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Abstract

In this note, machine learning (ML) based techniques are presented to identify and
classify hadronic decays of highly Lorentz-boosted W/Z/H bosons and top quarks,
to be used by the CMS Collaboration. The techniques presented include the Energy
Correlation Functions tagger, the Boosted Event Shape Tagger, the ImageTop tagger,
and the DeepAKS tagger. Techniques without ML have also been evaluated and are
included for comparison. An alternative approach for jet clustering and identifica-
tion, the Heavy Resonance Tagger with Variable-R, has been also studied. The iden-
tification performance is studied in simulated events and directly compared among
algorithms. The algorithms are also validated using 35.9 fb ™! of proton-proton events
collected at /s = 13 TeV, and systematic uncertainties are assessed. The new tech-
niques studied in this note provide significant performance improvements over non-
ML techniques, reducing the background rate by up to a factor of ~10 for the same
signal efficiency.
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1 Introduction

At the Large Hadron Collider (LHC) [1] at CERN, efficiently classifying hadronic decays of
heavy standard model (SM) particles that are reconstructed within a single jet can provide
a powerful handle for improving the sensitivity in searches for physics beyond the standard
model (BSM) and in measurements of SM parameters. The understanding of jet substructure
and highly Lorentz-boosted W/Z /H bosons and top (t) quark jets has advanced dramatically
in recent years, both experimentally [2] and theoretically [3]. For a particle with a Lorentz
boost of 7, the angular separation between its decay products scales like 6 ~ 2 /. Understand-
ing the radiation pattern of these jets and their substructure is a topic of high theoretical and
experimental interest.

In this note, we present studies evaluating and comparing the performances of a suite of algo-
rithms designed to distinguish hadronically decaying massive SM particles with large Lorentz
boosts, namely W/Z/H bosons and t quarks, from other jets originating from light-flavor
quarks (u/d/s/c/b) or gluons (g), using the CMS detector [4] at the CERN LHC. We refer
to such jets as “boosted W/Z/H /t jets,” or “W /Z /H /t-tagged jets”.

The theoretical and experimental understanding of jet substructure has gained significant pre-
cision in recent years. The CMS Collaboration has many relevant measurements of jet substruc-
ture and boosted jets, including measurements of the cross section of highly Lorentz-boosted t
quarks [5], jet mass in tt [6], dijet [7, 8], and light flavor-enriched [7] samples, and substructure
observables in jets of different light-quark flavors [9] in resolved tt events. Similar measure-
ments by the ATLAS Collaboration can be found in Refs. [10-14]. Overall, the systematic ef-
fects of jet substructure and boosted jets are well-understood, and after correcting for detector
effects, the results are generally consistent with theoretical expectations.

The maturity of these tools comes with significant advantages. These measurements show rea-
sonable (albeit not perfect) agreement between data and simulation and hence give confidence
in the ability for this note to use simulation samples to develop advanced techniques based on
machine learning (ML). Residual differences between data and simulation will be accounted
for by means of scale factors.

The ML-based approaches can be tailored to suit the needs of individual analyses. Overall
there are two broad categorizations. First, there are analyses that have background estimates
primarily relying on shape comparisons or simulation. Oftentimes, these analyses must have
as much signal efficiency as can be attained for a fixed background rejection. Second, there are
analyses that rely on sideband extrapolations for background estimates. These analyses require
predictable smooth transitions from control regions to signal regions, usually manifesting as
simple dependencies on kinematics (ordinarily, pt). A characteristic example is the use of jet
mass sidebands for the background estimation. In this case, removing such dependencies is
collectively referred to as “mass decorrelation”, as described in Ref. [15]. This note will provide
tools for both of these scenarios, informed by a strong program of previous study [16-20] to
garner confidence in these advanced techniques.

A brief description of the CMS detector is presented in Section 2. The Monte Carlo (MC) sim-
ulated events used for the results are discussed in Section 3, and details of the CMS event re-
construction and the event selections used for the studies are summarized in Sections 4 and 5,
respectively. Section 6 presents an overview of the methods currently used in CMS for heavy
resonance identification, and describes a set of novel algorithms that utilize ML methods and
observables for this task. For the former, the discussion builds on the work documented in [16-
20]. Section 7 details the studies performed to understand the complementarity between the



algorithms using MC simulated events. The performance of the algorithms is validated in data
samples collected in proton-proton (pp) collisions at /s = 13 TeV by the CMS experiment at
the LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb*. The results, along
with the effect of systematic uncertainties in their performance, are discussed in Section 8.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungsten crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity (#) coverage provided by the barrel
and endcap detectors [21]. Muons are measured in gas-ionization chambers embedded in the
steel flux-return yoke outside the solenoid.

In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted
or late-converting photons in the tens of GeV energy range. The remaining barrel photons have
a resolution of about 1.3% up to a pseudorapidity of || = 1, rising to about 2.5% at || = 1.4.
In the endcaps, the resolution of unconverted or late-converting photons is about 2.5%, while
the remaining endcap photons have a resolution between 3 and 4% [22].

In the region || < 1.74, the HCAL cells have widths of 0.087 in pseudorapidity and 0.087 in
azimuth (¢). In the #7-¢ plane, and for |7| < 1.48, the HCAL cells map on to 5 x 5 ECAL crystals
arrays to form calorimeter towers projecting radially outwards from close to the nominal inter-
action point. At larger values of ||, the size of the towers increases and the matching ECAL
arrays contain fewer crystals.

Muons are measured in the pseudorapidity range |1| < 2.4, with detection planes made using
three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching
muons to tracks measured in the silicon tracker results in a relative transverse momentum
resolution for muons with 20 < pp < 100 GeV of 1.3-2.0% in the barrel and better than 6%
in the endcaps, The pr resolution in the barrel is better than 10% for muons with pt up to 1
TeV [23].

The silicon tracker measures charged particles within the pseudorapidity range || < 2.5. It
consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8
T field of the superconducting solenoid. Isolated particles of pr = 100 GeV emitted at |17| < 1.4
have track resolutions of 2.8% in pr and 10 (30) um in the transverse (longitudinal) impact
parameter [24].

Events of interest are selected using a two-tiered trigger system [25]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz within a time interval of less than 4 pus. The
second level, known as the high-level trigger (HLT), consists of a farm of processors running a
version of the full event reconstruction software optimized for fast processing, and reduces the
event rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [4].
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3 Simulated events

Simulated pp collision events are generated at a center-of-mass energy of 13 TeV using various
generators described below. They are used for the design and the performance studies of the
heavy resonance identification algorithms, and to compare to their performance in data. The
signal samples, enriched in one or more of boosted W/Z /H /1t jets, are obtained from the sim-
ulation of BSM processes. The t and W jet signal samples are obtained from heavy spin-1 Z’
resonances decaying to either a pair of t quarks (tt) or a pair of W bosons, respectively. These
resonances are narrow, having intrinsic widths equal to 1% of the resonance mass. The Z and
Higgs jet signal samples are obtained from the decay of spin-2 Graviton resonances to a pair
of Z or Higgs bosons, respectively, following the narrow width assumption. The Z' and Gravi-
ton samples are simulated with MADGRAPH [26] and interfaced with PYTHIA 8.212 [27, 28] for
the hadronization. Signal events are generated for different Z’ and Graviton mass scenarios,
allowing for signal jets over a wide range of py. The background sample is represented by jets
produced via the strong interaction of quantum chromodynamics (QCD), referred to as “QCD
multijet” processes. The QCD multijet events are generated using PYTHIA 8.212 in exclusive
pr bins of the leading quark or gluon using the NNPDF2.3LO [29] parton distribution function
(PDF) set.

A set of MC samples is needed for the study of the performance of the tagging algorithms
in data. The tt process is generated with the next-to-leading-order (NLO) generator POWHEG
v2.0 [30-32] interfaced to PYTHIA for the showering. Simulated events originating from W+jets,
Z+jets and y+jets, are generated using MADGRAPH5_aMC@NLO 2.3.3 [33] at leading order (LO)
accuracy using the LO NNPDF3.0 [54] PDF set. The WZ, ZZ, ttW, ttZ, and tty processes are
generated using MADGRAPH5_aMC@NLO at NLO accuracy, the single t quark process in the
tW channel and the WW process are generated at NLO accuracy with POWHEG v2.0, all using
the NLO NNPDEF3.0 PDF set. In all of the aforementioned cases, parton showering and had-
ronization is simulated in PYTHIA 8.212. Double counting of partons generated using PYTHIA
with those using MADGRAPH5_aMC@NLO is eliminated using the MLM [34] and the FXFX [33]
matching schemes, for the LO and NLO samples, respectively.

The systematic uncertainties associated with the performance of the taggers are evaluated us-
ing simulated events produced with alternative generation settings. For the tt process, an
additional sample is generated using POWHEG v2.0 interfaced with HERWIG++ v2.7.1 [35, 36]
to assess systematic uncertainties related to the modeling of the parton showering and hadron-
ization. Additional QCD multijet samples are generated using MADGRAPH5_aMC@NLO 2.3.3,
interfaced with PYTHIA 8.212 to test the modeling of the hard scatter in background jets, or
generated solely with HERWIG++ providing an alternative description of the background jets.

The most precise cross section calculations are used to normalize the SM simulated samples.
In most cases, this is next-to-next-to-leading order (NNLO) accuracy in the inclusive cross sec-
tion. Finally, the py spectrum of top quarks in tt events is reweighted (referred to as “top
quark pp reweighting”) to account for effects due to missing higher-order corrections in MC
simulation, according to the results presented in Ref. [37]. The simulation of the QCD multijet
and 7y-+jets processes is based on LO calculations. To account for missing higher order correc-
tions, the simulated QCD multijet events and the y+jets events are reweighted such that the
pr distribution of the leading jet in simulation matches data. In both cases, contributions from
other processes are subtracted from data using the predicted cross sections before extracting
the weights.

A full GEANT 4-based model [38] is used to simulate the response of the CMS detector to SM
background samples. Event reconstruction is treated in the same manner for MC simulation



as for data. A nominal distribution of multiple pp collisions in the same or neighboring bunch
crossings (referred to as “pileup”) is used to overlay the simulated events. The events are then
reweighted to match the pileup profile observed in the collected data. For the data used in this
note, there were an average of 23 interactions per bunch crossing.

4 Event reconstruction and physics objects

Events are reconstructed using the CMS particle-flow (PF) event algorithm [39], which aims
to reconstruct and identify each individual particle with an optimized combination of infor-
mation from the various elements of the detector. Particles are identified as charged hadrons,
neutral hadrons, photons, electrons, or muons, and constitute the mutually exclusive list of PF
candidates in the event. The PF candidates are then used to build higher level objects such as
jets. Events are required to have at least one reconstructed vertex. In the case of multiple events
with multiple reconstructed vertices, the one with the largest value of summed physics object
p4 is taken to be the primary pp interaction vertex. The physics objects are those returned by a
jet-finding algorithm [40, 41] applied to the tracks associated with the vertex, and the associated
p‘%niss‘

Photons are reconstructed from energy depositions in the ECAL using identification algorithms
that utilize a collection of variables related to the spatial distribution of shower energy in the
supercluster (a group of 5x5 ECAL crystals), the photon isolation, and the fraction of the energy
deposited in the HCAL behind the supercluster relative to the energy observed in the super-
cluster [22, 42]. The requirements imposed on these variables ensure an efficiency of 80% in
selecting prompt photons. Photon candidates are required to be reconstructed with pr > 200
GeV and || < 2.5. Simulation-to-data correction factors are used to correct photon identifica-
tion performance in MC.

Electrons are reconstructed by combining information from the inner tracker with energy depo-
sitions in the ECAL [42]. Muons are reconstructed by combining tracks in the inner tracker and
in the muon system [23]. Tracks associated with electrons or muons are required to originate
from the PV, and a set of quality criteria is imposed to assure efficient identification [23, 42].
To suppress misidentification of charged hadrons as leptons, we require electrons and muons
to be isolated from jet activity within a pr-dependent cone size defined by a radius R, in the
1-¢ plane, where ¢ is the azimuthal angle in radians, and AR = /Ay? 4+ A¢?. The relative iso-
lation, I, is defined as the scalar sum of the pr of the PF candidates within the cone divided
by the lepton pt. Charged PF candidates not originating from the PV, as well as PF candidates
identified as electrons or muons, are not considered in the sum.

The isolation sum I, is corrected for contributions of neutral particles originated from pileup
interactions using an area-based estimate [43] of pileup energy deposition in the cone. The
requirements imposed to the electron and muon candidates lead to an average efficiency of 70%
and 95%, respectively. In addition the electron and muon candidates are required to have pr >
40 GeV and be within the tracker acceptance of |17| < 2.5. The electron and muon identification
performance in simulation is corrected to match the performance in data.

The primary jet collection in this note is produced by clustering PF candidates using the anti-kt
algorithm [40] with a distance parameter of R = 0.8 with the FASTJET 3.1 software package [40,
41]. This jet collection will be referred to as “AKS8 jets”. A collection of jets produced using the
Cambridge-Aachen (CA) [44, 45] clustering algorithm with R = 1.5 is also used in this note.
This jet collection will be referred to as “CA15 jets”. In both jet collections, the mitigation of the
effect of pileup, relies on the “PileUp Per Particle Identification (PUPPI)” [46] method, which
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uses local shape information around each particle in the event, event pileup properties, and
tracking information together, to mitigate the effect of pileup on jet observables. PUPPI thus
operates at the PF candidate level, before any jet clustering is performed. A local variable «
is computed which contrasts the collinear structure of QCD with the low-pr diffuse radiation
arising from pileup interactions. This a variable is used to calculate a weight correlated with
the probability that an individual PF candidate originates from a pileup collision. These per-
PF candidate weights are used to rescale the four-momenta of each PF candidate to correct for
pileup. The resulting PF candidate list is used as input to the clustering algorithm. A detailed
description of the PUPPI implementation in CMS can in found in Ref. [47]. No additional
pileup corrections are applied to jets clustered from these weighted inputs. Corrections are
applied to the jet energy scale to compensate for nonuniform detector response [48]. Jets are
required to have pp > 200 GeV and |y| < 2.4.

A collection of smaller R jets, which is distinct from the collection of jets discussed earlier, is
used to define the event samples for the validation of the algorithms. These jets are recon-
structed with the anti-ky algorithm with R = 0.4, and will be referred to as “AK4 jets”. To re-
duce the effect of pileup collisions, charged PF candidates identified as originating from pileup
vertices are removed before the jet clustering, based on the method known as “charged-hadron
subtraction” [48]. An event-by-event jet area-based correction [48] is applied to the jet four-
momenta to remove the remaining energy from pileup vertices. As with the AK8 and CA15
jets described above, additional corrections to the jet energy scale are applied to compensate
for nonuniform detector response. The AK4 jets are required to have pr > 30 GeV and be
contained within the tracker volume of || < 2.4.

Jets originating from the hadronization of bottom (b) quarks are identified, or “tagged”, using
the combined secondary vertex (CSVv2) b tagging algorithm [49]. The working point used
provides an efficiency for the b tagging of jets originating from b quarks that varies from 60 to
75% depending on pr, whereas the misidentification rate for light quarks or gluons is ~ 1%,
and ~ 15% for charm quarks.

For the studies presented in this note, the simulated signal jets (AK8 or CA15 jets) are identi-
tied as boosted W /Z/H /t jets when the AR between the reconstructed jet and the closest truth
particle (W/Z/H boson or t quark) before the decay, denoted as AR(jet, truth-particle), is less
than 0.6 for both jet collections. This definition allows for a consistent comparison of the per-
formance of the algorithms using collections of jets clustered with different R. The fraction of
AKS jets with AR(AKS, truth-particle) < 0.6 as a function of the py of the truth particle, for jets
initiated from the decay of a W boson (left) or t quark (right), is shown in Fig. 1. This “match-
ing” efficiency of W bosons (t quarks) reaches a plateau of nearly 100% for pr 2 200 (400) GeV.
The corresponding efficiency curve for CA15 jets with AR(CA15, truth-particle) < 0.6 is super-
imposed on the plots, showing consistent results with AKS8 jets. A similar efficiency is obtained
when a relaxed selection of AR(CA15, truth-particle) < 1.2 is applied on CA15 jets. This justi-
fies the use of the same AR (jet, truth-particle) reconstruction criteria for both jet collections.

Additional criteria are applied on the simulated jets for the evaluation of the performance in
data and the calibration of the algorithms. The partonic decay products (b, q;, q, for t quarks,
or q;, q, for W, Z or Higgs bosons) are required to be fully contained in the AK8 (CA15) jet,
satisfying AR(AKS,q;) < 0.6 (AR(CA15,q;) < 1.2). The above requirements are based on
studies carried out in [17]. The “merging” efficiency as a function of the pr of the truth particle
(i.e. the efficiency for the decay products of the t quark or W boson to be fully contained in a
single jet based on the above requirements), is superimposed on Fig. 1. For W bosons (t quarks)
with pr 2 200 (650) GeV, at least 50% of the AKS jets fully contain the W (t) decay products.
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Figure 1: Matching efficiency as a function of the p of the truth particle; hadronically decaying
W bosons (left) and t quarks (right). This efficiency is defined as the fraction of the truth par-
ticles (t quarks or W bosons) that are within AR < 0.6 with an AK8 or CA15 jet with pr > 200
GeV and || < 2.4. Superimposed is the merging efficiency as a function of the truth particle
pr when all decay products are within AR(AKS,q;) < 0.6 (AR(CA15,q;) < 1.2) with an AK8
(CA15) jet.

In the case of CA15 jets, similar efficiency is achieved for W bosons (t quarks) with pr 2 150
(350) GeV.

In the case of background jets, partons (u, d, s, ¢, b, and gluon) from the hard scattering are
required to be contained in the jet cone.

Lastly, the pss, is defined as the negative of the vectorial sum of the pr of all PF candidates in
the event [50]. Its magnitude is denoted as pi**. The jet energy scale corrections applied to the
3 miss

jets are propagated to p7

5 Event selection

Several samples are utilized to validate the performance of the tagging algorithms in data. The
single-u signal sample is used to calibrate the t quark and W boson identification performance
in a sample enriched in hadronically decaying t quarks. The di-jet sample, dominated by light-
flavor quarks and gluons, enables the study of the identification probability of background jets
(misidentification rate) in a wide range of pr. The misidentification rate depends on the flavor
of the parton that initiated the jet. Therefore, in addition to the di-jet sample, the single-y
background sample is further utilized. The di-jet and single-y samples differ in the light-quark
and gluon fractions. The former has a larger fraction of gluon jets than the latter.

Systematic effects are quantified using these samples for this analysis, motivated by dominant
uncertainties in measurements corrected for detector effects.

5.1

The single-u signal sample has been recorded using a single-muon trigger that selects events
online based on the pr of the muon. Candidate events are required to have exactly one muon

The single-u signal sample
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with pr > 55GeV, satisfying the identification criteria defined in Section 4, except for the
requirement related to the isolation of leptons I. In the boosted semi-leptonic tt regime, the
lepton from the W boson decay often overlaps with the b jet from the t quark decay, leading
to large values of I . Therefore, a custom isolation criterion is applied by requiring a minimal
distance between the muon and the nearest AK4 jet, AR(y, AK4) > 0.4, or the perpendicular
component of the muon py with respect to the nearest AK4 jet, pr,e > 25GeV. This has been
extensively used in measurements [5] and searches [51-54] involving boosted t quarks in the
semi-leptonic tt sample.

The AK4 jets used in this selection are clustered from PF candidates after removing muons with
pr > 55GeV. The custom isolation requirement results in an up to 40% increase in the statistical
power of the sample. To suppress the contribution from QCD multijet processes we require
piiss > 50 GeV. To enhance the sample purity in tt events, we require the presence of two or
more AK4 jets, at least one of which is reconstructed as a b jet. In addition, to probe boosted
topologies we require the py of the leptonically decaying W, defined as pr(W) = pr(p) + piss,
and the scalar sum pt of the AK4 jets, denoted as Hry, to be greater than 250 GeV. The t/W
candidate is the highest pt AK8 or CA15 jet in the event with pt > 200 GeV, satisfying the
criteria discussed in Section 4. To further improve the purity, we require the azimuthal angle
A¢ between the AK8 or CA15 jet and the muon to be greater than 2 radians. The purity of
the sample in semi-leptonic tt events is ~ 70%. Other contributions arise from QCD multijet
(~ 15%) and W+jets (~ 10%) processes.

5.2 The di-jet background sample

The di-jet background sample has been recorded using a trigger that requires Hy, where Hy
is defined as the scalar sum of the py of the AK4 jets in the event. Events with Hy > 1000
GeV are selected to ensure 100% trigger efficiency. Events are required to have at least one
AKS or CA15 jet meeting the requirements presented in Section 4, and the absence of electrons
or muons, leading to a sample dominated by jets from the QCD multijet process, which are
backgrounds to the algorithms presented here.

5.3 The single-y background sample

The single-y background sample has been collected using an isolated single-photon trigger.
Events with a photon with pr > 200 GeV are selected to ensure 100% trigger efficiency. The
photon is further required to satisfy the criteria presented in Section 4. In addition to the pho-
ton, the single-y sample is required to have at least one AK8 or CA15 jets and no electrons or
muons. The sample consists of ~ 80% -y +jets events, whereas smaller contribution from QCD
multijet events is ~ 15%.

6 Overview of the algorithms

This section presents recently developed CMS heavy object tagging methods. However, to un-
derstand the historical developments and their limitations, we first present tagging algorithms
that do not rely on ML-based methods, which rely on selections on a set of jet substructure
observables (“cut-based” approaches). In order to better explore the complementarity between
the jet substructure variables, alternative tagging algorithms were developed using multivari-
ate methods. Lastly, to exploit the full potential of the CMS detector and event reconstruction,
methods based on Deep Neural Networks (DNN) are explored using either high level inputs
(e.g. jet substructure observables), or lower level inputs, such as PF candidates and secondary
vertices. For a wider overview of the most recent developments in ML-based tagging see for



example Ref.[55]. Finally, dedicated versions of the algorithms are developed that are only
loosely correlated with the jet mass. A detailed discussion of each algorithm is presented in
this Section and a summary of all t quark, and W, Z or Higgs boson identification algorithms
is presented in Table 1.

Table 1: Summary of the CMS algorithms for the identification of hadronically decaying
t quarks and W, Z and Higgs bosons. The column “pt (jet)” indicates the jet pr threshold
to be used in each algorithm.

Algorithm pr (et) [GeV] tquark Wboson Zboson Higgsboson decay modes

Mgp + Tsp 400 v

mgp + T3, +b 400 v

mgp + Tpy 200 v v

HOTVR 200 v

N; — BDT (CA15) 200 v

msp + N, 200 v v v

BEST 500 v v v v

ImageTop 600 v

DeepAKS8 200 v v v v v
Jet mass decorrelated algorithms

mgp -+ NPPT 200 v v v

double-b 300 v v

ImageTop-MD 600 v

DeepAK8-MD 200 v v v v v

6.1 Jet grooming and substructure variable-based algorithms

Historically, the boosted t quark and W/Z/H boson tagging methods used by the CMS Col-
laboration are based on a combination of selection criteria on the jet mass and and the energy
distribution inside the jet [16-20].

The jet mass is one of the most powerful observables to discriminate t quark and W/Z/H
boson jets from background jets (i.e. jets stemming from the hadronization of light quarks or
gluons). QCD will cause a radiative shower of quarks and gluons, which will be collimated
within a jet. The probability for a gluon to be radiated from a propagating quark or gluon is
inversely proportional to the angle and energy of the radiated gluon, hence will tend to appear
close to the direction of the original quark or gluon. These radiated gluons tend to be soft,
resulting in a characteristic “Sudakov” peak structure. This is explained in detail in Ref. [8].
Contributions from initial state radiation, the underlying event, and pileup also contribute
strongly to the jet mass, especially at larger values of R. As such, the jet mass from QCD scales
as the product of the jet pr and R.

Methods have been developed to remove soft or uncorrelated radiation from jets, called “groom-
ing” methods. These methods strongly reduce the “Sudakov” peak structure in the jet mass dis-
tribution. Removing the soft and uncorrelated radiation results in a much weaker dependence
of the jet mass on its pr.

The t quark and W/Z/H bosons have an intrinsic mass, and the jet substructure tends to
be dominated by electroweak splittings at larger angles than QCD. This can be exploited to
separate such jets from jets arising from heavy SM particles.

The grooming method used most often in CMS is the “modified mass drop tagger” algorithm
(mMDT) [56], which is a special case of the “soft drop” (SD) method [57]. This algorithm
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systematically removes the soft and collinear radiation from the jet in a manner that can be
theoretically calculated [58, 59] (see comparisons to data in Ref. [8]).

The first step in the SD algorithm is the reclustering of the jet constituents with the CA algo-
rithm, and then the identification of two “subjets” within the main jet by reversing the CA
clustering history. The jet is considered as the final jet if the two subjets meet the SD condition:

; B
min(pry, pra) >z (AR12> ) (1)

Pr1+Pr Ry

where prq (pry) is the pr of the leading (sub-leading) subjet and AR, their angular separation.
The parameters z_,; and p define what the algorithm considers “soft” and “collinear,” respec-
tively. The values used in CMS are z.; = 0.1 and B = 0 (making this identical to the mMDT
algorithm, although for notation we still denote this as SD). If the SD condition is not met, the
lower-pt subject is removed and the same procedure is followed until Eq. 1 is satisfied or no
further declustering can be performed.

The two subjets returned by the SD algorithm are used to calculate the jet mass. Figure 2
shows the distribution of the AKS8 jet mass after applying the SD algorithm (mgp) in signal and
background jets in simulation. The jet mass has been measured in data at CMS for t [6] and
QCD jets [7, 8] in previous papers.

The mgp in background jets peaks below 20 GeV due to the suppression of the Sudakov peak,
whereas the mgp, for signal jets peaks around the mass of the heavy SM particle (t quark, or
W /Z/H bosons). Similar conclusions also hold for CA15 jets. Based on these observations, we
define three regions in mgp. The “W /Z mass” region with 65 < mgp < 105GeV, the “H mass”
region with 90 < mgp < 140GeV, and the “t mass” region with 105 < mgp < 210GeV. These
definitions will be used throughout the studies in this note unless stated otherwise.
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Figure 2: Comparison of the mgp shape in signal and background AKS jets in simulation. The
fiducial selection on the jets is displayed on the plots. Signal jets are defined as jets arising
from hadronic decays of W/Z /H bosons (left) or t quarks (right), whereas background jets are
obtained from the QCD multijet sample.

An additional handle to separate signal from background events is to exploit the energy distri-
bution inside the jet. Jets resulting from the hadronic decays of a heavy particle to N separate
quarks or gluons are expected to have N subjets. For two-body decays like W /Z/H, there are
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two subjets, while for t quarks, there are three. In contrast, jets arising from the hadronization
of light quarks or gluons are expected to only have one or two such regions (in the case of gluon
splitting). The N-subjettiness variables [60, 61],

1 .
= dio ZPT,i min [ARU/ ARy, ARNJ} ¢ @
1

provide a measure of the number of subjets that can be found inside the jet. The index i refers
to the jet constituents, while the AR terms represent the spatial distance between a given jet
constituent and the subjets. The quantity d, is a normalization constant. The centers of hard
radiation are found by performing the exclusive kr algorithm [62, 63] on the jet constituents
before the application of any grooming techniques. The values of the Ty variables are typically
small if the jet is compatible with having N or more subjets. However, a more discriminating
observable is the ratio of different 75 variables. To this end, the ratio 13, is used for t quark
identification, whereas the ratio 7,; is used for W/Z/H boson identification. The distribution
T,; and T3, for signal and background AKS jets is shown in Fig. 3. Measured values of these
distributions at CMS can also be found for light-flavor jets in Ref. [9]. Typical operating regions
for 13, (151) are 0.44-0.89 (0.35-0.65), which correspond to a misidentification rate after the mgp
selection of 0.1-10% (0.1-10%), respectively.
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Figure 3: Comparison of the 7,; (left) and T3, (right) shape in signal and background AK8
jets. The fiducial selection on the jets is displayed on the plots. As signal jets we consider
jets stemming from hadronic decays of W, Z or H bosons (left) or t quarks (right), whereas
background jets are obtained from the QCD multijet sample.

The baseline W and Z boson, collectively referred to as V boson, tagging algorithm, based
on selections on mgp and T,; will be referred to as “mgp + 151" in this note. V tagging with
this method is used frequently in current analyses (see for example Ref.[64-67]) starting at
approximately 200 GeV in pr.

For t quark tagging we studied a tagger based on mgp and 13,, which will be referred to as
“mgp + T3,”. An additional improvement in the performance of the t quark identification is
achieved by applying the CSVv2 b tagging algorithm discussed in Section 4 on the subjets
returned by the SD algorithm. In the studies presented in this note we require at least one of
the two subjets to pass the loose working point of the CSVv2 algorithm, corresponding to b
quark identification efficiency ~ 85%, with a misidentification rate for light quarks and gluons
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~ 10%, and ~ 60% for ¢ quarks. This version of the baseline t quark tagging algorithm will
be referred to as “mgp + T3, +b”. Top tagging with this method is used extensively in physics
analyses (see for example Ref. [54, 66-68]) tagging high pr tops, which start to merge into
the AK8 cone at around 350 GeV and are fully efficient at around 600 GeV. For applications
below this mass range, analyses can profit from the larger (or variable) R clustering algorithms
discussed in the following sections.

6.2 Heavy Resonance Tagger with Variable R

The Heavy Resonance Tagger with Variable R (HOTVR) [69] is a new cut-based algorithm for
the identification of boosted jets. It introduces a new jet clustering technique with a variable R
and removal of soft contributions during the clustering. The clustering is similar to other stan-
dard sequential clustering algorithms like the CA algorithm, where particles are sequentially
added. However, instead of a fixed R, HOTVR uses a pr-dependent R (Ryoryr), defined as:

Rmin, for p/pT < Rmin
RHOTVR = Rmax, for p/pT > Rmax : (3)
p/pr, elsewhere

The values of p correspond to the typical scale of the event (O(100) GeV). In the case of p — 0
the algorithm is identical to the CA algorithm for R = R,;,, whereas for p — oo is identical to
the CA algorithm for R = R,,,,. Higher values of p result in larger jet sizes. The parameters
Rin and R, are introduced for robustness of the algorithm with respect to experimental
effects.

max

Inspired by [69], at each clustering step the invariant mass, m;;, between two subjets, “i” and
“j”, entering the jet clustering, is calculated. If m;; is greater than a mass threshold, y, the

following condition is verified:

Om;; > max(m;, m;), 4)
where m; and m; are the masses of the two subjets, and 6 is a parameter that determines the
strength of the condition and ranges between 0 and 1. If the condition in Eq. 4 is not fulfilled
the subjet with the lowest mass is discarded, otherwise depending on the relative p difference
of the subjets they are either combined into a single subjet or the softer one is discarded. The
algorithm continues until no other subjet is found. The detailed description of the HOTVR
algorithm is presented in [69]. Table 2 lists the values of the HOTVR parameters used in CMS.
In the CMS implementation, HOTVR jets are clustered using PUPPI corrected PF candidates.

Table 2: Summary of the HOTVR parameters. The prg,, is the minimum pr threshold of each
subjet.

Rmin Rmax Y [Gev ] 0 PTsub [Gev ] H [GeV ]
0.1 1.5 600 0.7 30 30

The HOTVR clustering algorithm is currently explored in CMS for the t quark identification.
The jets returned by HOTVR (i.e. “HOTVR jets”) are required to have mass consistent with m,,
namely 140 < mpopyr < 220GeV, and at least three subjets, Ny, yoryr = 3, the minimum
pairwise mass of which should be mg, i, > 50 GeV. In addition, the py of the hardest subjet
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should be less than 80% of the p of the HOTVR jet. Lastly, to further improve the discrim-
ination, 13, < 0.56 is required. The shape comparison of the main variables of the HOTVR

algorithm for signal and background, for different parton pr ranges, is shown on Fig. 4.
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Figure 4: Shape comparison of the main variables of the HOTVR algorithm for signal and
background jets, in two different regions of the parton pt as displayed on the plots.

6.3 Energy correlation functions

A new set of N-prong identification algorithms, the generalized energy correlation functions
(ECF) [70], are now used by the CMS Collaboration. The ECFs explore the energy distribution
inside a jet by aiming to quantify the number of centers of hard radiation using an axis-free
approach, differing form the axis-dependent definition used by N-subjettiness, which reduces
the dependence of the observable on the jet py. This allows the exploration of complementary
information between the two techniques.

For a jet containing N particles, an ECF is defined as:

k] o (m)
P% H min {AR?Z. } ,
1<k<N P | m=1 i/<ike{i1,i2,~-,iN} jrtk

). ©)

1<y <ip <+ <iny<N¢

B _
0N =

where 1 <i; < i, < --- <iy < Ncrange over the jet constituents. The symbols pff‘ and p% are
the pr of the constituent i, and the py of the jet, respectively. The notation min™ refers to the
m™ smallest element, and ARi]_,ik is the distance between constituents i; and i;. The parameters

N and o must be positive integers, whereas  must be positive. For a concrete example, we
calculate the ECF corresponding to 0 = 2, N = 3,8 = 1. This ECF tests the compatibility of a
jet with three centers of hard radiation, but only considering the two smallest angles (0 = 2):
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=
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| T ph
5= L T
1<a<b<c<M PT PT

=

min{AR,AR,., ARy AR, AR, AR, }. (6)

Moreover, there is the possibility to select subsets of the jet that contain large energy fractions
and pairwise opening angles only if the size of the subset is less than or equal to the number of
the centers of radiation in the jet. In general, a jet with N centers of radiation has ey > ¢y, for
M > N.

6.3.1 ECF for 3-prong decay identification

The ratios of type (N = 4)/(N = 3) can identify the hadronic decays of 3-body decays like t
quarks. The paper [70] proposes the specific ratio N3 for this purpose:

B

B) _ 264
N = . (7)

(165)2

Since a jet contains N- ~ O(pr/GeV) constituents, and the sum has (IX]C ) terms, it is pro-

hibitively expensive to compute e(N = 4) on high-momentum jets. For example, about 10-15%
of CA15 jets with py ~ 500 GeV have more than 100 particles. However, we find that functions
are dominated by the hardest particles, and therefore limiting to the 100 hardest particles makes
the calculation tractable without significant performance degradation.

In our reconstruction, the ECF ratios are calculated on jets after the SD grooming is applied,
which improves the stability of the ECF as a function of mass and pr. An example of the ECF
ratios is shown in the left plot of Fig. 5 for t quark and QCD jets in simulation. The ECF ratios
are measured in data in Ref. [9]. While the Nj is designed to have comparable performance
with 13, its dependence on pr is reduced.
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Figure 5: Comparison of the distribution of N?EZ) (left) and the N3 — BDT (CA15) discriminant
(right) in t quarks jets (signal) and jet from QCD multijet processes (background).

To this end, a set of ECF is chosen based on the improvement in the performance of the t
tagging algorithm, while in parallel maintaining small dependence on pr(jet). Despite the fact
that the terms of the ECF are dimensionless, the angular component of the ECF function will
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be modified based on the boost of the jet. Therefore, scale invariant ECF ratios are constructed
by only considering those ratios that satisfy:

2CN an
,Where M < Nand x = —. (8)
(vehy)* bp

Only ratios that are not highly correlated among themselves are considered for the t quark
tagging algorithm. ECFs ratios that are not well-described by simulation are discarded. The
following 11 ECF ratios are finally selected:

(2) 4) (1) (1) ()

163 163 3¢3 3¢3 363
W\ ,e2" (@ @) e
(A () ()™ () N
164(14) 164(12) 264(11/2) 2eé(}l) 234(;1) 264(12)

(&) ()7 (&) (&) (42) (&)

In addition to the ECFE, two jet substructure observables are employed to further distinguish
t quark jets from light quarks or gluons. The first observable is T3, calculated after applying
the SD method on the CA15 jets, defined as 757 and the second is the fi. variable of the
HEPTopTagger algorithm [71-73], which quantifies the difference between the reconstructed
W boson and t quark masses and their expected values, and is defined as:

m;/m
frec = 1’1’111’1‘ / 2 -1 s (10)
Ly

My / 1,

where i, j range over the three chosen subjets, m;; is the mass of subjets i and j, and 1,3 is the
mass of all three subjets.

The ECF-based t quark tagger, referred to as “N; — BDT (CA15)”, is based on a Boosted
Decision Tree (BDT) [74] with the 11 ECF ratios, the 752, and the f,. as inputs. The Nj —
BDT (CA15) was trained using jets with 110 < mgp < 210GeV. To avoid possible bias in the
identification performance due to differences in the pr spectrum of the signal (t quarks) and
background (light quarks or gluons) jets, their contributions are reweighted such that they have
a flat distribution in pr(jet).

Figure 5 on the right shows a comparison of the N3 — BDT (CA15) discriminant distribution
between signal and background jets. The final N; — BDT (CA15) algorithm also requires at
least one of the two subjets returned by the SD method to be identified as a b jet by the CSVv2
algorithm using the loose working point. The ECF BDT tagger is used for top jet identification
in the context of dark matter production in association with a single top in the pr > 250 GeV
range [75].

6.3.2 ECF for 2-prong decay identification

Similarly to the identification of 3-prong decays, ECF are explored for the identification of
2-prong decays like W/Z /H bosons. In this case, the signal jets have a stronger 2-point corre-
lation than a 3-point correlation and the discriminant variable N can be used to separate jets
originating from W/Z /H bosons. The N, variable is constructed via the ratio:
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2e1
N} =23, (11)

and presents similar performance to N-subjetiness ratio 7,;, with the advantage that it is more
stable as a function of the jet mass and py. This method will be referred to as “mgp + N,” in
this note.

A decorrelation procedure is further applied to avoid distorting the jet mass distribution when
a selection based on N, is made. We design a transformation from N, to NPPT, where DDT
stands for “designed decorrelated tagger” [15]. The transformation is defined as a function of
the dimensionless scaling variable p = In(m3,/p?) and the jet pr:

NPPT (o, pr) = Ny(p, pr) — NS (0, p1) , (12)
(X%)

where N,” ™ is the X percentile of the N, distribution in simulated QCD events. This ensures
that the selection NPPT < 0 yields a constant QCD background efficiency of X% across the mass
and pr range considered with no loss in performance. The value X = 5 is used throughout
this note, following the choice in [76]. The distributions of the N, and N?DT in signal and
background jets are shown in Fig. 6. Signal jets populate smaller values, whereas background
jets have larger values. The N, DDT is used for V tagging with pt in excess of 500 GeV in the
search for light dijet resonances [76].
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Figure 6: Distributions of the mgp, + N, (left) and mgp + NPPT (right) in signal and background
jets.

The mgp + N?DT observable has been used and validated in several analyses, including [76]
and [77].

6.4 The double-b tagger

The standard b-tagging tools, as the CSVv2 discussed in Section 4, can be applied to the sub-
jets returned by the SD algorithm on AKS jets. Characteristic examples are the mgp + 73, +b
and N3 — BDT (CA15) algorithms. However these tools can become limited in certain topolo-
gies, for example when the two subjets become very collimated. The “double-b” tagger was
developed to specifically target Higgs decays to pairs of b quarks in the boosted regime [78].
While it utilizes many of the variables used in the standard CSVv2 b tagging algorithm, it also



16

employs variables related to the track properties, such as the track impact parameter and the
impact parameter significance, the position of the secondary vertices, and information from the
two-secondary-vertex system, among others listed in Ref. [78]. These variables are then used
as inputs to a BDT. A key feature of the double-b algorithm is that it is designed to minimize
the dependence of the BDT discriminant on the jet mass and py, making it suitable for other
topologies such as boosted Z decays to bottom quarks [77].

The performance of the double-b tagger in simulation is detailed in [78] using Higgs jets as sig-
nal, and for background, single-b jets, double-b jets from gluon splitting to a pair of b quarks,
and light quark or gluon jets. The H — bb identification efficiency is ~ 25% (~ 70%) for ~ 1%
(~ 10%) misidentification rate [78].

The double-b tagger performance in data is studied in [78] using data events in a recent inclu-
sive search for the Higgs boson in the bb decay mode [77]. In that analysis, the Z boson was
observed for the first time in the single-jet topology and bb decay mode, with a rate consistent
within uncertainties with the SM expectation, validating the double-b tagging algorithm for
the Higgs and future new physics searches.

The double-b tagger will serve as a reference for the performance of the new methods explored
in CMS.

6.5 Boosted Event Shape Tagger

The boosted event shape tagger (BEST) [79] is a multi-classification algorithm designed to dis-
criminate hadronic decays of high-pr t quarks, and W/Z/H bosons from jets arising from
b quarks, light flavor quarks, and gluons. The original algorithm was demonstrated using
generator-level particles and efficiently separated jets originating from W /Z /H bosons, t quarks,
and b jets. The algorithm has been extended and deployed for use in the CMS experiment,
adding an additional category to discriminate jets from light flavor quarks and gluons.

The BEST algorithm obtains discrimination on a jet-by-jet basis by transforming the entire set
of jet constituents four times, each with a different boost vector. The boost vectors are obtained
by assuming the jet originated from one of the heavy objects under consideration (W /Z/H/t).
The jet momentum is held constant while the mass of the jet is adjusted to the theoretical value
of the corresponding particle. This results in four distributions of constituents that can be used
to discriminate between particle origins. If a jet did originate from the corresponding heavy
object hypothesis, its jet constituents will, in general, be more isotropic in the rest frame of
that particle. By examining the differences between heavy object hypotheses, discrimination is
obtained between the categories of interest (W /Z/H/t/b/other).

In total 59 quantities are used to train a neural network (NN) and classify the AKS jets. The list
of variables is seen in Table 3. For each boost transformation, we calculate the following ob-
servables: Fox-Wolfram moments [80], the aplanarity, sphericity, and isotropy quantities based
on the eigenvalues of the sphericity tensor as defined in Ref. [81], as well as the jet thrust [82].
Additionally, in each boost hypothesis, AK4 subjets are clustered from the boosted constituents
and used to compute pairwise subjet masses for the leading three subjets, as well as the com-
bined mass of the leading four subjets 117,34. These AK4 subjets are also used to compute the
longitudinal asymmetry A;, defined as the ratio of the sum of the longitudinal components
of the AK4 subjet momenta to the sum of the total AK4 subjet momenta. In addition to these
quantities evaluated for each set of boosted jet constituents, the mgp, rapidity, charge, 135, o1,
and the CSVv2 discriminant for each subjet are used as additional inputs.

The NN is trained with the scikit-learn package [83] using the MLPClassifier module.



6. Overview of the algorithms 17

BEST Training Quantities

Jet Charge Fox-Wolfram Moment H; /Hy (t W,Z,H)  mq, (t W,Z,H)
Jety Fox-Wolfram Moment H,/H, (t W,ZH)  my; (t,W,Z,H)
Jet 75, Fox-Wolfram Moment Hy/Hy (t WZH) m3 (tW,Z,H)
Jet 13, Fox-Wolfram Moment H,/Hy (t WZH) my3, (t W,Z,H)
Jet soft-drop mass Sphericity (t,W,Z,H) Ar (tW,Z,H)
Subjet 1 CSV Value Aplanarity (t,W,Z,H)
Subjet 2 CSV Value Isotropy (t,W,Z,H)
Maximum Subjet CSV Value Thrust (t,W,Z,H)

Table 3: List of input quantities used for the training and evaluation of the BEST algorithm on
AKS8 jets.

The network architecture is fully-connected and consists of 3 hidden layers with 40 nodes in
each layer using a rectified linear unit (ReLU) [84] activation function. The six output nodes
correspond to the 6 particle species of interest. We use 500,000 jets in total to train the network,
split evenly between the 6 training samples. The training is performed using the ADAM [85]
optimizer to minimize the cross-entropy loss, with a constant learning rate of 0.001. BEST
W /Z/H/t/b/other multi-classification is currently used for tagging high pr jets in the search
for VLQ pair production [67].

6.6 Identification using particle flow candidates: ImageTop

Recent studies, e.g. in Ref. [86], have shown that jet identification algorithms deploying ML
methods directly on the jet constituents, yield significantly improved performance compared
to traditional algorithms.

To this end, the “ImageTop” t quark identification algorithm is developed. The ImageTop algo-
rithm follows closely the network framework described in Ref. [86], which is an optimization
based on the DeepTop framework described in Ref. [87]. This tagging approach uses stan-
dard image recognition techniques based on two dimensional Convolutional Neural Networks
(CNN) to discriminate boosted t jets from QCD jets. This is performed by pixelizing the jet
energy deposits and colorizing based on relevant detector information. Before pixelization, the
centroid of the jet is shifted so that it is at the origin and then a rotation is performed such
that the major principal axis is vertical. The image is then flipped along both the horizontal
and vertical axes such that the maximum intensity is in the lower-left quadrant. After this,
the image intensity is normalized and the image is pixelized using 37x37 pixels with a total
An = A¢ = 3.2, with colors split into neutral pr, track pr, number of muons, and number of
tracks. The network architecture uses a layer of 128 feature maps with a 4x4 kernel followed
by a second convolutional layer of 64 feature maps. Then a max-pooling layer with a 2x2 re-
duction factor is used, followed by two more consecutive convolutional layers with 64 features
maps followed by another max-pooling layer. A zero-padding in each convolutional layer is
used to correct for image-border effects. In the last pooling layer, the 64 maps are flattened into
a single one that is passed into a set of three fully connected dense layers of 64, 256 and 256
neurons each. The training uses the ADADELTA optimizer [88] with a learning rate of 0.3, a
minibatch size of 128, and the binary cross entropy loss function.

The tagger is modified to use as inputs the PF candidates comprising the AKS8 jets, with the col-
ors being the pt of the PF candidates for the full greyscale image, and a separate color for each
PF candidate flavor, namely charged hadrons, neutral hadrons, photons, electrons, and muons.
The characteristic flavor of the t quark decay is included by applying the DeepFlavour [89] b
tagging algorithm to the SD subjets of the AKS8 jet. The subjet b-tagging outputs include the
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probability of the jet to originate from the following six sources: b quark, bb pair, leptonic b
decays, ¢ quark, light quark or gluon. These output probabilities calculated for both subjets
along with mgp, are used as inputs (13 in total) into a 64-neuron dense layer and merged with
the previous flattened CNN layer and finally input into three fully connected layers of 256 neu-
rons each. The factorization of the b flavor discrimination is important for the versatility of
the network, allowing for the flavor identification to be easily removed or validated in parallel,
which can be necessary for the validation of objects with no SM analogue. The diagram of the
CMS application of this NN can be seen in Fig. 8. The training of the ImageTop is performed
using a TitanXP GPU donated by the NVIDIA Corporation.

In order to sustain the ImageTop performance over a wide range of pr(jet) (the training is
performed for jets in the py > 600GeV region), the image is adaptively zoomed based on
pr(jet) in order to account for the increased collimation of the t quark decay products at high
Lorentz boosts and maintain a static pixel size. The functional form of the zoom is extracted
from the average AR of the three generator hadronic t quark decay products, and jet energy
deposits are corrected to make this constant on average as evaluated from a fit using the inverse
jet pr functional form f(pr) = py + p1/pr with pg = 0.066 and p; = 264.

As input to the training, a jet py bias is further reduced by ensuring that the input py distribu-
tions for signal and background jets are similarly shaped by probabilistically removing QCD
events based on the ratio of t and QCD p distributions. A training is also performed by addi-
tionally constraining the mgp in a similar manner in order to reduce the mass correlation of the
tagger. Since the inputs are relatively simple and do not exhibit secondary mass correlation,
this passive approach for decorrelating the ImageTop network is sufficient to remove the mass
bias in the fiducial training region (pp > 600 GeV and || < 2.4). This method of mass decorre-
lation also leads to a factorized sensitivity, where the sensitivity of the full ImageTop network in
the top mass region is closely approximated by the sensitivity of the mass-decorrelated version
after including a mass selection. This is considered evidence that the decorrelation procedure
is nearly optimally sensitive, in contrast to an active decorrelation approach, which could have
an impact on the training performance through penalty terms in the loss function. This version
of ImageTop will be referred to as “ImageTop—-MD”.

6.7 Identification using particles flow candidates: DeepAKS8

An alternative approach to exploit particle-level information directly with customized ML
methods is the “DeepAK8” algorithm, a multiclass classifier for the identification of hadroni-
cally decaying particles, with five main categories, W /Z/H /t/other. To increase the versatility
of the algorithm, the main classes are further subdivided to the minor categories, correspond-
ing to the decay modes of each particle (e.g. Z — bb, Z — cc and Z — g4).

In the DeepAKS algorithm, two lists of inputs are defined for each jet. The first list (“particle”
list) consists of up to 100 jet constituent particles, sorted by decreasing pr. Typically less than
5% of the jets have more than 100 reconstructed particles, therefore restricting to the 100 hardest
particles results in negligible loss of performance. Measured properties of each particle, such
as the pr, the energy deposit, the charge, the angular separation between the particle and the
jet axis or the subjet axes, etc., are included to help the algorithm extract features related to the
substructure of a jet. For charged particles, additional information measured by the tracking
detector is also included, such as the displacement and quality of the tracks, etc. These inputs
are particularly useful for the algorithm to extract features related to the presence of heavy fla-
vor (b or c) quarks. In total, 42 variables are included for each particle in the “particle” list. A
secondary vertex (SV) list consists of up to 7 SVs, each with 15 features, such as the SV kine-
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Figure 7: The pixelized greyscale images used in the ImageTop network for QCD (left) and top
(right). The x and y axes are the pixel number, and roughly scale with AR. The z axis is the
intensity of the greyscale image in the given pixel, (particle flow candidate pr) and has been
normalized to unity. This figure shows an ensemble of overlaid images after the image post
processing, where we can see clear differences between the top and QCD energy deposition
patterns.
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matics, the displacement, and quality criteria. The SV list provides additional contributions to
extracting features related to the heavy flavor content of the jet.
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Figure 9: The network architecture of DeepAKS.

A significant challenge posed by the direct use of particle-level information is a substantial in-
crease in the number of inputs. Meanwhile, the correlations between these inputs are of vital
importance, thus an algorithm that can both process the inputs efficiently and exploit the corre-
lations effectively is required. A customized DNN architecture is thus developed in DeepAK8
to fulfill this requirement. As illustrated in Figure 10, the architecture consists of two steps. In
the first step, two one-dimensional CNNss are applied to the particle list and the SV list in par-
allel to transform the inputs and extract useful features. Then, in the second step, the outputs
of these CNNs are combined and processed by a simple fully-connected network to perform
the jet classification. The CNN structure in the first step is based on the ResNet model [90],
but adapted from two-dimensional images to one-dimensional particle lists. The CNN for the
particle list has 14 layers and the one for the SV list has 10 layers. A convolution window of
length 3 is used, and the number of output channels in each convolutional layer ranges be-
tween 32 to 128. The ResNet architecture allows for an efficient training of deep CNNs, thus
leading to a better exploitation of the correlations between the large inputs and improving the
performance. The CNNSs in the first step already contain strong discriminatory ability, so the
fully-connected network in the second step consists of only one layer with 512 units, followed
by a ReLU activation function and a Dropout [91] layer of 20% drop rate. The neural network
is implemented using the MXNet package [92] and trained with the ADAM optimizer to mini-
mize the cross-entropy loss. The initial learning rate is set to 0.001 and then reduced by a factor
of 10 at the 10th and 20th epochs to improve convergence. The training is stopped after 35
epochs. A sample of 50 million jets is used, of which 80% are used for training and 20% are
used for development and validation. Jets from different signal and background samples are
reweighted to yield flat distributions in pt to avoid any potential bias in the training process.
The DeepAKS algorithm is designed for jets with p > 200 GeV and typical operating regions
which correspond to a misidentification rate great than 0.1%.

6.7.1 A mass-decorrelated version of DeepAK8

As it will be discussed in Section 7, background jets selected by the DeepAKS algorithm ex-
hibit a modified mass distribution similar to that of the signal. This is because the mass of a
jet is one of the most discriminating variables, and although it is not directly used as an input
to the algorithm, the CNNs are able to extract features that are correlated to the mass to im-
prove the discrimination power. However, such modification of the mass distribution may be
undesirable (as described in Ref. [15]) if the mass variable itself is in use for separating signal
and background processes. Thus, an alternative DeepAKS algorithm, “DeepAK8-MD”, is de-
veloped to be largely decorrelated with the mass of a jet while preserving the discrimination
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power as much as possible using an adversarial training approach [93]. Jets from different sig-
nal and background samples are also reweighted to yield flat distributions in both p and mgp
to aid the training.

Feature extractor Classifier

Classification Joint loss
output = Lc— ALmp

Mass
prediction

Loss
Lmp

back propagation

Figure 10: The network architecture of Deep AK8-MD.

The architecture of DeepAK8-MD is shown in Figure 10. Compared to the nominal version
of DeepAKS, a mass prediction network is added with the goal of predicting the mass of a jet
from the features extracted by the CNNs. When properly trained, the mass prediction network
becomes a good indicator of how strongly the features extracted by the CNNs are correlated
with the mass of a jet, as the stronger the correlation is, the more accurate the mass prediction
will be. With the introduction of the mass prediction network, the training target of the algo-
rithm can be modified to include the accuracy of the mass prediction as a penalty, therefore
preventing the CNNs from extracting features that are correlated with the mass. In this way,
the final prediction of the algorithm also becomes largely independent of the mass. As the
features extracted by the CNNs evolve during the training process, the mass prediction net-
work itself needs to be updated regularly to adapt to the changes of its inputs and remain as
an effective indicator of mass correlation. Forcing the algorithm to be decorrelated with the jet
mass, inevitably leads to a loss of discrimination power, and the resulted algorithm is a balance
between performance and mass-independence. As the training of DeepAK8-MD is carried out
only on jets with 30 < mgp < 250GeV, jets with mgp outside this range should be removed
when using DeepAK8-MD.
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7 Performance in simulation

As presented in Section 6, a variety of algorithms has been developed by the CMS Collabo-
ration to identify the hadronic decays of W/Z/H/t jets. To gain an initial understanding of
the tagging performance and the complementarity between the different approaches, the algo-
rithms were studied in simulated events. The performance of the algorithms is evaluated using
the signal and background efficiency, €5 and e, respectively, as a figure of merit. The €5 and
€p are defined as:

Ntagged Ntagged
__S _ "B
€s = Ngotal and ep = Ng)tal ’ (13)
where N;Engg)ed is the number of signal (background) jets satisfying the identification criteria of

each algorithm, and Ngztg)l is the total number of generated particles considered to be signal
(background). Hadronically decaying W /Z/H bosons or t quarks are considered to be signal,
while quarks (excluding t quarks) and gluons from the QCD multijet process are considered to
be background.

First, for each algorithm, the €5 as a function of €4 is evaluated in terms of a receiver operating
characteristic (ROC) curve. Figures 11-14 summarize the ROC curves of all algorithms for the
identification of t quarks and W/Z/H bosons, respectively. The comparisons are performed
at low and high values of the truth particle pr. The fiducial selection criteria applied to the
truth particles are displayed on the plots. For the cut-based algorithms, namely mgp + T35,
mgp + Tap + b, mgp + Ty, Mgp + Ny, and mgp, + NPPT, all selections except the selection on Ty,
Tr1, or N,, are applied as described in Sections 6.1 and 6.3.2.

In t-tagging, the addition of the subjet b tagging in the mgp 4 T3, algorithm reduces the misiden-
tification probability for t quarks by up to ~ 50% depending on the pr. The performance of the
HOTVR algorithm lies between mgp + T3, and mgp + 13, + b, whereas the N; — BDT (CA15)
algorithm shows improved performance compared to the aforementioned algorithms, partic-
ularly in the low py range. The improved performance stems from the usage of the ECFs,
which provide complementary information to 73,. Particularly in the low-py region, the gain is
mainly due to the use of larger-cone jets (i.e. jets clustered with R = 1.5). The BEST algorithm
targets the high-pr regime and shows similar performance to the ECF algorithm in this regime.
The best discrimination is achieved with algorithms based on lower level information, namely
the ImageTop and DeepAKS algorithms. ImageTop and DeepAK8-MD yield comparable per-
formance in the low and high pt regions, whereas the optimal performance in terms of ROC
curves is achieved with the nominal version of DeepAKS8 over the entire py region.

Various arguments contribute to the significantly improved performance of ImageTop and
DeepAKS8 with respect to the other algorithms. First, the usage of lower-level variables as in-
puts to the network allows better exploitation of the high granularity of the CMS detector. The
architectures of these algorithms allows for usage of quark-gluon discrimination information.
Moreover, information about the jet flavor content is extracted, which is particularly important
for t quark and Z/H identification. The flavor identification in boosted jets is very challeng-
ing since the decay products overlap and traditional b tagging algorithms are significantly less
performant. The usage of the flavor of the PF candidates, and the secondary vertices in the case
of DeepAKS, allows for a more precise description of the flavor content inside the jet.

Similar conclusions hold for the identification of hadronically decaying W and Z bosons. The
BEST, DeepAKS, and DeepAK8-MD algorithms show improved performance compared to the
simpler mgp + T, algorithm. The gain in terms of misidentification rate can be as large as



7. Performance in simulation

23

=
o

(13 TeV)

Background efficiency
[

=
o
5

T

CMS

- Simulation Preliminary
E Top quark vs QCD multijet

L B S |

LI L BB B

truth

300 <p " < 500 GeV, It < 2.4
105 < mA® < 210 GeV
0% < 210 GeV

110 <mg,
140 <m, <220 GeV

HOTVR

DeepAK8
--- DeepAK8-MD
ImageTop
ImageTop-MD

Msp + Tgp

— N,-BDT (CAL5)

M

M

| P

0 0.1 0.2 0.3 0.4
Signal efficiency

oL
(8]

Background efficiency

13 TeV

- Simulation Preliminary i

E Top quark vs QCD multijet E

F 1000 <p™" <1500 GeV, [n""] < 2.4 1

- 105 <mis’ < 210 GeV 1
107 1120 < mgy™® <210 Gev =
E 140 <m, g p < 220 GeV R
2| -
10 3 ' DeepAK8 E
- --- DeepAK8-MD .

- ImageTop B

B ImageTop-MD N

-3 Mgp + T, |
107 7rng+rz§+b 3
F —BEST 7

5 — HOTVR ]

5 . — N,-BDT (CA15)
10—4-H'lu‘.lH"IHHIHHIHHXHHI
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Signal efficiency
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an order of magnitude in the case of DeepAKS8. The smaller relative gain of DeepAKS8 over
BEST between the W or Z bosons, and the t quark identification is mainly explained by the fact
that for the first two, flavor information is not as critical as for the latter. The mgp + N, and
mgp + NPPT show weaker performance compared to the mgp + Ty algorithm.

Lastly, the double-b, BEST, DeepAKS, and DeepAK8-MD algorithms can be used to identify
hadronic decays of the H boson. In Fig. 14 the H is forced to decay to a pair of b quarks. The
double-b algorithm lies between BEST and DeepAKS. The gain for DeepAKS is expected for
similar arguments as for the t quark identification.

To gain a deeper understanding of the Deep AK8 performance, alternative versions of DeepAKS8
were trained using a subset of the input features. Three sets of input features were studied and
compared. The “Particle (kinematics)” set consists of only the kinematic information of the PF
candidates, e.g., the four momenta, the distances to the jet and subjet axes. This set serves as
a baseline to evaluate the performance using only substructure of the jets. The “Particle (w/o
Flavour)” set includes additional experimental information of each PF candidate, such as the
electric charge, particle identification and track quality information. Compared to the nominal
DeepAKS algorithm, input features that contribute to the identification of heavy-flavor quarks,
such as the displacement of the tracks, the association of tracks to the reconstructed vertices,
as well as the SV features, are not included in the “Particle (w/o Flavour)” set. The perfor-
mances of the three versions of DeepAKS8 are compared in Fig. 15 for top and Z identification.
In both cases, the addition of experimental information brings sizable improvement in perfor-
mance. While the additional features contributing to heavy flavor identification leads to no
improvement for the identification of Z bosons decaying to a pair of light quarks, a significant
improvement is observed for Z decaying to a pair of b quarks, as well as t quarks, showing
the strong complementarity between heavy flavor identification and jet substructure for heavy
resonance identification where heavy flavor quarks are involved in the decay.

7.1 Robustness of tagging algorithms

In addition to the performance of the algorithms in pure discrimination, an important ingre-
dient is their robustness to changes in jet kinematics and data-taking conditions. To quantify
this, we study the €5 and ey of the algorithms as a function of the py of the truth particle and
the number of reconstructed vertices (N,,). For the sake of these studies, a common work-
ing point is defined, corresponding to €5 = 30%(50%) for t quark (W, Z, and H boson) with
500 < p(truth particle) < 600GeV. Working points used in CMS analyses are typically op-
timized to achieve the best sensitivity for the targeted signal processes, therefore vary from
analysis to analysis. For example, CMS employs a top tagging working point at approximately
40% signal efficiency in the search for BSM tt production [54], a W tagging working point at
approximately 20% signal efficiency in the search for BSM diboson production [64], and a H
tagging working point at approximately 30% signal efficiency in the search for di-Higgs pro-
duction [94].

The distributions of the €5 and €y as a function of the pt of the truth particle for the different
particle identification scenarios are displayed in Figs. 16 and 17, respectively. In the low-pr
range for the t-tagging case, the €5 for the algorithms using AKS jets increases rapidly until
pr 2 600 GeV, where a sufficient fraction of jets contain all the t decay products. As expected,
the N3 — BDT (CA15) and HOTVR algorithms have a stable €5 as a function of the truth particle
pr- Similar behavior is observed for the t quark misidentification rate.

In the case of the W and Z boson tagging, the € for the mgp + 75, algorithm decreases as a
function of pr(truth particle), whereas for the BEST, DeepAKS, and DeepAK8-MD algorithms



26

(13 TeV)

3 lzvvvv‘vvvv‘vvvv[vvvv[vvvv[vvvv[vvvv[z

s [ CMS 1

2 5 ]

5 | Simulation Preliminary 1

g 101 Top quar:< vs QCD multijet |

g - 1ooo<p‘T’”‘ <1500 GeV, ") < 2.4 E

5 [ 105 <mi’ < 210 Gev p

@ [ i

107 =

10° - --- Particle (Kinematics) 3

N Particle (w/o Flavour)

s : Particle (Full) + SV

10—4“wi'i“ul““l““luuluuluul

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Signal efficiency
(13 TeV) (13 TeV)
al:vvv[vvv‘vvv[vvv[vvv: al:vvv[vvv‘vvv[vvv[vvv:
s [ CMS 1 s [ CMS 1
[} B 7 Q B 7
s | Simulation Preliminary 1 5 | Simulation Preliminary 1
€ 10 Z-bb vs"QCD multijet i 5 10 Z-qq vshQCD multijet i
g F 1ooo<p‘T'“‘ <1500 GeV, "™ < 2.4 E % F 1ooo<p‘T’“l <1500 GeV, ™| < 2.4 E
5 [ 65 <mj’ <105 Gev ] 5 [ 65 <mi’ <105 Gev ]
& [ i @ [ i
1072 E 107 E
10° - --- Particle (Kinematics) 3 10° - -~ Particle (Kinematics) 3
u Particle (w/o Flavour) u Particle (w/o Flavour) ]
s Particle (Full) + SV s Particle (Full) + SV

Y N R A B R B Y N R B R

107, 0.2 0.4 0.6 0.8 1 107, 0.2 0.4 0.6 0.8 1
Signal efficiency Signal efficiency
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exhibit improvements in €5 as a function of pr(truth particle). The drop in €g for mgp + Ty is
a result of the correlation that mgp + T,; has with the jet pt, leading to a shift in the jet mass
distribution to higher values. The mgp + N, shows similar behavior to BEST and DeepAKS,
while the €g in the case of mgp + NPPT is stable as a function of pr(truth particle). In contrast
to N-subjetiness, the ECF observable uses an axis-free approach, which is more efficient in the
case of highly collimated decay products.

The misidentification rate has a non trivial behavior for most algorithms. In the case of Deep AK8
and DeepAKS8-MD the e decreases with pr(truth particle), which is mainly a result of the

use of low level features as inputs to the algorithm. For mgp + N,, the € increases with

pr(truth particle), whereas for mgp, + NPPT, is, by design, significantly more stable. In the

case of mgp + Ty, the decrease of €5 as function of pp(truth particle) is mainly due to the

strong shift of the mgp shape of the background jets to larger values due the selection on ;.

This will be discussed in more detail in Section 7.2. Finally, for BEST the e decreases up to

pr(truth particle) ~ 1000 GeV, and then increase again. This is a feature of the training of the

BEST algorithm, stemming from imbalance in the relative fraction of jets between the low and

high pr regimes.

In the case of H tagging, BEST and the Deep AKS8 algorithms have stable €4 for pr(truth particle) 2
600 GeV, whereas for double-b the €5 starts to decrease around this pr regime. There are two
main arguments for this behavior. First, double-b exploits axis-dependent observables, sim-
ilar to T,;, which are less efficient at high pr where the decay products become highly colli-
mated. Second, the selection on the tracks used to construct the variables used for the training
of double-b, discussed in Section 6.4, is suboptimal in the very high-pr regime. The €3 for both
double-b and DeepAKS decreases as a function of pr(truth particle), whereas for BEST shows

a modest increase for py(truth particle) 2 1000 GeV, for the same arguments as in the W and Z
case.

The dependence of the algorithms on N, is also examined using simulated events. Figure 18
(19) displays the distribution of €5 (ep) as a function of N, for truth particles with 500 <
pr(truth particle) < 1000 GeV, operating at a working point with eg = 30% (eg = 50%) for t
quark (W, Z, and H boson) identification as defined above. The algorithms make use of jets
that exploit PUPPI for pileup mitigation, which results to a roughly constant €5 and eg across
the different pileup scenarios.

7.2 Correlation with jet mass

Finally, a set of studies was performed to understand the correlation of the algorithms with the
jet mass. This is an essential step in order to benefit from the theoretical progress made in jet
substructure [3], which can result in reduced systematic uncertainties in analyses [15]. The jet
mass is one of the most discriminating variables, and many analyses require a smoothly falling
background jet mass spectrum under a signal peak (for instance, in Ref. [95]). Figure 20 displays
the shape of the mgp distribution for jets obtained from the QCD multijet sample, inclusively
and after applying a selection on each algorithm. The working point chosen corresponds to
€5 = 30% (e = 50%) for t quark (W, Z, and H boson). The results are displayed for one
pr region of the truth particle distribution, but the conclusions hold for other pr regions as well.
By design, the BEST and the nominal version of the DeepAKS algorithms feature significant
sculpting of the background jet mass shape. For analyses that do not explicitly use the jet mass
distribution for signal extraction, this is not problematic.

To quantify the level of mass sculpting we use the Jensen-Shannon divergence [96] (JSD), which
is a symmetrized version of the Kullback-Leibler divergence [97] (KLD), and provides a metric
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Figure 17: The distribution of e as a function of the pr of the truth particle for a working
point corresponding to €5 = 30%(50%) for t quark (W, Z, and H boson) identification. Upper
left: t quark, upper right: W boson, lower left: Z boson, lower right: H boson. The error bars
represent the statistical uncertainty in each specific bin, due to the limited number of simulated
events. Additional fiducial selection criteria applied to the jets are displayed on the plots.
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Figure 20: The shape of the softdrop mass distribution for background jets with 600 <
pr(jet) < 1000 GeV, inclusively and after selection by each algorithm. The working point
chosen corresponds to €5 = 30% (e5 = 50%) for t quarks (W, Z, and H bosons). Upper left:
t quark, upper right: W boson, lower left: Z boson, lower right: H boson. The error bars rep-
resent the statistical uncertainty in each specific bin, due to the limited number of simulated
events. Additional fiducial selection criteria applied to the jets are displayed on the plots.
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for the similarity of the shape between distributions. The KLD is defined as:

KLD(P([Q) = L P(log ) (14

where P(i) and Q(i) are the normalized mass distributions of the background jets that fail and
pass a selection on a given algorithm, respectively. The index “i” runs over the bins of the
distributions. The jet mass distributions lay between 30 and 300 GeV with a bin size of 10 GeV.

The JSD metric is defined as:

1 p
JSD(P||Q) = 5 (KLD(P[M)) + KLD(Q||M)), where M =~ +<. (15)
Lower values of JSD indicate larger similarity between the mass distributions of jets passing

and failing a selection on a given algorithm.

The JSD values for successively tighter selections (expressed in terms of €5) on the various
t- and W-tagging algorithms are shown in Fig 21. The best decorrelation for the t-tagging
case is achieved with the DeepAKS8-MD algorithm, which exploits an adversarial network to
reduce the correlation of the tagging score with the jet mass. For W-tagging, mgp + NPPT and
DeepAK8-MD achieve similar level of mass decorrelation. As expected, tighter selection on the
tagging score results in an increase of the mass sculpting. A similar behavior is observed for all
algorithms.

The robustness of the mass decorrelation techniques was further studied as a function of the jet
pr and as a function of N,. These studies are carried out for a working point corresponding
to e = 50% and €5 = 30% for t- and W-tagging, respectively. Figure 22 shows the JSD values
as a function of the jet pr for jets from QCD multijet events. The majority of the algorithms
show modest dependence on jet py, except for ImageTop-MD, where the mass dependence
increases rapidly when pr < 600 GeV as the training was performed only for jets with pt > 600
GeV. The DeepAK8-MD and mgp + NPPT for W-tagging also show modestly increased mass
dependence in the pr range of pr 2 1200 and pt 2 1600, respectively. The dependence of
the mass mitigation techniques on N, was also studied and was found to be small across the
different N, regions.

vix

vix
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algorithms. Lower values of JSD indicate larger similarity of the Mgp in QCD multijet events
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8 Performance in data and systematic uncertainties

In this section, the validation of the performance of the algorithms in data is presented. The
validation is performed in two steps. In the first step, we focus on studying the overall model-
ing of key variables in simulation and their agreement with data, as well as the dependence on
the simulation details. The second step is to use these results to extract corrections to the simu-
lation so their performance matches that in data. Differences in the performance between data
and simulation are taken into account by means of scale factors (SF) extracted by comparing
the efficiencies in data and simulation. To account for effects not captured in the SE, multiple
sources of systematic uncertainties are considered. The data and simulated samples used for
these studies are described in Section 5.

In this note we focus on the calibration of the t quark and W /Z boson tagging algorithms. The
calibration of Z and H boson tagging algorithms where Z and H decay to a pair of bottom or
charm quarks requires alternative methods that go beyond the scope of this note. In a nutshell,
since with the current luminosity is challenging to obtain a pure Z or H sample, the calibra-
tion of such taggers relies on the use of proxy jets. Data-to-simulation correction factors are
extracted based on these proxy jets, which are then applied on signal jets. Therefore, the proxy
jets should be selected such to have similar characteristics to the signal jets. To this end, jets
arising from gluon splitting to bb or cc are used as proxy jets from a sample dominated by
QCD multijet events. Such approaches have been followed in Refs. [77, 78, 98], and this is a
point to expand in a future publication.

8.1 Systematic uncertainties

A number of sources of systematic uncertainties can affect the modeling of the performance of
the algorithms in data by the simulation. These include systematic uncertainties in the parton
showering model, renormalization and factorization scale, PDF, jet energy scale and resolution,
piss unclustered energy, trigger and lepton identification, pileup, and luminosity, as well as
statistical uncertainties in both simulation and data.

Parton shower uncertainties for signal jets are evaluated using samples with the same event
generator but different choice for the modeling of the parton showering. For background jets, a
sample produced using alternative generator for both the hard-scatter and the parton shower is
utilized. Details about the samples used can be found in Section 3. Changes in renormalization
(ur) and factorization (yr) scales are estimated by varying uy and y separately by a factor of
two relative to the choices of these scale values used in the sample generation. The uncertainty
related to the choice of PDF is obtained from the standard deviation in 100 variations of the
NNPDEF3.0 PDF set [29]. The jet energy scale and resolution are changed within their pr—
and 77— dependent uncertainties based on the studies presented in [48]. Their effect is also
propagated to pTiss. The effect of the uncertainty in the measurement of the unclustered energy
(i.e. contribution of PF candidates not associated to any of the physics objects) is evaluated
based on the momentum resolution of each PF candidate, which depends on the type of the
candidate [50]. Uncertainties on the measurement of the trigger efficiency and on the energy
scale and resolution of the leptons are propagated in the SF extraction. The uncertainty in the
pileup reweighting procedure is determined by varying the minimum bias cross section used
to produce the pileup profile away from the measured central value of 69.2 mb [99, 100] by
£5%. The limited size of the simulated samples and the size of the data control samples are
also considered.

The uncertainties described above contribute in different ways to the modeling of the jet kine-
matics and the extraction of the SE. For example, the trigger and lepton identification uncer-
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tainties are a few percent, and do not include uncertainties on the kinematic distribution. The
identification of leptons, especially muons, is nearly fully efficient, and the trigger selection is
chosen in order to ensure full efficiency in the regime of interest. The jet energy scale and reso-
lution uncertainties are similar, where shape components are included, and are between 1-5%
for the high-pr jets studied here. Uncertainties related to pileup and the luminosity measure-
ment have an effect smaller than ~ 3%.

As many of the algorithms detailed in this note use jet substructure and jet constituent infor-
mation, either directly, or as input to multivariate techniques, the uncertainties in the choice of
parton shower is significant. Different parton showers directly affect the number, momentum,
and distribution of jet constituents, influencing the observables used as inputs to the multivari-
ate techniques, and eventually propagating to the outputs of those algorithms. The magnitude
of this source of systematic uncertainty lies in the range of 10-30%. The uncertainty in the value
of the renormalization and factorization scales chosen for event generation also has a sizable
impact (5-15%), as this changes the amount of radiation that can enter into a reconstructed jet.
In total, these dominant components contribute a total combined uncertainty in the range of
10-50%, depending on the specific jet kinematics of interest.

Nevertheless, these uncertainties partially cancel in the SF measurement, as will be discussed
in Section 8.4.

8.2 Thet quark and W boson identification performance in data

The single-u event selection discussed in Section 5.1 provides a sample dominated by tt(1¢)
events. This selection has a high fraction of events with leptonically decaying W bosons that
decay from one of the t quarks, providing a sample with a high purity of tt events, whereas the
other t quark (which decays hadronically) provides boosted t quarks and W bosons, which are
used for the validation of the algorithms.

In order to study possible dependence of the tagging efficiency on the parton showering scheme,
we consider two alternative simulated tt samples. As discussed in Section 3, both samples are
generated with the same generator (i.e. POWHEG), but one uses PYTHIA for the modeling of the
parton showering, whereas the other HERWIG++. The total SM expectation from simulation
using the latter tt sample will be referred to as “SM (Herwig)” in what follows. It will be seen
that the choice of the parton showering generator has a small impact on the overall agreement
between data and simulation in signal jets.

To account for the differences in the design of the algorithms, the large-R jets discussed in
Section 5.1 are either AKS8, CA15, or HOTVR jets. For the sake of brevity we will focus mainly
on results using AKS jets, unless stated otherwise. Nevertheless, the conclusions from the
validation in data are similar between the three jet collections.

The data-to-simulation comparison of fundamental jet substructure variables, such as mgp), the
pr(jet), the N-subjetiness ratios, 73, and 7,1, and the N, and NPT, are shown in Fig. 23. These
have all been measured by the CMS Collaboration as noted above. A second set of comparisons
is related to the main observables of the HOTVR algorithm. Figure 24 displays the distributions
of MyoTVR, Mmin HoTVR aNd Ny, roryr in data and simulation. The next set of comparisons in-
cludes tagging algorithms that are based on high level jet substructure observables and explore
ML techniques to improve performance, namely the BEST and the N3 — BDT (CA15) algo-
rithms. Figure 25 shows the t quark and W boson identification probabilities of BEST and the
t-tagging discriminant for the N3 — BDT (CA15), in data and simulation. The last set of compar-
isons is related to the ImageTop and the DeepAKS algorithms, which both explore lower-level
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observables. Figure 26 displays the distributions of the t quark identification probability for
the two versions of ImageTop, and the t quark and W boson identification probabilities for
DeepAKS algorithms.

As the selection applied to events shown in Figs. 23-26 results in a sample with a small pu-
rity of fully merged t quarks, we also study the same distributions after applying a stricter
requirement on the jet momenta: pr > 500 GeV. This selection results in a sample consisting of
a higher fraction of fully merged t quark jets, relative to the boosted W boson jet component.
Figures 27-30 show the same distributions for this high-p selection.

To account for effects related to differences in the overall normalization between data and sim-
ulation, the total background yield is normalized to the observed number of data events. The
systematic uncertainties discussed in Section 8.1 are also considered and are shown via the
shaded blue band in the figures. Overall, the shapes in data are compatible with the expecta-
tion from simulation within uncertainties for all the algorithms.

8.3 Misidentification probability in data

The misidentification probability of the algorithms is studied in the di-jet and single-y data
samples. The two samples differ in the relative fraction of light quarks and gluons in the final
state. In order to study the dependence of the misidentification probability on the choice of
the event generator and the parton showering scheme, we consider two different simulated
samples to model the QCD multijet background. The nominal sample uses MADGRAPH for
the event generation and PYTHIA 8 (P8) for the parton showering and hadronization, whereas
the alternative sample uses HERWIG++ for event generation and the modeling of the parton
showering. More information on the generation details on these samples are discussed in Sec-
tion 3. The total SM estimated using the HERWIG++ QCD multijet sample will be referred to
as “SM (Herwig)”. Similarly to Section 8.2, we will focus on results using jets with R = 0.8,
unless stated otherwise. To account for possible differences in the py distribution of the QCD
multijet and y-+jet simulated events, the total background yield is reweighted to match the pt
distribution in data, following the procedure discussed in Section 3.

The distribution of mgp, pr(jet), the N-subjetiness ratios T3, and 1,1, and the N, and NPPT, in
the di-jet sample are displayed in Fig. 31. For this event selection, the shape of mgp and the N-
subjetiness ratios are described well by simulation, whereas there is disagreement between data
and simulation for high values of N, and NPPT. A better description of the data, particularly for
NPPT is achieved with the HERWIG++ QCD multijet sample, which hints that the disagreement
is related to the description of the parton shower. For the other observables we observe similar
level of agreement between the two generators.

The same set of variables is presented in Fig. 32 for the sample. From previous measure-
ments [8], the mgp, is observed to agree very well with simulation except at low masses. The
modeling of the N-subjetiness and N, ratios is poorer in the single-y sample.

Figures 33 and 34 show the distribution of the main observables of the HOTVR algorithm,
namely myoryr, Mmingorvr @nd Ny, goTvr, in data and simulation, in the di-jet and single-y
samples, respectively. In both samples myoryr and i, yoryvr shows good agreement be-
tween data and simulation. The N, yoryr distribution in data is softer compared to simu-
lation. Similar conclusions hold using HERWIG++ to simulate the QCD multijet events. The
difference is more pronounced in the single-y sample. The Ny, yoryr is particularly sensitive
to the precise modeling of the parton showering.

The distribution of the t quark and W boson identification probabilities for BEST and the top
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Figure 23: Distribution of the the jet pp (upper-left), jet mass, mgp (upper-right), the N-
subjetiness ratios, T3, (middle-left) and 7,; (middle-right), and the N, (lower-left) and N?DT

(lower-right) in data and simulation in the single-u signal sample. The pink solid line corre-
sponds to the simulation distribution obtained using the alternative tt sample. The background
event yield is normalized to the total observed data yield. The lower panel shows the data to
simulation ratio. The shaded blue (red) band corresponds to the total uncertainty (statistical
uncertainty of the simulated samples), the pink line to the data to simulation ratio using the
alternative tt sample, and the vertical lines correspond to the statistical uncertainty of the data.
The distributions are weighted according to the top pt reweighting procedure described in the
text.



8. Performance in data and systematic uncertainties

39

Events / bin

Nobs / Nexp

Events / bin

Nobs / Nexp

35.9 ™ (13 TeV)
L L L B

T
single-pu sample

R A
@® Data
s CMS \ KN
10 Preliminary p (HOTVR jet)>200 GeV g &0 ¢
[N(HOTVR jet)|<2.4 QCD multijet
10° —— SM(Herwig) o 0"

22%% Bkg unc (stat)
385 BKg unc (stat+syst)

10*
10°
10?

10

900

200 300 400 500 600 700 800 1000
p, (HOTVR) [GeV]
35.9 fb™ (13 TeV)
S AL A G B
]_()6 CMS single-p sample ® Data
X .
P p_(HOTVR jet)>200 GeV .
T B single-t
10° Preliminary IN(HOTVR jet)|<2.4 (SJISQD?“qu]el
. WHets

—— SM (Herwig)

10*

¥%%% Bkg unc (stat)

8% Bkg unc (stat+syst)
3

10

10?

10

120 140 160
My HoTvr [GEV]

20 60 80 100

Events / bin

Nobs / Nexp

Events / bin

10°
10°

10*

107
10°
10°
10*
10°
10?

10

35.9 fb™ (13 TeV)
22210 (1o 1€y

—
single-p sample

———
CMS S, o
~ T
P HOTVR jet)>200 GeV
Preliminary P et - single-t
IN(HOTVR jet)|<2.4 QCD multijet
—— SM(Herwig) i
—

2248 Bkg unc (stat)
8% Bkg unc (stat+syst)

250 300
Myorve [GEV]

200

50 100 150

-1
35.9 fb (13 TeV)
A T
single-p sample ® Data
P, (HOTVR jetj>200Gev It
IN(HOTVR jet)|<2.4 QCD multijet
——— SM (Herwig)

CMS

Preliminary

2248 Bkg unc (stat)
388% Bkg unc (stat+syst)

S aaarman

55 6 65

Nsub,HOTVR

Figure 24: Distribution of the main observables of the HOTVR algorithm, p;(HOTVR jet)
(upper-left), myoryr (upper-right), mi, yoryr (lower-left), and Ny, yorvr (lower-right) in
data and simulation in the single-u signal sample. The pink solid line corresponds to the sim-
ulation distribution obtained using the alternative tt sample. The background event yield is
normalized to the total observed data yield. The lower panel shows the data to simulation
ratio. The shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty
of the simulated samples), the pink line to the data to simulation ratio using the alternative tt
sample, and the vertical lines correspond to the statistical uncertainty of the data. The distri-
butions are weighted according to the top pt reweighting procedure described in the text.



40

35.9 fb™ (13 TeV)
H UL IR L

Events / bin

= R B e
e CMS single-pu sample ® Data
6 . t
~ 10 it AKS jet)>200 Gey I 1
0 Preliminary  Pr*®1eY = singlet
£ IN(AKS jet)|<2.4 QCD multijet
5 " . W+ets
U>J 10 —— SM (Herwig) g iiv
L [__B4J
4 ¥%2% Bkg unc (stat)
10 385 BKg unc (stat+syst)
10°
10?
10
o
2
3
=2
-
«
2
o
=z

0 01 02 03 04 05 06 07 08 09
BEST (t vs. QCD)

10°
107

10°

Events / bin

10°

Figure 25: Distribution of the t quark (upper-left) and W boson (upper-right) identification
probabilities for the BEST algorithm, and the N3 — BDT (CA15) discriminant, in data and sim-
ulation in the single-y signal sample. The pink solid line corresponds to the simulation dis-
tribution obtained using the alternative tt sample. The background event yield is normalized
to the total observed data yield. The lower panel shows the data to simulation ratio. The
shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty of the sim-
ulated samples), the pink line to the data to simulation ratio using the alternative tt sample,
and the vertical lines correspond to the statistical uncertainty of the data. The distributions are

1

35.9 fb (13 TeV)
LR I B I

B e
single-pu sample ® Data

10" E

SN
CMS ; -
P AK8 jet)>200 GeV
10° & Preliminary  Pr&"®e0 = single-t
IN(AKS8 jet)|<2.4 QCD multijet

——— SM (Herwig)

10°

2248 Bkg unc (stat)
388% Bkg unc (stat+syst)

10*

0 01 02 03 04 05 06 07 08 09 1
BEST (W vs. QCD)

35.9 fb™ (13 TeV)
LR I LR B

N B e LI o e
CMS single-p sample ® Data
. [ K
Py p_(CA15 jet)>200 GeV N
Preliminary 't . [ single-t
IN(CA15 jet)|<2.4 QCD multijet
——— SM (Herwig) = :’l—v\fe‘s
L4
%2%% Bkg unc (stat)

8% Bkg unc (stat+syst)

01 02 03 04 05 06 07 08 098 1

N,-BDT (CAL5)

weighted according to the top pr reweighting procedure described in the text.



8. Performance in data and systematic uncertainties

41

35.9 fb™ (13 TeV)
H UL L I

- SN MM
S 107 single-y sample ® Data
- CMS P, (AK8jet)>200 Gev et
a g8 Preliminary "7 B singlet
c IN(AKS jet)|<2.4 QCD multijet
°>-’ 5 ——— SM (Herwig) = iets
] 10
%%2% Bkg unc (stat)
104 22%% Bkg unc (stat+syst)
10°
102
o
&
4
=
2
3
z
0 01 02 03 04 05 06 07 08 09 1
Image top (t vs. QCD)
35.9 b (13 TeV)
- Sl BN M
5 107 CMS single-p sample ® Data
-
=~ P AK8 200 GeV
@ js [ Preliminary PrOROI0CE mm g
"E IN(AKS jet)|<2.4 QCD multijet
°>-’ S ——— SM (Herwig) = tiets
] 10 =1
%%%% Bkg unc (stat)
104 2% Bkg unc (stat+syst)
10°
102
10
1
&
z
=
2
S
4
0 01 02 03 04 05 06 07 08 09 1
DeepAKS (t vs. QCD)
35.9 b (13 TeV)
£ 07T e T
o CMS single-pu sample D:
: -
; 10 Preliminary P_(AK8 jet)>200 GeV . singlet
*E IN(AKS jet)|<2.4 QCD multijet
°>-’ 10 ——— SM (Herwig) = :’l—\(;”e's
L -V
£2%% Bkg unc (stat)
10* 8% Bkg unc (statrsyst)
10°
10%
10
o
3
4
=
2
[<]
z

0 01 02 03 04 05 06 07 08 09 1
Deepak8-MD (t vs. QCD)

Events / bin

Nobs / Nexp

Events / bin

Nobs / Nexp

Events / bin

Nobs / Nexp

35.9 fb™ (13 TeV)
L I IR L R

e
single-p sample ® Data

10"

e
CMS -
P AK8 jet)>200 GeV N
105 L Preliminary  Pr#<®e0 = singlet
IN(AKS jet)|<2.4 QCD multijet

——— SM (Herwig)

10°

%44 Bkg unc (stat)

104 %% Bkg unc (stat+syst)

10°
10?

10

0 01 02 03 04 05 06 07 08 09 1
Image top-MD (t vs. QCD)

35.9 fb (13 TeV)

L I R IR R

R
single-p sample @ Data

10' F

CMS -
i AKS jet)>200 GeV
10° |- Preliminary  Pr#<®10 - singiet
IN(AKS jet)|<2.4 QCD multijet
. Il W+jet:
10° —— SM (Herwig) g e
[—
%2%% Bkg unc (stat)
10* 2232 Bkg unc (stattsyst)
10°
102
10
1

0 01 02 03 04 05 06 07 08 09 1
DeepAKS (W vs. QCD)

35.9 fb? (13 TeV)
H I I I

single-p sample ® Data
6
10 CMS p_(AK8 jet)>200 Gey U '
Preliminary ' B single-t
IN(AKS jet)|<2.4 QCD multijet
5
10 — SM (Herwig) = :"{J‘E's
B4
10* 8558 Bkg unc (stat)

28%% Bkg unc (stat+syst)

10°
10?

10

0 01 02 03 04 05 06 07 08 09 1
Deepak8-MD (W vs. QCD)

Figure 26: Distribution of the ImageTop (upper-left) and ImageTop-MD (upper-right) discrim-
inant in data and simulation in the single-u sample. The plots in the middle row show the
t quark (left) and W boson (right) identification probabilities in data and simulation for the
DeepAKS algorithm. The corresponding plots for DeepAKS8-MD are displayed in the lower
row. The pink solid line corresponds to the simulation distribution obtained using the alter-
native tt sample. The background event yield is normalized to the total observed data yield.
The lower panel shows the data to simulation ratio. The shaded blue (red) band corresponds
to the total uncertainty (statistical uncertainty of the simulated samples), the pink line to the
data to simulation ratio using the alternative tt sample, and the vertical lines correspond to
the statistical uncertainty of the data. The distributions are weighted according to the top pr

reweighting procedure described in the text.
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Figure 27: Distribution of the jet py (upper-left), the jet mass, mgp (upper-right), the N-
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Figure 28: Distribution of the main observables of the HOTVR algorithm, p;(HOTVR jet)
(upper-left), myoryr (upper-right), m,,.;, yoryr (lower-left) and Ny, yoryr (lower-right) in data
and simulation in the single-u signal sample, after applying a jet momentum cut py > 500 GeV.
The pink solid line corresponds to the simulation distribution obtained using the alternative tt
sample. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The shaded blue (red) band corresponds to the total
uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to sim-
ulation ratio using the alternative tt sample, and the vertical lines correspond to the statistical
uncertainty of the data. The distributions are weighted according to the top pr reweighting

procedure described in the text
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Figure 29: Distribution of the t quark (upper-left) and W boson (upper-right) identification
probabilities for the BEST algorithm, and the N3 — BDT (CA15) discriminant, in data and sim-
ulation in the single-u signal sample, after applying a jet momentum cut py > 500 GeV. The
pink solid line corresponds to the simulation distribution obtained using the alternative tt sam-
ple. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The shaded blue (red) band corresponds to the total
uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to sim-
ulation ratio using the alternative tt sample, and the vertical lines correspond to the statistical
uncertainty of the data. The distributions are weighted according to the top pr reweighting
procedure described in the text.



8. Performance in data and systematic uncertainties 45

35.9 fb (13 TeV) 35.9 fb! (13 TeV)
H I L I U I I L R

£ - CMS T ‘Single-‘u.samp‘m ;Ea‘a e} 108 CMS single-u.sample ;Eata
~ et p_(AK8 jet)>500 GeV " ~ e p_(AK8 jet)>500 GeV nal
%) Preliminary "7 " [ single-t %) Preliminary 7" " [ single-t
E . IN(AKS jet)|<2.4 QCD multijet -E 105 IN(AKS jet)|<2.4 QCD multijet
o 10 —— SM (Herwig) g v o —— SM(Herwig) g 00"
[ ] %%
w 10* 8 \El:g unc (stat) w 104 %52% Bkg unc (stat)
2%%% Bkg unc (stat+syst) 2%%% Bkg unc (stat+syst)
10°
10?
10
I3 I3 E|
5 5 E
2 2 |
= = E
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Image top (t vs. QCD) Image top-MD (t vs. QCD)
35.9 fb (13 Tev) 35.9 fb™ (13 TeV)
- SRSt b S S - SRS A S
Nl ingle-| I @ Dat S ingle-| | @ Data
S 0 CMS e ocey W 2 0 CMS o ey T
0 Preliminary Pr<®1e0 €Y singlet n Preliminary  Pr'®"°) B single-t
E - IN(AKS jet)|<2.4 QCD multijet E 105 IN(AK8 jet)|<2.4 QCD multijet
g 10 ——— SM (Herwig) = :2(:]&(5 G>J —— SM (Herwig) = :'EV\:JE‘S
[ ] %%
w 10% o] \é:(/g unc (stat) w 10% %434 Bkg unc (stat)
2%%% Bkg unc (stat+syst) 2%%% Bkg unc (stat+syst)
10°
10?
10
1
= =
2 2
= =
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
DeepAKS (t vs. QCD) DeepAKS8 (W vs. QCD)
35.9 b (13 TeV) 35.9 fb (13 TeV)
< "H_‘H_‘H‘H‘I"HH‘IHH‘HH“D‘H‘HH‘HH < 10° H‘_H‘_H‘_HI‘_‘H‘IHH‘HH._DH‘WHH_H
6 i - @ Data i - ata
5 wpems e & 5 loms e &
n Preliminary 7" I single-t o 10° = Preliminary 7 " [ single-t
E 105 IN(AKS8 jet)|<2.4 QCD multijet E IN(AKS8 jet)|<2.4 QCD multijet
g —— SM(Herwig) gt ™" g —— SM (Herwig) gt "
%% 4 [ W%
w 10* %225 Bkg unc (stat) w 10 8258 Bkg unc (stat)
23%% Bkg unc (stat+syst) 225% Bkg unc (stat+syst)
10°
10°
2
10? 10
10 10
1
3 2
Z 15 z
2 2
= E =z
0.5 E
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Deepak8-MD (t vs. QCD) Deepak8-MD (W vs. QCD)

Figure 30: Distribution of the ImageTop (upper left) and ImageTop-MD (upper-right) discrim-
inant in data and simulation in the single-u sample. The plots in the middle row show the
t quark (left) and W boson (right) identification probabilities in data and simulation for the
DeepAKS algorithm, after applying a jet momentum cut pr > 500 GeV. The corresponding
plots for DeepAKS8-MD are displayed in the lower row. The pink solid line corresponds to the
simulation distribution obtained using the alternative tt sample. The background event yield
is normalized to the total observed data yield. The lower panel shows the data to simulation
ratio. The shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty
of the simulated samples), the pink line to the data to simulation ratio using the alternative tt
sample, and the vertical lines correspond to the statistical uncertainty of the data. The distri-
butions are weighted according to the top pr reweighting procedure described in the text.
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tagging discriminant for the N3 — BDT (CA15) algorithm in the di-jet sample are presented
in Fig. 35, while the equivalent plots for the single-y selection are shown in Fig 36. In both
samples the agreement between data and simulation is found to be reasonable. Some tension is
observed in the very high values (2 0.95) for the t quark identification probability of the BEST
algorithm in the single-y sample. The disagreement is observed in the region of the t quark
probability greater than 0.95, which is significantly tighter than the recommended operating
points. Some disagreement is observed between the nominal QCD multijet simulated sample
and the alternative for large values of the W boson probability of the BEST algorithm, with the
nominal sample showing better agreement with the data.

The distributions of the ImageTop and DeepAKS8 discriminants are shown in Figs 37 and 38
for jets in the di-jet and single-y samples, respectively. The agreement between data and sim-
ulation in the single-7y is overall better than in the di-jet sample. Moreover, the discrepancy on
the shape is mainly observed in the very low values of the discriminant and more enhanced
in the t-tagging case. The di-jet sample is dominated by jets initiated by gluons, especially at
low values of the discriminant. In addition, ImageTop and DeepAKS are very sensitive to mis-
modeling of quarks or gluons in the simulation, so exhibit more sample dependence. To this
end, QCD multijet events simulated using HERWIG++ show generally better agreement with
the data.

8.4 Corrections to simulation

The measurement of the t quark and W boson tagging efficiency in data is performed in the
single—p sample using a “tag & probe” method. The muon, in combination with the b tagged
jet, is used as the “tag”. In the opposite hemisphere of the event, the jet is considered as the
“probe jet”.

The total SM sample is decomposed into three categories based on the spatial separation of
the partons from the t quark decay with respect to the AKS jet, following the discussion in
Section 4. The “Merged t quark” category includes cases were the three partons and the jet
have AR < 0.6. In the “Merged W boson” category are cases where only the two partons from
the W boson decay are within AR < 0.6 of the jet, and the b quark from the top decay is outside
the jet cone. Any other scenario falls in the “Unmerged” category. In the cases of the HOTVR
and N; — BDT (CA15) algorithms the matching requirement is adjusted from 0.6 to 1.2.

The m;,, distributions in simulation of each one of the three categories are used to derive tem-
plates to fit the m;, distribution in data. For a given working point, the fit is done simultane-
ously for both the “passing” and “failing” events, for all three categories. The fit is performed
in the range from 50 GeV to 250 GeV with a bin width of 10GeV. The sources of systematic
uncertainties discussed in Section 8.1 are considered and are treated as nuisance parameters in
the fit. After calculating the efficiencies in data and simulation, the SF is determined as:

SF— _Data (16)

€Simulation

The SFs are extracted differentially in jet pr. For the case of t quark identification the following
exclusive jet p regions are considered: 300 — 400, 400 — 480, 480 — 600, and 600 — 1200 GeV.
In order to increase the purity of “Merged W boson” candidates, we consider regions with
lower jet pr : 200 — 300, 300 — 400, 400 — 550, and 550 — 800 GeV. The effects of the systematic
sources discussed in Section 8.1 are propagated to uncertainties in the SF. An example of ;e
distributions for data and simulation in the passing and failing categories for 400 < pr < 480
GeV after performing the maximum likelihood fit are displayed in Fig 39.
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Figure 31: Distribution of the jet py (upper-left), the jet mass, mgp (upper-right), the N-
subjetiness ratios, T3, (middle-left) and 7,; (middle-right), and the N, (lower-left) and
(lower-right) in data and simulation in the di-jet sample. The pink solid line corresponds to the
simulation distribution obtained using the alternative QCD multijet sample. The background
event yield is normalized to the total observed data yield. The lower panel shows the data to
simulation ratio. The shaded blue (red) band corresponds to the total uncertainty (statistical
uncertainty of the simulated samples), the pink line to the data to simulation ratio using the
alternative QCD multijet sample, and the vertical lines correspond to the statistical uncertainty
of the data. The distributions are weighted so that the jet pr distribution of the simulation

matches the data.
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Figure 32: Distribution of the jet py (upper-left), the jet mass, mgp (upper-right), the N-
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(lower-right) in data and simulation in the single-y sample. The background event yield is
normalized to the total observed data yield. The lower panel shows the data to simulation
ratio. The shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty
of the simulated samples), and the vertical lines correspond to the statistical uncertainty of the
data. The distributions are weighted so that the jet pt distribution of the simulation matches

the data.
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Figure 33: Distribution of the main observables of the HOTVR algorithm, p;(HOTVR jet)
(upper-left), myoryr (upper-right), m,,;, yoryr (lower-left) and Ny, oryr (lower-right) in data
and simulation in the di-jet sample. The pink solid line corresponds to the simulation distri-
bution obtained using the alternative QCD multijet sample. The background event yield is
normalized to the total observed data yield. The lower panel shows the data to simulation ra-
tio. The shaded blue (red) band corresponds to the total uncertainty (statistical uncertainty of
the simulated samples), the pink line to the data to simulation ratio using the alternative QCD
multijet sample, and the vertical lines correspond to the statistical uncertainty of the data. The
distributions are weighted so that the jet pr distribution of the simulation matches the data.
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Figure 34: Distribution of the main observables of the HOTVR algorithm, p;(HOTVR jet)
(upper-left), myoryr (upper-right), m,,;, yoryr (lower-left) and Ny, yoryr (lower-right) in data
and simulation in the single-y sample. The background event yield is normalized to the total
observed data yield. The lower panel shows the data to simulation ratio. The shaded blue (red)
band corresponds to the total uncertainty (statistical uncertainty of the simulated samples),
and the vertical lines correspond to the statistical uncertainty of the data. The distributions are
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Figure 35: Distribution of the t quark (upper left) and W boson (upper-right) identification
probabilities for the BEST algorithm, and the N3 — BDT (CA15) discriminant, in data and sim-
ulation in the di-jet sample. The background event yield is normalized to the total observed
data yield. The pink solid line corresponds to the simulation distribution obtained using the
alternative QCD multijet sample. The background event yield is normalized to the total ob-
served data yield. The lower panel shows the data to simulation ratio. The shaded blue (red)
band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative QCD multijet sample, and the ver-
tical lines correspond to the statistical uncertainty of the data. The distributions are weighted
so that the jet py distribution of the simulation matches the data.
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Figure 36: Distribution of the t quark (upper left) and W boson (upper-right) identification
probabilities for the BEST algorithm, and the N3 — BDT (CA15) discriminant, in data and sim-
ulation in the single-y sample. The background event yield is normalized to the total observed
data yield. The background event yield is normalized to the total observed data yield. The
lower panel shows the data to simulation ratio. The shaded blue (red) band corresponds to the
total uncertainty (statistical uncertainty of the simulated samples), and the vertical lines corre-
spond to the statistical uncertainty of the data. The distributions are weighted so that the jet pr
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Figure 37: Distribution of the ImageTop (upper-left) and ImageTop-MD (upper-right) discrim-
inant in data and simulation in the di-jet sample. The plots in the middle row show the t quark
(left) and W boson (right) identification probabilities in data and simulation for the DeepAKS8
algorithm. The corresponding plots for DeepAK8-MD are displayed in the lower row. The
pink solid line corresponds to the simulation distribution obtained using the alternative QCD
multijet sample. The background event yield is normalized to the total observed data yield.
The lower panel shows the data to simulation ratio. The shaded blue (red) band corresponds
to the total uncertainty (statistical uncertainty of the simulated samples), the pink line to the
data to simulation ratio using the alternative QCD multijet sample, and the vertical lines cor-
respond to the statistical uncertainty of the data. The distributions are weighted so that the jet

pr distribution of the simulation matches the data.
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Figure 38: Distribution of the ImageTop (upper-left) and ImageTop-MD (upper-right) discrim-
inant in data and simulation in the single-y sample. The plots in the middle row show the
t quark (left) and W boson (right) identification probabilities in data and simulation for the
DeepAKS algorithm. The corresponding plots for DeepAK8-MD are displayed in the lower
row. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The shaded blue (red) band corresponds to the total
uncertainty (statistical uncertainty of the simulated samples), and the vertical lines correspond
to the statistical uncertainty of the data. The distributions are weighted so that the jet pr distri-
bution of the simulation matches the data.



8. Performance in data and systematic uncertainties 55

35.9 fo! (13 TeV) 35.9 bl (13 TeV)
T L

c L B e | c o T T T
3 E . = 3 F ) ]
2 180pCMS ... Pre-fit ~—— mergeg :/\?Eark E 2 FCMS .. Pre-fit ——— mefgeg wgafk .
g 160 Preliminary _ o4 — Merge oson g 500~ Preliminary _ p o o —— Merge 0son
S £ —— Unmerged i S r —— Unmerged B
> | | > L -
o 140: —— Total SM ] G 400 _ gottal SM 3
120 = E e Data ]
100 = 300 —
g0 3 g ]
60 = 200— 7:
401 = 1001 -
20 . — ]
3 ot !ﬂa—.u..: L o e .
T 185 E ho E
0 1.6 E = 7] =
S o - N
E 1E + _+_ '+'+ 4 5 S 1E 4 T E
S 0.8 % '+' _+_ '+'++ .+.—+— E © 0.8F +++ ¢ + '+' E
o 0.6 F E = 0.6 - E
0.4 E 04FE E
0.2E El 0.2 E

60 80 100 120 140 160 180 200 220 240 60 80 100 120 140 160 180 200 220 240

m(jet) [GeV] m(jet) [GeV]

Figure 39: The mje, distributions for data and simulation in the passing (left) and failing (right)
categories for 400 < py(jet) < 480 GeV. The solid lines correspond to the contribution of each
category after performing the maximum likelihood fit as described in the text. The dashed lines
are the expectation from simulation before the fit. The lower panel shows the data to simulation
ratio.

The SF measured for each of the t quark and W boson identification algorithms are summarized
in Figs. 40 and 41, respectively. The SFs are typically consistent with unity, within uncertainties.
The largest SF is measured for the identification of t quarks using DeepAK8-MD. The statistical
and parton shower uncertainties dominate the SF measurement. Another observation is that
algorithms designed to avoid strong dependence on the mass, like the DeepAK8-MD, have
typically smaller uncertainties compared to the other algorithms. Another point is that the
effect of the systematic uncertainties is more pronounced on algorithms that utilize a larger
set of observables to increase discrimination power. These algorithms (i.e. BEST, ImageTop,
and DeepAKS) are more sensitive to the simulation details. Both points are more evident in
the W case, due to the larger sample size of the “Merged W boson” category compared to the
“Merged t quark” category, which allows the exploration of finer details of the modeling of
data by simulation.

The misidentification rate as a function of the pr of the jet is displayed in Figs 42 and 43 for the
t and W tagging algorithms. In order to study the dependence of the misidentification prob-
ability on the hard-scatter generator, and on the modeling of the parton showering, we use
an additional simulation sample for the QCD multijet background, which uses HERWIG++ for
both the hard scattering generation and the parton showering. In some cases, the misidentifi-
cation probabilities show an important dependence (up to ~ 25%) on the simulation details,
particularly for the ImageTop and DeepAKS algorithms. The main source of this dependence
is the description of the gluon content; these are the only algorithms that have access to quark-
gluon separation to improve performance. Differences in the quark/gluon content can have
large effects on the uncertainties.

Moreover, the misidentification probability is studied in the single-y sample. Overall the per-
formance in data and simulation in this sample is in better agreement than in the di-jet sample.
This can be attributed to the fact that the single-y sample has a larger fraction of light-quarks,
which are better modeled in simulation [18].
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Figure 40: Summary of the SFs measured for each of the t quark identification algorithms.
The markers correspond to the SF value, the error bars to the statistical uncertainty on the SF
measurement, and the band is the total uncertainty (statistical + systematic).

9 Summary

A review of the heavy object tagging methods recently developed in CMS has been presented.
Tagging algorithms based on theory inspired higher-level observables, which were studied in
LHC Runl, serve as a reference. New tagging approaches, such as the ECF tagger and the BEST
algorithm, utilize multivariate methods (i.e., boosted decision trees or deep neural networks)
on higher-level observables and result in enhanced performance. A novel set of tagging algo-
rithms, ImageTop and DeepAKS, are developed based on candidate level information, allowing
to explore more of the CMS potential. Lower-level information is processed using advanced
machine learning methods. This approach results in significant performance improvement
which in some cases leads to ~ O(10) gain in background rejection for the same signal effi-
ciency. Moreover, the BEST and DeepAKS8 algorithms are developed to provide multi-class
tagging capabilities, which can potentially enable new measurements and search approaches.
Finally, dedicated versions of the algorithms which are only loosely correlated with the jet mass
are developed.

The performance of these new techniques has been directly compared in simulation in a jet
transverse momentum range from 200 to 2000 GeV. The techniques have also been validated in
collision data events, with scale factors extracted including systematic uncertainties.
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Figure 41: Summary of the SF measured for each of the W boson identification algorithms.
The markers correspond to the SF value, the error bars to the statistical uncertainty on the SF
measurement, and the band is the total uncertainty (statistical + systematic).
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