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I. Introduction: A Bird’s-Eye View 

I.1 Electroweak Gauge Interactions 

The Standard Model of electroweak interactions (EW SM) is one of the great 
achievements of twentieth century physics[l]. It reproduces the remarkably successful 
quantum theory of electrodynamics (QED)[2,3] and the Fermi low-energy four-point 
theory [4], and successfully predicted the existence and properties of the massive 
intermediate vector bosons that carry the %eak force” responsible for P-decay and 
other weak interactions. 

The properties of the EW SM as a gauge or Yang-Mills theory, a quantum field 
theory based on the principle of local gauge invariance[5], account, more than any 
others, for its quantitative success. Gauge theories have a definite structure that 
follows as a consequence of gauge symmetry, giving them great predictive power. 
The EW SM is a weakly coupled gauge theory, allowing perturbative calculations 
carried to arbitrary order and saved from self-inconsistency by the twin properties of 
nnormnlizability and uvzitatity. These properties require gauge symmetry for their 
implementation. 

The subject of these lectures is the perturbative expansion, renormalization, and 
precise testing of the EW SM and its extensions as a quantum field theory, restricted 
here to the flavor-conserving weak charged and weak and electromagnetic neutral 
currents, as manifested in four-fermion processes. The technical aspects of gauge 
interactions are introduced through quantum electrodynamics[2,3], the prototype of 
later gauge theories and a subtheory of the full electroweak theory. The phenomenol- 
ogy of precision tests of EW interactions forms the last part of the lectures, which 
draw on the advances in electroweak measurements of the last three years made 
available by the new high-energy colliders and atomic parity violation. The radiative 
corrections techniques presented here are based on the work of Kennedy and Lynn, 
and others. This formalism is geared towards complete radiative calculations at a 
given perturbative order and near or on the gauge boson poles, while taking advan- 
tage of the special properties of gauge theories. The student is assumed to have a 
background in field theory and particle physics at the level of the books of Bjorken 
and Drell[G] and of Quigg[7], with more advanced preparation (such as the book of 
Cheng and Li[S]) being helpful. General presentations of the Standard Model and 
the Higgs sector can be found in the lectures of Ed Farhi and Jon Bagger in this 
school. Electroweak corrections have been the subject of a number of previous TASI 
lecturers as well[9,10]. 

From the point of view of electroweak interactions, the known elementary parti- 
cles can be divided into two broad groups. The first are particles of “matter,” the 
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three generations of ordinary Dirac fermions: 

(T) (1) (T) (1) (7) (i)> (1.1) 

grouped into doublets under the left-handed weak isospin SU(2). “Left” here refers to 
weak chirality, the generalized chiral symmetry of the Standard Model. For ordinary 
fermions, this chirality is coincident with the usual Lorentz chirality of Weyl spinors. 
The full EW group is Sum xU(l)y, a product of two simple Lie algebras; the 
electric charge Q = It + Y generates a closed subgroup of the full EW group that 
produces electrodynamics. Y is the weak hypercharge. Each multiplet under Sum 
carries a hypercharge assignment. The groups U( 1)~ and U( 1)~ are Abelian groups; 
that is, [Y,Y] = [Y,Q] = [Q,Q] = 0. SU(2)z is non-Abe&an. The second group of 
elementary particles contains the particles of “force”, the spin-l quanta of gauge fields 
that mediate the electroweak interactions: W *, Z’,y. The first three are massive and 
mediate the weak charged and neutral currents (CC, NC) respectively. The fourth 
is the massless photon. Although SU(2)txU(l) y is not a simple group and thus is 
not really unified, a quantum field theory of the weak charged current nonetheless 
clearly requires electrodynamics because the W* are charged[l,ll]. 

Consider the EW SM at the classical or tree level to start. The Lagrangian .C is 
invariant under the separate sum and U(l)y 1 ocal gauge transformations. This 
invariance fixes the form of the gauge interactions by the covariant derivative: 

D, = 8, + igW;If’ + ig’B,,Y, 

where I,; and Y are the Sum end U(l)y generators, end g,g’ the universal weak 
isospin and hypercharge couplings. Although fZ and its associated dynamics are 
gauge invariant, the vacuum or ground state of the theory need not be and clearly 
is not: the full EW symmetry is not manifest in Nature and is said to be broken or 
hidden. That is, the gauge charges do not annihilate the vacuum: IflO),Y/O) # 0. 
Since there is a gauge field associated with each group generator, the total num- 
ber of gauge bosons is four; however, one linear combination of generators remains 
unbroken, the electric charge: 810) = (It, + Y)IO) = 0. Correspondingly, a linear 
combination of the neutral (W3, B) is massless and identified with the photon. IV],’ 
end the orthogonal combination of (W3, B) become massive, as their generators are 
broken. The relation between the simple fields (W3,B) and the orthogonal mass 
eigenstates is given by the weak mizing angle 0~ : 

tan ew = g’/g, 

2’ = ceW3 - seB, 

7 = sewa + ceB, 
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with the notation: sg = sinew, cg = 1 - .$, used throughout these lectures. The 
other two massive states are the W* = (W1 ~iW’)/fi, carrying electric charge il. 
The appearance of non-zero gauge boson masses from the broken vacuum is celled 
the Hiygs mechanism[l2]. 

The vacuum cannot be simply broken “just so” - renormalizability and unitarity 
require that the symmetry breaking (SB) b e an outcome of some dynamics in t itself. 
SB can be implemented in many ways; the simplest is to introduce one elementary 
scaler doublet @[l]: 

(1.2) 

with Y = l/Z, then arrange f. so that the ground state of the theory includes a 
non-zero neutral vacuum expectation value (VEV) of + : 

(1.3) 

More complicated scenarios are possible: many elementary scaler multiplets with 
arbitrary EW quantum numbers and/or effective composite scalars. Such composites 
would be fermion-antifermion pairs, new fermions (technicolor)[l3] or perhaps top 
quark-antiquark pairs[l4]. Whatever the condensate, bosons or fermion pairs, the 
only general requirements are that it be electrically neutral and a Lorente scalar, 
preserving U(~)Q and Lorentz invariance. The sector of the theory producing the 

vacuum condensates is called the Higgs sector: Fields acquiring VEVs are called 
Higgs scalars or Higgses. 

Symmetry breaking then produces gauge boson masses via the Higgs mechanism. 
The condition QlO) = 0 automatically leads to M7 = 0. In the simple case of (1.3), 

M& = g2v2/4, A$ = (g’ + gf2)v2/4, the general form A@ N g* Y* being a conse- 
quence of the gauge symmetry. More generally, if there are many Higgs VEVs @;, 
the gauge boson masses are related by the rho parameter: M& = pM;ci, where: 

p = 1 + C;(@!(Ii - 31t2)mi) 

Ci(#!Pf(21f*)‘Pi) ’ 

for any type of multiplet VEVs (@i), depending only on their ‘EW symmetry proper- 

* For historical reasons, SB by elementary fields is referred to as “spontaneous SE,” while SB 
by composite fielda is called “dynamical SB.” The distinction is amorphous, however, since 
the condensation of elementary scalars is as much as product of dynamics as that of composite 
acalara, only I& different kind of dynamics. In general, SB here refers to either case, any kind 
of vacuum with non-trivial gauge quantum numbers. Symmetry breaking in the Lagrangian, 
not in the vacuum, is called “explicit SB.” 
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ties. The EW SM with p = 1 and the minimal fermion and gauge content I call the 
Minimal SM (MSM), the same with arbitrary p the Extended Vacuum SM (EVSM); 
since, for the study of gauge interactions, the explicit dynamics of the Higgs sector 
doesn’t matter: only the vacuum structure does. The condition p c 1 can be ob- 
tained in many ways; if the ai’s are SU(Z)L doublets only, then p = 1 automatically. 
These statements need modification in the presence of radiative corrections. 

A massless gauge boson has two degrees of freedom (d.o.f.‘s), the two transverse 
states, while a massive one has three, with the additional longitudinal d.o.f. The 
W*, Z” acquire their longitudinal d.o.f.‘s by “eating” three of the appropriate d.o.f.‘s 
from the Higgs sector[lZ]. These scalar d.o.f.‘s are the would-be Goldstone bosons, 
because, had the broken symmetry been only a global one, they would have appeared 
as the usual massless Goldstone states. In a gauge. theory, they instead disappear 
from the physical spectrum and appear “digested” in the longitudinal gauge boson 
d.o.f.‘s. In general, the physical Higgs bosom consist of whatever scalar d.o.f.‘s are 
left over after this meal. In the simple case of (1.2) and (I.3), 4- = (d+)* and 
+5+ = (31 + ilpz are entirely eaten up by the Ii’*; while of 4’ = ppo + irp3,pg is 
eaten up by the 2’. Left behind is 90, which acquires the VEV. The quantum of qpo 
excitations is then referred to as the Higgs boson, in this case being the only physical 
scalar left. 

Gauge symmetry in general is also broken by fermion and Higgs masses. They are 
similar to the form of gauge boson masses (dimensionless coupling times VEV), but 
with a key difference: in the gauge case, the coupling is the universal gauge coupling 
that also governs gauge interactions. No one has yet experimentally established a 
principle for the Yukawa and Higgs couplings analogous to the gauge principle for 
vector bosons. 

I.2 Radiative Corrections 

The gauge sector at tree level contains three arbitrary parameters to be fixed by 
data so that the theory becomes predictive: g,g’, and v2, where the couplings are 
dimensionless, and va has canonical mass dimension two (dim(v’) = +2) and sets 
the mass scale. In the EVSM, p is added as a fourth parameter. These parameters 
can be re-expressed in terms of experimental measurables in many ways; e.g., 

(1.5) 

e2 = 4rcx is the electric charge squared in units of proton charge. GF is Fermi’s 
constant from P-decay: 2) ’ = l/fiG.~ = (246 GeV)*. Mz and Mw are the gauge 
boson masses. 
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Figure 1. (a) Tree-level four-fermion interaction via gauge boson ezchange, with 
invariant square four-momentum q2 = s OT t. (b) Mandelstam van’ables with pl,pz 

in, P3,P4 out: 3 = (Pl+Pz)2, t = (P3-Pl)2r and u = (~3 -pz)’ are Lorentz-invariant, 

Note: p, + pz = p3 + ~4, and s + t + u = Cf=, mf. 

But the classical theory generated by I: is not the full theory, merely its zeroth 
approximation. The four-fermion tree diagram is shown in Figure 1, with invariant 
square momentum q2 flowing through the gauge boson line. The quantum cortec- 
tions to this tree-level approximation are obtained by carrying out a perturbative 
expansion with the usual apparatus of quantized field theory[lO]. The EW pertur- 
bation theory is a double expansion in g and g’, but since ai N_ 0.23, it can without 
difficulty be expressed more simply in powers of CI. This expansion is naively justi- 
fied by a < 1. However, the collection of higher-order terms beyond tree level, the 
quantum or radiative correclions to the theory, such as the loop diagrams of Fig- 
ure 2, complicates the interpretation of the theory and its parameters in an essential 
way. Since experiment makes no distinction between classical tree and quantum loop 
levels, the classical parameters never occur alone, but always in combination with 
corrections. The gauge symmetry, even when broken, restricts the form and occur- 
rences of these combinations in a very special way. So the classical theory, more 
correctly called the bare theory, is not directly observable but is always “dressed” or 
“renormalized” by corrections. Bare quantities are denoted here by “nought” sub- 
script: fIe = +C:,(Fu; 4~0) is shorthand for the classical bare Lagrangian as a function 
of bare parameters $0 = (gu,gb,ui) and bare fields. The Feynman rules spell out 
how the perturbative expansion is constructed from Lo, 
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Figure 2. Typical one-loop correction to four-fermion process. 

The dynamical structure of the full quantum theory is considerably more com- 
plicated than that of the classical theory because of the corrections. A zeroth-order 
matrix element such as Figure 1 typically has a simple dependence on momentum 
transfer q2 and the bare parameters p’o : MO = Ma[q*;:o]; the full amplitude de- 
pends on the same parameters and also on all of the corrections relevant to the 
process in question. The loops have their own internal dependence on q2 and couple 
to known and unknown particles. The complete theory may be viewed as the set of 
relationships among all observable6 (Figure 3). We need three observable6 to fix the 
tree-level theory numerically, and each observable is defined in terms of some process 
with given kinematics. These relationships are modified by the corrections, reflecting 
the modified dynamics. For example, the simple definitions of (1.5) are changed: 

M& = c;. M;, -+ c;. M; . [I + o(a)], (I.61 

where cc is the bore cg and where Mw,Mz and ca need to be operationally defined 
from matrix elements. It proves convenient to choose three parameters j? to replace 
the unobservable bare $0 in the perturbative expansion. This reparametrization is 
called renormaltiotion of parametera and a particular choice of such parameters is 
called a renormalization scheme (RS). These new parameters p’should be unambigu- 
ously defined in terms of observables, although this relationship does not have to be 
a simple one. 

The full quantum EW gauge theory thus forms a rich structure, with almost 
every aspect of quantum field theory coming into play. EW radiative corrections 
typically change tree-level relations by about 1% or so, but larger corrections occur 
in certain cases. Figures 4 and 5 show the dependence of some EW observables on 
different types of corrections. As EW experiments have now reached the precision of 
tenths of a percent, radiative corrections are inescapable. 
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Figure 3. A field theory is the set of all relationships among obsewables, controlled 
by the form and pammeters of the bare Lagmngian ~C&ir,). 
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Figure 4. Effective weak mixing a:(Z) at the Z pole as a function of heavy virtual 
top quark and Higga boson masses; Mz = 94 Geq39]. 
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Figure 5. Effect of initial state radiation on the e+e- 2 2 -+ P~/L- annihilation 
croaa section peak; Mz = 93 Ge v[78]. 

I.3 Renormalizability 

-There is a concept which corrupts and upsets all others. I refer not to Evil whose 
limited realm is that of ethics; I refer to Ihe Infinite. 

- Barges, Avatars of Ihe Tortoise[lS] 

A quantum field theory built from fields that are functions of a single spacetime 
point must satisfy not only the requirements of Lorentz invariance, microcausality 
- (anti)commutators vanish outside the light cone - and quantum mechanics, but 
also of locality. That is, & should consist only of products of operators evaluated at 
only one point in spacetime. A non-local theory would have implicitly propagating 
but not dynamically explicit d.o.f.‘s smeared out over a spacetime region. The oper- 
ational meaning of the bare parameters is then clear: they are the parameters of the 
theory measured at zero spacetime intervals or infinite momentum transfer. Such a 
formulation can only be an idealization, however, as such conditions are unphysical. 
At any time in the history of physics, 1q2/ is always limited by some definite bound, 
today approximately (100 GeV)‘. M oreover, if we stick to this approach, the for- 
mulation of particle physics at and below 1q21 - Mi (which I label “light physics”) 



requires, in principle, knowing all particle physics, the particle spectrum and the 
dynamics, to and beyond the Planck scale. The renormalization of parameters now 
takes on fuller meaning. Unless we are attempting to construct a “theory of every 
thing” such as superstrings, it is obviously preferable to have local theories which, 
when the bare parameters are replaced by a RS of parameters with a well-defined 
relation to measurable quantities (light physics), manifest no sensitivity to physics 
at arbitrarily high energies not explicitly specified in the theory. Such dynamically 
complete theories are said to be renomalizable [16].* 

In field theory calculations, sensitivity to arbitrarily high energies appears in a 
well-known and more definite fashion, in the form of loop corrections arising from 
local interactions at arbitrarily small spacetime separations. The loop diagram of 
Figure 2, for example, is logarithmically divergent. When the unconstrained integral 
over the internal loop momentum is evaluated, it diverges as: 

with the cutoff A + co, therefore more exactly called ultraviolet (UV) divergent. 
In n = 4 spacetime dimensions, infinite loops generically diverge logarithmically, 
quadratically, or quartically: 

J$ J$, J$ ~+a?. (I.81 

The quartic divergences are contributions to vacuum energy density or the cosmo- 
logical constant, which, since we measure everything relative to the vacuum, we 
simply ignore. Their true fate awaits a quantum theory of gravity. Gauge inter- 
actions proper, with broken or unbroken gauge symmetry, exhibit only logarithmic 
divergences. We learn why in the next chapter. 

Radiative corrections thus introduce two troublesome features into a theory that 
potentially render it meaningless. One is the formally divergent character of car- 
rections due to light and heavy particles equally. It finds its solution if the theory 
is renormalizable, which means: when the bare parameters are replaced by a RS, 
the infinities disappear. This implies the divergent amplitudes must occur in one- 
to-one correspondence with each bare parameter, each one becoming finite when 

* This includes scalar field theories, which are renormalizable, although they can require fine- 
tuning. The renormalization would then be unstable to further corrections, but could still be 
carried out. 
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reexpressed with the renormalized parameter. That is: 

M = M[q2;P’a;Zoops(q2,A)] A M[q2;p’;Aloopa(q2)], (I.91 

where the reparametrized form of M now depends only on finite diigerences of loops, 
and the dependence on the cutoff A has cancelled. The exact form of these finite 
corrections depends on the RS choice P: The relation between G and $0 explicitly 
depends on the divergences, so that the perturbative expansion in p’o has no more 
than formal meaning. The infinities should be seen as a mathematical shorthand for 
the asymptotic (]q2] -+ co) behavior of the theory, which is in fact determined by 
the form of the divergences. Renormalizability means that p’o and A are equivalent 
to p’and a set of inputs; that is, p’ and A always occur together in such a way that A 
is redundant. Gauge theories like the EW SM are renormalizable in this sense [17]. 

The sensitivity to dynamics of arbitrarily high energies and the associated di- 
vergences have disappeared, but we are still left with the other problem, radiative 
corrections to low-energy processes that may depend on pmticles of arbitrary mass. 
These potentially make the theory untestable by introducing unknown parameters. 
Gauge interactions have the property of decoupling, which is closely related to the 
absence of quadratic divergences[lS]. I n unbroken gauge theories, after renormal- 
ization, the radiative corrections due to a particle of mass m; at ]$ < nzf are 
suppressed by powers of g’/mf. Later we shall see that, in broken gauge theories, 
such corrections can occur unsuppressed as rni, ln(m~), or O(l), $the heavy mass in 
question mf N (variable dimensionless coupling)x(fixed u*), the same n2 that breaks 
the gauge symmetry[l9]. This feature of non-decoupling in broken gauge theories in- 
troduces uncertainties into the precision testing of the EW SM, but it plays a major 
role in electroweak phenomenology by allowing limits to be placed on the masses and 
couplings of particles heavier than the 2. 

Non-renormalizable theories are not useless, but they must be interpreted as ef- 
&tine field theories[l6,20]. Their sensitivity to unknown high-energy physics remains 
after renormalization: 

M = M[&p’o;loop~(A,q~)] A M(q’;p’;Aloop~(A,q~)]. (1.10) 

The crucial thing is the relation of observables to observables, not the cancellation 
of divergences. In an effective field theory, the cutoff has physical significance and is 
an observable. It marks a lower cutoff in spacetime separation and thus leads to an 
incomplete and non-local theory that must be “saved” by new dynamics stepping in 
at some scale > A. The scale of the new dynamics can be estimated by increasing 
A until the corrections become as large as the tree-level amplitudes. In Fermi’s 
four-point theory, whose only parameter is GF, explicit cutoff dependence appears 
in the perturbative corrections as powers of GFA’. This indicates the presence of 
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new dynamics at A N G;‘/2 N_ 250 GeV to complete the theory, as is indeed the 
case. This kind of reasoning played an important role in development of the EW 
SM[21]. Reversing the logic, non-renormalizable theories are dynamically incomplete 
remnants of complete, renormalizable theories. 

To sum up: renormalizable theories are dynamically complete, although not 
closed. Additional or non-standard “new” physics carrying EW quantum num- 
bers may exist, but is not necessary to make the gauge interactions self-consistent. 
Non-renormalizable theories must be effective field theories, incomplete fragments 
of a larger theory. Divergences in a field theory indicate sensitivity to arbitrarily 
high energies, but, in renormalizable theories, they disappear when the theory is 
reparametrized in terms of quantities related to observables. Gauge theories are 
renormalizable and, if unbroken, exhibit the property of decoupling: the finite cor- 
rections due to heavy particles are suppressed by inverse powers of their masses. In 
broken gauge theories, like the EW SM, d ecoupling is violated under certain condi- 
tions. 

I.4 Lightning Review of Perturbation Theory[lO,B] 

UllleSS cXpiicit!y st.ated otherwise, I assume the MSM: po z 1, with one Higgs 
doublet (1.2,3) and a single physical Higgs with unknown mass rn~. There are three 
generations of quarks and leptons, with known properties (except for the top quark 
mass mt), and the four gauge bosons. The gauge group is SU(2)r,xU(l)y, the 
gauge interaction properties of particles given by their quantum numbers under these 
groups. Under Sum, the left-handed fermions f~ transform as a 2 and the right- 
handed f~ fermions as a 1; the primitive gauge fields W’ and B as a 3 and a 1, 
respectively. The restriction to the MSM is partly lifted in chapters IV and V. 

Unless we need the Lore&z tensor/spinor structure explicitly, I write the interac- 
tions and matrix elements in a schematic, shorthand form. The QED, weak neutral- 
and charged-current interactions read: 

LQED = J,Ao, LNC = JzZo, Ccc = (J+WF + J-W,)/& (Z.11) 

in terms of the bare fields and the electroweak currents: 

J7 = =oJQ, Jz = “(Js” - s;Jq), 
SOCO 

Jk = ;(Jf 4~ iJ,“), (1.12) 

in reduced form, with the couplings shown explicitly. “L” for fermions stands for the 
left-handed Weyl state projected by ;(I - ys), th us reproducing the standard V-A 
form for the charged current with maximal parity violation. The neutral current 
contains this left-handed current, but also the purely vector-coupled electromagnetic 

JQ- 

11 



The quantization procedure via canonical quantization or the path integral starts 
with & as the input and results in the full quantum theory, expressible either in terms 
of Green’s functions and the S-matrix, or in terms of an effective Lagrangian &. 
Both are explicit functions of the bare parameters prior to renormalization, and, in 
perturbation theory at least, the two descriptions are completely equivalent. I use 
the S-matrix approach throughout because of its transparent connection to quanti- 
ties measured in the laboratory, cross sections and rates. The Feynman rules can 
be used to construct the perturbative expansion diagrammatically, but EW calcula- 

tions also require some extensions of perturbation theory. These extensions, as well 
as the choices of experimental inputs and renormalization scheme, are partly an art 
and not completely determined by the theory: they are constrained by experimen- 
tal considerations, certain general features of the gauge theory (especially the need 
for gauge invariance), and by compromises between keeping the calculations sim- 
ple and making them complete. The formalism sketched in these lectures is guided 
by the desire to do justice to these opposing requirements. Since Lo and $0 are 
unique, the full theory, the set of relationships among observables (Figure 3), is in 
principle independent of these choices and RS-independent in particular. However, 
RS-invariance is only respected if the theory is solved exactly. No one knows how to 
do this, so the perturbative series must be truncated at some order of CY, introducing 
an unknown but bounded error of higher order. Matrix elements parametrized by 
alternative RS’s differ by this error - renormalization and perturbation theory do 
not “commute.” RS’s are moreover not equivalent to one another in perturbation 
theory: some are better representations of the Taylor series than others, making it 
converge more quickly. The higher-order error can thus be minimized by a judicious 
choice of RS and, since a is small, be made negligible. The appropriate choices vary 
depending on the nature of the process in question and of its loops. This feature 
of perturbation theory goes under the confusing name of RS-dependence and is of 
purely mathematical, not physical, significance [22]: 

The bare Lagrangian has dim(&) = $4, a sum of products of parameters pi 
and operators 0: : 

Terms in Lo with dim(Oi) 5 4, dim(pd) 1 0 are renormalizable; other terms are 
not and so must be excluded. Renormalizability with spin-l vector fields in general 

requires a gauge theory and Co to be gauge invariant? The full theory expressed 
by &R has operators of all dimensions. Those having the same Lorenta and gauge 
properties as terms in -Co renormalize the bare interactions; they can and generally 

l The renormalised perturbation series, although finite order by order in a, is also not convergent 
at very high orders. For low orders, it is convergent enough, taking the form of an asymptotic 
ezp.nrion[29,23]. 

t The only exception is a theory with massive vector bosons and a conserved global U(1) charge. 
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do have divergences, but divergences are absorbed into the corresponding bare pi in 
any case. Operators in &:,f~ not having any analogue in 130 have dim > 4 and must 
have finite coefficients, since divergent coefficients in these operators have no bare 
parameters to be combined with. In renormalizable theories like gauge theories, the 
finiteness of such dim > 4 operators is automatic. Any &:,R has an infinite number 
of operators. An 13,~ derived from a renormalizable .C:o has an infinite number of 
coefficients expressible in terms of a finite number of parameters, equal in number to 
the number of bare parameters[24]. These statements can be translated easily into 
S-matrix language, comparing the Lorentz and gauge form of the tree-level MO to 
the terms in the fully corrected M. 

In these lectures, I cover only the class of flavor-conserving four-fermion NC/CC 
processes: low-energy electrodynamics; atomic parity violation (APV); P-decay; 
ve, vN and lepton-nucleon scattering; e+e- - -t ff annihilation; W and 2 masses, 
and 2 pole properties. Another very important set of processes is generated by 
flavor-changing neutral currents, but the details are quite different. The same gen- 
eral connections occur there between gauge invariance and renormalizability, and 
between broken symmetry and non-decoupling of heavy particle effects in radiative 
corrections, but the subject has its own technology, folklore and body of experimen- 
tal results distinct from what I present in these lectures. Please see the lectures of 
Yosef Nir and Howard Georgi in this school for more about this topic[25]. 

The four-fermion Feynman diagram of Figure 1 serves as our starting point. 
Figure lb shows the kinematics and the Mandelstam variables s, t and u. I assume 
that the external fermion masses rnf are kinematically negligible (m; < ln21), except 
for a brief foray into low-energy QED results in chapter V. The Higgs sector concerns 
us only as far as it affects the vacuum and loop corrections. The effects of flavor 
mixing and CP-violation are negligible for these processes, so set the CKM flavor 
mixing matrix to unity. Let us then start with the unbroken subtheory U(l)q of 
SU(Z)L x U( l)y, quantum electrodynamics. 

II. Quantum Electrodynamics: First Part 

II.1 Irreducible Corrections - Lore&z Properties 

Electrodynamics makes a good starting point for learning about the EW SM, 
because it is a subtheory of the SM and one of its historical forerunners, and be- 
cause it introduces many of the features of gauge theories in a simple way. QED is 
an unbroken Abelian gauge theory with scalars and vector-coupled Dirac fermions[ 
2,3,2’7,28]. Our major concerns are with the photon propagator, the renormalization 
of the electric charge eo, and radiative corrections to four-fermion processes. Figure 1 
shows the tree-level or Born diagram for fermion line f interacting with fermion line 
f’. Momentum transfer 9’ runs through the photon line, and the tree-level gauge- 
matter coupling eoQ occurs at each vertex with the appropriate dimensionless charge 

Q: 
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MO = eaQ. $ . eoQ’. (11.1) 

This Born approzimation has the form gauge current x propagator x gauge current 
and is the relativistic generalization of the Coulomb potential. The electric charge Q 
is normalized in units of the proton charge, so that Qc = -1. In a physical process, 
the amplitude can be in either the scattering (4’ = t) or the annihilation (q2 = 8) 
channel, or in both (sum of both channels). My approach is schematic, stressing the 
important concepts and quoting results to illustrate the properties of QED, assuming 
that you have seen at least parts of it before. The focus is on decorating the MO of 
(11.1) with corrections. 

A convenient first step is to introduce the distinction between proper and im- 
proper diagrams[27,29]. Proper, or one-particle imdvcible, diagrams cannot be dis- 
connected by cutting one internal line.* It is clear that a complete four-fermion matrix 
element can be built up from irreducible graphs (Figure 6). The sums of all irre- 
ducible graphs with given sets of external legs represent the elementary Green’s func- 
tions of the theory, from which the elements of the S-matrix can be assembled. These 
hums are the pictorial shorthand for the solution of the coupled integro-differential 
Schwinger-Gyro;: equations for the Green’s functions[28,29]. These equations require 
the irreducible parts as inputs. ‘The resulting Green’s functions are then functionals 
of these irreducible parts and usually must be solved for perturbatively. The pertur- 
bation theory can then be defined completely in terms of the irreducible graphs only, 
the expansion method used in these lectures. Only one-proper-loop calculations are 
shown explicitly. 

f f’ 
f f’ 

f f’ 

+ 

f 
f f’ MM 

= 

f’ 
f f’ 

Figun 6. Four-fermion process as sum of irreducible and reducible four-fermion 
Green’s functiona. 

* I use “irreducible” and “proper” M synonyms from this point. 
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In our case, there are three irreducible Green’s functionsi27, 281. The first is the 
photon two-point function or photon propagator D(q2). For its definition, the bare 
uncorrected propagator &(q’) and the irreducible vacuum polarization or photon 
self-energy graphs II are necessary (Figure 7a). The full or dressed propagator 
D($) is a Dyson sum, the solution of the relevant Schwinger-Dyson equation for 
Figure ib: 

D = Do + DIIDo = D-,1- II 
0 

(11.2) 

since Do($) = l/q’. II is the kernel of this Schwinger-Dyson equation. In perturba- 
tion theory, II itself is a series of irreducible graphs carried out to a given order in a 
(Figure 7a). 

= ++++-@-+ l ** 

(b) 

Figure 7. (a) Perturbative ezpansion of ireducible photon self-energy. (b) Dyson- 
Schwinger equation for the dressed, fully corrected photon propagator. (c) Three-loop 
photon self-energy, with firat embedding of multiple fermion loops. 
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The second Green’s function is the three-point function or proper vertez function 
I?($). It too is EL series in a of irreducible vertex diagrams. In addition, it is necessary 
to include the corresponding external fermion self-energies in this series (Figure 8). 
The third Green’s function is the irreducible boz function 0 (Figure 9). These three 
are sufficient to define the four-fermion matrix element. Note particularly that the 
perturb&w series is rearranged by carrying out the Dyson sum for the photon prop- 
agator. This Dyson sum is automatic in these lectures for gauge boson propagators, 
although non-trivial in chapter IV for the non-Abelian theory. The perturbation 
theory is now redefined in terms of the irreducible parts alone. The Dyson sum for 
the gauge propagators is physically necessary in order to examine the properties of 
the dressed gauge bosom, especially the position of the poles in D(q’) that mark the 
physical gauge boson masses. The Dyson sum is our first extension of perturbation 
theory. 

Figure 8. Irreducible vertez and ertenal self-energy graphs for an on-shell fermion. 

Figure 9. Irreducible boz graphs for four-fermion interaction. 
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Let us make a momentary digression to look at the Lorentz properties of the irre- 
ducible Green’s functions, displaying explicitly tensor and spinor structures and fac- 
torsofi[27]. iDpy(z,y) = (O(!i”Ao,(~)&~(y)]0) and -iII,,(r,y) = (O]TJ,‘(z)J:(y)]O) 
in real space. In momentum space: 

Dp”(q2) = -4SP” - 4dl - W81) 
q2 - II 

(11.3) 

where II is the reduced scalar self-energy and t a gauge parameter, both discussed in 
more detail in the next section. The tree-level propagator is just Dpv(q2) with II set 
to zero. In a matrix element, the ~LV indices contract with the corresponding indices 
at vertices at either end of the photon line. A QED theorem tells us that the the 
q,,q,, terms in the propagator can be omitted if the fermion lines at one or both of 
the vertices are on-shell, a result of vector coupling and applying the Dirac equation 
to the external fermions. This justifies the suppression of tensor indices in (11.2). 
Furthermore, note the canonical mass dimensions dim(D) = -2 and dim(II) = f2. 

The proper vertex function requires one vector index for the photon line and two 
spinor indices, one for each external fermion line: -il?(q2),,op. The most general 
Lorentz tensor/spinor decomposition of I? consistent with Lorente, C and P symme- 
tries is: 

T- - “l-Z\ 
AP - 1 l\-i J-fp -- +-‘&+wf’ , (II.4) 

where Fl(q’) and Fz(q’) are the elect& and magnetic form factors of the fermion in 
question[27]. Fl(q’) generalizes the tree-level vertex. Note that dim(P) = dim(Fl) = 
0. F*(O) is proportional to the anomalous magnetic moment of the fermion, beginning 
at O(o), since opy reduces non-relativistically to the spin operator g. Note also that 
the magnetic term in (11.4) has dimension -1, corresponding to the dimension-5 
operator $J~u~,$~F~” in &. Thus Fz(q2) is finite. It is also a helicity-changing 
operator, suppressed at high energies by m;/q’, and is hence ignored, except for a 

brief reappearance when we look at low-energy QED. The box function @(q’),p,a 
carries four spinor indices. Note that dim(O) = -2, so that 0 is finite. 

II.2 Gauge Invariance - Choice of Gauge 

Gauge symmetry is the single principle that holds a gauge theory together, both 
on the classical and quantum levels, in a number of different ways. In the classical 
theory, it means that 130 is invariant under the local gauge transformations: 

#o + e -i4t8(z)~o, Ao,, + Aop + ;&4(s), 

which requires the covariant derivative coupling of matter to gauge fields: D, = 
a, + ieoQAop, and the conservation of charge 8,Jf‘ = 0. At the quantum level, 
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the gauge invariance reappears in the form of relations between, and restrictions 
on, Green’s functions, in electrodynamics called Ward-Takahashi identities[27,28,30]. 
Gauge invariance in &, holds even if the vacuum breaks the gauge symmetry; the 
dynamics is gauge-invariant even if the ground state isn’t. Gauge-invariant dynamics 
helps to guarantee renormalizability by reducing the number of infinities to the few 
that can be absorbed by reparametrization. 

At the level of photon properties, gauge invariance means that of the four degrees 
of freedom (d.o.f.‘s) in the vector field Ap, two are spurious, associated with the 
freedom of arbitrary gauge transformations. Because of this unphysical ambiguity, 
quantization requires us to fin a gauge; that is, to restrict A,, in some way to reduce 
its functional arbitrariness. Gauge invariance of the theory implies that the results 
for physical processes should be independent of this choice. In covariant perturbation 
theory, the common choice for an unbroken theory is the Lorentz gauge, &A” = 0, 
which can be implemented in the Lagrangian by adding a Lagrange multiplier term: 

Lo - Lo - +,A;)‘, 

the simplest ver&n sf the general renormalizable ( or Rt gauges used in most gauge 
theory calculations[28]. Physically, the Lorentz gauge projects out of A,, only trans- 
verse d.o.f.‘s, covariantly generalizing the frame-dependent notions of transverse and 
longitudinal d.o.f.‘s. Define the covariant transverse and longitudinal projection op- 
erators: 

p,‘y = 9PV %%J -2’ p,“y~!m 

q q2 . 

They sum to unity in the sense that P,‘y + P,“y = I+. Note then that the covariant 

propagator of (11.3) takes the form D,,” = -i[P$+~P~v]D(q2), where the unphysical 

longitudinal PL carries the gauge-dependence. In the context of Rt gauges, gauge 
invariance means that matrix elements between physical on-shell states are indepen- 
dent oft and thus independent of the spurious longitudinal modes. The cancellation 
of the q,,qu terms enforces this t-independence and is the momentum space form of 
current conservation at the vertex, a&’ = 0. 

There are two key Ward identities for our case. The first Ward identity requires 
that Fr(0) = ecQ. That is, the complete proper vertex function reduces back to 
the tree-level form at zero momentum transfer. The vertex radiative corrections 
disappear or decouple as qz + 0. This is our first, but not last, encounter with the 
connection between unbroken gauge invariance and decoupling required by a Ward 
identity, which in this instance also leads to the “non-renormalization” of the tree- 
level vertex. The second Ward identity requires that II,, = +iPEII(q2), to any 
order; that is, II,, is purely transverse. Futhermore, II(O) = 0, so that we can write 
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D(q2) = I& = ei . II~Q s ei . q2 . II& (recalling (1.12)). It then follows that: 

D= 
1 

q2[1 - e$I&] ’ 
(11.5) 

In other words, ifgauge invariance is good and the photon mass zero at tree level, they 
remain so at any order. These statements are necessarily true only in perturbation 
theory: 

From the Ward identities and cancellation of the t’s, it is straightforward to show 
that II, r and 0 form separately gauge-invariant contributions to a complete matrix 
element. Discussing each class of corrections represented by these Green’s functions 
separately thus has physical meaning, as each is gauge independent. 

II.3 Divergences - Some Technical Tools 

-It is easy to speak of the infinite, as every theologian knows, but it is difficult to 
speak of it meaningfully. 

- J. D. North, The Measunz of the Uniuerse[31] 

We need to look into these black boxes II, I, 0 now to get some idea of how they, 
particularly their divergences, behave. Two broad approaches are available to tackle 
the infinities. One is to extract only the divergent parts to prove renormalizability at 
an arbitrary order, using an arbitrary renormalization scheme. A powerful method 
using counterterms is available to carry out this program[8,28,32,33]. Instead of 
beginning with the classical LO, one starts with a L,,, of the same form, defined in 
some scheme @. Then one demonstrates that the infinities occur in the perturbative 
series only in such a way that they can be cancelled by subtracting counterterms L,t 
from L,,, and recovering the bare Lo : 

L ren = co + Gt, Gc = G - &t, 

L& = co + Ll = G,, + c,,, 

where .Cr represents the proper one-loop operators, and Lo = C,,, - Cct, implying 
that the terms necessary in & to cancel divergences in Lr have only tree-level forms. 

l Breaking of the gauge symmetry is always non-perturbative in some coupling. If we failed to 
notice it in Lo, it would show up QS a non-perturb&n pole in lIbQ + vi/q’ as pa + 0, SO 
that AW;~ would be e,$& 
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The other approach is the one used here: compute the full matrix elements 
for specific processes with ~50, including the full corrections, then renormalize by 
reparametrizing the matrix elements[29]. Counterterms are usable here to separate 
divergences as well, but are unnecessary, as the matrix elements can be reparametrieed 
directly. On the other hand, it would not be easy to prove renormalizability at any 
order using this method: the finite parts of the loops would constitute a superfluous 
complication. 

There are three paradigmatic one-loop corrections in electrodynamics. Figure 7a 
shows a divergent contribution to ff,,, which upon extracting -iq’P$ to isolate 
II’, is dimensionless and logarithmically divergent. Figure 8 shows a contribution 
to I’,,. Without the external self-energies, the reduced function Fr is logarithmically 
divergent. The box diagram in Figure 9 has dim(O) = -2 and is finite. The fact that 
virtual corrections in gauge interactions are no more than logarithmically divergent 
in n = 4 spacetime dimensions is directly connected to the fact that dim(II’, r) = 0 
and, in turn, that dim(e$ = 0 as well. 

How does one evaluate such loop integrals in perturbation theory? Let me use 
the fermionic loop of Figure 7a as a prop to sketch the method and to introduce 
tools that are used in such calculations[ 281. 

-i%! = -(-ieoQi1’ / &Tr[r- ii + ie~p(y+ d) ! mi + ic-yv]. (11.6) 

The zeroth step is to rationalize the fermion propagator denominators and to remove 
eiP,‘Y and isolate the reduced scalar function IIQQ. The evaluation of IIQQ can take 
a number of paths, all of which lead to the same results for finite differences of loops. 
Let me map out one commonly used path. 

The first step is make the divergent integrals meaningful by the formal redefini- 
tion of infinities as mathematical limits, so that they can be manipulated as if they 
were finite. This step is called regularization. A number of regulariaation methods 
are available. The important thing is to make sure that the method does not inadver- 
tently break a good classical symmetry. The naive regularization of simply cutting 
off the integral at some upper bound Ia 5 A* breaks Lorentz symmetry. The Pauli- 
Villars method[28,34] preserves gauge invariance in QED and Lorentz invariance: 
replace 

1 1 1 
p _ ,a -+ 12 - m2 - 12 - A2 ’ 

and let Aa > mf, q2. Pauli-Villars does break gauge invariance in non-Abelian the- 
ories, however. This fact led Veltman and ‘t Hooft to introduce a new method 
that keeps non-Abelian symmetries intact, dimensional regularization[35,33,28]. An- 
alytically continue in the number of spacetime dimensions away from four to n, an 

20 



arbitrary complex number. That is, 

1, = (10;llr12,13) -+ (10;11,...,1,-1) 

grvg’” = 6; = 4 + 72, Tr[spinors] = 4 + 2”” 

d41 --a d”1, (2n)4 * (2*)“, 

(11.7) 

and so on, consistently throughout the integral. Divergences reappear as we continue 
back R --+ 4.* 

The second step is to Euclideanize the space of integration, so as to convert the 
integral from the unwieldy Minkowski metric to a more manageable integral in 72”. In 
perturbation theory, this step is legitimate because of the analytic properties of loop 
integrands as functions of pN. The tree-level inverse propagators (1’ - rnf + is) have 
an infinitesimal imaginary part in their zeros that reflects the correct (Feynman) 
boundary conditions for physical on-shell states: positive-energy particles propa- 
gating forward in time, negative-energy particles propagating backward in time as 
positive-energy antiparticles propagating forward in time. For real loop masses, the 
loop integrands are analytic functions of lo in the first and third quadrants of com- 
plex IO plane, for certain values of the external momenta, and their poles occur in 
the second and fourth quadrants only (Figure 10). Therefore, Minkowski integrals 
over IO on the intcrrsl (- co,+oo) can be transformed into integrals on the inter- 
val (-ica,+ioo) by using Cauchy’s theorem and the contour shown in Figure 10. 
The contour or Wick rotation is implemented equivalently by changing variables: 
10 = il.,, lE = (11 , . ..a). 1’ = 1; - 1’ = -4, d”1 = id”l~, qo = iq”, and so on. After 
the integration is performed, rotate back: qn = -iqo, & = -q2, etc., and extend to 
all values of the external momenta by analytic continuation. 

The third step is to combine separate denominators of propagators in the inte- 
grand into a single denominator using the Feynman parameters r;[37]: 

1 r[=l + . . . + Uk] 
A? , , . A’;h = rhi . . . r[Uk] 

x jd=3...jd.k~:_~~.~~~~k~~~~~~: , (11’s) 

0 0 

where l?[z] = (z - l)! is the gamma function; then change variables lE + EL so as to 

* If no regulsrisstion method preserves the symmetries of the classical theory, at least one of 
the symmetric. can be anomolour, broken by quantum effects. An anomalous local gauge 
symmetry destroys renormalirability, and the theory no longer exists. The SM gauge sym- 
metries are anomaly-free, although some SM gioba2 symmetries .we anomalous, giving rise to 
nc* non-classical effects[23,36]. 
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eliminate all terms in the combined denominator linear in lIE. Only terms quadratic 
in Ib remain now. 

x x x 

x x x 

Figure 10. Contour (Wick) rotation for Feynman integral over virtual momentum 1, 
from Minkowski to Euclidean metric. 

The fourth step is to switch the order of integration, pulling the Feynman pa- 
rameter integrals outside and performing the lk integral first. This step is allowed 

because the integral is formally finite. Since the integrand is a function of lk” only 
now, the (n - 1)dimensional solid angle integration in R” can be carried out. Drop- 
ping primes, d”IE = ‘k-r d[E da,,, and: 

This handy formula can be derived using the trick of evaluating the Gaussian integral 
Jd”z e-= ’ in radial, then Cartesian, co-ordinates. The full 72” integrals take the 
form[ 33,351: 

J (9)” 
6”zE (I; + p2)b = 

i (T@)‘+ r[a + ;]r[b - a - ;] 

WY-~ w21 WI ’ 
(11.10) 

where all the dynamics -the dependence on the external momenta q2 and the loops 
masses - is buried in pz. 
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The f;fth and last step is to continue back to Minkowski space and let 7~ --t 
4. Divergences now show up in the gamma functions, but we must be careful to 
consistently expand out the n + 4 limit everywhere. Let e s (4 - n)/2 + 0 - not 
to be confused with the imaginary parts of propagators! The degree of divergence 
V of the integral is ‘D = n + 2(u - b), and the divergence, if one occurs, appears 

in r[b - a - s] = q-9 + c]. In n = 4,2) 4 = 0,2, corresponding to logarithmic 
and quadratic divergences, respectively. In gauge interactions, ‘Dd < 0; that is, 
loops are either finite or logarithmically divergent, because II’ and the vertex r are 

dimensionless? The gamma function near the non-positive integers can be expanded 
as: 

r[-m+C]=~jl+i+~+...+l-l+a(c)], (II.11) 
E m 

where 7 is the Euler constant: 7 = (d/dz)(lnr[z]),=1 = 0.57721566..., and m = 
0, 1, 2 , . . . . For ‘D4 < 0, the integral is finite; for 2)4 = 0, FL-0 + e] = l/s - 7 + O(E). 
Now re-express all n’s in the integral in terms of E. Various quantities occur taken to 
the power E, all of which must be expanded: zf = l+~ln(z)+6(e~). The O(E) terms, 
when multiplied by the l/c, come out as U(l), including the finite parts buried in p. 
The divergent integrals in the end look like: 

@,FI N F/d[zjlb(l -Czj)[A -lnP2(~j;q2,d)1, 
j 

with logarithmic divergences in dimensio,nnl regnla,rization consistently appearing 
in the combination A s l/e - 7 + ln4a, and throwing away terms of O(e) and 
higher. To get these results reliably and to reproduce the unrenormalized Ward 
identities, it is crucial to.carry out the c expansion universally; e.g., including the 
(2r)” = (2”)4(21r)--26, and so on. Finite integrals can be evaluated directly using 
(11.10) without the c expansion. 

An optional but very convenient step is to define a set of standard one-loop form 
factors[38]. For example, for two-point loops: 

{~O,~~,~IIY}(P~i~l,~2) = I d”lE (1, I,, &)E 
- 

i7r [Z$ +m: - ;c][(lE + qE)’ + m; - ie] ’ 
(11.13) 

where all two-point integrals (that is, contributions to II) can be reduced to com- 
binations of B’s. Three-point functions C with three propagators and four-point 
functions D with four propagators can similarly be defined. The properties of the 
loop functions as functions of external momenta can be studied by studying these 
form factors. 

t Quadratic divergences can appear in the intermediate steps of calculating lI and r, but they 
cancel when all terms are added up. 
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To summarize, we need five steps to carry out the loops integrals, after simplifying 
the integrand in tensor/spinor structure: (1) introduce regularization; (2) continue 
from Minkowski to Euclidean space; (3) combine separate propagator denomina- 
tors using Feynman parameters; (4) switch the order of integration and perform the 
Euclidean integration; (5) continue back to Minkowski space and separate the diver- 
gences. Standardized form factors are convenient for simplifying the calculation. For 
the collection of all good regularization methods - that is, those that preserve good 
classical symmetries -the identification of the divergent parts is essentially unique, 
and they can be translated from one regularization to another. The simplest “good” 
method that works generally for gauge theories is the dimensional regularization of 
Veltman and ‘t Hooft. There are intricate Feynman parameter integrals left to do 
at the end, with complicated dependence6 on external momenta and loops masses. 
Some generalities are presented in the next few sections. 

II.4 Born-like Corrections: &parametrization and Finiteness 

Let us begin examining the physical properties of the corrections by considering 
the photon self-energy and propagator[27,28]. Because the propagator corrections 
reproduce the tree-level Born matrix &II~CT_~ form, with linear charge dependence 
Q,Q’ on the external legs and no dependence on the external masses mf, let us 
call the corrections incorporated into the full propagator Born-like and the matrix 
element so corrected the improved Born approximation (IBA). The other corrections, 
vertices and boxes, are non-Born-like, as they depend non-linearly on the external 
gauge charges Q, Q’. The improved Born matrix element M~BA is: 

M 
GQQ’ 

IBA = q2[1 - e&,1 

The Born-like corrections can be put into a compact form by d&ning[39]: 

1 1 
- = - - “&, 
G(q2) ei 

so that: 

(11.15) 

MIBA can be put into this form because the universal corrections II can be com- 
bined with the bare gauge coupling eg to define a q2-dependent or running function 
e:(q’) (11X), denoted with a star subscript, that appears in M~BA the way ei ap- 
pears in MO (11.1). The fact that propagator corrections in gauge theories always 
take this form is a consequence of gauge symmetry. The star function e:(q’) serves 
as a running coupling. 
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To obtain usable predictions from MIBA, we need to reparametrize ei(& by 
replacing ei with a finite parameter and define that parameter in terms of some 
experiment. The renormalization scheme (RS) is arbitrary, but we can simplify our 
task by taking advantage of the decoupling properties of QED. The full decoupling 
theorem states that, as q2 + 0 : 

(11.16) 

including all loop corrections (self-energy, vertices and boxes) to any order in pertur- 
bation theory. On photon shell (q2 = 0), only the Born-like or propagator corrections 
are left. So an obvious RS is the QED on-shell scheme[29] with e2 E e:(O) as the 
parameter, solving for ei as a function of e2 : 

1 1 
2 = e; - - &Q(O), (11.17) 

in terms of e’. 

A&‘) = ~&&I~) - am,, 

(11.18) 

It is important to make a clear distinction at this point between the mathematical 
parameter e2 used to redefine the perturbative series - a renormalization scheme - 
and the physical ezperiment used to define numerically the value of that parameter. 
Let us call the latter choice an input acheme (IS). A finite parameter is defined as an 
arbitrary combination of bare parameters and divergent corrections, but since QED 
reduces to the tree-level Maxwellian form as q2 -+ 0, the on-shell definition of e2 is 
clearly attractive for its simplicity. However the parameter is defined, experimentally 
measurable quantities can then be expressed in terms of the parameter and its value 
fixed by one of the experiments. An alternative experiment with the same scheme 
or definition of ea (11.16) is Compton scattering (Figure 12)[27,28]. Since the photon 

lines are external, they are automatically on-shell (@ = k” = 0). The virtual fermion 
line is not, however, so the decoupling theorem does not apply here. However, if 
the photon energy is much smaller than the fermion mass (ki < m2f), then the 
virtual fermion line is arbitrarily close to being on-shell. Decoupling then applies, 
the corrections disappear, and the tree-level Compton amplitude is recovered. In this 
case, we have in addition k~ + 0, so that the process passes to the non-relativistic 
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limit of Thomson scattering: 

~Compton + ~Thomaon = 
8raZQ4f 

3mzf 

to all orders in cc, as proven by Thirring in 1950[.40]. Modern measurements of Q 
typically use solid-state experiments, as discussed In section IV.5. 

:f:“i:-)--( + )a(.... 

Figure 11. Perturbdive ezpansion for Compton scattering 7 f + 7 f. 

Since divergences occur in II& as (C; C;)A with a coefficient C; for each 

contributing particle, the function AQ(q2) is obviously finite. The corrections, once 
reparametrized, take the form of finite differences of loop functions. The subtraction 
of II& at q2 = 0 is due to the use of e2 as the renormalized parameter. Proving 

the finiteness of QED to alI orders is not as obvious[29]. At two loops, for example, 
the irreducible one-loop diagrams appear embedded in the second outer loop (Fig- 
ure 7~). A general proof of renormalizability must proceed iteratively. Having shown 
that the one-loop amplitudes are finite upon the renormalization of parameters, one 
needs to demonstrate that this same renormalization renders the (n + l)‘h-loop am- 
plitudes finite if the nth-order ones are. The renormalizability of QED was con- 
jectured by the founders of modern covariant quantum field theory, Tomonaga[41], 
Schwinger[42], and Feynman[43] in the late 1940’s, sketched by Dyson in 1949-50[29] 
and proven rigorously by Weinberg in 1960[30,44]. 
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III. Quantum Electrodynamics: Second Part 

III.1 Born-like Corrections: Running Charge - Asymptotia - Decou- 
pling(I) 

The function ef(q’) acts as an effective running charge or a dielectric function for 
the polariaable vacuum. The contributions to AQ(~‘) are a sum over all contributing 
particles (11.12): 

a~($) = C CiQf.fi($;mT)~ 
I 

where ,fi has one form for fermion loops, another for scalars. For I$1 >> mi), fi(n*; mf) 
= ln(/q’I/mi) + o(mf/$), the asymptotic limit. In the low-energy limit, I& < mi, 
f;(q’; mf) = O(q’/mf)[ 27,281. 

The asymptotic running of the vacuum polarization is logarithmic: 

1 
- N -$ - CC;Q~ln(~q2//m~), 
=W) i 

ior all rni < I$j, reflecting the fact that the ultraviolet divergences are also logarith- 
mic. The presence of vacuum polarization gives MIBA non-trivial scaling properties 
as jq*l + co. In higher orders, each proper diagram of n loops with one fermion loop 
contributes U(a”ln( l$\/mf)) to e2AQ(~2)[28]. The two-loop diagrams contribute 
“subleading” or “next-to-leading” logarithms, and so on. The functional behavior 
is always logarithmic, like the one-loop functions, as the divergences are logarithmic 
at any order - only the power of Q and the numerical coefficient change. This re- 
sult, a special case of Weinberg’s theorem (1960)[44], can be used to estimate the 
error made in ignoring higher loops. With lower-order vacuum polarization inserted 
into the higher-order diagrams (more than one fermion loop, Figure 7c), we start to 
obtain higher powers of logarithms. For fermions and scalars, Ci > 0 at any order, 
so that e$($) increases with lq’l, an asymptotically unfree theory. The effective 
charge increases as we penetrate the cloud of virtual vacuum polarization. Even- 
tually, it diverges at a very high q2 : [xi CiQfln(lqa(/m!)]-l N ea. This Landau 
pole[27,28] is actually unphysical, because QED merges into an asymptotically free 
non-Abelian theory long before ez($) bl ows up. The connection between the ultra- 
violet divergences of the theory and its asymptotic behavior is the starting point for 
the renormalization group, which provides a means of directly calculating asymptotic 
Green’s functions equivalent to the Dyson sum at any order of irreducible perturba- 
tion theory[45]. The renormalization group can also be applied to very complicated 
amplitudes where simple formulas like the Dyson sum are not available[46]. 
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The small q2 behavior of vacuum polarization exhibits decoupling explicitly, since 
&(q’) = CiCiQjO(lq2//m~) as q2 + 0, for all rnf > 19’1. Each contribution to 
AQ thus rises linearly with 4’ for lq2j < mi, then softens to logarithmic behavior 
as /q2/ > mf. The point qz = (mi + mi)* = 4mf, for q2 > 0, is called the thwsho[d 
for that particular loop and divides the so-called threshold region q2 S rnf from 
the asymptotic regime q2 X mf. Threshold contributions are small compared with 
asymptotic logarithms. For time-like q2 > 0, the threshold point marks the onset 
of imaginary contributions to vacuum polarization[27,28]. ImII’ and ImAq # 0 
signals the decay of the virtual photon, beginning with decay into physical on-shell 
pairs at lowest order (Figure 12). ImII’ is proportional to the photon decay rate, 
a consequence of unitarity (the optical theorem). The real and imaginary parts 
are related to each other by causality, which restricts the analytic properties of II 
as a function of complex 4’. Causality requires that II be analytic for Imq’ > 0. 
Cauchy’s theorem then implies a dispersion reiation[27,28] for II analogous to the 
Kramers-KriSning relations of optics[26]: 

n’(z) = & dqF2 9, 
4 -* 

c 
(111.3) 

.$i<h 2 = qz + iq e + o+ and the contour C taken in the upper half of the q” 
plane. The imaginary parts’ cr A< 1 rlLc re!f-energy arise in perturbation theory from the 
the infinitesimal imaginary parts of loop propagators. Each state in the theory starts 
contributing as its threshold is passed. ImIX,, can be rewritten as a photon width 
in the photon propagator: ImI&, = @I’,. After this section, imaginary parts in 
amplitudes are not displayed, except for the decays widths of the W and 2 bosons. 
Note that the widths need not be put by hand into the propagators: they come out 
of perturbation theory automatically by not forgetting the imaginary parts of the 
self-energies. 

Im + = -4 
2 

t 
. . . 

Figure 12. Perturbative expansion of imaginary part of photon self-energy as mm 
oveT virtual photon decays. 
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Figure 13. (a) &d( 8) from e+e- annihilation in the non-perturbative resonance and 
perkrbative regions. (b) e+e- annihilation inlo hadronic resonances and quasi-free 
qq pairs. (c) Perturbalive QCD O( aa,) corrections to the photon self-energy[49,47,48]. 

The dispersion relation (111.3) is valid independent of perturbation theory and 
can be used to relate the real pact of vacuum polarization to the imaginary pact: 

ReAQ(s) = ; J”$. 1msf9;“‘) , 
0 

(111.4) 
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with s = q2 > 0 in the annihilation channel. In practical calculations, relation (111.4) 
is the only way to evaluate the contributions of qtj pairs to vacuum polarization and 
the running ef(qa). QCD perturbation theory cannot be used for qq loops coupled 
to the virtual photon until q2 is well above the region of non-perturbative hadronic 
resonances (Figure 13a,b). Thus the vacuum polarization for the udcsb quarks is 
evaluated instead using the ratio &d(s) = o(e+e- -+ hadras)/u(e+e- + @p-) 
from e+e- colliders and the theoretically assumed muon pair production cross sec- 
tion, cr(e+e- -+ pL+p-) = 4xa2/3s at center-of-mass energy 4[47]. Then: 

Re&?(~hd = $ I 
= &od(s’) ds, 

s’(s’ - 3) ’ 
4m: 

(111.5) 

integrating the data from the pion pair threshold through the hadron resonances 
(Figure 13a) until the quasi-free quark region is reached. At high q2, perturbative 
QCD can be used to compute the U( aa.) strong corrections to the vacuum po- 
larization (Figure 13c)[48]. T o carry out 2 pole calculations, ReAQ(q2 = Mi) is 
needed and depends on this hadronic contribution. The use of experimental data 
then introduces a small uncertainty into the computed value of A,(Z) and ez(Z)[47]. 

III.2 Non-Born-like Corrections: Reparametrization - Decoupling(I1) 

Let us now turn to the non-Born-like corrections, the vertices and boxes[27,28]. 
These have the same Lorentz structure as the Born amplitude (II.l), but not the 
same gauge structure: higher powers of Q and Q’ appear. Recall lYP = Fl(q’)-y,,, 
where the just QED Ward identity requires decoupling and non-renormalization of 
the tree-level vertex at q2 = 0 : Fl(O) = eaQ. Following Figure 8, divide Fl into 
true vertex and external self-energy contributions, Fl = Fy + Ffzt. Then Fy(q2 -+ 

0) = eoQ[l+ eiQ2u(q2/-;) + D], w h ere the second term in brackets contains no 

ultraviolet divergences. D is a UV-divergent constant. 

To understand Fyt, we need to digress briefly into the parts of QED renor- 
malization not associated with the photon propagator - the renormalization of the 
fermion mass and field[27,28]. If E is the irreducible fermion self-energy and mfo the 
fermion’s bare mass, then the fully corrected or “dressed” fermion propagator is: 

S=*- 
i 

rnfo -C’ 
(111.6) 

and the tree-level propagator is (111.6) with C = 0. S is in exact analogy with the 
dressed photon propagator, where dim(S) = -1 and dim(C) = +l. The irreducible 
self-energy can be decomposed as C = mfoA + (j - mfo)B + (11 - mfo)Ef($ - 

30 



mfo), where A, B are dimensionless logarithmically divergent constants. Cf is finite. 
A,B,Cf all start at O(o) in perturbation theory. The physical fermion mass mf 
is the pole of the propagator, so rnf = (1 + A)mfa. In perturbation theory, we can 
replace the mfa in the second and third terms of C with mf. Then for p2 + m;, the 
dressed propagator reads: 

s --) i(l + B)-1 
P-rnf ’ 

(111.7) 

with a nontrivial residue at the pole. In real space, iS(r,y) = (O~T$o(z)&(y)~O). 
A physical on-shell fermion 111 would have a residue of unity at the pole, so that 
$0 = #I-. This resealing of bare to physical fields is the field or wave&zc- 
lion renormalization. A complete matrix element has bare fermion wavefunctions 
attached to the external legs, which then must be rewritten in terms of physical 
on-shell states: $0 = (1 - iB)$ at this order. 

The contribution of the external leg self-energies is Ffzt = 2B before wavefunc- 
tion renormalization. After $0 is replaced by (1- iB)+,, Ffzt = 2B - $B - ;B = B. 
Then Fl(O) = euQ[l+ D+ B], and the first QED Ward identity implies in perturba- 
tion theory that D + B = 0 to any order. That is, the external fermion self-energies 
cancel the UV divergence D of the true irreducible vertex after wavefunction renor- 
malization, leaving no infinite or finite dressing of the vertex at q2 = 0[27,28,30]. 
This Ward identity points to a non-trivial relationship between the vertex and the 
fermion self-energy. In all, QED has three true or primitive UV divergences, which 
in four-fermion process show up as: photon self-energy (electric charge renormaliza- 
tion), fermion mass renormalization and fermion field or wavefunction renormaliza- 
tion. The fermion mass and residue corrections, like the vacuum polarization, can 
be absorbed in many different schemes, but for physical on-shell fermions, they are 
all equivalent to the mass and residue shifts shown above. The fourth divergence D 
is spurious. Henceforth, the external self-energies and external wavefunction renor- 
malizations are not explicitly shown. 

Recall the box diagram has dim(O) = -2 and is finite. Decoupling applies 
to boxes also: q20 --t 0, as qa + 0. The box loop also depends on tvto kinematical 
variables - s and t, say - while the vertex corrections depend only on one, q2 = s m t. 

The non-universal corrections are still parametrized using eu. Clearly, we need 
to replace the bare charge with something meaningful. This requires considering the 
higher-order corrections to vertices and boxes, such as those shown in Figure 14, 
and developing reasonable but simple approximations to capture the dominant part 
of the higher-order corrections. This is a controlled truncation of the perturbative 
series, an example of RS or scheme dependence[39,44]. The higher-order corrections 
of Figure 14 are convolutions of the lower-order corrections embedded in loops. To 
estimate the dominant effects, we need only determine which regions of the internal 
loop momenta dominate the integral. For example, in the vertex integral, the internal 
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photon can be dressed by replacing two factors of eg with ez(12) : 

The convolution can then be estimated by noting that the integral is dominated by 
the l2 -+ 0 region - so set ez(Z2) 21 e:(O) = e2 and pull it out of the integral. 
The third factor of eo in the vertex goes with the q2-exchange photon line (see next 
paragraph). The same procedure can be applied to the box 0. The box integral is 
dominated by the regions where the internal photon momenta are either l2 IT 0 or q2, 
the external momentum transfer. Therefore, the higher-order vacuum polarization 
insertions in 0 can be estimated by replacing the factor e: in the box by ef(O)eZ(q’) = 
e2e!(q2). This procedure can be refined to greater accuracy if need be, by expanding 
e:(P) in powers of la, for example. 

. . . 
t =I . . . 

Figure 14. (a) Higher-order insertions in the irreducible uerter function. (b) Higher- 
order insertions in the irreducible boz function. 

With the non-universal corrections sensibly reparametrized with renormalized 
couplings, it is possible to jazz up the IBA by modifying its tree-level vertices with 
corrections: eoQ + eoQ . r(q2). The modified IBA has the form: 

MMIBA = MIBA + vertices 

A Q . r(q2) . =%n2) . Q' . JT?) 

92 ’ 

(111.9) 

where we have taken a second step beyond perturbation theory by combining the 
vertex and propagator corrections together into a single matrix element. We have also 
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gone beyond the true Born structure, because the vertex corrections, while having 
the same Lorentz properties as the tree-level vertex, carry two additional powers of 
Q for each loop: r = eoQ[l+e2Q2. functia(q2)+. . .I. The non-Born-like box graph 
can also be added to obtain the matrix element with the complete loop corrections: 

M all loop, - - Mm?a(q2) + Q2 . Q” . @(s, t), (111.10) 

where 0 has the couplings factor e2.ef(q2) and a non-Born-like gauge charge structure 
at one-loop order. 

III.3 Non-Born-like Corrections: Radiation - Infrared Divergences 

Having constructed this elegant modified Born approximation, we must now tear 
it up, for there is another kind of infinity lurking in the non-Born-like corrections, 
infrared (IR) divergences. These are peculiar to theories with massless particles like 
the photon, and are closely connected with the low-energy, long-distance proper- 
ties of the theory. The IR-divergent loop contributions always have the logarithmic 
form 1n(]q2]/M:), where M,’ is a vanishingly small fictitious photon mass inserted 
to regulate the divergence. Parallel divergences also occur in the type of radia- 
tive corrections we have hitherto ignored, the radiation of real, on-shell photons or 
brem~j!~:;!rn_o!27,28,50]. 

Figure 15. One-photon radiation from a neutral-current four-femion process. 

Figure 15 shows the set of one-photon radiation graphs for our process. The 
insertion of radiated photons into MO actually produces the amplitude and prob- 
ability for a different process, four fermions with one or more real photons in the 
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final state. However, the process 4f + photons is degenerate with the process 4f 
in the limit that the energy-momentum lost from the fermions to radiation goes to 
zero. This is kinematically possible because the photon is massless. In a physical 
situation, the total probability for the process 4f is the sum of the probabilities 
for 4f, 4f + 7, 4f + 27, etc., for soft photons - not amplitudes, because these are 
still distinct states in the theory. What “soft” means specifically depends on the 
experimental set-up - whatever the lower limit is on detecting the photons either 
indirectly, by their effect on the fermions through missing energy and momentum, 
or directly. There is always some such limitation to any experimental apparatus, be- 
cause energy-momentum measurements of infinite precision are not possible without 
infinite amounts of time and space and zero thermal noise. Note also that the electric 
charge eo accompanying each real photon at its point of emission is exactly renor- 
malized to the on-shell e once the photon self-energy is inserted into the radiated 
photon line, because these photons are real. 

Working to a given order of a fixes the number of emitted photons, as Figure 15 
makes clear. The differential probability for the emission of one soft photon from a 
radiation-less process with probability P is: 

dP(l7) = 1 2a 
d!O 

- . --[ln(fl) - l] . P(O7), 
w r 4 

where w is the photon energy, for 1q21 > nz;. (III.lla) exhibits the typical l/w form of 

the soft photon spectrum, and the typical large ultraviolet logarithm ln( 1q21/m2f) - 1 
for the high-energy case. The total probability integrated over photon energies from 
zero to the physical cutoff wC logarithmically diverges! This is an infrared divergence, 
for if we put in a small photon mass MY, the divergence is regulated: 

P(l7) = P. 144%) . P(O7), 

p = ~[ln(iq’l/mj) - 11. 
(III.llb) 

This logarithmic form of infrared divergences occurs in all QED processes and, 
in the high-energy case, is accompanied by an additional ultraviolet logarithmic 
enhancement[27,28,50]. 

The term P(O7), once corrected with loops, contains IR-divergent vertices and 
boxes, and the two divergences - one due to massless virtual photons in loops, the 
other due to radiated massless photons, both emitted from the external legs - cancel, 
and M, disappears. The divergences cancel order by order in perturbation theory. 
They are due to the perturbative separation of virtual from real photon emission 
- the two processes actually run smoothly into each other as the loop photons 
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approach their mass-shell. The cancellation of infrared divergences was first shown 
by Bloch and Nordsieck in 1937 for the special case of classical matter currents 
and quantized radiation[Sl], then extended to fully quantized electrodynamics by 
Yennie, Frautschi and Suura in 1961[50]. The QED result is in turn a special case of 
a general theorem due to Kinoshita, Lee and Nauenberg: for quantum field theories 
with massless particles, appropriate sums of probabilities over degenerate states - 
states degenerate but distinct because of the presence of an arbitrary number of soft 
massless particles - are infrared-finite[52]. 

In the case at hand, we need to disassemble the MIBA and compute the proba- 
bility to the appropriate order: 

IMoTI’ = IMo + Muetticea + Mbzea12 G IMol’ + 2Re(Mg)‘(Muerticer + Mbozer). 
(III.12a) 

On the other hand: 

lM~,l’ A IM vertez ~1~ + lMvertez ~4’ + 2WMvertez Q)*(J+LA~~ ~1). 
(111.126) 

The loop divergence of the vertex loop at Q, with the form Q2, cancels the radiation 
divergence from the same vertex; the analogous cancellation occurs for the vertex at 
Q’; and the loop divergences of the boxes, with the form Q. Q’, cancel the radiation 
divergences of the same form, the interference cross terms. Diagrammatically, this is 
intuitively clear from studying Figures 8 and 9, imagining that one cuts each virtual 
photon line in turn and matches it up with the corresponding radiation diagram in 
the square of Figure 1.5. Notice that the replacement of ei in the vertex and et with 
appropriate renormalized couplings, as outlined in the last section, does not interfere 
with the cancellation of infrared divergences - in fact, such approximations take 
advantage of precisely the infrared properties of the vertex and box graphs, which 
are dominated by the photon mass-shell 1’ = 0 or the hard exchange momentum 
I2 = qz. The vertex radiation is exactly of 0(e2) and the interference radiation 
exactly of O(e2 . ef(q2)), the same order as the leading higher-order corrections to 
the vertex and box loops! 

The fact that the infrared divergences are artifacts of the separation of virtual and 
real photon emission suggests a different approach, treating both kinds of photons 
together. Staring at (111.11) carefully, we notice that while the photon emission 
probability and therefore the total number of emitted photons diverges, the total 
energy emitted does not: 

Em&ted N I 
1 

duw.-. 
w 

This fact indicates that soft photon emission occurs in a semiclassical regime where 
photon number loses it meaning[28]. Photon number is not conserved in QED in any 
case. An alternative treatment could take advantage of this fact and ignore photons 
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explicitly, calculating the effects of radiation solely in terms of the energy-momentum 
lost. The photon approach can be converted into a semiclassical regime by summing 
over photon number in the total probability. This sum in the soft limit has the form: 

p = (1 +pln(wJJ&) + $[Pln(4/Mt)12 + ...I .p(07); 

because, in this limit, each photon emission is independent, and the contribution 
of n photons is divided by the Bose symmetry factor n!. The soft series sums to 
an exponential. The IR-divergences of the vertices and boxes can also be shown to 
exponentiate, so that the first-order divergence cancellation carries through to all or- 
ders[ SO]. The effect of radiation sums to a power form (w,2/]q2])@. The corresponding 
differential spectrum thus behaves as UP-‘, rather than w-r, and has acquired an 
anomalous dimension p after resummation. Note that the probability of no radiation 
(w + 0) is zero once p is summed into the exponent - a physically sensible answer 
- while the one-photon formula would have given a meaningless divergent answer. 
By carrying out this sum, we have freed the calculation of radiation from any de- 
pendence on photon number. We have also overcome the numerical inadequacy of 
perturbation theory for soft photons, which is actually an expansion in Pln(wz/[q21) 
in the high-energy case[27]. The one-photon approximation is inadequate for radi- 
ation near or on resonances, such as the 2; the product of infrared and ultraviolet 
logarithms is large, and some higher-order emission is needed to make the calculation 
accurate[SUj. This summation or exponentiation of radiation is our third extension 
of perturbation theory. 

An elegant way to implement these ideas is through the use of structure func- 
lions that describe the spectrum of energy-momentum loss due to the emission of 
radiation and the effect of the virtual soft photons emitted in vertex loops. Start- 
ing from the simple version of this idea, first proposed by Williams and Weiesilcker 
for photon emission[53], Altarelli and Parisi developed a set of integro-differential 
evolution equations for the structure functions of quarks and gluons in QCD[54]. 
This modern gauge theory version has been successfully reimported into QED[55]. 
Structure functions are valid only for photon emission from vertices, where the same 
external fermion line runs continuously through the diagram. Such contributions 
are “partonic,” in analogy with QCD. Diagrams not satisfying this criterion, such as 
box diagrams and the interference of radiation from two different fermion lines, are 
“non-partonic” and cannot be treated this way. Fortunately, the box/interference 
contributions are usually not important. Consider the initial vertex radiation in 
e+e- annihilation at s = q’ (Figure 16). There is an arbitrary number of soft 
on-shell or virtual loop photons at the e+e- vertex. We only care about the total 
energy-momentum lost to radiated real photons and the effect that real and virtual 
photon emission has on the “hard” annihilation vertex into the virtual photon line q2. 

By the time the fermions get to the annihilation vertex, the total four-momentum of 
the e+e- system has been modified by the loss of four-momentum to radiation. The 
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radiation loss needs four variables for a complete description: In the center-of-mass 
frame, the e+ and e- lie along a line described by their equal and opposite three- 
momenta: p- = (E;p), p+ = (E; -p), with s = 4E2 and p: = 0. The loss to radia- 
tion is most simply written in terms of collinear reduced three-momenta: p -+ z-p 
for the electron, -p -+ -++p for the positron; and the transverse momentum pl, 
where ~1. p = 0. The effective annihilation energy is given by a’ = C+Z-a - p?, 
and the cross section with radiation is just a convolution of the radiation-less cross 
section with a structure function F(z+, I-, pi) : 

u,+,-(s) = J dz+d=-dpl F(z+, 2-7 PI) 4+Bp-(3’)> (111.13) 

with s and pi evaluated in the center-of-mass frame. In this approximation, the IBA 
can be used for the radiation-less cross section, the vertex corrections are included in 
F and the boxes have been ignored. The factotiration of the soft photons shown in 
(111.13) is valid only for the infrared-like 1n(wt/lq21) partonic contributions and only 
if the masses of the external fermions are negligible, rn; Q Iq’I. The Altarelli-Parisi 
equations for F can be solved to a fixed order in a, or solved non-perturbatively, 
exponentiating the soft logarithms. For example, if we integrate out the transverse 
momentum, the purely infrared exponentiated part of F takes the form: 

F(z+,z-) G p(1 - z+z-)p-‘, 

where s’ = I+Z-s. This is a covariant generalization of the infrared-summed emission 
probability, with the same anomalous dimension. 

Figure 16. Arbitmrg real and virtual photon emission from efe- annihilation vertez, 
summable via AltarellCParisi equatiom[55]. 

l Note that the energy-momentum of the emitted radiation does not satisfy the dispersion 
rel&x~ of a tigle photon. The mdiation really does require four variables, not three. 
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III.4 Putting It All Together - Higher-Order Corrections 

IBA/radiation approximations, such as (III.lZ), are more than adequate for most 
purposes. The Born-like corrections are taken care of by using el(q2) with q2 = d, 
remembering that the effective kinematics flowing into the hard q2 photon line is 
modified by radiation loss. The structure function approach can take care of the 
real and virtual emission of photons from one or both vertices, if rn! Q /$I. For- 

tunately, the box/interference terms are usually not important. Instead of (111.13), 
we do have the alternative of (111.12), computing the radiation and vertex and box 
loops in ordinary perturbation theory. Along the way, we encountered three ex- 
tensions of perturbation theory: (1) the Dyson sum and the IBA, which includes 
Born-like corrections; (2) combining universal corrections and vertex loops into a 
single matrix element, the MIBA matrix element; and (3) the exponentiated form 
of the IR-like real and virtual photon emission. These extensions involve selective 
summation of certain corrections and require as inputs the irreducible parts, them- 
selves a perturbative series in proper loops. The MIBA is not valid in QED under 
any circumstance, because it leaves the infrared divergences uncancelled. It must be 
replaced by either the order-by-order radiation calculation or, when valid, the struc- 
ture function method. These extensions of perturbation theory are often necessary 
to sum large corrections typical of high-energy processes into a better-behaved form 
- in particular the large Y. logarithms fouzd in $(q’) and the large combined 
I?,-CV logarithms of soft radiation.* 

So far, we have only worked- through one loop of the proper corrections. A full 
calculation would, of course, require all the higher-order terms as well[44]. Because 
QED and the EW SM are renormalizable and 0: is small, the higher-order terms as 
a practical matter fall into two classes: (1) corrections that can be put into a form 
that corrects the parameters occurring in one-loop expressions; and (2) corrections 
that cannot be put into such forms. An example of the first type of correction is 
the infinite series of fermion self-energy bubbles correcting the mass of a fermion 
already appearing in a one-loop photon self-energy (Figure 17). The fermion mass 
that should appear in the one-loop expression is the bare one; the subset of higher- 
order diagrams made of all the embedded fermion self-energies can be approximated 
very well by just changing the bare fermion mass to the physical one in the one-loop 
expression. We have already seen an example of this type of higher-order correction 
when we shifted the bare coupling eg to meaningful effective couplings in the vertex 
and box diagrams (see above). Note in this case that the form of the one-loop 
expressions is unchanged; only the parameters are changed, and the higher-order 
corrections are implicitly absorbed into the new parameters. 

* These three extensions of perturbation theory really are eztensiona and not non-perturb&w 
constructions, since they are derived from selective summation of the perturb&ix series. True 
non-perturbative effects, such aa bound states (negative powers of a) or tunneling (exponen- 
tinted negative powers of a), me non-analytic in the coupling. 
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(a) (b) 

Figure 17. (a) Higher-order insertions of fermion self-energy in the photon self- 
energy. (b) Perturb&m ezpanaion of irreducible fermion self-energy. 

In the second case, we cannot fold the higher-order terms into shifts of the 
parameters that occur in the one-loop terms. In this case, we have to express the 
corrections explicitly in the proper functions, A simple example is the two-loop 
vacuum polarization[28]: 

% = q2bt~ ‘II& + 4 * *II&Jq*)], 

as in Figure 7a. Part of the two-loop correction falls into the first class, above, 
and can be absorbed by shifting the internal loop fermion masses. Some part is left 
over, however, as alI&,. When inserted into the photon propagator, we obtain the 

function ei(q2) to two loops. If we now renormallze, for example, using the QED 
on-shell scheme, we have to solve a more complicated equation for ei in terms of e2 : 

1 1 
2 = e; - - ‘n&(o) - e;. 21-I!-&O)* 

In practice, this is done by means of successive approximation; i.e., ignoring the 
two-loop term at first, finding ei to CJ(e2), then substituting back in to find ei to 
O(e*). 
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In any case, since we cannot carry out the perturbation theory to all orders, the 
practical approach is to develop some systematic and intuitive way of approximating 
the higher-order contributions so as to capture the dominant effects, without making 
the calculation impossibly complicated. The goal is to strike a compromise between 
simplicity (the one-loop expressions) and completeness (all orders). Fortunately, 
in QED and the EW SM, higher-order corrections of the second type are usually 
negligible, while corrections of the first type, while small, are often necessary to keep 
the calculations up to a reasonable numerical accuracy. “Reasonable” in this context 
means more than accurate enough for the current and next generation of experiments, 
just to be conservative. Experimental limitations and convergence of the series are 
the eventual arbiters of where exactly to stop worrying about higher-order terms. 

The higher-order corrections of the second type (not of one-loop form) are nu- 
merically significant only in exceptional cases, occurring when terms otherwise sup- 
pressed by higher powers of a are systematically enhanced by large dimensionless 
factors. We have already met one example, the radiation corrections of the last sec- 
tion. Two more classic instances of this possibility are the large logarithms of the 
running couplings for grand unification, and the summation of ladder diagrams in 
QED bound states. In the GUT case[ 561, the UV logarithms that run the couplings 
are taken to very high energies, so that two-loop contributions to the gauge boson 
self-energies, while small O(a2 ln(Mi/M&), are not negligible with the precision 
available in present experiments. In the QED bound state case[27,28], the naive 
expectation t&t successive terms in the ladder expansion (Figure 18) are smaller by 
a factor of a is upset by the fact that each diagram is enhanced by a momentum 
exchange factor of 0(1/o). The appearance of inverse powers of a signals a non- 
perturbative bound state, and the momentum exchange between the constituents 
is fixed to be of O(amr). This kind of non-perturbative effect is not important in 
high-energy EW SM processes. 

I I o(+z)+e~ op.-&) + l ** 

Figure 18. Ladder ezpansion of fermionic bound state Bethe-Salpeter equation, each 
term of order O(a-‘)[27]. 
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III.5 Renormalization Schemes - the MS Scheme 

The error induced by not carrying out the perturbative expansion exactly and 
approximating the higher-order terms instead, usually goes under the name of renor- 
malization scheme-dependence in the literature[ 221. The reason follows from the 
last section: the important higher-order corrections in EW SM processes are usually 
the ones that effectively amount to replacing the bare parameters occurring in one- 
loop expressions by appropriate physical ones. This choice of parametrization is not 
unique, and is something of an art, but a good choice for any specific case is guided 
by the size of the coupling (how fast the series converges), the nature of the loops, 
the kinematical regime, and the experimental accuracy available. 

Even the fundamental reparametrization of section II.4 needed already at one 
loop is merely a special case of this more general problem of reparametrizing the 
complete amplitude at higher orders. The reparametrization as a practical matter is 
always based on the renormalization of bare parameters by propagator corrections 
(section 11.4) in a renormalizable theory, because of the special correspondence of 
bare parameters and divergent propagator corrections in such theories. At this point, 
it is important to distinguish carefully between the order to which an amplitude is 
computed and the order to which the renormalized parameters that pammetrize the 
amplitude ore defined. Given a physical process and the perturbative calculation 
carried to compute its amplitude, we are free to reparametrize that matrix element 
in any way we please oe long ad the repammetriz-ation is carried out consistently to 
or beyond the order to x&A the amplitude is computed. On the other hand, it is 
certainly least painful to choose a renormalization scheme that makes the matrix 
element as simple as possible! 

The paradigmatic example of the simplification available from the freedom to 
reparametrize in more than one way occurs in asymptotic QED[45, 571. Considering 
only the Born-like corrections in this example, we know that e:(q’) in the QED 
on-shell scheme runs with the UV logarithmic corrections of the form aln(q2/mf) 
from loops of mass m;, neglecting the non-logarithmic terms O(mf/q2). The simple 
scaling properties of tree-level QED are violated by the presence of the loop masses 
m; in the running. To compute et(q2) from e2 requires knowing all the relevant loop 
masses. Suppose now that instead of parametrizing ez(q2) in terms of the on-shell e2, 
we use e2(p2) = ez(p2) at some //.L~], 1q2j >> all -1. Then e1(q2), neglecting terms of 
U(rr~~/q~,rn~/~~), runs in this new scheme with logarithms of the form aln(q2/p2). 
Simple scaling has reappeared, albeit in a new, non-trivial form: the running is now 
independent of the masses mi of the loop particles. Asymptotic amplitudes simplify 
when we chose a better renormalization scheme. This scheme is usable if we then have 
a way to measure e2(p2). In the asymptotic regime, once past the particle thresholds, 
QED becomes simple again, although not as simple as the tree-level or low-energy 
(q2 -+ 0) cases. Recall that the logarithmic asymptotic behavior is connected with 
the logarithmic divergences and these, finally, with the fact that the gauge coupling 
is dimensionless in four spacetime dimensions. 
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This asymptotic simplification to “leading logs only” suggests an alternative 
renormalization scheme, where the parameters have the logarithms built-in. In the 
context of dimensional regularization, this approach is known as the modified min- 
imal subtraction or MS scheme[33). To understand MS, first notice that in n # 4 
spacetime dimensions, gauge couplings are no longer dimensionless: eo -+ eo . n’, 
where E = (4 - n)/Z as before, n is a new parameter of mass dimension one, and 
eg has been redefined to be dimensionless. When we continue back to n = 4, the K 
disappears in the classical theory. In the quantum theory, however, n superficially 
remains in unrenormalized amplitudes. Noting that ez($) in R # 4 dimensions is 
also dimensioned and inserting the correct factors of n into (11.15): 

1 1 - = - - ,pn~&2) 
4(n2) ei 

= -$ - [C CiQf(A + In&’ + finite terms)], 
I 

(111.14) 

where the displayed ez is redefined to be dimensionless and the E -P 0 expansion 
has been carried out. Notice now that along with each divergence in II& an addi- 

?~011al ln(K2) occurs: II& = CiQi[A + ln(n*) + . . .I. The attentive reader will have 
noticed that the unrenorm-‘V dzed II’s contained logarithms of dimension-2 quantities 
all along. These logarithms are now properly dimensionless with n present. Since 
after renormalization, only differences of logarithms remain in ez(q2), the unphysical 
n cancels. In order for this cancellation to hold in (111.14), ei itself must depend on 
n! In terms of a “truly bare” coupling eg, the bare coupling must read: 

$ = -f$ + xCiQf(ln/~’ -1nmf). 
* 

Note that ei then depends on all the particles carrying gauge charges Qi. 

The MS scheme takes advantage of the unphysical n terms to simplify the 
parametrization of ez(q’). First set t? = qz. Divide up all the particles i in loops into 
sets j and k, such that -3 < q* and rn: > q2. Then define the MS coupling k2(n2) : 

1 
- = i - T C;QiA + C CjQ~ln(n2/m~), 2(d) 

j 
(111.154) 

- 

Then e:(q’) can be re-expressed in the MS scheme: 

1 

m= & - [CCjQ@(m;/q’) + C Cl:Q:o(q”lmE)l. 
j 

(III.15b) 
k 

That is, &‘(‘E~) with n2 = q2 absorbs the leading logarithms due to light particles 
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mj, leaving only the subleading O(m!/q2) and heavy threshold 0(q2/m:) terms. 

Denote the terms in brackets in (111.15b) by fibQ(q2), the self-energy subtracted in 

the MS scheme. The MS scheme is called mo&fied, because in the original minimal 
subtraction (MS) scheme, only the l/e parts were absorbed into the renormalized 
coupling, not the full A = l/c - 7 + ln4n, as in (IILlS=). 

IV. Electroweak Gauge Theory 

m...my point of view at the time uas, ‘This is the way that theories of the weak 
interactions must be. ’ But not, ‘I know that SU(.??))x U(1) is right.’ I regarded that 
theory as illustrative, and I gtill - I can’t get over the fact that it turned out to be 
right. 

- Steven Weinberg[58] 

IV.1 Symmetry-Breaking - Vacuum Structure 

The full electroweak theory[l,7,8,10] differs from QED by three features: (1) 
the gauge group SU(2)xU(l) is not simple; (2) the group is non-Abelian - that 
is, its generators are not all mutually commuting[S]; and (3) the gauge symmetry 
is spontaneously broken in the vacuum or ground state of the theory, although the 
gauge symmetry is still a good symmetry of the Lagrangian. The bare theory requires 
three parameters: the dimensionless gauge couplings go and gb and, in the MSM, 
the VEV (~$)a = vo/fi of a single Higgs scalar SU(2), doublet to set the mass 
scale. Extensions of the Higgs sector are possible and even desirable. Let us defer 
discussion of the non-Abelian aspects of the theory to the next section and consider 
the broken symmetry first. 

The key point ab out spontaneous SB is that the full gauge symmetry, which 
is not manifest at low energies, can be broken by the ground state, while the dy- 
namics in 130 remains gauge-invariant, renormalizable and unitary[ 12,171. The chief 
requirement on the ground state is that it be electrically neutral, so as to preserve 
unbroken the U(1) of QED. The photon is then massless, and the long-range limit of 
electrodynamics is described by Maxwell’s equations. Since Q = If + Y, the condi- 
tion Q/O) = 0 imposes a relation between the left isospin and the hypercharge of the 
VEV. For arbitrary Higgs multiplets @i, recall from section I.1 that the bare gauge 
boson masses are related by: 

M& = poM& cm2 OwO, 

where the bare “p parameter” is: 

PO = 1 + Ci(a!o(lZ - 313L2)ai0) 
Ci(rp~o(21,L2)aio) ’ 
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The parameter pa is arbitrary in general, unmeasurable, and renormalized by the 
Higgs interactions. It is replaced after renormalization by an arbitrary tree-level 
parameter p, The EW SM gauge interactions then require four tree-level parameters 

for renormalization. Clearly, if all our VEV multiplets satisfy 1: = 31f2, then po z 1. 

This holds, for example, if all the multiplets are sum doublets. In this case, po is 
replaced after renormalization by a finite combination of radiative corrections, and 
there is no fourth independent tree-level parameter. As we shall see in section V.3, 
the measured p II 1, so it is plausible to assume the deviation of p from unity is due 
to loop effects alone and that po = 1. The po = 1 case is the Minimal Standard Model 
(MSM), and the arbitrary p case the Eztended Vacuum Standard Model (EVSM). 
The condition po = 1 does not have to be ad hoc, but is a consequence of a global 
symmetry that can be imposed on the Higgs VEV’s; that is, a global symmetry that 
remains after the Higgses acquire VEV’s and the gauge symmetry is broken, 

The Higgs couplings to fermions (Yukawa couplings) are proportional to the 
fermion masses; in the limit of massless external fermions, the tree Higgs exchange is 
not important in four-fermion processes. The Higgs sector is important for us only in 
how the Higgs couples to the gauge bosons. This determines how the gauge bosons 
acquire their masses from the static VEV’s and the p parameter. The Higgses are not 
important dynamically, except as they occur in the gauge boson self-energy loops. 
In the Re gauge, the spontaneous SB requires also the inclusion of the would-be 
Goidsione hnsnzr: in intermediate states, although they are not physical and never 
appear as external legs[8,28]. 

The major interest in radiative corrections lies in the gauge boson self-energies 
that occur universally in all gauge-exchange interactions: From section 1.4, recall 
that there are three physical gauge currents, associated with the photon, 2, and 
the W; but that these can be broken down into left isospin and electric charge 
currents. Define IIAB = (T[JAJB]) as shorthand for self-energy functions. The four 
independent physical self-energy functions are: 

II 
e2 

zz = -&[ITs2 - 2s&q + &I,,] 
soco 

rz~ = $pQ - .aQQ] 

II ww =$LnlI +n221 =3[n+- +II-+] e2 

4 2 4 2 
= ~II*i 

90 

(IV.3) 

* In much of the literature, the Born-like electroweak radiative corrections are referred to as 
“oblique” corrections and the non-Born-like an “direct,” following ref. 59. In the limit of zero 
external fermion masses, the relevant gauge bcaon self-energies are proportional to gr.. 
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and since II,, = Haa, II-+ = II+- E II& by the residual isospin symmetry left 
after SB, there are four equivalent simple reduced self-energies: HQQ, IIJQ, IIss, II*. 
As Q = 1: + Y and 59 = Ji + Jy, we could use IIsy and IIyy instead of HQQ 

and &Q. But because J$ is a conserved current and U(l)q unbroken, the latter 
set is more convenient. The complete set of neutral- and charged-current Dyson’s 
equations, with the tree-level propagators and H’s as inputs, are written out in 
Appendix A[39,59,63]. 

The tree-level consequence of SB is that the bare gauge boson masses are not zero. 
The breaking has a further consequence at loop level; namely, that the Ward identi- 
ties of the gauge theory, called SlavnowTaylor identities [60,61] in non-Abelian cases, 
are broken. A new set of modified Slavnov-Taylor identities emerges, whose form 
is controlled by the gauge-invariant couplings and the exact pattern of symmetry- 
breaking. Since left isospin is completely broken, the Slavnov-Taylor identity corre- 
sponding to the second QED Ward identity - that IIQQ($ = 0) = 0 - is changed 
to so that &a(O) and II*(O) # 0. This causes no problem with the propagate rs 
since the corresponding tree-level 2 and W masses are not zero to start with! On 
the other hand, IIQQ(O) = 0 still holds, as QED is unbroken. (II~Q almost has this 
property, except for a subtle peculiarity discussed in the next section.) Roughly 
speaking, the “broken” self-energies take the form II N qa . A(q’) + M;” . B(q2), 
where M; is a loop mass and the functions A, B are dimensionless. Their divergences 
continue to be exclusively logarithmic. The functions A(q2), as in QED, run the 
gauge couplings, while the functrons B(q2) shift the gauge boson masses. The terms 
M,?. B(q2) appear in the II’s ij and only ifthe mass of the loop particle M; arose from 
the same Higgs mechanism that breaks SU(2)r.xU(l)y. That is, Mi w X x D, where 
X is a generic mass-generating coupling to the Higgs sector. Actually, this condition 
is necessary but not sufficient for these terms to have physical effects; the precise 
requirements are spelled out in section IV.3. Nevertheless, these terms open a new 
world of “non-decoupling” radiative corrections[l9, 591, corrections that do not re- 
spect the decoupling theorems of unbroken gauge theories and form a major aspect of 
weak interaction physics. “Heavy” physics, above the 2 or whatever the exact point 
we reach, can have effects on low-energy processes, and low-energy measurements 
can place limits on particles too heavy to produce directly. 

IV.2 Non-Abelian Properties - Running Couplings 

To start our analysis of the non-Abelian properties of the EW SM gauge interac- 
tions, it is useful to revert to the original SU(2)z and U(l)y gauge couplings, 90 and 
gb, for the moment. From the properties of QED, we should expect that the bare 
couplings are replaced in the Born-like corrections by effective running couplings, 

g:(q2) and g’f(q2), driven by the gauge boson self-energy functions. This expec- 
tation is fulfilled, but the procedure outlined in sections 11.4/III.l for QED suffers 
some essential modifications, because of the symmetry-breaking and because of the 
non-Abelian properties of the theory[39,62]. 
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The key difference between Abelian and non-Abelian gauge theories is that the 
gauge bosons of the latter themselves carry charge under the gauge group. This 
feature leads to gauge boson self-interactions, something that cannot occur in QED, 
because the photon is neutral[5,7,8, 10,281. I n mathematical terms, the generators 
of the gauge group T’ (in any representation, with adjoint index a) do not commute 
with themselves: [T”,T*] = if”“T” in general, where the antisymmetric pk are 
called the structure constants of the group and are identically zero in the Abelian 
case. This “non-Abelian-ness” changes the properties of gauge theories in many 
ways. Of specific interest here is the appearance of gauge boson loops in the gauge 
boson self-energies (Figure 19). Their presence in the expansion requires the addition 
of the Fadeev-Popov ghosts (Figure 19c) for a consistent quantization[5,8,28,60,61]. 

q----p 0 ---.“‘L . . 
l .- 

(a) (b) Cc) 

-( 

--a* 

I+- 
.--’ -+2- 

(d) (e) ( f) 

Figure 19. Non-Abelian contributions to the gauge boson self-energies: (a,b) gauge 
boson loopa; (c) Fadeeu-Popou ghost loops; (d,e,f): would-be Goldstone and Higgs 
boson loops[8,28]. 

The contributions of scalar and fermion loops to the gauge boson self-energies are 
gauge-invariant (t-independent), for each multiplet separately. The contribution of 
the gauge boson loops (including the ghosts and would-be Goldstones) to the gauge 
boson self-energies is not gauge-invariant. This contribution is proportional to the 
adjoint Casimir operator C(V)@ = fh fd”. Because the gauge charges for any 
particles transforming under the group (for example, the external fermions in our 
processes) do not commute, new terms with no QED analogue appear in the vertex 
and box corrections(391. In our case, two generic “non-Abelian” contributions appear 
in the vertices and one in the boxes. They can be isolated by writing out the prod- 
ucts of gauge generators (fermion charges) running along a continuous fermion line 
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(Figure ZO), re-expressing the pairwise products as commutators and anticommuta- 
tars, then simplifying by using the symmetry properties of the (anti)commutators. 
The “non-Abelian” parts of vertices and boxes are proportional to at least one gauge 
generator commutator and have no analogue in QED; while the remaining “Abelian” 
vertex and box corrections are proportional to only anticommutators and are just 
generalizations of the vertex and box corrections of QED, which are proportional 
to products of the external fermion electric charges. These Abelian vertex and box 
loops are separately gauge-invariant, exactly as in QED; the non-Abelian corrections 
are not, but they are proportional to C(V). If we avoided carrying out a Dyson sum, 
we could just add up the non-Abelian self-energy, vertex and box loops to lowest 
order and discover that the sum proportional to C(V) is gauge-invariant. A related 
feature of these non-Abelian terms is their group transformation properties. All of 
the non-Abelian vertex and part of the non-Abelian box terms are Born-like, repro- 
ducing the Born Lorents/gauge current-current form, with a single gauge generator 
at each vertex and the correct kinematical dependence. Inserted into the matrix 
elements, these non-Abel&r terms really belong with the propagator corrections[63]. 

&a Tblp T$----q; 
Tb TC 

(a) (b) (c) 

Figun 20. Vertex and boz graphs with Abelian contributions (a,~) and non-Abelian 
(a,b,c) contributions[39]. 

Related to the gauge non-invariance of the II’s is the presence of new diver- 
gences and leading logarithms in the non-Abelian vertex terms. The non-Abelian 
vertex terms PA* do not satisfy the first QED Ward identity, meaning that the 
non-Abe&n gauge coupling undergoes an “extra” renormalization in addition to the 
one generated by the self-energies. A purely renormalization group analysis picks 
up these divergences and leading logarithms from the corresponding counterterms[8, 
281. The parallel technique in the S-matrix approach starts with defining new, gauge- 
invariant kernels for the Dyson equations. This step can be stated in terms of a set of 
gauge-invariant effective self-energies II’, which are the appropriate combinations of 
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self-energies, non-Abelian vertices and non-Abelian boxes. The result of solving the 
new Dyson equations is then a set of gauge-invariant effective propagators that make 
up a gauge-invariant electroweak IBA. This IBA can be re-expressed using a system 
of star functions analogous to ef(n9) for QED gauge interactions[tX?]. Non-Born-like 
corrections, such as the Abelian vertices and boxes, are grouped separately in the 
matrix elements[64]. 

The unavoidable drawback qf this procedure is that the Born-like star system 
varies depending on what types of particles are attached to the external legs of the 
process. For example, two-fermion/two-gauge boson processes (such as e+e- + 
W+W-) have a set of effective gauge boson propagators different from those in four- 
fermion processes, because the vertices and boxes take a different form in this case 
with gauge bosons on the external legs. However, gauge invariance and renormaliz- 
ability guarantee that we can always construct effective propagators from one class of 
processes to another that differ only by gauge-invariant, non-divergent, non-leading 
logarithmic terms. Even within the class of four-fermion processes, we have some 
freedom in what to put in the effective self-energies, as long as they end up gauge 
invariant[62]. Some residual non-Abelian corrections remain in the non-Born-like 
part of the matrix element, unabsorbed into the effective propagator. In four-fermion 
processes, an additional constraint this procedure must satisfy is that whatever resid- 
ual non-Abelian vertex is left in the neutral-current matrix element vanish at Q* = 0, 
so that the full EW matrix element precisely reproduces the QED matrix element in 
the q2 + 0 limit and the electric charge suffers no new renormalization on the photon 
shell. The scsembr -y of the effective gauge boson propagators and the correspond- 
ing system of star functions for the IBA is a distinct step in perturbation theory 
prior to renormalization; let me call this choice a propagator construction. A natural 
construction that respects the necessary constraints is outlined in Appendix A. 

Using the gauge-invariant effective self-energies II*, we can define the two running 
gauge couplings ez($) and gz(q2) : 

1 1 
ipj=lj - ~‘b,(q2), 

1 1 
- - - - II*:,( 
s2(n2) - L7: 

(IV.4) 

with sf(q2) = ez(q2)/gz(q2). II&(q2) and II& enjoy the property of being divis- 

ible by q2 and therefore respect the decoupling theorem. This should come as no sur- 
prise since the electromagnetic gauge current JG is still exactly conserved: If we run 

a gauge coupling from p2 to q2, say, the effect of particles with masses rni < Iq21, 1~~1, 

* The properties of II;* 
conserved[59]. Now II* 

are somewhat subtle. IIs,(O) # 0, in spite of the fact that JG is 
sq = lIsq plus some other terms. These other terms are not unique, but 
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decouples from the relation between these two couplings as (q2,p2)/mf. Thus the 
running of ef(q2) and gz(q’) respects decoupling, although the nomalization of a 
coupling at a given q2 may have non-decoupled corrections if the coupling is com- 
puted from some other quantity. For example, the canonical reference point for az(q2) 
is the 2 pole, q2 = Mi. Given s:(Z), we can compute s:(O) from: 

1 1 
- - - = -l-$,(O) + H*;,(Z) E +A,(Z), 
6(O) 4(Z) 

1 1 
- - - = -n*;,(o) + n*;,(Z) z -Aaq(0), 
d(O) s3-q 

(IV.54) 

where two finite functions have been introduced: 

AcAn’) = $q(q2) - ~*&&‘L 

Asq(q2) = rr*:,(q2) - n*iq(Z), 

(IV.5b) 

containing leading logarithms for particles of mass mi < Mz and threshold terms 
;_ Mi/mf for particles of mass rni 2 Mz. These functions observe decoupling. Their 
leading logarithms have the coefficients: 

QQ : - 4;r --$llN - yNf - l), 

36~-~3; 7(11N - 4Nf - ;), 

above alI thresholds; N = 2 for W(2), Nf is the number of fermion families, and 
the last constants are due to the single Higgs doublet. The simplest determination 
of 8:(Z) itself is from Mz : 

s:(z)c:(z) = 4Ggk2 [l + other terms], 
z 

which leads to a soluble quadratic equation for e:(Z) when c:(Z) = 1 - s:(Z) is 
inserted. The “other terms” contain heavy, non-decoupled contributions. This is 

depend on the propagator construction. However, if we choose a gauge-invariant construction 
that satisfies the sensible Ward identity constraint; i.e., that the residual I?;“‘($) left over in 
the non-Born-like corrections vanish at qx = 0, then II&(O) = 0 automatically. It is important 

that this condition hold, so that a sensible definition of g:(q’), such e.s (IV.4), can be made 
by dividing II;,($) by Q’ Otherwise, a new pole of the form I&(0)/q’ would show up in 

the matrix elements BS q’ -+ 0. Notice how the condition of “no new charge renormalization 
at q’ = 0” implies “no new gauge boson poles at qz = 0” - the uniqueness of 2 implies the 
uniqueness of the photon snd vice versa. 
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because Mz is a consequence of symmetry-breaking; expressing s:(Z) in terms of 
Mz then automatically introduces corrections that do not respect decoupling. Note 
that e:(Z) does observe decoupling, as QED is unbroken; computed in terms of 
e2 = et(O), e:(Z) requires loop contributions only from particles between q2 = 0 and 
q2 = A$, up to the effect of unknown particles suppressed by inverse powers of their 
masses. 

IV.3 Global Symmetries and Non-Decoupling 

p9‘AlI right, ‘said the Cat; and this time it vanished quite slowly, beginning with the 
end of the tail, and ending with the grin, which remained some time after the rest of 
it had gone. ‘Well! I’ve often seen a cat without a grin,’ thought Alice; ‘but a grin 
without a cat! It’s the moat curious thing I ever saw in all my life!’ 

- Lewis Carroll, Alice in Wonderland 

We have already seen one necessary condition for the non-decoupling of heavy 
particles in loops: the local gauge symmetry must be broken, allowing new terms in 
the gauge boson self-energies proportional to squares of loop masses Mf. The loop 
masses in question furthermore have to be generated by the same Higgs mechanism 
that spontaneously breaks the gauge symmetry. The leading relative effects of these 
corrections then take the form: 

(IV.7) 

Once the gauge boson masses are taken into account, the non-decoupled effect of 
the heavy particles in gauge boson self-energies is actually a function of the heavy 
mass-generating coupling alone and is not connected with gauge interactions at all. 
The larger this dimensionless coupling, the larger the effect of the heavy particle 
loop[19,59]. 

We can understand this fact by remembering that the extra degree of freedom 
each gauge boson acquires along with its mass comes from a would-be Goldstone 
boson eaten up from the Higgs sector. The properties of this longitudinal gauge 
degree of freedom associated with the gauge boson mass are essentially the prop- 
erties of the would-be Goldstone somewhat disguised by its mixing with the true 
transverse gauge degrees of freedom[65]. N ow the Goldstones, being scalars, would 
have had quadratic divergences in their self-energies, and their self-energies would 
have been proportional to powers of the Higgs couplings with heavy particles that 
endow those particles with SU(2)~xu(l) -b y rea mg masses. Because of the underly k’ 
ing gauge symmetry, the gauge boson self-energies have only logarithmic divergences, 
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and the quadratically divergent self-energies arc in effect cutoff at the heavy parti- 
cle mass. Hence the gauge boson self-energies cc A’?. It is also clear why, for such 
non-decoupling effects to appear in the II*‘s, the masses of the heavy loop particles 
must come from the same SU(2)& xU(l)y-breaking Higgs sector as the gauge boson 
masses: otherwise, these corrections could never mix with the gauge boson masses 
in the first place. 

However, this condition is necessary but not sufficient for a physical effect. In 
general, the non-decoupled terms are absorbed upon renormalization of parameters 
and their effect erased from observable relationships. The loop effects must violate 
relationships assumed to be valid at tree level, so that any deviation from these rela- 
tionships in measured data can be attributed to the presence of radiative corrections. 
If the deviations are small, it is plausible to assume that they are perturbatively cal- 
culable loop effects; turning the argument around means that experimental limits 
on these deviations translate into limits on non-decoupled loop effects. The only 
way to have fixed relationships valid at tree level without fine-tuning, in turn, is to 
assume that these relationships are consequences of a global symmetry respected by 
the gauge interactions at tree level, violated by some other sector of the EW SM, 
and thus violated in the gauge interactions at loop level by the gauge boson coupling 
to that other sector. The global symmetry-violating sector must contribute to the 
gauge boson self-energies. On the other hand, sectors whose masses violate the global 
symmetry but not the gauge symmetry still decouple in their loop effects from the 
gauge sector[66]. 

The necessity for a good tree-level global symmetry that is then violated by 
loop effects is not unique to the processes we are considering in these lectures, 
flavor-conserving electroweak interactions. Probably the best-known example in the 
EW SM is the Glashow-Iliopoulos-Maiani (GIM) family symmetry, which prevents 
flavor-changing neutral currents (FCNC’ ) 8 in the gauge sector; i.e., processes such as 
e+e- -B fife-, or strangeness-violating K” - R” mixing(7,8,25, 671. Some FCNC’s 
actually do occur experimentally, but at rates suppressed relative to other weak in- 
teractions. The EW SM has a natural mechanism for small but non-zero FCNC’s. 
The GIM family symmetry rotates all the up-type quarks into each other, and anal- 
ogously for the down-type quarks: 

(IV.8) 

forcing all neutral currents to be flavor-diagonal. The symmetry is respected by 
the gauge sector, but violated by the Higgs-quark sector: the Yukawa couplings to 
fermions are different for each fermion, and so we expect loop-level flavor-changing 
effects (such as the box diagrams of Figure 21) to have strength O(g4m&~,/M&); 

that is, O(G;mi). The FCNC terms are finite in the SM, because the logarithmic 
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divergences generated by the gauge sector still respect the GIM symmetry (the di- 
vergences are mass-independent) and cancel each other when summed over by the 
unitarity of GIM family rotations, leaving the finite mass-dependent terms. This 
example illustrates the importance of the underlying global symmetry in cancelling 
unrenormalizable divergences (Figure 21 is an unrenormalisable dim = 6 operator), 
even while it is still violated by finite broken symmetry effects. The lectures of Nir 
and Georgi in this school have more about the GIM symmetry and FCNC’s. Here 
we just note that the pattern “good tree-level global symmetry, violated by finite 
radiative effects” is a general one and applies to other than just gauge theories[68]. 

Figure 21. Prototypical GIM-violating flavor-changing neutral current in Standard 
Model: O(G$mi) K” - i? mizing at one Zoop[8]. 

The relevant global symmetry for flavor-conserving interactions must operate 
independently on each family. This symmetry is G = SU(2).5xSU(2)RxU(I)A, of 
which the subgroup SU(2)~xU(l)y is gauged[69]. The Sum group is the parity 
mirror of SU(2),5 and completes the weak chirality symmetry group. For ordinary 
ferrnions, L and R refer to the left and right Weyl states, and A = (B - L)/2, where 
B and L are the vector-like ordinary baryon and lepton number, respectively. The 
weak hypercharge is Y = Zt + A, while the electric charge is Q = Zi + Zf t A : 
electrodynamics is parity-conserving. The L x R subgroup of G has as its maximal 
subgroup the combined SU(2)L+R. Let Iv = IL,+ 1~ and 1~ = Ir, - IR, with: 

[Zi’, Zj’] = ie;j&, 

[Z;“,Z~] = iSijkZt, 

[I,p,Zf] = iCijbZ:v. 

(Iv.9) 

Because it is not closed, the IA algebra generates a coset of G, not a group. The 
SU(~)L+R m SU(2)v subgroup of G is usually called the weak custodial or vector 
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isospin(l9,69]. It is the analogue of the total rotation group for the addition of 
two angular momenta 1~ and IR, where Iv is the total angular momentum. Both 
the full group G and the subgroup SU(2)vxU(l)a have their own complete Hilbert 
space bases, the set liLmtiRmR)A and the set livmviLiR)a, respectively, related 
by Clebsch-Gordon coefficients. All electroweak multiplets have definite G quantum 
numbers or can be decomposed into irreducible representations (irreps) of G, the 
liLmLiEmR)A states. Denote a multiplet’s G quantum numbers by (2iz+l, 2i~Sl)~. 
Any multiplet can then be rewritten in terms of the SU(2)v states (ivmvixi~)~. 
Denote the SU(2)v quantum number 2iv + 1 in boldface. That is, an SU(2)v singlet 
is a 1, a doublet is a 2, etc. The Wigner-Eckart theorem tells us that the operator 
Iv is the only independent vector (3) p o erator, and all other vector operators must 
therefore be proportional to Iv. From the Lie algebra is easy to see that the operators 
I&,IR transform as SU(2)v triplets; therefore, I&R = a&,RIV when acting on definite 
SU(2)v Jivrnvi~i~)a states[66,70]. 

The SU(2)v symmetry group gives us a deeper grasp on the meaning of the p 
parameter. The minimal Higgs doublet of the MSM is not only a doublet under 
Sum, but under SU(2)R as well: its G quantum numbers are (2,2),. The parallel 
L and R doublet transformations of the minimal Higgs field can best be seen by 
arranging Q and its conjugate ac into a 2 x 2 matrix: 

H = (@ W), 
(Iv.10) 

v = iaz@‘, 

where the sum rotations work vertica 
gauged Riggs Lagrangian is G-invariant: 

.lly and the SU(2)R horizontally. The un- 

‘) - +(HtH - ~?/2)~. (Ivsl) 

The minimal Higgs (2,2), decomposes into 1@3 under SU(2)v. When the Higgs 
acquires its VEV, it is the 1 part, not the 3, that does so: (H) is proportional to the 
identity. The VEV has broken the good global symmetry from G to SU(2)v x U( l)a, 
and it is the remaining good SU(2)v symmetry that forces po E 1. The condition 
for the MSM then is that the VOCUU~ respect SU(Z,Jv; the minimal doublet model 
with the (2,2)0 Higgs is merely the simplest way to implement this symmetry. Now 
switch on the SU(2)z gauge interactions. Gauging SU(2)z does not break this group; 
it continues to be good global symmetry, and G is unbroken in ~Higsr, although not 
in the vacuum. But now switch on the U(l)y gauge interactions. This gauges the 
subgroup of SU(Z)R generated by If without ganging the whole group, and therefore 
explicitly - in the Lagrangian - breaks G and the subgroup SU(2)v. Switching on 

hypercharge g’ # 0 means sin Bw = g’/ # 0 and A+ # Mz. If the VEV’s 
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respected SU(2)v before hypercharge is gauged, they continue to do so, and po = 1 
still, at tree level. But we should expect some loop effects involving Mw # Mz to 
radiatively break the p = 1 condition after renormaliaation(66,70]. 

The non-decoupling effects in flavor-conserving gauge interactions can thus break 
the full G or the subgroup SU(2)v. Now the full G is broken already by the Higgs VEV 
at tree level, but this is a static or $-independent breaking. This breaking is given 
by the VEV 1) (or multiple VEV’s); equivalently by GF, measured at q2 = 0 in beta 
decay. G-breaking loop effects can still appear as dynamical (q2-dependent) effects 
and escape being absorbed into the renormalization of GF. Furthermore, if SU(2)v 
is a good symmetry of the vacuum, then there can also be static and dynamical 
loop effects breaking this subgroup. Hence, in the MSM case, there should be three 
distinct ways in which non-decoupling enters through loop corrections. In the EVSM 
case, where SU(2)v is not a good symmetry of the vacuum and po is arbitrary, one 
of these loop effects (the static breaking of SU(2)v) is replaced by a tree-level p 
parameter, leaving only two general non-decoupled loop effects[66]. 

The two gauge boson self-energies exhibiting non-decoupling effects are Hz3 and 
Ifir. It is not hard to prove that the three independent functions: 

44n2) = %(q2) - G(q2), 

As(q') = W3(0)+ n;,(q2) - %,(q2), 

A42) = WJ) + G&2) - %(q2), 

(IV.12) 

or some equivalent set, exhaust the possible finite combinations of loop functions 
involving II;, and II;,, in the MSM. A,(D) = A*(O) c 0 is the result of using GF 
measured at q’ = 0 as an input, subtracting II& and II: at q2 = 0. This step renders 
the parts of II;, * proportional to M: finite. The subtraction of II;, in both cases 

arises from its ude in the running of the SU(2)z coupling g?(q2). Now the divergences 
in II;, must equal those in II; by the underlying SLJ(2)z gauge symmetry, which 
is still respected by the dynamics of the theory. Furthermore, the divergences in 
the parts of II& oc q2 must equal those in Hz,. This is because the divergences are 

logarithmic, independent of the loop masses and cx Tr(ltl[) over each multiplet 
in one case, oc Tr(I[Q) in the other; then Z’r(1[Q) = Tr(l~l~) + Tr(lfY), and 
the second term is zero because Y is constant and the SU(2))L generators traceless 
for each multiplet. In the EVSM, only As(q’) and A*(q2) are independent heavy 
particle functions - two as promised - with A,(q’) redundant: 

A,($) = A&*) - P-‘Ai(q2). (Iv.13) 

p then replaces Ap(0) as the static SU(2)v-breaking parameter[19,39,59,66,70]. 
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In the MSM, we can use the identity A,(q’) - AP(0) = As($) - A*(q’) to 
replace A,(q’) by AP(q2)-AP(0). Th e b reakings of global symmetries are then: static 

SU(2)v-breaking A,(O), dynamical SU(2)v-breaking A,(q3) - A,(O), and dynamical 
G-breaking A3(q2). G-breaking but SU(Z)v-preserving corrections contribute to the 
last function, but not the first two; SU(2)v-breaking corrections contribute to all 
three. As a practical matter, the A functions cannot be measured for all q2; the 
gauge interactions simplify in special ways at the gauge boson poles q2 = 0, M&, Mi, 
and these points provide the natural places for measuring the effects of heavy loop 
effects. It is convenient to define dimensionless parameters S, T, V[ 66,711: 

aT = ~&‘GFA,(O) , 

s = -1GsA3(z)/M; , 

s + u = -16*A*(W)/M$ . 

(IV.14) 

Notice that A3 and A* have to be measured away from q2 = 0. These A functions 
must be computed for all SM contributions (top and Biggs), whether heavy or not. 
I%rthermore, for any given non-Standard contributions (such as supersymmetry), 
the A’s can be computed to arbitrary accuracy as functions of the new physics. In 
the EVSM case, simply replace UT + 1 -p-l and note that S and U are unchanged 
in terms of A3,*(q2), but that A,(q2) is determined by (IV.13) instead. 

If we have no definite model of new physics, and so cannot compute heavy loop 
effects, we would have to represent the unknown loop effects of this non-SM physics 
by an infinite series in qa. The new physics would contribute to ez(q2) and sl(qz) as 
well, although only by powers of q2/Mleo,,y. The alternative to (IV.14) is to ignore 
all coefficients proportional to inverse powers of &fhcavy, thus deleting the effect of 
heavy loops on the gauge couplings and reducing the contributions to the A functions 
to three coefficients equivalent to S, T, U[66,71]: 

aT = 4&GFA,(0), 

s = -16*[y&A3(qz)1s,=,> 

u = +16$$A,(q2)1q~=o. 

(IV.15) 

A q2 expansion in the amplitudes is equivalent to a derivative expansion in the 
effective Lagrangian. Effective Lagrangian methods are discussed in Jon Bagger’s 
lectures in this school. The EVSM case follows from the previous discussion. 
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Two star functions are necessary to account for the non-decoupled A functions: 

1 1 

4&&,(q2) = 4v’5G~ 
- A+(?), 

& = 1 - 4v%.(q2)A,(q2), * (IV.16) 

1 1 

W’%,(q2)p~(q2) = 4v5G~ 
- [Ad?) + 44011. 

In the EVSM case, where ~0 is arbitrary, pt(q2) is independent, and p z p*(O) is the 
natural choice for the additional necessary tree-level parameter. Then p,(q’) and 
A,(q’) change: 

1 
- = 1 - 4v?iGF.(q2)A,(q2), 
P*(?) P 

1 1 

4&h(q2)p.(q2) = 4&G~p 
- A&‘). 

(IV.17) 

We have now covered the whole set of general possibilities with non-decoupled loop 
effects in the MSM and EVSM cases alike. We have four star functions ei(q2), 
sz(q*), GF.(q’), pl(q2) that incorporate the Born-like corrections for electroweak 
gauge interactions. And, along the way, we have renormalized the gauge sector 
of the EW SM to one loop. There are no UV divergences left - all cancel when 
we re-express the theory in terms of three (EVSM: four) tree-level parameters and 
five (EVSM: four) finite and gauge-invariant combinations of effective self-energies 
II* : a,Gp,Mz, for example; and AQ,A~Q,A~,A~, and A,(O) (or p). The three 
heavy physics A functions contain all the possible non-decoupled Born-like radiative 
corrections to four-fermion processes[39]. 

IV.4 Non-Born-like Corrections - Renormalization Schemes 

With the Born-like corrections expressiblein terms of the star system, the neutral- 
and charged-current matrix elements in the electroweak improved Born approxima- 
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tion (IBA) are: 

+ 4(q2) [I,” - ~~(qZ)Ql[~,” - 4?)Ql 
tic: q2 - e~(q2)/~~(q2)cf(q2)4~GF.(q2)p*(qz) + i@r.ze(q2)’ 

2 2 [Z$Z!’ + ZLzq 

Mh%A = ;$qi) q2 - e~(qz),sf(q2)4&GF,;q2) + irw.(q’)’ 

(Zv.18) 
taking on the Born-like form current - propagator - current, with the &rents 
and propagator in the tree-level form, only the bare parameters replaced by the 
corresponding star functions. This form of the matrix elements is discussed in Ap- 
pendix A. Note that the star functions are not a renormalization scheme, but simply 
a compact shorthand for the bare perturbation theory[39,62]. In order to introduce 
renormalization schemes, we must first define some useful parameters. 

At qz ;; 0 +I? , . ..c matrix elements simplify considerably. The photon pole dominates 
MNC, and, as in pure QE!YJ, we define e2 = 4ra = e:(O) from q2MNC(q2) = 
ez(O)QQ’ as q2 -+ 0. The charged-cuuerrt a~--‘~‘---‘- - rrYllu~u.- Aeduces to a function of a 
single parameter, conventionally expressed as GF = GF*(o). In the EVSM case, 
we also need p = p,(O) as an~independent parameter for the neutral current. The 
other convenient parameters we can obtain from the massive gauge boson poles. 
The gauge-invariant mass and width of a resonance are defined from the real and 
imaginary~ parts of the complex pole of the matrix element[73]. The definition of the 
2 and W mass used in the literature is the so-called “on-shell” definition, the zeros 
of the real parts of the inverse propagators[l0,72], not gauge invariant in general. 
Through C’(a) (one loop) in the denominators, the two definitions coincide, and we 
use the on-shell definition here: 

Mj = 4(z) 1 

~~(z)c?(z)4~G~,(Z)p,(Z) 

4-q l = s:(z)C:(z) ‘i&k+ [1 - JfiG~(As(z) + A,(O))], 

M$ = g4fiG1; 
l * 

(w) 

4(W) 1 

= qjyj 2JZGF [I- ~~GFA&-)I 
* 

(ZV.19) 
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The widths at the poles are defined by: 

r, z w = rz,w*(z, WI 
l- KZ,W. ’ 

(ZV.20) 

nz,w. = g$-nr:,w*k213 

where Mi,w,(qa) are the effective q2-dependent square masses in (IV.18). The ?C’*‘s 
are defined from the imaginary parts of the Z and W self-energies. The l?.‘s are 
themselves proportional to @, so that l’z,w are proportional to Mz,w[ 39,72,73]. 

From these parameters, we can construct the three renormalization schemes in 
common use in the literature in order to parametrize the star functions. The first 
scheme in wide use was the on-shell scheme of Sirlin and Marciano (1980)[72,74]. 
The three parameters it uses are u,Mz, and Mw, with the on-shell weak mixing 
sin2Bw E 1 - M&/M& to all orders defined as an auxiliary quantity. GF is a 
calculable function of parameters in this scheme. A second scheme was introduced 
by Lynn, Pea&n, and Stuart (LPS) by modifying the on-shell scheme, with the 
parameters a, GF, and Mz (1985)[59]. Th is scheme has the advantage of being 
related to the canonical experimental inputs in a simple way. In this scheme, Mw 

is a calculable function of parameters. The third scheme was introduced recently 
by Sirlin and others, the m scheme (1989)[75]. It uses GF and the m couplings 
e2(n2) and i2(n2) z e2(,u2)/i2(n2) as p arameters. MS is especially convenient for 
running the gauze coupiin8s and relating the electroweak measurements to grand 
unified theories. Because the MS couplings absorb only the divergences and leading 
logarithms, they are truly universal, gauge-invariant couplings that are independent 
of process and propagator construction. Mz and Mw are calculable functions of 
parameters in this scheme. In all three schemes, the gauge boson widths are also 
calculable functions of parameters, and p must be introduced as a fourth independent 
parameter in the EVSM case. 

The details of these three schemes and their mutual relationships are presented 
in Appendix B, along with the SM gauge boson self-energies. The calculations and 
the schemes are given through one loop, and at this level, the different schemes can 
be freely exchanged for one another and even mixed in the same calculation. The 
problem of RS-dependence is always present, however; the one-loop functions are 
themselves strictly functions of the bare parameters, and the embedded higher-order 
corrections must be somehow included[ 22,641. Th e only serious higher-order de- 
pendence necessary for these calculations is the type that can be taken care of to 
good approximation by replacing the bare parameters in the loops by the appro- 
priate renormalized ones. In the gauge boson self-energies, particle masses in loops 
should be replaced by the physical on-shell masses, and bare si, ct by the on-shell 
sin’ Bw, cos’ 8~ = 1 - sin’ Bw for loops with gauge bosons. Notice again that one 
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particular scheme (on-shell, in this case) is favored to implicitly sum up the largest 
higher-order terms, this choice being the best of the three at making this set of cor- 
rections converge, In the EVSM case, p is lumped with the radiative parameters 
for convenience, even though it is a tree-level parameter, for clarity in comparing 
the EVSM and MSM cases. The value of p is not extracted from a single special 
experiment (like the three other tree parameters), but is instead derived from global 
fits to many experiments in the same way the radiative parameters are. 

Here I use, and advocate in all future electroweak work the universal use of, 
the combination of the MS and LPS schemes, with the canonical fixed inputs 
(a,G,,,Mz). The LPS heavy physics A functions and the (S,T,U) use q2 = 0 as 
their reference point, the natural static limit or vacuum state. This “metascheme” 
is independent of propagator construction and independent of vertex and box cor- 
rections, except for the known sum of Born-like and non-Born-like vertex and box 
corrections to muon decay at q2 = 0 (through G,). Because of the limitations im- 
posed by perturbation theory, it is impossible to construct a truly renormalization 
scheme-invariant parametrization of electroweak interactions, but this combination 
of MS, LPS, and canonical inputs seems optimal. 

For the input scheme, a variety of experiments can serve, but the theoretical 
simplification available at the gauge poles and the present experimental accuracies 
lead uniquely to the canonical set consisting of: q2 -+ 0 QED, to define a[29,76]; 
the muon lifetime r,,, to define G~[76,111]; and e+e- + Z annihilation, to define 
.Yz[??, 74,771. Generally, the matrix elements require non-Born-like corrections to 
be complete, the details depending on process measured, so the relation of a, GF, Mz 
to experiment involves non-Born-like terms. The best current determinations of a 
are made in macroscopic condensed matter experiments (quantum Hall effect and 
AC Josephson junction) - purely Maxwell plus quantum mechanics - yielding[76]: 

a -’ = 137.0359895 f 0.0000061. 

The determination of Mz from the e+e- annihilation cross sections (Figure 5) does 
involve non-Born-like terms: boxes, vertices, and especially the combined effect of 
radiation from the initial e + - e beams and the Z-photon interference in the cross 
section[78]. The on-shell definition fit to the e+e- data gives: 

Mz = 91.174 f 0.021 GeV, 

as of March 1991[77]. The measured value of the muon lifetime against beta decay is 
conventionally quoted in terms of a muonic Fermi’s constant G,. Its definition from 
the lifetime includes a a gauge-invariant subset of non-Born-like corrections arising 
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from QED corrections to the beta decay[lll]: 

-1 - rfi - 2&l - S$]{ 
P 

1 + z(; - r2)[1 + 2 ln(~)l}. 

The measured value is[76]: 

G, = (1.16637 i 0.00002) x 1C5 GeV-‘. 

To extract a universal value of GF requires removing the remaining non-Born-like 
correciicna (Appendix C). 

The matrix elements for all processes begin with the IBA form of (IV.lS), but 
require the addition of the non-Born-like terms relevant for each process. With the 
massive gauge bosom present in the loops, not all the non-Born-like corrections are 
infrared-divergent. Consider the neutral-current vertices and boxes first (Figures 20 
and 15 for both 7 and 2 channels)[ 39,621. The QED set, loops and radiation 
with at least one photon, contains vertez loop/radiation and boz loop/interference 
radiation graphs and is purely Abelian. As in section 111.3, the appropriately com- 
bined corrections - i.e., vertex loop plus its radiation, and so on - are separately 
gauge-invariant and IR-finite. The weak set, loops with only heavy gauge bosons, 
is IR-finite and contains Abelian and non-Abelian terms. Our propagator construc- 
tion (section IV.2/Appendix A) absorbs all of the non-Abelian vertex l?tab and part 
of the non-Abelian box loops @‘** into the gauge-invariant effective self-energies 
II&rII;Q,II;,. The non-Born-like neutral-current corrections consist of six sepa- 

rately gauge-invariant classes of corrections (Figure 22): the two vertex and one 
box/interference QED sets, the two Abelian weak vertex and one Abelian weak box 
classes, and the residual non-Abelian weak box terms. To assemble the complete ma- 
trix element, one adds the boxes to the IBA of (IV.18), then multiplicatively modifies 
the tree-level vertices with the Abelian weak vertex corrections. The neutral-current 
matrix element is now a modified IBA: M$ABA = Mf,$+Ab ” + OsbC + Gl;;“c”. 
Only the QED sets are left. They can be included either by simply adding the loops 
to the MIBA, squaring, then adding the squared radiation matrix element (111.12); 
or, if the box loop/interference radiation contributions are negligible, by convolving 
the MIBA cross section with the structure functions appropriate for each vertex[78]: 
D = J D(f). D(f). JM$;BAlz. 



l l QED vertices/ radiation l l Abelian weak vertices 
both fermion legs. both fermion legs. 

l QED boxes/interference. l Abelian weak boxes. 

. residual non-Abelian 
weak boxes. 

Figure 22. Gauge-invariant classes of non-Born-like comctions[39,62,64] to the neu- 
tral current. 

Now consider the non-Bo-- 1~ . . . . ..t corrections for the charged-current matrix ele- 
ment (Figures 15 and 20 with W channel and Figure 23)[62]. The QED seta, with 
one photon and radiation, are like the neutral-current case, except that they con- 
tain both Abelian and non-Abelian terms: the charge-changing generators 12 do not 
commute with Q. There is a fifth, purely non-Abelian radiation graph (Figure 23, 
photon emitted from the W). The Abelian QED subsets, with combined radiation 
and loops, are gauge invariant and IR-finite. The weak sets also include Abelian 
and non-Abelian parts. The effective W propagator construction is analogous to 
the neutral-current case: all,of the non-Abelian vertex T$**(q*) and part of the 
non-Abelian box dnAb * * (q ) are absorbed into the gauge-invariant effective self-energy 
II;. The charged-current case requires an additional step, however: the non-Abelian 
self-energy, vertex and box terms contain IR divergences due to the vanishing of the 
photon mass in the loops. .These appear in II; in a gauge-invariant way, proportional 
to ln(M:/M&) and ln(q’/Af:). Th ese terms must then be restored to the non-Born- 
like corrections and combined with the non-Abelian radiation terms. The upshot for 
the charged-current non-Born-like corrections is eight gauge-invariant and IR-finite 
classes (Figure 24): the two vertex and one box/interference QED classes, the two 
Abelian weak vertex and one Abelian weak box classes, the residual non-Abelian 
weak box terms, and the non-Abelian QED radiation/non-Abe&n IR loop terms. 
If the box/interference radiation corrections are negligible (as they often are), then 
the QED vertex and radiation contributions can be incorporated instead by using 
structure functions. The charged-current structure functions are more complicated, 
having non-Abelian contributions[79]. 
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Y 

H W 

Figure 23. Purely non-Abelian radiation graph in the charged current: photon emis- 
sion from the W*. 

The non-Born-like corrections to four-fermion processes are further discussed in 
Appendix C. 

l l Abelian QED vertices/radiation l l Abelian weak vertices 
l Abelian QED boxes/interference. l Abelian weak boxes 

l non -Abelian IR 
vertices and boxes 

l residual non-Abelion 
weak boxes 

Figure 24. Gauge-invariant classes of non-Born-like corrections to the charged CUT- 
rent. 

V. Precision Tests of Electroweak Interactions 

V.l Precision Tests of QED - Hadronic Uncertainties 

Low-energy precision tests of quantum electrodynamics[3] are the exception to 
our rule of massless external fermions. The external masses cannot be neglected 
in this case, and such processes involve helicity-changing operators also. QED has 
passed its low-energy tests with stunning precision, leaving it as the most successful 
physical theory ever devised, the very model of a modern major field theory. 

First, consider the anomalous magnetic moment of a fermion f. The vertex func- 
tion in this case is coupled to a macroscopic magnetic field, instead of a photon. The 
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moment is quoted in terms of the gyromagnetic ratio g = 2 + 2a, where a is the 
anomalous deviation of g from the tree-level Dirac value of g = 2 : a = Fz(O). a for 
leptons is calculable in perturbation theory, with some higher-order hadronic uncer- 
tainty; contributions to a are usually separated into pure QED (no hadronic or weak 
contributions), hadronic contributions to the self-energy of the photon in the ver- 
tex loop, and weak contributions (W, Z, Higgs, new physics). QED being unbroken, 
decoupling applies, so that heavy physics is suppressed by powers of m!/M&avy.* 

The one-loop contribution is mass-independent, a,,,-loop = c~/Za. The pure QED 
contributions to a. and a, have now been calculated to four loops. Contributions 
from physics at or beyond the weak scale are Aaweok s lo-‘. The comparison of the 
predicted a. and a,, : 

athe” e = 1 159 652 140 (27) x lo-” 

aihe” = 1 165 919 18 (191) x 10-l’ 

with the meaaired values: 

azzp = 1 i59 52 188 (4) x 1O-'2 

a;” = 1 165 937 (12) x 1O-9 

is a triumph for quantum electrodynamics[3]. (The particle and antiparticle mo- 
ments should be equal by CPT invariance.) The next generation of muon moment 
experiments, with an order of magnitude or better improvement in precision, will 
place some constraints on extensions of the MSM. 

The second set of low-energy QED tests comes from measurements of bound 
states: hydrogen (e-p), muonium (e-p+), and positronium (e-e+), with small non- 
zero momentum transfer of O(am,) in each case. Some of the field-theoretic effects 
can be couched in Hamiltonian form and inserted into ordinary quantum mechanical 
perturbation theory. A more consistent approach is to develop the field theory of 
bound states, a difficult and beautiful subject worked out over the last four decades 
by Bethe and Salpeter [80], Lepsge[81] and others. The most precise tests are based 
on the small splittings of otherwise degenerate states, these degeneracies being the 
result of good tree-level symmetries. 
radiative splitting of the 2S,/2 

The classic example is the Lamb shift, the 
and ZP,/, states of hydrogen; the tree-level Dirac 

* Note that 9’ = 0 here, so that the fermion mass is not sme.ll. A more general decoupling 
theorem applies then, allowing contributions in powers of mjlM,&,,,V as q2 + 0. The moment 
in physical units, p, = ge/2mf, exhibits the overall decoupling of an dimension-5 operator 
from the inverse fcrmion mm. 
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energy levels depend only on the total angular momentum j, not on the orbital 
quantum number Z[3]. 

AE(2S,,, - 2P,,2)theo = 1 057 853 (13) kHz 

AE(2Sllz - 2P1,2)““P = 1 057 851 (2) kHz. 

The prediction of this shift was an early success for renormalized perturbative QED, 
but, ironically, most of the shift is due to infrared effects[2]. These are not divergent 
in discrete bound states because there is a minimum virtual photon energy set by 
the differences of quantized levels. In muonium and positronium, the ground state 
hyperfine splittings (spin-spin coupling) are an exceptionally good measure of radia- 
tive effects. Other precision QED tests in these and similar bound states have also 
been performed[3]. 

A third important low-energy test of QED is bounding the photon mass M.,. 
Limits on M, come from electronic tests, satellite measurements of the Earth’s mag- 
netic field, and, with the best limit, the inferred properties of the galactic magnetic 
field: M7 <; 3 x 10ezT eV[76,82]. 

The best high-energy tests of QED cannot compare with low-energy measure- 
ments in precision, but are still important checks of the asymptotic behavior of 
electrodynamics. Bhabha scattering e+e- + e+e-[ 27,281, which receives both t- 
channel scattering and s-channel annihilation contributions, is currently the standard 
high-energy test of QED, with a precision of about a percent. Figure 25 shows the 
theoretical vs. measured angular dependence of Bhabha scattering as measured by 
the Mark J at DESY[83]. Following the discussion in section 111.1, the measured 
e+e- --t hadrms cross section, ‘while not a test of QED, is an essential input for 
computing the running of vacuum polarization to the 2 pole[47]. The computed 
value of the running charge at the Z, in the m scheme, is[75]: 

1 
- = 127.8 f 0.1, 
h(Z) 

for mt = Mz, where the uncertainty is due to the measured &d. Other contri- 
butions to e:(Z), including threshold dependence on Mw and mt, are calculable. 
The hadronic uncertainty propagates to computed quantities, such as the 2 pole 
properties and the W mass, that depend on e:(Z). The other strong corrections to 
EW processes in IIsq, II33, and II* can be accounted for using perturbative QCD to 
O(aa,) (Figure 13c)[48), since they all involve very high energies. These additional 
0(na,) effects are quite small. 

64 



time 

e-+p-(e; + ;xe- 
e+ e+ 

b) 

N-- 
2 c3 
0 
2 

m 
Gg 

0 
v, 

IO" 

10” 

t ' t ' I I I I I I 1 1 I I I I I I r r 

Js = 34.6 GeV Js = 34.6 GeV 

-l 
I I I I I I I 

0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 

Ices e I 

Figun 25. Bhabha acatten’ng e+e- --t e+e- : (a) Feynman diagrams for s and t 
channeb; (b) QED pndiction (solid line) ~8. Mark .I measurement (dots) of Bhabha 
cmm section[27, 831. 

V.2 Electroweak Processes - Choice of Models, Parameters and Inputs 

To make predictions from the EW SM as a function of free parameters, we need 
an input scheme - here, the canonical Q, G,, and Mz - and two assumptions. The 
first is to specify which EW SM we are testing. The MSM includes all one-loop 
corrections, assumes ~0 = 1 and has two free parameters (mt, mH) as the only heavy 
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physics. Direct searches already limit mt > 89 GeV (841 and rn~ > 42 GeV[85]. 
The Extended Vacuum SM (EVSM) is the same as the MSM, except it assumes 
an arbitrary p as a fourth free tree-level parameter. We can also assume two other 
parallel Standard Models: MSM with the Born-like heavy corrections parameters 
(S,T,U) replacing (mr,m~) as the free loop parameters; and EVSM with (S, V) 
as the heavy physics parameters and 7’ replaced by the free p. These four distinct 
model choices are summarized in Table I. Notice that we make the fixed global 
assumption that SU(2)1,xU(l)y is the correct gauge structure, described by two 
running couplings az(q2) and ez(q2), and that any new physics consists of scalars 
and fermions only[39]. Searches for the presence of new gauge interactions[66] in 
our set of four-fermion processes would require additional free tree-level parameters 
beyond the three (or four) needed for the tree-level EW SM. 

MSM(mt, ma) EVSM(p; mtr w) 
PO = 1 PO # 1 

MSM(S,T, U) EVSM(p; S, U) 
PO = 1 PO # 1 

Table I. Four variations of the electroweak Standard Model discussed in the text. 

The second necessary assumption is that the computed value of e:(Z) is correct, 
an assumption we really cannot check once q2 is close to Mi. The inputs to the 
fits then are (1) the two assumptions, (2) the three free tree-level parameters, and 
(3) the four-fermion data. The outputs always include a value for s:(Z), which I 
quote in terms of the m value s2(Mi). This quantity is actually overdetermined 

in the fits, because there are a large number of experiments sensitive to it: The 
other outputs are some combination of heavy physics and p in the EVSM cases. The 
(S, T, U) are always defined relative to the reference point MSM(mr = rn~ = Mz), 
with only departures explicitly displayed. Thus each parameter is a sum of top and 
Higgs mass deviations and non-Standard contributions: S = SNS + ASMSM, and 
so on. 

* The fits presented in the next two sections[87,88] leave a:(Z) as another free parameter, even 
though it is determined by Mz, e:(Z), G p, and the heavy physics parameters. This procedure 
SCWCJ as a consistency check on the fits and a partial check on the SU(Z)LXU(~)Y. gauge 
structure. 
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The specific flavor-conserving four-fermion processes now available for the precise 
testing of the EW SM fall into three distinct kinematical regimes. The first regime is 

2 N U(a2m2) : atomic parity violation (APV)[89]. The second is the low-energy ac- 
zelerator reg:rne with (q2( < M&,&90]: neutrino-nucleon (yN) and neutrino-electron 

(wz) scattering of various types, lepton-nucleon scattering, and efe- annihilation 
below the Z pole. The third regime is the gauge boson pole region, 9’ = ML and 
Mi[87, 881: the IV and Z masses, the total and partial Z decay widths, and various 
asymmetries at the Z pole. 

Atomic parity violation has been a topic of active interest since it was realized in 
the 1970s that the parity-violating Z exchange between nuclei and atomic electrons 
would mix electronic states of opposite parity, such as S and P states. The present 
success of APV studies is due to the use of one element, c&urn, which is hydrogenic 
and heavy, allowing accurate theoretical evaluation of many-electron effects. The 
weak contribution stems essentially from the neutral-current exchange: 

M&-y(q2 = 0) = ;cE; [If - s:(O)Q] [I,” - s:(O)Q]‘. v4 

s:(O) is determined from .sf(Z) by Asp, and from Mz in turn. The form (V.2) is 
the universal IBA for low-energy neutral-current processes, depending only on s:(O) 
and T. The use of Mz as an input induces an implicit dependence in s:(O) on S 
and T. In the special case of heavy hydrogenic [alkali) atoms such as cesium, with 
a:(O) = l/4 and the proton/neutron ratio N_ 2/3 (because of Coulomb repulsion), 
the 2’ dependence fortuitously cancels from MF&(n2 = 0) when the exchange is 
summed over all the nucleons. Hence, the only heavy physics dependence is due to 
S. The recent beautiful experiments of Wieman and collaborators at NIST/Colorado 
(Boulder) measure the APV effect using parity-violating asymmetries derived from 
observed radiative transitions of cesium in crossed electric and magnetic fields. The 
result is usually quoted is terms of the weak charge Q$,!, essentially the electron 

axial-vector coupling times the nuclear vector coupling: Q@ = -71.04f 1.58 +0.88, 
the first error being experimental, the second due to atomic theory[89]. In the purely 
electroweak IBA, the heavy alkali effective matrix element takes the form: 

M$$v = - ;fz;N[l- Cl- 4~:(ONZ/N)l, 

where Z(N) = proton (neutron) number (Z = 55 for cesium). Because it is pro- 
portional to nucleon spins, the sum of nucleon axial-vector couplings is O(l), while 
that of the vector current is O(N). The full APV interaction requires non-Born-like 
eleetroweak corrections and atomic physics terms as well[89]. 
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The form (V.2) applies generally to all of the low-energy accelerator measure- 
ments of the neutral current, between pairs of fermions. A large body of data is 
available from the late 1970s to the present that includes [90,91]: vN,tiN,ve,oe 
scattering with different neutrino flavors and both elastic and inelastic final states; 
inelastic polarized lepton-nucleus scattering; and e+.s- annihilation for s < M$. 
These experiments all measure s:(O) and T (or ,o), and thus s:(Z), if Mz is used as 

an input! 

The fundamental gauge pole measurement is the 2 mass[77]. From there, the line 
shape and peak cross section measurements determine the total and partial 2 widths. 
The four collaborations at CERN LEP (ALEPH, DELPHI, L3, and OPAL) together 
yield: Fz = 2.487&0.009 GeV, the universal partial width to each charged lepton pair 
I?$‘- = 83.3 f 0.4 MeV, and the normalized 2 width to hadrons R = Fp”/F’,“- = 
20.94 i 0.121771. Assuming the SM width for light neutrinos, the invisible width is 
in good agreement with three light neutrino flavors: N, = 2.89 + 0.10[85]. 

The 2 pole asymmetries are defined from normalized differences of cross sections 
for various pairs of opposite states: 

dZ). - d-q, 
Aad(Z) = u(Z). + cr( Z), 

For example, the forward-backward asymmetry AFB(Z) measures the difference of 
final-state fern&n; goin g in the e- (forward) and e+ (backward) directions at the 
point of annihilation. AFB(Z) is thus a measure of C (charge conjugation) violation 
and depends on the quantum numbers of the final state. The best currently estab- 

lished measurement is the asymmetry to muons A;?-(Z) = 0.0154 f 0.0048[77]. 
Other fermion final states are becoming available at LEP for other measurements of 
AFB(Z). The polarization asymmetry AL&Z), the difference between cross sections 
of left- and right-handed electrons at the Z pole, will be of great importance, if and 
when it is measured[92]. ALR(Z) is essentially independent of the final state and is 
a measure of P (parity) violation. In the EW SM, C and P violation are directly 
linked in such a way that CP is conserved (in the gauge sector) and their strengths 
controlled by az(qa). Thus A&Z) and AFB(Z) are essentially measures of s:(Z). 
In the IBA, AL&Z) can written as: 

AzR(Z) = [$ ;;]e = 1 ;';l--4;$;;;12 
* 

(V.36) 

where gr. = Ii - a:(Z)Q, &7R = -a:(Z)Q. (The Ab e ian 1 vertex corrections can be 
inserted using the results quoted in Appendix C; radiation has a small effect on 

t The low-energy processes listed here have their own non-Born-like corrections which are small 
but not negligible, but which are also calculable to the necessary accuracy with only “light” 
< 2 physics. 



AzR(Z)[39,78].) The forward-backward asymmetry to fermion-antifermion f is then 
formally: 

(v.3c) 

with explicit dependence on the final-state quantum numbers through the second 
factor. (The Abelian vertex corrections again can be easily inserted; radiation has a 
relatively large effect on AFB(Z)[39, 781.) Shifts due to heavy physics are treatable 
by using &A&R(Z) N -%2(Z). Please see the lectures of Alain Blonde1 in this school 
for more about Z pole physics with e+e- annihilation and the LEP experiments. 

The W mass[93] has been determined accurately in the recent pp collider results 
at the Tevatron CDF (Fermilab) and SppS UA2 (CERN) collaborations. They mea- 
sure the Mw/Mz ratio, then use the LEP value of Mz to obtain Mw. The best 
current value of the W mass is Mw = 79.91 l 0.39 GeV.’ 

V.3 Minimal Standard Model Fits - Grand Unification 

In this section, let us consider only the models denoted by MSM(mt,rn~) and 
EVSM(p;mr,rn~). The global fits of the neutral- and charged-current matrix ele- 
ments to all the available data produce limits on the two (or three) free parameters, 
the finite volume of free parameter space being determined ultimately by the pre- 
cision of the experimental data. The value of i*(Mi) is calculable once Mz and 
the heavy physics are known. Since there are more experiments than free parame- 
ters, the latter are actually overdetermined by a global fit; this overdetermination is 

an important check on the self-consistency of EW measurements as a whole! The 
parametrization of various observables in terms of the gauge couplings and heavy 
physics functions is discussed in Appendix B. The global fit results of this section 
are taken from the work of Langacker and Luo[87]. Other groups have obtained 
similar results[94]. 

The heavy physics sensitivities are quite different for the top quark and minimal 

* The gauge pole measurements quoted here are current to March 1991. 
t Leaving a:(Z) as a free parameter is a further check since it can then be compared with the 

value derived from the Z mass constraint (IV.19). 
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H’ ‘ggs masses: 

aT = 3GFM; 
8fiT2 [(4Mz)’ - 11 

- s(M; - ~~)ln(&l@), 
(X4) 

S = -$ln(m;/M;) + & ln(&/M;), 

u = $ h(m;/M;), 

displaying only the leading quadratic and logarithmic terms. In particular, the Higgs 
mass dependencies are so weak that no useful limits can be derived from present data. 
The MSM(mr, mu) model fit to all data yields: 

i’(M;) = 0.2334 i 0.0008, 

n‘t = &:m~;; (&V 

< 174 GeV (go%), 

(v.5) 

with the second uncertainty in the central value of mt due to varying the unknown 
Higgs mass over the physically reasonable range of 42 to 1000 GeV. Figure 26 
shows the simultaneous constraints on >*(Mi) and mt from all experiments. In 
the EVSM(p; mt, mu) model, we lose the quadratic top mass dependence in T, but 
a quadratic mt dependence still remains in the non-Born-like Abelian corrections to 
one specific interaction, the 2 ---t b6 vertex (Figure 2Oa,b with W’s in the loops, and 
Appendix C). The logarithmic mt dependence still appears universally in S. The 
EVSM(p; mt, mu) fit to all data yields: 

ia = 0.2333 zk 0.0008, 

p = 0.992 * 0.011, 

mt < 294 GeV (90%). 

PJ5) 

Note how close p is to unity. 
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Figure 26. MS electroweak miring ?(Mi) vs. top quark mace, as constrained by 
various ezperimenkr, aswning MSM and Higgs boson of maa 250 GeV (March 
1991)[87]. 

The alert reader may have noticed that there is a potentially serious problem with 
the non-decoupled physics of very heavy particles; for example, if mt -t 00. As we 
saw in section IV.3, the effect of the heavy non-decoupled loop corrections relative to 
the tree-level gauge boson mbses is actually a perturbative series purely in powers 
(or logarithms) of the dimensionless couplings that produce the SU(2)~xU(l)y- 
breaking masses, not necessarily connected with the gauge couplings. Thus, the top 
mass effect in 2’ depends only on the top quark Yukawa coupling ht : 

aT= 
3GFm; 

8&~ 
= Ah:. 

At higher loops, (V.7) actually becomes a series in ht, so for large top mass rnc = 
ht *v/A (v fixed), we might wonder about how good the one-loop result is and even 
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whether the electroweak gauge theory breaks down with arbitrarily large corrections 
to low-energy processes. In fact, this never happens, because these dimensionless 
mass-generating couplings to the Higgs sector can be freely tuned only for small 
couplings, in the perturbative regime(951. As the couplings become stronger - 
roughly, h:/4~ -+ 1 -the coupled Higgs-top sector develops strong non-linear effects 
of various types. Perturbative approximations such as (V.7) are no longer valid. The 
decay widths of the strongly-coupled particles become comparable to their masses. 
New kinds of symmetry breaking can appear, such as tr condensates. Also, the 
effective running couplings, such as it(p), develop Landau poles below the particle 
mass rnt for large enough mr, rendering the strongly-coupled sector meaningless and 
imposing the so-called “triviality bound” on particle masses. The upshot of this 
non-linear strong-coupling limit is that such theories cannot have arbitrarily large 
couplings. For example, ht is effectively prevented from increasing beyond a certain 
upper bound roughly of order 6 21 3.5. Thus the non-decoupled corrections in the 
gauge sector never blow up, because the heavy particle couplings to the Higgs sector 
and thus their masses are always limited. These limits are typically (for the top 
quark and Higgs) around 600-800 GeV, but the basic idea applies more generally, 
the details varying with the model content. 

The measurement of the weak mixing function .si(q’) has no further implication 
in the SU(2)i x U(1 )y gauge theory, but is crucial for testing grand unified theories 
(GUTS), where it is not a Lse parameter 1563. in a GUT, instead of three independent 
couplings for the SU(3)cxSU(2)~xU(l)y gauge interactions and the VEV of the 
MSM, we have two mass scales, the EW VEV and the GUT VEV, and a single 
gauge coupling. One of the SM gauge couplings is thus redundant, if the GUT 
satisfies the self-consistency condition that all three running couplings unify at a 
single scale. Figure 27a shows the runnings of the three MS gauge couplings &;(p’) 
as functions of p in the MSM. This assumes no new particles until the GUT scale 
Mx (the “great desert”), where the model unifies into the minimal SU(5) GUT, 
the simplest GUT. The couplings clearly do not all run together, so that minimal 
SU(5) is ruled out. On the other hand, the minimal supersymmetric (SUSY) SM 
unifies into the SU(5) SUSY GUT quite nicely (Figure 27b), with a superheavy gauge 
boson mass of Mx = (1.9 f 1.4) x 10” GeV. The extra SUSY particles, with masses 
somewhere between Mz and 1 TeV, change the running of the couplings enough 
to force unification. The extra SUSY particles can be introduced into the EW SM 
radiative corrections without significantly disturbing the heavy physics limits, as we 
shall see in the next section: 

* The less precise runnings available before the LEP 2 measurements had implied too low an 
N(5) GUT scale, Mx z 10 I’ GeV and too short a proton lifetime 7p 0: Mi/m;, to fit the 
present limit, 7p > 6 x 1OJ’ years. Tie larger SUSY N(5) GUT scale alleviates this problem, 
at least in the dimension-0 low-energy effective operators for proton deeay[58,76]. 
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Figure 27. Simultaneous asymptotic runnings of Standard Model MS couplings: (a) 
MSM with ‘Great Desert’ fa& to unify into minimal SU(S) GUT; (b) SUSY version 
of MSM with superpartners of mass Mz- TeV self-consistently unifies into SUSY 
SU(5)[87]. 

V.4 Heavy Physics: Global Fits - Limits on Non-Standard Models 

Let us now attack the two alternative Standard Models, MSM(S,T, U) and 
EVSM(p; S, U). In these cases, we again obtain a value of af(2) and limits on the 
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three parameters. The results of this section are drawn from the work of Kennedy 
and Langacker[BB]. 

First, consider the MSM(S, T, V) case. Since there is no large custodial symmetry 
breaking in electroweak gauge forces (recall that p 2: I), it is useful to carry out first 
a constrained fit for MSM(S, T, V) with CJ = 0 imposed by hand. Only the W mitss 
depends on U in any case. The resulting fit for S, T is shown in Figure 28, with the 
regions allowed by different types of experiments, as well as the global result for all 
data. The numerical results sre: 

i’(M;) = 0.231 i 0.002, 

s = -1.0 zt 0.9. 

T = -0.3 + 0.5. 

The unconstrained fit yields: 

s = -0.9 f 0.9, 

T = -0.3 * 0.5, 

u = +0.3 f 1.1, 

(v.8) 

(V.9) 

with the same value of ig(Mi). The large uncertainty in U is due to the fact that 
the W mass is not yet measured as well as the other, neutral-current, data. The 
EVSM(p; S, V) can be read off from the MSM(S, T, U) fits, just by replacing aT -+ 
1 - p-1 : 

p = 0.998 3~ 0.004, (v.10) 

indicating again that the assumption of tree-level custodial symmetry in the VEV(s) 
is natural. The self-consistency of these fits, particularly in the value of s:(Z), is 
some check on the SU(Z)~xu(l)y gauge symmetry and indicates that this minimal 
gauge structure is the correct one at currently available energies. 
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S 

Figure 28. Present constmints on electroweoL heavy physics parameters S and T 
from various ezperimenta and common 90% region (shaded), with U z 0 (March 
f991)[88]. 

What are the general expectations for the radiative effects of new particles and 
how do the precision data constrain these expectations? We must note at this point 
that, in general, the (S, T, V) can receive contributions of opposite signs, depending 
on the exact model. This might be of some help if the trend toward negative values 
seen above continues with nmre precise data. Furthermore, the current values are 
easily consistent with zero. Apart from fine-tuning cancellations, the two natural 
ways of obtaining this result are to have no significant heavy physics apart from the 
heavy top quark, or to have non-Standard models that automatically respect the 
gauge or the full global chiral Su(2)~xSU(2)~ symmetry. 

The generic contribution to the custodial-breaking T comes from mass splittings 
in weak iso-multiplets. For example, a split doublet of Dirac fermions or non-Eggs 
scalars contributes[l9]: 

CYT = g[m: + rni - mTyi2 ln($)], 
” d 

(v.11) 

with NC = number of colors (three for quarks). (V.ll) is positive semi-definite, 
vanishing if m, = md. In the SM, we already have one built-in significant contribution 
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of this type from the top-bottom quark doublet. On the other hand, there is also the 
Higgs contribution (V.4), of opposite sign (generic to loops with gauge bosoms) and 
vanishing if Mw = Mz, but numerically quite small for physically meaningful values 
of the Higgs mass, rn~ < TeV. Negative contributions to T can arise from heavy 
Majorana neutrinos[96] or from pseudoscalars in some cases[97]. It is convenient to 
define a mass-squared splitting parameter An2 from T, using the currently positive 
90% upper bound (1.28 times one standard deviation above the central value): T < 
0.33, and 

oT=~.Am2, (V.12) 

yielding Am’ < (152 GeV/fl)‘. Th us one-loop splitting limits *re now smaller 
than the basic VEV v = 246 GeV. 

The parameter S[19,39,66,70], which receives both custodial-conserving and - 
breaking contributions, was not available before the 2 pole measurements, since 
As($) disappears from low-energy q2 --) 0 observables. For degenerate multiplets 
heavier than the 2, S is always proportional to the sum over each multiplet of 
custodial isospin weight iv, C lrv a = iv(iv + 1)(2iv + 1)/6. For example, for each 
complete new generation of heavy, degenerate ordinary Dirac fermions, iv = l/2, 
because ordinary fermions are equal mixtures of in = 1/2,i~ = 0 and in = 0,iR = 
l/2 states. The sum is (l/2)(3/2)(1 f I)/6 = l/4, and the contribution to S is: 

(V.13) 

the first term for leptons (NC = 1) and the second for quarks (NC = 3). Thus 
S = 0.21 per generation; the 90% upper limit for S is 0.27, allowing no more than 
one degenerate heavy generation of fermions if we saturate the bound. However, 
S can receive negative contributions from both custodial-conserving and custodial- 
breaking corrections. For example, a split doublet of fermions with A = (B - L)/2 
contributes: 

S = g[l - 2Aln(&m2,)]. 

Unfortunately, the negative contributions to S in general tend to be small, so they are 
not much help in cancelling positive contributions unless multiplied by large group 
representation factors. In (V.l4), for example, we cannot split m, and md by much 
without creating problems with T. 

The major interest in constraining new particles with electroweak couplings re- 
volves around testing specific non-Standard models which are taken seriously for 
other reasons. The most important motivation for such models is stabilizing the Higgs 
sector(8,13,14,97]. The Higgs potential of elementary scalars is sensitive to quadrati- 
cally divergent radiative corrections with particles in loops of arbitrary masses: there 
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is no decoupling for scalars, in general. The large gauge hierarchy of a GUT VEV 
Z 1015 GeV and the electroweak VEV N 250 GeV is unstable; the small VEV nat- 
urally floats up to the GUT VEV once radiative corrections to the Higgs potential 
are introduced. Even with a fixed electroweak VEV, the physical Higgs mass is 
unstable by radiative corrections against floating up to a TeV, implying a strongly- 
coupled Higgs sector. This instability arises from the weak logarithmic corrections 
to AH - m&/$. If we wish to avoid the gauge hierarchy problem and possibly also 
demand a light physical Higgs spectrum without fine-tuning, a new symmetry must 
be introduced into the Higgs sector to prevent quadratically-divergent corrections 
from appearing at all and possibly also forcing the logarithmic corrections to AH to 
be small. One approach is not to have elementary scalars at all, but rather fermion- 
antifermion condensates. The Higgs mass corrections are naturally controlled in 
this scenario by the chiral symmetry of the fermions. The canonical examples are 
tf condensates[l4] induced by suppressed higher-dimensional operators in Lee, and 
technicolor[l3]. In the tt models, the physical Higgs is a tightly bound top-antitop 
state, with mt 5 rn~ s 2mt. The top mass in these models is related to the W 
mass. The resulting low-energy effective theory is essentially the same as the MSM, 
with these mass relations and the same radiative corrections. The minimal models 
require top masses mt 2 200 GeV, higher than the allowed bounds (see last section), 
but this may be curable in variant models. 

Technicolor models[8,13] produce electroweak symmetry breaking with the con- 
densates of technifennions, fermions with electroweak couplings and also couplings 
to a new strong force mediated by technic&r (TC) gauge bosons. The TC gauge 
coupling is asymptotically free and tuned to become strong at ATC N 250 GeV. 
The resulting condensates break the chiral SU(~)LXSU(~)R down to the SU(2)v in 
a manner analogous to the spontaneous breaking of hadronic chiral symmetry by 
&CD. Three of the resulting Goldstone technimesons (analogues of pions) are eaten 
by the W and 2. The minimal TC scenario cannot produce masses for ordinary 
fermions, however, requiring the introduction of a larger gauge group, extended tech- 
nic&r (ETC)[8,98], that interacts with both fermions and technifermions. The tech- 
nifermion condensates give mass to the fermions via two-fermi&two-technifermion 
interactions. Until recently, the best limits on technic&r models came from bounds 
on FCNC’s produced by the GIM- and custodial-violating ETC interactions that give 
rise to fermion masses. The new measurements of gauge boson properties, however, 
test directly for the first time the fundamental TC idea itself, in the gauge boson 
masses. The custodial-preserving S parameter in particular can be estimated with 
some confidence in TC theories, because it arises from the overall chiral symmetry 
breakdown, while the custodial-violating T is more difficult to compute. We can ig- 
nore U in TC theories, as it is typically of order 7’. (M~/A&), The implementation 
of TC proceeds by assuming a TC gauge group SU(NTC), relating its properties to 
QCD (N = 3) by shifting the mass scale and using the I/N approximation, then 
reading off the appropriately resealed numbers from known hadronic interactions. 
QCD becomes an analog computer for TC models. These models also assume NTF 
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flavors of technifermions, in analogy with ordinary quarks. Taking this approach, 
Peskin and Takeuchi found[‘ll]: 

s N 0.3%? - 0.13, 

where the final shift comes from their use of rn~ = 1 TeV as a reference. The 
90% upper limit S < 0.27 is consistent only with the smallest TC models. Other 
groups have carried out TC radiative correction5 estimates using chiral Lagrangian 
techniques(991. However, the validity of the QCD analogy and chiral symmetry is 
unclear for the realistic ETC models. The ETC gauge group is assumed to break 
at some AETC to the SM plus TC gauge interactions; the latter then breaks down 
at ATC. In the QCD-like models, A,ZJTC N 30 TeV, which is not large enough to 
suppress FCNC’s with ‘a large top quark mass. To raise AETC to the needed value 
5 100 TeV, a number of technitheorists have proposed “walking TC”[lOO]. Here 
the TC gauge coupling, instead of dropping rapidly as the QCD coupling does, runs 
slowly (“walks”) from ATC to AETC, pushing the latter up. Whether this new 
dynamics affects the chiral symmetry breaking properties of TC so as to invalidate 
the QCD analogy and chiral perturbation theory is unknown[ 1011. This situation 
will change with a better understanding of the properties of walking technic&r. 

The other possibility for saviug the Higgs sector is to retain elementary scalars, 
but then relate them with a symmetry to some fermions, whose masses are then 
protected by chiral symmetry. This symmetry is supersymmetry [97,102]. It im- 
plies superpartners for all SM particles: scalar squarks and sleptons, and fermionic 
Higgsinos and gauginos (winos, zinos, photinos, and gluinos). The minimal SUSY 
SM requires two Higgs doublets. Unbroken SUSY would imply that particles and 
their superpartners have the same masses. Clearly, supersymmetry must be broken. 
That breaking can be arranged in a number of ways. The key to this breaking for 
our purposes is that the SUSY-breaking mechanism by itself does not break the 
SU(2)~xU(l)y gauge symmetry. Thus SUSY extensions of the SM have no new 
fundamental source5 of EW symmetry breaking. The masses of the SUSY particles 
are combinations of SU(2)r,xU(l)y-breaking and SUSY-breaking terms. The pres- 
ence of the new states contributes new loops to the (S, T, V), but only in a way that 
depends on SU(2)LxU(l)y-breaking physics already present in the SM: the Higgs 
VEVs, the gauge boson masses Mw and Mz, and the fermion masses, especially 
the large top mass. If the SUSY-breaking scale is large compared to the weak scale 
u = 246 GeV, then the superpartner masses are dominated by the SU(2)~xU(l)y- 
invariant SUSY-breaking terms, and the effects of the superpartners decouple from 
electroweak gauge interactions by inverse power5 of the SUSY-breaking scale. Thus, 
the precision EW data places only weak bounds on supersymmetric extensions of 
the EW SM. These decoupling contributions have been computed by a number of 
authors[103]. As we saw in the last section, SUSY can have dramatic implications 
for the running of gauge couplings in GUTS, but this effect involves a large new 
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scale, Mx, and large leading logarithms of the form In(M~/M&rsU). To stabilize 
the Higgs sector, the SUSY-breaking scale Msusy cannot be much larger than a 
TeV. 

V.5 Future Prospects 

~A&. laughed. ‘There’s no use trying,’ she said; ‘one can’t believe impossible 
thinga. ’ ‘I dare say you haven’t had much practice, ’ said the Queen. ‘When I um 
your age I always did it for half ara hour a day. Why, sometimes I’ve believed as 
many as siz impossible things before breakfast. ’ 

- Lewis Carroll, Through the Looking Glass 

The basic message of these significant constraints on non-SM physics is that what- 
ever extension of the MSM we consider for theoretical reasons or personal taste, we 
are faced with three choices: (1) the non-SM physics does not participate in or add to 
the SU(Z)L xU(l)y-breaking sector, thus decoupling from the gauge interactions; (2) 
the new physics satisfies the more restrictive global chiral symmetry SU(~)LXSU(~)R 
to good approximation; or (3) the non-standard physics is minimal or non-existent. 
It seems natural, that is, to assume that one or more custodial-preserving Higgs 
VEVs and the heavy top quark are able to account for all the gauge and global 
symmetry-breaking indicated by precise measurements of electroweak gauge interac- 
tions. The suppression of flavor-changing neutral currents suggests the GIM family 
symmetry (or a similar mechanism) as another approximately good global symmetry. 
On the other hand, a Higgs sector made of elementary scalars is unstable against 
quadratic divergences (such as the. GUT-electroweak gauge hierarchy), making mod- 
ification or extension of the Higgs sector necessary if we are to avoid fine-tuning. 
This requirement and the two global symmetry conditions place rather general re- 
strictions on what sort of new physics we might find beyond the 2. The extended 
Higgs sectors based on supersymmetry and tf condensates are illustrative of the first 
and third possibilities listed above. Technicolor models that satisfy the second case 
seem possible, at least if the number of techniflavors is kept small. 

Short of measuring the spectrum and dynamics of elementary particles all the 
way to a TeV with the SSC, an impressive array of experiments in this decade will 
make further progress in restricting the possibilities for non-standard physics. An 
important milestone will be the discovery of the top quark by direct production, 
with a reasonable determination of its mass[l04]. This will remove the major MSM 
uncertainty in the heavy physics (S, T, V) and also in the flavor-changing neutral 
currents. Because the top-Higgs Yukawa coupling is large, measurement of the top’s 
decay modes, branching ratios and total width may also shed light on the Higgs 
sector. And, of course, any direct production of non-Standard states, such as the 
superpartners or technimesons, would change the situation immediately. 

Meanwhile, limits on radiative corrections of greater precision will steadily eat 
away at the allowed space of (S, T, V). Better low-energy limits will come from neu- 
trino scattering experiments being planned for the next few years[lOS], and from 
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another round of cesium APV experiments[89]. The latter will involve comparisons 
of parity violation in different isotopes of cesium, a procedure that can eliminate 
many of the systematic experimental and atomic theory uncertainties. Also, low- 
energy experiments generally have better sensitivity to new gauge bosons than Z 
pole measurements, suppressed by @./M$, not I’zMz/M&, so low-energy elec- 
troweak physics is not dead yet! 

Gauge boson measurements will improve in the near future. High-statistics re- 
measurement of the currently known 2 properties, the 2 partial widths and the 
forward-backward asymmetries AFB(Z) especially, would improve the measured s:(Z). 
Potentially the greatest improvement in the value of s:(Z) can come from the 2 po- 
larization asymmetry ALR(Z)[92], hi h w c is not subject to the same systematic and 
theoretical uncertainties that the forward-backward asymmetries are. Two other 
important measurements are the W mass and width from the e+e- + W+W- pro- 
duction cross section threshold(l961. Figure 29 is a repeat of Figure 28; but with two 
different 2 polarization asymmetry measurements, the W mass measured to ilO0 
MeV, and an improved cesium APV measurement, giving some idea of how much 
the present heavy physics limits might be bettered within the decade. 
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Figure 29. Possible future con&mints on electroweak heavy physics parameters S and 
T (U E 0), omuming new Z polarization asymmetry, W mass, and APV measure- 
menta deacn’bed in tezt, and no heavy physics ezcept top quark of rnasa 124 Ge V and 
Higga boson of mam 250 Ge V [Sal. 
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A qualitatively new kind of electroweak interaction is measured by the e4e- + 
WfW- process, the three-boson vertex (Figure 30s~). The PI/ pair production ex- 
periment will directly measure this purely non-Abelian effect for the first time in 
the SU(Z)txU(l)y theory(1071. At energies welI above threshold, the total tree- 
level cross section falls as 8-l, enforced by a tree-level gauge symmetry cancella- 
tion between Figures 30a and 30b. The presence of massive particles in the three 
gauge boson vertex loop corrections (Figure 30~) upsets this cancellation until much 
higher energies. Such an effect is another example of breaking of the global chiral 
SU(~)~XSU(Z)R symmetry by radiative corrections, but is a new effect independent 
of the gauge propagator heavy physics A functions - it is a non-Born-like correc- 
tion to the three-boson vertex analogous to the heavy top correction to the 2 + b6 
vertex. 

(a) (b) 

+q<+<+ . . . 

Cc) 

Figure JO. Tree and loop graphs for e+e- -+ W+ W- : (a) Z and photon annihilation 
channela; (b) neutrino exchange channel; (c) loop corrections to three-gauge-boson 
verte4107). 

Thus it seems clear that in 1992, particle physics has solid experimental proof for 
the validity of the gauge principle and of its specific Standard Model implementation 
in electroweak interactions. What is lacking is equally deep insight into the Higgs 
sector. Why the breaking of electroweak gauge symmetry and the associated global 
chiral symmetry is so well accounted for by the minimal Higgs doublet VEV, a 
heavy top quark, and little or nothing else, is a mystery. Reconciling this fact 
with the need for extensions of the Higgs sector to cure its radiative instabilities 
and experimentally establishing what that extension is, has now become the central 
question of electroweak phenomenology. 
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Appendix A: Neutral- end Charged-Current Matrix Elements in the 
IBA[39,74,109] 

The tree-ievel or Born matrix elements for massless external fermions f and f’ 
have the simple form: 

MNC = ; AIT? - $Qll~,L - s:Ql’ =;QQ’ 
Q 

2 
3;C; qZ-Mio ’ 

M 
ei [I$4 + 141:‘] 

cc = G q2 -M&,, 

(A.11 

The matrix elements have the Born-like current-current form, where the matter- 
gauge vertices are purely vector or axial-vector in the limit of massless external 
fermions. In this same limit and at tree level, the effect of the would-be Goldstones in 
the Rt gauge can be ignored, and the physical Higgs channel decouples from the gauge 
channels because its CP properties are different from those of the gauge interactions. 
The gauge symmetry property of the matter-gauge vertex is simply of the form 
gauge coupling. gazlge gmup generator : ecQ for the photon, (eo/succ)(l~ - a:Q) 
for the Z, and (ec/ac)li for the W. All radiative corrections to the M’s that come 
with these same Lorentz and gauge symmetry properties and depend only on q*, are 
Born&ke[7,8,39,59,62,74]. 



The inclusion of the loop corrections to (A.l) is non-trivial in the EW gauge 
interactions. We cannot simply calculate the M’s to a fixed order of perturbation 
theory, because the 2 and W masses are shifted by the radiative corrections. Alter- 
natively, the propagators become quasi-singular as 4’ approaches the gauge poles. 
We must therefore carry out a Dyson sum of the irreducible self-energies to obtain the 
modified propagator that describes the physical gauge bosom. However, the gauge 
boson self-energies in a non-Abelian gauge theory are not gauge invariant, because 
the gauge bosons’ contributions to their own self-energies are not gauge invariant. If 
we could obtain the exact vertex, box and self-energy corrections to the Born matrix 
elements (A.l), we could, in principle, continue to use the gauge non-invariant prop- 
agator, because the full matrix elements would still be gauge invariant. One way to 
apply this approach would be to express the matrix elements in terms of the exact 
irreducible corrections[73]: 

& rz,L - 4Qlfl+ r(iV,L - 4el’(l + W)) + o(q2) 
44 q2 - M& + I-q?) 

1 (A.21 

is the neutral-current matrix element keeping only the 2 channel. Then, we could 
Laurent expand MNC or the cross sections in negative and positive powers of a-a,, 
where sP is the complex pole of the matrix element. The coefficient of each term in 
this expansion must be gauge invariant; each coefficient could itself be re-expanded 
in powers of o, and the subcoefficients are also gauge invariant[73]. Since the theory 
is solvable only in perturbation theory, this method must at some point make con- 
tact with the u expansion. An alternative method, the one used in these lectures, 
is to rearrange the corrections at any order in the irreducible expansion into gauge- 
invariant classes. The corrections fall into Born-like and non-Born-like types: the 
former is a gauge-invariant class by construction; the latter is made up of a number 
of separately gauge-invariant classes, as discussed in section IV.4. The Born-like 
corrections are inserted into modified Dyson equations for the propagators. We then 
obtain gauge-invariant effective propagators for all q2[39,62]. The effective propaga- 
tors are essentially the analytic continuations of matrix elements such as (A.2) from 
the pole regions to all kinematical regimes, but only order by order in perturbation 
theory. To a given order, the continuation is unique[ll6]. 

The gauge boson self-energy corrections II are obviously Born-like, since they 
are connected to the outer legs by bare propagators at any order (Figures 6,7). The 
matter currents coupled to the physical gauge bosom can be decomposed according 
to their electric charge and left isospin quantum numbers: 

J7 = =0-b JZ = (eo/8~Co)[J," - &], J$ = (eo/80)[.@ &iJ;], (-4.3) 
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The physical gauge boson self-energies can then be decomposed analogously: 

% = =aop, $2 = (4/Wdk2 - &k&l], 

IIZZ = (&&i)[h - 28&4 + &rQQ], 

HWW = (&.&[h + &21/2 

(A.41 

= (&&II+- + n-+1/2 = (&L’&~,, 

There are four independent self-energies: HQQ, IISQ, ITsa, and II*. Note that, by the 
unbroken residual isospin symmetry, II+- = IT-+. 

All of the vertex and box loops have the Born Lorentz properties, but not always 
the Born gauge structure. The non-commutation of the gauge group generators in a 
non-Abel&n gauge theory gives rise to Born-like vertex and box corrections. Consider 
first the vertex corrections (Figures 208, b). Denote a gauge group generator by T”. 
Let the vertex carry index a, and let other letters 6, c,. . . denote dummy indices. 
The loop of Figure 208 has the group structure: 

TbTaTb = ( CF - ;Cv) . T”, (A.5) 

where C.P = TbTb is the external fermion Casimir operator. The second term is 
proportional to the gauge boson (adjoint) Casimir operator Cvsbc = f”‘fcde and to 
the original tree-level generator T”. This factorizable non-Abelian correction to the 
tree-level vertex is therefore Born-like, not depending on the quantum numbers of 
the external fermions. The second term is also a correction to the tree vertex, but 
is nor Born-like, as it depends on the quantum numbers of the external fermions. 
This term is cubic in external quantum numbers and is thus Abelian. The loop 
of Figure 20b is purely non-Abelian, being proportional overall to the non-Abelian 
three-gauge boson vertex. Its group structure is: 

TbTcfabC = ; a Cv . T”. 

The Abelian and non-Abel& parts of the vertex corrections to the charged- and 
neutral-current matrix elements are uniquely isolated this way. The non- Abelian 
vertex corrections are completely absorbed into the Born-like corrections; the Abelian 
vertex corrections are non-Born-like (Appendix C). 

The box loops also fall into Abelian and non-Abelian forms. Consider the direct 
(Figure 20~) and crossed (Figure 2Oc, with the gauge lines crossed) box loops. The 
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group structures take either form: 

(TT*)f(m*)f’, (T”P)f(T*T”)f’, (A.71 

where the two generators running along each fermion line act on the same fermion 
indices, but each pair acts separately. These forms can be expressed in terms of 
commutators and anticommutators, and the commutators then re-expressed using 
the Lie algebra. If the gauge channels are all summed over, (A.7) is transformed to: 

(‘4.8) 

with the upper (lower) sign for the direct (crossed) box. For the EW gauge theory, 
where the gauge boson masses are different, the sum over gauge channels cannot be 
performed. If the gauge channels are not summed over, (A.8) also contains mixed 
terms (not shown), products of one commutator and one anticommutator. (Mixed 
terms cannot occur in the vertex, because there is only one virtual gauge boson 
in the loop.) The pure anticommutator term is Abelian, while the mixed terms 
are non-Abe&an; both are non-Born-like. But again, we notice a pure non-Abelian 
term proportional to the gauge boson Casimir operator Cv and reproducing the 
Born current-current gauge form. This pure non-Abelian term, however, cannot be 
fully absorbed into the Born-like corrections, because it lacks the simple kinematical 
dependence (only $). The tree-level, self-energy and vertex graphs depend on q2 = s 
or t, while the box graphs depend on s and t simultaneously. But anAb(d, t) can 
always be separated into parts that depend only on q2 = s or t, and everything 
else. The first type of corrections are then Born-like. The terms left from OnAb(s, t) 
carrying both J and t dependence are non-Born-like. This separation of non-Abe&n 
box corrections is not unique. Here we use the following separation method. Note 
that the three kinematical Mandelstam variables sum to zero for massless external 
particles: 8 + t + u = 0. Set u = 0 to isolate the Born-like part. That is, OnAb(s, t) = 
d”Ab($) + &‘Ab(~,t); where dnAb 2 - @“Ab(s,t;tL = o), so that q2 = s = -t or 
qz = t = --d. The residual GnAb (’ ) - is the non-Born-like remainder. There are three 
advantages to this particular approach. First, in the kinematically physical region, s 
is positive semi-definite (s 2 0) and t negative semi-definite (t 5 0). s is the square 
center-of-mass energy of the process, while t is minus the square center-of-mass three- 
momentum transfer. Thus, setting u = 0 is always kinematically physical. Second, 
the condition u = 0 treats J and t symmetrically, which is convenient for processes 
such as Bhabha scattering (Figure 25) where both s and t channels occur. Third, 
there are no poles in physical amplitudes at ‘1~ = 0; while s = 0 and t = 0, for 
example, arc photon channel poles for q2 = J and q2 = t, respectively. 

The next step is to organize the different gauge-invariant effective self-energies 
II* from the self-energies II(q2), non-Abelian vertices l?‘Ab(~2), and the Born-like 



non-Abelian boxes @‘Ab(q2)[6Z]. The full reducible four-point matrix element M is 
generically made up of the full propagator D, the full vertex correction I’, and the 
irreducible 0. Schematically, 

M = (1 t r)D(l +r) t 0, (A.94) 

where D conventionally satisfies the Dyson equation: 

D = Do + DIIDo. (A.9b) 

We could put M into a pure propagator form by collecting I? and 0 into an effective 
II* : 

M = Do + DII*Da. (A.9c) 

To linear order in the irreducible loop functions, the effective self-energy is then: 

II’ = II + 2D;‘I’ + Di20. (A.9d) 

This form is valid if the irreducible II, I’, and 0 are computed to one loop; the form 
of II* in terms of these functions changes at higher order. At one loop, II* must 
be truncated at linear order in the irreducibles. Note, however, that the effective 
propagator D is always a non-linear function of II’, at any order. This absorption 
of vertex and box corrections into an effective propagator is valid only for the Born- 
like vertex and box corrections. This same form (A.Sd) for II’ can be obtained 
by computing the M to first order with no Dyson sum, rearranging the terms in 
the matrix element to form an effective self-energy from II, I?, and 0. Since we 
can eliminate other gauge-invariant classes of corrections from the matrix element 
(the non-Born-like terms), the Born-like corrections, so defined, must be separately 
gauge invariant. All gauge-dependent results quoted here are computed in the t = 1 
gauge[39,62]. 

The neutral- and charged-current matrix elements in terms of the full propagators 
are[39,59]: 

MNC = d? . DT7(q2). eoQ’ 

+ 2 . eo. [Q(I.f - a;Q)’ + Q’(I,” - a:Q)]. D,z(q2) (A.lOa) 

+ %(I: - s;Q). Dzz(q2). %(I: - dQ)', 
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and: 

Mcc=;.[ 
Ip’ + I_LIZ’ 

2 
+ I. aiw(Q2) z, (AJOb) 

The Dyson equations for the full propagators are[39,74, log]: 

D,, = D& + D& II& D,, + D;-, II$ D+ 

Dzz = D;, + D;, II;, . Dzz + D;, “;z. DTz 

D,z = Diz . If;, . D7z + D;, . n;z DT7 

Dww = Dkw + Do,, . II&,, . Dww. 

With the following effective self+nergies[62]: 

‘I~Q = IIQQ + 2q2r;** - 2q4@** 

nIj~ = n3Q + zq2r;** - 2q4@** 

_ $‘[yAb - 2q2@**] 

II;, = nJ3 + 2q2r;Ab - zq+i;** 

(A.ll) 

(A.12) 

- !$fE[r;** + (-zq2 + !$$j;Ab] 

n; = II* + 2(q2 - M~)Iy + 2(qZ - M&)20;**, 

the matrix elements with the full Born-like corrections can be brought into the 
forms[39,62]: 

M NC = e%2)QQ’ 
q2 

+ e3q2) 11,” - +“)Qli@ - 4($K?l’ 
4q2)d(q2)q2 - -& *.=. 4&..p. + 4az.(q2) (A.13~) 

M 4n2) [I$_” + I-“If] 

Cc = %q2) q2 - $&: + i*rw*(42)’ 

if we solve the Dyson equations (A.ll) and substitute them into the matrix ele- 



ments (A.lO), with the four star functions defined as follows[ 39,621: 

1 1 
- n*iJQ(q2) 

1 1 -=-- 
s,2(n2) !I; 

n*:Q(g2) 

(A.14) 
1 1 

= - 4v’%F,(q2)pe(q2) 4v’5G~,po [n;Q(q2) - n;3(q2)l 

1 1 

4d%F,(q2) = ~&GF, 
- [n;Q(q2) - n;(q2)l. 

Then sz(q2) = ef(q2)/gz(q2). In the Minimal SM case, set po = 1 in (A.14) and p = 1 
on the righthand side of (A.12). The width functions for massless fermions are: 

rz.b?) = 12;~2e2 A? Crcg:f - &?f)2 * * f 

+ ($f)2] ’ CQCD 

rW&2) = &fi~cQCD, 
l D 

(AS3b) 

for all above-threshold fermions f and fermion doublets D(f, f’), where 9’ > 0, and: 

34Qaf + Q;J 1, leptons 

CQCD = [I+ 
87r 1 

3[1+ e + O(af)], quarks, 
(A.13~) 

and f’ = f in the 2 case. CKM mixing has been ignored in the W width. The 
QCD and QED modifications to the imaginary parts of the II’s are included. The 
present value of the MS strong coupling at the 2 pole from LEP is: s.(Z) = 
0.119 f 0.006[110]. The modifications to the real parts are also perturbatively cal- 
culable to CJ(aa.)[ 481, say, but are small (Figure 13~) - except for the effect of 
strong corrections in the hadronic contributions to IIQQ, included by use of the dis- 
persion relation from e+e- data (sections III.l/V.1)[47]. I show no non-Born-like 
strong corrections to the outer legs, since these generally require specialized QCD 
techniques[8,114]. Total cross sections to quark pairs are corrected by the simple 
CQCD factor. 



The “prime” superscript indicates that the self-energy has been divided by q2; 
that is, HhQ = q’.n*b~, etc. That nQQ(q’), and thus II;, in (A.12), is divisible 

by q2, is known from the QED Ward identities[30]. That fI;, is also divisible by q2, 
is due to the non-trivial fact that[59]: 

Mtv ndb 
$Q(O) = &Q(o) - - 

P r3 (O) = O. 
(A.15) 

This electroweak Slavnov-Taylor identity is essential for preserving the structure of 
the theory beyond tree-level, because n3Q(O) # 0. The occurrence of If;,(O) # 0 

would produce spurious pole as q2 + 0, of the form IIiQ(0)/q2, in the Z-photon 

mixing. That II,,(O) # 0 indicates that there is a new non-diagonal mass mixing 
between the Z and the photon at the loop level. This mixing is actually a vertex 
diagram in disguise (Figure 31). The non-Abelian vertex of the external legs (and 
it doesn’t matter what type of particles are on the legs!) identically cancels this 
mixing in IfiQ as q2 + 0, and rediagonalizes the neutral-current interactions in the 

S-matrix[39]. 

Figure 31. One-loop 72 mizing induces neutral-current mass nizing and is actually 

a two-gouge-boson/two-aiggs vertez in disguise, with (@If’+) summed OWP Higgs 
WV8 @[39]. 

The self-energies II are compactly expressed in terms of the form factors En, B1, 

a9 



and Bzl of Passarino and Veltman[38]: 

1 

Bo(q2;m;,m;) = +A - J dzf(z,q’;m:,m;) 

0 1 
&(q2;m;.m;) = -;A + 

I 
dtrf(z,g2;m~,m;) 

0 

1 

Bzl(q’;m:,m;) = +;A - J d=‘fb, q2; m:, 4, 
0 

f(z, q’;m:,mi) = I+: + (mi - rn: - q2)z + z2q2 -is]. 

(A.16) 

Also define B3 = Bzl + B1. The d 
appear in the combination: 

lvergences in dimensional regularization always 

A= 2 --r+ln4~, 
4-n 

(A.17) 

with n + 4. Then, to one loop in the Standard Model, the self-energies in the ( = 1 
gauge are as follows[39,74]. 

Gauge bosons/Higgs 

16r2&3(q2) = -q2[9& - ;Bo - ;](W, W) + 2M&Bo(W, W) 

- +fj -&)[~BI +Bo](Z,H) 

- $‘[-a + Bo](Z, H) - M;Bo(Z, H), 

(A.18a) 
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16a2h(q2) = ;q2 - s;[q2(8B3 - 2Bo) + 2M&(2B1 + Bo)](W,y) 

- c;[q2(8h - 2Bo) + 2(M& - M;)(2B1 + Bo)](W, z) 

- [q2(h + +o) + +-f& - M$)(2B, + Bo)](w,z) 

- CM; - 3@v)Bo(W, Z) - +f& - 7&)[2& + Bo](W, H) 

- ;q2[4& + Bo](W,H) - M&Bo(W,H), 

(A.18b) 

16T2n3Q(q2) = q2[-10& + ;Bo t ;](w,w) + 2M$B,,(W, W), (A.18~) 

16r2nQQ(q2) = q2[-12& + & + +,W), (ASSd) 

where W = Mw, 2 = Mz, 7 = M7 = 0, and H = mu. In < = 1 gauge, the II* 
stif-energy contains no X7 + 0 IR divergences. For II* and the charged-current 
vertices and boxes below, take 3; = sin2Bw = 1 - M&/M;, and ci = 1 - si. 

Fermions 

16*2&3(q2) = 2 c I,Lf2[2q2B3 + m;Bo](f,f), 
f 

(A.19a) 

16rr211*(q2) = x[2q2&(1,2) - mf&(2,1) - m;&(l,2)], 
D 

(A.19b) 

16~~~3~(n~) = 4n2~Qf~ffLfB3(f,f), 
f (A.19c) 

16*2%dq2) = &z2 c Q;B3(f, f), 
f 

(A.19d) 

where f stands for all fermions; D for all doublets of fermions with masses 1 = ml 
and 2 = mz. 
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The neutral- and charged-current non-Abelian vertices are: 

16~~~;~~(q~) = -[@(q’; IV) + A(I+; w,w) - zBo(o; VI’, Pi’)], 

16aZr;Ab(q2) = -[@(q*;-y) + c@(q’; 2) (A.20) 

+ &(q2; W,-r) + c;qq2; w, 2) - 2840; vv, Iv)]. 

The neutral- and charged-current Born-like non-Abelian boxes are: 

l&&yAb(,$) = Ma (; _ ~) (-; _ uln(;- “) + ; + $ 
W 

+ -‘2(; y2y2 (h(& w, W) - 4, 

- gsp(u - if) - u - ; 

(A.21a) 

+ ln(u - ie)(ln(l - 11 + iE) + u + ;,I,, 



16&y(q2) = 4 
M&(1 -u) { 

c” ,;p,14”” [l + (; - I)&] 

+ $$[ln(u - if) - l] 

+ 2u(u - 1) 
4u + 1 bwtr) + iI 

+ s[Sp(U - ie) + ln(l -u - iE)ln(u - ie)]) 

+ 4 
M&( 1 + c; - UC;) 

Xi B(% c;, 
2uc;(4uc; + 1 + c;)(l + c;) 

[x+1+ + 2-L + 1 - $ In c$ 

+ 
UC; - 1 - 2 

’ [ln(uci - i.5) - 1 + -In c;] 4 
2uc; 4 

2(uyj - IL,; - UC! - 1) 
+ (47x8 + 1 + ci)(l + c;) LwK z, + i] 

+ 
1 - u2$ + uci + uc2 In c2 0-A 

UC; 4 

+ s[Sp(zt - ie) + ln(1 - u+ ie)ln(u - ie)] 

+ yi2;;l Lw u$ - ic) + In( 1 - UC; + k) In(uci - k)]}, 

B(u, c;, = 411%; + UC; - 7uc; - (1 - ci)( 1 - c;, 

+ 4u2c; + UC; + UC; - 42132 81 

(A.21b) 

with u = q2/M&. The special functions +(q2; V) and A(q2; W, V) are:[ 39,38,74]: 
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@(q2; V) = i - ln(-v - i6) + 4(1 + J--)[ln(-u - ie) - l] 

-2(1t~)2[~-Sp(ltD+ie)], 

A(q2;W,W) = ; +; + (1+ ;,zw 
J- 

1 - ; - (I+ &,$;v, 

h(y2; W,Y) = ; + t + ($ - 1)1, 

- (2 t zt;,;z;, 

M; Y 2) = -; + (4 ;;; + 1) [-5j 1nc; + 1 + x+1+ + 5-Z-] (A.22) 
e 

+ (4d + 4 + lJcl + cj)rl+l- + lncil 
2uc; UC; 2’ 

se 

lw = ln[ 4=-G - l + &] 
diqGi-1 

1, = ln[l -u - ie] 

I* = ln[%2 r* h 4 

+* = &[u- a;/$ * J-j, 

with v = q2/A$. The branch cuts of the logarithms are taken along the negative real 
axis of their respective arguments. Sp(z) is the Spence or dilogarithm function[38,74, 
1151: 

SP(z)=-j$in(l-I), 
0 

with Sp(0) = 0 and Sp(1) = ?r2/6. The IR d’ lvergences of the Born-like charged- 
current vertices and boxes can be treated by the method outlined in section IV.5. The 
infrared-divergent parts (proportional to In M:) have been removed from A( W, 7) and 

aTAb; the divergences are gauge invariant. The gauge-invariant function @(q2; 7) is 
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infrared divergent and should be removed from r $Ab. These IR-divergent parts must 
then be combined with the non-Abelian parts of the radiation graphs[39,62,74]. 

Appendix B: Commonly Used Renormalization Schemes 

We must define some standard parameters. The first ones are the gauge boson 
masses and widths. The correct gauge-invariant definition of the masses and widths 
is obtained from the complex poles of the propagators: 

1 
Dzz,ww + - s-asp’ (B.1) 

as s + sP in the s channel, for example. This pole cannot be reached for any physical 
(real) value of s, but is nevertheless uniquely specified by the analytic properties of 
the S-matrix[l08]. From the complex sp, the mass and width can be defined in a 

number of ways. A convenient choice is: sP f M2 - iMr[73].* That is, M2 = ResP, 
and r = -Im+/M. The definition of gauge boson masses that has been standard 
in the literature is the on-shell definition Mos, defined as the zero of the real part 
of the inverse propagator, for real J. These two definitions are not equivalent, and 
the on-&I1 definition is nol gauge invariant in general. For q2 > 0, the corrected 
propagator takes the form: 

1 1 

q2 - Wq2) t @r,(q2) ---) (q2 - M&)(1 - 6) t iq2(ros/iwos)’ (‘34 

with M& = M:(M&), ros = I’,(M&), and K. = [0M~(~2)/~~21(q2 = Mss). Then 
the pole and on-shell definitions are related by: 

ap = M;,[l- (r;;!;;)2] - i”;rr;S + q,3), (B.3) 

differing by terms of c)(I&/M&) - that is, 0(a2) - and higher. The on-shell 
2 mass and width are Mgs = 91.174 GeV and rgS/(l - ~2) = 2.49 GeV. The 
gauge-invariant pole 2 mass is then Mz = 91.140 GeV, a shift downward of 34 
MeV. The results and analysis presented in these lectures are carried only through 
O(a); to this order, the two definitions are equivalent, and I use only the on-shell 
definition forthwith and drop the OS sub(super)script. The photon mass is zero 
in anybody’s definition, because the photon’s “width” (its imaginary self-energy) 
vanishes as q2 -+ 0. The 2 and W widths quoted from data always include the pole 
residues (1 - X)-I. 

* An alternative choice is: sp s (M - ir/Z)a[73,76]. 
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The on-shell conditions for the gauge boson masses enjoy the special property 
that the extra vertex and box terms necessary to convert the II’s into the gauge- 
invariant P’s cancel out, but only at the poles. This is not surprising, if we remember 
from (A.9d) that the extra terms in the lI*‘s are proportional to one or two powers 

of the tree-level inverse propagator (q2 - M2).+ It is convenient to use a:(Z) as an 
intermediate quantity for many purposes: 

a;(z)c:(z) = e:(z) 
4v’%@G~e(Z)p*(Z)’ 

where ci(q2) = 1 - s2(q2). Defined in this way, s:(Z) depends only on the II’s 
evaluated at q2 = Mi, not on the full II*‘s. The relationship: 

JfiJ = $gg*& (W) * t (B.5) 

also requires only the II’s. To run sz(q2) away from the 2 pole, we need the full 

n*1,,(q2) : &q(q’) = II*:&‘) - n*:,(z); and the full II’&(q2). But the g:(W) 
needed for (B.5) and the determination of the W mass requires only Q(W). 

We also define: 

1 1 

4fiGi+(q*) = 4v’2G~ 
- Ai(q2) 

--& * = 1 - k”%e(q2)A,(q2) 

1 1 
= - - 4fiGF.(q2)p,(qa) 4dG~ Adn2) 44’4, 

(B.6a) 

t The pole derivatives n do depend on propagator construction; they depend on the Born-like 
non-Abelian vertices, but not on the Born-like boxes, because the latter enter the P’s with 
two powers of inverse propagators. The Abelian vertex corrections c&n be inserted into the 
widths by hand by changing the width couplings (Appendix C). Thus the total corrections to 
the widths at the poles include all vertices, but no boxes. The Born-like neutral-current box 
is the non-resonant WW, while the Born-like charged-current boxes include the resonant and 
IR-divergent Wy box: in the prescription discussed in section IV.4, this N-divergent part 
is removed and put back with the non-Born-like terms. The non-Born-like boxes of course 
include resonant Z7 and Wy contributions also. 
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with: 

A4na) = G(O) + %,(q’) - H;(q’) 

‘W?) = IG,(“) + G,G?) - G(q2) 

44q2) = W?) -G,(?) 

(B.6b) 

and A3(q2) - A*(q2) = A,(q2) - A,(O). In the po # 1 EVSM case, let p = p,(O). 
Then replace (B.6) with: 

1 
- = 1 - 4&G,,(qZ)A,(q2) 
P*(?) P 

(B.7a) 
1 1 

4v’%t(qa)pr(q2) = 4v’?G~p 
- &(q*), 

and: 

Ap(n’) = As($) - p-‘Ai:( (B.7b) 

TLc tree-level p rep!x~s [! - 4;~G~A,(O)]-’ in the EVSM case[62]. 

The on-shell electric charge is derived from e2 = e:(O) at the photon pole, where 

qzMF$=‘(q2) + e;(O)QQ’, q2 + 0, (B.8) 

exactly to all orders[40,76]. e;(O) = ea is a gauge-invariant relationship requiring 
only II,,(O). Running ez(q2) away from qz = 0 requires II”& : AQQ(q’) = 

~*&4?) - A&$.9 II owever, the computed value of e:(Z) needed for the 2 pole 

condition (B.4) and the determination of s!(Z) requires only IIQQ(Z). For the W 
mas8 (B.5), e!(W) is not really there, since ef/az = gz. The universal Fermi constant 
GF is defined from the charged current: 

Mi?.BAC(q2 = 0) = 4&GF . ;[~$f’ + I~Ifl (B.9) 

and should not be confused with the muon decay constant G,[76]. Note that 
Gp*(O) = GF. G, and GF differ by the 0(L) non-Born-like corrections to muon 
decay (Appendix C). Because GF is not defined from the W pole, we cannot re- 
place the II:(O) by II*(O) in this relationship, and the relationship between GF and 
GP depends on the exact choice of propagator construction. In the 2 and W pole 
conditions (B.4,5), II:,(Z), II;,(Z), II;,(W) and II%(W) are all replaced by the 
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respective II’s. The dependence on the full II:(O) remains, when GF is used as an 
input, and includes the Born-like vertices and boxes QAb(0) and o;‘*(O). However, 
when GF is re-expressed in terms of G,, the pole conditions then also depend on the 
non-Born-like vertices and boxes relating GF and G,. Thus, the pole conditions, and 
any quantities derived from the pole relations, expressed in terms of G, depend on 
the vertex and box corrections to muon decay, but only on the sum of the Born-like 
and non-Born-like terms, a sum independent of the propagator construction[ 62,721. 

On-Shell Scheme 

The on-shell (OS) scheme was introduced by Sirlin and Marciano in 1980[72,74]. 
It uses the three parameters a, Mz and Mw defined above to renormalize the gauge 
interactions. The OS weak mixing is defined as an auxiliary quantity: 

sin’ 9~ G 1 - - M& 
‘% 

to all orders. (At higher orders, we would have to make sure to use a gauge-invariant 
definition of the masses[73].) At one loop, sin’ 8~ is related to a:(Z) by: 

sin’8w = B:(Z) - c:(Z){ e’(z) ~&a,(w) + ~~GF[A~(Z) - Ai(w) + A,(o)]}. 

In this scheme, GF is defined through: 
(B-11) 

and 

sin’ &GF( 1 - AT) ’ (B.12a) 

AT = e2Aq(Z) + =f(z) 
-&~(w)[l - 

4-q 
2(Z) 

----I 
4(z) 

- ~~GF{A#') + $+3(z) + A,(O) - A#')]}. 
t 

(B.12b) 

This expression for Ar includes only Born-like corrections. To calculate, the GF 
in (B.12a) is re-expressed in terms of the muon decay G,. Ar then includes in addition 
the non-Born-like corrections that relate GF to G,, discussed in Appendix C. The 
complete q ’ = 0 charged-current vertex and box contribution to Ar, the sum of 
Born-like and non-Born-like terms, is: 

A TG = &-9 + 7 ;;;“” In c;]. 
9 

(B.12~) 
e 

Lynn-Peskin-Stuart (LPS) Scheme 
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This scheme was introduced in 1985 and replaces Mw by GF as the third tree- 
level parameter[59,39]. The LPS scheme is convenient in particular because it uses as 
renormalized parameters the three most accurately known electroweak observables, 
a, Mz, and GF. The 2 pole condition (B.4) determines s:(Z) : 

s:(z)c:(z) = 4;z;;{l - J&GF[(&(Z) + A,(O)]}. 

In this scheme, Mw is calculable - 

M$ = f#. ,;, . [l - ~&GFA,(W)] 
l F 

_ =2(Z). 
$#,,(w) - 4&G,A,(W)]. 

(B.136) 

1 
s2(2) ~&GF 

. [l + 
a 

The heavy physics functions Ap, As, and A,, evaluated at q2 = 0, Mi, and 
M&, respectively, find their most natural place in this scheme, with GF enforc- 
ing the subtraction of A3 and A, at q2 = 0. Introduce dimensionless heavy physics 
parameters[39,71]: 

cd! = 4fiG~A,(0) 

S = -lGrA@)/M; (B.14) 

S + tY = -16rA*(W)/M$ 

Modified Minimal Subtraction (MS) Scheme 

The MS scheme, long in use in the QCD literature, was introduced for elec- 
troweak corrections by Sirlin in 1989[75]. Unlike the OS and LPS schemes, the MS 
scheme uses two scale-dependent gauge couplings i*(p’) and ;i2(p2), as well as GF, 
as renormalized parameters. The MS gauge coupling are not physical, but are re- 
lated to the full running gauge couplings el(q2) and sz(q’) by the MS prescription 
(section 111.5). Let fibQ(q2) and I@,($) be the effective self-energies subtracted 

in the MS procedure; they contain the above-threshold sublogarithmic and below- 
threshold terms. 

1 

qjq= & - fi;Q(i? 

1 
- = i - 7 CiQiA + C CjQi ln(p*/m;), 
+2) i 

(B.15) 

where ~1’ = a q , and Vmz < p2; similarly for gZ(q’), where i2(pL2) = P2(~*)/~“(~“). 
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The relationships between the star coupling functions and the ilcrs couplings depend 
on the choice of propagator construction (the II*‘s), but the m couplings do not: 
they depend only on the divergences and leading logarithms, which are universal. 
The convenience of the m scheme is that the ez(q’) and sZ(q’) are expressible in 
terms of the m couplings and purely non-logarithmic terms. If we use the MS 
couplings in place of the full star gauge couplings, the resulting leading logarithm 
approzimation is reasonably accurate for “light” radiative corrections (not including 
S, T, and U). At the gauge boson poles, the II*‘s reduce to the II’s anyway, and it 
proves convenient to define two auxiliary m functions A; and A?w : 

;a( M;) = e2 2 
4fiG&‘&(l- A+w)’ 

i’(M;):*(M;) = 
4&G~h’fj(l -A+)’ 

(B.16) 
and then note that there-expression of GF in terms of G, leads to the same additioni 
contribution to A+, and A? that appears in AT (B.12~). 

Relationships among Schemes 

By equating the various expressions of the star functions, we obtain relationships 
among the different schemes. First, note that the functions AQ($) and &q(q’) 
defined above: 

1 1 
- = - - Aq(q’) 
=1(q2) 9 

1 1 -=- 
s3q2) sl(Z) 

- A~Q(Q')I 

(B.17) 

where st = ez/gi, allow us to run e! from q2 = 0 and 9: from q2 = Mi. 

Relating the OS and LPS schemes is straightforward: we need to relate GF to 
Mw and express sin2Bw in terms of GF and Mz. From (B.12), at one loop: 

(B.18a) 

with convenient one-loop replacements of parameters si = 1 - ci = sin’ Bw, a(Z) N 
&(Z) N (128)-l. Including the non-Born-like vertex and box corrections to replace 
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GF by G, : 

AT = 0.0602 + (0.0169)s - (0.0196)U - (O.O242)T, (B.18~) 

where the (S,T, V) are subtracted relative to the Standard Model point MSM(mt = 
rn~ = Mz), as discussed in the section IV.3. Then the OS weak mixing angle is 
expressible as: 

sin’ Bw . cos’ 0~ = 
fiG~M;l -AT) 

0.1779 

= 1 - (O.OlSO)S + (0.0185)L’ + (0.0228)T’ 

(B.19) 

where in the second line, the AT of (B.18~) has been used. MJ+J can then be com- 
puted from (B.19), using the definition of the weak mixing (B.lO). The W mass 
at the MSM(mt = rn~ = Mz) reference point is MWO = 79.93 GeV. Again, 
these numerical results (B.18 and B.19) do not depend on the choice of propaga- 
tor construction[59,72,75]. 

The LPS and MS schemes are trickier to relate, because of the non-physical na- 
ture of the MS couplings. The masses MZ and Mw are related to i2(Mi) by (B.16), 
where: 

A+ = 4na[Aq(Z) - (1 - s)&(Z)] + 4na(Z) 
4 

Ai, = ‘hc+~(Z) - fIQQ(Z)] + 4*;;Z)[A,~(") + I?:,(Z)] 

(B.20) 

+ 4Z) &S + VI, 9 

Note that i’(Mj) computed from Mw (AFw) contains no quadratic top mass de- 
pendence (T); while computed from Mz (A;), it does. By convention, the top quark 
is taken as “light” in carrying out the MS subtraction of II& and II;,, even if rnt > 

Mz. This convention makes GUT calculations with i2 and &’ easier. The threshold 
1 ogarithms of the “heavy” top must be re-expressed: lnmi = In Mi + ln(mf/Mi), 
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with the former absorbed into the couplings d2 and jr’, the latter retained in &Q(Z) 

and l&(Z). The heavy physics parameters S and U also have ln(m:/Mi) depen- 
dence. Including the vertex and box corrections for GF and displaying all ln(mf/Mi) 
dependence explicitly: 

l A+ = 0.0659 + ;[= (1- $; + +;, - +@4z) 

- aT+& 
88 

Aiw = 0.0678 + ;[-& - ;] ln(mt/Mz) 
e 

(B.21) 

+ 42) ^ +s + a, 8 
with the heavy parameters subtracted again at the reference point MSM(mt = rn~ = 
MZ 17 and the In(mt/mz) dependences of S and U removed, thus producing ,$ and 
0. The latter two still have weak sublogarithmic top mass dependences. Then: 

i2(M’) = J?GpjpfiG - A+~) 
0.2333 

= 1 - (0.0032) ln(mt/Mz) + (0.0091)( .+ + ii) ’ 

using the reference Mwo = 79.93 GeV. On the other hand: 

i’(M;)E’(M;) = 
fiG~M;l -A+) 

0.1790 
(B.22b) 

= 1- (O.O002)ln(m~/Mz) - (0.0078)T + (0.0112)s’ 

The reference value is i’(Mj) = 0.2333. The running of &(pz) begins at pL2 = mi, 
with matching condition h(mz) = a. At the 2 pole: 

1 
qzq= 

127.8 f 0.1 + & In(mJMz), (B.23) 

where the uncertainty is due to the hadronic vacuum polarization (see section V.l) 
and the top quark is taken to be “light”, as discussed[ 59,751. The OS and MS 
schemes can be related easily, using the formulas above[75]. 



Let the subscript “0” (not to be confused with “O”, bare) denote quantities 
computed with the heavy physics parameters set to zero - that is, including all 
“light” radiative corrections and subtracting the heavy physics at the MSM reference 
point. Then 

M;=M&[ ‘-czT ] 
l-&p 

M& = M&,[ 
1 

1 - fy.9 + V)] 

are the OS masses and 

rz = G~Mhz 
l-aT 

(B.24a) 

(B.24b) 

are the OS widths renormalized by the pole residues (1 -x)-l. The functions yz and 
7~ are the dimensionless factors quoted above (A.l3b,c). yz is a function of a:(Z), 
which has heavy physics dependence: 

a;(z) = s$qo - “;‘“$$f .4hG~[&(z) + A,(O)] 
* (B.25) 

= 0.2322 + (0.0037)s - (O.O024)T, 

derivable from the pole condition (B.4) and including the threshold terms; the electric 
charge is: 4rr/ez(Z)o = 127.6fO.l. The top threshold dependence in e:(Z) and al(Z) 
from &Q(Z) and &q(Z) is negligible for rnt > Mz. The value of ef(Z) used in 
the pole condition is computed with only the self-energies II. The value of s:(Z) 
depends in the usual way on the charged-current vertices and boxes from muon 
decay[39,59,71,88]. 

The low-energy neutral-current matrix element is: 

MfrJ(q2 = 0) = ;fz; [Zt - s:(O)Ql[I,L - d(O)Ql’. (B.26) 

When Mz is used as an input, the relation of s:(O) t o a:(Z) involves no heavy physics, 
depending only on A~q(0); but the relation of s:(Z) to Mz does, given by (B.25). 
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Thus: 

s:(o) = s:(z) 
1 - $$j&~(o) 
I+ e:(Z)A(Z) ’ 

(B.27) 

where the second factor on the r.h.s. contains “light” physics only, and all the heavy 
physics is in d:(Z). (B.27) depends on the choice of propagator construction, through 
A,q(O), because s:(O) is not on Z pole. The full M~c(q’ = 0), including the non- 
Born-like corrections not displayed in (B.26), d oes not depend on this choice, but 
only on the full sum of all relevant corrections[39,59,71, 881. Reference values for 
many electroweak observables are published in a number of works; for example, the 
first work of ref. [87]. 

All computed electroweak observables quoted in these lectures are calculated to 
0(a) plus the hadronic dispersion relation in AQ(Z). The additional non-vacuum 
polarization strong effects, O(aa,) in QCD[48], are negligible, the possible exception 
being the one-gluon exchange corrections to T (or A,(O)) for large top mass. These 
lower the W mass by about 40 MeV for rnt = 200 GeV, for example, and by less 
than 10 MeV for mt = Mz. 

Appendix C: Non-Born-like Corrections - Muon Lifetime 

All four-fermion processes contain non-Born-like corrections specific to each pro- 
cess, in gauge-invariant classes outlined in section IV.4. The QED corrections, be- 
cause of their infrared-sensitive nature, depend not only on the external fermion 
quantum numbers and masses, but on the details of the macroscopic experimental 
apparatus, such as photon detection cuts. For this reason, a general discussion of 
QED corrections is beyond the scope of these lectures. Only the Abelian vertex 
corrections are presented here. 

The neutral-current Abelian weak vertices for massless external fermions can be 
inserted into the IBA matrix element by modifying the fermion-gauge couplings[39,74]: 

Q -+ QP + -ybfb(q2)] 

Z: - &q2)Q + (1," - d(q2)N + YrSb(q2)l, 
cc.11 

resulting in the neutral-current modified IBA (MIBA) matrix element. It is accurate 
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to approximate e:(Z) A 4a&(Mi) in (C.l). The function l?fb(q2) is: 

16a21?;b(q2) = PL[( 

+ PR[(----- -$+qq2; Z)] 

+ beQf)2+(q2;7), 

(C.2a) 

where PL,R are L, R Dirac projectors for the external fermion f. The function @(q2; y) 
is the IR-divergent QED part and should be removed from l?$b(q2) and combined 
with the external radiation. In the special case of the Z + bh vertex, with a heavy 
virtual top quark in the vertex loops, the vertex and box functions are changed, 
with new gauge-invariant contributions. The Z exchange vertices and boxes have 
a modified overall form, with new terms proportional to the Z-fermion axial-vector 
couplings times the square of the top mass. This leading quadratic dependence occurs 
in the vertices and arises in the Ri gauge from the axial-vector W-fermion couplings 
and the extra graphs with would-be Goldstone bosons (both couplings to fermions 
proportional to the fermion masses). The result depends on the Higgs sector, but 
since p N 1, the effect must be close to or exactly the MSM result - the leading 
quadratic and threshold dependence[ll2] can be incorporated by adding to the r.h.s. 
of the second line in brackets of (C.l) the extra term: 

[. . . + yPLF;(q2)], 

16r2F;(q2 = M;) = t{$ 
W 

+ (: + &)[ln(m?lJfi) - V(t=n-lP - :)I}, 
e 

(C.2b) 
with p2 = 4mf/Mi - 1. These corrections affect only the L external bottom quark 
states, because they involve W exchange exclusively. There are similar modifications 
to the Z -+ tf vertex, but massive external fermions are beyond the scope of these 
lectures; massive external quarks also involve QCD bound state threshold effects, as 
well as physical Higgs exchange[ll3]. 

The charged-current case, as discussed in the text, is more complicated, because 
of the non-Abelian QED terms. Again, only the Abelian vertices are displayed: 

I~+Z~[lt e:(z) Ab 
--Th I. 
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For a charged-current vertex with fermions f and f’ : 

16?&$b(q2) = ; [(I 
3” - 4Qf )2 + (‘ff’ ;gSiQf.)2],(q2; z) 

ce 

+ g4~(q2;r) + c@(q2; Z)l 

+ ;d[Q; + Q;@(n2; 7). 

(C.4) 

Again, the +(q2;7) terms should be removed to be combined with the Abelian radi- 
ation terms[62]. 

The three canonical inputs Q, GF and Mz are each inferred from processes that 
include non-Born-like corrections. The electromagnetic a is exceptional, since the 
definition (B.8) holds true to any order of perturbation theory. The Z mass is inferred 
from the peak of the e+e- annihilation cross section. This cross section requires the 
neutral-current non-Born-like weak corrections, but these have negligible effect on 
the peak position. The QED corrections, on the other hand, have the important 
property of smearing out the distribution of energy in the initial state (because of 
radiation: Figure 16 with Z in place of the photon) and moving the peak of cross 
section to an center-of-mass energy higher than the actual OS mass in the Born-like 
propagator (Figure 5). The presence of the photon channel in the neutral current 
also has a small effect on the peak[78]. 

The last quantity is GF, defined from the muon lifetime rfi for the P-decay ~1 -t 
evfi. The radiative corrections to this process must include the QED effects. These 
were largely taken care of by Kinoshita and Sirlin in 1958 by using the Fermi four- 
fermion low-energy effective Lagrangian, then inserting the photons where possible 
on the tree-level graph[lll], producing a gauge-invariant and IR-finite subset of non- 
Born-like corrections. Fermi’s constant from muon decay G, has been conventionally 
defined from their result: 

TN 
-1 E 2!?5(~- z2: -){l + g(T - x2)[I + g ln(m,/m,)]}. (C.5) 

P 

The Kinoshita-Sirlin result can be obtained from the full theory by leaving out the 
Z - W box and Z vertex corrections and dividing the photon propagator in the 
photon vertices into two parts: D,,(k2) = D<(k2) + D>(k2), with D,,(k2) = km2 
and D>(k2) = (k2 - M&)-l, and using only D<(k2) in the vertex. Then GF and 
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G, are related by: 

,UzF’(p + ~IJ~~~,) = 4fiGp[l + Kinoshita - Sirlin - SG] 

GF = G,(l+ b), 

where 

6~ = ATG 

((7.6) 
- ~v?,G,M&[~(I’;~~(O) - l?yAb(0)) - 2M;v6;Ab(0)] 

at order O(a). 



A Guide to the Literature 

A somewhat arbitrary selection of helpful books, reviews, lectures and articles. 

Quantum Field Theory - Some introductory texts: 

J. J. Sakurai, Advanced Quantum Mechanics (Reading, Mass.: Addison-Wesley, 
1967). M. D. Scadron, Aduanced Quantum Theory (New York: Springer-Verlag, 
1979). 

More advanced books: 

J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics and Relativislic 
Quantum Fields (New York: McGraw-Hill, 1965). C. Itzykson, J.-B. Zuber, Quan- 
tum Field Theory (New York: McGraw-Hill, 1980). P. Ramond, Field Theory: A 
Modern Ptimer (Redwood City, California: Addison-Wesley, 2”d ed., 1989). 

A classic compendium of perturbation theory: 

G. ‘t Hooft, M. Veltman, Diagrammar, CERN 73-9 (1973). 

On renormalization and the renormalization group: 

S. Coleman, “Dilatations” and “Renormalization and Symmetry” in Aspects of 
Symmetry [Cambridge University Press, 1985). J. Collins, Renormalization (Cam- 
bridge University Press, 1984). 

Excellent introductions to renormalization: 

K. G. Wilson, “Problems in Physics with Many Scales of Length,” Sci. Am. 
241(2) (August 1979) 158. S. Weinberg, “Why the Renormalization Group is a 
Good Thing,” in Asymptotic Realma of Physics, A. H. Guth, K. Huang, R. L. J&e, 
eds. (Cambridge, Mass.: MIT Press, 1983) 1. G. Peter Lepage, “What is Renor- 
malization?” in Proc. 1989 TASI Summer School, T. DeGrand, D. Towsaint, eds. 
(Singapore: World Scientific, 1990) 483. 

Quantum Electrodynamics - Standard sources: 

J. Schwinger, ed., Quantum Electrodynamics (N.Y.: Dover, 1958). J. M. Jauch 
and F. Rohrlich, The Theory of Photons and Electrons (Berlin: Springer-Verlag, 
1976). V. B. Berestetskii, E. M. Lifshita, L. P. Pitaevskii, Quantum Electrodynam- 
ics (Oxford: Pergamon Press, 1982). T. Kinoshita, ed., Quantum Electrodynamics 
(Singapore: World Scientific, 1990). 

Gauge Theories and Phenomenology - Introductory level: 

C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions 
(Redwood City, California: Addison-Wesley, 1983). K. Huang, Quarks, Leptons and 
Gauge Fields (Singapore: World Scientific, 1982). 

Indispensible: 

T.-P. Cheng, L.-F. Li, Gauge Theories of Elementary Particle Physics (New 
York: Oxford University Press, 1984). ‘. 
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More technical, especially quantization, perturbation theory, renormalization, Ward 
identities: 

E. S. Abers, B. W. Lee, Phys. Rep. 9 (1973) 1. L. D. Fadeev, A. A. Slavnov, 
Gauge Fields: Introduction to Quantum Theory (Reading, Mass.: Addison-Wesley, 
1980). 

Electroweak Standard Model: Basics - 

J. C. Taylor, Gauge Theories of Weak Interactions (Cambridge: Cambridge Uni- 
versity Press, 1976). E. D. Commins, P. Bucksbaum, Weak Interactions of Leptons 
and Quarks (Cambridge: Cambridge University Press, 1983). Cheng and Li, above, 
chapters 10 and 11. 

Electroweak Slandard Model: Radiative Correclions - 

Renormalization in general: see ref. [17]. One-loop technology: see ref. [38]. 

On-shell scheme, and calculations therein: see refs. [72,74]. 

Lynn-Peskin-Stuart scheme: see ref. [59]. 

MS scheme: see ref. [75]. 

Bare perturbation theory and star system: see refs. [39,62]. 

Non-decoupling of radiative corrections: see refs. [19,59,66]. 

Electroweak Standard Model: Data Analysis - 

Pre-1988 world of electroweak data: see U. Amaldi et al., ref. [go]. 

Recent electroweak analysis: see refs. [77,85,87,88,94]. 

-That is infinite, this ie infinite; from that infinity emanates this infinity. Taking 
away this infinity from that infinity, infinity still remains behind. 

- Ishavasya Upanishad 
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