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Abstract: In relativity, the Newtonian concepts of velocity and acceleration are observer-dependent
quantities that vary with the chosen frame of reference. It is well established that in the comoving
frame, cosmic expansion is currently accelerating; however, in the rest frame, this expansion is
actually decelerating. In this paper, we explore the implications of this distinction. The traditional
measure of cosmic acceleration, denoted by g, is derived from the comoving frame and describes
the acceleration of the scale factor a for a 3D space-like homogeneous sphere. We introduce a new
parameter g representing the acceleration experienced between observers within the light cone. By
comparing g to the traditional g4 using observational data from Type Ia supernovae (SN) and the
radial clustering of galaxies and quasars (BAO)—including the latest results from DESI2024—our
analysis demonstrates that g aligns more closely with these data. The core argument of the paper is
that A—regardless of its origin—creates an event horizon that divides the manifold into two causally
disconnected regions analogous to conditions inside a black hole’s interior, thereby allowing for a
rest-frame perspective ¢ in which cosmic expansion appears to be decelerating and the horizon acts
like a friction term. Such a horizon suggests that the universe cannot maintain homogeneity outside.
The observed cosmological constant A can then be interpreted not as a driver of new dark energy or
a modification of gravity but as a boundary term exerting an attractive force, akin to a rubber band,
resisting further expansion and preventing event horizon crossings. This interpretation calls for a
reconsideration of current cosmological models and the assumptions underlying them.

Keywords: cosmology; dark energy; general relativity; black holes

1. Introduction

For over thirty years, cosmologists have accumulated compelling evidence that cosmic
expansion is accelerating. More specifically, this acceleration appears to be dominated by a
cosmological constant term, commonly denoted as A.

This A term can be understood in three distinct ways: (1) as a fundamental (or effective)
modification of Einstein’s classical general relativity (GR), denoted Af, (2) as an effective
source term from a dark energy (DE) component, Apg, or (3) as a boundary term, Ag.
These three possible origins can be illustrated by writing the Einstein—-Hilbert action for
classical GR with the corresponding additional terms:

S:/ dv4{ R p, - AF AVs K. (1)

162G 8 G+£DE}+

871G Jov,
The first two terms in the first integral represents the classical GR Lagrangian with matter-
energy content £, as source term [1]. The third term corresponds to the fundamental
cosmological constant Ar [2]. The fourth term is the DE or quintessence source term, given
by Lpg = 3V — V(y), for a single effective scalar field ¢. For a homogeneous perfect
fluid with density ppg and pressure ppg in its ground state (where V >> ?), this reduces to
Lpre = ppe = —ppe = —Ape /871G (see also Equations (B66)—(B68) in [3]). This illustrates
how Ar and Apg provide totally degenerate interpretations for A.
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The last integral represents the Gibbons-Hawking-York (GHY) boundary term [4-6],
where K is the trace of the extrinsic curvature at the boundary 0V, = V3. As shown in [7],
for a finite Friedman-Lemaitre-Robertson-Walker (FLRW) metric with total mass—energy
M, this term results in:

—ZAB} @)

1
SGHY = g G v, /v4d 4{16716

where Ag = %, with r¢ = 2GMr. This provides a fundamentally different origin for
5

A compared to Ar or Apg. As noted in [8], the Ap boundary term cancels the potential
contributions of both Ar and Apg, solving the fine tuning and coincidence problems [9].

Regardless of its origin, the A term is typically interpreted as a repulsive force between
galaxies that counteracts gravity, driving the accelerated expansion of the universe. This
phenomenon is often cited as one of the most profound challenges in contemporary physics
and may offer a crucial observational pathway to understanding quantum gravity (e.g.,
see [10] and references therein).

Cosmic acceleration is typically measured using the adimensional coefficient g, defined
as (i/a)H =2, where H = a/a. If the universe follows an equation of state with p = wp, this
leads to g = — % (1+ 3w). For regular matter or radiation, where w > 0, we would expect
deceleration in the expansion (g < 0) due to gravity. However, measurements from various
sources such as galaxy clustering, Type la supernovae, and CMB consistently show an
expansion that is asymptotically approaching 4 ~ 1 or w ~ —1 (e.g., see [11] and references
therein for a review of more recent results, including weak gravitational lensing). This
aligns well with a cosmological constant A, where H? approaches H? = A/3 = rj\z and g
approaches 1. What does this mean?

The term dark energy (DE) was introduced by [12] to refer to any component with
w < —1/3. However, there is no fundamental understanding of what DE is or why we
measure a term with w ~ —1. A natural candidate for DE is A, which is equivalent to
w = —1 and can also be thought of as the ground state of a field (the DE), similar to
the inflation but with a much smaller (~107%° — 1071%) energy scale. A can also be a
fundamental constant in GR, but this has some other complications ([13-15]).

This paper critically examines the conventional concept of cosmic acceleration and
proposes an alternative framework for understanding cosmic expansion dynamics. In
Section 2, we establish the notation and derive standard definitions for cosmic expansion
in the comoving frame. In Section 3, we demonstrate the dependence of these standard
definitions on the observer’s frame, highlighting the lack of covariance and potential for
misinterpretation in the commonly used concept of cosmic acceleration. Sections 4 and 5
introduce an alternative definition for cosmic acceleration, which is grounded in the A event
horizon. In Section 6, we compare both definitions to observational data, demonstrating
that our proposed approach offers greater consistency with empirical observations.

Appendix A provides a detailed exposition of the correct method for defining 4D
acceleration in relativity based on the geodesic deviation equation. We also elaborate on the
idea that A corresponds to a friction (attractive) force that decelerates cosmic events and
revisit the Newtonian limit to show that A corresponds to an additional (attractive) Hooke’s
term to the inverse square gravitational law, envisioning a “rubber band Universe”.

Finally, we conclude with a summary and discussion, emphasizing the significance of
our findings for cosmological theory and observational practice and suggesting avenues
for further research and exploration in the field.

2. Cosmic Acceleration

Current observations of the cosmos seem consistent with general relativity (GR) with
a flat FLRW (Friedmann-Lemaitre—-Robertson-Walker) metric in comoving coordinates,
corresponding to a homogeneous and isotropic space:
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ds? = —d12 + a(1)? [dxz + xzdﬂz], 3)

where we use units of ¢ = 1, and a(7) is the scale factor. For a classical perfect fluid with

matter and radiation density p = p + pr, the solution to Einstein’s field equations (called

LCDM) is well known:

8G A
3

sz—p—i—

i = H} |00+ Opa ™t + O, (4)

where Qx = ‘;—X where (), and QO represents the current (2 = 1) matter and radiation

density, respectively, p. = %, and Q; + Qr + Qp = 1. The cosmological constant (A)
term corresponds to (2 = HO_ZA/3 ~ (0.7, where Hy ~ 70 Km/s/Mpc. Given (), ~ 0.3
and Qg ~ 4 x 1072, we can use the above equations to find a(7) numerically.
Cosmic acceleration is usually defined as i/a, where the dot represents a derivative
with respect to the proper time T at emission. A derivative over Equation (4) shows that:
.. 2
q(z) = g% = <QA—;QM{13—QRa4> %. )
For A = 0, Equations (4) and (5) indicate that as time passes (2 = o), we have that H = 0
and g = —1/2. This is because gravity opposes cosmic expansion and brings the expansion
asymptotically to a halt. Including A causes the expansion to accelerate so that H = rj\l
and q = 1. This is illustrated as black continuous and dashed lines in Figure 1 for (5 = 0.7.

The effect of A is then interpreted as a mysterious new repulsive force (or dark energy) that
opposes gravity.

1 3
4
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= — — —
o] .
c -1 ~
5 S .
= N .
.y A .
T -2 \ .
g v\
8 LI
o —3 ] == log[H/Hp] | D
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Figure 1. Log of cosmic expansion rate (continuous lines) and acceleration (dashed lines) as a function
of time (log scale factor a) for Q4 = 0.7. The black lines correspond to the usual interpretation in
terms of 3D spatial coordinates: H and g. The blue lines show the corresponding results for the
measurement in terms of 4D events: Hg and qg. Without A, both are equivalent. Gravity decelerates
the expansion until it asymptotically brings it to a halt (H ~ Hg = 0, ¢ ~ g = —1/2 with an EH:
REgg =~ o). The effect of A according to the coordinate interpretation is to accelerate the expansion.
While according to the proper distance R, it decelerates the expansion even further and brings it to an
early halt: Hr = 0 and gg = —oo at a finite horizon Rpyy = r. This additional deceleration is caused
by the friction term: 1/(HREgpy) in Equations (15) and (16) (dashed-dotted red line).
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3. De Sitter Phase

The FLRW metric with A asymptotically tends to a constant: H = Hj, which corre-
sponds to exponential inflation and de Sitter metric, which can also be written as:

2 2 7.2\ 442 dr? 2 1092
as? = — (1 r/m)ﬂ—%r_ﬂﬁi+rd0 (©)
This form corresponds to a static 4D hypersphere of radius 7 4. In this rest frame, events
can only travel a finite distance r = ay < rp = 1/H, within a static 3D surface of the
imaginary 4D hypersphere.

This implies that there exists a frame duality, allowing us to equivalently describe the
de Sitter space either as static in proper or physical coordinates (t,r) or as exponentially
expanding in comoving coordinates (7, x). In the static frame (t,r), events are constrained
within a limited region of the hypersphere, while in the expanding frame (7, x), distances
and coordinates evolve with time following an exponential expansion characterized by the
de Sitter horizon .

This frame duality can be understood as a Lorentz boost that results in both length
contraction and time dilation. If we define the coordinate r = ay;, the radial velocity gives
us the Hubble law 7 = Hr, leading to a Lorentz factor given by

-1/2
1 2
y= _=(1-5] . ?)
\/1—7’ rH

where ry = 1/H. In the rest frame (f,7), an observer sees the moving fluid element ady
contracted by the Lorentz factor 1/ in the radial direction and experiences a time dilation
by v:i.e., dr = adx /vy and dt = ydt. More formally, we need to find a change of variables
from comoving coordinates (7, x) in the FLRW metric of Equation (3) to rest-frame de Sitter
coordinates (t,7), where r = a(7)x (see [16]):

dr?
2, 292 227092 _ 2 21092
—dt° +atdx” +a“x"dQ° = —(1+2¥)dt ti—zm T aQy”, 8)
which agrees with Equation (7) in [17], with:
a2i®  (dt\?
1+2¥) = —— | —
120 = (i) 0

where o = for xdx+ fOT a(t’f%. This form reproduces the static de Sitter metric Equation (6)
when H = Hj,. It also shows that t retains its time-like character as we cross inside
r = ry = 1/H. This is to be contrasted with the event horizon of the Schwarzschild metric,
which requires a change of variables as we cross inside the horizon.

The spatial part of the light element in Equation (8) is illustrated in Figure 2. Geomet-
rically, it corresponds to the metric of a hypersphere of radius ry that expands towards
a constant radius ry = 5, which corresponds to an event horizon (see also Section 5
below and Appendix B in [16]). In the above rest (de Sitter) frame, the FLRW background
is asymptotically static, indicating no expansion or acceleration, while in the comoving
frame, there is cosmic acceleration (§ = 1). This observation highlights that the concept of
cosmic acceleration commonly used in cosmology critically depends on the chosen frame
of reference.
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Figure 2. The left panel shows a spatial representation of the FLRW metric
ds?> = (1 —7r2/r%)~1dr? + r2d6? in Equation (8) as a 2D metric > = x% + y? (magenta plane
H q Y & p

with x and y blue arrows representing the cartesian coordinates) in polar coordinates (one angle is
fixed) embedded in 3D flat space (where z in the plot corresponds to an extra dimension to illustrate
the geometry). The de Sitter metric corresponds to the outer sphere 7y = 5, while the FLRW metric
is the blue sphere of radius ry that is asymptotically expanding into r . The right panel shows the
same 2D (x, y) plane face on, where we have also included (in red) the FLRW event horizon R, as
discussed in Section 5. The yellow /blue region shows the super/sub-horizon causal regions (the
arrows indicate how these regions are expanding). Scales r > R (in pink) can’t be reached from inside.
Because r > ry is also causally disconnected, it has Schwarzschild metric with rs = rp = 2GM,
when assumed empty.

4. Event Acceleration

The interpretation of cosmic acceleration in Equation (5) is solely based on the defini-
tion for acceleration i/a in Equation (5). We next show that such a definition corresponds
to events without a cause-and-effect connection, and this lead us to the wrong picture of
what is happening. We will then introduce a more physical alternative.

Consider the distance between two events corresponding to the light emission of a
galaxy at (7, x) and the reception somewhere in its future (73, x1). The photon travels
following an outgoing radial null geodesic ds = 0, which, from Equation (3), implies
dt = a(t)dy. This situation is depicted in Figure 3. We can define a 3D space-like distance
d based in the comoving separation Ay = x — x1:

d =a(t)Ax. (10)

This is, in fact, the distance that corresponds to the acceleration given by i/a in Equation (5)
because d/d = i/a and d/d = ii/a, where the derivative is with respect to T, the time at
emission. Such a distance corresponds to the distance between (7, x) and (7, x1) so that
dt = 0. These events lack causal connection and are beyond observation. While using d is
not inherently incorrect, it involves extrapolating observed events (like luminosity distance)
into non-observable realms. Essentially, d aligns with a non-local theory of gravity or the
Newtonian approximation, where action at a distance occurs with an infinite speed of light.
We can instead use the the distance traveled by the photon:

dic = /:1 a(t)dx = /:1 dt = At = (11 — 1) (11)

Note that we use units of ¢ = 1, so this should be read as d; - = c¢At. But cosmic acceleration
is zero d; ¢ = 0 for such a distance because d;c = —1.

So the usual definition currently used by cosmologists in Equation (10) corresponds to
events that are space-like, i.e., at a fixed comoving separation or fixed cosmic time dt = 0.
It only takes into account the change in the distance due to the expansion of the universe.
To have a measurement of cosmic acceleration that is closer to actual observations, we need
to use the distance between events that are causally connected, i.e., that not only takes into
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account how much the universe has expanded but also how long it has taken for the two
events to be causally connected.

CcT
A
(T, %) (71,21)
X )\ > ¥
R ..--0
d-=cAr| .-~ "ds=0
o Lightcone :
@ %
(z.1) d=aby (7,5)

Non causal

Figure 3. Comparison of different distances in the FLRW metric of Equation (3) between an observed
event (at emission) at coordinates (7, x) and the corresponding null event (at reception) somewhere
in its future (7, x1). The space-like distance d = a(7)Ax in Equation (10) along the horizontal
X axis is the one commonly used to define cosmic acceleration. It expands as a(7), but it is not
causally connected. The distance d; - = cAT in Equation (11) along the vertical T axis is the time-like
distance traveled by light, but it is independent of cosmic expansion a(7). The event distance R in
Equation (12) corresponds to the proper distance in the light-cone between the two events and is the
one we should use to properly interpret cosmic expansion.

To this end, we should use the proper future light-cone distance R(7) obtained from
ds = 0 in the FLRW of Equation (3) asds = 0 = d, = [dt/a(7) and R = ad, (see, e.g.,
Equation (A1) in [18]):

R(rm) =a(x) [ dx=a(o) [* 1T 12
T,1) =a(t =a(T —

! Jt X r a(t)
Note that the term with the integral is not Ay, but it corresponds to the coordinate distance
d, traveled by light between the two events, including the effect of cosmic expansion. Thus,
we argue that we should use R instead of 4 in Equation (10) as a measure of the distance in
cosmology to define the cosmic acceleration and expansion rate. The differences between
these three distances are illustrated in Figure 3.

Using R as a distance is equivalent to a simple change of coordinates in the FLRW

metric of Equation (3) from comoving coordinates d to physical coordinates dR = ad:

ds? = —dt? + dR? + R?(1) dOY?, (13)

which is just Minkowski’s metric in spherical coordinates with a radius R = R(7).

We then have that R = HR — 1, and we define the expansion rate between null
events as: ]

H (T):R:H(1—1> (14)
BYTR HR

where the additional term ﬁ corresponds to a friction term. There is ambiguity in this
definition because R in Equation (12) depends also on the time 7; used to define R. To
break this ambiguity, we arbitrarily fix R to be the distance to 71 = oo (which corresponds
to a possible future event horizon):

Hg(t) = H(l - Hégg) (15)



Symmetry 2024, 16, 1141

7 of 15

where Rpy = R[1, 74 = o]. The quantity ﬁm corresponds to a friction term because
it opposes the expansion H that generates the term. It just originates from the change
of frame. As we will see in the next section, this choice implies that HI%EH is zero unless
A # 0. So this new invariant way to define cosmic expansion reproduces the standard
definition when A = 0. But for A > 0, we have that the event expansion halts Hr = 0
(blue line in Figure 1) due to the friction term (red line) for 2 >> 1, while the standard
Hubble rate definition approaches a constant H = /A /3 = r/_\l (black line). This might
seem irrelevant at first look, but the resulting physical interpretation is quite different. In
the standard definition of H, the expansion with A becomes asymptotically exponential (or
inflationary expansion), while in our new definition of Hg, the expansion becomes static
(as in the static de Sitter metric).
The event acceleration can then be measured as:

R 1 1 1 172
qE:EHi%i (q_HREH> |:1_HREH:| ' (16

The correct way to define 4D acceleration in relativity is based on the geodesic devia-
tion equation: Equation (A1). The relation to q and gg will be discussed in Appendix A.
As before, for A = 0, the friction term ﬁm makes little difference between g and gg.

For A > 0, the friction term asymptotically cancels the A term in % (i.e., Equation (5)) so

that % is always negative, no matter how large A is (HRgg = 1 and gg = —o0). The net
effect of the A term is to bring the expansion of events to a faster stop (Hg = 0) than in
the case with gravity alone. This is illustrated in Figure 1. The A term produces a faster
deceleration (than with gravity alone). This corresponds to an attracting (and not repulsive)
force, as explained in more detail in Appendix A.

5. Event Horizon
What is more relevant to understand the meaning of A is that the additional decel-
eration brings the expansion to a halt within a finite proper distance between the events,
creating an event horizon (EH). The EH is the maximum distance that a photon emitted at
time 7T can travel following the outgoing radial null geodesic:
a 1

S
Ren(a) = a/a T < e =" = V374 (17)

This is illustrated in Figure 4, which also demonstrates how inflation and the horizon
problem (i.e., the observation that CMB measurements detect super-horizon r > ry frozen
perturbations) occurred within Rgp. All the observable Universe (green line) is contained
inside Rgy, and we can therefore not measure anything outside. In particular, we can not
measure any inhomogeneities or anisotropies outside R from the inside, even if the density
is discontinuous at R [16].

For A = 0, we have Rgg = oo, so there is no EH. But for A > 0, we have that
Rgp = r (red line in Figure 1). We can then see that A corresponds to a causal horizon or
boundary term. The analog force behaves like a rubber band between observed galaxies
(null events) that prevents them from crossing some maximum stretch (i.e., the EH). We
can interpret such a force as a boundary term that just emerges from the finite speed of
light (see Appendix A and Equation (1)).

The FLRW metric with A asymptotically tends to the de Sitter metric in Equation (6).
This form corresponds to a static 4D hypersphere of radius r5. So in this (rest) frame,
events can only travel a finite distance R < 75 within a static 3D surface of the imaginary
4D hypersphere. The region inside r < r, is causally disconnected from the outside. In
the context of the FLRW framework, this condition corresponds to a < rp /), where x is
a radial (space-like) distance. This condition implies that the expansion interpretation is
valid only as long as a < rp/x, indicating that it does not make sense for larger values
where we cannot transition from r < rp tor > r5. Essentially, beyond this threshold, the
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cosmological interpretation of expansion breaks down due to the causal disconnection
imposed by the horizon defined at rj.

As shown in Equation (8), this frame duality can be understood as a Lorentz boost.
An observer in the rest frame sees the moving fluid element ady contracted by the Lorentz
factor <. This duality is better understood using our new measures for the expansion rate
Hg and cosmic deceleration g based on the distance between causal events.

: £ =/ 3A
oR ™" Obs.Univ. A '
T = FLRW E.H. (R
H = Hubbl H-( 1)4 cpush \
= d ubble H.: ¢/ NO' 1
B T2 m—c/Hp=2GM "
c =
= !
= -4 p !
& x l
I . !
x -6 : ]
o =
S . ]
8 Tnflation p TMB lnoY’
T T T v T T !
-7 -6 -5 -4 -3 -2 -1 0
Log (a)

Figure 4. Proper coordinate r = a(7)x in units of ¢/ Hy as a function of cosmic time a (scale factor).
The Hubble horizon r = ¢/ H (blue continuous line) is compared to the A future event horizon Rgp
(red line) as defined in Equation (17). Larger radii (magenta shading) represent causally disconnected
regions, while smaller ones (yellow shading), created during cosmic inflation, remain dynamically
frozen. The full observable universe (dashed green line) encompasses both causal (blue shading) and
frozen regions. Note how the observable region is bounded by r < Rgpy: we can not measure any
inhomogeneities or anisotropies even if the density is discontinuous at R. Compare to Figure 2, which
depicts a view at a fixed a using the same color coding. After inflation, v begins growing again, and
by a =~ 1 (present epoch), both ry and Rgy approach r, (in black). The vertical dash orange arrows
indicate the CMB epoch.

6. Comparison to Data

We show next how to estimate the new measure of cosmic acceleration gg using direct
astrophysical observations. As an example, consider the Supernovae la (SNla) data as
given by the “Pantheon Sample” compilation ([19]) consisting of 1048 SNlas between
0.01 < z < 2.3. Each SNIa provides a direct estimate of the luminosity distance dr(z) ata
given measured redshift z. This corresponds to the comoving look-back distance:

Z dz

x(z) = ady(z) = e) (18)

so that ' = dx/dz directly givesus ' = ry = H ~1. The second derivative gives us the
acceleration: . R
X q— X /KEH
= 1 + —_— ,' = —m—----,
T e T X Ren
REgp is given by the model prediction in Equation (17) (arbitrarily fixed at 35, = 0.85 in
both data and models). We adopt here the approach presented in [20], which used an

(19)
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empirical fit to the luminosity distance measurements based on a third-order logarithmic
polynomial:

x(a) = ady za(x+Ax2+Bx3)H0‘11n10 (20)

where x = —log;,a. The authors of [20] find a good fit using A = 3.15 £ 0.12 and
B = 3.27 £ 0.41 for the full SNIa “Pantheon Sample”. We use these values of A and B and
their corresponding errors to estimate H, g, and g using the above relations. The results for
H and q are shown as shaded cyan regions in the left panel of Figure 5. They are compared
to the LCDM predictions (dashed lines) in Equations (4) and (5).

There is very good agreement in H(z) for Q5 ~ 0.65. Atz < 1, the g(z) estimates
are also consistent with the Q)5 ~ 0.65 predictions. But the detailed g(z) evolution with
redshift in the SNla data does not seem to follow any of the model predictions, especially
for z > 1. The q(z) estimates are too steep compared to the different models’ predictions.
If we compare instead the gg estimates (see right panel of Figure 5), we find much better
agreement with the model predictions. This seems to validate our gqg approach, but it
is not clear from this comparison alone if this is caused by the fitting function used in
Equation (20).

To test this further, we use measurements of the radial BAO data to estimate gqg. Such
measurements give us a direct estimate of H(z) (as first demonstrated by [21]), so they
have the advantage over SNIa in that we only need to do a first-order derivative to estimate
qorqg:

1 dH . q —TH / R EH

TSN E T A Ren

(21)

As an illustration, we utilize the H(z) measurements presented in Table 2 of [22],
which provide an expanded dataset that includes results up to 2023. This compilation of
H(z) values is shown as red points with 2¢ error bars in the left panel of Figure 5 and is
labeled as “<2023”. Additionally, we incorporate four new data points from DESI2024
(LRG1, LRG2, LRG3+ELG1, and ELG2) derived from Table 18 of [23], using a sound horizon
to = 147 Mpc from CMB measurements [24] to obtain H(z), along with one data point from
the Ly-alpha forest as described in Equation (7.3) of [25]. These are displayed as blue points
with 2¢ error bars in the left panel of Figure 5 and are labeled as “DESI2024”.

The full compilation includes measurements from galaxy clustering (z < 1.5) and
the Ly-alpha forest in quasars (z > 2). The combination of these distinct redshift ranges
provides a robust measurement of ‘fi—lj at intermediate redshifts (1 < z < 2), where discrep-
ancies in the supernova Type Ia data are observed when comparing the traditional 4 model
and the g model (as discussed earlier). The radial BAO offers strong constraints on cosmic
acceleration that are independent of potential calibration errors in Hy or sampling biases
from small-area surveys. This level of precision is something that is not yet achievable with
current supernova datasets, but it will be exciting to see how upcoming wider and deeper
surveys might address this issue in the near future.

We fit a quadratic polynomial with inverse variance weighting to the radial BAO data:

H(z) = Ho + Hy z + Hy 2°. (22)

In units of Km/s/Mpc, we find Hy ~ 69 £ 3, H; ~ 37 £ 6 and H, ~ 14 £ 2, with strong
covariance between the errors (the cross-correlation coefficient between H; and H, is
—0.965). The value of Hy is in good agreement with the Planck CMB fit [24] but is in some
tension with the SNIa local calibration: Hy = 73 &= 1 (see [26]). This corresponds to either
a local calibration problem (in SNIa, in radial BAO, or in both) or tension in the ACDM
model at different times or distances (see, e.g., [27]). We ignore this normalization problem
here and just focus on the evolution of H/Hj to measure cosmic acceleration g or g (which
are fairly independent of Hy).

In the right panel of Figure 5, we show (as shaded regions) the measurements for g
given by combining Equation (20) with Equation (19) and Equation (22) with Equation (21).
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The measurements clearly favor models with large negative cosmic event acceleration
ge < 0, which supports our interpretation of A as a friction term.
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Figure 5. Expansion rate H(z) (upper left panel), cosmic acceleration g (lower left panel), and event
acceleration g (right panel). Shaded areas correspond to a polynomial fit with a 20 region in a sample
of SNIa (cyan) and radial BAO measurements (magenta). Dashed lines show the corresponding
LCDM predictions for different values of ()5 as labeled.

Comparing the left and right panels in Figure 5, we see that both g and g are roughly
consistent with models with Q ~ 0.7 (or A =~ ZHS), in good concordance with H(z) in
the upper left panel of Figure 5.

Even when the underlying model for q and g is the same, note how the measured g
and gr data have different tensions with the model predictions as a function of redshift.
In particular, the radial BAO and SNIa datasets show inconsistencies among them for g
around 1.5 < z < 3.0. This is a known tension (see, e.g., Figure 17 in [28]). But note how
this tension disappears when we use the corresponding estimates for qg. Thus, data are
more consistent with the g than with the g description.

One would expect that a perfect realizations of the LCDM model in Equation (4) would
produce consistent results in both g and 4. But deviations from LCDM and systematic
effects can produce tensions in data, especially if we use a parametrization like g that refers
to events that we never observe. The g4 and gg parametrizations of acceleration are more
general than the particular LCDM model, and the fact that data prefer g¢ is an important
indication. Data live in the light-cone, which corresponds to g rather than q. Atz ~ 2,
the difference between a light-cone and space-like separations is very significant, and any
discrepancies in the data or model will be more pronounced in 4 modeling.

We conclude that the data show some tensions with LCDM predictions (as indicated
by g) but confirm that cosmic expansion is clearly decelerating (as indicated by gr) so that
events are trapped inside an event horizon (Rgp).

7. Discussion and Conclusions

In our exploration, we have demonstrated that the commonly interpreted A term,
thought to drive cosmic acceleration (as discussed in Section 2), actually leads to a quicker
cosmic deceleration of events compared to the influence of gravity alone (as explained in
Section 4). This relates to the nature of the event horizon (EH) (see Section 5) that results
from an expansion dominated by A. It suggests that A might not be a new form of dark
or vacuum energy Apr ([13-15]) or a modification of gravity Ar but rather a boundary or
surface term Ap in the corresponding action (see Equation (1)).

The measured Rgy in our cosmic expansion exhibits behavior analogous to the interior
of a Schwarzschild black hole (BH), particularly under the assumption of nearly empty
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space beyond Ry (see [16]). This analogy is illustrated in Figures 2 and 4, which challenge
the conventional interpretation of the FLRW metric. The FLRW model assumes that the
background density p remains constant both inside and outside Rgy, despite the absence
of causal connections between these regions. How could this be possible?

The absence of causality suggests that the universe could be inhomogeneous outside
R while remaining homogeneous within Rgp, as indicated by cosmic expansion. This
concept diverges from the traditional horizon problem as described by [3,29], in which the
standard cosmological model envisions a homogeneous and isotropic universe fragmented
into approximately 103 causally disconnected regions in the past [30].

Inflationary theory, initially proposed by [31] and further developed by [30,32,33],
addresses the problem of cosmological fragmentation. It posits a period of exponential
expansion driven by a state of energy characterized by the ground state of a field that trans-
lates into an effective negative pressure (similar to Lpr = ppr = —ppr in Equation (1)).
This foundational phase allows scales to initially exit the Hubble horizon (as depicted in
the yellow regions of Figures 2 and 4) and to re-enter post-inflation. Despite its success, the
origins of this inflationary period remain elusive, posing a significant mystery in theoretical
physics. Furthermore, inflationary theory does not address the causality outside Ry (see
Figure 4), raising critical considerations for our understanding of the Universe’s expansion.

The event horizon Rry measured with gg (i.e., Equation (17), which is equivalent to
the presence of A) also tells us that there is a finite mass Mt trapped within Rgy. If we
assume that the space outside Ry is relatively empty, such a finite mass M provides the
explanation for the observed Rgy and, therefore, for A: i.e., 2GMr = +/3/ A as resulting
from a boundary term (see Equation (1)). This black hole Universe (BHU) model provides
a new and completely classical explanation for the cosmological constant A within GR.
It explains why A is so small but not zero: because Mr is so large but not infinite. Yet
it also raises new fundamental questions: If our local universe has fallen inside its own
gravitational radius rs = 2GMr = /3/A, why is our universe now expanding and
not collapsing?

The BHU interpretation, where the expansion happens inside Rgy (and is therefore a
local solution [16]), opens the way to a new conjecture for the origin of cosmic expansion.
Instead of emerging from a singular Big Bang (a global solution), it could result from the
cold collapse of a large and low-density (local) cloud into a black hole. Such a collapse
originates from a small initial over-density within a flat background, which can be modeled
as a local FLRW closed curvature k = 1/x2 > 0 solution, where the curvature radius y is
the comoving radius of the initial cloud. Such curvature was overlooked in [7,9], which
assumed a flat (k = 0) collapse. The case consider in [7,9] with curvature is presented in
Section 12.5.1 of [34], with the only difference with respect to [7,9] being the replacement
of x« with sin .. The total relativistic mass Mr of the collapsing cloud is then given by
2GM7p = rp = H(% sin® x., which relates to both A (as a boundary term) and the initial
curvature radius k = 1/x2. As the collapse approaches the almost singular ground state, the
curvature increases as H? ~ k/a?, which, together with positive background acceleration
(from the degenerate ground state), enables the bounce to happen. After the bounce, the
inflationary expansion erases the curvature term, while 75 will eventually dominate the
bouncing expansion. This is illustrated in Figure 6, which is reproduced from [9]. Unlike
traditional models that lead to a singularity, this model suggests that a Big-Bang-like
explosion—termed the Big Bounce—prevents such an outcome. This Big Bounce could be
driven by neutron degeneracy pressure, which occurs when densely packed neutron matter
reaches a ground state governed by the Pauli exclusion principle. It could also be the result
of a similar ground state happening at higher energies, like in standard cosmic inflation.

Mirroring the dynamics predicted by cosmic inflation, a ground state acts like a
relativistic fluid with negative pressure in a closed cloud (k > 0). The combination
of these two ingredients (positive curvature and positive background acceleration) not
only halts the gravitational collapse but also catalyzes a fast rebound (exponential ex-
pansion that erases the original curvature), initiating the expansive phase of a flat Big
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Bang. The expansion drives the system away from the ground state, but the system returns
to regular radiation- and, later, matter-domination phases. This expansion is eventually
stopped by another quasi-de Sitter phase, this time caused by the finite mass of the system
Rpg — 2GMrt = +/3/A. Crucially, this quantum mechanism (Pauli exclusion principle)
violates the strong energy condition p +3p > 0 (but not the weak one p + p > 0) in classical
general relativity (GR) within a closed metric (k > 0) and sidesteps the singularity GR
theorems proposed by Hawking and Penrose (e.g., [35]), thus presenting a novel solution
to a pivotal issue in cosmological theory.
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Figure 6. Illustration of the formation of a BHU, where R = Rgy is the event horizon. Colored regions
r < R (dashed red line) are filled with a uniform FLRW metric (blue corresponds to r < rg and
yellow corresponds to r > ry) with empty space outside. A cloud of radius R and mass M collapses
under gravity. When it reaches R = rg = 2GM, it becomes a BH. The collapse proceeds inside the
BH (where a frozen layer r > ry appears in yellow) until it bounces, producing an expansion (the
hot Big Bang). The event horizon rg behaves like a cosmological constant with A = 3/ r% so that the
expansion freezes before it reaches back to rg = rp = 1/Hp. The bottom panels shows the evolution
of R and ry during collapse and expansion in log units of 1/ Hy. The structure in between R and ry
is frozen and seeds structure formation in our Universe, which could include smaller BHUs, CMB,
stars, and galaxies, and replaces the role of inflation in ACDM (from [9]).

This idea is further validated by the observed large-scale cut-off in the scale-invariance
spectrum of metric perturbations, as observed in the CMB sky (see [36]). Such a cut-off
is measured to be 66 degrees, which corresponds to the Ry radius at recombination (see
dotted horizontal line in Figure 4) projected in the CMB sky. Recent research ([37]) has
further revealed that several large-scale persistent CMB temperature anomalies originate
from parity asymmetry P. A groundbreaking explanation posits that the microscopic
laws of quantum physics adhere to P7 symmetry in a way that preserves causality and
promotes curved spacetimes. Cosmic evolution disrupts the 7 symmetry, resulting in
the observed P asymmetry. This idea was originally applied to inflationary quantum
fluctuations but can be equally applied to the BHU Big Bounce picture explained above, as
they are both defined by a period of quasi-de Sitter expansion.

Additionally, we can conjecture from this notion that the interior dynamics of any
other BH (e.g., stellar, binary, or galactic) could also result from a similar BHU solution:
a classical and non-singular FLRW expanding interior (that becomes asymptotically de
Sitter, i.e., static in the rest frame). The mass (equivalent to A) boundary term in the BHU
can then be interpreted as the actual physical mechanism that prevents anything from
escaping the BH interior: i.e., it prevents the inside-out crossing of the BH event horizon
rs = 2GM = rp, which asymptotically results from Rryy — 7.

That the measured A term is fixed by the total mass Mr of our universe is in good
agreement with the physical interpretation presented here that Rgy, in the rest frame,
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corresponds to a friction (attractive) force that decelerates cosmic events. In Appendix A,
we elaborate on this idea and revisit the Newtonian limit to show that A corresponds to an
additional (attractive) Hooke’s term to the inverse square gravitational law.
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Appendix A. Newtonian and Hookeonian Limits

When we talk about classical forces, we are making an analogy to Newton’s law to
gain some intuition on the physical problem. This is why we study next the role of A in the
non-relativistic limit. Consider the geodesic acceleration g/ = (g°,¢’) = (g%, &) defined
from the geodesic deviation equation (see [34]):

D?v#
— _ RH
where v# is the separation vector between neighboring geodesics, and u* is the vector
tangent to the geodesic. For an observer following the trajectory of the geodesic u* = (1,0)
and g* = (0,8): ' .
g' = Ry, V" (A2)

and we can choose the separation vector v* to be the spatial coordinate. The spatial
divergence of g is then:

Ve =Rl = —4nG(5+3p) + A = 3%. (A3)

This equation is always valid for a comoving observer (see Equation (6.105) in [34]). New-
tonian gravity is reproduced for the case of non-relativistic matter (p/c? ~ 0). The grav-
itational force (without A) is always attractive for p = 0 (because ¢ > 0, and therefore,
Vg < 0), but it can be repulsive when j < —g/3. For example, in the case of pure
vacuum energy with A = 0, we have pyc = —pvac and a repulsive gravitational force
V8 = +871Gpyac. The covariant version of Equation (A3) is the relativistic version of
Poisson’s Equation (see also [8,38]):

V,g" = R} = —47G(p+3p) + A = 3%. (A4)

The solution to these equations is given by an integral over the usual propagators or
retarded Green functions, which account for causality.

This is also the Raychaudhuri equation for a shear-free, non-rotating fluid, where
® = V,uY, and u" is the 4-velocity:

Vgl = ii—? + %@2 = Ryyutu” = —4nG(p+3p) + A (A5)

The above equation is purely geometric: it describes the evolution in proper time T of
the dilatation coefficient ® of a bundle of nearby geodesics. Note that without A, the
acceleration is always negative unless p < —1/3p, which is what we call DE today. This
is degenerate with the A term for constant p = —p, so we can argue that A is a particular
case of DE (but it can also be interpreted as a modified gravity term).
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In the non-relativistic limit, we see from Equation (A3) that, indeed, i/a > 0 corre-
sponds to a repulsive force that dominates at large distances. For a point-like source,

L GMi A
§A)=——+ 37 (A6)

and acceleration can only be caused by A (see also [38,39]). Note how the linear term
has the wrong sign compared to Hooke’s law. It actually makes little sense to take the
strict non-relativistic limit in cosmology because in that limit, photons from different times
will reach us instantly, as in Equation (10). To make sense of observations, we need to
take into account the intrinsically relativistic effect that the speed of propagation is finite
(c = 1). This corresponds to an additional term to the covariant acceleration Vg, which
results in Equation (16). So besides gravitational deceleration, there is also a friction term
proportional to H that is caused by the expansion itself:

H

Vg = —4nG(p+3p) + A —3— (A7)
Ren
So the corresponding point like source is:
. GMp H A\,
§F) = ——5~ <REH 3> 7 (A8)

The negative friction term is always larger than the positive A term and asymptotically
cancels it. This changes the sign of our interpretation of the role of A in terms of classical
forces. The additional term now has the standard sign of Hooke’s law in the above equation,
so the effect of the A term can just be interpreted as a rubber-band-like force that prevents
crossing of the EH. We can summarize this as: A accelerates the 3D coordinate spatial
expansion in a(7), and this causes an additional deceleration in the expansion of events,
which results in an EH or a trapped surface.
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