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The choice of optimal event variables is crucial for achieving the maximal sensitivity of experimen-
tal analyses. Over time, physicists have derived suitable kinematic variables for many typical event
topologies in collider physics. Here we introduce a deep learning technique to design good event
variables, which are sensitive over a wide range of values for the unknown model parameters. We
demonstrate that the neural networks trained with our technique on some simple event topologies
are able to reproduce standard event variables like invariant mass, transverse mass, and strans-
verse mass. The method is automatable, completely general, and can be used to derive sensitive,
previously unknown, event variables for other, more complex event topologies.

Introduction. Data in collider physics is very high-
dimensional, which brings a number of challenges for
the analysis, encapsulated in “the curse of dimensional-
ity” [1]. Mapping the raw data to reconstructed objects
involves initial dimensionality reduction in several stages,
including track reconstruction, calorimeter clustering, jet
reconstruction, etc. Subsequently, the kinematics of the
reconstructed objects is used to define suitable analysis
variables, adapted to the specific channel and targeted
event topology. Each such step is essentially a human-
engineered feature-extraction process from complicated
data to a handful of physically meaningful quantities.
While some information loss is unavoidable, physics prin-
ciples and symmetries help keep it to a minimum.

In this letter, we shall focus on the last stage of this
dimensionality reduction chain, namely, the optimal con-
struction of kinematic variables, which is essential to ex-
pedite the discovery of new physics and/or to improve the
precision of parameter measurements. By now, the ex-
perimentalist’s toolbox contains a large number of kine-
matic variables, which have been thoroughly tested in
analyses with real data (see [2–5] for reviews). The latest
important addition to this set are the so-called “singu-
larity variables” [6–10], which are applicable to missing
energy events — the harbingers of dark matter produc-
tion at colliders. In the machine learning era, a myriad of
algorithms have been invented or adopted to tackle var-
ious tasks that arise in the analysis of collider data, e.g.,
signal–background discrimination (see [11] for a contin-
uously updated complete review of the literature). Un-
der the hood, the machines trained in these techniques
could learn to construct useful features from the low-level
event description, because they are relevant to the task

at hand. But it is difficult to interpret what exactly the
machines have learned in the process [12, 13]. Further-
more, it is rarely studied whether the human-engineered
features are indeed the best event variables for certain
purposes, and whether machines can outperform theo-
rists at constructing event variables.

These two issues, explainability and optimality, are
precisely the two questions which we shall address in this
letter. We shall introduce a new technique for training
neural networks to directly output useful features or event
variables (which offer sensitivity over a range of unknown
parameter values). This allows for explainability of the
machine’s output by comparison against known features
in the data. At the same time, it is important to verify
that the variables obtained using our technique are in-
deed the optimal choice, and we will test this by directly
comparing them against the human-engineered variables
that are known to be optimal for their respective event
topologies. Once we have validated our training proce-
dure in this way, we could extend it to more complex
event topologies and derive novel kinematic variables in
interesting and difficult scenarios.

Understanding how and what a neural network (NN)
learns is a difficult task. Here we shall consider relatively
simple physics examples that are nevertheless highly non-
trivial from a machine learning point of view: (1) visi-
ble two-body decay (to two visible daughter particles);
(2) semi-invisible two-body decay (to one visible and one
invisible daughter particle); (3) semi-invisible two-body
decays of pair-produced particles. It is known that the
relevant variables in those situations are the invariant
mass m, the transverse mass mT [14, 15] and the strans-
verse mass mT2 [16], respectively. We will demonstrate
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What are event variables?

▶ Event observables, roughly, are the variables which get analyzed
(histogrammed, curvefitted, etc.) in collider analyses.

▶ They play an important role in high energy physics.
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What are event variables?

↓

▶ Collider experimental data is extremely high-dimensional.
At the level of raw electronic readouts from the detector,
event information can be ∼ 106-dimensional.

▶ We don’t analyze this raw information directly. The
dimensionality of the data is reduced over various stages of
reconstruction
• Interpret electronic readouts as detector hits
• Reconstruct the particles that reach the detector from the detector hits
• Perform jet clustering to get a handle on parton-level objects.
• Condense the reconstructed parton level objects into

low-dimensional observables.

▶ They are typically human-engineered, using our domain
knowledge of the underlying processes.

▶ Examples include invariant mass, transverse mass mT , mT 2,
etc.
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Why use event variables?

▶ Curse of dimensionality — Analyzing high-dimensional data is difficult.
▶ Event variables efficiently retain information relevant to the analysis.
▶ Their distribution is sensitive to the underlying physics

• presence of signal
• values of unknown model parameters

▶ Easier to validate simulation models in low-dimensional dataspace.
(more on this later)
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Machine Learning

▶ Machine learning has become an important part of collider physics analyses.
▶ Classifiers and taggers — one of the earliest and most common ML

applications in collider physics.
• Signal–Background classifier scores can be used in event selection make the
dataset signal-rich.

• Taggers can tag jets as being top or b jets
• Machine-learning classifier scores (from 0 to 1) have also beeen used directly
as analysis variables.

▶ Other ML applications range from performing object reconstruction, to using
machines to perform simulations.

▶ But so far there have been no ML approach to invent (discover?) new event
variables. (directly using ML outputs as event variables not withstanding)

This work changes that
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Synthesizing event variables with machine learning

▶ How to model an event variable with a neural network? Easy!

Artificial Event
Variable Network

V : X −→ V
X ...

V (X)...

▶ How to train such a network? Not straightforward!
▶ One approach: Perform a full analysis with the variable V using

simulated data. Use the (projected) sensitivity of the analysis as a
performance metric to optimize.
Difficulty: Performing an analysis for each training step could be highly
inefficient.

Need a fast way to evaluate the usefulness of the variable V .
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Characteristics of event variables
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▶ Their distribution is sensitive to the value of
underlying parameters.
They contain information about the unknown
parameters.

▶ The same variable works over a range of
unknown masses.
Contrast with typical approaches, where a different neural

network is trained for each “study point”.
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The beginnings of a training strategy…

Artificial Event
Variable Network

V : X −→ V
X ...

V (X)...

▶ Goal: Train the network to be useful over a range of parameter values.

▶ One interpretation of the goal:
• Train the network so that V carries a lot of information about the underlying
unknown parameters Θ.

• Mass variables, for example, carry a lot of information about the underlying mass
parameters—that’s why they are used in measurement of mt, mW , mZ , etc.

▶ How:
• Design a task to be performed using V .
• Train the network to perform the task well.
This is the principle behind representation learning techniques like word2vec.
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Some information theory…
▶ pΘ ≡ Prior on the unknown parameters Θ

pX|Θ ≡ Dist. of the event X conditional on Θ, V (X) ≡ Event variable
▶ Mutual information between the event variable V and parameter Θ:

I(V ; Θ) =
∫

dv

∫
dθ p(V,Θ)(v, θ) ln

[
p(V,Θ)(v, θ)
pV (v) pΘ(θ)

]
▶ I(V ; Θ) is the KL divergence from pV ⊗ pΘ to p(V,Θ). It captures their

distinguishability.
▶ Idea: Train V so that the two distributions are highly distinguishable.Our diagram:

p⇥

p⇥ pX|⇥

Event

Variable

Network

V : X �! V Classifier

Network

y : V ⇥ ⌦ �! [0, 1]

y(V,⇥)

V (X)

Artificial event variable V (X)

X

⇥

.

.

.

⇥true

⇥fake

⇥

ytarget = 1

ytarget = 0

Data Generator

Composite
Neural Network

1

Deep-Learned Event Variables for Collider Phenomenology, arXiv:2105.10126 [hep-ph] Prasanth Shyamsundar 9/20

https://arxiv.org/abs/2105.10126


Blueprint of the training strategyOur diagram:

p⇥

p⇥ pX|⇥

Event

Variable

Network

V : X �! V Classifier

Network

y : V ⇥ ⌦ �! [0, 1]

y(V,⇥)

V (X)

Artificial event variable V (X)

X

⇥

.

.

.

⇥true

⇥fake

⇥

ytarget = 1

ytarget = 0

Data Generator

Composite
Neural Network

1

▶ Training data: (X, Θ) ∼ pX ⊗ pΘ under class 0; p(X,Θ) under class 1
▶ Event variable network: Transforms X to V .
▶ Auxiliary Classifier Network:

Input is (V, Θ) ∼ pV ⊗ pΘ under class 0; p(V,Θ) under class 1.
▶ Train the composite network as a classifier.

• Auxiliary classifier distinguishes between pV ⊗ pΘ and p(V,Θ).
• Event Variable Networkmakes them highly distinguishable.

(actualizing the idea from the last slide)
Deep-Learned Event Variables for Collider Phenomenology, arXiv:2105.10126 [hep-ph] Prasanth Shyamsundar 10/20

https://arxiv.org/abs/2105.10126


Example 1: Invariant mass

▶ A → b, c (both massless and visible)
▶ Θ ≡ mA

▶ mA is chosen uniformly in the range (100, 500).
▶ X is the 4-momenta of b and c

dim(X) = 8; dim(V ) = 1
▶ We want the event variable to work

even when A is not at rest, and
for different (mB , mC) values

• EA is uniformly sampled from (mA, 1500).
• Direction of A is chosen uniformly at random.

▶ We sample events from the phasespace, and
train the event variable network.

▶ The machine ends up learning mbc!

What has the machine learned?
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Event variable in action
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Example 2: Transverse mass mT

▶ A → b(massless, visible), C (invisible)

▶ Θ ≡ (mA, mC) chosen from an appropriate prior.
▶ dim(X) = 6; dim(V ) = 1
▶ Other parameters

• EA is uniformly sampled from (mA, 1500).
• Direction of A is chosen along the ±z-axis.

▶ The machine ends up learning mT !

What has the machine learned?
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Event variable in action
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Example 3: Stransverse mass mT2

▶ pp → A1, A2
Ai → bi(massless, visible), Ci(invisible)

▶ Θ ≡ (mA, mC) chosen from an appropriate prior.
▶ dim(X) = 10; dim(V ) = 1
▶ Other parameters

• mpp is sampled from (2mA, 1500).
• Epp is sampled from (mpp, 2500).
• Direction of pp is chosen along the ±z-axis.

▶ Unlike invariant and tranverse mass, stransverse
mass mT 2 does not have singular features, and
isn’t guaranteed to be optimal for the task.

What has the machine learned?
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Event variable in action
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What’s next?

Now, we can go after previously unknown event variables.
▶ Event topologies for which the best kinematic variables are yet to be discovered.
▶ Humans are good at finding the good 1d kinematic event variables. What’s the best 2d

or 3d event variable? (excluding obvious cases like two resonant decays)
▶ Variables that incorporate more physics that just the event kinematics—qcd effects,

parton distribution functions, etc.
▶ Event variables that take non-traditional attributes as inputs, e.g., b-tag score, jet

energy resolution.
▶ Explore other ways to quantify the “usefulness” of an event variable (ongoing work).
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Why is this work significant?

A valid argument against our approach:
▶ This is cool and all. But why limit machine learning to producing event

variables? Won’t that just bottleneck the amount of information used
by the analyses?

▶ In many ways, this approach is the anti-thesis of end-to-end machine
learning.

▶ Why not use machines to directly analyze high-dimensional data, like
many other techniques?

The argument for our approach:
Robustness & reliability of the resulting analyses.
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Why is this work significant?

Two major challenges to the robustness of ML-based HEP analyses:
▶ Uncertainty quantification
▶ Errors in simulation models

Let’s look at these one at a time, and see how they affect our work.
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Uncertainty quantification by type of ML usage

Theory
models

Experiment

Analysis by
comparison

(ML-informed)

Machine Learning

(trained possibly using
simulated data)

Simulated data

Real data

Experimental

results

▶ Uncertainty quantification is optional.

▶ Errors and uncertainties in ML lead to
suboptimal sensitivity.

Theory
models

Experiment

Machine
Learning

Analysis

Simulated
data

Real data
Proxy for

theory models

Optional, additional simulated data Experimental

results

▶ Uncertainty quantification is critical.

▶ Errors and uncertainties in ML lead to
incorrect results.

Our approach falls on the left.
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Errors in simulation models

▶ HEP analyses are based on simulations.
▶ Several aspects of our simulation models are based on heuristics.
▶ We know that our simulation models are inaccurate, even after

accounting for known systematics.

Q: How does one trust data analyses performed using inaccurate
simulations?
A: Through meticulous data validation, performed at various stages of
the analysis.
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Robustness of an analysis = Interpretability or “validatability”?
▶ Data validation is more science than math (more so than hypothesis

testing and parameter measurement).
▶ Data validation is analysis specific. (black board discussion...)

We can perform signal search and parameter measurementwith high-dim data. But

we cannot perform data validation in high dimensions.

▶ In my opinion, the robustness of a collider analysis technique is
more strongly related to
whether the simulations can be meaningfuly validated for that analysis
than to
whether we can interpret or explain the analysis variable.
(unless we have an unambiguous, smoking gun analysis)

▶ Analyses using low-dimensional observables, that aren’t tuned to
specific “study points” are easier to meaningfully validate. Our
technique fits the bill.
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Summary and Outlook

▶ We have a technique for training neural networks into being good event
variables.

▶ The network ends up learning traditional variables like invariant mass, mT , and
mT 2 in the appropriate event topologies.

▶ Works over a range of parameter values
▶ Trivially generalizable (in the ML sense)

• Variables are derived using phasespace generated events.
• Yet, they are useful in the analysis of real datasets — just need suitable simulations
to create templates.

▶ The resulting technique will offer a degree of robustness against unknown
modeling errors.

Thank you!
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