be the case if the couplings involving the flavor b are much smaller
than the one involving a and ø flavors. This hypothesis is not mandatory, but it will allow us to
understand the main features of this PFL scenario.

16A scheme of item (i i ) has been already studied in the context of SO(10)-inspired left-right symmetric models in
Ref. [253]. However, our analysis differs from the one presented in [253] in that the B °L asymmetry in their case is
entirely dictated by the lightest and next-to-lightest right-handed neutrinos, whereas in the analysis we will carry out
the B °L yield is driven only by the scalar triplet.

17This is also equivalent of taking a two-flavor approximation, in which we sum over the a and b flavors, in parallel to
the one-flavor approximation studied in section 4.1.
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Chapter 4. Type-2 Seesaw leptogenesis

In order to lie in the semi-diagonal regime, this scenario requires leptogenesis to occur at
T µ

decoh ∑ T ∑ T ø
decoh (see section 4.2.1), 18 and furthermore it requires more than a dominance

of the purely flavored C P-asymmetries. Since the sum of the purely flavored C P-asymmetries
vanishes (total lepton number is conserved), if there were only source terms, a net non-vanishing
B °L asymmetry would not develop due to an exact cancellation among the different B/3°LÆ
asymmetries. This cancellation has to be mandatorily avoided in order that a net non-vanishing
total B °L asymmetry develops.

In the type-1 Seesaw leptogenesis, this is possible due to the lepton flavor dependence of the
washout effect, which allows the B/3°LÆ asymmetries to be washed out in different amounts. In
other words, the production of a net B°L asymmetry in the PFL type-1 Seesaw case, which involves
L-conserving C P-asymmetries as well, is closely related to the action of L-violating inverse decay
rates larger than the Hubble Universe expansion rate (fast L-violating inverse decays), so that they
reprocess the B/3°LÆ asymmetries in different amounts, in such a way that these asymmetries
do not compensate each other anymore.

In the type-2 Seesaw scenario, a similar effect is also possible provided decay/inverse decay
to leptons and to scalars reach thermal equilibrium at some stage during the production of the
B°L asymmetry, so that L-violating processes do induce a washout. Additionally, and this is a new
effect which does not exist in the PFL type-1 scenario, this is also possible even if the L-breaking
inverse decay processes present in the heat bath never reach thermal equilibrium !

4.5.1 Mechanism

Let us explain already at this point how does this new effect work. To this end, we display in
Fig. 4.17 the evolution of the different abundances as a function of z = m¢/T for the following
parameter choice : 19

m¢ = 109 GeV , m̃¢ = 10°2 eV , B¡ = 10°4 ,

≤`¢ ¥ ≤`ø¢ =°≤`a
¢ = 1 , B`aa = B`aø = 0 , B`øø = 1°B¡ . (4.109)

As we will discuss further on in this section, this B`ÆØ flavor configuration actually maximizes the
final efficiency.

Fig. 4.14 (left-hand side plot) clearly shows that for B¡ = 10°4 the inverse decays ¡¡! ¢

have always a rate slower than the Hubble expansion rate. The fact that for the type-2 PFL
case, we do get nevertheless a net non-vanishing B °L asymmetry can then at first sight appear
counterintuitive. If for instance only the channel to leptons does get in thermal equilibrium, as it
turns out to be the case for B¡ = 10°4, the scalar triplets have effectively lepton number L =°2
and the only active (fast) inverse decays in the thermal bath, ¢! ¯̀ ¯̀ and ¢̄! ``, do not break
total lepton number.

18Note that in the regime where all the charged lepton SM Yukawa interactions are in thermodynamic equilibrium
(T ø 105 GeV) lepton flavor equilibrating processes from generation-mixing interactions would render this PFL
scenario unviable [259].

19Using Eq. (4.66), this choice corresponds to B`m̃eff
¢ = 1 eV. From Fig. 4.10, this parameter choice ensures the B °L

asymmetry generation process to take place in the semi-diagonal regime, where Eqs. (D.73) and (D.74) hold.
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Figure 4.17 – Evolution of the different quantities Yß, ¢Y¢, ¢YB°L , ¢Y¡ and ¢Y eff
B°L as given by

Eq. (4.110), as a function of z = m¢/T for the flavor configuration : B`aa = B`aø = 0, B`øø = (1°B¡).
The remaining parameters have been fixed according to: m¢ = 109 GeV, m̃¢ = 10°2 eV and
B¡ = 10°4.

However, although the scalar doublet channel never reaches thermal equilibrium, still a
portion of the scalar triplets in the heat bath undergoes decays to scalar doublets (¢!¡¡), and
these processes do break L. If the processes ¢!¡¡ and ¢̄! ¡̄¡̄ take place at different rates, the
thermal bath gets a fraction of total lepton number each time these reactions occur. Quantitatively,
since ¢!¡¡ and ¢! ¯̀ ¯̀ are the only processes to violate this effective B °L number, this means
that we can define an effective B °L yield, ¢Y eff

B°L , determined by the counting of how many scalar
triplets decay times their branching ratio into scalar doublets, namely

¢Y eff
B°L(z) '°2

Zz

z0

d z 0

sH z 0
¢Y¢

Y Eq
ß

B¡∞D , (4.110)

where the factor 2 comes from the fact that the decay to scalar doublets violates lepton number by
2 units. This effective quantity holds for the total B °L asymmetry available if one assigns to ¢ (¢̄)
a lepton number equal to °2 (2), as we have previously pointed out. It is related to the usual B °L
yield (where triplets have vanishing lepton number) according to

¢YB°L(z) =°2¢Y¢(z)+¢Y eff
B°L(z) . (4.111)

Since ultimately all triplets decay (their density vanishes), the final B °L asymmetry simply reads

¢Y end
B°L =¢Y eff

B°L(z !1) '°2
Z1

z0

d z 0

sH z 0
¢Y¢

Y Eq
ß

B¡∞D . (4.112)

In order to prove that this formula reproduces the correct B °L asymmetry yield at freeze-out,
we have inserted in Eq. (4.110) the ¢Y¢ asymmetry obtained by solving numerically the set of
Boltzmann equations. The result is shown in Fig. 4.17 (right panel) by the dashed gray curve. It
clearly shows that Eq. (4.112) reproduces very well the numerical result (solid black curve) for the
B °L asymmetry yield at freeze-out, up to a small deviation of order 10%. This deviation can be
fully traced back to the effect of the inverse decay processes, ¡¡!¢ and ¡̄¡̄! ¢̄, i.e. of the term
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Chapter 4. Type-2 Seesaw leptogenesis

proportional to B¡ in Eq. (4.89). These scalar inverse decays are not as numerous as scalar decays,
because they are Boltzmann suppressed, but they are not negligible either.

As Eq. (4.112) shows, the generation of a baryon asymmetry, through decays rather than
through inverse decay washout effects, is thus closely related to the possibility of creating a
scalar triplet asymmetry (something obviously not possible for a right-handed neutrino due to its
Majorana nature). The role of flavor effects is in fact to generate such a triplet asymmetry. To see
that, it is useful to write down the relevant terms in Eq. (4.90),

¢Ẏ¢ æ
X

k

X

Æ
B`ÆC`

Æk
¢Yk

Y Eq
`

∞D . (4.113)

This expression clearly shows that a triplet asymmetry can be generated by two kinds of flavor
effects :

A. The first possibility arises if the C`
Æk have a flavor structure. For instance, if the ø Yukawa

is in equilibrium, once a lepton doublet `ø is produced, it has the time to interact through
the Yukawa coupling and a fraction of the ø flavor is transferred from `ø lepton doublets
to eø lepton singlets, while this is not the case for flavor a. These transferred fractions are
just given by the C` matrices which are dictated by the chemical potential equilibrium
equations, see Eq. (4.87). This means that there are less `ø than `a lepton doublets available
for inverse decays to scalar triplets. So, even if there is no flavor structure in the branching
ratios (i.e. B`a = B`ø) and even if, at the onset, ¢YLø =°¢YLa , the number of ¢ produced is
different from the number of ¢̄ produced because their production rate is proportional to
Y
`ø
+Y

`a
and Y`ø +Y`a respectively, which are unequal. 20

B. The second possibility arises from the flavor structure of scalar triplet decays, i.e. the
B`Æ . If B`a 6= B`ø , a triplet asymmetry can be produced even if the C` coefficients do not
distinguish the a and ø flavors. In this case, even if at the onset, ¢YLø = °¢YLa , with for
example Bø¿ Ba and YLø > 0, inverse decays involving the ø flavor are much more frequent
than those involving the a flavor and inverse decays `ø`a,ø! ¢̄ occur more frequently than
`a`a,ø! ¢̄ inverse decays, resulting in the generation of a ¢Y¢ asymmetry (of negative sign
in this case).

In other words, even if in the PFL case there is no L-violating C P- asymmetry, a final B ° L
asymmetry can be generated in this case, even without L-violating processes attaining thermal
equilibrium, i.e. even if B¡ ø B`. The mechanism can be understood as a three step process,
summarized in Fig. 4.18. Firstly, an asymmetry ¢YLø = |¢YLa | 6= 0 is created from the source term
in Eq. (4.91). Secondly, thanks to flavor effects, this asymmetry induces a triplet asymmetry via
Eq. (4.113), due to the flavor structure encoded in C`

Æk and/or due to the flavor structure encoded
in the B`Æ . And finally, once a scalar triplet asymmetry is created, a B °L asymmetry develops in
turn because each time a triplet (anti-triplet) decays to scalars, a pair less of anti-leptons (leptons)

20It is worth noting that we have the same reprocessing concerning the ¡ asymmetry created from the slow ¢ decays.
This latter asymmetry is partly reprocessed through L-conserving SM Yukawa interactions into chiral asymmetries for
charged leptons, which modifies back the ¢ asymmetry, hence the number of ¢ decaying into SM scalars, hence the
B °L asymmetry. This effect is nevertheless mild, since B¡ø B` in this PFL case.
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Figure 4.18 – Sketch of the type-2 PFL mechanism. See text for further details.

is produced back from the decay of a triplet (anti-triplet). The more ¢Y¢ asymmetry is produced,
the bigger the efficiency. This PFL production mechanism, based on the chain of processes
`Æ`Ø$ ¢̄! ¡̄¡̄ and ¯̀

Æ
¯̀
Ø$¢!¡¡, is therefore very different from the PFL type-1 scenario. It

stems from the fact that in the type-2 scenario, a Seesaw state asymmetry develops, and in its last
step this asymmetry generates a final B °L asymmetry from a production mechanism which is
due to out-of-thermal equilibrium decays (B¡ø B`), i.e. from the L-violating processes ¢!¡¡

and ¢̄! ¡̄¡̄. 21

Let us emphasize once again that this B¡ø 1 case is the situation which leads naturally to
PFL, since this condition leads to a natural dominance of the purely flavored C P-asymmetries. It
must be noted that PFL could nevertheless work for larger values of B¡ too, in a way more similar
to the more involved PFL scenarios in the type-1 context, see section 4.5.2 below.

In the following subsection we will analyze, along these lines, the efficiency dependence
upon the relevant parameters. We will discuss in particular the flavor configurations which
minimize, or maximize, the production of ¢Y¢. We will then discuss the flavored C P-asymmetry
parameter dependence and show how the configurations that maximize the efficiency minimize
the flavored C P-asymmetry. The production of the B°L asymmetry, which is given by the product
of the flavored C P-asymmetry and the efficiency, results therefore from the balance of both effects.

4.5.2 PFL scenario efficiency

Interestingly, in this PFL scenario within a two-flavor approximation, it is possible to define
flavor efficiencies. What actually happens in this case is that due to the PFL condition

P

Æ ≤
`Æ
¢ = 0,

which implies ≤`¢ ¥ °≤`a
¢ º ≤`ø¢ , the off-diagonal efficiency functions can be hidden by suitable

21This production mechanism driven by a tiny coupling is in many ways similar to the dark matter freeze-in produc-
tion mechanism, as Eq. (4.112) shows. However there are important differences. Firstly, this equation involves as a
source term an asymmetry, ¢Y¢, and not the symmetric component of a particle species as in the freeze-in scenario.
Secondly, since we are dealing with decay rates much larger that the one of the dark matter freeze-in, still a small
amount of inverse decays occurs, as we have pointed out.
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redefinitions, see Eq. (4.107) :

¢YB/3°La (z) =
£

¥aa(z)°¥aø(z)
§

≤`¢Y Eq
ß (z0) ! ¥a(z)≤`¢Y Eq

ß (z0) ,

¢YB/3°Lø(z) =
£

¥øa(z)°¥øø(z)
§

≤`¢Y Eq
ß (z0) ! ¥ø(z)≤`¢Y Eq

ß (z0) , (4.114)

and so the total B °L asymmetry can be written as

¢YB°L(z) = ¥(z)≤`¢Y Eq
ß (z0) =

£

¥a(z)+¥ø(z)
§

≤`¢Y Eq
ß (z0) , (4.115)

with the final value (the value at freeze-out) given by ¢Y end
B°L = ¢YB°L(z !1). The problem of

quantifying the final efficiency ¥ ¥ ¥a +¥ø – defined in Eq. (4.115) and taking z !1 to get the
final value – is in principle an eight parameters problem : ≤`ø,a

¢ , m¢, m̃¢, B¡, B`aa , B`øø and B`aø ,
which reduces to six parameters due to the constraints B`+B¡ = 1 and ≤`¢ ¥ ≤`ø¢ = °≤`a

¢ . Since
the efficiency does not depend on ≤`¢ – see Eq. (4.115) – we will analyze the dependence of the
efficiency upon the 5 remaining parameters: m¢, m̃¢, B¡, B`aa and B`øø .

We start by analyzing the dependence upon B`ÆØ for fixed B¡, m¢ and m̃¢. Different flavor
configurations B`ÆØ will produce a minimal or maximal efficiency. However, as we will show
latter, the configurations that maximize the efficiency do not necessarily maximize the final B °L
asymmetry. We then proceed by analyzing the dependence of the efficiency with m̃¢ for fixed B¡,
m¢ and B`ÆØ , and finally the dependence of the efficiency with B¡ for fixed m̃¢, m¢ and B`ÆØ . This
will allow us to understand and distinguish the main features of the type-2 Seesaw PFL scenario.

± B`Ø∞ dependence of the efficiency.

In order to proceed, we first solve numerically the system of kinetic equations in (4.89)-(4.91) for
different flavor configurations. We then provide some physical arguments supporting the special
flavor configurations that maximize/minimize the efficiency. For concreteness, we fix three out of
the five relevant parameters as follows :

m¢ = 109 GeV , m̃¢ = 10°2 eV , B¡ = 10°4 . (4.116)

Once these parameters are fixed, the efficiency is entirely dictated by the flavor configurations
determined by the values of the B`ÆØ parameters. It turns out that the flavor dependence is well
described by the quantity :

R ¥
B`a

B`ø

=
B`aa +B`aø

B`øa +B`øø

, (4.117)

which represents the ratio of triplet decay branching ratios to different lepton-flavor final states.
The importance of this quantity can be understood from Eq. (4.113), where we see that it is
precisely through the B`Æ that a triplet asymmetry is generated. We plot in Fig. 4.19 the efficiency
as a function of this parameter R for the parameters fixed according to Eq. (4.116). It clearly shows
that the efficiency exhibits four special configurations, namely (i , i i ) two global maxima at R ø 1
and R ¿ 1, (i i i ) one local maximum and (i v) one global minimum near R ª 1. We now aim to
understand the physical reasons behind these special configurations.
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Figure 4.19 – Efficiency as a function of the R parameter for m¢ = 109 GeV, m̃¢ = 10°2 eV and
B¡ = 10°4. The vertical dashed line at the left (right) shows the value below (above) which the
`a`a ! ¢̄ (`ø`ø! ¢̄) inverse decays never reach thermal equilibrium.

• Configurations (i ) and (i i ) : following Eq. (4.117), these global maxima correspond to the
flavor alignments B`a ø B`ø and B`a ¿ B`ø . The effect seems entirely driven by the B`Æ , so we
will not consider the possible effects of the C`

Æk and C¡
k elements in the analysis. More precisely,

these maxima are reached whenever the inverse decays involving the a or ø flavor never enter in
thermal equilibrium, i.e. for B`ÆÆ < B Eq

`ÆÆ
where B Eq

`ÆÆ
is determined by :

B Eq
`ÆÆ

∞D

HnEq
`

Ø

Ø

Ø

Ø

Ø

max

= 1 which gives B Eq
`ÆÆ

º 5 ·10°4 , (4.118)

where we used in this last expression the parameter values given in Eq. (4.116). This value is
in good agreement with the numerical results shown in Fig. 4.19, where the two maxima are
reached for R . 5 ·10°4 and R & 2 ·103. For these configurations, only the asymmetry produced
in one flavor is transferred through inverse decays `Æ`Æ ! ¢̄ to a triplet asymmetry, which is
therefore maximal since the two flavor asymmetries have opposite signs. As a consequence, one
asymmetry is depleted through the chain `Æ`Æ $ ¢̄! ¡̄¡̄, while the other flavor asymmetry
remains unaffected, clearly leading to a maximal efficiency.

• Configuration (i i i ) : this local maximum is in fact reached for R º 1 when B`aa ,B`øø ø B`aø .
In this configuration, only the inverse decays`a`ø! ¢̄ reach thermal equilibrium, and one expects
no production of a triplet asymmetry, and therefore no production of a final B °L asymmetry,
since the flavor asymmetries are depleted by the same amount. However, this is not the case
because the C`

Æk elements have a flavor structure, which here plays a crucial role. The point is that
when inverse decays are in thermal equilibrium, the combination of processes `a`ø $ ¢̄! ¡̄¡̄

and ¯̀a ¯̀
ø$¢!¡¡ tends to equilibrate the flavor asymmetries in lepton doublets ¢Y`ø º°¢Y`a ,
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Chapter 4. Type-2 Seesaw leptogenesis

while in the meantime decreasing the separated asymmetries by a small amount. 22 But due to
the chemical equilibrium conditions, the total lepton flavors asymmetries ¢YB/3°LÆ are in general
different. Indeed, using Eq. (4.87), the total B °L asymmetry at freeze-out is related to the lepton
flavor doublet asymmetries through :

¢YB°L =¢YB/3°La +¢YB/3°Lø =°
¢Y`a

°

C`
øø°C`

øa
¢

+¢Y`ø
°

C`
aa °C`

aø
¢

C`
øøC`

aa °C`
aøC`

øa
. (4.119)

In the PFL regime, in the case where the final lepton doublet asymmetries are equal and opposite,
¢Y`ø º°¢Y`a (as for the case B`ÆÆ = 0), a final B °L asymmetry can be produced only if the C`

Æk
elements have a flavor structure. This B °L asymmetry can be quite large because the flavor
asymmetries in lepton doublets ¢Y`Æ decrease only slightly for this special configuration.

Any significant deviation from this special configuration, e.g. B`ÆÆ > B Eq
`ÆÆ

, would not only
tend to equilibrate the flavor asymmetries in the lepton doublets, but also tend to decrease the
¢Y`Æ separately through the chain ¯̀

Æ
¯̀
Æ$¢!¡¡. All in all, the efficiency has in consequence a

local maximum for B`aø º (1°B¡)/2.

• Configuration (i v) : shifted to the left of the maximum defining configuration (i i i ), a mini-
mal efficiency (apparently vanishing efficiency) can be seen, it lies at about R º 3/4. In order to
understand the reason for this configuration to show up, we can look in a first step if analytically
the efficiency may vanish for some value of the flavor parameters B`ÆØ . Using Eq. (4.115), we see
that a vanishing efficiency is obtained whenever ¥ø(z) =°¥a(z) for all z, which means through
Eq. (4.108) :

X

Æ,Ø=2,4

≥

e°
Rz

z0
d z 0D(z 0)M (z 0)

¥

ÆØ
(°1)1+Ø/2 = 0 8z , (4.120)

which is satisfied as long as all the coefficients of the exponential power series expansion vanish,
i.e.

X

Æ,Ø=2,4

Zz

z0

d z 0D(z 0)(°1)1+Ø/2

"

MÆØ(z 0)° 1
2

Zz

z0

d z 00D(z 00)
4

X

∞=1
MÆ∞(z 0)M∞Ø(z 00)+ . . .

#

= 0 . (4.121)

We have found this turns out to be the case if the entries of the matrix M satisfy the following two
conditions

M12 =M14 and
X

Æ,Ø=2,4
(°1)1+Ø/2MÆØ = 0 (i.e. M22 °M24 +M42 °M44 = 0) , (4.122)

where the corresponding elements must not depend on z which is indeed our case, see Eq. (4.98).
This result in turn can be understood using Eqs. (4.89) and (4.91). In the two-flavor PFL scenario,
since the source terms for both flavors are equal and opposite, a vanishing efficiency will be

22Indeed, if Y`a · Y`ø > Y ¯̀a
· Y ¯̀

ø
, that is if ¢Y`ø +¢Y`a > 0, there will be more `a`ø $ ¢̄! ¡̄¡̄ processes than

¯̀a ¯̀ø$¢!¡¡ processes, so that statistically ¢Y`ø +¢Y`a will decrease, as well as the separated asymmetries ¢Y`ø
and |¢Y`a |. This lasts until ¢Y`ø º°¢Y`a , and from that moment no more triplet asymmetry can be generated and the
asymmetries ¢Y`ø and |¢Y`a | are left invariant.
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m̃� [eV]

Figure 4.20 – Efficiency as a function of m̃¢ for several values of the scalar triplet mass. The
parameters have been fixed according to B¡ = 10°4 and B`aa = B`aø = 0. The lines are cut whenever
the semi-diagonal regime condition ceases to be fulfilled (see section 4.2.1) – we don’t expect
however a very different behavior since only the C` and C¡ matrices would change.

generated if the washouts of the two flavors are also equal and opposite, which is nothing but the
conditions in Eq. (4.122).

More precisely, for this to be achieved, we need that ¢YB/3°Lø = °¢YB/3°La remains valid
at any time. As Eq. (4.91) shows, this requires: (a) ¢Y¢ = 0 and (b)

P

Æ,Ø,k C`
ÆØk B`ÆØ¢Yk = 0 at any

time. These two relations hold simultaneously if both conditions in Eq. (4.122) are fulfilled. Indeed,
if relation (a) holds, (b) can be rewritten as the second condition in Eq. (4.122). On the other hand,
if relation (b) holds, (a) can be rewritten using Eq. (4.90) as

P

Æ,k (C`
Æk B`Æ °B¡C¡

k )¢Yk = 0, which is
nothing but the first condition in Eq. (4.122).

Using Eq. (4.98), these conditions can be simultaneously fulfilled only in the limit B¡! 0, in
which case the triplet flavor configuration must satisfy the simple relation :

R =
B`aa +B`aø

B`øa +B`øø

=
C`
øø°C`

øa

C`
aa °C`

aø
º 0.74 . (4.123)

Strictly speaking, since B¡ 6= 0, the efficiency is not vanishing for any value of B`ÆØ . However, for
small B¡, the efficiency does not vanish exactly anymore but shows now a minimum for R º 3/4,
which is in good agreement with the numerical results shown in Fig. 4.19.

± m̃¢ dependence of the efficiency.

By fixing B¡ = 10°4 as in the previous section, and taking as an example B`aa = B`aø = 0, and
B`øø = 1°B¡, we display in Fig. 4.20 the dependence of the efficiency with m̃¢, for the three
benchmark triplet masses m¢ = 108,109,1010 GeV. It can be seen that irrespective of the triplet
mass, the smaller m̃¢ the smaller the resulting efficiency. The reason for this behavior follows
directly from the relative strength of gauge and Yukawa induced reactions : the larger m̃¢ the most
likely triplets will decay rather than scatter, thus implying a larger efficiency.
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Chapter 4. Type-2 Seesaw leptogenesis

Figure 4.21 – Efficiency as a function of B¡ for m¢ = 109 GeV and m̃¢ = 10°2 eV. Configuration (a),
in solid, corresponds to B`aa = B`aø = 0 (i.e. R = 0). Configuration (b), in dashed, corresponds
to B`aa = B`øø/99 = (1°B¡)/100 (i.e. R ' 10°2). Configuration (b), in dotted, corresponds to
B`aa = B`øø = (1°B¡)/2 (i.e. R = 1). The lines are cut when the semi-diagonal regime condition
ceases to be fulfilled (see section 4.2.1) – we don’t expect however a very different behavior since
only the C` and C¡ matrices would change.

On the other hand, we see that the efficiency decreases with m¢. This is also due to gauge
reactions : the smaller m¢ the most likely the triplet will scatter rather than decay, thus implying a
smaller efficiency. More precisely, as for the one-flavor case, when gauge scatterings are faster than
decays they suppress Yß°Y Eq

ß in Eq. (4.90) by a factor ∞D /∞A , which implies an equal suppression
of the source term in Eq. (4.91).

In the one-flavor approximation one have distinguished two regimes, see section 4.1.6 in
page. 122 : the gauge and Yukawa regimes, depending on the values of m¢, m̃¢ and B¡. While in
the one-flavor approximation a maximum efficiency is obtained at the transition between both
regimes, this is in general not anymore the case in the flavored leptogenesis scenario. Depending
on the flavor configuration, a maximum efficiency can be obtained far in the Yukawa regime
because of flavor effects, see section 4.6 below for a more detailed explanation.

± B¡ dependence of the efficiency.

We present in Fig. 4.21 the dependence of the efficiency upon B¡ in the range [10°6,1] for fixed
values of m¢ and m̃¢. We considered two particular flavor configurations for B`ÆØ . The solid
curve – configurations (a) – corresponds to one of the two flavor configurations that maximize
the efficiency (see section 4.5.2). The dashed curve – configurations (b) – corresponds instead
to the particular configuration B`aa = B`øø/99 = (1°B¡)/100 and B`aø = 0. The dotted curve
(configurations (c)) corresponds to the flavor alignment configuration B`aa = B`øø = (1°B¡)/2 and
B`aø = 0, i.e. without any flavor structure. These three configurations show two different behaviors,
that are in fact representative of any other flavor configuration. We now describe briefly their
behavior.
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4.5. Purely Flavored Leptogenesis

For B¡ ∑ 10°1, which is the interesting region for this PFL scenario, we can distinguish two
distinct regimes. They are separated by B Eq

¡ , the value at which the inverse decays¡¡!¢ become
active, determined by the condition

B Eq
¡

∞D

HnEq
`

Ø

Ø

Ø

Ø

Ø

max

= 1 which gives B Eq
¡ º 5 ·10°4 , (4.124)

where we used in the last equality the parameter value domain-of-validity m̃¢ = 10°2 eV. The way
the efficiency scales with B¡ depends on the flavor configurations. For B¡ . B Eq

¡ the efficiency
always increases with B¡ as a result of the fact that the larger B¡ the faster the decay to SM scalars,
as can be seen in Eq. (4.112), but the exact scaling actually also depends on the interplay of the
¢Y¢ and ¢YB/3°LÆ asymmetries.

Now, as soon as B¡ & B Eq
¡ , inverse decays ¡¡! ¢ become efficient, implying that lepton

number is broken by processes in thermal equilibrium (fast processes). This brings a new
p

B¡

suppression in the efficiency, resulting in an efficiency increasing less with B¡ or even decreasing,
depending on the flavor configuration, see Fig. 4.21.

To conclude, we see that for the flavor configuration that maximizes the efficiency, the value
of B¡ which gives the maximal efficiency is obtained for B¡ ª B Eq

¡ , that is to say for the value of
B¡ at which the ¡¡!¢ inverse decays are about to be active. In this case, the efficiency can be
as large as unity for values of m¢& 1012 GeV, or less for smaller values of m¢ (due to the gauge
scattering thermalization effect). For other configurations that lead to smaller efficiencies, the
maximum efficiency is obtained for much larger values near B¡ ª 1.

4.5.3 Minimal and maximal B °L asymmetry

As stressed above, a PFL scenario is naturally favored as soon as ≤`Æ(6F )
¢1

dominates the C P-asymmetry,
which naturally holds if Yukawa couplings are larger than scalar couplings, i.e. when Eq. (4.76)
holds. If leptogenesis is activated by a second scalar triplet ¢2, this equation can also be recast in
terms of the triplet branching ratios to scalar and lepton final states

v

u

u

t

B 1
¡B 2

¡

B 1
`

B 2
`

ø
m¢1

m¢2

Tr[m¢1
∫ m¢2†

∫ ]
m̃¢1 m̃¢2

∑
m¢1

m¢2

, (4.125)

where the last inequality comes from the Cauchy-Schwarz inequality :

|Tr[AB ]|∑
q

Tr
£

A A†
§

q

Tr
£

BB †
§

. (4.126)

As an example, taking a smooth triplet mass hierarchy m¢1 /m¢2 ª 10°1 (10°2) and assuming
the upper bound Tr[m¢1

∫ m¢2†
∫ ] º m̃¢1 m̃¢2 , a PFL scenario will be naturally dominant as soon as

B 1,2
¡ ø 10°1 (10°2).

We have seen in the previous sections that the efficiency strongly depends on the flavor
parameters B`ÆØ . Explicitly, we have shown that the efficiency has a minimum at R º 3/4, global
maxima at B`aa = B`aø º 0 and B`øø = B`aø º 0, and a local maximum at B`aa = B`øø º 0. However,
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Figure 4.22 – Allowed ranges for R (left plot) and the ratios of branching ratios B`ØØ/B`Ø∞ (right
plots) as a function of the lightest neutrino mass for both normal (green) and inverted mass
spectrum (red). The results have been derived by varying the neutrino oscillation parameters in
the 3æ range according to Ref. [19].

a maximal efficiency does not imply a maximal B °L asymmetry. Indeed, using Eq. (4.71), we
can actually compute a general upper bound for the purely two-flavored C P-asymmetry from
Eq. (4.80) :

Ø

Ø

Ø

≤`¢

Ø

Ø

Ø

∑ 2 g (m2
¢1

/m2
¢2

)
∑

q

B`aa B`øø +
q

B`aø

°

B`aa +B`øø

¢

∏

, (4.127)

where we assumed perturbative Yukawa couplings for the second triplet generation, i.e. |Y¢2 |∑p
4º. 23 This expression shows clearly that the three configurations that maximize the efficiency

give vanishing C P-asymmetries ! This can be understood easily from the fact these configurations
involve a Yukawa coupling only for one flavor. We see also that the upper bound on the C P-
asymmetry is directly related to the hierarchy between the different triplet masses, which is
compatible with the requirement in Eq. (4.125), i.e. a smooth triplet mass hierarchy favors PFL
scenario and allows for a large C P-asymmetry.

A viable scalar triplet leptogenesis setup requires of course consistency with neutrino
data [262, 345, 264, 19]. If the most relevant contribution to the neutrino mass matrix in Eq. (4.7) is
given by the lightest triplet, which can be regarded as a quite reasonable possibility (assumption),
the determination of the available flavor configurations can be done directly via neutrino oscilla-
tion data. We present in Fig. 4.22 the constraints on R (left panel) and on the ratios of branching

23The upper bound on the C P-asymmetry depends crucially on the perturbativity condition. Taking instead |Y¢2 |∑ 1
would lead to the same expression divided by 4º. The upper bound one can take on Y¢ depends on the scale at
which new physics is expected to arise. Indeed, following the perturbativity condition, the Yukawa coupling Y¢ could
eventually become infinite at some scale, which is the case taking Y¢ =

p
4º. This is the so-called Landau pole, which

can be computed using the renormalization group equations given for example in Ref. [261]. Running the RGE’s from
starting from Y¢ =

p
4º at §= m¢ = 109 GeV (106 GeV), the Landau pole is reached at §L ' 5 ·1010 GeV (108 GeV).

Since the scalar triplet extension of the SM is well motivated by BSM physics, we here assume that new physics arises at
a scale below the Landau pole, see section 1.6.
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Figure 4.23 – Maximum reachable final B °L asymmetry as a function of the R parameter, for
m¢1 = 109 GeV, m¢2 = 1010 GeV, m̃¢ = 10°2 eV and B¡ = 10°4. The green (red) dots indicate the
allowed range for the efficiency, as required by neutrino data (3æ level [262]) for the inverted
(normal) hierarchical light neutrino mass spectrum. In addition to the constraints on R, we also
took into account the constraints imposed by data on the different B`i j elements (see Fig. 4.22).
We stress that these constraints apply only if the neutrino mass matrix is entirely dominated by
the lightest scalar triplet contribution.

ratios B`ÆÆ/B`ÆØ (right panel) as a function of the lightest neutrino mass, for the normal (green)
and inverted (red) light neutrino mass spectrum. We fixed the neutrino oscillation parameters
according to their upper and lower 3æ limits [19]. It can be seen that the R configuration leading
to a vanishing B °L asymmetry, although showing up at the 3æ level in the normal spectrum case,
can be readily evaded, thus showing the viability of the PFL scenario even in its most constrained
form.

We plot in Fig. 4.23 the resulting maximal B °L final asymmetry that can be achieved, as a
function of the flavor parameter R , for m¢1 /m¢2 = 10°1. To this end we have considered the same
parameter configuration used in Fig. 4.19. It can be seen that the maximal B °L asymmetry that
can be achieved can account for the observed baryon asymmetry of the Universe for a large range
of R values, except at R º 3/4. We also point out that, if the neutrino mass matrix is dominated by
the light scalar triplet, the constraints coming from neutrino data are compatible with successful
PFL scenario. One realizes as well that two of the B °L asymmetry global maxima are shifted
with respect to the efficiency maxima, and are now located around the points at which `Æ`Æ! ¢̄

inverse decay rates are of the order of the Universe Hubble expansion rate, where B`ÆÆ = B Eq
`ÆÆ

, see
Eq. (4.118). As a final remark, it is worth noting that the local maximum at R º 1 has gone away.

This result has to be compared with the one-flavor approximation case, where the C P-
asymmetry is very suppressed for B¡ ø B` or B¡ ¿ B`, since it is proportional to

p

B¡B` – see
Eq. (4.17). This is no more the case in PFL leptogenesis, since the lepton number conserving and
flavor violating C P-asymmetries depend only on Yukawa couplings.
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4.6 General triplet flavored leptogenesis

Having discussed the viability of the PFL scenario in pure type-2 Seesaw models, we are now in a
position to analyze the impact that flavor effects may have in general triplet flavored leptogenesis
models. Here, as already defined previously in page 111 and 151, by “general models” we refer to
models where the lepton number violating C P-asymmetries are relevant or even dominate over
the lepton number conserving C P-asymmetries which drive PFL. Accordingly, if the extra degrees
of freedom enabling a non-vanishing C P-asymmetry are additional triplets, a general model will
be defined by Eq. (4.69), while if the extra degrees of freedom are right-handed neutrinos – as will
be the case in models featuring interplay between type-1 and type-2 Seesaw – the C P-asymmetry
in Eq. (4.77), being lepton number violating, will always define a “general model”.

As in the PFL section, in what follows we will assume that the asymmetry is entirely gen-
erated via the decays of the lightest triplet, something that can be achieved by taking a heavy
mass spectrum obeying the following hierarchy : m¢ø m¢2,3,...,Nk , and we focus on a two-flavor
approximation of the semi-diagonal regime. In “general” scenarios, since the C P-asymmetries are
lepton number breaking, successful leptogenesis is possible in the absence of lepton flavor effects,
in contrast to PFL where flavor effects are mandatory. We will now quantify the enhancement that
the inclusion of flavor effects may have in the final B °L asymmetry.

4.6.1 Efficiency-like parameter

We recall that in the one-flavor approximation, an efficiency function accounting for the z (tem-
perature) evolution of the unflavored B °L asymmetry can be defined, see section 4.1.6 :

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

= ≤¢¥¢Y Eq
ß (z0) . (4.128)

As in fermion triplet leptogenesis, in this case one can also define a gauge and a Yukawa regime,
which boundaries in the m̃eff

¢ °m¢ parameter space plane are determined by the values of B¡,
as displayed in the right-hand side plot of Fig. 4.6, page 126. 24 While in the gauge regime,
triplet dynamics is dominated by gauge-mediated triplet annihilation, in the Yukawa regime the
dynamics is driven by Yukawa-induced reactions, and so it is in the latter where flavor effects can
have striking implications. For a fixed triplet mass, the transition between both regimes becomes
determined by a “critical” m̃eff

¢ , given in the right panel of Fig. 4.6. 25

The behavior of the efficiency (i.e. of the B °L asymmetry) is to a large extent determined by
the regime where leptogenesis takes place (gauge or Yukawa), or in other words by the location of
the boundary in the m̃eff

¢ °m¢ plane, determined in turn by the value of B¡. As we have shown
in section 4.1.6, in the gauge (Yukawa) regime the efficiency increases (decreases) with m̃eff

¢ . In
the gauge regime this is due to the fact that there is no substantial production of the asymmetry
until z approaches the value z = zA where ∞A/∞D goes below unity. In the Yukawa regime instead,

24Let’s recall that the effective neutrino mass-like parameter is defined in Eq. (4.12) to be m̃eff
¢ ¥ m̃¢/(B`B¡)1/2. It is

such that the decay rate of the triplet °¢/ m2
¢m̃eff

¢ .
25In practice, for a given value of m¢, the transition between the gauge and Yukawa regimes is defined as the value

of m̃eff
¢ above (below) which the inverse decays are (not) in thermal equilibrium once the gauge scatterings cease to

dominate the whole process (i.e. it leads to ∞D /nEq
`

H = 1 when ∞A goes below ∞D at a temperature z = zA).
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the efficiency decreases with m̃eff
¢ because in this case still there is no substantial asymmetry

produced until z approaches zA , and because the asymmetry produced afterwards is further
washed-out by the inverse decay whose magnitude increases with m̃eff

¢ . Note that, even if large
efficiencies can be obtained for B¡ø 1/2, since lepton number is unbroken in the B¡! 0 limit,
these efficiency enhancements are accompanied by a suppression of the C P-asymmetry, so that
still the maximum B °L asymmetry is obtained for values of B¡ not far from its maximum value
B¡ = 1/2.

The picture described in the items above is expected to change as soon as one hits the
(two-)flavor regime, in particular if the parameters are such that triplet dynamics takes place in
the Yukawa regime. In order to discuss the impact that flavor effects may have, it is convenient to
introduce an efficiency-like parameter ¥̃¢. Indeed, as noticed in section 4.3.5, flavor coupling does
not allow a conventional definition of an efficiency. However, in the two-flavor approximation as
we assume here, a parameter resembling the efficiency of the unflavored case can be defined : 26

Ø

Ø

Ø

¢Y end
B°L

Ø

Ø

Ø

= ≤¢ ¥̃¢Y Eq
ß (z0) , (4.129)

with ¥̃¢ given by

¥̃¢ ¥ 1
2

£

¥aa +¥aø+¥øa +¥øø+ ≤̄¢
°

¥aa °¥aø+¥bø°¥øø
¢§

, (4.130)

where the flavored efficiency functions have been defined in Eq. (4.108) and with

≤¢ = ≤`a
¢ +≤`ø¢ and ≤¢ =

≤`a
¢ °≤`ø¢
≤¢

. (4.131)

Note that the definition of ¥̃¢ is such that in the limit ≤`a
¢ ! ≤`ø¢ one recovers the usual definition

of the efficiency as in the one-flavor approximation, while in the limit ≤`a
¢ !°≤`ø¢ one recovers the

efficiency as defined in the PFL section. This parameter proves to be useful in particular when
comparing the results obtained in the flavored regime with those arising from the one-flavor limit.
Instead, the parameter ≤¢, introduced in the definition of ¥̃¢, has a two-fold utility : first of all it
“measures” the deviation from the PFL (≤̄¢¿ 1) and the general scenarios (≤̄¢ø 1) ; secondly, it
“measures” the flavor misalignment of the source terms in the evolution equations of the B/3°LÆ
charges.

± Efficiency as a function of m̃eff
¢

In order to quantify the impact that flavor effects have on the B °L asymmetry, it is useful to
consider first a case where both C P-flavored asymmetries are equal, i.e. ≤¢ = 0, that is to say in a
way the extreme opposite to the PFL case. This will allow to discuss flavor effects that are different
from the ones we discussed in the previous section for the PFL case. For this case, we show in
Fig. 4.24 the efficiency-like parameter ¥̃¢ as a function of m̃eff

¢ for different values of (m¢, B¡),
overlapped with the results we got for the unflavored case, see Fig. 4.7 in page 128.

26In the general three-flavor situation, it seems not possible to define such a simple quantity that can be compared to
the one-flavor approximation efficiency.

165



Chapter 4. Type-2 Seesaw leptogenesis
~ ~

Figure 4.24 – Dependence of the efficiency with the effective mass parameter m̃eff
¢ , for B¡ = 0.5

(left) and B¡ = 10°4 (right). The effect of the flavor is shown in dashed, which shows the efficiency-
like parameter ¥̃¢, fixing ≤̄¢ = 0 and the flavor configuration according to B`aa = B`aø = 0 and
B`øø = 1°B¡. For the unflavored case in solid, ¥̃¢ refers to the usual efficiency, see Fig. 4.7.

Some comments are in order regarding these results. Gauge scatterings, being flavor “blind”,
are insensitive to lepton flavor effects and so the suppressions they induce cannot be overcome.
This means that, as long as we consider values of parameters which in the one-flavor case gives
Eq. (4.42), i.e. the maximum efficiency allowed by gauge scattering, flavor effects cannot further
enhance the efficiency. However, in the Yukawa regime, for large values of m̃eff

¢ , since inverse
decay washouts are flavor sensitive, flavor effects allow to largely avoid this effect, so that the
efficiency goes on to increase also there, as Fig. 4.24 shows. As a result in this case too, one is left
only with the unavoidable gauge scattering suppression. This suppression is nevertheless very
mild for large values of m̃eff

¢ (i.e. small values of zA).

Hence, large enhancement of the efficiency can be obtained from flavor effects, especially
for large values of B¡ (since this means small B` and therefore large m̃eff

¢ ). We see from Fig. (4.24)
that the efficiency can even be increased by several orders of magnitude. In other words, deep
inside the Yukawa region where gauge scattering suppression is faint, flavor effects start showing
up and become even striking as m̃eff

¢ increases and B¡ approaches 1/2. Summarizing, in this
equal flavored C P-asymmetries case we consider here (≤¢ = 0), Eq. (4.42) can still be used as an
approximate upper bound of the B °L asymmetry one can reach in all regimes, even deep in the
Yukawa regime. We have checked that this bound can be saturated in all regimes up to a factor ª 2.

± Efficiency as a function of B¡

To further emphasize the effects of flavors in the ≤̄¢ = 0 case, we have calculated the efficiency-like
parameter ¥̃¢ as a function of B¡. The calculation has been done for fixed parameters m¢ and m̃¢,
and for three flavor configurations (a), (b) and (c) – the one already used in Fig. 4.21. The results
are displayed in Fig. 4.25 (left-hand side plot), where the flavored and unflavored outputs are
compared. It can be seen that considering only the effects of the SM interactions (i.e. configuration
(c)), one can get an enhancement of order 2 with respect to the unflavored case, whereas for the
flavor configuration (a) one can get further orders of magnitude enhancement, as can be seen in
particular for B¡ = B` = 1/2.
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Figure 4.25 – Left-hand plot : Efficiency-like parameter ¥̃¢ as a function of B¡, for ≤`a
¢ = ≤`ø¢ . The

flavor configurations (a), (b) and (c) correspond to the ones used in Fig. 4.21 (for the unflavored
case ¥̃¢ refers to the usual efficiency). Right-hand plot : Efficiency-like parameter ¥̃¢ as a function
of |≤¢| for B¡ = 1/2 and the flavor configuration (a). In both plots we fixed m¢ = 1010 GeV and
m̃eff
¢ = 1 eV.

± Efficiency as a function of ≤̄¢

Finally, let us discuss what happens very qualitatively in cases other than the pure PFL case,
≤`ø¢ =°≤`a

¢ and the “opposite” case, ≤`ø¢ = ≤`a
¢ . In these “intermediate” cases, the “efficiency-like”

parameter as defined in Eq. (4.129) cannot be considered as an efficiency anymore, because it
can be larger than one. For instance in the pure PFL case it is infinity since ≤¢ = 0. As a result it is
difficult to span the range of possibilities in simple terms for these cases. To get a reliable idea of
the behavior of the efficiency-like parameter, and thus of the B °L asymmetry, in a specific case,
the most efficient procedure is probably to integrate first the full set of Boltzmann equations in a
“blind” way and see what the result looks like before trying to understand it by simple means.

But the basic picture qualitatively remains clear. As long as z < zA any flavor asymmetry
production is suppressed by a factor of ∞D /∞A , and afterwards the B °L asymmetry that can be
produced can anyway not be larger than the number of triplets remaining at z ª zA times the sum
of the absolute values of the flavor asymmetries. The important flavor effects stressed above, from
the L-violating inverse decays as well as from the L-violating decays, will be operative in a way
which may depend non trivially on basically all parameters, the flavored C P-asymmetries, the
C`,¡ constants, the total decay rate and the various branching ratios.

As an illustration of the efficiency dependence on the mismatch between the flavored C P-
asymmetries, parameterized by ≤̄¢, on the right-hand side plot in Fig. 4.25 we show the dependence
of ¥̃¢ with ≤̄¢ for B¡ = 1/2 for the flavor configuration (a). In the region where ≤¢ ø 1 is small
(≤`a
¢ ª ≤`ø¢ ), as previously stressed, any possible mismatch between the asymmetries in flavor a

and ø can only be due to the flavor dependence of the washout terms. As ≤¢ increases, the source
terms start having a flavor dependence as well, and so an imbalance between production in flavor
a and ø appears. The flavor dependence of both production and washout at large ≤¢, yields larger
values for ¥̃¢. In other words, flavor effects are diminished in those regions of parameter space
where ≤¢ø 1 and become more remarkable in regions where ≤¢¿ 1.
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Chapter 4. Type-2 Seesaw leptogenesis

Accordingly, in the various flavor regimes, enhancements of the efficiency-like parameter ¥̃¢
with respect to the unflavored case are a consequence of combined effects: the mismatch between
the different flavored C P-asymmetries ≤`Æ¢ , the SM interactions through the C` and C¡ matrices,
and the flavor configurations encoded in B`ÆØ .

4.6.2 Successful leptogenesis

Using the general upper bound on the flavored C P-asymmetries given in Eq. (4.81), it is possible
to see for which value of the parameters one can have successful leptogenesis. We didn’t make this
exercise, as it involves too many parameters. However, since larger efficiencies can be obtained for
example in the case where ≤`a

¢ = ≤`ø¢ , the most striking feature is clearly that flavored leptogenesis
allows for smaller values of the C P-asymmetry compared to the results obtained in the one-flavor
approximation in Figs. 4.8. In the situation where B` = B¡ = 1/2, one can even enhance the
efficiency up to 3 orders of magnitudes – see Fig. 4.25 – and so allow for an accordingly smaller
C P-asymmetry. As a result and for comparison purpose, the green zones in Figs. 4.8 can be
enlarged consequently in the case where ≤`a

¢ = ≤`ø¢ .

4.7 Compatibility with CLFV processes

For completeness, we now discuss briefly if whether it is possible to have both successful lepto-
genesis and observable CLFV processes in the type-2 Seesaw scenario, together with the correct
light neutrino mass scale. This will also allow to emphasize the clear possible links which exists
between this chapter and chapter 2 about µ! e conversion. We will here consider only orders
of magnitude, to have an idea of wether or not this is possible, and consider the case where the
lightest scalar triplet dominates over the other heavier degrees of freedom.

± Constraints from CLFV and neutrino masses

CLFV. We already gave in section 2.6.1 the various analytical expressions of the CLFV processes
when the SM is endowed with only one scalar triplet, or when one the lightest scalar triplet gives
the most dominant contribution to the CLFV processes. Assuming this is indeed the case, their rate
are roughly proportional to the square of the dimension-6 coefficient. Saturating the perturbativity
condition Y¢ '

p
4º, the lightest scalar triplet mass must obey the inequalities in Eqs. (2.112)-

(2.115) in order to give a rate which is reachable by future experiment sensitivities. Keeping only
the most stringent sensitivity coming from the µ3e experiment, i.e. Br (µ! eee) . 10°16, and
using Eq. (2.109), the dimension-6 coefficient must be roughly larger than :

cd=6 ª
Y 2
¢

m2
¢

& 10°13 GeV°2 , i.e.
Y¢
m¢

& 10°6 GeV°1 . (4.132)
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Neutrino masses. From Eq. (1.38) or (4.7) with a dominant contribution from the lightest scalar
triplet, to get roughly m∫ ª 0.1 eV, one needs the Yukawa coupling to obey

Y¢
m¢

º 10°15 m¢

µ¢
GeV°1 . (4.133)

± Compatibility with the scenarios considered previously

In order to provide both large CLFV and small neutrino masses, Eq. (4.133) together with condi-
tion (4.132) imply that the scalar coupling must obey

µ¢
m¢

. 10°9 , (4.134)

which is not in conflict with the perturbativity condition on µ¢/m¢. Let’s now analyze if one can
have successful leptogenesis and both large CLFV and small neutrino masses in the scenarios (i)
PFL and (ii) general leptogenesis considered in sections 4.5 and 4.6 respectively.

PFL scenario In the case of the PFL scenario, we have seen that one needs firstly B k
¡ ø B k

`

in order to lie in the PFL regime, and secondly large Yukawa couplings Y¢k ª 1 as well as a
mild hierarchy between the lighter and the heavier scalar triplet in order to generate enough
baryon asymmetry (large enough C P-asymmetry). These conditions are therefore compatible
with the CLFV and neutrino mass requirements in Eqs. (4.132)-(4.134). For example, one can have
Y¢ ª 1 · · ·

p
4º, in which case one has m¢. 106 . . .107 GeV and µ¢. 10°3 . . .10°2 GeV.

General scenario In the general scenario where leptogenesis is activated by other heavier states,
as right-handed neutrinos, the C P-asymmetry involves both µ¢ and Y¢ couplings, see Eq. (4.77).
In this case, maximal C P-asymmetry is obtained for B` ª B¡, i.e. µ¢/m¢ ª Y¢. This condition
is not compatible with the CLFV and light neutrino mass conditions, since from Eq. (4.133) one
would need Y¢ ªµ¢/m¢. 10°9, that leads using Eq. (4.132) to a triplet mass m¢. 10°3 GeV way
too small to get a large enough C P-asymmetry, and surely already excluded by accelerators.

4.8 Summary

In this long chapter, we have analyzed the scalar triplet leptogenesis with the inclusion of the
flavor effects as well as the spectator effects. We have shown that, as highlighted in Ref. [247],
flavors always matter in type-2 Seesaw leptogenesis. Indeed, contrarily to the type-1 Seesaw case,
one can at best find a lepton flavor basis such that the scalar triplet decays following three pairs of
coherent states. This is because the scalar triplet decays into three pairs of lepton, and not only
one. As a consequence, the “unflavored” scalar triplet leptogenesis already studied in the literature
appears to be an approximation of the general flavor leptogenesis, whatever the temperature
regime. This “one-flavor approximation” is good as soon as the flavored C P-asymmetries and the
various branching ratios into leptons are aligned. We have first studied this case that allowed us to
understand the main features of the scalar triplet leptogenesis.
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Chapter 4. Type-2 Seesaw leptogenesis

We then analyzed the general flavored case, in particular we have derived for the first time
the complete set of flavored classical Boltzmann equations governing the evolution of the different
relevant asymmetries, including the effects of those SM reactions which in the leptogenesis
era may be fast : charged lepton and quark Yukawa reactions as well as QCD and electroweak
sphaleron processes. The resulting network of kinetic equations with the chemical equilibrium
conditions provide the tools for studying triplet scalar leptogenesis in full generality. Furthermore,
by requiring that the decoherence rate is faster than the leptonic inverse decay rate during the
leptogenesis era, we determined the domain of validity of the various flavor regimes. The reader
who would like to determine the effects of flavors in any given type-2 Seesaw model can find in
section 4.4 the procedure to follow, with all the references to the equations that are needed.

In scenarios involving an additional triplet (purely type-2 Seesaw scenarios), we have identi-
fied a novel class of models where the flavored C P-asymmetries, consisting of a lepton number
violating and a lepton number conserving contributions, become dominated by the lepton num-
ber conserving piece. Such a dominance naturally shows up as soon as the couplings of at least one
triplet (i.e. not necessarily of all Seesaw states as for PFL type-1 Seesaw scenarios) approximately
conserve lepton number L, which in practice simply means that it couples more to leptons than to
scalars. The purely flavored C P-asymmetries have no reasons to be suppressed by the smallness
of the light neutrino masses since, in contrast to the lepton number violating C P-asymmetries,
they only involve L-conserving couplings.

With the aid of the derived flavored Boltzmann equations and chemical equilibrium condi-
tions, we have carried out a thorough study of the PFL scenario in the two-flavor approximation,
for definiteness. The way this PFL scenario works is totally novel (for small values of B¡ which gives
natural dominance of the purely flavored C P-asymmetries) : in this case there is no L-violating
process in thermal equilibrium at any epoch but yet flavor effects do allow the creation of a B °L
asymmetry from the L-violating slow decay of the triplet to SM scalars. We have proved its viability
by calculating the B °L yield, finding that, for reasonable and wide ranges of parameter values, a
baryon asymmetry consistent with observation can always be achieved. By exploring the B °L
asymmetry parameter space dependence, we have determined the lepton flavor configuration
that maximizes the efficiency, finding that the same structure renders the flavored C P asymmetry
minimal. Our findings show that maximal B °L yield is achieved for intermediate lepton flavor
configurations.

Finally, we discussed general scenarios, which we have defined by the condition of the
C P-asymmetry involving lepton number violation. These scenarios can arise either in models
with extra triplets or with right-handed neutrinos (models exhibiting interplay between type-1
and type-2 Seesaw). We discussed the impact that lepton flavor effects may have in the final
B °L asymmetry, showing that relevant flavor effects can only be achieved in the Yukawa regime,
being more striking as deeper one moves into that regime, and depending on the parameter flavor
configuration. Our results show that for certain flavor structures the asymmetry may be enhanced
by several orders of magnitude.

170



Part III
The inert doublet model as 

the origin of dark matter





5 Asymmetric dark matter in the Inert
Doublet Model

Beside the fact that one needs to enlarge the SM with new physics in order to generate neutrino
masses and enough baryon asymmetry in the Universe, there is the dark matter paradigm. But
what is dark matter ? In 1933, Zwicky has made the amazing observation that the gravitational
mass of the Coma galaxy cluster is ª 400 hundred times larger than the mass expected from the
measured luminous matter from stars. This means that most of the gravitational mass of this
cluster is actually dark, i.e. it doesn’t emit any light. Few years after, this observation was confirmed
by Vera Rubin who observed that the rotation curve of various galaxies doesn’t follow the expected
behavior from Newton’s law using the luminous matter. More recently, the observations of “bullet
clusters” showed that of the distribution of gravitational mass, obtained from lensing, doesn’t cor-
respond to the distribution of luminous matter in these clusters. Also recently, the measurement
of the shape of the temperature power spectrum of the Cosmic Microwave Background (CMB)
showed that it is not in agreement with a Universe made only with the observed luminous matter
density. Finally, clusters are parts of a largest structure in the Universe, and the overall structure is
made of filaments and bubbles. The observed amount and distribution of these clumps is actually
not in agreement with the galaxy distribution obtained from numerical simulations using only the
observed luminous matter.

In order to explain these discrepancies with the expected behavior, one has imagined mainly
two possibilities : either the theory of gravity must be modified, either there is a huge amount of
non-luminous, feebly interacting and yet unknown matter inside the galaxies. The first possibility
lead to new theories known as MOdified Newton Dynamics theories (MOND), which we won’t
introduce in this thesis. The second possibility, the favorite one, is what we called the Dark Matter
(DM).

In this chapter, we made the choice to review very briefly the main properties of the dark
matter particle, detection techniques and the ways to account for its relic density. From that we
will directly go to the last main part of this thesis, which is the analysis of how one could generate
enough dark matter in the Inert Doublet Model (IDM) in an asymmetric way. The asymmetric way
to produce dark matter is in many ways similar to the way the baryon asymmetry is produced.
This chapter is therefore directly linked to the previous two chapters.
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Chapter 5. Asymmetric dark matter in the Inert Doublet Model

5.1 Generalities

5.1.1 Evidences for dark matter

We will not review the very well known evidences for DM. Just mention that beside galaxy rotation
curves and bullet clusters, gravitational well effect due to DM is absolutely necessary to reproduce
the CMB spectrum (already introduced in chapter 3, see Fig. 3.2 in page 82). This gives the most
precise determination of the ratio of the DM density over the critical density≠DM = ΩDM /Ωc . The
CMB analysis by the Planck collaboration has provided at 68% C.L. [206] :

≠DM h2 = 0.1188±0.0010 , (5.1)

after combining data coming from the CMB spectrum and external sources as Lensing and BAO.
This means, comparing with Eq. (3.5), approximately 5 times the present baryonic matter density :

≠DM

≠B
= 5.4±0.1 . (5.2)

Note that it is peculiarly intriguing that the DM and baryon densities are so close to each other.

5.1.2 DM properties

From all the (non-)observation we have done so far, we already know several properties of the
dark matter. It should be for example :

• massive, obviously ;

• electrically neutral, otherwise it could interact with atoms and photons in the Universe
and we should have observe that since long. More generally, it should be at most weakly
interacting with SM particles and thus non-colored ;

• long-lived, or even stable for now. Indeed, DM is expected to have been produced during
the early stage of our Universe, as the other SM particles (ª some fraction of second after
the Big Bang). Since it is still present in our galaxies today, its lifetime should at least be
larger than the age of the Universe, i.e. øDM & 4 ·1017 s. This constraint can be improved
considerably if one includes the fact that we don’t have observed any decay of DM in our
Universe. Indeed, if DM can decay in SM particles as photons or neutrinos, one should
observe the residuals of these decays coming for example from the center of the galaxies.
Experiments like HESS, Fermi-LAT and IceCube have provided stringent bounds on the
DM lifetime if it has a decay channel with photons or neutrinos in its final state. As an
illustration, we show in Fig. 5.1, taken from Ref. [267], the present best bounds on the DM
lifetime as a function of its mass, if the DM candidate can decay through DM ! ∞+∫.

• most probably “cold”, i.e. basically non-relativistic at the time of freeze-out. This is indeed
necessary for DM to have formed such structures in our Universe.

But what is dark matter made off, i.e. how can we account for the DM in the SM ?
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Figure 5.1 – Left : best lower bounds on the DM lifetime as a function of the DM mass mDM , if this
latter can decay into monochromatic lines ∫+∞. The plot has been taken from Ref. [267].

5.2 Models for dark matter

In this section, we present some models from the literature that were proposed in order to account
for the DM properties. The list we give is non exhaustive, given the large amount of possibilities.
Since there are no DM candidates in the SM, 1 one needs to go beyond the SM. We will just mention
few candidates which are relevant for the subsequent model we will consider. 2

5.2.1 Scalar singlet.

Real scalar singlet. Probably the simplest possibility, which doesn’t rely on neutrinos, is to add
a real scalar singlet to the SM [268, 269] (see for example Ref. [270] for an updated analysis of the
associated phenomenology). In this case, the scalar potential of the SM contains the following
interactions :

V 3V¡+
1
2
µ2

SS2 + 1
2
∏S¡S2|¡|2 + ∏S

4
S4 , (5.3)

and thus, after diagonalizing the scalar mass matrix, the mass of the scalar singlet reads mS =
(µ2

S +∏S¡ v2/2)1/2. The new scalar singlet is obviously neutral and massive, but since the scalar
potential should also contain a term / |¡|2S, the S particle could in principle decay at tree-level
(if mS > 2mh) or at one-loop (if mS < 2mh) into SM particles. In order to be consistent with the

1Light neutrinos are too hot relics and have too small masses to account for DM. Indeed, as already mentioned in
section 3.1.2, weak interactions freeze out at around T ª 1 MeV, which is also the temperature at which neutrinos freeze
out. This temperature is much greater than the neutrino mass so the neutrinos were highly relativistic at that time
and until the structure formation. But if the light neutrinos account for the total DM relic density, structure formation
should have occurred much later (typically for z . 1) than what we actually observe (structure are observed for z & 3).

2Note that, even if massive and totally neutral, right-handed neutrinos cannot in general account for DM simply
because these are not stable : from the Yukawa coupling it should rapidly decay into a light neutrino and a scalar.
However, it is possible to render one of the right-handed neutrinos very long-lived, by making it light and by giving it
very small mixing with the SM neutrinos. In this case, the right-handed neutrino could decay via the channel N ! ∫∞,
in which case constraints from Fig. 5.1 do apply.
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lifetime constraint, one should therefore either make these decay extremely slow, by putting
artificially the associated coupling very close to zero, either one could forbid the linear and cubic
terms in S by imposing a discrete Z2 symmetry to the Lagrangian, such that all the SM are even
under this Z2 while S is odd. In this case, the stability of the S particle is ensured by the Z2

symmetry. Let’s note that since we don’t want this symmetry to be broken, one has to make sure
that the parameters of the scalar potential are such that hSi= 0 (i.e. µ2

S > 0).

Complex scalar singlet. A slightly more complicated possibility is to introduce a complex scalar
singlet S = S1 + i S2, see for example [271, 272]. Interactions with the SM scalar doublet ¡ generate
a mass splitting between S1 and S2, so that the DM candidate is the lightest particle between S1

and S2, which depends on the parameter value. As in the previous case, one needs to stabilize
the dark matter candidate. To this end, one can further impose a Z2 or U (1) symmetry to the
Lagrangian, and the parameters of the scalar potential must be such that hSi= 0. However, this is
not mandatory and it is still possible to have viable DM candidate while breaking the U (1).

In fact, even if this possibility looks very similar to real scalar singlet case (with one more
degree of freedom and extra couplings to the SM scalar doublet), the phenomenology is much
richer. In particular, as we will see in the next section, since S is complex there is in fact the
possibility to generate DM through an S asymmetry.

Note on the discrete symmetry. The discrete symmetry Z2 that is imposed in order to stabilize
the DM candidate could appear artificial. However, one can easily generate such kind of symmetry
from local/global special unitary group as U (1) or SU (3). Indeed, consider the global group
example of a simple model of two self-interacting scalar fields (æ1,2) subject to the following global
U (1) transformations [273, 274] :

æ1 ! ei NÆæ1 and æ2 ! e°iÆæ2 . (5.4)

The U (1)-invariant renormalizable as well as non-renormalizable Lagrangian describing such
system is given by :

L =µ2
i æ

§
i æi +∏i j (æ§

i æi )(æ§
j æ j )+

∏æM

§M(N+1)°4
æM

1 (æN
2 )M , (5.5)

with µi dimension one and ∏i j ,∏æM dimensionless couplings. M and N some positive integers,
and§ some high energy scale. Ifæ1 acquires a vev the resulting Lagrangian will involve a collection
of terms (æN

2 )M , thus being ZN invariant, namely

æ2 ! ¥n
N æ2 with ¥N = e2ºi /N (n = 0,1, . . . , N °1) . (5.6)

The origin of the SU (N ) symmetries can come from exotic physics or can also come from the
global abelian U (1) or non-abelian SU (3) flavor symmetries of the kinetic terms of the SM [275,
276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289]. For example, in Ref. [289]
made in collaboration with Diego Aristizabal, Chee Sheng Fong and Avelino Vicente, we have
shown that the Z2 discrete symmetry of the scotogenic model can be obtained as a residual
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symmetry resulting from the SSB of a global U (1)∫R , where U (1)∫R is a global symmetry of the
kinetic Lagrangian of the right-handed neutrinos. Other ways of stabilizing the DM from the
existence of gauge symmetries also exist.

5.2.2 The Inert Doublet Model (IDM)

The Inert Doublet Model (IDM) [44, 290, 291, 292] simply consists in adding to the Standard Model
(SM) a single scalar doublet H2 which is odd under a Z2 symmetry, while all the SM fields are even.
The most general scalar potential is in this case

V =m2
1|H1|2 +m2

2|H2|2 +∏1|H1|4 +∏2|H2|4

+∏3|H1|2|H2|2 +∏4|H †
1 H2|2 +

∏5

2

∑

≥

H †
1 H2

¥2
+H.c.

∏

, (5.7)

where the SM and the inert scalar doublets can be written as

H1 =
√

¡+

v/
p

2+¡0

!

and H2 =
√

¥+

¥0

!

, (5.8)

with ¡0 ¥ (h + i¡3)/
p

2 and ¥0 ¥ (H 0 + i A0)/
p

2. In the scalar potential, m2
2 is assumed to be

positive to insure that H2 doesn’t acquire a vev, so that it’s lightest neutral component (A0 or H 0) is
stable. Prior to electroweak symmetry breaking (EWSB), all H2 components have mass mH2 = m2,
whereas after EWSB they get split in mass (see section 3.3.1 in page 85)

m2
H 0 = m2

2 +∏H 0 v2 , m2
A0 = m2

2 +∏A0 v2 , m2
¥+ = m2

2 +∏H c v2 , (5.9)

with ∏H c =∏3/2 and ∏H 0,A0 = (∏3 +∏4 ±∏5)/2. The ∏5 interaction in Eq. (5.7) is therefore respon-
sible of the generation of a mass splitting between H 0 and A0, so that the DM candidate can be
either H 0 or A0 following the sign of ∏5. This inert doublet model is very interesting since very
predictive. It is subject to the following general constraints :

• For the vacuum to be stable and bounded from below, one necessary needs ∏1,2 > 0, as well
as ∏H 0,A0,H c >°

p

∏1∏2.

• Scalar couplings have to be perturbative, so that ∏i ∑ 4º. A more conservative bound is
∏i ∑

p
4º. If the coupling do saturate the upper bound, radiative corrections are such that

the coupling can become infinite for some high energy value – this is the Landau pole – so
that a new physics is expected before the divergence of the couplings. The determination of
the Landau pole can be performed using the renormalization group equations in the IDM
framework given in Appendix E.3, from Ref. [290].

• Because of the gauge coupling of the inert scalar, Z decay width constraint at LEP requires
mA0 +mH 0 > mZ and m¥+ > mZ /2, otherwise one could have already produced the inert
doublet components at LEP or LHC.

• EW precision tests require ¢T '
°

m¥+ °mA0

¢°

m¥+ °mH 0

¢

/12º2Æ v2 . 10°1. The EW pre-
cision tests consist in searching for new physics by analyzing small deviations between

177



Chapter 5. Asymmetric dark matter in the Inert Doublet Model

SM predictions and associated quantities that are very well measured, as branching ratios,
forward-backward asymmetries, left-right asymmetries, etc. These deviations can be partly
parametrized by the useful “oblique” parameters S, T and U , which differ from zero if the
new physics generates corrections in the gauge boson self-energy propagators, as it is the
case for the IDM. The present best fit on the oblique parameters are [8]

S =°0.03±0.10 , T = 0.01±0.12 , U = 0.05±0.10 . (5.10)

Accordingly, one can allow deviations of these parameters only in the range given by the
uncertainties, i.e. typically |¢S|, |¢T |, |¢U |. 0.1. In the IDM, only the T parameter receive
important corrections [290], which lead to the upper bound given above.

• The gauge interactions imply the existence of Z -mediated inelastic scattering H 0N ! A0N ,
whose cross section is much larger than the present direct detection upper bounds (see be-
low). In order to kinematically forbid this interaction, one must have mA0°mH 0 &µrØ

2
DM /2,

where ØDM c is the DM halo velocity with respect to the earth, and µr = mH 0 mN /(mH 0 +
mN ) is the reduced mass of the system for the nucleus N used by the experiment. For
mH 0 ¿ mN and Xenon nucleus, using an average velocity of ª 270 km/s, this constraint
can be rephrased as mA0 °mH 0 & ±mmin ª 50 keV. Taking into account the velocity dis-
tribution around this central value, and the recoil energy sensitivity of the experiments,
the minimum splitting becomes ±mmin ª 180 keV, although a more robust constraint is
±mmin ª 100 keV [293], which translates as

|∏5|& 3.3 ·10°6 ·
≥mH 0

TeV

¥

·
µ

±mmin

100keV

∂

. (5.11)

5.2.3 Other possibilities

Note that there are several other possibilities of DM candidates that have been proposed in the
literature, just mention a few :

• scalar or fermion multiplets with ad hoc Z2, which generalize the inert doublet model. Note
that a high multiplet fermion (quintuplet or more) is automatically stable, as it cannot have
renormalizable interactions with the SM fields (neither dimension-5 ones) [312].

• the axion, which has been introduced by Peccei-Quinn in 1977 in order to solve the strong
C P problem in QCD.

• the supersymmetric candidates, as the sneutrinos, which are the supersymmetric partner of
the neutrino, or the lightest neutralino, the neutralinos being the supersymmetric partners
of the neutral gauge and scalar bosons.

• Kaluza-Klein particles, which appear in models with extra dimensions trying to unify gravity
with the other forces.

But how could we distinguish between all these possibilities ? Clearly, one first need to detect dark
matter.
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Figure 5.2 – DM detection principles.

5.3 Dark matter detection and constraints

Assuming that the DM candidate can interact through DM DM $ SM SM , there are basically
three ways one can detect a DM particle, which are summarized in Fig. 5.2. This picture is quite
representative of all DM detection experiment’s principles. These are :

• DM DM ! SM SM : this is the process which is also responsible for the depletion of the
DM density during the freeze-out. Even if it is out-of-equilibrium, still two DM candidates
can meet and annihilate into SM particles. These annihilations are more likely to happen
where the DM density is important, as in the center of galaxies or stars. If such annihilations
occur, some of the decay products could reach the Earth where one could detect them. This
detection principle is called “Indirect Detection”.

• DM SM ! DM SM : the scattering of one DM particle with a SM particle. In particular, if
the DM interacts with quarks, one could have for example that the DM can scatter with
one of the nucleons of the Earth. In this case, one could be able to observe a nuclear recoil
without detecting any colliding particle. This detection principle is called “Direct Detection”.

• SM SM ! DM DM : the direct production of two DM particles from the collision of two
SM particles. This is for example possible in accelerators as the LHC. Since the two
particles in the final states cannot be detected, the signature of such an event would
be. . . nothing. So what we are actually hunting for is this process but with the emission of
a gauge boson SM SM ! DM DM + g /Z /∞, whose signature is a monojet/EM-shower/Z -
remanant+missing energy (6 ET ).

In what follows we remind briefly all the present experimental constraints for each kind of detec-
tion principle.
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5.3.1 Direct Detection

Direct Detection experiments have provide stringent bounds on the scattering cross section of the
DM with nucleus as function of the DM mass. The detection rate R of a DM particle X of mass
mX that scatters on a nucleus N of mass mN is generally expressed as : 3

R =
ZE T

max

E T
min

dER
ΩØ

mX mN

Zvesc

vmin

d v v f (v)
dæX N (v,ER )

dER
, (5.12)

where ER is the recoil energy of the nucleus, ΩØ is the local DM density, v is the relative velocity of
the DM with respect to the nucleus, f (v) is the local velocity distribution of the DM at Earth, and
æX N is the scattering cross section.

The lower integration boundaries of the recoil energy integral are the minimum and maxi-
mum threshold energy of the detector, E T

min and E T
max. This depends clearly on the experiment

sensibility. One has for example E T
min ª 1 keV and E T

max ª 100 keV for the famous LUX experiment.

The velocity distribution and local density of the DM are actually unknown. However, we
know from Large Scale Structure formation that the DM halo in a galaxy is almost non-rotating.
As a consequence, the relative velocity distribution between the DM and a nucleus should be
centered on the velocity of the Sun around the galactic center, which is vØ º 220 km/s. In
standard halo, the velocity distribution of the DM wind is assumed to be Maxwellian. Also from
astrophysical considerations, one can estimate the DM local density which is centered around
ΩØ º 0.3 GeV/cm3.

For the velocity integral, one integrates between the minimal relative velocity vmin and
the maximal velocity which is typically the escape velocity of the DM particle in our galaxy
vesc º 650 km/s. The minimal velocity reads

vEl
min =

s

mN ER

2µ2 , for an elastic scattering, and (5.13)

v Inel
min = 1

p
2mN ER

µ

mN ER

µ
+±mX

∂

, for an inelastic scattering [294], (5.14)

whereµ= mX mN /(mX +mN ) is the reduced mass and ±mX stands for the mass splitting between
the incoming and outgoing DM particles.

Finally, the cross section æX N involves nuclear physics, as well as the DM-nucleon cross
section æ0, which is the interesting quantity that we want to probe. For example, in the case where
the DM-nucleon scattering doesn’t depend on the spin of the nucleon (“Spin-Independent (SI)
scattering”), one has

dæSI
X N

(v,ER )

dER
'

mN æSI
0 F 2

N

2µ2v2 , (5.15)

where F 2
N

is some nuclear for factor. Taking care of the nuclear part and the astrophysical

3The rate R as introduced here is the number of detections by day and by kg of the detector mass. It is therefore a
dimensionless quantity.
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Figure 5.3 – Present upper bound on the spin-independent DM-nucleon cross section as a function
of the mass of the DM particle. The region below the thick orange dashed curve shows the
limitation of future experiments with respect to the neutrino background. The plot has been taken
from Ref. [295].

consideration, the observation (or non-observation) of a DM-nucleon scattering could therefore
give some information (or some bound) on the DM-nucleon cross section as well as on the mass
of the DM particle.

All in all, we show in Fig. 5.3 the current upper bounds on the spin-independent cross
section æSI

0 as a function of the DM mass. The plot has been taken from Refs. [296, 295]. The
current bounds and future sensitivities on the spin-dependent cross section can also be found in
Ref. [296]. The best present upper bound is provided by the LUX experiment for mDM & 6 GeV.
For mDM & 100 GeV, this bound is in good approximation given by

æSI
0 . 1.2 ·10°11

≥ mDM

1 GeV

¥

pb (LUX) . (5.16)

Let’s note that some experiments as DAMA, which search an annual modulation of DM scatterings
due the Earth movement, have claimed the observation of DM signals. However, this is highly
controversial – since in conflict with other experiments – and it has been suggested that the
observed modulation could be due to unexpected background, see for example Ref. [297].

5.3.2 Indirect Detection

Indirect Detection is a much more complicated issue. There are several reasons. Firstly, suppose
the DM can annihilate in SM stable particles. If the decay products are charged, as proton or
electrons, they won’t obviously propagate straight towards the Earth, since they will undergo
deviations from collisions with other particles or from the galactic magnetic field. Because of
that, one expects to measure on Earth only a diffuse flux of charged particles. For neutral decay
products, as photons or neutrinos, there are practically no deviations so that one could measure
a flux coming from specific regions where the DM is dense, as in the center of galaxies. This is
especially the case for neutrinos, but these are unfortunately very difficult to detect.
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Figure 5.4 – Left : Positron fraction (positron flux normalized to the sum of electron and positron
fluxes) as a function of the energy, as measured by several experiments. The gray band shows the
expected positron fraction from astrophysical sources. The figure has been taken from Ref. [298].
Right : antiproton flux as a function of the energy. The gray region shows the expected flux from
astrophysical background, which fit very well the data, contrarily to the positron flux. The plot has
been taken from Ref. [299].

Secondly, suppose we detect some residual flux on Earth. In this case one still needs to be
sure that it doesn’t come from some unexpected background. Indeed, the Universe is very rich,
and even if one can identify lots of astrophysical objects thanks to telescopes, there are surely still
some exotic ones that escaped our present listing.

Nevertheless, it is still possible to search for DM annihilations signals. For example, most of
the astrophysical processes produce mainly particles, and much less antiparticles. This is generally
not the case of DM annihilations, which are expected to produce an equal amount of matter and
antimatter in most of the theoretical models. As a consequence, any excess in antiparticle flux can
be a hint of DM annihilation.

For illustration purpose, we show in Fig. 5.4 the positron fraction©e+/(©e+ +©e°) (left) and
the antiproton flux©p̄ (right) as a function of the energy. The data points have been obtained by
several experiments. The gray band represent the expected fraction from astrophysical sources.
While for the antiproton fluxes these fit very well the data, it is not the case for the positron
flux. The excess could be explained by DM annihilations, but it is for now more likely due to an
unexpected background or due to the astrophysical model. From antiproton flux measurement, it
is possible to derive upper bounds on the annihilation cross section. These can for example be
found in Ref. [299]. We won’t comment furthermore on the Indirect Detection results.

In practice, the DM annihilation cross section is the same than the one that is responsible
for the DM depletion in the usual freeze-out mechanism, see below. Therefore, it is generally
fixed for a given DM mass, since the relic DM abundance is known. As a consequence, the DM
annihilation rate can be computed and the decay products are known. The associated flux can
finally be estimated and confronted to the observed flux.
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Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle
mass and compared with previously published results. Left: limits for the vector and scalar
operators from the previous CMS analysis [10], together with results from the CoGeNT [60],
SIMPLE [61], COUPP [62], CDMS [63, 64], SuperCDMS [65], XENON100 [66], and LUX [67]
collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours
respectively for a possible signal from CDMS [68]. Right: limits for the axial-vector operator
from the previous CMS analysis [10], together with results from the SIMPLE [61], COUPP [62],
Super-K [69], and IceCube [70] collaborations.
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K = �NLO/�LO of 1.4 for � = {2, 3}, 1.3 for � = {4, 5}, and 1.2 for � = 6 [71]. Figure 7 shows 95%
CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. Table 7
shows the expected and observed limits at LO and NLO for the ADD model.

Figure 8 shows the expected and observed 95% CL limits on the cross-sections for scalar un-

Figure 5.5 – Present best upper bounds on the Spin Independent – scalar and vector interactions –
(left) and Spin Dependent – axial-vector interaction – (right) cross sections as a function of the
DM mass, provided by the CMS collaboration [300]. Results from CMS are confronted to the other
present bounds provided by detection experiments.

5.3.3 Collider constraints

Since pure DM production (only DM particles in the final state) is obviously not observable,
colliders such as LHC look for specific signatures as a single monojet or monophoton in the final
state with missing transverse momentum ET . For example, a quark of an initial proton can radiate
a gluon or a photon before annihilating into two DM particles. By searching for such signatures,
the LHC already provided bounds on the Spin Dependent and Spin Independent DM-nucleon
cross section. We show in Fig. 5.5 the present upper bound on the DM-nucleon cross section
as provided by the CMS collaboration, for scalar and vector interactions (left) and axial-vector
interactions (right).

Concerning the Inert Doublet Model, in the left panel of Fig. 5.6, the gray-shaded region
indicates the region of the (mH 0 ,mA0 ) plane excluded by LEP data. The plot has been taken from
Ref. [301]. The lower left triangle, where mH 0 +mA0 < mZ , is excluded by LEP I data on the Z
boson width. The remaining part of the shaded region is excluded by the LEP II analysis performed
in Ref. [301]. Note that the upper left region is not accessible by the requirement that mH 0 < mA0 .
The right panel of Fig. 5.6 below, taken from Ref. [302], shows the allowed parameter region (at
95% C.L.) in the (m¥± ,∏3) parameter space from the requirement that the h ! ∞∞ scalar decay
width doesn’t exceed the allowed range, and assuming that there are no invisible decays of the SM
scalar. These two plots illustrate that, beside the constraints from Direct Detection, there is still
few constraints on the Inert Doublet Model for mH2 ¿ 100 GeV which is the case we will consider
here after.
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taken from Ref. [301]) and for (m¥± ,∏3) (right plot taken from Ref. [302]) in the framework of the
Inert Doublet Model.

5.4 Dark matter production mechanisms

5.4.1 Symmetric production and WIMP miracle

The usual way one can explain the DM relic density is through the usual freeze-out mechanism.
This latter can be described as follows. At T ¿ mDM , the DM is in thermal equilibrium because
of fast interactions with SM particles. The DM follows the thermal density until T = Tfo ø
mDM , where the interactions freeze out, and from when the DM density remains constant. The
mechanism, even if similar to the leptogenesis one, differs by the fact that we just focus on the
total DM density, and not on an asymmetry generated through C P-violating decays. In order to
quantify the amount of DM particles left after freeze-out, one needs to solve the corresponding
Boltzmann equation(s).

± Boltzmann equation

To illustrate more precisely the freeze-out mechanism, let’s consider a simple case where the
DM is its own antiparticle, is stable, and annihilates in SM particles through the symmetric
scattering channel SS $ X X , where S denotes the DM candidate and X some lighter SM particle,
i.e. mX ø mS . This example corresponds for example to the real scalar singlet DM introduced
in section 5.2.1, with the replacement X ! H . In this case, it is straightforward to derive the
Boltzmann equation for the DM number density YS ¥ nS/s, which reads

ẎS =°
"√

YS

Y Eq
S

!2

°1

#

∞S , (5.17)

where ẎS = sH z dYS/d z with z ¥ mS/T , Y Eq
S = nEq

S /s with the equilibrium density given by nEq
S '

m3
S/(2º2z)K2(z) with K2(z) the Bessel function, and where ∞S the thermal scattering rate of the

process SS $ X X , which is a model-dependent quantity that must be computed. In the case
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of the cross-section. The dotted-dashed curve shows the equilibrium density, and the horizontal
dotted-dashed curve is the DM density as measured by Planck. The ticks on the right-handed
y-axis gives the density YS as given by Eq. (5.19). In both plot we fixed mS = 100 GeV.

where this interaction freezes out at zfo ¿ 1 (cold relics), the thermal rate in Eq. (5.17) can be
approximated by

∞S = nEq
S °S º nEq

S nEq
S hæS vi , (5.18)

where hæS vi is the thermal average of the non-relativistic annihilation cross-section times the
relative velocity of the initial interacting particles.

± Analytical solution of the Boltzmann equation

We now study the analytical solution of the above Boltzmann equation. We introduce two different
methods. Each method provides an analytical solution which is in good approximation with the
value of the final relic density obtained by integrating numerically the Boltzmann equation. The
result of the second method will actually be very useful in the section 5.5 below.

Method 1. Within this method, the resolution of the Boltzmann equation is straightforward. We
proceed in the same way as in the leptogenesis chapters. As long as °S > H , the annihilations
SS $ X X are in thermal equilibrium so that YS follows Y Eq

S . This can be easily verified analytically
because this amounts to putting the l.h.s. of the Boltzmann equation to zero. At z = zfo, one has
°S(zfo) = H(zfo) and the annihilations freeze out : the Hubble expansion rate is larger than the
annihilation rate so basically no annihilation can occur anymore. Around this moment, the DM
density has left the thermal equilibrium distribution and remains more or less constant until now.
The DM relic density is in this case given by

Y end
S º YS(zfo) , (5.19)
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which has to be compared to the observed value of the DM abundance

≠DM

≠B
= mDM

mp

YDM

YB

Ø

Ø

Ø

Ø

Ø

today

) Y today
DM º 4.6 ·10°10 ·

µ

1 GeV
mS

∂

. (5.20)

Let’s note that the result in Eq. (5.19) can also be written as

≠DM h2 º 4.3 ·107

g§
· mS

GeV
·

z3/2
fo

ezfo
. (5.21)

The result in Eq. (5.19) is illustrated in Fig. 5.7, where in the left panel we show the ratio ∞S/(HnEq
S )

as a function of z = mS/T for different values of the cross-section hæS vi. In the right-panel, we
show the numerical solution of the Boltzmann equation (5.17) as a function of z for these same
cross-section. In both plots, we fixed mS = 100 GeV. We see that the larger the cross-section, the
larger the zfo and the smaller the relic density, as expected from Eq. (5.19).

It is worth to note that for a DM particle of the order of the EW scale, mS = 100 GeV, the right
relic abundance is obtained for a cross-section hæS vi º 1 pb, which is the typical value of the weak
interactions ! This is the so-called “WIMP miracle”, where WIMP stands for Weakly Interacting
Massive Particle. This miracle, or coincidence, clearly points towards a new physics scale which
could be not so larger than the EW scale.

From Eqs. (5.19) and (5.21), one still needs to determine the analytical expression of the
freeze-out temperature, which seems clearly related to the mass and the cross-section. The
freeze-out temperature is determined by the solution of the equation

∞S

HnEq
S

Ø

Ø

Ø

Ø

Ø

zfo

= 1 , or equivalently if zfo ¿ 1,
nEq

S hæS vi
H

Ø

Ø

Ø

Ø

Ø

zfo

= 1 . (5.22)

This translates as

ezfo

p
zfo

º 0.038 · mPlanckmShæS vi
p

g§
, (5.23)

whose resolution gives approximately

zfo º ln

"

0.038 · mPlanckmShæS vi
p

g§

#

+ 1
2

ln

(

ln

"

0.038 · mPlanckmShæS vi
p

g§

#)

. (5.24)

It is important to stress that this value of zfo doesn’t represent exactly the value at which the density
starts to leave the equilibrium density. This freeze-out value is the one that needs to be injected in
the approximated solution in Eq. (5.19), which is valid up to ª 20 % compared to the numerical
solution of the Boltzmann equation (5.17). Injecting Eq. (5.23) in Eq. (5.21), one gets

≠DM h2 º 0.94 ·109 · zfo GeV°1

hæS vipg§mPlanck
. (5.25)

In order to generate the correct DM relic abundance, one has generally that the freeze-out value
zfo ¥ mS/Tfo lies around zfo ' 25.
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Method 2. There exists another method, which we develop briefly here since we will need it
in the next section. It gives in general a more accurate result, see Ref. [303]. Instead of defining
the freeze-out temperature as the temperature at which °S = H as in Eq. (5.22), the freeze-out
temperature T 0

fo is instead determined as the temperature at which the density YS ceases to follow

the equilibrium density. Taking as a criterion |1°YS/Y Eq
S |z 0

fo
ª 1, we can show that this freeze-out

value z 0
fo ¥ mS/T 0

fo is in very good approximation determined by [303]

∞S

zHnEq
S

Ø

Ø

Ø

Ø

Ø

z 0
fo

= 1 , or equivalently if z 0
fo ¿ 1,

nEq
S hæS vi

zH

Ø

Ø

Ø

Ø

Ø

z 0
fo

= 1 . (5.26)

This translates as

ez 0
fo

q

z 0
fo º 0.038 · mPlanckmShæS vi

p
g§

, (5.27)

whose resolution gives approximately 4

z 0
fo º ln

"

0.038 · mPlanckmShæS vi
p

g§

#

° 1
2

ln

(

ln

"

0.038 · mPlanckmShæS vi
p

g§

#)

. (5.28)

The evolution of the density is then given as follows. For z < z 0
fo, the S density follows closely

the equilibrium density, while for z > z 0
fo, the density evolution is given by the solution of the

Boltzmann equation (5.17) with the inverse process SM SM ! SS neglected, i.e. by the equation

ẎS =°
√

YS

Y Eq
S

!2

∞S '°Y 2
S s2hæS vi . (5.29)

This means that each time two S annihilate, it is definitively two S less in the thermal bath. The
resolution of the above equation is straightforward. Using as initial condition Y Eq

S (z 0
fo), it is given

by

YS(z) º
Y Eq

S (z 0
fo)

1+ s(z)z
H(z) Y Eq

S (z 0
fo)J (z 0

fo)
, (5.30)

where J (z 0
fo) is an integral given by

J (z 0
fo) =

Zz

z 0
fo

d z 0 hæS vi
z 02 . (5.31)

If the cross section doesn’t depend on z, it becomes

YS(z) º
Y Eq

S (z 0
fo)

1+ hæS vis(z)
H(z)

≥

z
z 0

fo
°1

¥

Y Eq
S (z 0

fo)
. (5.32)

4Let’s note the minus sign in front of the second term in the r.h.s. with respect to Eq. (5.24).
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For z !1, the asymptotic value of the DM density is finally given by

Y end
S º

Y Eq
S (z 0

fo)

1+ hæS vis(z)
H(z)

z
z 0

fo
Y Eq

S (z 0
fo)

. (5.33)

If the second term of the denominator is much greater than 1, which is generally the case in
order to generate the right relic abundance, this latter result leads to nothing else than the usual
freeze-out solution

≠DM h2 º
1.07 ·109 · z 0

foGeV°1

hæS vipg§mPlanck
. (5.34)

This result gives the right relic abundance up to deviation of the order of ª 5 %. In order to generate
the correct DM relic abundance, one has generally that the freeze-out value lies around z 0

fo ' 21.
We show in Fig. 5.8 the comparison between the different analytical method. Note that Eq. (5.32)
will be actually very useful in what follows.

5.4.2 Asymmetric production

If the DM particle is not its own antiparticle, another interesting possibility arises. As in the
case of the generation of a baryon asymmetry via the leptogenesis scenario, one could wonder
if a DM asymmetry could not be at the origin of the DM relic abundance (see e.g. the reviews
of Refs. [207, 304, 305, 306, 307]). Indeed, as Eq. (5.2) shows, the present value of the DM relic
abundance is only a factor ª5 bigger than the baryon relic abundance : ≠DM º 5≠B . But why are
they so close ? This may be a coincidence, but this may also be a hint that the generation of the
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baryon and the DM densities were actually related. In particular, since the present baryon density
is expected to come originally from a baryon asymmetry, one could wonder if it is not the case of
the DM density too.

For example, if the DM particle is a complex field, it could in principle develop an asymmetry.
But how could an asymmetry be generated ? There are several ways an asymmetry can develop.
A possibility is that the DM asymmetry is generated by the C P-violating decay of some heavier
field, as in the leptogenesis scenario, see for example Ref. [308, 309, 310]. Another possibility is
that the DM asymmetry is generated by thermal interaction between the DM and SM particles
that carry an asymmetry, in which case the baryon and the DM asymmetries are related through
chemical equilibrium conditions, see for example Ref. [311]. This case involves chemical potential
equations, not without similarities with the ones we considered in the previous sections. In these
two cases, the baryon and the DM relic density are related through

≠DM

≠B
= mDM

mB

¢YDM

¢YB

Ø

Ø

Ø

Ø

Ø

today

. (5.35)

We see that if the amount of DM asymmetry is exactly the same as the baryon asymmetry, the DM
candidate should have a mass of the order of mDM ª 5 GeV. However, one deviates in general from
this idealistic situation because the DM candidate would be so light that one should have already
discover it. The factor 5 between the≠DM and≠B is in this case the consequence of an interplay
between mDM and ¢YDM through the combination (mDM ·¢YDM ).

Let’s note that the symmetric component DM should also undergo a standard freeze-out, so
that one could have in general both symmetric and asymmetric DM. In this case, the Boltzmann
equation for the DM evolution should be modified in order to account for the DM asymmetry.

5.5 Inert Scalar Doublet Asymmetry as the origin of dark matter

The Inert Doublet Model (IDM) for dark matter has been introduced in section 5.2.2. It is well
known that the IDM can account for the observed DM relic abundance via the usual freeze-out
mechanism (symmetric production as introduced in section 5.4.1), and be in agreement with
direct detection constraints, for DM masses in the ranges ª [50,80] GeV and above ª 540 GeV, up
to the ª 40-50 TeV unitarity bound [290, 291, 312, 292, 313].

However, in the scalar potential in Eq. (5.7), it is interesting to note the presence of the
unique term which doesn’t conserve the number of inert doublets minus the number of anti-inert
doublets :

L IDM 3°∏5

2

∑

≥

H †
1 H2

¥2
+H.c.

∏

, (5.36)

to which corresponds the scattering processes H2H2 $ H1H1, H2H̄1 $ H1H̄2 and their inverse.
This interaction reaches thermal equilibrium at T ª mH2 if at this temperature the corresponding
°∏5 scattering rate, given in Eq. (E.5) of the Appendix E.1, is larger than the Hubble rate, which
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gives the condition

|∏5|& 10°6 ·
≥mH2

TeV

¥1/2
. (5.37)

If this equation is satisfied, from chemical potential considerations one has µH1 =µH2 , and both
H1 and H2 scalar doublets asymmetries are equilibrated, leading potentially to an asymmetric
production of the DM relic abundance (at least if a scalar asymmetry ¢H1 was present), see
section 5.4.2. 5 Together with the direct detection constraint in Eq. (5.11) with a 100 keV (180 keV)
mass splitting, this means that the ∏5 interaction reaches thermal equilibrium as soon as mH2 &
100 GeV (30 GeV), in which case an asymmetry is always created from a H1 asymmetry.

This is interesting because one generally expects the existence of a B °L asymmetry at high
temperature in order to generate the BAU, as for example in the leptogenesis scenarios. This
means that a scalar doublet asymmetry ¢H1 should have been created automatically too at high
temperature from thermal equilibrium SM interactions [215]. Therefore, if the ∏5 interaction
above has reached thermal equilibrium, a¢H2 will be generated automatically too. In other words,
even if no H2 asymmetry is created at high energies, such an asymmetry will be created anyway as
soon as the B °L asymmetry is created. 6 Note that it could work also the other way around, i.e. a
primordial DM asymmetry could be at the origin of baryogenesis via the same ∏5 equilibration
interaction, a possibility we will not consider here (for a scenario of this kind see Ref. [316]).

Therefore a question arises : could the H2 asymmetry be responsible for most of the present
DM relic density ? Or more generally, what is the fate of the H2 asymmetry which will anyway be
created for mH2 & 100 GeV ? This study was made in collaboration with Thomas Hambye [3].

In this section, one will stick to the minimal IDM framework, as defined in section 5.2.2. Let
us make two simple starting assumptions. First, let us assume that the symmetric component of
the relic density left after freeze-out is smaller than the observed value. Fast SM gauge scatterings
automatically care for that for mH 0 within the ª 120°540 GeV range, whereas for other values
of mH 0 large enough ∏3,4 interactions can take care of that [292]. This implies a symmetric
annihilation cross section larger than the usual thermal freeze-out value ª 1 pb, which means
a freeze-out temperature Tfo smaller than the usual Tfo ª mH 0 /25 value. Second, let us assume
that a B °L asymmetry has been generated at a temperature TB°L above mH2 and above the
ElectroWeak Phase Transition (EWPT) temperature TEW (which we take as the temperature where
the vacuum expectation value of the SM scalar field becomes sizable, that is TEW º 165 GeV, see
section 3.3.1). Note that in this way too, the link between the baryon and the DM asymmetry is
interestingly totally independent of the way the B °L asymmetry has been created (from any type

5Actually, in the few-TeV asymmetric inert DM scenario considered in Ref. [309], it is assumed instead that the ∏5
interaction could have never been in thermal equilibrium. In this case, the DM asymmetry would have been created
explicitly at high energies, basically independently of the B °L asymmetry. If the inert scalar is the DM particle, it turns
out that the lower bound of Eq. (5.11) implies that Eq. (5.37) must anyway hold for TeV masses.

6The inert DM model contains therefore an interaction which basically implies that “Higgsogenesis" [311] production
of a DM asymmetry is at work. In Ref. [311], a X1 fermion singlet DM framework is considered with an extra X2 fermion
doublet and an X -symmetry. An X2 asymmetry is created from a X -symmetry violating X 2

2 H2
1 non-renormalizable

interaction, which is afterwards reprocessed into a X1 symmetry through X2 decays. Asymmetric frameworks based on
the equilibration of the SM scalar asymmetry with a dark sector asymmetry, based on several new dark sector particles,
or based on various possibilities of a SU (2)L multiplet, can also be found in Refs. [314] and [315] respectively.
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of Seesaw or whatever). Thus, we do not care about the way this B °L asymmetry could have been
generated. 7

5.5.1 Asymmetric production and depletion of the H2 density

In what follows, we will consider in detail and chronologically what happens when the temperature
of the Universe cools down from T ¿ mH2 to today T ø TEW , crossing mH2 > T∏5 > Tfo > TEW ,
with T∏5 the temperature where the scattering induced by the ∏5 interaction decouples and
Tfo the freeze-out temperature at which the total annihilation cross section decouples. This is,
we first discuss how an inert doublet asymmetry can be generated and depleted thanks to this
∏5 interaction. Then, we show that there is another depletion mechanism associated to DM
oscillations which is at work as soon as the temperature of the Universe goes below the EWPT.
A sketch of the scenario is displayed in Fig. 5.11. In this section, we don’t consider the Direct
Detection constraints, whose consequence will be address in the next section.

A. T ∏ T∏5 : Inert scalar doublet asymmetry from the SM scalar doublet asymmetry

At temperature above TEW º 165 GeV, all 2 inert doublet components (¥+ and ¥0) have a common
mass mH2 = m2, see Eq. (5.7). If Eq. (5.37) is satisfied, the chemical potential of both scalar
doublets are equal, µH2 =µH1 . Together with the usual SM chemical equilibrium relations (from
thermal equilibrium SM processes [215]), the µ¥+ =µ¥0 relation (from e.g. ¥+¥0§ $ SM processes),
and the hypercharge relation

X

i

°

¢YQi +4¢Yui °2¢Ydi °¢Y`i °2¢Yei

¢

+¢YH1 +¢YH2 = 0 , (5.38)

it simply gives : 8

¢YH2 (z) = k (z)
2
¢YH1 =° 16k (z)

158+13k (z)
¢YB°L , (5.39)

where we used the general relation between the chemical potential and the asymmetry (given in
Eq. (C.54) in the relativistic limit), i.e. :

¢YH2 =
T 2

6s
gH2 µH2 k(z) , (5.40)

with the k-factor suppression for bosons given by

k (z) = 6
4º2

Z1

0
x2 sinh°2

µ

1
2

p

x2 + z2
∂

d x'

8

>

<

>

:

2 , if z ø 1 ,

12
° z

2º

¢3/2 e°z , if z ¿ 1 .
(5.41)

7Let’s here mention the “scotogenic model”, which is an extension of the IDM with right-handed neutrinos odd under
the Z2 symmetry (already mentioned in section 1.3.1). Indeed, in this model light neutrino mass can be generated at
the loop-level [44] and the baryon asymmetry of the Universe can be generated too through the decay of the heavy
right-handed neutrinos via the leptogenesis mechanism [292].

8We here consider the temperature regime T . 105 GeV, where all the SM Yukawa interactions are in thermal
equilibrium. This is justified because, in the IDM alone, the inert doublet mass must anyway be smaller than ª 30 TeV
otherwise the symmetric production mechanism generates unavoidably too much DM relic abundance [292].
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Eq. (5.39) applies until the ∏5 interaction decouples at z∏5 , where it is given by

¢YH2 (z∏5 ) =°
16k

°

z∏5

¢

158+13k
°

z∏5

¢¢YB°L . (5.42)

For practical reasons, let’s define the H2 asymmetry when the ∏5 interaction decouples as

¢∏5
H2

¥
Ø

Ø¢YH2

°

z∏5

¢

Ø

Ø . (5.43)

Let’s consider two limiting cases.

No suppression of the asymmetry. Suppose that z∏5 ø 1, from the first line of Eq. (5.41) the
k-factor just reduce to k(z∏5 ) ' 2 so that the H2 asymmetry would be given by

¢YH2 =¢YH1 =° 4
23
¢YB°L . (5.44)

As said above, for similar B °L and DM asymmetries, the DM relic density constraint requires
mDM to have a mass of few GeV (more exactly, from Eq. (5.44) and taking into account the ¢YB°L

to Y today
B ratio which holds in this case, ¢YB°L/Y today

B = 37/12, one would need mH2 º 10 GeV).
As this possibility is excluded by collider constraints – see section 5.2.2 – this implies that a
subsequent suppression of the H2 asymmetry by a factor of ª (10 GeV/mDM ) must necessarily
occur. Two different types of suppressions can naturally take place. The first one, that we now
discuss, is the Boltzmann k-factor suppression from asymmetry violating scatterings, used in
several other DM models, see e.g. Refs. [317, 311]. The second possible suppression, which we
consider after, can arise later when T . TEW from the combined effect of ¥0 $ ¥0§ oscillations
and symmetric annihilations.

Suppression from the k-factor. If the ∏5 interaction is such that it decouples at z∏5 > 1, from
Eq. (5.42) the H2 asymmetry will undergo a Boltzmann suppression from the k-factor, as can be
seen from the second line of Eq. (5.41). This suppression can be understood directly from the
Boltzmann equation for ¢YH2 [318], valid for T ∏ TEW ,

d¢YH2

d z
=° 4

sH z

≥¢YH2

Y Eq
H2

°
¢YH1

Y Eq
H1

¥

∞∏5 , (5.45)

where z ¥ mH2 /T , H(z) is the Hubble rate and ∞∏5 (z) is the reaction density of the ∏5 scatterings,
given in Eq. (E.1) of the Appendix E.1. It includes both pair annihilation/creation H2H2 $ H1H1

and “t-channel" H2H̄1 $ H1H̄2 processes, whose rates read ∞
¥¥
¡¡ and ∞

¡¥
¡¥ respectively. These ∏5-

induced processes leave intact the sum of the asymmetries of H1 and H2 but not each asymmetry
individually. Once T drops below mH2 , the first term in the r.h.s. of Eq. (5.45) is enhanced with
respect to the second term by the fact that Y Eq

H2
is Boltzmann suppressed, unlike Y Eq

H1
. This

Boltzmann suppression of the asymmetry lasts until the ∏5 induced scatterings decouple, at
T = T∏5 , when °∏5 ' H . The solution of the Boltzmann equation is approximately given by
Eq. (5.42), which is nothing but the solution which makes the r.h.s. of Eq. (5.45) to vanish.
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Figure 5.9 – Reaction densities ∞/HnEq
H2

as a function of z = mH2 /T , for mH2 = 10 TeV. The black
curve shows the gauge reactions and the green curve shows the annihilation rate from quartic
interactions when taking ∏3 =∏4 = 1. The dashed red curve corresponds to the total ∏5 interaction
rate, composed by the sum of the H2H2 $ H1H1 (purple) and H2H̄1 $ H1H̄ (orange) channels.
We fixed ∏5 = 4 ·10°6 for illustration purpose.

Clearly, from Eq (5.42) with k(z) given in (5.41), the∏5 coupling must not be too large in order
to avoid a too strong exponential suppression of the H2 asymmetry. As emphasized in Ref. [311],
for fermion quartic interactions, the last induced channels to decouple are the t-channel ones,
simply because they are less Boltzmann suppressed than the other ones. In our context, this
means that the H2H̄1 $ H1H̄2 reactions are the last ones to decouple, long after the H2H2 $ H1H1

ones. The value of z∏5 is given by the condition that the °∏5 rate is equal to the Hubble rate H ,
and it is actually very sensitive to the value of ∏5 as can be seen from Fig. 5.9 because of the
t-channel scattering. For example, if mH1 = 10 TeV one gets z∏5 º 2. . .15 for ∏5 = 3 ·10°6 . . .5 ·10°6.
For somewhat smaller values of ∏5, even if the ∏5 reactions do not enter in thermal equilibrium
(as defined by Eq. (5.37)), a numerical integration of the Boltzmann equation shows that still a
number of scattering processes occur nevertheless, what can lead to a sizable asymmetry. For
these reasons, we will only use the Boltzmann equation in Eq. (5.45) for the numerical results. 9

B. T∏5 > T > Tfo : Freeze-out in the presence of an asymmetry

During this period, the ¢YH2 asymmetry stays constant unlike the total abundance ßH2 , whose
Boltzmann equation for this period reads

dßH2

d z
=°

hæH2 vis

zH

h

ß2
H2

°¢∏5 2
H2

°ßEq 2
H2

i

, (5.46)

9As an important remark, note that in the example of Fig. 5.9 where mH2 = 10 TeV, the value of ∏5 = 4·10°6 is actually
excluded by the Direct Detection bound in Eq. (5.11), which requires ∏5 . 5 ·10°5. Larger values of ∏5 lead in fact to a
too strong suppression of the H2 asymmetry. As we will show in the next section, a dominant asymmetric DM scenario
in the IDM alone is actually excluded ! However, one can easily evade the Direct Detection if the inert scalar decays into
lighter particles, which therefore constitutes de DM candidate, see section 5.5.4.
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where hæH2 vi is the effective thermal cross section of the H2H̄2 $ SM SM annihilations, given in
Eq. (E.7) of the Appendix. The total H2 density is defined by ßH2 ¥ YH2 +YH̄2

. 10 With a constant

¢∏5
H2

, as it is the case during this period, the solution of Eq. (5.46) at freeze-out z = zfo is to a good
approximation given by : 11

ßH2 (zfo) '
h

¢∏5 2
H2

+ßEq 2
H2

(zfo)
i1/2

, (5.49)

where zfo is the usual freeze-out value as defined in Eq. (5.24), given here by the equation

zfo ' ln
∑

0.0038 ·
mPlanck gßH2

mH2hæH2 vi
p

g§zfo

∏

. (5.50)

If the annihilations are fast enough to leave at Tfo a symmetric component smaller than the
asymmetric one (which is typically satisfied for hæH2 vi& 1 pb), one hasßH2 (zfo) '¢∏5

H2
¿ß

Eq
H2

(zfo).

Given the sign of the baryon asymmetry, this means at Tfo, ßH2 ª°¢H2 ª°YH̄2
¿ YH2 ,ßEq

H2
.

C. Tfo > T > TEW : Stagnation of the asymmetry

Nothing is expected to happen during this period. The H2 total density left at Tfo is left intact until
TEW , temperature at which the total density and asymmetry are given by :

ßH2 (zEW ) 'ßH2 (zfo) and
Ø

Ø¢YH2 (zEW )
Ø

Ø=¢∏5
H2

. (5.51)

For a dominant asymmetric component, one has ßH2 (zEW ) '
Ø

Ø¢YH2 (zEW )
Ø

Ø=¢∏5
H2

.

D. T < TEW : Inert scalar doublet asymmetry depletion from ¥0 $ ¥0§ oscillations

Once the temperature drops below TEW , two new effects enter into play : generation of mass
splittings between the H 0, A0 and ¥+ components and possibly fast inert particle-antiparticle
oscillations ¥0 $ ¥0§, as illustrated in Fig. 5.10. The effect of the mass splittings generated by
the SM scalar vev, Eq. (5.9), is of moderate importance as long as T > ±m0 = mA0 °mH 0 and

10We remind that the number of degrees of freedom is given by summing the number of particles (or antiparticles but
not both), i.e. gH2 = 2 for a SU (2)L doublet. Therefore, for particles that are not self-conjugated one has gßH2

= 2 · gH2 .
11A more precise solution can actually be derived, which reproduce well the shape of the evolution of the ßH2 .

Proceeding in the same way as for Eq. (5.32) in the method 2 of section 5.4.1, one has :

ßH2 (z > z0fo) '
h

¢∏5 2
H2

+ß0 2
H2

(z)
i1/2

with ß0H2
(z) =

ß
Eq
H2

(z0fo)

1+ hæH2 vis(z)
H(z)

µ

z
z 0fo

°1
∂

ß
Eq
H2

(z0fo)
, (5.47)

which is the expression we will use in all our numerical results. We recover the solution in Eq. 5.49 by taking the limit
where z ¿ z0fo in the expression (5.47). As explained above, the value of z0fo corresponds to the temperature at which

ßH2 ceases to follow the equilibrium density ßEq
H2

. It is here given by the condition

ß
Eq2
H2

°¢∏5 2
H2

ß
Eq
H2

shæH2 vi
zH

Ø

Ø

Ø

Ø

Ø

z 0fo

= 1 . (5.48)
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Figure 5.10 – Feynman diagram of the ∏5 interaction involving only neutral scalars. After SSB, the
scalar field ¡0 acquires a vev leading to ¥0 $ ¥0§ oscillations.

T > ±m± = m¥± °mH 0 . Assuming, as said above, that the H 0 component is the lightest one
(i.e. ∏5 < 0), they imply that the other components will ultimately decay into H 0. But these decays
conserve the number of inert scalar particles. They just convert the H2 asymmetry created before
EWSB (with mass mH2 ) into a DM relic density of self-conjugated DM particles H 0 (with mass
mH 0 , different from mH2 unless ∏H 0 vanishes).

More important is the potential effect of the much faster inert particle-antiparticle oscil-
lations ¥0 $ ¥0§ caused by the ∏5 interaction. The rate of an oscillating particle is simply given
by the value of the associated mass splitting [309, 319, 320], i.e. °osc = ±m0 = mA0 °mH 0 . For
T < TEW , this rate is very fast compared to the Hubble rate since :

°osc

H (T )
' 2 ·1015 · |∏5| ·

µ

100GeV
T

∂2

·
µ

TeV
mH 0

∂

. (5.52)

The effect of these oscillations depends obviously on whether they do occur, which Eq. (5.52)
doesn’t necessarily imply, and on whether symmetric annihilations do occur after EWSB. Actually,
even if the freeze-out occurs before EWSB, this does not imply that symmetric annihilations could
not restart again after EWSB, due to oscillations [319, 320]. This could easily be the case because,
even if one starts with a pure asymmetry, the oscillations will quickly give a number density of each
population much larger than their thermal equilibrium values, roughly n¥0 ª n¥0§ ª |¢n¥0 |/2 ¿
nEq
¥0 , so that |¢n¥0 |hævi> H can hold even if nEq

¥0 hævi< H . If these annihilations occur, they will
anyway reduce the DM abundance, as no inverse processes will occur in this case. Let us consider
both possible cases separately.

No symmetric annihilations after EWSB. If no symmetric annihilations arise after EWSB, os-
cillations have simply no effect. They quickly reconvert a pure ¥0 population, or a pure ¥0§

population, into an oscillating mixed ¥0-¥0§ population, but they do not change the number of
inert states [319]. In this case, the number of H 0 particles left today will be simply equal to the
number of inert scalar particles before EWSB, i.e. Y today

H 0 'ßH2 (zEW ).

If the H2 asymmetry dominates the total density at TEW , the H 0 density is equal to the
asymmetry left after ∏5 interaction’s decoupling. From Eqs. (5.42) this gives

Y today
H 0 =

16k
°

z∏5

¢

158+13kH2

°

z∏5

¢¢YB°L , (5.53)
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with k(z∏5 ) given by Eq. (5.41). Only the relation between the value of YB today and¢YB°L changes
after EWSB, as a result of the fact that below TEW the conservation of electric charge holds rather
than conservation of Y and T3. We get

Y today
B ' 12

37
¢YB°L . (5.54)

As a result, the H 0 density reads

Y today
H 0 =

148 ·k
°

z∏5

¢

474+39 ·k
°

z∏5

¢ ·Y today
B , (5.55)

and the present H 0 to baryon density ratio is given by

≠H 0

≠B
=

Y today
H 0

Y today
B

·
≥ mH 0

1 GeV

¥

=
148 ·k

°

z∏5

¢

474+39 ·k
°

z∏5

¢ ·
≥ mH 0

1 GeV

¥

. (5.56)

This is the final result if no symmetric annihilations occur after EWSB and if the asymmetric
component ¢YH2 dominates over the total density ßH2 at TEW . However, it must be stressed
that it is not mandatory to avoid symmetric annihilations after EWSB. On the contrary, if the ∏5

interaction above does not provide enough suppression, these scattering processes could easily
provide it, without the need of any special tuning. This is what we will now quantify.

Symmetric annihilations after EWSB. Possible effects of dark matter oscillations have been
studied in Refs. [319, 320]. As said above, since oscillations reprocess the asymmetry into both
particle and antiparticle densities, their main effect is to allow the symmetric annihilations to
start again. Even if, as Eq. (5.52) shows, the oscillation rate is much faster than the Hubble rate,
this doesn’t necessarily mean that oscillations (and thus eventually annihilations) do occur. As
shown in these references, if dark matter undergoes fast annihilations or elastic scatterings, these
processes can break the coherence of the ¥0-¥0§ states, preventing them from oscillating. The
interplay of the oscillations with the other processes is actually more complicated in this inert
doublet scenario than in the singlet setups considered in Refs. [319, 320]. This is because on top
of ¥0-¥0§ annihilations and ¥0 or ¥0§ elastic scatterings, there are charged ¥± states, which at
TEW are responsible for half of the asymmetry and do not oscillate. Furthermore, fast inelastic
scatterings can change neutral states into these charged states and vice et versa. Moreover, as said
above, all states ultimately become real H 0 states, which obviously do not oscillate.

(1) Let us first consider what happens to the neutral states, as if there were no charged
states. In this case, one has two important processes. On the one hand, there are ¥0¥0§ ! SMSM
annihilations processes which are dominated by their ∏3,4 interaction contribution. On the other
hand there are ¥0(§)SM ! ¥0(§)SM elastic scatterings which are dominated by their t-channel Z
exchange contribution, and not by the ∏3,4 elastic scattering contribution. 12 The Z -exchange

12For T &mh , this stems from the fact that it involves a t-channel mediator whose mass is much smaller than the
inert scalar mass, mZ ø mH2 . As a consequence, it scales as °gauge

scat ' G2
F T 5 as compared to the quartic coupling

elastic contribution which scales as °quartic
scat = nEq

H1
hævi ' ∏2

3,4T 3/m2
H2

. For T < mh , the quartic contribution is also
sub-leading because it is Boltzmann suppressed, unlike the gauge one.
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gauge elastic contribution is the last to decouple, and it is relevant for preventing ¥0-¥0§ states from
oscillating because the gauge interaction is odd under ¥0-¥0§ exchange [320], i.e. it basically makes
the distinction between ¥0 and ¥0§. Thus the relevant question is, down to which temperature will
these processes effectively prevent the oscillations to start ?

At first sight, we could think that oscillations will start only once the scattering rate °scat goes
below the oscillation rate °osc = ±m0 (if at this time both rates are still larger than the Hubble rate).
This turns out to occur at a rather low temperature, Tosc ª few GeV scale. In this case one would be
back to the “no symmetric annihilation” case above, because oscillations have practically no more
effect at this temperature, where the annihilation rate is already largely suppressed. However, an
integration of the Boltzmann equations shows that oscillations rather start when (±m0)2/H = °scat,
see Ref. [319]. In our scenario, as we have also checked from a numerical integration of the relevant
Boltzmann equations, this turns out to happen at a temperature above TEW . Thus we conclude
that oscillations start as soon as EWSB occurs.

As a result, annihilations can restart from the EWSB temperature TEW º 165 GeV. To deter-
mine how much of them will annihilate, one can just take the Boltzmann equations with the
oscillation and annihilation terms,

dß¥0

d z
=°hæ0vi s

2zH

h

ß2
¥0 °¢2

¥0 °•2
¥0 °ßEq 2

¥0

i

, (5.57)

d¢¥0

d z
= 2i

±m0

zH
•¥0 , (5.58)

d•¥0

d z
= 2i

±m0

zH
¢¥0 ° hæ0vis

zH
•¥0 ß0 , (5.59)

where for any T ∑ TEW we define z ¥ mH 0 /T , with hæ0vi the thermally averaged ¥0¥0§ ! SM
annihilation cross section. Here ¢¥0 stems for the usual asymmetry ¢¥0 ¥ ¢Y¥0 , while •¥0 is a
quantity that accounts for the coherence between the ¥0 and ¥0§ components (see [319] for further
details). The resolution of these equations leads to a monotonically decreasing ß¥0 (z) function
and to oscillating functions ¢¥0 (z) / cos[ f (z)] and •¥0 (z) / sin[ f 0(z)] whose amplitudes also

decrease monotonically. For fast oscillations, and neglecting the ßEq
¥0 term in Eq. (5.57) (which is

indeed suppressed since here zfo < zEW ), the set of Boltzmann equations can be simplified and
solved analytically, at an approximate level, as explained in the Appendix E.2. The solution it gives
for ß¥0 is nothing but 13

ß¥0 (z ∏ zEW ) =
ß¥0 (zEW )

1+ 1
2
hæ0vi s(z)

H(z)

≥

z
zEW

°1
¥

ß¥0 (zEW )
, (5.60)

with zEW = mH 0 /TEW . 14 In the case where the asymmetry dominates the total abundance at TEW ,
the initial abundance and asymmetry are equal to ß¥0 (zEW ) =¢∏5

H2
/2. The asymmetry ¢¥0 and •¥0

are, in turn, fast oscillatory functions which are equal to zero on average.

13This result is approximately the same than the one obtained in [319] for much smaller ±m0 values – see Eqs (25)
and (33) therein – but in which xosc,ann (which depends on ±m0) is now simply replaced by zEW .

14If there is no asymmetry and if the freeze-out has occurred prior to EWSB, one recognizes in Eq. (5.60) the usual
asymptotic freeze-out behavior, i.e. the freeze-out is not instantaneous, but reaches asymptotically its final value as
given in this equation, see Eq. (5.30).
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As an important remark, if at T = TEW the equilibrium term ß
Eq
¥0 cannot be neglected in the

r.h.s. of Eq. (5.57), i.e. if it is large compared to the initial density ß¥0 (zEW ), the asymmetry com-
ponent will be quickly totally destroyed because of the fast ¥0¥0§ $ SM SM scattering processes
together with the fast annihilations. This is why one needs to impose zfo < zEW in order to have a
possible asymmetric production of the DM relic density. This implies mH2 & 4 TeV.

The result of Eq. (5.60) looks very similar to what we obtained in Eq. (5.32) of section 5.4.1, and
this is not a coincidence. Indeed, this result can also be qualitatively understood in the following
way. Once T ∑ TEW , the fast oscillations reprocess quasi instantaneously the ¥0 asymmetry in
oscillatory abundances for ¥0 and ¥0§. On average, just after EWSB, we have therefore n¥0 '
n¥0§ ' |¢n¥0 |TEW /2. Since Tfo > TEW , when two conjugate particles annihilate to SM particles, the
reduction of inert doublet state it implies will not be compensated by any inverse processes. As a
result, the Boltzmann equation for ß¥0 one gets along this way is simply given by

dß¥0

d z
=°hæ0vis

2zH
ß2
¥0 , (5.61)

to be compared with Eq. (5.29), and whose resolution leads to nothing else than Eq. (5.60). 15

(2) The next step is to include the contribution of the charged states. Since these states do
not oscillate, one could naively expect that the charged asymmetry is essentially left intact until
the charged states decay to H 0 states. This doesn’t work this way. To see that precisely, one should
in principle solve the corresponding set of six coupled Boltzmann equations, for ß¥0 , ¢¥0 , •¥0 ,
¶¥0 , ß¥+ , ¢¥+ , where¶¥0 and •¥0 are the real and imaginary parts of the quantity that accounts
for the coherence effects. Nevertheless in practice we don’t need to go that far. It turns out that
processes as ¥0(§) SM $ ¥± SM inelastic scatterings are very fast during this period and until
T ªfew GeV, and these implies that the charged asymmetry follows closely the neutral one as soon
as oscillation starts. 16 As a result, in the same way as for the neutral states, one can adopt the
simple assumption that as soon as oscillations start, the particle and antiparticle densities for
charged states are equilibrated, Y¥0 = Y¥0§ = Y¥+ = Y¥° . At this point, the annihilation processes
such as ¥+¥° ! SMSM , ¥+¥0§ ! SMSM and ¥°¥0 ! SMSM can start again, in the same way
as the ¥0¥0§ ! SMSM ones. In parallel with Eq. (5.61), the whole effect can be approximatively

15The reason why the two results coincide is in fact more subtle. Since the ¥0(§) oscillatory behavior is given by
Y¥0(§) = f (z)

°

1±cos g (z)
¢

/2, the Boltzmann equation in this naive approach should read

dß¥0

d z
=°2

hæ0vis
zH

Y¥0 Y¥0§ =°hæ0vis
2zH

ß2
¥0 sin2 g (z) . (5.62)

Averaging this expression, we find Eq. (5.61) up to an extra factor 1/2. An extra factor 2 must nevertheless be added to
take into account the contribution of the coherence •¥0 part, giving back Eq. (5.60).

16Indeed, this can be seen from the corresponding term in the Boltzmann equation, which we expect to contain
¢Ẏ¥+ 3 °(¢Y¥+ °¢Y¥0 )∞+0

scat, where ∞+0
scat is the ¥+SM $ ¥0SM t-channel gauge-mediated scattering rate. Since

∞+0
scat/n¥ ¿ H , the asymmetry ¢Y¥+ follows closely ¢Y¥0 on average. Note also that the ¥0 SM $ ¥+ SM (and conju-

gated) processes not only equilibrate the neutral and charged asymmetries, but also can break the coherence of the
¥0-¥0§ by transforming a coherent neutral state into a charged state which does not oscillate. However, in the same way
as for the Z -exchange channel above, its rate goes under (±m0)2/H before EWSB occurs, so that they do not prevent
oscillations to start at T = TEW .
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zl5 zfo zEW

[
H2

EW

Y
DM

today

[
H2

Eq

�Ƌ<H1 �

[H2

̊Ƌ<H2̋
k

k

Figure 5.11 – Sketch of the scenario considered in section II and III. We represent, as a function of
z = mH 0 /T , the H2 asymmetry |¢YH2 | in gray and the total DM density ßH2 in black. We neglect
in this sketch the mass splittings between the different components of H2. First step : The initial
asymmetry ¢YH1 and ¢YH2 are fixed by the B °L asymmetry. Second step : this asymmetry gets
suppressed until the ∏5 interactions decouple at z∏5 – the suppression is characterized by the
k-factor. Third step : at z∏5 the total annihilation cross section is still in thermal equilibrium and
ß

Eq
H2

follows the equilibrium density ßEq
H2

until it reaches |¢YH2 |. Fourth step: at EWSB, oscillations
start and reequilibrate the particle-antiparticle populations. At this point, annihilations can start
again and if they do they deplete the density – the suppression is characterized by the ∑-factor.

accounted by the simple Boltzmann equation

dßH2

d z
=°

hæH2 vis

zH
ß2

H2
. (5.63)

Similarly to what has been obtained in Eq. (5.60), the resolution of Eq. (5.63), integrated from TEW

until now and using the initial condition in (5.51), leads to

ßH2 (z ∏ zEW ) =
ß¥0 (zEW )

1+ hæH2 vi s(z)
H(z)

≥

z
zEW

°1
¥

ß¥0 (zEW )
, (5.64)

with ßH2 (zEW ) 'ßH2 (zfo) as given in Eq. (5.49). In the case where the asymmetry dominates the
total abundance at TEW , the initial abundance and asymmetry are equal to ß¥0 (zEW ) =¢∏5

H2
.

Finally, because of the mass splittings between H 0 and the other components of the inert
doublet, this total density in Eq. (5.64) is progressively transferred into a H 0 density through
the decays of the heavier components. This occurs typically for a temperature below the mass
splittings, i.e. T < ±m0 = mA0 °mH 0 and T < ±m± = m¥± °mH 0 . Note that, as we will see in the
numerical section below, Eq. (5.64) reaches its asymptotic value to a good approximation before T
drops below the value of the mass splitting mA0 °mH 0 . As a result, this splitting can be neglected
as it was done to get Eq. (5.64).
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Chapter 5. Asymmetric dark matter in the Inert Doublet Model

5.5.2 Final inert scalar relic density

We summarize in Fig. 5.11 the evolution of the asymmetry |¢YH2 | and total density ßH2 , if the
asymmetry dominates totally the H2 density before TEW . We remind the main steps :

A. T & T∏5 . The H2 asymmetry, proportional to the B °L asymmetry, is generated through the
∏5 interactions. The asymmetry undergoes a Boltzmann suppression until the∏5 interaction
decouples (see Eq. (5.42))

¢∏5
H2

¥ |¢YH2 (z∏5 )| =
16k

°

z∏5

¢

158+13k
°

z∏5

¢¢YB°L . (5.65)

B. T∏5 > T > TEW . The symmetric component of ßH2 follows an exponential suppression, until
ßH2 reaches at z = z f o the value (see Eq. (5.49))

ßH2 (zfo) '
h

¢∏5 2
H2

+ßEq 2
H2

(zfo)
i1/2

. (5.66)

From zfo to zEW , the annihilations are momentarily frozen, so that ßH2 (zEW ) ' ßH2 (z f o).
During this period, if the contribution from usual freeze-out is negligible (i.e. if the asym-
metry dominates the above expression), there are only H̄2 particles in the plasma and
ßH2 (zEW ) '¢∏5

H2
.

C. T < TEW . The fast ¥0 $ ¥0§ oscillations start. They quickly reprocess the H̄2 density in equal
abundances (on average) for ¥0, ¥0§, ¥+ and ¥°. The annihilations can therefore start again
and, if they do, they deplete the set of densities, whose sum reads asymptotically

ßH2 (z ¿ zEW ) =
ßH2 (zEW )

1+ hæH2 vi s(z)
H(z)

z
zEW

ßH2 (zEW )
. (5.67)

At the end of this scenario, for T . ±m0 and T . ±m±, this total density in Eq. (5.67) is progres-
sively transferred into a H 0 density through the decay of the heavier components. The final H 0

abundance is therefore given by

Y today
H 0 =ßH2 (z ¿ zEW ) =

ßH2 (zEW )

1+∑ ·ßH2 (zEW )
, (5.68)

where we define

∑¥
hæH2 vis(z)

H(z)
z

zEW
' 1.3 ·1013 ·

µ hæH2 vi
1 pb

∂

. (5.69)

Since ultimately no asymmetry survives, the relation between the baryon and the B°L asymmetry
is still given by Eq. (5.54), and the final H 0 to baryon density ratio is given by

≠H 0

≠B
=

ßH2 (zEW )

1+∑ ·ßH2 (zEW )
· 1

Y today
B

·
≥ mH 0

1 GeV

¥

. (5.70)
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If the asymmetric component dominates, using Eqs. (5.42) and (5.51), one gets simply

≠H 0

≠B
=

148k
°

z∏5

¢

474+
≥

39+148∑Y today
B

¥

k
°

z∏5

¢

·
≥ mH 0

1 GeV

¥

. (5.71)

A number of comments can be done regarding these results. In particular, Eqs. (5.68) and (5.70)
show that beside the ∏5 interaction induced “k-factor" suppression in ¢YH2 , see Eq. (5.42), os-
cillations drive a “∑-factor” suppression. This ∑-factor suppression can be sizable as soon as
∑ ·ßH2 (zEW ) & 1. This is not surprising since the condition ∑ ·ßH2 (zEW ) < 1 is nothing but the
condition (nH2 +nH̄2

)hæH2 vi< H at T = TEW .

As Eq. (5.64) shows, this suppression is neither instantaneous nor exponential. It goes as the
inverse of z/zEW °1 until it reaches an asymptotic value. In this sense, imposing that the cross
section satisfies the unitarity bound, it is naturally limited but it still can be responsible for the
ª (10GeV/mDM ) suppression needed, see below. Interestingly, for large values of ∑ ·ßH2 (zEW ), the
Y today

H 0 relic density obtained doesn’t depend anymore on the asymmetry left at TEW , even if this

asymmetry is the source of the final H 0 abundance. In this case, we simply get Y today
DM = 1/∑, and

the ratio reads

≠H 0

≠B
' 0.15 · zEW ·

µ

1 pb
hæH2 vi

∂

. (5.72)

This means, as we could have anticipated, that for large cross section the asymmetry left is
independent of the initial asymmetry, provided this initial asymmetry is large enough. In other
terms, if the∑-factor suppression is small, both baryon and H 0 asymmetries are directly connected.
If instead it is large, they are not related anymore in a so direct way, since in this case the final
relic density depends only on the annihilation cross section. 17 Note interestingly that Eq. (5.72) is
nothing but the result of the standard freeze-out scenario, but with the important difference that
in the standard case, zEW in Eq. (5.72) must be replaced by zfo, see Eq. (5.34).

5.5.3 Failure of the asymmetric IDM scenario

We now show that the successful generation of the DM relic abundance from a dominant H2

asymmetry contribution in the IDM alone is actually in conflict with Direct Detection bounds.
We proceed step by step : we first compute what is the H2 asymmetry needed in order to get the
correct final DM relic density. We then show what are the corresponding ∏5 values needed.

The final result of Eq. (5.70) depends on three parameters : mH 0 ,ßH2 (zEW ) and the total cross
section hæH2 vi via∑ in Eq. (5.69). This means that for given values of the input parameters mH 0 and
hæH2 vi, there is only one value of ßH2 (zEW ) which gives the observed value of≠DM /≠B , as given
by the PLANCK best fits,≠DM h2 ' 0.1188 – see Eq. (5.1) – and≠B h2 = 0.022 – see Eq. (3.5) [206].
Since ßH2 (zEW ) depends only on these two input parameters (mH2 and hæH2 vi) and on ¢∏5

H2
, this

means also that there is only one value of ¢∏5
H2

which gives the correct relic density for fixed values
of the two input parameters.

17But still, even in this case, they remain similar as the ∑ factor is bounded from above by unitarity considerations on
the total cross section.
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Figure 5.12 – Values of ¢∏5
H2

which give the observed relic density as a function of the input
parameters mH 0 for various values of hæH2 vi (dashed blue lines). The corresponding values of
∑ ·ßH2 (zEW ) are given by the dashed orange lines. The upper horizontal line gives the maximum
value of ¢∏5

H2
which is obtained from equilibration with the H1 and B ° L asymmetries. The

r.h.s. solid (dashed) green line gives the maximum value of the input parameters imposing that
∏3,4 couplings are smaller than 4º (

p
4º). Below mH 0 ª 4.7 TeV, the freeze-out occurs after EWSB,

which relatively quickly causes a huge suppression. The black lines from top to bottom give the
value of the parameters for which 90%, 50%, 10% of the relic density is of asymmetric origin,
respectively.

Needed asymmetry as a function of the mass. We show in the left panel of Fig. 5.12 the value
of ¢∏5

H2
as a function of mH 0 for different values of the cross section. By comparing this value of

¢∏5
H2

to the value this asymmetry would have if there were no “k-factor” suppression – given by
the ¢YH1 upper horizontal line – one can read off what is the value of this ∏5 induced “k-factor"
suppression, Eq. (5.42) as compared to Eq. (5.44). This figure also shows the corresponding values
of the ∑ ·ßH2 (zEW ) factor which lead to the other suppression, i.e. the 1/(1+∑ ·ßH2 (zEW )) factor in
Eq. (5.70).

In Figure 5.12, we also represent for which values of the various parameters the asymmetry
produced before the EW transition is responsible for 50% of the final DM relic density (black line).
Above (below) this line the relic density is dominantly of asymmetric (symmetric) origin. Similarly,
the dotted upper (lower) black line gives the values of the parameters above (below) which the
asymmetry is responsible for more (less) than 90% (10%) of the final relic density.

For masses which give a freeze-out below TEW , 18 the ∑ ·ßH2 (zEW ) factor becomes exponen-
tially large because in this case ßH2 (zEW ) is still exponentially larger than its value at freeze-out.

18A comment which must be made at this point concerns the fact that we have considered the electroweak phase
transition as if it was an instantaneous process, i.e. as a step function at the temperature TEW ª 165 GeV, see section 3.3.1
and Ref. [210] (see also Ref. [321]) – which as said above is the temperature where the vacuum expectation value of
the SM scalar field becomes sizable (i.e. where the oscillations are about to start to reprocess the asymmetry). As the
electroweak transition is a crossover, it is clearly an approximation which could be refined. A change of TEW by a given
factor would shift all mH 0 values in Fig. 5.12 by about the same factor.
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Thus, the proportion of ßH2 (zEW ) which is due to ¢∏5
H2

is exponentially suppressed. This explains
why the black lines quickly go up for mH 0 below 4°5 TeV. Note nevertheless that this suppression,
even if exponential, is far from instantaneous. As a result we find that, still, the asymmetry can
dominate the relic density for a mass equal to 3.7 TeV which is substantially lower than the 4.7 TeV
value which gives Tfo = TEW . 19

In Fig. 5.12, we recognize several properties expected from the discussion of the previous
section. Indeed, for large value of ∑ ·ßH2 (zEW ), the observed relic density doesn’t depend anymore
on the value of ¢∏5

H2
, provided this later quantity is above a certain value. Note that the r.h.s. green

curve of Fig. 5.12 is obtained by imposing that all quartic couplings are perturbative, ∏3,4 < 4º. 20

This line shows that a dominant asymmetric component requires that mH 0 . 25 TeV (whereas the
same condition gives mH 0 . 30 TeV for the standard freeze-out scenario and for a small value of
the ∏5 coupling). Such a bound also implies an upper bound on the hæH2 vi cross section of about
2.5 pb, that is to say a value about 4 times larger than the ª 0.7 pb value one needs at these energies
along the standard freeze-out scenario. Imposing instead that ∏3,4 <

p
4º one gets mH 0 . 8 TeV

and hæH2 vi. 1.1 pb (dashed green line).

The minimum value of the ∏2
3 +∏2

4 coupling combination (which enters in hæH2 vi) that this
scenario requires is ª 2, corresponding to mH 0 ª 4 TeV and a cross section of ª 0.5 pb. This is
smaller than the usual ª 0.7 pb because the associated asymmetry ¢∏5

H2
ª |¢YH1 | also participates

to the depletion of the total density. From Appendix E.3, to these values of ∏3,4 ª 1.5 corresponds
a Landau pole at ª 107 GeV. This means that new physics is to be expected in this case below this
value. The scale of B °L asymmetry production has not to be necessarily below this scale. All what
matters for the value of≠DM /≠B is the value of the B °L asymmetry at T ª mH2 .

Needed ∏5 coupling as a function of the mass. In Fig. 5.13, as a function of the same two input
parameters mH 0 and hæH2 vi, we show the value of ∏5 which leads to the ¢∏5

H2
value needed in

Fig. 5.12. The corresponding value of the m2
A0

°m2
H0

mass splitting is also given on Fig. 5.13. This
figure shows that the scenario leads to the observed relic density for ∏5 2 [5 ·10°8,8 ·10°6], which
corresponds to a mass splitting equal to approximately mA0 °mH0 2 [0.1,15] keV. Larger values of
∏5 quickly lead to a ∏5 decoupling temperature much smaller than mH2 , thus to largely Boltzmann
suppressed remaining asymmetries. Smaller values of ∏5 rather quickly lead to no thermalization
of the H2 and H1 asymmetries, i.e. to no creation of a H2 asymmetry. In most of the relic density
allowed parameter space, both the “k" and “∑" suppressions are active, although it is possible
to have only one of the effect to account for all the necessary suppression. As said above, an
important constraint that one must satisfy is the direct detection constraint of Eq. (5.11). The
value of the mass splitting just quoted are below the ª 100 keV direct detection lower bound of
Eq. (5.11).

19To get this 3.7 TeV value we simply applied Eq. (5.64) neglecting the fact that in this case the ßEq2
H2

inverse scattering
term must be taken into account in the Boltzmann equations (as in Eq. (5.57)). The incorporation of this term would
slightly lower further this minimum value of mH 0 .

20No need to say that with such large values of these quartic couplings, Landau poles are to be typically expected
far below the Planck scale. Although the energy scale at which we get a Landau pole depends on the value of other
couplings such as ∏2, if there is no cancellations between the contributions of various couplings in the beta functions
in Appendix E.3, a value of ∏3,4 ª 4º (

p
4º) at§= mH2 = 25 TeV gives a Landau pole at ª 70 TeV (ª 700 TeV).
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Figure 5.13 – Values of ∏5 which leads to the ¢∏5
H2

values needed in Fig. 5.12, as a function of the
input parameters mH 0 . The red shaded area is excluded by the direct detection constraint of
Eq. (5.11), taking mA0 °mH 0 = 100 keV. Taking instead mA0 °mH 0 = 180 keV gives the red dashed
line. The dashed black line gives the value of ∏5 below which this interaction never gets in thermal
equilibrium, as given by Eq. (5.37). The lowest allowed ∏5 value is obtained for a situation where
there is neither a k suppression, nor a ∑ suppression. In this case one generates directly the
observed relic density from having only partial thermalization of the asymmetries.

Thus, unless direct detection would allow a mass splitting as low as the value mA0 °mH 0 ª
15keV, which seems very unlikely, this very minimal asymmetric scenario is in fact excluded !
This can also be clearly seen from Fig. (5.13) where the region allowed by direct detection taking
in Eq. (5.11) a mass splitting ±mmin = 100 keV has no overlap with the region which gives the
observed relic density. Or, in other words, imposing that the mass splitting is above 100keV, the ∏5

interaction turns out to decouple only at z∏5 & 50 leading to a tiny≠H 0 relic density. Nevertheless,
we now show how the inert doublet asymmetry can still be responsible of most of the DM relic
abundance by decaying into lighter particles.

So, we conclude that in the very minimal IDM scenario, direct detection constraints implies
that there is always creation of an inert doublet asymmetry at T ª mH2 for mH2 & 100 GeV, but
the fate of this asymmetry is to be too much washed away to account for the observed DM relic
density.

5.5.4 Reprocessing the inert doublet asymmetry into a lighter particle DM relic den-
sity

Since the very minimal IDM scenario above cannot account for both the relic density and direct
detection constraints at the same time, one question one must ask is whether this simple scenario
of an IDM asymmetry creation could not be nevertheless at the origin of the DM relic density
today in a simple way. This could in fact happen if the DM is made of a lighter species, whose relic
density would be due to the reprocessing of the inert doublet asymmetry into this species. Such a
reprocessing could for instance take place through decay. For the scalar scenario we consider, this
could be the case if there exists a lighter Z2 odd particle, “S", to which the inert doublet states can

204



5.5. Inert Scalar Doublet Asymmetry as the origin of dark matter

� �� �����-��

��-��

��-��

��-��

��-��

���

��� [���]

�
�
�

� �

��������
����	� - 
�� �
�
�����

�� = ���

�� = �

�� = ��

�� = ���

�� �� ��� �� ��� ��

� �� �����-�

��-�

��-�

��-�

��-�
��

�

��-�

��-�

��-�

��� [���]

��
��

�
���
-
�
�
�

�
[�
��

� ]

�� = ���
�� = ��

�� = ���
�� = ��

Figure 5.14 – Same as Fig. 5.12 (left) and Fig. 5.13 (right), but allowing the inert scalar to decay into
a lighter real scalar singlet S with mass mS = mH 0 /10.

decay. In this case, if the asymmetry is fully reprocessed into this lighter particle S, so that each
inert scalar component gives one S particle, the results of Figs. 5.12 and 5.13 (without the direct
detection constraint) are still fully valid provided the mass of the S particle, mS , is close to mH2 . If
instead it is sizably smaller, this requires to create more inert particles by a factor mH2 /mS . As an
example, Figs. 5.14 show the value of parameters we need to get the observed relic density for a
ratio mH2 /mS equal to 10. Note that such large H2 asymmetry cases, beside allowing smaller DM
masses, also give relaxed lower bounds on the ∏3,4 couplings (in order to suppress sufficiently the
symmetric part). Sizably smaller values of these couplings are possible, relaxing accordingly the
Landau pole constraints. In order to reprocess the inert doublet asymmetry into such a S specie,
various possibilities could be considered. We here consider the case where H2 decays into a real
or a complex scalar singlet – see section 5.2.1.

S as a real scalar singlet. A simple possibility is to consider S as a Z2-odd scalar singlet, into
which the scalar doublet states decay sufficiently slowly to happen after the freeze-out of this
singlet DM particle. Such a decay can be accounted for by a L 3 µSH H †

1 H2S renormalizable
interaction. If so, the main constraint to satisfy along such a scenario is, in order that the S
relic density is mainly produced from the IDM asymmetry, that the S particles has a S†S !
SM SM annihilation channel with a large enough cross section to leave a symmetric relic density
smaller than the observed one at S freeze-out. These annihilations can be accounted for by a
L 3∏SH H †

1 H1S†S interaction.

As an example, if we take a real scalar singlet, and fix the parameters to be mS ª 2 TeV (400
GeV) and mH2 = 10 TeV, both conditions are fulfilled for ∏SH & 0.6(0.1) and µSH . 4 ·10°5 GeV
(7·10°6 GeV). Also, the ∏SH interaction induces elastic scattering on nucleon through SM scalar ex-
change, æN =∏2

SH m4
N f 2

N /(ºm4
hm2

S), where mN is the nucleon mass and the nucleon form factor is
approximately given by fN º 0.3. The LUX experiment constraint [322], which for mDM & 100 GeV
isæN . 1.2·10°11(mS/1 GeV) pb (see Eq. (5.16)), is satisfied if ∏SH . 1.6·10°5(mS/1 GeV)3/2. Com-
bining both these lower and upper bounds on ∏SH leads to the lower bound mS & 300 GeV [270],
which is indeed fulfilled in the above example. In the left panel Fig. 5.15 we show the evolution of
the asymmetries we get as a function of the temperature for an example of parameter set which
leads to the observed relic density.
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Chapter 5. Asymmetric dark matter in the Inert Doublet Model

Figure 5.15 – Evolution of the various abundances as a function of z = mH2 /T in the case where
the inert doublet decays into a real (left panel) or a complex (right panel) state S after S freeze-
out. For the real scalar singlet case (left), we have fixed the H2-related parameters to mH2 =
10 TeV, hæH2 vi= 0.5 pb and ±mH2 = 3 ·10°6 GeV (corresponding to ∏5 º 10°6), and the S-related
parameters to mS = 1 TeV and hæS vi= 4 pb, and the connector parameter controlling the decay
rate to µSH = 5 ·10°6 GeV. For the complex scalar singlet case (right), we have fixed the H2-related
parameters to mH2 = 10 TeV, hæH2 vi= 1 pb and ±mH2 = 3 ·10°6 GeV (corresponding to ∏5 º 10°6),
and the S-related parameters to mS = 1 TeV and hæS vi= 4 pb, ±mS = 10°7 eV and the connector
parameter controlling the decay rate to µSH = 5 ·10°5 GeV. In both plots, the dashed purple curve
shows what would be the evolution of the S density if there were no H2 ! H1S decay.

S as a complex scalar singlet. Similarly to the fermion scenario considered in Ref. [311], another
possibility is to consider instead that the decays occur when the freeze-out of the singlet particle S
has still not taken place. In this case, the inert doublet asymmetry could also be at the origin of the
DM relic density, if the singlet is a complex field and if the inert doublet asymmetry is reprocessed
into a S asymmetry. Since inert doublet oscillations start at TEW , this requires the reprocessing
to be done prior to EWSB. Imposing in addition for simplicity that the decay occurs after the
∏5 interaction has decoupled at z∏5 , for example for mH2 = 10 TeV and mS ª 2 TeV, one needs
10°5 GeV.µSH . 10°3 GeV. For this scenario to work, one has to make sure that the S asymmetry
created in this way is not washed-out by possible S-S† oscillations. This requires that terms as
∏0

SH H †
1 H1(S2 +h.c.) or m02

S S2 +h.c. are sufficiently suppressed for the oscillations not to occur
before S freeze-out. This means the S mass splitting ±mS = (m02

S +µ(TEW °T )∏0
S v2)/2mS must be

smaller than

±mS . 10°2 · (zS
fo)°5/2 ·

≥ mS

1 TeV

¥2
·
s

hæS vi
1 pb

eV , (5.73)

with zS
fo & 20 the value of mS/T at which the S freeze-out occurs, and hæS vi the S annihilation

cross section. Note that at temperature lower than T S
fo, when the S oscillations starts at zS

osc, they
can allow the S annihilations to restart in the same way as for the inert doublet above. Similarly to
Eq. (5.68), this causes a suppression of the S asymmetry by a factor equal to (1+∑SßS(zS

fo))°1 with
∑S = hæS visz/H(z)zS

osc. In the right panel of Fig. 5.15 we show an example of evolution of the H2

and S asymmetries along such a scenario.
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5.6 Summary

In summary, if there exists an inert scalar doublet H2, unless the ∏5 interaction is tiny, the inert
doublet components will automatically develop an asymmetry from thermalization with the
ordinary SM scalar doublet and lepton asymmetries. We have studied in detail what is the fate
of such an asymmetry at temperature below the value of the inert doublet scalar mass, mH2 .
Beside being responsible for the asymmetry creation, the ∏5 interaction also controls the neutral
component mass splitting (hence the Z -exchange direct detection rate) and induces a “k-factor"
suppression of the inert doublet asymmetry at temperature below mH2 . On top of this suppression
one can also have an extra “∑-factor" suppression, from the combined effect of ¥0-¥0§ oscillations
(also induced by the ∏5 interaction) and symmetric annihilation. This leads to a scenario which
chronologically occurs as represented in Fig. 5.11. We showed that in the few-TeV range, there is a
region of parameter space where the H2 asymmetry survives enough to lead to the observed DM
relic density, Fig. 5.12, but this region turns out to lead to a too large Z -exchange direct detection
contribution. As a result this scenario is nothing but excluded.

Next we looked at the possibility that the inert scalar asymmetry produced could still be at
the origin of the observed DM relic density, which could be the case if it is reprocessed to a lighter
specie, S, which satisfies the direct detection constraints. We considered two scenarios where
DM is made of a singlet odd under the Z2 symmetry. a) Slow decay of the asymmetry into the
(real or complex) singlet particle, occurring after S freeze-out. b) Reprocessing of the inert scalar
doublet asymmetry into a S asymmetry through faster decays occurring before S freeze-out. Both
possibilities can lead to the observed DM relic density provided the interaction causing the decay
is small enough to induce this decay at the right time.

As most asymmetric DM scenarios, the framework we consider does not explain why the
baryon and DM abundances are so similar. Our scenario trades this abundance coincidence for a
coincidence between the mass of the proton, the mass of the inert states, the mass of the dark
matter particle, and the values of various couplings. Even if both abundances have same origin,
these parameters must "cooperate" to lead to a DM abundance so close to the baryon one. Rather
than providing a real explanation for the abundance coincidence, this scenario shows instead that
the origin of the DM relic density could be of asymmetric origin, due to the generation of an inert
scalar asymmetry related to the generation of a B °L asymmetry at high temperature.
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General conclusion

In this thesis we focused on three puzzles of modern particle physics : the neutrino masses, the
baryon asymmetry of the Universe and the dark matter. Each puzzle resolution requires beyond
the Standard Model physics, and each can find an explanation in the context of a plethora of
theoretical models. It is essential to consider a maximum of possibilities, as we don’t actually
know which is the good one yet ! Obviously, the definitive way to distinguish between them is
through experiments, which are currently many to work, and many planned. In this context, it is
mandatory to probe all the consequences and details of these models.

We discussed in chapter 1 how the smallness of the neutrino masses can find a simple
explanation in the framework of the well-motivated Seesaw models. These models are the favorite
ones since (i) they generate small neutrino masses through the tree-level exchange of new heavy
particles, (ii) they contain all the necessary ingredients to generate enough baryon asymmetry in
our Universe through the leptogenesis mechanism, (iii) they can be embedded in Grand Unified
Theories, (iv) they generate new processes as for example charged lepton flavor violating processes
that could in principle be probed experimentally. However, despite all this pros, there are also
cons. Indeed, it is in fact in general difficult to probe the Seesaw models experimentally. For
instance, in the type-1 Seesaw model, one generally expects the right-handed neutrinos either
to be very heavy or to be light with tiny interactions. In both cases, direct experimental tests are
not possible. This is however not always the case. There exists a subclass of models, the Inverse
Seesaw models, where sizable rates for charged lepton flavor violation processes can be generated.
So it is worth to probe them.

Armed with these considerations, we computed in chapter 2 the rate of the conversion
of a muon into an electron in the type-1 Seesaw framework. Since future experiments should
reach very high sensibilities on the charged lepton flavor violation processes – up to ª 6 orders
of magnitude better than the present upper bound – it is important to have precise analytical
expressions for the rate of these processes in each theoretical model since they could provide
very interesting informations about the new physics. In particular, we have shown that the
measurement of two or more rates could potentially (i) lead to the determination of the Seesaw
scale, and (ii) distinguish between the various Seesaw mechanisms. It is remarkable that low-
energy processes could in principle provide such indications on the high-energy parameters.
Beside these motivating facts, any non-observation will lead to new bounds on the high-energy
parameters of these models.
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In chapter 3, we introduced at length the way the matter-antimatter asymmetry of the
Universe can be generated in the type-1 Seesaw model along the leptogenesis mechanism. In
particular, we highlighted the importance of the flavor effects in this context. From this knowledge,
we then analyzed in chapter 4 how leptogenesis can be achieved within the type-2 Seesaw scenario.

Since the scalar triplet can carry an asymmetry, undergoes gauge interactions and has more
types of couplings than the type-1 Seesaw, the way the matter-antimatter asymmetry is generated
is different from the standard leptogenesis, already before considering flavor issues. This is why,
in a first step, the scenario has been analyzed in detail in the one-flavor approximation, where the
scalar triplet is assumed to decay into only one lepton flavor. This has allowed us to understand
the main features of the scalar triplet leptogenesis. In a second step, we computed the effects of the
lepton flavors and the spectator processes. The way flavor manifests itself in type-2 leptogenesis is
in many ways different from type-1 leptogenesis. In particular, in contrast with the type-1 Seesaw
leptogenesis, we showed that lepton flavors always matter whatever the temperature at which
leptogenesis takes place. In this context, we have first determined all the necessary formulas
that take into account flavors : decay widths, C P-asymmetries, Boltzmann equations, flavor
temperature regimes and associated dynamics. Any reader who would like to calculate the effect
of flavors in any type-2 Seesaw model can do it based on these formulas. The procedure to follow
is summarized in section 4.4. Subsequently, we have studied various possible new scenarios. In
particular, we have highlighted the existence of a totally new regime in which enough matter-
antimatter asymmetry can be generated only via pure flavor effects. This is the so-called purely
flavored leptogenesis mechanism, which is dominant as soon as the scalar triplet couples more to
leptons than to scalars, which is also requested in order to have large rate for the lepton flavor
violation processes. We also analyzed how lepton flavor can enhance the leptogenesis efficiency
in more general situations.

In chapter 5, we introduce the dark matter puzzle, and showed some beyond the Standard
Model extensions which can account for it. Among them, a well-known model is the inert doublet
model, in which dark matter (DM) can be accounted for by the neutral component of a second
scalar doublet, odd under some discrete symmetry which insures its stability. The usual way
the DM is produced in these models is through the usual freeze-out mechanism : the total DM
abundances (DM+anti-DM) leaves thermal equilibrium at some freeze-out temperature, function
of the interactions of the DM with the plasma, and at this temperature the DM density, being
Boltzmann suppressed, is frozen to the present DM relic density. However, there is another
way to generate dark matter through the production of a DM asymmetry (DM-anti-DM), not
without similarities with the baryon asymmetry case in the previous two chapters. Indeed, the
Inert Doublet Model contains an interaction that can be responsible for the generation of a DM
asymmetry. Therefore, in the last part of this thesis, we have addressed the following question :
is it possible to generate enough dark matter in an asymmetric way in the context of the Inert
Doublet Model ? In a pure IDM framework, the answer is actually no. This is because lower bounds
from direct detection imply that the interaction responsible for the production of the inert scalar
asymmetry is too large to create enough dark matter. Nevertheless, we have shown that the direct
detection constraint can be easily evaded if one adds a new particle to which the inert scalars
decay. In this context, thanks to the analysis of the fate of the H2 asymmetry, we have shown in
particular that the effect of the inert scalar oscillations can dominate the DM relic density.
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Appendix





A Units and conversion factors

A.1 Natural units

We use the natural units, that is we fix c = ~= kB = 1. This allows us to express all the standard
units in terms of energy unit, expressed in GeV. For example, one has

1m º 5.0677 ·1015 GeV°1 (A.1)

1s º 1.5193 ·1024 GeV°1 (A.2)

1kg º 5.6085 ·1026 GeV (A.3)

1K º 8.6173 ·10°14 GeV (A.4)

1pb º 2.5682 ·10°9 GeV°2 (A.5)

A.2 Parameters and constants

The following parameters and constant values have been used. For the various masses and energy
scales :

v = 246 GeV (A.6)

mPl anck = 1.22 ·1019 GeV (A.7)

mh º 1.25 ·102 GeV (A.8)

me º 5.11 ·10°4 GeV (A.9)

mµ º 1.06 ·10°1 GeV (A.10)

mø º 1.78 GeV (A.11)

mb º 4.18 GeV (A.12)

mt º 1.72 ·102 GeV (A.13)

mW º 8.04 ·101 GeV (A.14)

mZ º 9.17 ·101 GeV (A.15)
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For the couplings :

g º 6.531 ·101 , Æw º 3.394 ·10°2 (A.16)

gE M º 3.028 ·101 , ÆE M º 7.297 ·10°3 (A.17)

gs º 1.220 (A.18)

gY º 3.581 ·10°1 (A.19)

µw º 5.014 ·10°1 , sw º 0.481 , cw º 0.877 (A.20)

G º 6.708 ·10°39 (A.21)

For the cosmological parameters :

H0 = 67.74±0.46 (km/s)/Mpc (A.22)

≠B h2 = 0.02205±0.00028 (A.23)

≠DM h2 = 0.1199±0.0027 (A.24)
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B µ to e conversion in atomic nuclei

B.1 Some useful identities

The mixing unitary matrix U , together with the matrix C defined in Eq. (2.15) obey the following
relations :

nL+nR
X

j
UÆ jU§

Ø j = ±ÆØ ,
nL+nR
X

j
Ci j C§

k j =Ci k ,
nL+nR
X

j
UÆ j C j i =UÆi , (B.1)

nL+nR
X

j
m j Ci j Ck j = 0 ,

nL+nR
X

j
m jUÆ j C§

j k = 0 ,
nL+nR
X

j
m jUÆ jUØ j = 0 , (B.2)

where nL is the number of left-handed neutrino generations and nR is the number of right-handed
neutrino generations.

B.2 Feynman rules

Because of the Majorana nature of the neutrinos mass eigenstates, one have to pay attention when
deriving the Feynman rules, see for example Ref. [323]. In particular, a factor 2 has to be taken
into account in the vertices involving Majorana neutrinos and neutral bosons, like the Z or ¡0.

External lines

p, s us (p) p, s v s (p)

p, s us (p) p, s vs (p)

k, �

�

≤
µ
∏

(k)

k, �

�

≤
µ§
∏

(k)
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B.3. Feynman diagrams and associated amplitudes

B.3 Feynman diagrams and associated amplitudes

B.3.1 Methodology

As explained in section 2.3.1, in order to compute the effective Lagrangian for comparison with
Eq. (2.32), one needs to compute the amplitudes M u and M d associated to the process involving
an up quark, or a down quark. Each amplitude, M u and M d , will receive three contributions,
depending on whether the interaction occurs through the exchange of a photon, a Z boson or W’s
bosons:

M u =M u
∞ +M u

Z +M u
W , (B.3)

M d =M d
∞ +M d

Z +M d
W . (B.4)

Those contributions will be computed separately. The first one, i.e. with the photon exchange, has
a common basis with the process µ! e∞ so that we just have to compute the associated amplitude
of the latter, without taking a on-shell photon q2 6= 0, and then to add the line of quarks. This is
why we first begin by the calculation of the process µ! e∞. We will check that the divergences
cancel, and that the amplitude is gauge invariant. The amplitude is also compared with previous
well-known results. Then, we will compute the contribution of the Z boson. The diagrams of
this second contribution contains the same topology than the photon one, plus two diagrams
that involve two Majorana neutrinos in the loop. The cancellation of the divergences is also
verified. Finally, we will compute the contribution of the W’s boson. The diagrams involved are
box diagrams.

Let’s note that the contribution coming from diagrams with scalar boson mediated can be
neglect with respect to the one mentioned above. Indeed, these will give correction of order
ª mq mµ/M 2

W to the amplitude, which can be neglected compared to the contributions from the
gauge bosons.
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B.3.2 Photon Penguin contribution

We first separate the lepton line from the quark line. This allow to check the amplitude with
the well-known µ! e∞ one. The Feynman diagrams, without the quark lines, are given below.
Momentum k in the loop are taken clockwise. The associated amplitudes, in the Feynman-t’Hooft
gauge ª= 1, are:

Aµ(q)

µ(p) e(p )

�
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Neglecting the electron mass, the various integrals I
j
Æ are given by
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In the second equality, we used the equations of motion, we expressed the integrals in terms
of Feynman integrals that are given in Appendix B.5, and we neglected the electron mass. The
integrals C0(xi ), Cv (xi ), Cu(xi ), Cuu(xi ), Cv v (xi ) and Cuv (xi ), depending on xi = m2

ni
/m2

W , are
convergent Feynman integrals that are solved using Feynman parametrization. The integrals
B̃0(xi ,D), B̃1(xi ,D) and C̃1(xi ,D) are divergent integrals, that we choose to solve by using dimen-
sional regularization method. This means we express these latter in terms of integrals in D = 4°2±.
By doing so, the divergent and convergent parts can be separated. At the end of the computation,
we divergent parts must cancel, and a finite result is obtained when taking the limit ±! 0.

µ! e∞ amplitude and rate

After summation of the amplitudes in Eqs. (B.6)-(B.12), we get

iM (µ! e∞) = ≤Æ§∏ (q) ue (p 0)°Æuµ(p) , (B.26)

where

°Æ =
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2
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+C qÆ
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with
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C '°mµ
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°2Cu °2Cv °2Cuv +2Cuu ° (Cu °Cv +Cuv °Cuu) xi

i

PR , (B.30)

The functions b1 and c1 are given in Appendix B.5. By unitarity, all the divergent parts have fallen
off. From electromagnetic gauge invariance, we must have that qÆ°Æ = 0 [134], that is

X

i
UeiU§

µi

µ

A+Bmµ+C
q2

mµ

∂

= 0 . (B.31)

We have checked that this equality is indeed fulfilled at tree level, and also at first order in q2/m2
W

and m2
µ/m2

W . Now, using the fact that we can put the amplitude in the form [134] :

°Æ = i BæÆØqØ° C
mµ

°

q2∞Æ° 6qqÆ
¢

, (B.32)
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we finally get the well-known formula [130]-[134]

iM∞ =
i eg 2

2(4º)2m2
W

≤Æ∏(q)ue (p 0)
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Keeping only the dominant term, i.e. neglecting the terms proportional to q2/m2
W and m2

µ/m2
W in

the integrals, the form factors are given by

Fµe
∞ =

X

i
UeiU§

µi F∞(xi ) , (B.34)

Gµe
∞ =

X

i
UeiU§

µi G∞(xi ) , (B.35)

where

F∞(x) = x(7x2 °x °12)
12(1°x)3 ° x2(x2 °10x +12)

6(1°x)4 ln x , (B.36)

G∞(x) =°x(2x2 +5x °1)
4(1°x)3 ° 3x3

2(1°x)4 ln x . (B.37)

A straightforward computation allows to get the µ! e∞ decay rate, given by [130]-[134]

°=
Æ3

w s2
w m5

µ

256º2m4
W

|Gµe
∞ |2 . (B.38)

Let’s note that the term proportional to Fµe
∞ doesn’t give any contribution because it vanishes for

on-shell photon q2 = 0.

Contribution to µ to e conversion

A explained in section 2.3.1, one needs to separate the local and long-ranged contributions. The
long-ranged one is obviously the one involving an on-shell photon. This is the term proportional
to Gµe

∞ in the amplitude Eq. (B.33), and the amplitude reads
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i eg 2

2(4º)2m2
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∞ mµPR
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uµ(p) . (B.39)

The long-ranged, or non-photonic, contribution of the photon diagrams is the term proportional
to Fµe

∞ in the amplitude Eq. (B.33). In order to find the associated µ to e conversion amplitude, we
just have to replace the ≤Æ

∏
(q) by the photon propagator ¢∞ =°i /q2, multiplied by the quark line

current. We find

iM q
∞ = i e2g 2
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∏
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where Qq is the electric charge of the quark q .
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B.3.3 Z Penguin contribution

As for the photon contributions, we first separate the lepton line from the quark line. The momen-
tum k in the loop is taken clockwise. The Feynman diagrams, without the quark lines, are given
below. The associated amplitudes, in the Feynman-t’Hooft gauge ª= 1, are
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Neglecting the electron mass, the various integrals I
j
Æ are given by Eqs. (B.13)-(B.25) and
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In the second equality, we used the equations of motion, and we expressed the integrals in terms
of Feynman integrals that are given in Appendix B.5. D0(xi , x j ), Du(xi , x j ), Dv (xi , x j ), Duu(xi , x j ),
Dv v (xi , x j ) and Duv (xi , x j ), where xi = m2

ni
/m2

W , are convergent Feynman integrals that are solved
using Feynman parametrization. D̃1(xi , x j ,D) is a divergent integral that we choose to solve by
using dimensional regularization method.

Contribution to µ to e conversion

When summing the various amplitudes Eqs. (B.41)-(B.50), the divergences vanish by unitarity. In
order to find the contribution of the Z diagrams to the µ to e conversion amplitude, we just have
to replace the ≤Æ

∏
(q) by the Z propagator ¢Z =°i /(q2 °m2

Z ), multiplied by the quark line current.
Because q2 '°m2

µ, the propagators is in good approximation ¢Z ' i /m2
Z . As a consequence, a

lot of the terms which have been computed can be neglected, since these will be proportional to
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µ/m4
W or at this order, compared to the dominant contributions, which gives
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B.3.4 W boxes contribution

Here, obviously we cannot separate the lepton line from the quark line. The Feynman diagrams
are given below. The momentum k in the loop is taken clockwise. The associated amplitudes are
given in the Feynman-t’Hooft gauge ª= 1, even if we also made the computation without fixing
the gauge.
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Here, Vui d j stands for the CKM matrix. Neglecting terms in ª m2
µ/m2

W , the various integrals I
j
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are given by,
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In the second equality, we used the equations of motion, and we expressed the integrals in
terms of Feynman integrals that are given in Appendix B.5. E0(xi , xq j ) and E1(xi , xq j ), where xi =
m2

ni
/m2

W and xq j = m2
q j

/m2
W , are convergent Feynman integrals that are solved using Feynman

parametrization.

Contribution to µ to e conversion

Summing the various amplitudes Eqs. (B.60)-(B.67), one gets
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B.4 Summary

The amplitudes associated to the three ingredients, i.e. Eq. (B.39) and Eq. (B.40) for the photon,
Eq. (B.55) for the Z, and Eq. (B.82) for the W, can be written as 1
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The sum of the non-photonic contribution, i.e. the last three equations, gives

iM q
non-phot =

iÆ2
w

2m2
W

uq ∞
Æ

≥

V µe
q + Aµe

q ∞5

¥

uq ue ∞ÆPL uµ , (B.91)

where

V µe
q =Qq s2

w Fµe
∞ +

√

I 3
q

2
°Qq s2

w

!

Fµe
Z + 1

4
Fµeqq

box , (B.92)

Aµe
q =°

I 3
q

2
Fµe

Z ° 1
4

Fµeqq
box , (B.93)

where I 3
q is the weak isospin (I 3

u = 1/2, I 3
d =°1/2) and sw is the sinus of the weak mixing angle.

The term proportional to the form factor Aµe
q doesn’t contribute to the coherent conversion as

discussed in section 2.3.3. In terms of the above form factors, V µe
u and V µe

d as defined in Eq. (2.65)
are given by

V µe
u = 2

3
s2

w
°

Fµe
∞ °Fµe

Z

¢

+ 1
4

°

Fµe
Z +Fµeuu

box

¢

, (B.94)

V µe
d =°1

3
s2

w
°

Fµe
∞ °Fµe

Z

¢

° 1
4

≥

Fµe
Z °Fµedd

box

¥

. (B.95)

In the case of light nuclei, the contribution of the dipolar term can also be casted in a four-fermion
interaction amplitude. Replacing the ≤Æ

∏
(q) by the photon propagator ¢∞ =°i /q2 and multiplying

by the quark line current, it reads

iM q
∞°dipole =

iÆwÆ

2m2
W

uq∞
ÆQq uq ue

h

° i
æÆØqØ

q2

i

mµGµe
∞ PLuµ . (B.96)

In this way Eq. (2.67) is obtained

Ṽ µe
q =Qq s2

w (Fµe
∞ +Gµe

∞ )+Fµe
Z

√

I 3
q

2
°Qq s2

w

!

+ 1
4

Fµeqq
box . (B.97)

1The term proportional to qµ in Eqs. (B.33) and (B.40) drops because of quark current conservation.
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The loop functions entering the computation of the form factors in Eqs. (B.94-B.96) are : 2

F∞(x) =x(7x2 °x °12)
12(1°x)3 ° x2(x2 °10x +12)

6(1°x)4 ln x , (B.98)

G∞(x) =° x(2x2 +5x °1)
4(1°x)3 ° 3x3

2(1°x)4 ln x , (B.99)

FZ (x) =° 5x
2(1°x)

° 5x2

2(1°x)2 ln x , (B.100)

GZ (x, y) =° 1
2(x ° y)

∑

x2(1° y)
1°x

ln x ° y2(1°x)
1° y

ln y
∏

, (B.101)

HZ (x, y) =
p

x y

4(x ° y)

∑

x2 °4x
1°x

ln x ° y2 °4y
1° y

ln y
∏

, (B.102)

Fbox (x, y) = 1
x ° y

n≥

4+ x y
4

¥

∑

1
1°x

+ x2

(1°x)2 ln x ° 1
1° y

° y2

(1° y)2 ln y
∏

°2x y
∑

1
1°x

+ x
(1°x)2 ln x ° 1

1° y
° y

(1° y)2 ln y
∏

o

, (B.103)

FX box (x, y) = °1
x ° y

n≥

1+ x y
4

¥

∑

1
1°x

+ x2

(1°x)2 ln x ° 1
1° y

° y2

(1° y)2 ln y
∏

°2x y
∑

1
1°x

+ x
(1°x)2 ln x ° 1

1° y
° y

(1° y)2 ln y
∏

o

, (B.104)

Gbox (x, y) =
°px y

x ° y

n

°

4+x y
¢

∑

1
1°x

+ x
(1°x)2 ln x ° 1

1° y
° y

(1° y)2 ln y
∏

°2
∑

1
1°x

+ x2

(1°x)2 ln x ° 1
1° y

° y2

(1° y)2 ln y
∏

o

, (B.105)

with the limiting values

F∞(0) = 0 , (B.106)

G∞(0) = 0 , (B.107)

FZ (0) = 0 , (B.108)

GZ (0, x) =° x
2(1°x)

ln x , GZ (0,0) = 0, (B.109)

HZ (0, x) = 0, HZ (0,0) = 0, (B.110)

Fbox (0, x) = 4
1°x

+ 4x
(1°x)2 ln x , Fbox (0,0) = 4 , (B.111)

FX box (0, x) =° 1
1°x

° x
(1°x)2 ln x , FX box (0,0) =°1 , (B.112)

Gbox (0, x) = 0, Gbox (0,0) = 0, (B.113)

2We adopted the notation of Ref. [67] except that here FX box is °Fbox of Ref. [67] whereas our Fbox is given in
Ref. [324] as Hbox .
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and

F∞(x) °°°!
xø1

°x , F∞(x) °°°!
x¿1

° 7
12

° 1
6

ln x , (B.114)

G∞(x) °°°!
xø1

x
4

, G∞(x) °°°!
x¿1

1
2

, (B.115)

FZ (x) °°°!
xø1

°5x
2

, FZ (x) °°°!
x¿1

5
2
° 5

2
ln x , (B.116)

GZ (0, x) °°°!
xø1

°1
2

x ln x , GZ (0, x) °°°!
x¿1

1
2

ln x , (B.117)

Fbox (0, x) °°°!
xø1

4(1+x (1+ ln x)) , Fbox (0, x) °°°!
x¿1

0, (B.118)

FX box (0, x) °°°!
xø1

°1°x (1+ ln x) , FX box (0, x) °°°!
x¿1

0. (B.119)

In terms of these functions, the form factors read

Fµe
∞ =

3+nN
X

i=1
UeiU§

µi F∞(xi ) =
nN
X

i=1
UeNi U

§
µNi

F∞(xNi ) , (B.120)

Gµe
∞ =

3+nN
X

i=1
UeiU§

µi G∞(xi ) =
nN
X

i=1
UeNi U

§
µNi

G∞(xNi ) , (B.121)

Fµe
Z =

3+nN
X

i , j=1
UeiU§

µ j

≥

±i j FZ (xi )+Ci j GZ (xi , x j )+C§
i j HZ (xi , x j )

¥

(B.122)

=
nN
X

i , j=1
UeNi U

§
µN j

h

±Ni N j

°

FZ (xNi )+2GZ (0, xNi )
¢

+CNi N j

°

GZ (xNi , xN j )°GZ (0, xNi )°GZ (0, xN j )
¢

+C§
Ni N j

HZ (xNi , xN j )
i

, (B.123)

Fµeuu
box =

3+nN
X

i=1

X
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UeiU§

µi |Vud j |
2Fbox (xi , xd j ) '

3+nN
X

i=1
UeiU§

µi Fbox (xi ,0) (B.124)

=
nN
X

i=1
UeNi U

§
µNi

£

Fbox (xNi ,0)°Fbox (0,0)
§

, (B.125)

Fµedd
box =

3+nN
X

i=1

X

u j=u,c,t
UeiU§

µi |Vu j d |2FX box (xi , xu j ) '
3+nN
X

i=1
UeiU§

µi FX box (xi ,0) (B.126)

=
nN
X

i=1
UeNi U

§
µNi

£

FX box (xNi ,0)°FX box (0,0)
§

. (B.127)

Fµeee
box =

3+nN
X

i , j=1
UeiU§

µ j

≥

UeiU§
e j Gbox (xi , x j )°2U§

eiUe j FX box (xi , x j )
¥

(B.128)

=°2
nN
X

i=1
UeNi U

§
µNi

£

FX box (xNi ,0)°FX box (0,0)
§

+
nN
X

i , j=1
UeNi U

§
µN j

n

UeNi U
§
eN j

Gbox (xNi , xN j )°2U§
eNi

UeN j

£

FX box (xNi , xN j )

°FX box (0, xN j )°FX box (xNi ,0)+FX box (0,0)
§

o

(B.129)

In the above, x1,2,3 ¥ x∫1,2,3 ¥ m2
∫1,2,3

/m2
W , x4,...,3+nN ¥ xN1,...,nN

= m2
N1,...,nN

/m2
W and xq ¥ m2

q /m2
W .

The matrix V is the quark CKM matrix and U is the total (3+nN )£ (3+nN ) neutrino mixing
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matrix defined in Eq. (2.7). The second equality in Eqs. (B.120)-(B.129) is obtained using the
unitarity identity

P

i UeiU§
µi = 0, the diagonalization relation

P

i Uei
p

xi Uµi = 0, the limiting values
of the loop functions in Eqs. (B.130)-(B.135) and the very good approximation for the present
analysis in which light neutrino masses are neglected compared to the heavy neutrino masses
(xN1,...,nN

¿ x∫1,2,3 ).

The above form factors in Eqs. (B.120)-(B.129) present the following behavior for low and
high masses

Fµe
∞ °°°!

xø1

nN
X

i=1
UeNi U

§
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∏
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(B.130)
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, (B.131)
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where contributions involving 4 insertions of light-heavy mixing elements have been neglected.
This is a good approximation in view of the various experimental bounds which hold on the
mixings for the low energy regime, as shown in Fig. 2.8 a, whereas for very high right-handed
masses this approximation relies on the perturbativity of the Yukawa couplings (ensured by the
bounds in Fig. 2.7 a up to 10 TeV). Dropping these terms with four insertions, the functions Vq

and Ṽq can be written as

Vu(x) = 2
3

s2
w

h

F∞(x)°FZ (x)°2GZ (0, x)
i

+1
4

h

FZ (x)+2GZ (0, x)+Fbox (x,0)°Fbox (0,0)
i

, (B.136)

Vd (x) = °1
3

s2
w

h

F∞(x)°FZ (x)°2GZ (0, x)
i

°1
4

h

FZ (x)+2GZ (0, x)°FX box (x,0)+FX box (0,0)
i

, (B.137)

Ṽu(x) = Vu(x)+ 2
3

s2
wG∞(x) , (B.138)

Ṽd (x) = Vd (x)° 1
3

s2
wG∞(x) , (B.139)

which are the expressions we actually use for all plots.
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B.5 Integrals

The divergent integrals are solved using dimensional regularization. These are given by3
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The convergent integrals are solved using Feynman parametrization. They read

C0(x, q2) ' °i
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4(x °1)6 ln x
∏
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(B.146)

3The integrals are expanded at zero order in q2/m2
W , except the C ones, which are given at first order in q2/m2

W .
This is because it allows us to check that the relation in Eq. (B.31) is well satisfied. For µ to e conversion, it is enough to
keep the zero order.
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C Tools for leptogenesis and dark mat-
ter genesis

C.1 Thermodynamics of the early Universe : definitions and conven-

tions

C.1.1 Bosons

A boson B obeys the Bose-Einstein statistic. Taking into account its chemical potential µB , the

associated equilibrium distribution of occupation number of modes of energy E =
q

~p2 +m2
B at

some temperature T is given by

f Eq
B (E) = 1

e(E°µB )/T °1
. (C.1)

Accordingly, the number density of a boson B at some temperature T is

nEq
B (E) = gB

Z

d 3~p
(2º)3 f Eq

B (~p) , (C.2)

where gB is the number of degrees of freedom of B , and the energy density is given by

Ω
Eq
B (E) = gB

Z

d 3~p
(2º)3 E f Eq

B (~p) . (C.3)

The above relations has simple analytical form in some limit.

• If T ø mB , the boson is non-relativistic and the number density of B in the gas is given, at
zero order in µB /T , by the Boltzmann’s law

nEq
B (E) º gB

µ

mB T
2º

∂3/2

e°mB /T , (C.4)

and

Ω
Eq
B (E) º mB nEq

B (E) . (C.5)
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The equation of state, that relates the energy E and the pressure p, in the non-relativistic
limit is simply p º nB T º 0.

• If T ¿ mB , the boson is relativistic and the equilibrium number density of B in the gas is, at
first order in µB /T ,

nEq
B (E) º gB

º2 T 3
≥

≥(3)+ µB

T
≥(2)

¥

, (C.6)

with the Riemann Zeta function values ≥(2) º 1.645 and ≥(3) º 1.202. The energy density is,
at zero order in µB /T ,

Ω
Eq
B (E) º gB

º2

30
T 4 . (C.7)

The equation of state, that relates the energy E and the pressure p, in the relativistic limit is
simply p º ΩB /3. Let’s note that the thermodynamical quantities associated to the photons
∞, with g∞ = 2 for the two polarizations, are

n∞ =
2≥(3)
º2 T 3 , Ω∞ =

º2

15
T 4 , p∞ =

1
3
Ω∞ . (C.8)

C.1.2 Fermions

A fermion F obeys the Fermi-Dirac statistic. Taking into account its chemical potential µF , the

associated equilibrium distribution of occupation number of modes of energy E =
q

~p2 +m2
F at

some temperature T is given by

f Eq
F (E) = 1

e(E°µF )/T +1
. (C.9)

Accordingly, the number density of a fermion F at some temperature T is

nEq
F (E) = gF

Z

d 3~p
(2º)3 f Eq

F (~p) , (C.10)

where gF is the number of degrees of freedom of F , and the energy density is given by

Ω
Eq
F (E) = gF

Z

d 3~p
(2º)3 E f Eq

F (~p) . (C.11)

The above relations has simple analytical form in some limit.

• If T ø mF and at zero order inµB /T , one recover the same results as for the boson case. This
is because for T ø mF as for T ø mB , the factor ±1 in the denominator of the distribution
expression can be neglected.

• If T ¿ mF , the fermion is relativistic, and one gets at first order in µF /T ,

nEq
F (E) º gF

º2 T 3
µ

3
4
≥(3)++µF

2T
≥(2)

∂

, (C.12)
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and, at zero order in µF /T ,

Ω
Eq
F (E) º 7

8
gF

º2

30
T 4 . (C.13)

The equation of state, that relates the energy E and the pressure p, in the relativistic limit is
also p º ΩF /3.

C.1.3 Maxwell-Boltzmann

In general, it is a good approximation to consider the Maxwell-Boltzmann distribution for both
bosons and fermions. This is, the constant term ±1 is neglected in the boson and fermion
distributions :

f Eq
X (EX ) ' e°(EX °µX )/T , (C.14)

where we also took into account the chemical potentialµX of the species X . The chemical potential
of the associated antiparticle X̄ is µX̄ = °µX . With the above approximation, the equilibrium
number density has a simple analytical form. In the case where µX = 0, one has

nEq
X ' gX

2º2 T 2 m2
X K2 (mX /T ) . (C.15)

This is the equilibrium number density that are in general used in the Boltzmann equations.
It allows to not make the distinction between bosons and fermions, leading to less complex
equations, at the cost of the above approximation.

C.1.4 Gas properties in the early Universe

Energy density. The total energy density Ω is the sum over all the relativistic particle energy
densities

Ω =
X

A=B ,F
ΩA(TA) , where ΩA(TA) = º2

30
g eff

A T 4
A , (C.16)

with TA the temperature of the species A, being a boson (B) or a fermion (F), and g eff
A the effective

number of degrees of freedom which is g eff
A = g A for bosons and g eff

A = 7/8 · g A for fermions. The
total energy density can also be written as

Ω = º2

30
g§ T 4 , (C.17)

where T is the temperature associated to the photons, and

g§ ¥
X

bosons
g A

µ

TA

T

∂4

+ 7
8

X

fermions
g A

µ

TA

T

∂4

(C.18)
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is the effective number of degrees of freedom in energy. In the early Universe, all the SM particles
were relativistic and the effective number of degrees of freedom is g§ = 106.75. 1 Today, T = T0 '
2.73 K and the only relativistic species at this temperature are the photons and the neutrinos. It
is straightforward to show that the temperature associated to the neutrinos, after CMB and C∫B
(Cosmic Neutrino Background) decouplings, is related to the photon’s one through

T∫ =
µ

4
11

∂1/3

T ' 1.95 K . (C.19)

The total energy density today is then given by

Ω0 =
º2

30

"

2+ 21
4

µ

4
11

∂4/3
#

T 4
0 ' 1.68 ·Ω∞(T0) , (C.20)

where Ω∞ is the energy density of the photons, given in Eq. (C.8).

Entropy. The total entropy density s is the sum over all the relativistic particle entropy densities

s =
X

A=B ,F
sA(TA) , where sA(TA) = ΩA +p A

TA
, (C.21)

with TA the temperature, p A the pressure and ΩA the energy density of the species A, being a
boson (B) or a fermion (F). For a relativistic particles, the energy density and the pressure are
related to the temperature through

ΩA = 3p A = º2

30
g eff

A T 4
A . (C.22)

The total entropy density can be expressed as

s = 2º2

45
g§sT 3 , (C.23)

where T is the temperature associated to the photons, and

g§s ¥
X

bosons
g A

µ

TA

T

∂3

+ 7
8

X

fermions
g A

µ

TA

T

∂3

(C.24)

is the effective number of degrees of freedom in entropy. In the early Universe, all the SM particles
were relativistic and the effective number of degrees of freedom in entropy is g§s = g§ = 106.75. 2

Today, using Eq. (C.19), the total entropy density is given by

s0 =
2º2

45

∑

2+ 21
4

µ

4
11

∂∏

T 3
0 ' 7.04 ·n∞(T0) , (C.25)

where n∞ is the number density of the photons, given in Eq. (C.8).

1Let’s note that if we use the Maxwell-Boltzmann distribution, it may be more consistent to compute the effective
number of degrees of freedom without taking into account the factor 7/8 in Eq. (C.18). In this case, one can also use
g§ = 117 in the early Universe.

2Using the Maxwell-Boltzmann distribution, one has g§s = g§ = 117 in the early Universe.
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C.1.5 Equilibrium

Here, we briefly specify the notion of chemical equilibrium, kinetic equilibrium and thermal
equilibrium, for gas of particles.

Kinetic (or mechanical) equilibrium. A system of particles is said to be in kinetic equilibrium if
the particles exchange energy and momentum efficiently. In this case, the phase space occupancy
is given by the familiar Bose-Einstein or Fermi-Dirac distributions.

Chemical (or diffusive) equilibrium. Chemical equilibrium is reached when the sum of the
chemical potentials of the reacting particles is equal to the sum of the chemical potentials of the
products. The rates of the forward and reverse reactions are then equal.

Thermal (or abusively thermodynamical) equilibrium. Thermal equilibrium is achieved for
species which are both in kinetic and chemical equilibrium. These species then share a common
temperature Ti = T .

C.2 Sphalerons

The global currents associated to the baryon and lepton numbers are non-conserved at the
quantum level because of the triangle anomalies. One can show that the associated current
derivatives read

@µ jµ5
L = 3

32º2

£

g 2W µ∫W̃µ∫+ g 02Bµ∫B̃µ∫
§

, (C.26)

@µ jµ5
B = @µ jµ5

L , (C.27)

where X̃µ∫ = ≤µ∫ÆØXÆØ. As a consequence, from the two equations above, we see that the B +L
global symmetry is violated, but clearly not the B °L one since @µ( jµ5

B ° jµ5
L ) = 0.

The SM contains therefore processes that violate the sum B +L, while conserving the differ-
ence B °L. These non-perturbative processes are called EW sphalerons [213] and are very fast
for temperature typically above the EWSB. More precisely, from Fig. 3.5, one can see that the EW
sphalerons rate is faster than the Hubble rate for T > Tsphal = 132 GeV.

Let’s note that as these EW sphalerons are related to the SU (2)L gauge group, there are also
sphalerons related to the SU (3)c gauge group, called QCD sphalerons. Our goal here is not to enter
in the details of the sphalerons physics, but for our present let’s mention the following sphaleron’s
properties.
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• One can associate effective operators to EW and QCD sphalerons processes. They read

O
sphal
EW =

N f
Y

i
QLi Qi

Li Qi
Li`

i
Li , (C.28)

O
sphal
QC D =

N f
Y

i
QLi QLi uc

Ri d c
Ri , (C.29)

where N f is the number of families. The EW sphalerons operator relates left-handed quarks
and leptons and violate B +L, while the QCD one relates left-handed and right-handed
quarks.

• For T ø Tsphal ' 132 GeV, the EW and QCD sphalerons rates are exponentially suppressed :

°EW,QC D ' e°8º2/g 2 º e°173 , (C.30)

so that they effectively don’t occur at all.

• For T > Tsphal, sphalerons are fast and their rate are given by [255, 214, 325, 326]

Electroweak sphalerons: °EW (T ) ' 26ÆEW T , (C.31)

QCD instantons: °QC D (T ) ' 312ÆS T . (C.32)

• By comparing Eq. (D.44) with the Hubble rate H , the EW sphalerons are much faster than H
for Tsphal . T . 1012 GeV. In this temperature range, the processes generated by effective
operator in Eq. (C.28) implies the following chemical equilibrium condition

X

i

°

3µQi +µ`i

¢

= 0 . (C.33)

• By comparing Eq. (D.43) with the Hubble rate H , the QCD sphalerons are much faster than
H for Tsphal . T . 1013 GeV. In this temperature range, the processes generated by effective
operator in Eq. (C.28) implies the following chemical equilibrium condition

X

i

°

2µQi °µui °µdi

¢

= 0 . (C.34)

C.3 Boltzmann equations or chemical equilibrium conditions ?

In general, the evolution equations of particle asymmetries in the early Universe couple all
particles species and thus involve a large number of reactions. However, a simplification is
possible given that for specific temperature regimes different reactions have different timescales.
Any reaction occurring in the heat bath will necessarily fall in one of the following categories :

1. Reactions which at a given temperature T0 are much slower than the Hubble Universe
expansion rate H(T0): °SR ø H(T0).

2. Reactions which at a given temperature T0 are much faster than the Hubble Universe
expansion rate H(T0): °FR ¿ H(T0).
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3. Reactions which at a given temperature T0 are comparable to the Hubble Universe expan-
sion rate H(T ): °CR ª H(T0).

At T0, reactions falling in category 1 basically have not taken place, so they are generally of
no relevance in the evolution of the particle asymmetry. The parameters responsible for such
reactions can then be put to zero at the Lagrangian level, leading to the corresponding early
Universe effective Lagrangian which involves new global symmetries implying new conservation
laws [327]. In contrast, the reactions in 2 at T0 have occurred so often that the particles involved
attain thermodynamic equilibrium and so are subject to chemical equilibrium constraints, which
enforce relations among the different particles chemical potentials (the particle asymmetries), see
Appendix C.5 below. These chemical equilibrium conditions, when coupled with the constraints
implied by the conservation laws of the early Universe effective Lagrangian, allow to express
the particle asymmetries of all the species in the thermal bath in terms of quasi-conserved
charge asymmetries, the asymmetries related with charges that are only (slowly) broken by the
reactions in 3. Finally, reactions of type 3 are not fast enough to equilibrate the distributions of the
intervening particles, and so they have to be accounted for via Boltzmann equations, which dictate
the evolution of the quasi-conserved charge asymmetries and therefore of all the asymmetries
in the heat bath. Note that for reactions of category 1 one has nevertheless to be cautious before
dropping them from the Boltzmann equations. A well-known example, relevant in some cases for
the dark matter abundance, is the freeze-in regime, i.e. slow production of dark matter particles
from an out-of-equilibrium process [328].

C.4 Boltzmann equations formalism

C.4.1 Generalities

The Boltzmann equations are very useful to describe the out-of-equilibrium evolution of a gas of
particles submitted to interactions. The evolution equation of the phase space density of a species
X has the simple form

L[ fX ] = C[ fX ] , (C.35)

where the Liouville operator L describes typically the space evolution of X and is given by

L = @

@t
+ @~x
@t

@

@~x
+ @~v
@t

@

@~v
, (C.36)

and C is the collision operator. This operator contains all the physics of elastic and/or inelastic
collisions, and it therefore includes the matrix element of the probability transitions. By integrating
Eq. (C.35), one can derive the Boltzmann equation for the number density nX , which reads

gX

Z

d 3~p
(2º)3 L[ fX ] = gX

Z

d 3~p
(2º)3 C[ fX ] . (C.37)
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For example, in the case where the species X can interact with other particles through the process
X $ Y +Z , the collision term in the r.h.s. of Eq. (C.37) reads

gX

Z

d 3~p
(2º)3 C[ fX ] =

Z

dºX dºY dºZ (2º)4±4(pX °pY °pZ )
£

fY (pY ) fZ (pZ )° fX (pX )
§

|M |2 (C.38)

with dºX = d 3~pX /(2º)32EX and where we used the tree-level approximation |M (X ! Y +Z )|2 =
|M (Y +Z ! X )|2 ¥ |M |2, which is enough and dominant for this Boltzmann equation.3 The
Liouville term reads, using the Friedmann-Lemaître-Roberston-Walker (FLRW) metric,

gX

Z

d 3~p
(2º)3 L[ fX ] = dnX

d t
+3 H nX , (C.39)

where H is the Hubble rate. Equalizing the Liouville and the collision terms, changing variables
nX ! YX = nX /s and t ! z = mX /T (with t = 1/2H(z)), and using the thermal average hmX /Ei=
K1(z)/K2(z) where K1(z) and K2(z) are the Bessel functions, one gets the equation

dYX

d z
=° °X

zH(z)
K1(z)
K2(z)

≥

YX °Y Eq
X

¥

, (C.40)

with °X denoting the total decay rate of X . This equation can also be put in the simple form

ẎX =°
√

YX

Y Eq
X

°1

!

∞D , (C.41)

where ẎX ¥ s(z)H(z)zdYX /d z and where

∞D ¥ nEq
X

K1(z)
K2(z)

°X (C.42)

is the thermally averaged decay/inverse decay rate. We now develop a generic “method”, which is
actually more a question of notations, that is very useful in deriving the Boltzmann equations an a
simple and straightforward way.

C.4.2 Method

The method is the one introduced in Ref. [225]. The difference between a process and its time
reversed, weighted by the densities of the initial state, is defined by

[A $ B ] ¥
√

n
Y

i=1
yai

!

∞A
B °

√

m
Y

j=1
yb j

!

∞B
A , (C.43)

where the state A contains the particles a1, a2, . . . , an and the state B contains the particles
b1,b2, . . . ,bm . In the above equation, ∞A

B ¥ ∞(A ! B) is the thermally averaged rate of the process

3This approximation doesn’t always hold, since one needs to go at the loop level (the C P-asymmetries) for example
when computing the Boltzmann equation for the lepton asymmetries. However, it is enough to consider only the
tree-level amplitude for the illustration purpose of this section.
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A ! B , summed over initial and final spin and gauge degrees of freedom, and ya is defined as

ya ¥ Ya

Y Eq
a

where as usual, Ya ¥ Ya

s
. (C.44)

The difference between the rates of C P-conjugate processes is written ¢∞A
B ¥ ∞A

B °∞Ā
B̄

. Let’s note

that by C PT invariance, one has ∞A
B = ∞B̄

Ā
. Using these notations, the Boltzmann equation for the

species X is simply given by

ẎX =
X

[A $ B ] (C.45)

where we sum over all the processes responsible for a change in the number of X , which appears
at least one times in the final state B 3 b1, . . . , X , . . . ,bm .

C.4.3 Example : the type-1 leptogenesis

In the unflavored type-1 leptogenesis scenario, we need the Boltzmann equation governing the
evolution of the lepton asymmetry ¢YL where YL = Y`. To this end, one needs to sum over the
various processes changing the number of L. We must consider all the processes that are at the
same order of the C P-asymmetry, that is processes that are proportional to Y 4

N . At this order,
considering only the dominant contribution for a sake of illustration, one has

ẎL =
°

ẎL
¢

sphal +
£

N1 $ L¡
§

+
£

L̄¡§ $ L¡
§0+

£

¡§¡§ $ LL
§

(C.46)

ẎL̄ =
°

ẎL̄
¢

sphal +
£

N1 $ L̄¡§§

+
£

L¡$ L̄¡§§0+
£

¡¡$ L̄L̄
§

. (C.47)

In the above equation, (ẎL)sphal denotes the contribution from the sphalerons in the evolution of
L. We will see how to get rid of this term. Also, the primed notation

£

L̄¡§ $ L¡
§0 refers to a process

with the resonant intermediate state subtracted. This is needed in order to avoid double counting,
since the on-shell process L̄¡§ $ L¡ can be obtained by L̄¡§ ! N1 followed by N1 ! L¡. In other
terms, the associated rate is given by ∞0ABC = ∞A

BC °∞A
N1

B N1
BC with B N1

BC the branching ratio of the
decay N1 ! B +C . Using the following practical identities :

ab ° cd = 1
2

[(a ° c)(b +d)+ (a + c)(b °d)] , (C.48)

ab + cd = 1
2

[(a ° c)(b °d)+ (a + c)(b +d)] , (C.49)

it is straightforward to show that subtracting Eq. (C.46) and (C.47), one gets, at leading order in
Y 2

N for the washouts term,

¢ẎL '
°

¢ẎL
¢

sphal +
°

yN1 °1
¢

¢∞N1
L¡°

°

¢yL +¢y¡
¢

∞N1
L¡ . (C.50)

One can get rid of the first term of this equation by considering, instead of the evolution of L,
the evolution of B °L. Indeed, the sphalerons conserve B °L, i.e. (¢ẎL)sphal = (¢ẎB )sphal, and
the evolution of B is only driven by the sphalerons ¢ẎB = (¢ẎB )sphal, so that the evolution of the
difference ¢YB°L doesn’t actually depend on the sphaleron at all. In the second term, from the
C P-asymmetry definition one has ¢∞N1

L¡ = ≤N1∞D , where ∞D ' 2∞N1
L¡ is the thermally average rate of
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the total decay of N1. One has therefore finally, at leading order,

¢ẎB°L '°
°

yN1 °1
¢

≤N1∞D + 1
2

°

¢yL +¢y¡
¢

∞D . (C.51)

We cannot solve this equation alone, since there are still unknown quantities. The quantities ¢YL

and¢Y¡ are in fact related to YB°L through chemical equilibrium condition, see section C.5 below.
One has, in the unflavored case and neglecting the spectator processes, simply that¢YL =°¢YB°L

and ¢Y¡ = 0. However, in all the cases the evolution of YN1 has to be determined. This quantity
is a priori not related to the B °L asymmetry and one needs in fact to write down its Boltzmann
equation. Using the same approach, it is simply given by

ẎN1 =
£

L¡$ N1
§

+
£

L̄¡§ $ N1
§

, (C.52)

which gives, at leading order,

ẎN1 =°
°

yN1 °1
¢

∞D . (C.53)

The two Boltzmann equations in Eqs. (C.51) and (C.53) are the one given in Eqs. (3.36) and (3.35)
respectively.

C.5 Chemical equilibrium conditions

C.5.1 Generalities and usual chemical equilibrium conditions

At very high temperatures (T & 1015 GeV), all SM reactions are frozen in the sense they are much
slower than the Hubble rate. As the temperature decreases, certain reactions (those driven by
the largest couplings first) attain thermal equilibrium which demands kinetic as well as chemical
equilibrium of the corresponding reactions, the latter in turn enforce constraints among the
different chemical potentials of the intervening particles.

Indeed, for a relativistic species X , the particle number density-to-entropy ratio is, at leading
order in µX /T , related with the chemical potential according to Eqs. (C.6) and (C.12). Therefore,
the difference ¢YX = YX °YX̄ is in fact directly proportional to the chemical potential through :

¢YX = gX
T 2

6s
µX

8

>

<

>

:

1 , for fermions

2 , for bosons ,
(C.54)

with gX the number of degrees of freedom of X . In our notation, a singlet fermion has gX = 1, and
doublet Dirac fermions has gX = 2, a triplet Dirac fermions has gX = 3, etc. Let’s note that there
cannot be an asymmetry in the right-handed neutrinos since these are Majorana particles. In
the same way, below the EWSB, the light neutrinos are also Majorana particles and they cannot
develop an asymmetry. Concerning the boson, only the scalar doublet and the W’s can develop an
asymmetry, and they have g¡ = 2, gW = 3.

The chemical potentials are important quantities because if a reaction occurs much faster
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than the Hubble rate (and is then in thermal equilibrium), A $ B where A = a1 + a2 + . . . and
B = b1+b2+. . . , then the various chemical potentials are related through the chemical equilibrium
condition

P

i µai =
P

i µbi , whereµai andµbi are the chemical potentials of species ai and bi . From
Eq. (C.54), the chemical equilibrium constraints thus relate the different particle asymmetries of
those species participating in fast reactions.

In principle, there is a chemical potential (an asymmetry) for each particle in the thermal
bath, which implies that a priori there are as many chemical potentials as particles in the plasma:
61 (36 quarks+9 leptons+4 scalars+2 W’s+1 Z+1 ∞+8 gluons). This number, however, is largely
reduced due to the constraints imposed by the set of chemical equilibrium conditions and the
conservation laws of the early Universe effective Lagrangian. Depending on the temperature
regime where the B°L asymmetry is generated, the possible constraints on the chemical potentials
are :

1. For T > TEW , chemical potentials for all the gauge bosons vanish µW i = µB = µg = 0,
and so the components of the electroweak and color multiplets have the same chemical
potentials [215]. This motivates the above definition of the number of degrees of freedom
that we use all along this thesis. This already reduces to 17 the number of independent
asymmetries.

For T < TEW , the chemical potential of the charged W’s is not zero and the W’s can develop
an asymmetry. As a consequence, the components of a same multiplets have in general
different chemical potential.

2. For T > TEW , cosmological hypercharge neutrality must be obeyed. This leads to a relation
between the asymmetries and therefore the chemical potentials. For example, in the SM
and so in the type-1 leptogenesis (N1 has zero hypercharge) one has

Y =
X

Æ

°

µQÆ +2µuÆ °µdÆ
°µ`Æ °µeÆ

¢

+2µ¡ = 0 . (C.55)

For T < TEW , the hypercharge is broken and it is instead the cosmological electric charge
neutrality that has to be imposed. In the SM and in the type-1 leptogenesis, this means

Q =
X

Æ

£

2
°

µuLÆ
+µuRÆ

¢

°2
°

µdLÆ
+µdRÆ

¢

°2
°

µeLÆ
+µeRÆ

¢§

+2µ¡+ +4µW + = 0 . (C.56)

This expression can be simplified using the result in item 1 and 4.

3. Non-perturbative QCD instanton and electroweak sphaleron reactions – if in thermal equi-
librium – enforce the following constraints :

X

Æ

°

2µQÆ °µuÆ °µdÆ

¢

= 0 ,
X

Æ

°

3µQÆ +µ`Æ
¢

= 0 . (C.57)

The temperature range at which the QCD instanton reactions attain equilibrium has been
estimated to be T QC D

sphal 2 [132,1013] GeV [255, 214] while for electroweak sphaleron processes,
being controlled by ÆEW rather than ÆS , it has been found to be about a factor 20 smaller
for the upper value [214] so that T EW

sphal 2 [132,1012] GeV, see section C.2.

245



Appendix C. Tools for leptogenesis and dark matter genesis

4. Finally, for T > TEW , Yukawa reactions when being in thermal equilibrium lead to the
chemical equilibrium constraints:

Up-type quarks: µuÆ °µQÆ °µ¡ = 0 , (C.58)

Down-type quarks: µdÆ
°µQÆ +µ¡ = 0 , (C.59)

Charged leptons: µeÆ °µ`Æ +µ¡ = 0 . (C.60)

Top Yukawa-induced reactions are faster than the Hubble rate for T . 1015 GeV. Bottom,
charm and tau Yukawa-induced processes are faster than the Hubble rate for T . 1012 GeV,
strange and muon for T . 109 GeV, and the first generation Yukawa-induced processes for
T . 105 GeV [230, 233, 231].

Let’s note that below TEW , the scalar boson h acquires a vev and so the neutral component
of the scalar doublet cannot develop any asymmetry (µ¡0 = 0). Using also item 1, one has
therefore the relations µuLÆ

=µuRÆ
, µdLÆ

=µdRÆ
=µuLÆ

+µW + and µeLÆ
=µeRÆ

=µ∫LÆ
+µW + .

The exact number of non-vanishing chemical potentials as well as the number of chemical
equilibrium conditions are fixed only when a specific temperature window is settled. Once this is
done, the resulting system of equations is solved in terms of a single set of variables. This set of
variables is µB/3°LÆ in the SM and the type-1 leptogenesis. The solution thus provides the relations
between the asymmetries of all the particles in the heat bath with the independent asymmetries
¢YB/3°LÆ . In particular, for T > TEW , one has the following relations, relating ¢Y`Æ and ¢Y¡ to
¢YB/3°LÆ :

¢Y`Æ =°
X

Ø

C`
ÆØ¢YB/3°LØ and ¢Y¡ =°

X

Æ
C¡
Æ¢YB/3°LÆ , (C.61)

where C` and C¡ are matrices of numbers. These matrices have different expressions following the
temperature regime at which leptogenesis takes place. The expression of these matrices, derived
for example in Ref. [233], is computed in next section.

C.5.2 Temperature regimes and chemical equilibrium conditions for type-1 Seesaw
leptogenesis

In what follows we briefly discuss the symmetries of the corresponding early Universe effective
Lagrangian and the relevant chemical equilibrium conditions in items 1-4 above, which enable
us to calculate the matrices relating the lepton and scalar doublet asymmetries with YB/3°LÆ , as
given by Eqs. (C.61). We start by discussing the high temperature regime T > 1015 GeV, proceeding
subsequently to the temperature ranges T Ω [1012,1015] GeV, [109,1012] GeV, [105,109] GeV and T <
105 GeV. Theses ranges are based on the assumption that all SM interactions that approximately
enter in thermal equilibrium at a similar temperature do it effectively at the same temperature. As
discussed in section 3.5, this may not be the case since the charged Yukawas, even if faster than the
Hubble rate, must also be faster than the inverse decay rate in order that the coherent lepton state
looses its coherence. However, we will here consider only the full-flavor regimes corresponding to
the cases 1., 2.(b), 3.(c) and 4.(d), plus a “0.” one, in which only the top Yukawa-related reactions
are in thermal equilibrium.
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We stress that some of these temperature “windows” differ from those used in Ref. [233], in
particular in what regards the charged lepton Yukawa reaction equilibrium temperatures. They
however match with those pointed out in Ref. [230]. 4

0. None SM reactions in thermal equilibrium, T & 1015 GeV
In this regime all SM reactions are slower than the Hubble rate. A proper treatment of
the problem therefore should be done with the unflavored kinetic equations in Eqs. (3.35)
and (3.36). With all SM reactions frozen, only the lepton `1 and scalar doublets ¡ develop
chemical potentials µ`1 and µ¡. These chemical potentials are subject only to the hyper-
charge neutrality constraint in 2. The associated asymmetries can related to the B ° L
through the following C` and C¡ values :

C` = 1 , C¡ = 1 . (C.62)

Taking into account the spectator, from Eq. (C.51), one gets Eq. (3.36) up to a factor 2 in
front of ¢YB°L , so that the washout is accordingly stronger. Note that above 1015 GeV there
is relatively little time for the reheating to occur before the temperature goes below the
right-handed neutrino mass (assuming the reheating occurs below the Planck scale).

1. Only top Yukawa-related reactions in thermal equilibrium, T Ω [1012,1015] GeV
Within this temperature regime, the top Yukawa-related interactions becomes faster than
the Hubble rate. Accordingly, we are still in the unflavored regime and the Boltzmann
equation that must be used is still the one given in Eq. (C.51).

The global symmetries of the effective Lagrangian are those of the SM kinetic terms broken
only by the top Yukawa coupling, and so the group of global transformations is :

Geff =U (1)Y £U (1)B £U (1)e £U (1)PQ £SU (3)d £SU (3)e £SU (2)Q £SU (2)u . (C.63)

The SU (3) factors combined with the exact U (1)B , U (1)PQ and the absence of Yukawa
couplings for all SM particles, except the top quark, imply : µdÆ

=µeÆ =µu1,2 =µQ1,2 =µB = 0
(B being associated to the baryon asymmetry). Taking this constraints into account and the
relevant chemical equilibrium conditions in Eqs. (C.55) and (C.58), the latter written only
for the top quark, we obtain

C` = 1 , C¡ = 2/3 . (C.64)

2. QCD instantons, electroweak sphalerons, bottom and charm and tau Yukawa-related reac-
tions in thermal equilibrium, T Ω [109,1012] GeV
In this temperature window the lepton doublets lose their quantum coherence due to the
tau Yukawa-related interactions being in thermal equilibrium [233, 231]. On the other hand,

4Let’s note that there is an overall factor 2 difference between the matrices we show here and the matrices given in
some papers. This just comes from different notations. Indeed, as an example, `Æ accounts in this thesis for the lepton
doublet of flavor Æ with g = 2, while for example in Ref. [233], `Æ accounts for one of the two components of the lepton
doublet with then g = 1. This can be quite confusing since the notation can change from one paper to another even if
written by the same author (see for example Refs. [233] and [329]). However, the different approaches are consistent
with each other since the factor 2 is compensated in the Boltzmann equations, which are in this thesis written in terms
of multiplets and not in terms of multiplet’s components.
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Appendix C. Tools for leptogenesis and dark matter genesis

since electroweak sphaleron reactions are in thermal equilibrium, baryon number is no
longer conserved, while they conserve the individual B/3°LÆ charges. An appropriate study
of the evolution of the B °L asymmetry should then be done by tracking the evolution of the
flavored charge asymmetries B/3°LÆ (Æ= a,ø, the state a being a coherent superposition
of e and µ lepton flavors) with the network of Eqs. (3.62)-(3.63).

The QCD instantons reactions break the global U (1)PQ, the bottom and tau Yukawa cou-
plings break the right-handed down-type quark and charged lepton SU (3) flavor multiplet
and in addition the tau Yukawa coupling also breaks the global U (1)e . The Lagrangian is as
expected “less symmetric”, with the group of global transformations given by

Geff =U (1)Y £SU (2)d £SU (2)e £U (1)Q £U (1)u . (C.65)

These global symmetries imply : µu1 = µQ1 = 0 and µdÆ
= µeÆ = 0 with Æ = 1,2, while the

complete set of chemical equilibrium conditions correspond to Eqs. (C.55) for hypercharge
neutrality (written so to include the now non-vanishing bottom, charm and tau chemical
potentials), (C.57) for QCD instantons, (C.57) for electroweak sphalerons, and (C.58), (C.59)
and (C.60) written for top, bottom, charm and tau Yukawa interactions. Due to sphaleron
reactions, lepton flavor is no longer conserved so that chemical potentials develop in three
independent lepton doublets : `ø, `a and `b . Conservation of the B/3°LÆ charges however
provide the constraint µB/3°Lb = 0, which when coupled with the corresponding chemical
equilibrium conditions yields the following flavored C`,¡ matrices :

C` =
√

307/359 °36/359
°21/359 234/359

!

, C¡ =
≥

82/359 112/359
¥

. (C.66)

3. Strange and muon Yukawa interactions in thermal equilibrium, T Ω [105,109] GeV :
As pointed out in Ref. [233, 231], in this temperature regime the lepton doublets completely
lose their quantum coherence, implying that chemical potentials develop in each orthogonal
lepton flavor doublet : `ø, `µ and `e . Since the second generation Yukawa reactions are
faster than the Hubble rate, the symmetries of the effective Lagrangian are reduced to U (1)
factors:

Geff =U (1)Y £U (1)d £U (1)e £U (1)Q £U (1)u . (C.67)

These constraints imply µd =µe =µQ1 =µu = 0, and when combined with the correspond-
ing chemical equilibrium conditions (the ones from previous item complemented with
Eqs. (C.58), (C.59) and (C.60) for the charm, strange and muon Yukawa interactions) yield :

C` =

0

B

@

151/179 °20/179 °20/179
°25/358 344/537 °14/537
°25/358 °14/537 344/537

1

C

A

, (C.68)

C¡ =
≥

37/179 52/179 52/179
¥

. (C.69)

4. All SM reactions in thermal equilibrium, T . 105 GeV :
In this case and until electroweak symmetry breaking, the only surviving symmetry is
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C.5. Chemical equilibrium conditions

U (1)Y . Due to all SM reactions being fast, all SM particles develop non-vanishing chemical
potentials, with the chemical equilibrium conditions given by the full list in items 1-4. The
flavored C`,¡ matrices in this regime therefore read :

C` =

0

B

@

442/711 °32/711 °32/711
°32/711 442/711 °32/711
°32/711 °32/711 442/711

1

C

A

, (C.70)

C¡ =
≥

16/79 16/79 16/79
¥

. (C.71)

C.5.3 Relation between the baryon, lepton and B °L asymmetries

In the previous section C.5.2, we gave the relations between the lepton flavor asymmetries ¢Y`Æ
and ¢YB/3°LÆ , as well as the relations between the scalar asymmetry ¢Y¡ and ¢YB/3°LÆ , for
different temperature regimes and for T > TEW .

Using the same chemical equilibrium condition, one can also easily derive the relation
between the baryon asymmetry ¢YB and the B °L asymmetry ¢YB°L , which is needed in order to
evaluate how much baryon are left today. But it is not necessary to compute this relation for all the
temperature regimes considered above. Indeed, once a B °L asymmetry is produced at the end of
leptogenesis, it stays intact since it is preserve by sphalerons. 5 Therefore the relation between
the asymmetry in B and in B °L changes as the temperature decreases, passing through all the
temperature regimes. Just before the EWSB at T º 165 GeV, we are in the temperature regime of
item 4 in page 248 above, and we can easily show that the relation reads

¢YB = 28
79
¢YB°L . (C.72)

However, when the temperature decreases and crosses the EWPT, the sphalerons are still active
until T º 132 GeV, see Fig. 3.5 in page 86, so that just before the sphalerons decouple and leave the
baryon asymmetry intact until today, one has instead

¢Y tod ay
B = 12

37
¢YB°L . (C.73)

5We suppose of course that no other B °L violation mechanism takes place after the leptogenesis era.
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D Type-2 Seesaw leptogenesis

D.1 Tree-level decay rates

We here compute the tree-level decay rates of the ¢0§, ¢° and ¢°° components of the triplets into
leptons and scalars. We then explicitly check that the total decay widths of each component are
the same for T > TEW , respecting gauge invariance.

D.1.1 Leptonic channel

¢° ! eÆ∫Ø

We have, neglecting the lepton masses and using ∞0Cu§
s (p) = vs(p) :

iM 0 =i
p

2Y ÆØ§
¢ u∫Ø PR ∞0Cu§

eÆ = i
p

2Y ØÆ§
¢ u∫Ø PR veÆ , (D.1)

so that squaring and summing over the final spins one gets

X

spi n

Ø

ØiM 0Ø
Ø

2 =2
Ø

Ø

Ø

Y ÆØ
¢

Ø

Ø

Ø

2
Tr[ 6 p 6 p 0PL] = 2

Ø

Ø

Ø

Y ÆØ
¢

Ø

Ø

Ø

2
m2
¢ . (D.2)

The partial decay width of the process ¢° ! eÆ∫Ø therefore reads

°
°

¢° ! eÆ∫Ø
¢

= 1
16ºm¢

Ø

ØiM 0Ø
Ø

2 = m¢

8º

Ø

Ø

Ø

Y ÆØ
¢

Ø

Ø

Ø

2
, (D.3)

and the total decay width to leptons reads

° (¢° ! e∫) =
X

Æ,Ø
°

°

¢° ! eÆ∫Ø
¢

= m¢

8º
Tr [Y Y †] . (D.4)
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Appendix D. Type-2 Seesaw leptogenesis

¢0§ ! ∫Æ∫Ø

For ¢0§, we just have to pay attention to doublecounting. Indeed, here partial decay width of
the process ¢° ! ∫Æ∫Ø must be separated according to whether or not there are two identical
particles in the final state. One has

°
°

¢0§ ! ∫Æ∫Æ
¢

= m¢

8º

Ø

ØY ÆÆ
¢

Ø

Ø

2 , (D.5)

°
°

¢0§ ! ∫Æ∫Ø 6=Æ
¢

= m¢

4º

Ø

Ø

Ø

Y ÆØ
¢

Ø

Ø

Ø

2
. (D.6)

The total decay width therefore reads

°(¢0§ ! ∫∫) =
X

Æ
°

°

¢0§ ! ∫Æ∫Æ
¢

+
X

Æ,Ø>Æ
°

°

¢0§ ! ∫Æ∫Ø
¢

= m¢

8º
Tr

h

Y Y †
i

. (D.7)

In D.5 we have used the fact that we have 2 identical outgoing particles so we have a factor 1/2
more. In D.7 the sum is such to avoid double counting since °(¢0§ ! ∫Æ∫Ø) = °(¢0§ ! ∫Æ∫Ø)

¢°° ! eÆeØ

Proceeding in the same way as for ¢0§, we get that the decay width are exactly the same and

°(¢°° ! ee) =
X

Æ
°(¢°° ! eÆeÆ)+

X

Æ,Ø>Æ
°(¢°° ! eÆeØ) = m¢

8º
Tr

h

Y Y †
i

. (D.8)

Summary

We see that we get exactly the same decay rate to leptons for each triplet component. It reads :

°
≥

¢
Q
k ! ¯̀ ¯̀

¥

¥
m¢k

8º
Tr

h

Y¢k Y †
¢k

i

. (D.9)

The partial leptonic decay width can be recast in a single equation which is :

°
≥

¢
Q
k ! ¯̀

Æ
¯̀
Ø

¥

=
m¢k

8º

Ø

Ø

Ø

Y ÆØ
¢k

Ø

Ø

Ø

2
£

1+|Q °1|
°

1°±ÆØ
¢§

, (D.10)

D.1.2 Scalar channel

Here there is no subtlety. We quickly find that the total scalar decay width of each triplet compo-
nent is given by

°
≥

¢
Q
k !¡¡

¥

=
Ø

Øµ¢k

Ø

Ø

2

8ºm¢k

. (D.11)
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D.2. C P-asymmetries

D.1.3 Total decay width

The total decay rate of a component of the triplet is simply expressed as :

°¢k ¥ (B k
¡+B k

` )°¢k =
1

8ºm¢k

≥

m2
¢k

Tr
h

Y¢k Y †
¢k

i

+
Ø

Øµ¢k

Ø

Ø

2
¥

(D.12)

= 1
8º

m2
¢k

m̃¢k

v2

B k
¡+B k

`
q

B k
¡B k

`

, (D.13)

where

m̃2
¢k

= Tr
h

mk†
∫ mk

∫

i

= Tr
h

Y †
¢k

Y¢k

i

Ø

Øµ¢k

Ø

Ø

2 v4

m4
¢k

. (D.14)

Let’s note m̃2
¢ =P

i m2
i if there is only one scalar triplet.

D.2 C P-asymmetries

The C P-asymmetry in the decay of the scalar triplet ¢k reads for each components :

≤`Æ
¢0

k
= 2

°(¢0§
k ! ∫Æ∫Æ)°°(¢0

k ! ∫Æ∫Æ)

°¢0§
k
+°¢0

k

+
X

Ø 6=Æ

°(¢0§
k ! ∫Æ∫Ø)°°(¢0

k ! ∫Æ∫Ø)

°¢0§
k
+°¢0

k

, (D.15)

≤`Æ
¢+

k
= 2

°(¢°
k ! ∫ÆeÆ)°°(¢+

k ! ∫ÆeÆ)

°¢°
k
+°¢+

k

+2
X

Ø 6=Æ

°(¢°
k ! ∫ÆeØ)°°(¢+

k ! ∫ÆeØ)

°¢°
k
+°¢+

k

, (D.16)

≤`Æ
¢++

k
= 2

°(¢°°
k ! eÆeÆ)°°(¢++

k ! eÆeÆ)

°¢°°
k

+°¢++
k

+
X

Ø 6=Æ

°(¢°°
k ! eÆeØ)°°(¢++

k ! eÆeØ)

°¢°°
k

+°¢++
k

, (D.17)

where one has °¢0§
k
+°¢0

k
= °¢°

k
+°¢+

k
= °¢°°

k
+°¢++

k
= 2°¢k . The factor 2 in front of the first terms

in the r.h.s. of the above equations comes from the fact that the associated scalar triplet decay
produces 2 lepton flavors. The factor 2 in front of the second term in the r.h.s. of the second
equation comes from the fact that one has ¢°

k ! ∫ÆeØ but also ¢°
k ! ∫ØeÆ contributing to the

C P-asymmetry. The one-loop corrections to the tree-level decay depend on the details of the
corresponding model.

D.2.1 Pure scalar triplet case

The one-loop Feynman diagrams responsible for a C P-asymmetry in the leptonic decay of ¢k are
depicted in Fig. 4.12. We here compute briefly the C P-asymmetry by considering, for simplicity
and in order to avoid double-counting trick, the decay ¢°

k ! eÆ∫Ø. The asymmetry produced by
the other component has to be the same, by gauge invariance. The tree-level amplitude iM 0 is
given in Eq. (D.1). On one hand, the one-loop amplitude of the self-energy lepton conserving
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Appendix D. Type-2 Seesaw leptogenesis

diagram with two leptons in the loop is given by

iM 1
` =

X

∞,±
i
p

2Y ÆØ§
¢ j

(u∫Ø PR veÆ)
i

q2 °m2
¢ j

+ i m¢k°¢ j

(°1)

Z

d 4k
(2º)4 (i

p
2Y ∞±

¢ j
) (i

p
2Y ∞Ø§

¢k
)Tr

∑ °i 6 k
k2 + i≤

°i (6 q + 6 k)
(q +k)2 + i≤

PL

∏

= 2
p

2

m2
¢k

°m2
¢ j

+ i m¢k°¢ j

Y ÆØ§
¢ j

Tr
h

Y¢ j Y †
¢k

i

(u∫Ø PR veÆ) I` , (D.18)

where I` is an integral, containing divergent and convergent parts, given by

I` ¥
°i m2

¢k

µ2±(4º)2
A =

°i m2
¢k

µ2±(4º)2

∑

¢+ 7
3
° ln

|q2|
µ2 ° iºµ(q2)

∏

, (D.19)

with µ(q2) the Heaviside function (more precisely distribution) of the transferred momentum
q2 = m2

¢k
. On the other hand, the one-loop amplitude of the self-energy lepton violating diagram

with two scalars in the loop is given by

iM 1
¡ =i

p
2Y ÆØ§

¢ j
(u∫Ø PR veÆ)

i

q2 °m2
¢ j

+ i m¢k°¢ j

Z

d 4k
(2º)4 (i

p
2µ§

¢ j
) (i

p
2µ¢k )

i
k2 + i≤

i
(q +k)2 + i≤

= °2
p

2

m2
¢k

°m2
¢ j

+ i m¢k°¢ j

Y ÆØ§
¢ j

µ§
¢ j
µ¢k (u∫Ø PR veÆ) I¡ , (D.20)

where I¡ is an integral, containing divergent and convergent parts, given by

I¡ ¥ i

µ2±(4º)2

∑

¢+2° ln
|q2|
µ2 ° iºµ(q2)

∏

. (D.21)

The decay rate to leptons contains an interference term given by

°(¢°
k ! eÆ∫Ø) 3 1

16ºm¢k

"

X

spi n

≥

iM 1
` + iM 1

¡

¥

°

iM 0¢† +h.c.

#

(D.22)

= °1

µ2±(4º)3

m¢k

m2
¢k

°m2
¢ j

+ i m¢k°¢ j

h

Y ÆØ§
¢ j

Y ÆØ
¢k

≥

m2
¢k

Tr
h

Y¢ j Y †
¢k

i

A +µ§
¢ j
µ¢k B

¥i

+h.c.

For the CP conjugate rate we have :

°(¢+
k ! ēÆ∫̄Ø) 3 °1

µ2±(4º)3

m¢k

m2
¢k

°m2
¢ j

+ i m¢k°¢ j

h

Y ÆØ§
¢k

Y ÆØ
¢ j

≥

m2
¢k

Tr
h

Y¢k Y †
¢ j

i

A +µ§
¢k
µ¢ j B

¥

+h.c.
i
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So the C P-asymmetry is given by

≤`Æ¢°
k
=2

X

Ø

°(¢°
k ! ∫ÆeØ)°°(¢+

k ! ∫ÆeØ)

2°¢k

(D.23)

= 1
°¢k

°1

µ2±(4º)3

m¢k
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¢k

°m2
¢ j

+ i m¢k°¢ j
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≥

Y †
¢ j
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Tr [Y¢ j Y †
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1° iÆ

∂
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¢ j
µ¢k
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∂

!
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≥

Y †
¢k

Y¢ j
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Tr [Y¢k Y †
¢ j

]
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∂

+µ§
¢k
µ¢ j

µ
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1° iÆ
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1+ iÆ

∂

!#

(D.24)

where Æ= m¢k°¢ j /(m2
¢k

°m2
¢ j

). The various quantities entering in the brackets read

A

1+ iÆ
° A §

1° iÆ
= 1

1+Æ2 [2i =m [A ]°2iÆ<e [A ]] , (D.25)

A

1° iÆ
° A §

1+ iÆ
= 1

1+Æ2 [2i =m [A ]+2iÆ<e [A ]] , (D.26)

B

1+ iÆ
° B§

1° iÆ
= 1

1+Æ2 [2i =m [B]°2iÆ<e [B]] , (D.27)

B

1° iÆ
° B§

1+ iÆ
= 1

1+Æ2 [2i =m [B]+2iÆ<e [B]] . (D.28)

From Eqs. (D.21) and (D.21), we have that =m [A ] = =m [B] = °º, so that the C P-asymmetry
reads

≤`Æ¢°
k
= 1
°¢k

1

µ2±(4º)2

m¢k (m2
¢k

°m2
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)

(m2
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°m2
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Y¢k Y †
¢ j

i

m2
¢k

+µ§
¢k
µ¢ j

¥i

.

(D.29)

Finally, dropping ± and replacing °¢k by its value, one gets

≤`Æ¢°
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= 1
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°m2
¢ j

)

(m2
¢k

°m2
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¥ . (D.30)

If m2
¢ j

¿ m2
¢k

, it simplifies to

≤`Æ¢°
k
=° 1

2º
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¢k
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¢ j

=m
h≥

Y †
¢k

Y¢ j

¥
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≥
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Y¢k Y †
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+µ§
¢k
µ¢ j
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≥
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Tr [Y¢k Y †
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]+|µ¢k |2
¥ . (D.31)

D.2.2 Mixed type-1+2 scheme

The one-loop Feynman diagrams responsible for a C P-asymmetry in the leptonic decay of ¢k are
depicted in Fig. 4.12. We here compute briefly the C P-asymmetry by considering, for simplicity
and in order to avoid double-counting trick, the decay ¢° ! eÆ∫Ø (we consider only one scalar
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Appendix D. Type-2 Seesaw leptogenesis

triplet in this case). The asymmetry produced by the other component has to be the same, by
gauge invariance. The tree-level amplitude iM 0 is still given by Eq. (D.1). The one-loop amplitude
is now given by

iM 1 =
X
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i
p
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¥

ueÆ
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(2º)4
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where A ¥
°

° iº
x ln x +<

¢

, with < denoting some real function. Following the same procedure as
in pure type-2 case, we find :
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Using UÆNi = vp
2

YNiÆ§/mNi and C§
NiØ

º vp
2

YNiØ§/mNi , we finally find :
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. (D.34)

D.3 Scattering rates

Decay and scattering 1 $ 2 and 2 $ 2 reaction densities are given by :

∞D = K1(z)
K2(z)

nEq
ß °Tot

¢ , (D.35)

∞S =
m4
¢

64º4

Z1

xmin

d x
p

x
K1(z

p
x) bæS

z
. (D.36)

Here nEq
ß is theß=¢+¢§ number density (number density for a non-relativistic species), x = s/m2

¢

(s being the center-of-mass energy), °¢ denotes the triplet total decay width, given in Eq. (4.65),
whereas bæS the reduced cross section. The integration upper and lower limits are determined
by the kinematics of the corresponding scattering process : for gauge boson mediated processes
xmin = 4, for Yukawa (or scalar) induced reactions xmin = 0.

Denoting ±= °¢/m¢, we have found that the reduced cross sections for the s and t channel
¢L = 2 processes can be written as :

bæ
¡¡
`Æ`Ø

= 3 ·64ºB¡B`ÆØ ±
2 x

(x °1)2 +±2 , (D.37)

bæ
¡`Ø
¡`Æ

= 3 ·64ºB¡B`ÆØ ±
2 1

x

h

ln(1+x)° x
1+x

i

. (D.38)

The reduced cross sections for the s and t channel flavor violating reactions, instead, can be
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written according to :

bæ
`∞`±
`Æ`Ø

= 3 ·64ºB`∞± B`ÆØ ±
2 x2

(1°x)2 +±2 , (D.39)

bæ
`Ø`∞
`Æ`±

= 3 ·64ºB`∞± B`ÆØ ±
2
∑

x +2
x +1

° ln(1+x)
∏

. (D.40)

Finally, the reduced cross section for gauge induced processes reads [229, 241, 330]

bæA =3 · 2
72º

©

(15C1 °3C2)r + (5C2 °11C1)r 3

+3
°

r 2 °1
¢£

2C1 +C2
°

r 2 °1
¢§

ln
µ

1+ r
1° r

∂æ

+
µ

50g 4 +41g 04

48º

∂

r 3/2 , (D.41)

where the following notation has been adopted: r =
p

1°4/x and C1 = 12g 4 +3g 4
Y +12g 2g 2

Y and
C2 = 6g 4 +3g 4

Y +12g 2g 2
Y (with g and gY the SU (2) and U (1) SM gauge coupling constants).

In Eqs. (D.37)-(D.41), the numerical pre-factor 3 accounts for the three scalar triplet com-
ponents. The reaction densities with a resonant intermediate state subtracted can be calculated
from Eqs. (D.35), (D.36), (D.37) and (D.39) as follows :

∞
0¡¡
`Æ`Ø

= ∞
¡¡
`Æ`Ø

°B`ÆØ B¡∞D ,

∞
0`∞`±
`Æ`Ø

= ∞
`∞`±
`Æ`Ø

°B`ÆØB`∞±∞D . (D.42)

Rates for the different SM reactions are approximately given by [255, 214, 325, 326] :

QCD instantons : ∞QCD(T ) ' 312ÆS T 4 , (D.43)

Electroweak sphalerons : ∞EW(T ) ' 26ÆEW T 4 , (D.44)

Yukawa reactions : ∞ fÆ(T ) ' 5£10°3 Y 2
fÆ

T nEq
fÆ

= 5£10°4 Y 2
fÆ

T 4 , (D.45)

where Y fÆ denotes the Yukawa coupling of fermion fÆ.

D.4 Boltzmann equations

Following the method introduced in Appendix C.4, we here write the main steps in the derivation
of the flavored Boltzmann equations for the type-2 leptogenesis.

Scalar triplet density and asymmetry. Thanks to gauge invariance, it is enough to compute the
equations associated to only one component of the triplet, that we choose to be ¢± for simplicity.
One gets :

Ẏ¢+ =
£

¡+¡0 $¢+§

+
X

ÆØ

£

ēÆ∫̄Ø$¢+§

+
X

£

X Y $¢+¢°§

gauge , (D.46)

Ẏ¢° =
£

¡°¡0§ $¢°§

+
X

ÆØ

£

eÆ∫Ø$¢°§

+
X

£

X Y $¢+¢°§

gauge . (D.47)
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The gauge interactions was first computed in Ref. [241] and then improved in Ref. [330]. Summing
the above equations, one gets easily

Ẏß± ¥ Ẏ¢+ + Ẏ¢° =°∞±D
°

yß± °1
¢

°2∞±A
£

y2
ß± °1

§

, (D.48)

where

∞±D = ∞¢
+

¡+¡0 +∞¢
°

¡°¡0§ +
X

Æ,Ø
∞¢

+

ēÆ∫Ø +∞
¢°

eÆ∫̄Ø , (D.49)

and ∞±A denote the total decay rate and the total scattering rate of the ¢± component. Summing
over the triplet components, one gets finally the evolution of the total triplet density

Ẏß =°∞D

√

Yß

Y Eq
ß

°1

!

°2∞A

"√

Yß

Y Eq
ß

!2

°1

#

, (D.50)

where ∞D is the total decay rate as defined in Eq. (4.24). By subtracting the above equations,
Eqs. (D.46) and (D.47), one gets instead

¢Ẏ¢± ¥ Ẏ¢+ ° Ẏ¢° =°
"

¢y¢°2B¡¢y¡+
X

Æ,Ø
B`ÆØ

≥

¢y`Æ +¢y`Ø
¥

#

∞±D
2

. (D.51)

Summing over the triplet component, one gets the evolution of the total triplet asymmetry

¢Ẏ¢ =°

2

4

¢Y¢

Y Eq
ß

°B¡
¢Y¡

Y Eq
¡

+
X

Æ,Ø
B`ÆØ

√

¢Y`Æ
Y Eq
`

+
¢Y`Ø

Y Eq
`

!

3

5∞D . (D.52)

Lepton asymmetry. Here too, we will focus on the lepton asymmetry generated by only one
component of the scalar triplet. One gets for eÆ

ẎeÆ =
X

Ø

£

¢° $ eÆ∫Ø
§

+
X

Ø

£

¡°¡0§ $ eÆ∫Ø
§0+

£

∫̄Ø¡
0 $ eÆ¡

+§

+
X

Ø,∞,±

£

e∞∫±$ eÆ∫Ø
§0+

£

e∞∫̄±$ eÆ∫̄Ø
§

(D.53)

and for ēÆ, one just needs to replace all the particle by the associated anti-particle in the above
equation. Subtracting the two equations and summing over the lepton components, one gets

¢Ẏ`Æ =
°

yß+1
¢

¢∞¢̄`Æ`Ø °
X

Ø

≥

¢y¢+¢y`Æ +¢y`Ø
¥

B`ÆØ∞D

°
X

Ø

≥

2¢y¡+¢y`Æ +¢y`Ø
¥≥

∞
0¡¡
`Æ`Ø

+∞`Ø¡
`Æ¡

¥

+2
X

Ø

≥

B`ÆØ¢∞
¢̄
¡̄¡̄

°B¡¢∞
¢̄
`Æ`Ø

¥

+
X

Ø,∞,±

≥

¢y`∞ +¢y`± °¢y`Æ °¢y`Ø
¥≥

∞
0`∞`±
`Æ`Ø

+∞`∞`Ø
`Æ`±

¥

+2
X

Ø

≥

B`ÆØ¢∞
¢̄
``°B`¢∞

¢̄
`Æ`Ø

¥

(D.54)
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Here, one has defined the reaction densities with a resonant intermediate state subtracted ∞
0`∞`±
`Æ`Ø

=

∞
`∞`±
`Æ`Ø

°B`∞±B`ÆØ∞D and ∞
0¡¡
`Æ`Ø

= ∞
¡¡
`Æ`Ø

°B¡B`ÆØ∞D . Using ¢∞¢̄
``

= °¢∞¢̄¡¡ and
P

Ø¢∞
¢̄
`Æ`Ø

= ≤`Æ¢ ∞D ,
one gets finally

¢Ẏ`Æ =
°

yß°1
¢

≤`Æ¢ ∞D °
X

Ø

≥

¢y¢+¢y`Æ +¢y`Ø
¥

B`ÆØ∞D

°
X

Ø

≥

2¢y¡+¢y`Æ +¢y`Ø
¥≥

∞
0¡¡
`Æ`Ø

+∞`Ø¡
`Æ¡

¥

+
X

Ø,∞,±

≥

¢y`∞ +¢y`± °¢y`Æ °¢y`Ø
¥≥

∞
0`∞`±
`Æ`Ø

+∞`∞`Ø
`Æ`±

¥

(D.55)

As usually, the l.h.s. of this equations must be replaced by (°1)¢ẎB/3°LÆ in order to express things
in terms of sphaleron-conserving quantities. Still, one is left with too many unknown asymmetries
in this equations. These must finally be related to the triplet and B/3°LÆ asymmetries trough
chemical equilibrium conditions.

D.5 Chemical equilibrium conditions

The way to proceed is the same as in the type-1 Seesaw case in Appendix C.5. The only difference
comes from the Hypercharge neutrality condition which reads now

Y =
X

Æ

°

µQÆ +2µuÆ °µdÆ
°µ`Æ °µeÆ

¢

+2µ¡+6µ¢ = 0 . (D.56)

Here, we will also write the chemical equilibrium conditions that apply in the situations where the
charged lepton Yukawa couplings are not in thermal equilibrium, even if their rate are larger than
the Hubble rate. Indeed, as explained in details in section 4.2, in each temperature regime one has
different possible flavor regimes, following that the inverse decays are faster or slower than the
charged Yukawa reactions. There are therefore parameter space configurations for which lepton
flavor coherence is not lost when the SM tau Yukawa reaction (or any other SM lepton Yukawa
interaction) becomes fast. In those cases, the C` and C¡ matrices certainly differ from those
derived in the case when lepton flavor decoherence takes place at the same temperature at which
the corresponding SM Yukawa coupling becomes fast. Although this lepton flavor decoherence
“delay” is not inherent to scalar triplet flavored leptogenesis, and it is rather a consequence of
parameter choices, here we summarize all possible C` and C¡ matrices including as well those
cases. The list presented here thus encompasses all the scenarios one can consider when tracking
the B °L asymmetry in triplet scalar flavored leptogenesis scenarios.

Table D.1 displays the different possible temperature regimes, the corresponding reactions
which are faster than the Hubble expansion rate, the lepton flavor regimes (full-diagonal, semi-
diagonal or general flavor regimes) and the corresponding global symmetries of the effective
Lagrangian in the early Universe. In Table D.2, instead, we specify for the different temperature
regimes the asymmetry charges for which kinetic evolution equations have to be written and
the corresponding C` and C¡ matrices valid in each case. We remind that T fÆ

decoh, as defined in
section 4.2.2, refers to the temperature at which the lepton-related triplet inverse decay becomes
smaller than the SM lepton fÆ Yukawa interaction.
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Appendix D. Type-2 Seesaw leptogenesis

As an example, let’s consider the situation where the mass over the scalar triplet is m¢ =
109 GeV, so that leptogenesis takes place in the temperature regime T 2 [105,109] GeV. Furthermore,
suppose that the inverse decays ``! ¢̄ are such that only the tau charged lepton Yukawa is active.
In this semi-diagonal regime, one has that the strong and EW sphalerons are in equilibrium, as
well as the top, bottom, charm, strange and tau Yukawa interactions

X

Æ

°

2µQÆ °µuÆ °µdÆ

¢

= 0 (QCD) ,
X

Æ

°

3µQÆ +µ`Æ
¢

= 0 (EW) , (D.57)

µut °µQ3 °µ¡ = 0 (top) , µub °µQ3 +µ¡ = 0 (bottom) , (D.58)

µuc °µQ2 °µ¡ = 0 (charm) , µus °µQ2 +µ¡ = 0 (strange) , (D.59)

µuø °µ`3 +µ¡ = 0 (tau) , (D.60)

together with the hypercharge relation

Y =
X

Æ

°

µQÆ +2µuÆ °µdÆ
°µ`Æ °µeÆ

¢

+2µ¡+6µ¢ = 0 . (D.61)

In this case, the effective Lagrangian at that time possess the following global symmetries :

Geff =U (1)Y £U (1)Q £U (1)u £U (1)d £SU (2)e , (D.62)

so that, assuming that initially the Universe was perfectly symmetric, one has in fact µQ1 =µu1 =
µd1 =µeµ =µee = 0. Now, let’s proceed step by step.

The quantities that are conserved by the sphalerons are in this regime the¢YB/3°La ,¢YB/3°Lb

and ¢YB/3°Lø asymmetries. From the relation between the asymmetries and the chemical poten-
tial in Eq. (C.54), one has that these are proportional to

¢YB/3°La /
1
3

X

Æ

°

2µQÆ +µuÆ +µdÆ

¢

°2µ`a , (D.63)

¢YB/3°Lb /
1
3

X

Æ

°

2µQÆ +µuÆ +µdÆ

¢

°2µ`b , (D.64)

¢YB/3°Lø /
1
3

X

Æ

°

2µQÆ +µuÆ +µdÆ

¢

°2µ`ø °µeø . (D.65)

From QCD sphalerons, one has

X

Æ

°

µuÆ +µdÆ

¢

= 2
X

Æ
µQÆ , (D.66)

and from EW sphalerons, one has

X

Æ
µQÆ =°1

3

X

Æ
µ`Æ , (D.67)
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so the asymmetries become, using the tau Yukawa chemical equilibrium condition,

¢YB/3°La =°4
9

X

Æ
¢Y`Æ °2¢Y`a , (D.68)

¢YB/3°Lb =°4
9

X

Æ
¢Y`Æ °2¢Y`b , (D.69)

¢YB/3°Lø =°4
9

X

Æ
¢Y`Æ °3¢Y`ø +

1
2
¢Y¡ . (D.70)

One has to pay attention to the number of degrees of freedom, as well as to the fermion or
scalar nature of the asymmetry. Following our conventions, g`Æ = g¡ = 2 and g¢ = 3. In order to
determine ¢Y¡, we use the hypercharge relation, in which we inject the various sphalerons and
Yukawa conditions. One has

µQ2 +µQ3 +2µt +2µc °µb °µs °µ`a °µ`b °µ`ø °µeø +2µ¡+6µ¢ = 0

, 2µQ2 +2µQ3 °µ`a °µ`b °2µ`ø +9µ¡+6µ¢ = 0

, °5
3
µ`a °

5
3
µ`b °

8
3
µ`ø +9µ¡+6µ¢ = 0 (D.71)

so that the scalar doublet asymmetry reads

¢Y¡ =°4
9
¢Y¢+

10
27
¢Y`a +

10
27
¢Y`b +

16
27
¢Y`ø . (D.72)

Injecting this asymmetry in the expression of the B3 °LÆ asymmetries, and inverting the relations,
one finally gets the C` matrix

C` =

0

B

@

° 4
359

307
359 ° 52

359 ° 36
359

° 4
359

°52
359

307
359 ° 36

359
26

359 ° 21
359

°21
359

234
359

1

C

A

, (D.73)

and the C¡ one

C¡ =
≥

172
359

82
359

82
359

112
359

¥

. (D.74)
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T (GeV) In equilibrium Regime Global symmetries of the effective L

& 1015 Hyp. Full U (1)Y £U (1)B £U (1)ER £U (1)PQ£
SU (3)Q £SU (3)u £SU (3)d £SU (3)e

[1012,1015] Hyp., t Full U (1)Y £U (1)B £U (1)ER£
SU (2)Q £SU (2)u £SU (3)d £SU (3)e

[109,1012] :

[T ø
decoh,1012] Hyp., Sphal., Full- U (1)Y £U (1)Q £U (1)u £SU (2)d£

t ,b,c diagonal SU (3)e

[109,T ø
decoh] Hyp., Sphal., Semi- U (1)Y £U (1)Q £U (1)u £SU (2)d£

t ,b,c,ø diagonal SU (2)e

[105,109] :

[T ø
decoh,109] Hyp., Sphal., Full- U (1)Y £U (1)Q £U (1)u £U (1)d£

t ,b,c,s diagonal SU (3)e

[T µ
decoh,T ø

decoh] Hyp., Sphal., Semi- U (1)Y £U (1)Q £U (1)u £U (1)d£
t ,b,c,s,ø diagonal SU (2)e

[105,T µ
decoh] Hyp., Sphal., General U (1)Y £U (1)Q £U (1)u £U (1)d£

t ,b,c,s,ø,µ U (1)e

. 105 :

[T ø
decoh,105] Hyp., Sphal., Full- U (1)Y £SU (3)e

t ,b,c,s,u,d diagonal

[T µ
decoh,T ø

decoh] Hyp., Sphal., Semi- U (1)Y £SU (2)e

t ,b,c,s,u,d ,ø diagonal

[T e
decoh,T µ

decoh] Hyp., Sphal., General U (1)Y £U (1)e

t ,b,c,s,u,d ,ø,µ

. T e
decoh Hyp., Sphal., General U (1)Y

t ,b,c,s,u,d ,ø,µ,e

Table D.1 – Temperature ranges and the corresponding reactions which are in thermal equilibrium.
In the third column we show the corresponding flavor regime that has to be considered and in the
fourth column we show the global symmetries of the early Universe effective Lagrangian.
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T (GeV) Flavor(s) C` C¡

& 1015 B °L1,2,3

0

@

0 1 0 0
0 0 1 0
0 0 0 1

1

A

°

2 1 1 1
¢

[1012,1015] B °L1,2,3

0

@

0 1 0 0
0 0 1 0
0 0 0 1

1

A

°4
3

2
3

2
3

2
3

¢

[109,1012] :

[T ø
decoh,1012] B °L1,2,3

0

@

0 13
15 ° 2

15 ° 2
15

0 ° 2
15

13
15 ° 2

15
0 ° 2

15 ° 2
15

13
15

1

A

°1
2

1
4

1
4

1
4

¢

[109,T ø
decoh] B/3°La,b,ø

0

@

° 4
359

307
359 ° 52

359 ° 36
359

° 4
359

°52
359

307
359 ° 36

359
26

359 ° 21
359

°21
359

234
359

1

A

°172
359

82
359

82
359

112
359

¢

[105,109] :

[T ø
decoh,109] B/3°L1,2,3

0

@

0 13
15 ° 2

15 ° 2
15

0 ° 2
15

13
15 ° 2

15
0 ° 2

15 ° 2
15

13
15

1

A

°1
2

1
4

1
4

1
4

¢

[T µ
decoh,T ø

decoh] B/3°La,b,ø

0

@

° 4
359

307
359 ° 52

359 ° 36
359

° 4
359

°52
359

307
359 ° 36

359
26

359 ° 21
359

°21
359

234
359

1

A

°172
359

82
359

82
359

112
359

¢

[105,T µ
decoh] B/3°Le,µ,ø

0

@

° 4
179

151
179 ° 20

179 ° 20
179

11
179 ° 25

358
344
537 ° 14

537
11

358 ° 25
358 ° 14

537
344
537

1

A

° 82
179

37
179

52
179

52
179

¢

. . . see next page for the other regimes. . .
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T (GeV) Flavor(s) C` C¡

. 105 :

[T ø
decoh,105] B/3°L1,2,3

0

@

0 13
15 ° 2

15 ° 2
15

0 ° 2
15

13
15 ° 2

15
0 ° 2

15 ° 2
15

13
15

1

A

° 4
11

2
11

2
11

2
11

¢

[T µ
decoh,T ø

decoh] B/3°La,b,ø

0

@

° 2
244

209
244 ° 35

244 ° 24
244

° 2
244 ° 35

244 °209
244 ° 24

244
13

244 ° 33
488 ° 33

488
156
244

1

A

° 86
244

41
244

41
244

56
244

¢

[T e
decoh,T µ

decoh] B/3°Le,µ,ø

0

@

° 8
481

407
481 ° 52

481 ° 52
481

22
481 ° 1

13
70

111 ° 4
111

22
481 ° 1

13 ° 4
111

70
111

1

A

°164
481

2
13

8
37

8
37

¢

. T e
decoh B/3°Le,µ,ø

0

@

3
79

442
711 ° 32

711 ° 32
711

3
79 ° 32

711
442
711 ° 32

711
3

79 ° 32
711 ° 32

711
442
711

1

A

°26
79

16
79

16
79

16
79

¢

Table D.2 – Temperature ranges, as in Table D.1. In the second column, we show the asymmetries
for which kinetic equations have to be written. In the third and fourth columns the different C`

and C¡ matrices holding in each regime. Note that some of these matrices reduce to those found
in the type-1 Seesaw case when removing their first column.
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E Asymmetric Dark matter in IDM

E.1 Scattering rates

In Eq. (5.45), the reaction density of the ∏5 scatterings for the ¥+ (and similarly for ¥0) is given by

∞∏5 = ∞
¡¡
¥¥ +∞¡¥¡¥ , (E.1)

where

∞ab
cd =

m4
H2

64ºz

Z1

4
d x

p
x K1(z

p
x) æ̂ (ab ! cd) . (E.2)

with æ̂(ab ! cd) the reduced cross section. These are given by

æ̂s
∏5

(¡¡! ¥¥) =
3∏2

5

2º

r

1° 4
x

, (E.3)

æ̂t
∏5

(¡¥!¡¥) =
3∏2

5

2º

µ

1° 1
x

∂2

. (E.4)

In the non-relativistic limit, the corresponding rate is given by

°∏5 ¥
∞∏5

nEq
¥+

¥ nEq
¥+ hæ

s
∏5

vi+nEq
¡+hæt

∏5
vi , (E.5)

where [318]

hæs
∏5

vi=
3∏2

5

32ºm2
H2

,and hæt
∏5

vi=
3∏2

5

16ºm2
H2

. (E.6)

In Eq. (5.46) and (5.63), the effective cross section of the H2H̄2 ! SM SM coannihilations is given
by [292]

hæH2 vi=
X

i , j
hæi j vi

Y Eq
i

ß
Eq
H2

Y Eq
j

ß
Eq
H2

' 1

64ºm2
H2

µ

3
8

g 4 +∏2
3 +∏2

4

∂

. (E.7)
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where g is the weak coupling constant. We neglected the ∏5 contribution, and the corrections due
to the contributions proportional to hv2i.

E.2 Analytical resolution of the Boltzmann equations

The Boltzmann equations given in Eqs. (5.57)-(5.59) do not in general have a simple analytical
solution. However, in the case of very fast oscillations, like it is the case here, a good approximation
consists in symmetrizing the equations for ¢¥0 and •¥0 , i.e. replacing Eqs. (5.58)-(5.59) by

d¢¥0

d z
= 2i

±m
zH

•¥0 ° 1
2
hæ0vis

zH
¢¥0 ß¥0 , (E.8)

d•¥0

d z
= 2i

±m
zH

¢¥0 ° 1
2
hæ0vis

zH
•¥0 ß¥0 . (E.9)

In this approximation, the solutions for ¢¥0 and •¥0 are of the form

¢¥0 (z) = f (z) cos[g (z)] , •¥0 (z) = i f (z) sin[g (z)] . (E.10)

Furthermore, since we are interested in oscillations happening after the freeze-out, we can neglect
ß

Eq
¥0 in Eq. (5.57). With these approximations, integrating from zEW to z with the initial condi-

tions ¢¥0 (zEW ) =ß¥0 (zEW ) and •(zEW ) = 0, the analytical solutions of the Boltzmann equations
Eqs. (5.57)-(E.9) are given by Eq. (E.10) and

ß¥0 (z) =
q

¢2
¥0 (z)°•2

¥0 (z) = f (z) , (E.11)

with

f (z) =
ß¥0 (zEW )

1+ 1
2
hæ0vi s(z)

H(z)

≥

z
zEW

°1
¥

ß¥0 (zEW )
, (E.12)

g (z) = ±m
H(z)

√

z2

z2
EW

°1

!

. (E.13)

The abundance ß¥0 decreases therefore monotonically until it reaches an asymptotical value given
by

ß¥0 (z ¿ zEW ) =
ß¥0 (zEW )

1+ 1
2
hæ0vi s(z)

H(z)
z

zEW
ß¥0 (zEW )

. (E.14)

Note that despite appearance, the denominator doesn’t depend on z, since one has sz/(H zEW ) =
12

p
g§MPl TEW /5º2.
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E.3 Landau Pole

The renormalization group equations for the inert doublet model have been computed in Ref. [290] :

16º2 d∏i

d log§
=Øi (∏) , (E.15)

where the beta functions are given by

Ø1 = 24∏2
1 +2∏2

3 +2∏3∏4 +∏2
4 +∏2

5 ,

Ø2 = 24∏2
2 +2∏2

3 +2∏3∏4 +∏2
4 +∏2

5 ,

Ø3 = (12∏3 +4∏4)(∏1 +∏2)+4∏2
3 +2∏2

4 +2∏2
5 ,

Ø4 = 4∏4(∏1 +∏2)+4∏2
4 +8∏3∏4 +8∏2

5 ,

Ø5 = 4∏5(∏1 +∏2)+8∏3∏5 +12∏4∏5 . (E.16)
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