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Abstract We demonstrate the construction of a density of
states from the S-matrix describing a coupled-channel (S-
wave ππ, K K̄ ) system, and examine the influences from
various structures of particle dynamics: poles, roots, and Rie-
mann sheets.

1 Density of states of a coupled-channel system

1.1 S-matrix formulation of statistical mechanics

The S-matrix theory provides a natural language to describe
resonances and multi-channel dynamics. For the simple case
of a single-channel, 2-body interactions, the scattering phase
shift δ(E) uniquely identifies the density of states due to the
presence of interactions, via an effective spectral function

B(E) = 2
d

dE
δ(E). (1)

This effective spectral function defines the thermodynam-
ics of an interacting system [1–4]. For example, the thermal
pressure due to the interaction can be computed as

ΔP =
∫

dE

2π
B(E) P(0)(E, T ) (2)

where P(0)(E = ma, T ) denotes the pressure of an ideal gas
of particles with mass ma .

As energy increases, new interaction channel opens up
and the scattering becomes inelastic. The S-matrix should be
formally understood as a matrix acting in the space of open
channels. The effective spectral function B(E), in the case
of a coupled-channel system, generalizes to [3]
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B(E) = 1

2
Im Tr

[
S−1 d

dE
S −

(
d

dE
S−1

)
S

]

= d

dE
Im ln det S(E).

(3)

where S is an Nch × Nch scattering matrix of the coupled-
channel system.

The quantity B(E) summarizes the interactions among the
scattering channels. Note that the trace operation (Tr) comes
from the thermal trace in constructing the partition function.
For example, while each S-matrix element represents a spe-
cific physical process, inelastic processes, expressed by off-
diagonal terms, are included but only via the determinant.
This poses strong theoretical constraints in model studies:
when an inelastic process α → β is considered, it is nec-
essary to consider also the processes: β → α and β → β,
on top of the elastic channel α → α. Nevertheless, the trace
operation implies that this quantity is basis independent, i.e.,
two S-matrices related by unitary rotations will give the same
density of state. This also suggests that B(E) does not depend
explicitly on the inelasticity parameters.

Based on B(E), an effective phase shift Q can be con-
structed:

Q(E) = 1

2

∫ E

Eref

dE ′ B(E ′)

= 1

2
Im ln det (S(E)/S(Eref)) .

(4)

Q generalizes the notion of a 2-body phase shift in Eq. (1)
for describing dynamical processes. For example, it is defined
even for a 3 → 3 scattering [3]:

Q3(E) = 1

2
Im ln det

(
I − 2π i × δ(E − Ĥ0) T̂3(E)

)

≈ −1

2

∫
dφ3 T̂3(E)

(5)
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where
∫
dφ3 . . . is an integral over the 3-body phase space

(on-shell). Note that some of the 3-body processes are built
from iterating the 2-body ones (hence involving 2-body phase
shifts), taking into account of such Q3(E)’s thus correspond
to constructing the third coefficient in the cluster expansion
based on those from the second ones. In addition, being a
sum over the eigenphases of S, the effective phase shiftQ(E)

correctly includes the contributions from processes described
by entries of the S-matrix. Conceptually it is an essential
simplification: a single effective phase shift function can be
constructed to describe the whole multi-channel system.

Determining the full N-body, multi-channel scattering
matrix of an interacting system is in general very difficult (if
not impossible). Rigorous theoretical schemes, such as chi-
ral perturbation theory [5,6] and various functional methods,
are effective in describing the low-energy limit and respect-
ing symmetry constraints from chiral dynamics. Effective
models [7] are adequate for channels dominated by a single,
nearby resonance. Beyond these cases, inferring the density
of states B(E) from individual channels can be rather ineffi-
cient.

1.2 HRG approximation

A simple scheme for incorporating resonances in B(E) is the
hadron resonance gas (HRG) model [8,9]. Translating into
the language of S-matrix, it corresponds to the approximation
scheme

detS(E) =
∏
{res}

z�res − E

zres − E
, (6)

where {res} is a table of resonances (e.g. from PDG) approx-
imated as simple poles

zres ≈ mres − i 0+. (7)

QHRG is then given by a sum over step-functions:

Q(E) → QHRG(E) =
∑
res

dI J × (π × θ(E − mres)) . (8)

Note that resonances are incorporated in detS as product,
reflecting the assumption that they are treated as independent.

The HRG approximation (8) is not a standard density
expansion scheme. For example, while the ρ− and ω−
mesons are treated equally in the scheme, the former is iden-
tified as a 2-pion to 2-pion amplitude [4] (hence a term in
second order virial expansion); while the latter is a 3-pion
to 3-pion amplitude (or a quasi-elastic ρπ → ρπ process),
belonging to the third order virial expansion in number of
pions [10].

One key aspect to improving the approach is by including
the widths of the resonances. Indeed, considerable theoretical
efforts are involved in locating and characterizing resonance
poles. Poles may be identified by analyzing the magnitude of
det S(E). Nevertheless, Eq. (4) urges us to look at the phase
of the det S(E). In the following, we shall study the phase
function of the familiar 2-channel coupled-channel system of
(ππ, K K̄ ). By directly graphing this function in the complex
plane, we can read off the effective phase shift Q(E), and
gain a robust comprehension of how the various S-matrix
features: nearby poles, roots, cuts and effects of Riemann
surfaces could influence the density of states.

2 DoS in a ππ, K K̄ coupled-channel system

We consider the coupled-channel model in Refs. [11–13]
describing the interactions between the open channels ππ

and K K̄ (channel: α = 1, 2), and in addition one closed-
channel resonance state (channel: α = 3), in the subspace of
a fixed quantum number: I = 0, S-wave. Note that states with
the same quantum number, respected by the Hamiltonian,
will participate naturally in the coupled-channel system. A
πK state, with quantum numbers I = 1

2 , 3
2 and |S| = 1,

will not enter this system directly, but a (ππK K̄ ) would.
(The thermodynamics of the former is treated in Ref. [14].)
For thermal model applications, high-energy states are sup-
pressed by the Boltzmann integral and hence we focus first
on the two-channel case, each involves binary collisions. The
calculation follows closely that in Ref. [11]. Some key steps
will be repeated here. Refer to Ref. [15] for details.

2.1 Constructing the S-matrix

Our starting point is the free Green’s function, which takes
the form:

G0(s) = diag

[
G0

ππ , G0
K K̄

,
1

s − M2
R + i 0+

]
(9)

where

G0
α=1,2 = 4π

∫
d3k1

(2π)3

1

q2
α − k2

1 + i 0+ ,

q2
1 = s/4 − m2

π

q2
2 = s/4 − m2

K .

(10)

The integral G0
α is regulated by a form factor 1

k2
1+μ2

α

The

interaction term V describes the interactions among the open
channels (α = 1, 2) and their coupling to the resonance
R(α = 3):
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Fig. 1 Landscape of S-matrix phase ln det S(
√
s) of the ππ, K K̄

coupled-channel system on the energy sheets (left) I and II and (right)
IV and III. See Table 1 for the definition of Riemann sheets. Color
signifies the value of the phase angle and contour lines specify mag-
nitudes of ln |det S|. Poles (roots) are characterized by the clockwise
(anti-clockwise) rotation of the color phase and by a large, positive
(negative) values of ln |det S| reflected in the contour lines. The physi-

cal line is identified with the real line in sheet I (Re (
√
s) + i 0+). The

continuity of the phase across the Riemann sheets (see text): between
sheet I and II (I and III) below (above) the K K̄ threshold, is clearly
visible as the continuity of color across the real line. Five resonances
can be identified in this model: 3 on sheet II (left, bottom half) and 2
on sheet III (right, bottom half)

Table 1 Definition of Riemann
sheets. Convention follows Ref.
[16]

Im qππ Im qK K̄

Sheet I + +

Sheet II − +

Sheet III − −
Sheet IV + −

V =
⎡
⎣g11 g12 g13

g21 g22 g23

g31 g32 0

⎤
⎦ . (11)

The Lippmann–Schwinger equation can be easily solved by
matrix inversion [4]:

G = G0 + G0 V G,

T = V + V G0 T .
(12)

The key step is the extraction of the S-matrix. It can be
obtained by constructing the operator [3,4]:

S̃ = (I − G0− V ) (I + G0+ T ) (13)

and projecting the upper 2 × 2 subspace of S̃. As we shall
see, the contribution of the (dressed) resonance R and the
existence of other dynamically generated states are contained
within this projected S-matrix.

2.2 Phase of det S in the complex plane

Computing the S-matrix as a function of
√
s in the complex

plane, and evaluating the phase of det S, we obtain the plots
in Fig. 1. This method of visualizing a complex function,
called the domain coloring, is discussed in Ref. [17].

Although physical quantities are probed and extracted
along the real line of

√
s, the plots display how the various

S-matrix structures exert their influences. For example, an
isolated pole (root) tends to rotate the phase in the clockwise
(anti-clockwise) direction, but the actual influence on phys-
ical quantities depend on its distance to the real line and the
Riemann sheet it is on. (See Table 1 for the definition of Rie-
mann sheets.) In close proximity, a pole (or root) causes rapid
phase motion, well described by a standard Breit–Wigner
treatment. When probed afar, the influence becomes a non-
trivial background which is generally non-negligible.

The phase shift function Q encapsulates the effects from
various S-matrix objects on the real line. In Fig. 2 we show
the result (black line) computed via the first line of Eq. (4).
The same result can be obtained by directly reading off the
value of the phase of detS from Fig. 1 along the physical line.
(note the factor of 2)

We highlight some key features in these plots:

1. Five resonance poles are identified in this model, dis-
tributed across the Riemann sheets II (3 poles) and III
(2 poles). It turns out that the density of states are only
strongly influenced by three of the five poles: left 2 poles
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Fig. 2 Left: The effective phase shift extracted from the coupled-
channel model, compared to the result of the model in Ref. [18]. For
the latter, the decomposition of its components: σ(500), f0(980) and
a repulsive background, is also displayed. Right: The effective spec-

tral function computed via Eq. (3). Also shown are the results of a
(normalized) energy-dependent Breit–Wigner spectral functions based
on the model in Ref. [18], and the I = 2 result computed using the
experimental data in Ref. [19]

Fig. 3 Partial pressure (normalized to T 4) computed from various
approximations of the density of states

on sheet II and the right pole on sheet III. This is naturally
understood when considering the continuity of the phase
of det S across the Riemann sheets.

2. The continuity can be understood as follows: In going
across the real line from i 0+ to −i 0+, for Re

√
s below

the K K̄ threshold, we essentially travel from sheet I to
sheet II. Above the threshold, however, this becomes a
transition from sheet I to sheet III. For the latter case,
objects on sheet II would barely influence the real energy
line. A similar conclusion is made for objects in sheet III
in the former case. This gives an intuitive criteria for the
relevance of poles (and roots) in the complex plane when
calculating the physical density of states.

3. S-matrix roots are also important in determining the
phase in the physical sheet. Their influence on channel

amplitudes have been stressed in previous analyzes [20–
22]. For the density of states, we find substantial contri-
bution from various roots: e.g. r1 = (0.787 + i0.259)

(GeV) sheet I.
4. Nature of resonances: Unlike the standard K-matrix

approach, where resonance poles are introduced explic-
itly, the coupled-channel model considered here allows
the dynamical generation of resonances. At physical cou-
plings we expect the DoSs on the real line to be similar
among different approaches (with suitably tuned model
parameters). However the arrangement of poles and roots
in the complex planes may be different. Also, it may be
interesting to study the trajectory of the pole as couplings
are altered: e.g. from zero to their physical values. In the
current model, the five resonances are generated from a
single bare state, and there is a distinct pattern in how,
e.g. the f0(980) state (not a seed state) emerges.1 Under-
standing such trajectory could be important for properly
describing how shallow states are formed (and destroyed)
in a thermal medium.

2.3 Thermal contribution of σ(500) revisited

In the S-matrix formulation of statistical mechanics, the
contribution to the thermal pressure by a state hinges on how
rapid the phase motion it induces on the physical line. With
the visualization method here (Fig. 1), this corresponds to

1 The f0(980) resonance in this model starts off being a shallow bound
state, generated within the K K̄ channel. It then becomes a resonance
due to the coupling to the ππ channel. This molecular origin gives a
characteristic phase motion on Q: a rapid rise similar to a standalone
narrow state, accompanied by a rapid drop soon after.
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Fig. 4 Similar to Fig. 1 but for the S-matrix elements s11, s12 and s22. Observe the same pole structure appears, suggesting a common denominator
function, but the numerators (containing roots) are different
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how strongly the color is rotated by a given dynamical struc-
ture. For example, a broad resonance such as the σ(500) state,
tends to produce a smooth change as it is located further away
from the real line.

While the net effect of all underlying structures can be
identified with the measured phase shift, the decomposition
into respective sources depends on the model. To gain fur-
ther insights, we compare the result of the current coupled-
channel model with another model of the ππ phase shift in
Ref. [18]. This is summarized in Figs. 2 and 3.

1. Subtractive correction within the I = 0 channel: In the
work of Ref. [18], a repulsive background is introduced,
in addition to the resonant shifts of σ(500) and f0(980),
to reproduce the experimental phase shift. In the current
model, this can be inferred from the mismatch of the r1

root with the σ pole, giving a weaker phase motion. From
Fig. 3, we see that the I = 0 partial pressure is signifi-
cantly less than that of the sum of σ(500) and f0(980),
even after the widths are corrected for, i.e. as (energy-
dependent) Breit–Wigner resonances using parameters
of Ref. [18]. (The over-estimation is more severe when
they are treated as point-like.) Thus we see the suppres-
sion of σ(500) even within the I = 0 channel. Note
that a repulsive component is also expected from t- and
u-channel exchanges in chiral perturbation theory.

2. Model independence of thermal pressure: Despite the dif-
ferent decomposition into sources and backgrounds, both
models roughly capture the experimental phase shift2,
and is sufficient to give a consistent result for the par-
tial pressure. The small deviation seen between the two
models is actually due to the repulsive K K̄ component in
the coupled-channel model, which is not accounted for
in model [18]. This illustrates a powerful feature of the
method: when the relevant experimental results are avail-
able to quantify the DoS, the results on thermal observ-
ables become model independent.

3. Adding the I = 2 interactions: The I = 2-channel of ππ

scattering is known to be non-resonant and purely repul-
sive [19]. As we are dealing with the strong interaction,
which preserves the isospin, the additional sector can be
treated separately and the phase shift can be simply added
(with a degeneracy factor five): the S-matrix is block-
diagonal and the determinant factorizes. This subtractive
contribution to the DoS (see Fig. 2 right) further reduces
the thermal pressure to the level of the f0(980)-only result
(Fig. 3), and leads to the suggestion that σ(500) should
be excluded in the thermal model [14,23].

2 The scattering length is not well captured by the model in Ref. [18].
It can be corrected using the techniques in Ref. [14].

3 Going further

Studying the phase of the det S reveals that particle dynam-
ics is richer than pole hunting – roots and Riemann sheet
structures can have important (sometimes dominant) effects
on the density of states.

In a transparent model like this, where the complete infor-
mation of the S-matrix is available, the contribution from
each object to the effective phase shift on the real line can
be tracked. Of course, there exist more sophisticated models
for describing the ππ, K K̄ system, which respect the chiral
symmetry principles [24–26]. The aim here is not so much
about explaining the scattering data, but to make use of this
familiar example to study how dynamical structures exert
their influences on the DoS, and building on these insights
to invent a more robust approximation scheme for thermal
models. For example, based on the analysis of the Riemann
sheets and the continuity of the effective phase shift function,
we can select the most relevant poles and roots in the complex
plane, and construct an HRG-like approximation scheme for
calculating the density of states [15].

Given the large number of predicted states (e.g. by LQCD
[27]) which are unobserved, and the observed states which
are unconfirmed in experiments, a criterion for selecting the
most relevant states in constructing the density of states is
urgently needed [28,29], This is also essential for reliably
describing the thermodynamics at high temperatures and
densities [30]. We can imagine a scenario where some of
the bound states predicted from a quark model calculation,
after coupling to the continuum (i.e., open channels), they are
so redistributed that they have little influence on the density
of states. This issue should be dealt with, regardless of the
width of the resonance.

It would also be useful to explore other interacting system.
Thermodynamics of system of exotics [31] would be a good
testing ground, where a coupled-channel study is manda-
tory. A good example of this is the X(3872) system. Previous
works have focused on the single channel phase shift [32,33].
Our study here suggests that analyzing the structure of det S
may yield a better understanding for characterizing the den-
sity of states.
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Complex landscapes of S-matrix elements

In the present model we can also study the complex planes
of an individual S-matrix element: s11, s12 and s22. It is use-
ful to understand the entry as a quotient of two functions:
N (z)/D(z): the denominator D contains the pole informa-
tion, and is expected to be common among all matrix ele-
ments (seen to be the case from direct computation), but the
numerator functions N ’s are expected to be different. Note
that the DoS of the system is extracted from the combination
s11s22 − s12s21, i.e., the determinant.
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