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Abstract

Photometric galaxy surveys are a very useful probe that can place constraints
on cosmological parameters and test the cosmological model. Future galaxy surveys
such as the Large Synoptic Survey Telescope (LSST) will increase the precision of their
constraints by observing to fainter magnitudes than previous surveys. While the in-
creased depth of these future surveys will produce higher precision constraints, it will
also increase the fraction of sources that overlap with other sources along the line of
sight, known as blending. Current methods for dealing with these blended sources in-
volve deblending, separating images of sources into their individual constituents. While
this enables their analysis using existing methods designed for unblended sources, this
separation makes quantifying and propagating all uncertainties difficult. This thesis
presents a different approach, applied to the problem of photometric redshifts. By con-
structing photometric redshift methods that can infer the redshifts of sources directly
from blended data, the associated uncertainties can be easily quantified, a vital step for
ensuring the final cosmological constraints of galaxy surveys represent an accurate re-
flection of our state of knowledge. We first generalise existing Bayesian template-based
photometric redshift methods to the case of blended sources. By performing param-
eter inference on the resulting model, we obtain joint posterior distributions of the
redshifts of all constituents within a blended source, completely describing all correla-
tions between these quantities. We then cast the problem of identifying the number of
constituents within a blended source as a model comparison problem. Next, we develop
a machine learning-based photometric redshift method that can infer the redshifts of
sources after being trained on a training set of unblended sources. By using a Gaussian
mixture model to do this, the posterior distributions and Bayesian evidences necessary
for model comparison can be computed efficiently, enabling the method to be applied
to large datasets. Finally, we develop two Bayesian hierarchical models that can infer
posterior distributions over redshift distributions of a population of possibly blended
sources. We do this by constructing three Gaussian mixture models that share means
and covariances but differ in their weights. We test these models using both exact and
approximate inference methods. Finally, we conclude by suggesting several possible

extensions to this work.
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Chapter 1
Introduction

Cosmology is a science with an incredibly vast history, with most great civilisations of
the past having expended some effort in observing the night sky and pondering their
existence. However, our modern understanding of cosmology can arguably trace its
roots to the observations of Slipher (1917), Lemaitre (1927) and Hubble (1929) who

discovered that the Universe was expanding.

Cosmology can now be modelled to a very high accuracy through the A-cold
dark matter (ACDM) model, based on Einstein’s theory of general relativity (Ein-
stein, 1915) and the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric (Fried-
mann, 1922; Lemaitre, 1931; Robertson, 1935; Walker, 1937). This model is now
supported by an impressive variety of different cosmological probes, including type-Ia
supernovae (e.g., Riess et al., 1998; Perlmutter et al., 1999), the cosmic microwave back-
ground (e.g., Planck Collaboration et al., 2018a) and baryon acoustic oscillations (e.g.,
Eisenstein et al., 2005).

In the past century, cosmology has progressed from a science with very little data
to one inundated with it, ushering in the era of precision cosmology (e.g., Cortés, 2010;
Gerbino, 2014; Akrami et al., 2018). With the launch of future experiments such as the
Large Synoptic Survey Telescope (LSST, Ivezi¢ et al., 2019) and the Square Kilometre
Array (SKA, Dewdney et al., 2009), this progress in data-volume shows no signs of
stopping.

This forthcoming wealth of data will bring opportunity for increases in precision
and more careful tests of the cosmological model. However, it will also be the source of a
variety of difficulties. Such big data may mean that scaling existing analysis methods to
future surveys is computationally infeasible, necessitating an increased use of analysis
techniques such as machine learning. At the same time, the increased precision of these

future surveys only strengthens the need for a complete and accurate understanding
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of our uncertainties, as the increased significance of any neglected systematic effects

could erroneously point to new physics.

Throughout this thesis, we are concerned with cosmological galaxy surveys, ex-
periments that image galaxies over large volumes of the Universe. To use these surveys
to constrain cosmology, it is necessary to know the redshifts of the sources observed.
While spectroscopic observations would provide the highest precision measurements of
these redshifts, these sources are both too faint and too numerous for spectroscopy to
be practically viable. Instead, photometric redshifts must be used, statistical methods
that estimate these redshifts from a small number of broadband flux measurements. It

is these methods on which the research work of this thesis focusses.

Future cosmological galaxy surveys will increase the precision of their cosmologi-
cal constraints over current surveys by observing to fainter magnitudes, increasing the
number density of sources they observe. One of the consequences of this is that the
number of sources that overlap with other sources along the line of sight will greatly
increase. This effect is known as blending. In order to use blended sources for cosmol-
ogy, deblending methods have been developed that separate these sources into their
individual constituents. While this allows these sources to be analysed using exist-
ing methods designed for unblended sources, it is difficult to correctly account for all

uncertainties during this separation.

The research work of this thesis presents a different approach to this problem.
Rather than attempting to deblend sources, we develop photometric redshift methods
that can identify the redshifts of blended sources using the blended data itself. In
this way, all uncertainties associated with the problem, including correlations between
each constituent, can be accounted for a propagated further through the cosmological

analysis.

The rest of this thesis is structured as follows. The remainder of part I presents
the introductory context necessary for the research work of this thesis. Chapter 2
introduces the ACDM cosmological model in more detail, and describes various obser-
vational probes that can be used to test and constrain it. Chapter 3 discusses various
statistical methods that are used throughout this thesis. Chapter 4 details photomet-
ric redshift methods for both individual sources and for populations of sources. These
methods can be broadly characterised into two types, template-based and empirical
methods. This chapter discusses the distinctions between these two types of methods.
Finally, chapter 5 discusses the problem of blending in more detail and describes some

of the deblending methods that have been developed to address it.

Part II of this thesis presents our original research. Chapter 6 generalises existing
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template-based photometric redshift methods to the case of blended sources. We cast
the estimation of redshifts as a parameter inference problem, and the identification of
the number of constituents in a source as a model comparison problem. We then test

our method on both simulated and real flux data.

Chapter 7 tackles the same blended photometric redshift problem using machine
leaning techniques, the other main type of photometric redshift method. We use a
Gaussian mixture model to fit the joint flux-redshift distribution, and use this model
to derive posteriors and Bayesian evidences for one- and two-constituent sources. Our
choice of Gaussian mixture model here renders these applications much more com-
putationally efficient than the method in chapter 6, and thus applicable to future

cosmological galaxy surveys.

Chapter 8 extends the mixture model approach of chapter 7 to infer posterior
distributions over redshift distributions for populations of possibly blended sources.
We do this by constructing a Bayesian hierarchical model to infer three independent

sets of mixture weights parametrising these distributions.

Finally, part III present our conclusions. Chapter 9 summarises this thesis, and

discusses several possible extensions that could be pursued in the future.



Chapter 2

Cosmological Theory and

Observations

During the past century, our understanding of cosmology has progressed significantly,
from the belief that the Milky Way constituted the entire universe to the present era
of precision cosmology. Based on the theory of general relativity devised by Einstein
(1915), cosmology can now be described to high precision by a single theory consisting

of only 6 parameters, known as A-cold dark matter (ACDM).

According to this ACDM model and our current constraints on its parame-
ters (e.g., Planck Collaboration et al., 2018a), only ~ 30% of the current energy density
of the universe consists of matter. The majority of this matter, corresponding to ~ 25%
of the total energy density, is cold dark matter that does not interact electromagneti-
cally. Only the remaining ~ 5% of the energy density is baryonic. Instead of matter,
the vast majority of the energy density of the universe, corresponding to ~ 70%, con-
sists of dark energy, a poorly understood energy driving the accelerated expansion of

the universe.

The theoretical basis for ACDM is discussed in more detail in section 2.1. Despite
many observational successes of ACDM, some questions still remain. The nature of
dark matter and dark energy are poorly understood, and it is possible that these could
be described instead by a modification to gravity. In addition, some tensions still
exist between different cosmological probes measuring the same quantities. Section 2.2
describes some common cosmological probes that can be used to investigate these.
Finally, section 2.3 discusses cosmological galaxy surveys in more detail, another type
of cosmological probe that can be used to constrain and test cosmological models. It
is these photometric galaxy surveys that the photometric redshift methods developed

in the research part of this thesis are applicable to.
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2.1 The ACDM Model of Cosmology

This section briefly introduces the ACDM model of cosmology, discussing its basis in

the theory of general relativity and some of its theoretical predictions.

2.1.1 Hubble’s law and the expansion of the universe

It is now well established by cosmological observations that the universe is expanding.
This was first seen in the recessional velocity of galaxies as was observed by Slipher
(1917), Lemaitre (1927) and Hubble (1929), where galaxies at greater distances from us
have greater recessional velocities. There is a linear relation between these quantities

known as Hubble’s law!, given by
v = Hod, (21)

where v is the recessional velocity of the galaxy, d is its proper distance, and H is the

constant of proportionality, known as the Hubble constant.

The Hubble constant H is the current rate of expansion, though in general this
rate is a time-dependent quantity. This rate is given by the Hubble parameter, defined

as

H(t) = % (2.2)

where a(t) is the scale factor, and a(t) denotes its time derivative. The scale factor is a
dimensionless quantity that describes the relative size of the universe, and is normalised
such that

ap = aty) =1, (2.3)

where t; is the current time. The scale factor is used to convert between proper

distances d and comoving distances Yy, i.e.,
d=a(t)x. (2.4)

By being defined in this way, comoving distances are invariant under expansions of the

universe.

!This can also be referred to as the Hubble-Lemaitre law to acknowledge Lemaitre’s contribution
to this discovery, oft-forgotten due to the removal of key sections in the original english translation of
his work (Livio, 2011).
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2.1.2 The cosmological principle

The underlying assumption of modern cosmology is the cosmological principle, which
states that the universe is both homogeneous and isotropic on sufficiently large scales.
Homogeneity means the statistics of the universe are invariant to translation, i.e.,
the universe looks the same in all places. Isotropy means that the statistics of the
universe are invariant to rotation, i.e., the universe looks the same in all directions.
Broadly speaking, the cosmological principle can be taken to mean that we are not
privileged observers of the universe, but rather that our view of the universe is typical

and representative.

2.1.3 General relativity

On cosmological scales, gravity is the dominant force that drives the dynamics and
evolution of the universe. In the standard ACDM cosmological model, this is assumed
to be described by general relativity, a geometric theory of gravity where the force is
described by curvature of spacetime. The motions of objects through this spacetime are
influenced by this curvature, and the presence of these objects affects the curvature of
the spacetime. This relationship is summarised by Einstein’s field equations (Einstein,

1917), given by
1 8rG
R,uy — §R9NV + Ag,ul, = ?TNV , (25)
where c is the speed of light, and G is the gravitational constant. We discuss the other

terms in this equation below.

The term on the right-hand side of Einstein’s field equations is the stress-energy
tensor 7),,. This term describes the energy content of the universe in 16 components
when in 3 + 1-dimensional spacetime, though since this tensor is symmetric 7, = T,,,

only 10 of these components are free.

The spacetime curvature is encapsulated within g,,, the metric tensor. The

metric of a flat spacetime is known as the Minkowski metric g, = 1., given by

-1 0 0 O
0O 1 00
L, = 2.6
um 0 010 ( )
0 0 0 1

The metric defines the line element

ds* = g, dX" dX", (2.7)
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where we make use of the Einstein summation convention. This is the invariant distance

between two points in spacetime, i.e., its value is agreed upon by all observers.

Also in equation 2.5 are R, and R, the Ricci tensor and Ricci scalar respectively.
Their combination in the field equations is often summarised in the Einstein tensor G,
given by

G =R, — %Rg,w. (2.8)

The left-hand side of the Einstein field equations defines the curvature of the spacetime.
The Ricci tensor and Ricci scalar defining the Einstein tensor can both be calculated
as a function of the metric g,,,. Thus, the geometry of the spacetime can be specified

completely through the metric.

The final term in equation 2.5 is the cosmological constant A, an optional term
within Einstein’s field equations. This term was introduced by Einstein to ensure
the prediction of a static universe, a decision he described as his “biggest blunder”
once observational evidence indicated that the universe was expanding (Gamow, 1956;
O’Raifeartaigh and Mitton, 2018). Ironically, this term is now seen as a possible
description of the accelerated expansion of the universe (e.g., Peebles and Ratra, 2003)
that was discovered by observations of type la supernovae (Riess et al., 1998; Perlmutter

et al., 1999). This is discussed in more detail in section 2.1.8.

The terms on the left-hand side of the Einstein field equations can be seen to
describe intrinsic properties of the spacetime, such as its curvature. This is in contrast
to terms on the right-hand side, which describe the contents of the spacetime. We
note that the convention shown here of writing the cosmological constant on the left-
hand side therefore implies that it is a property of the spacetime itself, rather than a

manifestation of something contained within it, such as an additional field.

2.1.4 The Friedmann-Lemaitre-Robertson-Walker metric

Solutions to Einstein’s field equations are specified as a metric. The Friedmann-
Lemaitre-Robertson-Walker (FLRW)? metric (Friedmann, 1922; Lemaitre, 1931; Robert-
son, 1935; Walker, 1937) describes an expanding universe that is homogeneous and
isotropic, as described above, and therefore forms the basis of the ACDM cosmological

model. This metric, defined in comoving polar coordinates (7,6, ¢), is given by

dr?

ds? = =2 dt* + *(t) | ——
s c +a()<1—KT2

+ 7% d#? + r*sin® 0 dng) : (2.9)

2We use the full initialism throughout this thesis, though FRW is also commonly used.
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where K is the curvature describing the geometry of the universe. When K = 0,
the universe is flat. In this case, the universe would have an Fuclidean geometry,
meaning that parallel lines remain parallel when extended to infinity, and the internal
angles of a triangle sum to 180°. When the curvature K # 0, the universe has a non-
Euclidean geometry. A universe with positive curvature K > 0 is said to be closed.
This universe would have a spherical geometry, meaning that parallel lines intersect
when extended and the internal angles of a triangle sum to > 180°. A universe with
negative curvature K < 0 is said to be open. This universe would have a hyperbolic
geometry, meaning that parallel lines diverge when extended and the internal angles of
a triangle sum to < 180°. Observations of the cosmic microwave background, detailed
in section 2.2.1, indicate that our universe is consistent with zero curvature and would

thus be flat (Planck Collaboration et al., 2018a).

2.1.5 Cosmological redshift

Redshift is an effect where the observed wavelength of light differs from that of when

it was emitted. This is quantified in the dimensionless value z, defined as

(2.10)

where ). is the wavelength of the light when it is emitted A, is the wavelength of the
light when it is observed. In non-cosmological settings, this effect can arise as a Doppler
shift due to the source of the light having a velocity relative to the observer. However,
in cosmological settings, redshift arises not due to a recessional velocity, but rather as
the result of photons propagating through an expanding universe. It is predominantly
this effect® which we measure throughout this thesis. We derive this effect below,

following the exposition of Theuns (2016).

We first note that light travels along null geodesics, i.e., paths where ds® = 0.
Consider a radial light ray, propagating along a null geodesic in a coordinate system
orientated such that df = d¢ = 0 with the observer at the origin. In this case,

equation 2.9 can be rearranged to give

g (2.11)

a(t) V1—Kr?'

3The total observed redshift of a galaxy also includes a Doppler shift contribution due to its local
velocity relative to the Hubble flow. However, this is only non-negligible at very small redshifts.
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Integrating both sides, this defines the comoving distance y as

_/tOLdt_/TEL (2.12)
X= ¢ a(t) o V1-—EKr? '

where r. is the radial comoving coordinate of a source that emits a photon at time
t. which is observed at time t,. This comoving distance is invariant as the universe
expands, provided that the source and observer are both stationary in comoving co-
ordinates. As a result, y will be equal for a second photon emitted a short time &,
later. This photon will then be observed a short time 9, later, where J. # d, due to

the expansion of the universe. Thus,

to C to+§o c
/ — dt = / —— dt. (2.13)
te a(t) te+de a(t)

Note that the integral on the right-hand side can be written as a sum of integrals over

different intervals, i.e.,

to+do c to c to+do c te+de c
/ —dt:/ —dt—i—/ —dt—/ —— dt. (2.14)
te+6e CL(t) te a(t) to a(t) te a(t)

to+0o c te+de c
/ C g = / o (2.15)
o a(t) . at)

Finally, assuming that the time intervals are small in comparison with timescales for

Thus,

changes in a(t), these integrals can be approximated to give

0o O
@o__ D (2.16)
a(to)  af(te)
This can then be written in terms of the wavelengths A\, and \, as
a(to) )\o
= —. 2.17
a(te) e ( )

Thus, inserting the definition of redshift from equation 2.10, the cosmological redshift

can be related to the scale factor by

1
—=1+=z (2.18)

a

where a = a(t.), and we use the fact that the scale factor is defined so that its present-

day value is unity, i.e., a(ty) = 1.
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2.1.6 The Friedmann Equations

By inserting the FLRW metric into Einstein’s field equations in equation 2.5, it is
possible to derive two equations describing the dynamics of the scale factor a, known

as the Friedmann equations. These are given by

N
87G K2 A
= (%)=, 20 2 2.1
(a) 3 @ 3 (2.19)
and (i ArG 3 A
a m D
EZ_T (p+§>+§, (2.20)

where ¢ and G are the speed of light and the gravitational constant, K is the curvature
as defined above, p is the total energy density and p is the pressure. The two Friedmann

equations above can be used to derive the conservation equation
: Py
p+3H <p+c—2> —0 (2.21)

The content of the universe is modelled as a perfect fluid, where the pressure and

the energy density are assumed to be linearly related, i.e.,
p = wpc®. (2.22)

This is known as the equation of state, with w being the equation of state parameter.

This parameter w = 1/3 for radiation and w = 0 for non-relativistic matter.

Energy densities

By inserting the equation of state into the conservation equation defined in equa-
tion 2.21, it becomes ' .
P a

- =-314+w)—, 2.23
P = 3w (223)
where we have inserted the definition of the Hubble parameter from equation 2.2. The

solution to this equation is given by
p oc a”30Fw) (2.24)

Inserting the values of the equation of state parameter w from above and using the

fact the ag = 1, we find that the energy density of radiation scales as

pr = proa”*, (2.25)
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and the energy density of non-relativistic matter scales as

Pm = lom,Oa_3 ) (2'26)

where p, o and py, o refer to the present-day values of the radiation and matter energy
density respectively. It is common to work with dimensionless density parameters that
are defined relative to the critical density p.. This critical density is defined as the
energy density that, in a universe without a cosmological constant, i.e., A = 0, there is
zero curvature K = 0 and the universe is flat. Inserting these into the first Friedmann

equation defined in equation 2.19, this critical density is given by

3H?
C8nG

Pe (2.27)

The density parameters are then defined as ratios with respect to this critical value.

The radiation density parameter is given by

Pr
Q. ==, (2.28)

Pe

and the matter density parameter is given by
Q,, = 2m. (2.29)

Pe

We can also define an analogous density parameter corresponding to the curvature,

given by
Kc?
C H2q2°

Evaluating this with the present-day values of the Hubble parameter and the scale

Qp = (2.30)

factor defines the present-day density parameter (2x . Finally, we can also define the

cosmological constant density parameter, given by

A

Oy = —— .
AT 3E2

(2.31)

As before, evaluating this using the present-day values of the Hubble constant gives
0. The cosmological constant can also be thought of as a fluid with equation of

state parameter w = —1, so that

Q=2 (2.32)
Pe

where p, is constant. While p, is constant, p, is redshift dependent, since it is defined in
terms of the Hubble parameter. As a result, the density parameter of the cosmological

constant {2, evolves with redshift. We detail how these parameters evolve with redshift
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below.

Evolution with redshift

Using the density parameters above, the Hubble parameter can be written as a function

of redshift, given by

H = Hoy[Qu0(1+ 2+ Qo1+ 2) + Qo1+ 2) + Qo (2.33)

where Q,.o, .0, Qa0 and Qg are the present-day radiation, matter, cosmological
constant and curvature density parameters. The terms under the square root are

commonly written as the function

E(2) = \/ Qo1+ 2) + Qo1+ 2)? + Qo1+ 2) + Qo (2.34)

so that
H = HyE(2). (2.35)

We can also write the density parameters in terms of the redshift using this

function. These are given by

Qr 0(1 + 2)4
Q =" 2.36
E(2) (2.36)
for the radiation,
Qm 0(1 + 2)3
Q. ’ 2.37
for the matter, and
Qa0
Qr = = . .
A 72(2) (2.38)

for the cosmological constant. It is also possible to find the redshift of equality when
the densities of matter and radiation were equal by equating the density parameters

above to give
Qo1+ 20" = (1 + 2072, (2.39)

where we label the redshift of equality of radiation and matter by zf;" Thus,

g = 0 (2.40)

—1. (2.41)
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By inferring the present-day values of the density parameters €2, o, 2, o and €2, o,
the evolution of the energy content of the universe can be predicted. As described in
section 2.2.1, these values can be inferred using observations of the cosmic microwave
background, as was done by the Planck mission (Planck Collaboration et al., 2018b).
The most recent data release presented in Planck Collaboration et al. (2018a) finds®
good agreement with a flat universe 2y = 0, where Q) = 0.6847 + 0.0073 and
Q0 = 0.3153 £ 0.0073. The redshift of radiation and matter equality is found to be
zey" = 3402+ 26. Thus, using equation 2.40, we can calculate that €2, o = 9.265 x 1075,

These results indicate that only a negligible proportion of the total energy budget
of the universe is given by radiation, while matter makes up a larger but still minority
contribution. Instead, the current energy budget of the universe is dominated by the
cosmological constant. However, this was not always the case. Using the expressions
defined above and the present-day cosmological parameters given above, we can predict

the evolution of these contributions. This is shown in Figure 2.1.

This figure shows that there have been three energy content epochs throughout
the history of the universe. Firstly, the early universe was radiation dominated. Next,
matter became the dominant contribution, passing radiation at the redshift of matter-
radiation equality 2;". As indicated above, the results from Planck indicate that
zey" = 3402 & 26. Finally, the present-day universe is dominated by the cosmological
constant. From equation 2.41 and the Planck cosmological parameters, we can estimate
the redshift this began to be zQ;’A = 0.295. The consequences of the universe currently

being dominated by the cosmological constant are discussed in section 2.1.8.

2.1.7 Cosmological distance measures

We now come to define several distance measures used in cosmology, following the def-
initions presented in Hogg (1999). The first is comoving distance y. Like the comoving
coordinates in the FLRW metric defined in equation 2.9, this distance measure is in-
variant under the expansion of the universe. As in equation 2.12, this can be written

as an integral over time as

X:/te Wdt’ (2.42)

where y is the comoving distance travelled by a light ray emitted at time ¢, and observed

at time t,. However, this comoving distance can also be written in terms of redshift as

c z o dy
L 9.43
= / e (2.43)

4We use the TT, TE,EE+lowE+lensing values from table 2.
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Figure 2.1: Plot showing the evolution of the density parameters with redshift, cal-
culated assuming a flat Planck (Planck Collaboration et al., 2018a) cosmology. The
solid purple line shows the radiation density parameter €., the dot-dashed orange line
shows the matter density parameter €2,,, and the dashed green line shows the cosmo-
logical constant density parameter £25. The vertical dashed lines indicate the redshifts
of matter-radiation equality ;" = 3402 and matter-A equality zg’;’A = 0.295. The ver-
tical dotted line at z =~ 0.631 shows the redshift where acceleration began, derived in
section 2.1.8. The redshifts on the x-axis are plotted in reverse so that the present-day

is towards the right-hand side of the plot.
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where y is the comoving distance out to redshift z from an observer at redshift zero,

i.e., on Earth. The function E(z) is defined as in equation 2.34.

A quantity which is closely related to the comoving distance is proper distance,
the distance that would be measured with a ruler at a specific point in time. This is

related to the comoving distance through the scale factor as in equation 2.4.

The comoving distance above is a line of sight distance; that is, the distance
measured along the path of a propagating light ray from a source at redshift z to the
observer. We can also define the comoving distance between two sources at the same
redshift z but separated by an angle 6 on the sky. This is given by 6D,,, where D,, is

the transverse comoving distance, given by

c . xHo+/I1Qk|
m S1n (—c ) for QK <0

Dy = X for Qg =0 (2.44)

Hoj@ sinh (xHva Qx ) for Qx > 0.

When in a Minkowski spacetime, a source which emits light with a total lumi-

nosity L can be observed at a distance d to have a flux F' given by

B L
 Ard?

(2.45)

The luminosity distance Dy, generalises this notion, and so is defined as

L
Dr=\l1%- (2.46)

This distance can be calculated from the transverse comoving distance D,, defined

above by
Dy =14 z)D,,. (2.47)

The luminosity distance can also be calculated from equation 2.46 by observing sources
with a known luminosity. Such sources are known as standard candles. An example
of a standard candle is a type Ia supernovae®; these are discussed in more detail in

section 2.2.2.

Finally, we consider angular diameter distance D 4. This distance is defined from

5In general, some sources may not have a standard luminosity, but can instead have their luminosity
calibrated using another observable feature, such as the change in flux with time. These sources are
then referred to as standardisable candles. Type Ia supernovae are standardisable in this way.
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the physical size of a source r and the angle it subtends on the sky 6 by

Dy = (2.48)

r
r
Analogously to calculating the luminosity distance above using standard candles with a
known luminosity, the angular diameter distance can be calculated using this definition
from standard rulers, objects with a known length. Baryon acoustic oscillations are an
examples of such an object; these are discussed in more detail in section 2.2.3. The

angular diameter distance is also related to the transverse comoving distance by

D
Dy = = 2.49
4 (1+2) (2.49)
and so to the luminosity distance by
Dy,
Dj=—"= 2.50
4 (14 2)? (2:50)

Figure 2.2 shows a plot of these distances against redshift for a flat universe
with cosmological parameters given by Planck (Planck Collaboration et al., 2018a).
In addition to the density parameters given in section 2.1.6, we need the Hubble con-
stant to calculate these distances. This was found by Planck® to be Hy = 67.36 £
0.54 km s~ Mpc™t. The most striking feature of this figure is that the angular di-
ameter distance does not increase indefinitely. Instead, D, decreases with redshift at
redshifts of z 2 1.5. Thus, due to the definition of the angular diameter distance in
equation 2.48, the angular size of a source with a fixed physical size will increase as

the source is placed more distantly.

2.1.8 Accelerated expansion of the universe

While it has been understood for nearly a century that the universe is expanding, the
expectation was that this expansion would be slowing down. On cosmological scales,
gravity acts to pull massive objects, such as galaxies, closer together. This gravita-
tional pull would therefore be expected to act against the expansion of the universe,
slowing it down and perhaps eventually reversing the direction so that the universe be-
gan to contract. However, more recent observational evidence has not borne out this
expectation. As first indicated by observations of type-Ia supernovae by Riess et al.

(1998) and Perlmutter et al. (1999), the expansion of the universe is not decelerating,

6The value of the Hubble constant found by Planck is in tension with that determined by local
measurements. This is discussed in more detail in section 2.3.4.
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Figure 2.2: Plot showing various cosmological distance measures vs redshift z, calcu-
lated assuming a flat Planck (Planck Collaboration et al., 2018a) cosmology. The top
panel shows the comoving distance x(z), which equals the transverse comoving dis-
tance D,, since we assume a flat cosmology. The middle panel shows the luminosity
distance Dy. The bottom panel shows the angular diameter distance D,4. Note that
unlike the other distance measures, D4 decreases at redshifts z 2 1.
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but rather is accelerating. These observations were later the subject of the 2011 Nobel
prize as a result’”. The observations of these supernovae are discussed in more detail

in section 2.2.2

A source of energy is necessary to drive this accelerated expansion; this is known
as dark energy. The cosmological constant A presents a possible description of this
dark energy that is consistent with current observations. Given the value of Q5o =
0.6847 4+ 0.0073 from Planck (Planck Collaboration et al., 2018a) above, ACDM then
predicts this accelerated expansion. To see this, we can model the cosmological constant
as a fluid in the same way as we did with radiation and matter. We detail this below,

following the explanation by Liddle (2003).

By modelling the cosmological constant as a fluid, we are therefore able to write a
corresponding energy density pa. As with radiation and density, the density parameter

2z can be defined in terms of the energy density p, using the critical density p. as

O =2 (2.51)
Pe
By using the definitions of €24 from equation 2.31 and p. from equation 2.27, we can

see that
A

PA = Fyar

i.e., also a constant. We can now write the conservation equation defined in equa-

(2.52)

tion 2.21 for the A, giving
pa+3H (pA + %) ~0 (2.53)

Since the energy density is constant, py = 0. As a result, the pressure must be related
to the density be
pa = —pac®. (2.54)

This is simply the equation of state defined in equation 2.22. Thus, the cosmological
constant has an equation of state parameter given by w = —1. We can rewrite the
second Friedmann equation defined in equation 2.20 in terms of the equation of state
parameter as

a 4G

o= —Tp(l + 3w) , (2.55)

where A no longer appears due to being absorbed into the energy density term. From
this equation, we can then see that ¢ > 0 when w < —1/3. Since the cosmological

constant has an equation of state parameter of w = —1, a universe dominated by A is

"The Nobel Prize 2011 - Press release - https://www.nobelprize.org/prizes/physics/2011/
press-release
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predicted to experience an accelerated expansion.

We can also use equation 2.55 to predict the redshift at which accelerated expan-
sion began. When considering a general epoch of the universe rather than one where

a single component dominates, we can sum over all components such that

.
g - —WT [ (14 3w) + pr (14 3w,) + pa (14 3wp) ], (2.56)

where we use the indices m, r and A to refer to matter, radiation and the cosmological
constant respectively. Inserting the values of the equation of state parameters and the
definition of the critical density from above, we find

a H?

Thus, the redshift where the universe began accelerating can be found by solving
Q +2Q, =20, =0. (2.58)

where the redshift evolution of the density parameters is given in section 2.1.6. Solving
numerically for redshift assuming a flat Planck (Planck Collaboration et al., 2018a)
cosmology, we find the redshift that acceleration started to be z ~ 0.631. We note that
this is at an earlier time than matter-A equality z;}’A = 0.295, when the cosmological

constant became the dominant contribution.

Alternatives to the cosmological constant

As described in section 2.1.8; the ACDM model allows the accelerated expansion of
the universe can be modelled and explained through the cosmological constant A.
General relativity, the model of gravity on which ACDM is based, has survived many

observational tests.

The measurement of the deflection of light rays through gravitational lensing by
the sun during the total solar eclipse of 1919 (Dyson et al., 1920) gave the first observa-
tional evidence for a prediction of general relativity. This, alongside the retrodiction of
the perihelion precession of Mercury (Einstein, 1916) and other observational predic-
tions such as gravitational redshift (Pound and Rebka, 1959), the Shapiro time delay
(Shapiro, 1964) and indirect evidence of gravitational waves from measurements of a
binary pulsar system (Hulse and Taylor, 1975; Taylor and Weisberg, 1982; Weisberg
et al., 2010) have provided a strong observational basis for general relativity. More

recent direct detections of gravitational waves, a prediction of general relativity, have
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been made by extremely sensitive laser interferometers (Abbott et al., 2016). This has
enabled additional observational tests (e.g., Abbott et al., 2019), all of which have been

consistent with general relativistic predictions.

Despite these successes, the cosmological constant has problems from the per-
spective of fundamental physics. The cosmological constant problem is that predictions
from quantum field theory of the vacuum energy density, which should correspond with
the cosmological constant, are larger than the value inferred from cosmological obser-
vations by 120 orders of magnitude® (e.g., Carroll, 2002). The substantial difference
between prediction and observation has therefore lead to the development of several

competing explanations for the accelerated expansion of the universe.

One such explanation within general relativity is that an as-yet-unknown scalar
field could be an explanation for dark energy. This is known as quintessence. If this
scalar field were to have an equation of state parameter w < —1/3; this could cause
the accelerated expansion as described above. Such theories predict a varying equation
of state w, which can also be interpreted as an effective A which varies with cosmic
time (Sola and Stefanci¢, 2005).

A simple phenomenological parametrisation for dark energy with a varying equa-
tion of state is given by (Chevallier and Polarski, 2001; Linder, 2003)

w(a) = wy +we(l —a), (2.59)

where a is the scale factor, and wgy and w, are constants. The values wy = —1 and
w, = 0 corresponds to the cosmological constant, while w, # 0 results in a varying
equation of state. Constraints on these parameters from Planck (Planck Collaboration
et al., 2018a) were found to be compatible with the ACDM prediction.

An alternative explanation would be a modification to general relativity, a sce-
nario referred to as modified gravity. Many varieties of modified theories of gravity exist.
One family of these is f(R) gravity (Buchdahl, 1970), where each theory corresponds
to a particular function f(R) of the Ricci scalar R, discussed in section 2.1.3. General
relativity forms part of this family through the function f(R) = R (e.g., Sotiriou and
Faraoni, 2010). Another large family of modified gravity theories are Horndeski theo-
ries (Horndeski, 1974), where modifications are made through an additional scalar field.
This family of theories contains both general relativity and quintessence, in addition

to many common extensions (e.g., Kobayashi, 2019).

We note that these are simply two large families of modified gravity theories and

8This has been described as “probably the worst theoretical prediction in the history of
physics” (Hobson et al., 2006)
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that many more modifications exist. A comprehensive review of these is beyond the
scope of this thesis; we instead refer to the reviews of Clifton et al. (2012), Koyama
(2016) and Nojiri et al. (2017) for more thorough discussions.

2.2 Observational Probes

The rapid development of cosmology over the previous century has been enabled by ac-
cess to a wealth of observations. Combining evidence from multiple cosmological probes
allows us to break degeneracies associated with each method and ultimately increase
the precision on cosmological parameter constraints. These combinations also act as
useful cross-checks, with tensions between independent probes potentially pointing to
the existence of new physics. In this section, we discuss several methods for making
these cosmological observations, and how they are used to constrain the cosmological

model and its parameters.

2.2.1 The cosmic microwave background

The early universe consisted of a very hot plasma of protons, electrons and photons.
The temperature was sufficiently high that no hydrogen atoms could form, since they
would be ionised by the surrounding high-energy photons. As a result, this primordial
plasma had many free electrons. The surrounding high energy photons were readily
scattered by these free electrons through Thomson scattering, making their mean free

path very short. Thus, photons could not freely propagate during this time.

The continued expansion of the universe caused it to cool. Photons that were
initially high-energy redshifted and became less energetic. As a result, these photons
were no longer able to ionise hydrogen atoms, and so electrons and protons combined
to form neutral hydrogen, a process known as recombination. Finally, this reduction in
the number of free electrons allowed protons to propagate freely, known as decoupling.
As these photons propagated, they continued to be redshifted, and have microwave
wavelengths in the present day. This first light is therefore known as the cosmic mi-
crowave background (CMB).

The present-day spectrum of the CMB is a blackbody with a temperature of
~ 2.7K (Fixsen et al., 1994). This spectrum has been a blackbody throughout its
history, as redshifting a blackbody spectrum results in another blackbody spectrum
of a different temperature (Liddle, 2003). This temperature is also very isotropic,

with variations limited to 1 part in 10° (e.g., Clements, 2017). However, these small
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anisotropies are vital for making the CMB a useful cosmological probe. Due to the
coupling of photons and matter, small anisotropies in the matter density of the early
universe manifested in anisotropies in the temperature of the CMB. Observations of

these variations are therefore a probe of the density distribution of the early universe.

The angular power spectrum of these anisotropies can be predicted from cosmo-
logical models, allowing observations of the CMB to place constraints on cosmological
parameters. We now detail this power spectrum following Hivon et al. (2002). We
first describe the temperature of the CMB as a small perturbation over a background
average temperature, i.e.,

T(n)=T+ AT(n) (2.60)

where T'(n) is the temperature in direction n on the sky, AT (n) is the temperature
perturbation in direction n, and 7T is the average temperature. The temperature
perturbations AT'(n) are the anisotropies we wish to define the angular power spectrum

of. These anisotropies are then decomposed into spherical harmonics Yy, by

AT(n) = )" amYm(n) (2.61)

>0 m=—{

where each ay, is the spherical harmonic coefficient. These coefficients can be calcu-

lated by integrating over the anisotropy data, i.e.,
Ao = /AT(n)Y[;n dn, (2.62)

where Y, indicates the complex conjugate of the spherical harmonics. The expectation

value of each coefficient vanishes, i.e.,
(aem) =0, (2.63)
and the power spectrum C} is defined by
(Wom @) = 000 Oy Clr (2.64)

where a},,,, indicates the complex conjugate of the spherical harmonic coefficient, and
0 is the Kronecker delta,
1 ifi=y
dij = (2.65)
0 otherwise.

Figure 2.3 shows this power spectrum of CMB temperature anisotropies as detected
by Planck (Planck Collaboration et al., 2018a). The red curve shows the theoretical
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Figure 2.3: The cosmic microwave background temperature power spectrum measured
by the Planck satellite (Planck Collaboration et al., 2016). The red curve shows the
best fitting model, and the blue error bars show the measurements from Planck. The
top panel shows the power spectrum, while the bottom panel shows the residuals.
Figure reproduced with permission from Planck Collaboration et al. (2016), copyright
ESO.

power spectrum predicted by the inferred cosmological model, which displays very good

agreement with the observations.

2.2.2 Type-Ia supernovae

Supernovae are an explosive phase of a star’s evolution. While there are many different
types of supernovae, varying in the mechanism of their explosion and the progenitor star
from which it was formed, type-Ia supernovae are of particular interest for cosmology.
These supernovae are formed from white dwarfs, stellar remnants of low mass stars at
the end of their life after fusion has stopped. White dwarfs are supported by electron

degeneracy pressure. However, this pressure is only able to support the star when its
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mass is < 1.4Mg, known as the Chandrasekhar mass (Chandrasekhar, 1931). If the
white dwarf accretes matter from a nearby companion, this mass limit can be exceeded.
Carbon fusion then begins in the core of the star, resulting in a thermonuclear runaway

reaction (e.g., Nomoto, 1982); this is the supernova explosion.

Due to the standard explosion mechanism shared by all type-la supernovae, it
might be hoped that the explosions were all of the same absolute magnitude. These
supernovae could then be used as standard candles, objects with a known intrinsic
brightness. Instead, the peak absolute magnitude of these supernovae actually varies
significantly (e.g., Phillips et al., 1999). However, the intrinsic magnitude of supernovae
also varies in time, allowing the plotting of a light curve of this magnitude against time.
It was discovered by Phillips (1993) that the peak absolute magnitude of these super-
novae are correlated with the rate at which this magnitude decreases. Specifically, the
brighter the peak magnitude of the supernova, the longer this decrease in magnitude
takes. Thus, by observing a supernova over the several days this decrease takes and
constructing a light curve, it is possible to correct the absolute magnitude (e.g., Hamuy
et al., 1996). The resulting corrected magnitude than has a scatter of ~ 10~! mag be-
tween supernovae. Type-Ia supernovae are therefore said to be standardisable candles.
Modern approaches to supernova cosmology utilise sophisticated light curve fitting
methods such as SALT2 (Guy et al., 2007) to make these corrections.

By using these correction methods, the peak absolute magnitude of the supernova
M is known, while the apparent magnitude m is observed. These quantities can then

be used to define the distance modulus as
pw=m— M. (2.66)

This distance modulus is related to the luminosity distance Dy by (Hogg, 1999)

Dy
p="5logyg (m) ) (2.67)

9 Finally, the luminosity

where pc refers to parsec, an astronomical unit of distance
distance is related to the redshift of the supernova z by equation 2.47. Spectroscopic
observations of the host galaxy of the supernova can be used to obtain this redshift,
though photometric redshifts can be obtained from the light curve fit (e.g., Palanque-

Delabrouille et al., 2010) if this is not possible©.

9The parsec is defined as the distance at which an object observed from Earth would have a parallax
of one arcsecond, hence the name.

10Photometric redshift methods used for supernovae rely on fitting the light curve, i.e., observations
of the supernova over time. These methods are therefore distinct from the photometric redshift



54 Chapter 2. Cosmological Theory and Observations

Since the distance-redshift relation is cosmology dependent, observations of the
distance moduli of supernovae can be used to constrain cosmological parameters. Ob-
servations made in this way by Riess et al. (1998) and Perlmutter et al. (1999) gave
the first evidence that the expansion of the universe was accelerating as discussed in

section 2.1.8.

2.2.3 Baryon acoustic oscillations

Before recombination as described in section 2.2.1, baryonic matter was coupled to pho-
tons. Thus, while dark matter clustered freely, baryonic matter experienced a radiation
pressure, causing the propagation of sound waves. After recombination, baryonic mat-
ter is preferentially found in shells surrounding overdensities of dark matter, the size

of which is dependent on cosmology.

These baryon acoustic oscillations (BAOs) can now be observed in the distribu-
tion of galaxies as a preferred distance of separation. As this physical size is set by
cosmology, these BAOs are an observational feature with a known, fixed size. This is
analogous to standard candles, sources with a known luminosity. Thus, BAOs are an

example of a standard ruler.

Observations of BAOs in the distribution of galaxies puts constraints on cosmo-
logical parameters. By measuring their angular size on the sky, their angular diameter
distance D4 described in section 2.1.7 can be calculated. This distance depends both
on cosmological parameters and the redshift z. Thus, by inferring the redshift to the
observed galaxies through either spectroscopy or photometric redshifts as discussed in

chapter 4, cosmological parameters can be inferred.

BAOs were first detected in the correlation function of galaxies from the Sloan
Digital Sky Survey (SDSS) by Eisenstein et al. (2005). These observations indicated
that the size of these oscillations was = 150 Mpc at the time of recombination, and

the cosmology inferred was consistent with ACDM.

2.3 Cosmology with Photometric Galaxy Surveys

The photometric redshift methods discussed throughout the research work of this thesis
are designed for use with cosmological galaxy surveys. This section introduces these

surveys and discusses how they are used to constrain cosmology.

methods discussed throughout this thesis which do not rely on observing light curves and are therefore
suitable for inferring redshifts of non-transient objects such as galaxies.
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2.3.1 Spectroscopic and photometric galaxy surveys

Before we discuss how galaxy surveys can be used to constrain cosmological parame-
ters, we take an aside to describe the two types of galaxy survey; spectroscopic and
photometric. These two types of survey differ in their method of observation, and it is

the latter we are concerned with throughout this thesis.

When observing a galaxy in a cosmological galaxy survey, we are interested not
only in its angular position on the sky, but also in its redshift. This provides three-
dimensional information about its position, allowing statistical statements to be made
about the large-scale distribution of galaxies in the late-time universe. Spectroscopic
and photometric galaxy surveys then differ in the method they use to obtain this
redshift.

Spectroscopic redshifts obtain the redshift of a galaxy by observing its spectrum,
the flux of the galaxy observed at specific wavelengths. To obtain this spectrum, the
light collected by the telescope is dispersed before being focussed onto the detector.
This dispersion is typically accomplished using a diffraction grating or a grism, the
combination of a prism and a grating (e.g., Greene et al., 2016). This spectrum is
then used to identify emission and absorption lines caused by specific elements present
within the stars and the surrounding interstellar medium comprising the galaxy. These
emission and absorption lines occur at fixed, specific wavelengths in the rest frame.
Thus, the redshift of the galaxy can be inferred from the spectrum by identifying a
shift in the wavelengths of these lines, e.g., by cross-correlating the observed spectrum
with a bank of template spectra (e.g., Tonry and Davis, 1979; Baldry et al., 2014) or
fitting the lines directly with Gaussian profiles (e.g., Mink and Wyatt, 1995).

Photometric redshifts are a statistical method of inferring the redshift of a galaxy
from broadband photometry, typically a small number of fluxes measured from images
obtained using colour filters. These filters allow only a limited range of wavelengths
observed by the telescope to be detected, e.g., the five optical ugriz filters of SDSS
have a full-width-half-maximum (FWHM)! of ~ 600 — 1500 x 10~! m (Fukugita et al.,
1996). This photometry therefore acts as an extremely low-resolution spectrum of the
galaxy. Photometric redshifts are the subject of the research work of this thesis, and

are discussed in more detail in chapter 4

The advantage to inferring redshifts spectroscopically is their precision. Modern
spectroscopic redshift approaches can identify the recessional velocity of galaxies to a

precision of ~ 50 km s~* (Baldry et al., 2014), corresponding to a negligible uncertainty

"The descriptively named FWHM of a curve is its complete width, measured at half of its maximum
height. For a Gaussian of standard deviation o, the FWHM = 2.360.
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in the redshift for cosmological applications. However, the cost of this precision is
that spectroscopic redshifts are expensive in terms of telescope time. Dispersing the
the observed light in order to obtain a spectrum reduces the signal-to-noise of the
detection, necessitating long integration times. Since the colour filters used when
obtaining images for photometric redshifts are substantially wider than the resolution
of a spectrograph, the signal-to-noise of the detection is greater for a fixed integration
time. As a result, spectroscopic redshifts cannot be obtained for sources as faint as

when using photometric redshifts.

In addition, spectroscopy cannot be used to obtain redshifts for large numbers of
galaxies simultaneously, with fibre-based spectrographs able to observe ~ 10? objects in
a single telescope pointing (e.g., Kimura et al., 2010). In contrast, photometric redshifts
can be measured for all galaxies detected in an image, and are therefore limited in the
number of galaxies observed simultaneously only by the field of view and resolution
of the telescope. As a result, photometric redshifts can be used to infer redshifts of
samples of galaxies that are greater in both number and depth than can be achieved

with spectroscopic redshifts, at the cost of a reduction in precision.

2.3.2 The matter power spectrum

The observable statistical quantities associated with photometric galaxy surveys are
related to cosmology through the matter power spectrum P(k). This section briefly
discusses this quantity, its interpretation, and how it is related to cosmological param-

eters.

The statistical distribution of matter comprising the large-scale structure of the
universe is described in terms of the density contrast d(x), the fractional overdensity
of matter at x, defined by

o(x) = M, (2.68)

where p(x) is the density of matter at x, and p = p.£,, is the average matter density.
We can also define the density contrast field in the frequency domain by taking its

Fourier transform like
5m)z/b@mamw&x. (2.69)

Since the density contrast is a real field, the Fourier components obey a Hermitian

symmetry
5(k) = 0*(—k), (2.70)

where 6* denotes the complex conjugate of §.
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This density contrast is a random field, a stochastic object described by a joint

probability distribution (e.g., Bardeen et al., 1986), e.g.,
P((x1),0(x2) ... 0(xN)) do(xy) do(xs) ... dd(xN) . (2.71)

As described in section 2.1.2, it is generally assumed that the universe obeys the cosmo-
logical principle; that is, that the universe is homogeneous and isotropic on sufficiently
large scales. These properties can be understood in terms of this random field as fol-
lows. Firstly, the field is said to be homogeneous if these joint probability distribution
functions are invariant under translation @ — a + r for an arbitrary vector r. In
addition, the field is said to be isotropic if the joint probability distribution functions

are invariant under rotation * — Ra for an arbitrary rotation matrix R.

A particularly convenient type of random field is a Gaussian random field. In this
case, the coefficients of the Fourier series expansion of the field are independent from
each other and have phases which are random (Bardeen et al., 1986). Such a field is
statistically described entirely by its two-point statistics; all higher-order correlations
are zero. On sufficiently large scales, a Gaussian random field will remain Gaussian
after gravitational evolution. Inflationary models predict that the quantum fluctuations
of the early universe will produce a Gaussian initial density field (Bardeen et al., 1983).
Thus, we expect that the large-scale matter distribution can be described as a Gaussian

random field.

The propensity for the field to cluster can be quantified statistically through the
correlation function £(r). More specifically, it is a measure of the excess probability of
finding two particles separated by a distance riy = |r; — 73| within volume elements

dV; and dV5 over random probability. This can be defined as
APy = n® [1+&(re)] dVy dVa, (2.72)

where n is the mean density of particles. More generally, this can be extended to higher

order statistics, e.g., for the three point correlation function
dP123 = n2 [1 + §(r12) + 5(7’23) —+ £<T31> + 53(7’12, T3, 7’31)] d‘/l d‘/Q d‘/}, . (273)

However, for Gaussian fields, {3(r12, 723, 731) = 0, since the field is fully specified through
the two point statistics. This probabilistic definition of the correlation function gives
a physical interpretation, but it can also be defined as an ensemble average over the
density contrast field by

§(r) = {0(x)o(x + 7)) , (2.74)
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where r = |r| due to isotropy.

Analogously to this correlation function, we can define the matter power spectrum

to be an ensemble average over the density field defined in Fourier space, giving

(0(k)0* (k")) = (2m)*6p(k — k:’)/ dPre(r)e®
= (27)%6p(k — K')P(k),

(2.75)

where dp(z) is the Dirac delta function. The correlation function and the matter power

spectrum are therefore defined to be a Fourier transform pair, given by

Pk = / Pre(r)em (2.76)

and

&(r) = / (;;P(/ﬁ)ei’"'k : (2.77)

Like the definition for the correlation function, the power spectrum depends only on &k =
|k| due to the isotropy of the density field. In general, since the statistical distribution
of matter evolves through gravitational interaction, the matter power spectrum also
has a redshift dependence P(k, z).

The typical method to predict the matter power spectrum for a given cosmol-
ogy is the halo model (Peacock and Smith, 2000; Seljak, 2000). This is an analytic
model describing the cosmological matter distribution as a series of spherically sym-
metric haloes, the spatial distribution of which is clustered. By constraining the free
parameters of the model using N-body simulations, the matter power spectrum can
be predicted over a range of cosmologies (e.g., Smith et al., 2003). An alternative
approach is to construct emulators which interpolate between matter power spectra
obtained from N-body simulations using machine learning methods such as Gaussian

processes (e.g., Heitmann et al., 2016).

Effects of baryonic feedback on the matter power spectrum

Since the matter content of the Universe is largely dominated by dark matter (Planck
Collaboration et al., 2018a), many N-body simulations have neglected the effect of
baryons entirely, modelling only dark matter particles. Despite this however, the effect
of these baryons on the matter power spectrum remains significant and their exclusion
can result in large systematic errors in power spectrum models from these simulations.
These effects are brought about due to baryonic process including star formation, ra-

diative cooling, and feedback from active galactic nuclei (AGN) and supernovae (Rudd
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et al., 2008).

The effects of baryons on the matter power spectrum are greatest at small
scales (Harnois-Déraps et al., 2015). Before the formation of structure, the distribution
of baryons traced that of dark matter, However, unlike dark matter which does not
interact electromagnetically, baryons are able to dissipate energy through radiation.
This causes them to condense into the centres of dark matter halos at greater densities

(Rudd et al., 2008), increasing small-scale power in the matter power spectrum.

AGN are extremely high luminosity astrophysical sources at the centre of galax-
ies (Osterbrock, 1991). Their luminosity is driven by accretion of matter from a disc
onto a central black hole. In addition, some AGN produce relativistic jets, rapid out-
flows of matter in highly collimated beams that lie along the axis of rotation of the
disc. AGN are fuelled by the matter which surrounds them, but the large pressure from
jets and radiation pushes matter away from the black hole. This causes the luminosity
of the AGN, and thus this pressure, to fall, until matter is able to condense again and
the pressure returns. This effect is known as AGN feedback (Fabian, 2012).

The result of this AGN feedback is that matter is transferred into lower density
regions from high density regions (Rudd et al., 2008), causing a suppression in the
matter power spectrum at small scales. However, if this feedback only affects the
nearby environment, clustering of AGNs causes these perturbations at small scales to
be pushed to larger scales; this is a competing effect. The interactions between the
AGN and the surrounding matter are therefore complicated, making them difficult to

model.

In order to not bias inference of cosmological parameters, the effect of baryonic
feedback should be included in predictions of the matter power spectrum. By compar-
ing the statistics of the matter distribution in N-body simulations with and without
baryonic feedback, these effects have been found to cause a suppression in the z = 0
matter power spectrum of ~ 10 — 20% at small scales k ~ 10 h Mpc ™ (Chisari et al.,
2018; Schneider et al., 2019). Methods for predicting P(k, z) that can account for these
effects have therefore been developed (e.g., Harnois-Déraps et al., 2015; Mead et al.,
2015).

2.3.3 Constraining cosmology with 3 X 2 pt. analyses

Cosmological parameters are constrained using photometric galaxy surveys by measur-
ing angular power spectra from observations. These angular power spectra can also be

computed from theory through the matter power spectrum described in section 2.3.2,
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allowing these observations to be used to make inferences about cosmology. A common
approach to this is to use a 3 x 2 pt. analysis; that is, constraining cosmology through

observation of three distinct sets of two-point statistics. These are described below.

Photometric galaxy surveys image large populations of galaxies. Galaxies are sep-
arated into several redshift bins, a process known as tomography (e.g., Hu, 1999; Petri
et al., 2016; Joudaki et al., 2018). This allows galaxy surveys to probe large-scale struc-
ture as a function of redshift without using a full three-dimensional analysis (Heavens,
2003). A tomographic analysis is also more well-suited to using low-precision photo-

metric redshifts.

For some measurements such as galaxy-galaxy lensing, these galaxy populations
are also separated into two distinct sets; lens galaxies and source galaxies. Lens galaxies
are lower redshift than source galaxies, and observations of these galaxies are restricted
to their position. In contrast, source galaxies also have their shape measured. When
the light from these galaxies is perturbed through gravitational lensing, the ellipticities
of nearby source galaxies become correlated'?. Thus, by measuring the ellipticities of
many galaxies near each other on the sky, the effect of lensing can be constrained.
Since this lensing depends on the distribution of matter along the line of sight to the

galaxy, measuring galaxy ellipticities provides a direct probe of matter in the universe.

The tomographic bins of each of the sets of galaxies can then be correlated in the
three following ways to construct the 3 x 2 pt. spectra. Firstly, the positions of galaxies
in tomographic bin i can be correlated with the positions of galaxies in tomographic
bin 7, where ¢ and j can be either different or equal; this is known as galazy clustering.
Secondly, the positions of lens galaxies in a tomographic bin can be correlated with the
shapes of source galaxies in another tomographic bin; this is known as galaxy-galazy
lensing. Finally, the shapes of source galaxies in tomographic bin ¢ can be correlated
with the shapes of source galaxies in tomographic bin j, where ¢ and j can again be

either different or equal; this is known as cosmic shear.

We now review the calculation of the 3 x 2 pt. spectra, following Krause et al.
(2017). The power spectra correlating tomographic bins 7 and j can be calculated using

the limber approximation (Limber, 1953) for galaxy clustering as

1 [ £40.5 i [ £4+0.5
aq (—*X ,x> a (—*X ,x> <g+0,5
P , Z

Canl0) = / X2 %

<x>) &, (@)

12In practice, the ellipticities of nearby galaxies can be correlated without lensing, an effect known
as ntrinsic alignments. See the reviews of Joachimi et al. (2015) and Troxel and Ishak (2015) for
more details.



2.3. Cosmology with Photometric Galaxy Surveys 61

for galaxy-galaxy lensing as

o= [ <%§> o (“2250) ax, (2.79)

and for cosmic shear as

o [ @00d ), (0405
Cm(é)‘/ 2 P< N 7Z(x)) dx, (2.80)

where P(k, z) is the matter power spectrum described in section 2.3.2, x is the comoving
distance, and z(x) is the redshift corresponding the comoving distance y, given by the
inverse of equation 2.43. These equations also involve integrations over the radial
weight function g, and the lensing efficiency g,. Assuming a linear galaxy bias b', these

are given by .
i) de

q9(k, X) PN (2.81)
and 3H20) W pi(s(y)) dz ¥
m X T n'(z(x zZX —X
(k) = =2 : dy/ 2.82
qx (K X) 2 () /X N VAVENLUS (2.82)

13 a(x) is the scale factor at comoving distance Y,

where yg is the comoving horizon
n'(z) is the redshift distribution of galaxies in tomographic bin 7, and 7’ is the number
density of galaxies in this bin, calculated by integrating the distribution over redshift

B n' = / n'(z) dz. (2.83)

Finally, these power spectra can be transformed to angular correlation functions that

can be measured from the observed galaxies. For galaxy clustering, this is given by

wi(0) =3 %4:; Ly (cos(9)) O (1) (2.84)

where P(...) is a Legendre polynomial of order ¢, for galaxy-galaxy lensing by

y ! y
i — v
and for cosmic shear by
y / -
'(0) = /—2 J0/4(€0)C;jﬁ(€) ds, (2.86)
T

13The comoving horizon is the maximum comoving distance a photon could have propagated, given
the age of the universe. This can be calculated using equation 2.42, where t, = 0 and t, is the current
age of the universe.
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where J,(...) is a Bessel function of order z.

By using these equations to calculate theoretical correlation functions from cos-
mology through the matter power spectrum, observations from photometric galaxy
surveys can constrain cosmological parameters. The above process demonstrates the
two distinct needs for photometric redshifts of galaxies. Firstly, these redshifts are
required to place each galaxy into its corresponding tomographic bin. Secondly, eval-
uating the weighting functions ¢, and g, requires the redshift distributions of galaxies
in each tomographic bin. As discussed in section 2.3.1, galaxy surveys that constrain
cosmology in this way cannot utilise spectroscopic redshifts due to the number and
depth of galaxies observed, necessitating photometric redshifts. The applications of

photometric redshifts to each of these distinct uses are discussed in chapter 4.

2.3.4 Tensions and open problems

While ACDM has survived many observational tests, some open problems still remain.
During this section, we briefly discuss some of these challenges that can be addressed

using photometric galaxy surveys.

Hubble constant tension

As described in section 2.1.1, the Hubble constant Hy describes the current rate of
expansion of the universe. The value of this constant can be inferred from several
different cosmological probes. Firstly, observations of the CMB can constrain its value
by assuming a cosmological model, as detailed in section 2.2.1. Observations from
Planck (Planck Collaboration et al., 2018a) have inferred its value to be Hy = (67.36 +
0.54) km s Mpc ™.

In addition, it is also possible to make a local measurement of the Hubble con-
stant. This uses a series of standard candles to construct the distance ladder, allowing
the determination of the distance of cosmological objects and, by measuring their red-
shifts, infer Hy through Hubble’s law defined in equation 2.1. This measurement was
made by Riess et al. (2016), finding the value Hy = (73.24 £ 1.74) km s~ Mpc ™,
significantly higher than the value from Planck.

The precision of these two mutually incompatible values means that these results
are in tension. Since the CMB-derived value relies on the assumption of a cosmological
model, it is possible that this discrepancy points to the existence of new physics.

However, it is also possible that an unknown systematic error in one or both of these
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measurements is responsible, and that accounting for this uncertainty would resolve
the tension. It is therefore important to find independent probes that can also measure

the Hubble constant and inform this.

Dark Energy Survey Collaboration et al. (2018) uses weak lensing and galaxy
clustering measurements as described in section 2.3.3 to constrain cosmological param-
eters using observations from the Dark Energy Survey (Dark Energy Survey Collab-
oration et al., 2016). By combining these constraints with those from BAO (Beutler
et al., 2011; Ross et al., 2015; Alam et al., 2017) and Big Bang nucleosynthesis (BBN,
Fixsen, 2009; Cooke et al., 2016) experiments, they find the value of the Hubble con-
stant to be 67.471) km s™' Mpc™'. This is an independent constraint which agrees
with the value of Hy determined by Planck, demonstrated in the contours shown in
Figure 2.4. As future galaxy surveys bring increased precision, constrains made in this
way from galaxy surveys could help to discriminate between in-tension measurements

of the Hubble constant.

Q0 — 0s tension

Unlike the Hubble constant, the €2, o — os tension is a tension where the results from
galaxy surveys disagree with those from Planck CMB measurements. As described in
section 2.1.6, €1, ¢ is the present-day matter density parameter. The parameter og is

the r.m.s. linear matter power spectrum fluctuations in spheres of radius 8 h™* Mpec.

It is possible to infer both of these parameters from both photometric galaxy
surveys and CMB observations. Figure 2.5 shows a comparison of contours for both
of these values. This shows that the values obtained from Planck CMB observa-
tions (Planck Collaboration et al., 2016) are in tension with those obtained from the
KiDS galaxy survey (Hildebrandt et al., 2017). A future high-precision galaxy survey
could clarify this tension and determine whether it is the result of a systematic or

statistical uncertainty, or the result of new physics.

Constraining the sum of the neutrino masses

Neutrinos are low mass particles first postulated by Pauli (1930) to preserve conser-
vation of energy and momentum during beta decay, and are now described by the
standard model of particle physics. Neutrinos interact through the weak force, me-
diated by W*, W~ and Z° bosons (Dolgov, 2002), though are electromagnetically
neutral. The standard model predicts three active species of neutrino, electron (v,),

muon (v,) and tau (v;) Ramond (1999). This is supported by observations which
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Figure 2.4: Contours showing joint €2,, — h constraints for a variety of cosmological
probes, where the Hubble constant Hy = 100k km s~ Mpc™t. The blue contours
show the results for BAO (Beutler et al., 2011; Ross et al., 2015; Alam et al., 2017)
and BBN (Fixsen, 2009; Cooke et al., 2016), the unfilled black contours show the results
from the Dark Energy Survey (Dark Energy Survey Collaboration et al., 2018) alone,
and the yellow contours show the results from the combination of these datasets. These
are compared to the green contours, showing the results from Planck observations of
the CMB (Planck Collaboration et al., 2018a). Figure taken with permission from
Figure 1 of Dark Energy Survey Collaboration et al. (2018).
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Figure 2.5: A comparison of posterior contours for the €2, o and og parameters. The left
panel shows the contours of these parameters directly, while the right panel shows the
reparametrisation Sg = 0g1/€2,,/0.3. The red contours show the results from Planck
CMB observations (Planck Collaboration et al., 2016), while the green contours show
results obtained from the KiDS galaxy survey (Hildebrandt et al., 2017). The contours
show that these two results are in tension. Figure taken with permission from Figure
6 of Hildebrandt et al. (2017).

demonstrate an effect known as neutrino oscillation, whereby particles of one species

can convert to another species spontaneously King (2007).

Although neutrino oscillations support the prediction of the standard model that
three species of neutrino exist, they add an additional conflict. While the standard
model predicts strictly massless neutrinos, these oscillations can only occur due a dif-
ference in mass between the flavours; thus, at least two of these neutrino flavours must
be massive. These observations also allow the possiblilty of two secenarios, known as the
normal and inverted hierarchies, depending on the ordered of the flavour masses (e.g.,
Qian and Vogel, 2015). This conflict therefore presents evidence of beyond the standard
model (BSM) physics, an exciting prospect for an otherwise extraordinarily successful

theory.

These neutrino oscillation observations can place lower limits on the sum of the
neutrino masses, labelled ) m,. These indicate that > m, > 60 meV assuming a
normal hierarchy, and > m, > 100 meV for an inverted hierarchy. Cosmology is
also able to place an upper limit on their mass, as the free-streaming of neutrinos
from high-density regions causes a mass-dependent suppression in the matter power
spectrum (e.g., Allison et al., 2015). By combining a variety of cosmological probes,
Palanque-Delabrouille et al. (2015) found an upper limit of > m, < 120 meV, while
Choudhury and Choubey (2018) combine CMB temperature and polarisation, BAO
and supernovae data to obtain an upper limit of >~ m, < 118 meV. However, Loureiro

et al. (2019) caution that the choice of neutrino model can substantially alter the
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resulting bound; they report an upper limit of > m, < 260 meV when assuming a
model that is consistent with particle physics experiments, substantially higher than

the upper limit of > m, < 150 meV found by neglecting this information.

Observations from future high-precision galaxy surveys could increase the strength
of this bound, potentially determining the nature of the mass hierarchy by excluding

the lower limit of the inverted hierarchy.

2.3.5 Future photometric galaxy surveys

Of particular interest for the research work of this thesis is the future photometric
galaxy survey known as the Large Synoptic Survey Telescope (LSST, Ivezi¢ et al.,
2019). This will use an 8.4 m mirror to survey the southern sky in optical wavelengths
to a depth of m, < 27 (LSST Science Collaboration et al., 2009). Among a variety
of other science goals, this will allow high-precision cosmological constraints to be
made using the methods described in section 2.3.3. However, since LSST is a ground
based telescope, this high depth of photometry will result in around half of all galaxies
observed being blended (Dawson and Schneider, 2014), i.e., overlap with other galaxies

along the line of sight; this problem of blending is discussed further in chapter 5.

Another future photometric galaxy survey is Euclid (Laureijs et al., 2011). This
will be a 1.2 m space-based near-infrared observatory that will measure weak lensing
and BAO in order to constrain cosmology. Due to the smaller design than LSST,
owing to it being space-based rather than ground-based, Euclid will be less sensitive,
reaching a depth of 24 mag over three near-infrared bands and 24.5 mag in a wider
optical band. However, the advantage of a space-based design is in resolution, as Euclid
will not be hampered by the atmospheric effects that impact ground-based telescopes
such as LSST. As a result, some sufficiently-bright sources that are blended in LSST
will be resolved in Euclid, potentially aiding the deblending process (Rhodes et al.,
2017). This scenario, which we refer to as partial-blending, is discussed in more detail

in chapter 6.



Chapter 3

Statistical Methodology

The use of statistical analysis is a fundamental part of the scientific method, the central
tenet of which is empiricism; a scientist uses observations of the world in order to
draw conclusions and update their beliefs. Reasoning about phenomena in this way
is inevitably a probabilistic exercise. Observations and experiments are never perfect
in the sense that they provide a definitive measurement, but rather are subject to
stochastic errors. These statistical, or aleatoric, uncertainties limit how informative
the data can be about a particular phenomena. The models and assumptions used
to analyse these data are also never perfect in practice, resulting in systematic, or
epistemic, uncertainties. These various sources of uncertainties must be incorporated
into the analysis if the conclusions are to be an accurate reflection of the state of our

knowledge. This is the role of statistical inference.

Recent years have seen cosmology transition from a data-poor science into one
with an abundance of data. As both the volume and quality of data increase, statistical
uncertainties are reduced, giving rise to the era of precision cosmology. It is therefore
increasingly important that statistical analyses are rigorous in their accounting of un-
certainties, since the increased significance of any resulting biases could mistakenly
point to the existence of new physics. With several upcoming experiments such as
the Large Synoptic Survey Telescope (LSST, Ivezié et al., 2019) and Square Kilome-
tre Array (SKA, Dewdney et al., 2009) becoming available, this trend of increased
volume of data is set to continue. This big data scenario presents a significant com-
putational challenge for statistical inference, as methods must scale efficiently to these
very large datasets. The higher precision constraints afforded by these increased sizes
of datasets also mean that systematic effects that were previously neglected must now

be accounted for.

This chapter introduces and discusses several statistical methodologies that are

67
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used throughout this thesis. Section 3.1 introduces Bayesian statistics, a natural
method for making inferences about scientific problems from observations while ac-
counting for uncertainties. Section 3.2 discusses machine learning, a series of methods
that utilise flexible models to make predictions informed only by previously seen train-

ing data, rather than a specific physical model.

3.1 Bayesian Inference

Much of the work in the thesis makes use of Bayesian inference methods. This sec-
tion introduces these methods, discusses the problems they can be applied to and the

considerations that must be made to apply them.

3.1.1 Bayesian and frequentist interpretations of probability

Before detailing how probabilities can be computed and manipulated mathematically,
it is worth taking an aside to discuss the interpretation of probability — what does
it mean to ascribe a probability to a particular proposition, and what are we able to
conclude as a result? There are two contrasting views on this question; probabilities
may be given either a frequentist or Bayesian interpretation (e.g., Bayarri and Berger,
2004). Here, we describe their differences and argue for the use of Bayesian methods

for cosmological data analysis.

As implied by the name, a frequentist interpretation views probability as the
frequency of an event in a sequence of repeated trials, in the limit where the number
of trials tends to infinity. A prototypical example of such an interpretation is that of
flipping a coin. Under a frequentist interpretation, the probability of the coin landing
on tails is defined as the fraction of tosses that landed on tails in an infinite sequence
of tosses, i.e.,

Ntails

P(tails) = lim

Ttrials —> OO ntrials

(3.1)

Conclusions about the experiment can then be made using the likelihood £(0;d) =
P(d | 0), a function that specifies the probability of a set of data d, given the pa-
rameters 6. In this coin flipping example, a frequentist analysis can ask how probable
a particular sequence of heads and tails is, assuming that the coin were fair, i.e.,
P(heads) = P(tails) = 0.5. It should be noted that the form of this question is dif-
ferent from that of interest in most scientific enquiries; inferring that a dataset would
be unlikely under a particular hypothesis is not the same as inferring how likely that

hypothesis is.
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In practice, no dataset is infinite in size, meaning that the interpretation of fre-
quentist methods must instead rely on asymptotic properties. Consider the example of
a maximum-likelihood estimate (MLE). Assume we have a dataset {d} = {dy,d>...}
comprising many independent and identically distributed (i.i.d.) samples , drawn from

a distribution dependent on a true parameter G,,, i.e.,
d; ~ P(d | Oye) - (3.2)

The MLE 8 is the value of the parameter that maximises the likelihood. However, this
value depends on the particular dataset which has been randomly sampled. Different
datasets will therefore result in different values of , meaning that the estimate itself
is a random variable, the distribution of which is known as the sampling distribution
of this particular statistic. In the limit of the number of samples tending to infinity,

this sampling distribution is asymptotically normal (e.g., Efron, 1982).

These asymptotic properties allow the result of frequentist inference to be for-
mulated as a confidence interval corresponding to a particular percentage confidence.
Given many repetitions of the experiment, each resulting in a different confidence inter-
val, the corresponding percentage of these intervals should contain the true parameter
value 0y,... It is once again worth noting the distinction between this definition and
the question of what the probability of the true parameter being contained within
a particular interval is. A frequentist interpretation of probability views population
parameters as fixed quantities rather than random variables, meaning that ascribing

probabilities to them being contained within an interval does not make sense.

In contrast to the above, a Bayesian interpretation views probability as a degree
of belief; given the available information, how much do I believe a proposition to be
true? Unlike in a frequentist interpretation, parameters are random variables that can

be assigned probability distributions which quantify our uncertainty about their value.

This notion of the available information drives many of the practical differences
between Bayesian and frequentist inference. This information includes the data that
was observed, but makes no reference to any infinite repetitions of experiments not
performed. This property has been seen as a significant philosophical advantage of
Bayesian methods (e.g., Trotta, 2008). The available information also includes prior
beliefs over the value of the parameters before any data has been observed, e.g., from the
results of previous experiments or physical restrictions on parameters such as masses

being positive (e.g., Gelman, 2006).

It is also possible to construct intervals from the results of Bayesian inference,

known as credible intervals. Unlike their frequentist analogues, these intervals can be
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interpreted to be intervals that contain the true parameter with a specified probability.
This property is an example of what is seen (e.g., Jaynes and Kempthorne, 1976;
Jaynes, 2003; Briggs, 2012) as an advantage of Bayesian methods; their interpretation
in the context of data analysis is clear. Frequentist methods, through their use of
methods such as maximum-likelihood estimation, provide results that quantify the
probability of the data. The usefulness of this has been questioned; Trotta (2008), for
example, argues that a statistical analysis should depend only on the data that have
been observed, not on hypothetical datasets that could have been. The interpretation
of frequentist probabilities also necessitates having a repeatable experiment (Sprott,
2008), a potentially problematic quality for the analysis of cosmological data where

only one sky can be observed.

Alternatively, Bayesian methods allow the probability of parameters and models,
conditional on the observed data and an explicit set of assumptions, to be obtained
directly. These quantities are those that are of interest for scientific enquiry. A Bayesian
interpretation of probability also makes sense irrespective of the number of samples
observed. Bayesian inference therefore provides a natural framework for statistical
analysis of cosmological data. The remainder of section 3.1 describes the theory and

application of Bayesian inference in detail.

3.1.2 Probability theory

Mathematical investigations of probability have a long history with notable contribu-
tions by Pascal and Fermat in the 17" century (Ore, 1960), Bernoulli (1713) and Laplace
(1820). However, our modern understanding of probability theory was first introduced

by Kolmogorov (1933), which put probability in the context of measure theory.

An alternative formulation of probability theory is presented by Cox (1946) and
discussed in detail by Jaynes (2003). Cox considered probability in terms of logical
reasoning, extending the binary true-or-false logic of Boole (1847) to encompass un-
certainty by moving to continuous values € [0,1]. The Cox-Jaynes theorem derives
the results of probability theory from three desiderata. Importantly for a Bayesian
interpretation of probability, this is done without appealing to the notion of repeated
trials, as would be needed for a frequentist formulation of probability. The theorem
is therefore a justification that the rules of probability theory are compatible with a

Bayesian interpretation of probability as degrees of belief.

The first desideratum of the Cox-Jaynes theorem is that the plausibility of an
proposition should be represented by a real number. Secondly, this plausibility should
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behave in a way that follows common sense. This is presented by Jaynes (2003) in
terms of conditional reasoning; that is, the plausibility of one proposition, given that

another proposition is known to be true.

Consider three propositions, A, B and C. Also assume that we know the plausi-
bility of both A given C, and of B given A and C. Borrowing the standard notation
of conditional probabilities, we write these as P(A | C') and P(B | A, C) respectively.
We then consider the effect of updating proposition C' — C’ such that proposition A
is more plausible, i.e.,

P(A|C) > P(A|C), (3.3)

but that the plausibility of proposition B remains the same, i.e.,
P(B|A,C')Y=P(B|A,CQ). (3.4)

We now consider the effect on the plausibility of both A and B together, given C', after
this update. Since A has become more plausible and B has not changed, the common
sense expectation is that this should not become less plausible, i.e., we should expect
that

P(A,B|C")>P(A,B|C). (3.5)

The final desideratum is that plausibilities should behave consistently. This is
defined by Jaynes (2003) to mean that equal plausibilities should be assigned to equal
states of knowledge, these plausibilities should be based on all available knowledge, and

the same conclusions reasoned in several different ways should be equally plausible.

From these desiderata, the Cox-Jaynes theorem derives the following two rules of

probability theory, the sum rule
P(A|B)+P(A|B)=1, (3.6)
where A denotes the proposition that A is false, and the product rule
PA,B|C)=P(A|B,C)P(B|C). (3.7)

The derivation here considered P(A) to be the probability of a logical proposition A.
However, the probability distributions we will consider throughout this thesis will be
functions of real values and will thus be of the form P(X = z), i.e., the probability of
the logical proposition that the random variable X has the value x. Throughout, we
will notate this simply as P(z). When x can take only discrete values, these functions

are known as probability mass functions (PMFs). When z is continuous, the functions



72 Chapter 3. Statistical Methodology

are known as probability density functions (PDFs).

Various results for the manipulation of probabilities can be derived from the sum

and product rules above. These are detailed in the following sections.

3.1.3 Bayes’ theorem

The central result on which the rest of Bayesian inference is based is Bayes’ theorem,
a rule regarding conditional probabilities named after and first considered by Bayes
(1763), and subsequently rederived independently by Laplace (1829). The rule follows
simply from the product rule defined in equation 3.7 by noting that the joint probability
P(A, B) is trivially equal to that of P(B, A). Replacing the propositions A, B and C
with 6, d and M respectively, this gives

P0.d| M) =P(O|d M)P(d|M)=P(d]| 6, MP®O | M). (3.8)

A simple rearranging of this equation gives the expression for Bayes’ theorem,

d |6, M)P(6 | M)
P(d | M) '

P
PO |d M) = ( (3.9)
Interpreting @ as the parameters of interest for a model M under consideration, and d
as the observed data from which we wish to make inferences, we can identify the four

probabilities present in this equation.

Firstly, P(d | 6, M) is the likelihood, the probability of the data, given the value
of the parameters 8 under the model M. This is the same definition as the likelihood
we discussed previously in the context of frequentist statistics, though we have made

the conditioning more explicit here.

Secondly, P(0 | M) is the prior distribution. As discussed in section 3.1.1, this is
our belief for the distribution of the parameter before seeing any data, and is therefore
an explicit representation of our modelling assumptions. This term can be informed
by previous experiments or physical arguments, but could also represent a state of

ignorance; this is discussed in more detail in section 3.1.7.

Thirdly, P(d | M) is the evidence, or the marginal likelihood. This is the normal-
ising constant for Bayes’ theorem, ensuring that the left-hand side of equation 3.9 de-
scribes a valid probability density that integrates w.r.t. 8 to unity. The role of this term
in parameter inference and model comparison is discussed in sections 3.1.5 and 3.1.6

respectively.
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Lastly, P(0 | d, M) is the posterior distribution. This is the distribution defined
by Bayes’ theorem and quantifies our beliefs about the parameters @ of model M after
incorporating the information gained from the observed data d. Constructing this
distribution is typically the main goal of modelling in a Bayesian manner; inference
tasks such as parameter estimation and model comparison are completed through the
manipulation or utilisation of this posterior distribution in some way. The details of

how these tasks are performed are detailed in the following sections.

Inspecting equation 3.9, we see that the effect of Bayes’ theorem is to reverse the
order of conditioning. The importance of this can be seen by considering the definitions
above. The likelihood describes the forward model, the generative process by which
data can be obtained from the specified model; different values of the parameters 6 will
produce different distributions of data. However, as detailed in section 3.1.1, the goal
of statistical inference is to use observed data to obtain information about the data-
generating process, described by the model and the parameters that control it. This is
known as the inverse problem. The posterior distribution is the result of this inverse
problem. Bayesian inference thus mathematically describes the logical procedure of
modifying existing beliefs, encoded in the prior, to take account of new data. This

process in known as Bayesian updating.

3.1.4 Marginalisation

Another useful property that can be derived from the results of section 3.1.2 is marginal-
isation. We follow here the derivation detailed in Sivia and Skilling (2006). First,
consider the sum of the two joint distributions P(6,¢ | d) and P(0,¢ | d), where ¢
denotes a proposition that can take the values of true or false, and the bar denotes the
negation of this value, as before. Expanding the terms in this sum using the product

rule of equation 3.7, this becomes

P0,¢|d)+P(0,6]d) =P(¢[0.d)P@O|d)+ P |0,d)P©O|d)

. (3.10)
= [P(¢|0,d)+P(¢|0,d)] P(6]d).

From the sum rule defined in equation 3.6, the terms in the square brackets sum to
unity. Thus,
PO|d)=P0,¢|d)+Pl,¢]|d). (3.11)

It is possible to generalise this statement by considering a proposition that can
take one of several values {¢;} = {¢1,¢2...¢n} rather than simply true or false.

Assume that the set {¢;} is both ezclusive, meaning that two elements cannot be true
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at the same time, and ezhaustive, meaning that the proposition can take no other
values; thus, the set can have exactly one true element. We can then write a sum over

joint distributions analogously to equation 3.10, giving

N

> P(0,¢; | d)=P(0,¢1|d)+P(0,6s | d)---+ P06y | d)

i=1

= [P(¢1|0,d) + P(¢2 | 0,d)---+ P(on | 0,d)] P(6 | d)  (3.12)

ZP(@- 10,d)| P(0 | d).

Following from the assumptions above, the sum in the square brackets is equal to unity.

Thus, we find that
N

PO |d)=> P(0,¢:|d). (3.13)

i=1
This is simply the law of total probability (e.g., Kokoska and Zwillinger, 2000). In the

continuum limit, this expression can be written as an integral,

PO d) = /p(9,¢ d) do, (3.14)

giving a property that applies to a continuous parameter ¢. This process allows an
additional parameter to be incorporated into a probability distribution and is known
as marginalisation. This can be useful when the forward model for a system can only
be written in terms of a parameter that is unknown but is not of interest, referred
to as a nuisance parameter. Marginalisation accounts for the uncertainty in nuisance
parameters, propagating it correctly into the posterior of the parameters of interest.
If these unknown parameters were instead fixed to an a priori reasonable value, the
resulting posterior would be overly narrow and not an accurate representation of the

true state of knowledge about the system.

3.1.5 Parameter inference

The most common application of Bayes rule is to the problem of parameter inference
— for a particular fixed model, what constraints can we put on its parameters, given a
dataset? A typical cosmological example of this procedure is the placing of constraints
on the parameters of the ACDM model. The dataset may be comprised of a single
cosmological probe such as weak lensing (e.g., Kéhlinger et al., 2017), or of a collection
of multiple probes (e.g., Krause et al., 2017). This change in the dataset would mani-
fest in a different forward model defined in likelihood. The joint likelihood for multiple
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independent probes can be constructed simply as the product of the individual likeli-
hood. However, correlated datasets would require a likelihood that accounts for this

correlation.

When in the context of performing parameter inference, Bayes’ theorem is often

written in a simplified form, given by
PO |d)xP(d|0)P(0). (3.15)

There are two simplifications here from the full expression given in equation 3.9. Firstly,
the model conditioning on the model has been removed. The posterior distribution is
still implicitly conditioned on the choice of model, but this choice is fixed when per-
forming parameter inference. Therefore, the model conditioning is typically suppressed

for clarity.

Secondly, the evidence term in the denominator has been removed. As a result,
the expression on the right hand side no longer integrates to unity and so does not
describe a valid probability density. However, this is sufficient for the purpose of
parameter inference. In this case, both the model and the dataset are fixed, with only
the value of the parameters varying. Since the evidence P(d | M) depends only on the

data and the model, it is constant and can be neglected.

Parameter inference can now be performed. This is typically done by drawing
samples from the posterior. With the removal of the evidence, the posterior distri-
bution is only proportional to this expression. In this case, parameter sampling must
therefore be performed by a method that is insensitive to the overall normalisation
of the probability density, such as Markov chain Monte Carlo (MCMC). Sampling

methods are discussed in more detail in in section 3.1.9.

For a restricted set of combinations of likelihood and prior choices known as
conjugate distributions, the posterior distribution can be found analytically, avoiding

the need for sampling. This is discussed in more detail in section 3.1.7.

3.1.6 Model comparison

In addition to making inferences about parameters of a fixed model, Bayesian inference
also provides a method of comparing the relative probability of two models given a
dataset. Bayesian model comparison can be performed by applying Bayes’ theorem

to obtain the posterior distribution of a model itself, rather than its parameters. The
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posterior for model M; is then given by

P(d | M;)P(M;)
P(d)

PM;|d)= (3.16)
It is helpful to rewrite the denominator of this expression using the marginalisation
property introduced in section 3.1.4, giving

P(d | Mi)P(M,)

POM ) = | My POMy) (3.17)

In principle, this sum runs over all possible choice of model. In practice, however,
it is not generally possible to define the set of all possible models to marginalise over!.

As a result, the absolute probability of a model cannot be evaluated in this way.

Bayesian model comparison instead proceeds by comparing the relative prob-
ability of two competing models. This ratio between models M; and M, is given
by

P(My|d) _ P(d|M,) P(M,)

P(My|d)  P(d| M) P(Ms) (3.18)

Since the problematic denominator has cancelled, this quantity can now be successfully

evaluated. The above expression contains two fractions, the ratio of the model priors,
and the ratio of the evidences under each model, typically referred to as the Bayes

factor

P(d | My)
P(d| Mz)

When the ratio of model priors is unity, i.e., neither model is preferred a priori, the

BLQ = (319)

Bayes factor quantifies the degree to which the data supports model M; over Ms.
A commonly cited qualitative interpretation of this quantity was provided by Jeffreys

(1939), eponymously referred to as the Jeffreys’ scale.

The Jeffreys’ scale interpretation is given in Table 3.1. When the log-Bayes factor
is positive as in the table, this indicates a preference for model M. Negative log-Bayes

factors are qualitatively interpreted in the same way, but instead indicate a preference
for model Ms.

As detailed in section 3.1.5, the evidence term P(d | M) is typically neglected
during parameter inference. However, due to its existence in the Bayes factor, the
evidence is an integral part of Bayesian model selection. In order to see the practical

requirements of computing this term, it is helpful to rewrite it including the parameter

IThis sum can be restricted to a specific, finite set of models by assumption if it is required that
the posterior is normalised, e.g., for the purpose of model averaging. This is discussed later in this
section.
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Table 3.1: A summary of the Jeffreys’ scale, a qualitative interpretation of Bayes
factors, directly quoted from Jeffreys (1939). The positive log-values here indicate a
preference in favour of model M. For negative log-values, the qualitative descriptions
are the same, but are instead in favour of model M.

Bayes factor Description

0 < logyy (Bi2) <1/ Not worth more than a bare mention
1/ < logyy (Bia) < 1 Substantial

1 <logyy (Bi2) <3/ Strong

32 < logyy (Bi2) < 2 Very strong

log,o (B12) > 2 Decisive

vector @ by marginalising, and factorising using product rule. Doing this, we find
Pd| M) = /P(d,@ | M) do = /P(d |6, M)P(0 | M) d6. (3.20)

The two resulting terms are the likelihood and the prior. Thus, this integrand is the
numerator of Bayes’ theorem, the unnormalised density defined in equation 3.15 that
is typically used for Bayesian parameter inference problems. Expanding the evidence
in this way shows why it correctly normalised Bayes’ theorem, but also reveals what is
required to evaluate it; the unnormalised posterior must be integrated over the entirety

of its support in parameter space.

In practice, this integral can often be difficult to evaluate, particularly if the
dimensionality of the parameter space is large. While the prior volume may be large,
the likelihood can peak sharply. Nevertheless, the comparatively low-density tails of
the posterior can contain significant volume and can therefore not be ignored. Numer-
ically evaluating an integral with non-negligible contributions at both of these scales
is computationally challenging. Instead, methods such as nested sampling (Skilling,
2006) that evaluate this integral efficiently have been developed; this is discussed in

more detail in section 3.1.9.

One convenient exception to this computational expense is the case of nested
models. A pair of nested models consists of a simple model with likelihood Pi(d | 0)
and prior P;(0), and a complex model with likelihood P»(d | 6, ¢) and prior P»(0, ¢).
The models are considered nested if the complex model contains the simple model; that
is, at a specific value of the parameter ¢ = ¢y, its likelihood P2(d | 8, ¢o) = Pi(d | 0)
equals that of the simpler model, and its prior P»(0 | ¢9) = P1(0). In this case, the
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Savage-Dickey density ratio (Dickey, 1971) allows the Bayes factor to be evaluated as

By, — Py(¢o | d)

T Pgo) 321

where the numerator is the marginalised posterior of the complex model evaluated at

¢ = ¢y, and the denominator is the marginalised prior evaluated at the same point.

Any method of model comparison must balance a models ability to predict the
observed data with its complexity. A model can be made arbitrarily complex by giving
it an increasingly large number of parameters. As a result, this model would be ex-
tremely flexible, in the sense that it would be able to predict many different datasets.
This is summarised in a quote by John von Neumann (e.g., Dyson, 2004), that “with
four parameters I can fit an elephant, and with five I can make him wiggle his trunk” 2.
We should therefore not be surprised that a model with many parameters explains the
data better than one with few; this increase in the goodness-of-fit should be balanced

against the corresponding increase in model complexity.

This notion of balancing a models complexity with its goodness-of-fit is known
as Occam’s razor; given two models that make the same prediction, the simpler model
should be preferred. An advantage of Bayesian model comparison is that it automati-
cally includes this effect (e.g., Jefferys and Berger, 1992). As the complexity of a model
M grows, it is able to predict a wider variety of datasets. As a result, the evidence
P(d | M) evaluated given an observed dataset d will be reduced. The goodness-of-fit,
encoded in the likelihood P(d | 8, M), must therefore increase to compensate this if

the more complex model is to be preferred.

It is important to note that, for the purpose of model comparison, the prior
distribution P(@ | M) must be correctly normalised, ie., [ P(6 | M) d@ = 1. As
a result, this excludes the use of improper priors; see section 3.1.7 for details. In
addition, the evidence is sensitive to the choice of prior, even when the likelihood is

strongly peaked.

Model averaging

An additional use of the evidence term is model averaging (e.g., Fragoso et al., 2018),

where the choice of model is marginalised over. Thus, the posterior for a parameter

2Indeed, if one permits complex parameters, this has been shown to be true (Mayer et al., 2010).
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vector @ averaged over a possible N models is given by

N
P(6 | d) Z (6, M; | d)

(3.22)

Z (6|d, M;)P(M;|d),

where P(0 | d, M,) is the posterior under model M;, and P(M; | d) is the a posteriori
probability for that model, as defined in equation 3.17.

Implicitly, this assumes that the set of models {M;} = {M;, Ms... My} is ex-
haustive, meaning that the evidences are normalised 31 | P(M; | d) = 1. Marginal-
ising over the choice of model in this way incorporates its uncertainty into the final

posterior over the parameters of interest.

3.1.7 Priors

An integral part of a Bayesian analysis, and one that significantly differentiates it from a
frequentist analysis, is the choice of P(8 | M), the prior distribution. This distribution
quantifies the beliefs about the parameters 8 before the data has been seen. This belief
may take the form of the results from a previous experiment determining the same
quantity, leading to the adage that “yesterday’s posterior is today’s prior” (Lindley,
2000), or from additional data that constrains properties of a population the system
of interest is known to have been drawn from. Alternatively, theoretical considerations
can inform a prior distribution, e.g., a nonnegative prior that constrains a mass m > 0.

Such priors are typically referred to as subjective priors.

In contrast to these, priors can be constructed for a particular problem which
aim to minimise their information content. Priors chosen through such a mathematical

procedure are termed objective priors. Examples of these are discussed below.

Proper and improper priors

Before we introduce different types of priors, it is worth briefly discussing the difference
between proper and improper priors. For a probability distribution P(x) to be valid,
it must be normalised, i.e., [ P(x) de = 1. Priors that are valid in this way are known

as proper priors.

If the integral of a prior distribution is not finite, it cannot be normalised and

is referred to as improper (e.g., Sivia and Skilling, 2006). Since model comparison
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requires proper priors that are correctly normalised, improper priors cannot be used
for this purpose. In addition, the posterior is not guaranteed to be proper when the
prior is not. Since an improper posterior is not a valid probability distribution, the use

of an improper prior necessitates checking the propriety of the posterior.

Objective priors

If nothing is known about a parameter, a seemingly reasonable choice of an uninforma-
tive prior might be a uniform prior, i.e., P(6 | M) o 1. In fact, the first application of
a Bayesian analysis by Bayes (1763) involved inference of the probability of success p
from a series of Bernoulli success-or-failure trials with a uniform prior over p. However,

there exist several problems with this choice.

Firstly, a uniform prior without lower or upper bounds does not have a finite
integral. Inference must therefore proceed with the caveats above. A uniform prior
can be made proper by imposing lower and upper bounds outside which the prior is
zero. Note, however, that this prior is no longer uninformative, since this imposes
bounds on the possible values of the parameters. Secondly, a uniform prior can be
parametrisation-dependent. This means that the change-of-variables from 6 where
P(0) is uninformative uniform prior to ¢ can induce a prior P(¢) which is highly

informative.

Instead of a uniform prior, methods exist to mathematically construct priors that
are uninformative. An early example of this is presented by Jeffreys (1939), where the

prior on a parameter ¢ is given by
P(6) x \/1(0) , (3.23)

where 1(0) is the Fisher information (e.g., Ly et al., 2017), given by

1(6) = —/ (di;logp(d | 9,M)> P(d |6, M) dd. (3.24)

An alternative approach to objective priors are reference priors (Bernardo, 1979),
a information theory-based method that precisely defines the notion of a uninformative
prior. In particular, reference priors are constructed by maximising the gain in infor-
mation during the Bayesian update from prior to posterior. The information gain is
measured through the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951),
given by
P(o)

Dxn(P | Q) = /P(O) logw de. (3.25)
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Since the prior distribution should quantify the belief about the parameters before see-
ing any data, the true posterior, which depends on the observed data, cannot be used
to construct the reference prior. Instead, the maximised quantity is the expected infor-
mation, the expectation value of the KL divergence between the prior and posterior,

averaged over the data distribution, i.e.,

Po | d
= | P(d P(0|d)log————— d@| dd 3.26
e ]| [ rolant g , (3.26)
where P(d) = [ P(d | 8)P(0) df. The reference prior is then the distribution P(6)
that maximises equation 3.26. When this procedure is applied to one-dimensional
models, the reference prior is equal to the Jeffrey’s prior, though this is not the case in
general for multivariate models (Berger et al., 2009). This objective Bayesian approach

has found use in several astrophysical inference problems (e.g., Knoetig, 2014; Heavens
and Sellentin, 2018; Jew and Grumitt, 2019).

Conjugate priors

A particularly mathematically convenient type of prior is known as conjugate priors.
When paired with the appropriate likelihood to make a pair of conjugate distributions,
the posteriors of these models have the property that they are the same probability
distribution as the prior but with different parameters. These posterior distributions
can therefore be written in closed form. An advantage of this is that some a posteriori
properties of the parameters, such as their mean and variance, can also be found
analytically, provided that closed form expressions exist for these properties for the
relevant probability distribution. Constructing models in this way can therefore avoid
the need for sampling, at the expense of restricting the variety of models possible to

those involving conjugate distributions.

3.1.8 Bayesian hierarchical modelling

An advantage of Bayesian inference is the ease with which uncertainties can be prop-
agated rigorously, including correlations between parameters. These uncertainties are
encompassed within a probability distribution. These distributions can be the final
result of inference for the parameters of interest, but can also represent intermediate
products not directly of interest, but required for the final inference. Complex models
can be built in this way, assigning probability distributions to all unknown interme-
diate quantities and conditioning on these quantities elsewhere. These are known as
Bayesian hierarchical models (BHMs).
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As a toy example, consider a system where we observe a dataset of N samples
{d} = {dy,d;...dy} independently drawn from a population. Each sample i has
associated parameters @; that govern the data generating process described by the
individual likelihood P(d; | 6;). From the assumption of independence, the total
likelihood is given by the product over individual likelihoods, i.e.,

N
P({d} | {6}) =]] P16, (3.27)
i=1
where {8} = {61,0,...0y} is the set of individual sample parameters. In a simple

Bayesian analysis, the posterior distribution would then simply be given by

N

P({6} | {d}) o ] ] P(d; | 6:)P(6), (3.28)

i=1

where the total prior P({0}) has been separated by the assumption of independence.

This approach requires that a prior can be written down. If the population from
which each sample has been drawn is well understood, this can be done. However, for
many complex problems, this is a strong requirement. Instead, a desirable property of
the analysis is that we could make inferences not only about the individual samples
drawn from the population, but also about the population itself. To do this, we need to
incorporate the prior information that these samples are all drawn from the same pop-
ulation. This can be through the structure of the prior by constructing a hierarchical

model.

To do this, we parametrise the prior distribution with its own set of parameters
¢, known as hyperparameters, giving P(6; | ¢). Unlike the sample parameters 6, these
hyperparameters are shared across the entire population. The hyperparameters are
also unknown quantities, meaning we must also place priors over these hyperparameters
P(¢), referred to as hyperpriors. These hyperparameters are then included as part of
the final posterior distribution. Applying Bayes rule, this is given by

P({6}, ¢ [{d}) o P({d} | {6}, 0)P({6}, ). (3.29)

A common assumption when constructing BHMs is that terms are dependent only on
the quantities directly above them in the hierarchy, i.e., that the likelihood term is

given by equation 3.27, as before. Inserting this and separating the joint prior using
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product rule, the posterior becomes

N
P({6},¢ | {d}) x P(¢) || P(di | 6:)P(6; | ¢). (3.30)

i=1
Note that, since the hyperparameters are shared across all samples, the hyperprior has

been moved outside of the product.

This hierarchical model now allows observations of samples from the population
to be used to make inferences about the population itself by placing a posterior dis-
tribution over its parameters ¢. If these population parameters are not of interest,
the posterior distribution over the sample parameters only can be obtained simply by

marginalising, i.e.,

N

P((6} | d)) x [ P6) ][ P(di] 0)P(©: | 6) do (331
i=1

Doing this incorporates the uncertainty on the intermediate ¢ parameters into the
final posterior distribution. In addition to providing a rigorous way to propagate
uncertainties, the hierarchical structure of BHMs also provides a way for inferences
about individual samples to be informed by one another, meaning that that width of
the marginal 6; posteriors will be reduced, tightening the constraints. This effect is
known as shrinkage (e.g., Gelman et al., 2013). The assumption of independence and
lack of any global structure means that this does not occur in the non-hierarchical

model above.

BHMs are often presented as directed acyclic graphs (DAGs), diagrams which
show the conditional dependence between terms in the model. As described in sec-
tion 3.1.9, this representation can be useful for obtaining the conditional distributions
required for Gibbs sampling. The DAGs of the toy model and its hierarchical alterna-

tive above are shown in Figure 3.1.

Bayesian hierarchical modelling has been used for several cosmological data anal-
ysis problems. For example, Alsing et al. (2016) construct a BHM over both the cosmic
shear power spectrum and the pixelised cosmic shear map, avoiding difficulties created
by masked survey areas. This method was applied to Canada-France-Hawaii Telescope
Lensing Survey (CFHTLens, Heymans et al., 2012) data in Alsing et al. (2017). Leist-
edt and Hogg (2017) derive a BHM of the colour-magnitude diagram from Gaia (Gaia
Collaboration et al., 2016) parallax and magnitude measurements in order to infer
stellar distances. They find a significant improvement in the precision of distance in-

ferences over non-hierarchical approaches. Feeney et al. (2018) use a BHM describing
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Figure 3.1: Directed acyclic graphs for the two models described in section 3.1.8. The
graph on the left shows the simple model defined in equation 3.28, while the graph
on the right shows the hierarchical alternative defined in equation 3.30. Terms in the
blue rounded rectangles are probability distributions. Quantities in single circles are
latent parameters sampled from probability distributions, and those in double circles
are observed quantities. The black rectangles indicate a product over independent
terms.
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the local distance ladder in order to rigorously propagate uncertainties from all obser-
vations and quantify the tension between local and cosmological measurements of the
Hubble parameter; see section 2.3.4 for a discussion of the Hubble parameter tension.
Using Bayesian model comparison, they find that the odds against ACDM are reduced
compared to a naive comparison of the measurements, but that a tension still remains.
Finally, Leistedt et al. (2016) use a BHM to jointly infer the redshifts of each galaxy
in a population and the redshift distribution of the population itself using photometric

observations. This method is discussed in more detail in section 4.2.1

3.1.9 Sampling probability distributions

As discussed in section 3.1.5, making inferences from a posterior that has been derived
using Bayes’ theorem typically involves sampling from that distribution. In general,
quantities of interest cannot be obtained in closed form from the posterior distribu-
tion; the notable exception to this are models formed from conjugate distributions
as described in section 3.1.7. In addition, the evidence P(d | M) involves an inte-
gration over the entire support of the posterior in parameter space. As discussed in

section 3.1.6, this integral is often computationally difficult.

Instead, a set of samples drawn from the posterior distribution are extremely
useful for inference. The simplest thing to do with samples is to plot them. By plotting
histograms of the samples, posterior distributions can be inspected, an important sanity
check. Sampling a posterior distribution also allows variables to be easily marginalised
out. Given a set of samples 0;,¢; ~ P(0,¢ | d) for i € {1... N}, discarding the
unwanted part of the samples {¢} leaves a set of samples {0} drawn from the marginal
posterior P(0 | d).

It can sometimes be useful to summarise the results of a posterior distribution as
a single number, known as a point estimate®. A common way to do this is to calculate

expectation values, defined as
E[g] = / 0P| d) do. (3.32)

This expectation is sometimes labelled E[@ | d] to explicitly denote the conditioning

on the data d. This can be generalised to the expectation value of a deterministic

3Note that this compression will inevitably result in a loss of information. A point estimate alone
has no uncertainty associated with it, while a point estimate with error bars must make assumptions
about the shape of the posterior distribution.
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function of a random variable f(@) by

B[f(6)] = / £(0)P(6 | d)do. (3.33)

Given a set of N samples drawn from the posterior 8; ~ P(0 | d) fori € {1... N}, the

expectation defined in equation 3.33 can be approximated as

BIF(O) ~ 5 S £(6). 334

Thus, the mean of samples drawn from the posterior is the expectation value.

An important property for many sampling methods is that they do not require
the density from which they sample to be normalised. This obviates the need to
calculate the evidence for parameter estimation, potentially reducing the computational
burden significantly. For model comparison problems where calculating the evidence
is unavoidable, sampling methods exist that can efficiently evaluate this integral. A

variety of these sampling methods are discussed throughout the rest of this section.

Pseudorandom number generation

Before we discuss random sampling from probability distributions, it is worth consid-
ering how computers can generate random numbers at all. As deterministic machines,
computers cannot generate truly random numbers. Instead, they must rely on an al-
gorithm which, given an initial value known as a seed, generates a sequence of numbers
deterministically which nevertheless obey the statistical properties of being uniformly

randomly distributed. Such an algorithm is known as a pseudorandom number gener-
ator (PRNG).

Poor PRNGs can be subject to a variety of problems, such as short periods be-
fore the sequence of numbers repeats, strong correlation between successive numbers
in the sequence and a nonuniform distribution, particularly as the dimensionality in-
creases (e.g., Press et al., 2007) A commonly used PRNG that does not suffer from
these issues is the Mersenne Twister (Matsumoto and Nishimura, 1998), so named as

its period is the Mersenne prime 21997 — 1,

Simple sampling methods

We now discuss several simple methods for sampling from probability distributions.

The first of these is inverse transform sampling (e.g., Devroye, 1986). This method
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utilises cumulative distribution functions (CDFs), an alternative way of specifying prob-

ability distributions, defined as
F(z) —/ P(6) do (3.35)

where P(0) is the PDF represented by the CDF F(z). The inverse cumulative distri-
bution F~!(p) is then defined as the inverse of this function such that F (F~'(p)) = p.
Inverse transform sampling then proceeds by noting that, given uniformly distributed

samples u; ~ U(0, 1), the transformed samples x; = F'~*(u;) are distributed according
to the distribution P(#) as desired.

Inverse transform sampling is an efficient sampling method when the inverse
cumulative function F~!(p) can be evaluated. However, obtaining this function in
general can be difficult, restricting inverse transform sampling to analytic distributions

in practice.

An alternative sampling method suitable for distributions that are not known
in closed form is rejection sampling (e.g., Gelman et al., 2013). This is a method of
sampling from a distribution P (@) by utilising another probability distribution Q(8),
known as the proposal distribution. This proposal distribution must be greater than
the target distribution Q(0) > P(0) over the entire support of 8. However, neither
of these distributions needs to be normalised to unity. Rejection sampling is therefore

suitable for parameter inference problems where the normalising constant is not known.

The method proceeds as follows. A value 8% ~ Q(0) is sampled from the proposal
distribution. It must therefore be possible to sample from the proposal distribution,

e.g., by choosing a scaled uniform distribution, or by using inverse transform sampling.
P(8Y)
Q(e")’

A uniform random number is also sampled u ~ U(0,1). If u < the sample is

accepted. Otherwise, the sample is rejected.

While rejection sampling has the benefit of enabling sampling from unnormalised
distributions, it has some downsides. The efficiency of the method relies on the choice of
proposal distribution. A poor choice can lead to many samples being rejected, making
the sampling inefficient. Adaptive rejection sampling methods (e.g., Gilks and Wild,
1992) can help with this by altering the proposal distribution as sampling proceeds
to increase efficiency. Nevertheless, many samples can still be rejected, particularly in

high dimensional parameter spaces, an example of the curse of dimensionality.
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Markov chain Monte Carlo

This simple sampling methods discussed above are not generally suitable for Bayesian
inference problems. We discuss here a widely used alternative, Markov chain Monte
Carlo (MCMC). This is a family of sampling methods of which many variants exist,
allowing a wide variety of otherwise difficult posterior distributions to be sampled.

Below, we summarise the properties of MCMC following Bishop (2006).

MCMC produces a series of samples that form a Markov chain with an equilib-
rium distribution equal to the target distribution, the probability distribution to be
sampled. Markov chains are a sequence of random variables 6* for ¢ € {1... N} where

each value depends only on the previous value, i.e., the conditional distribution
PO |6"...67)=PO |07"). (3.36)

This is known as the Markov property. MCMC then proceeds by making a series of
steps through parameter space to form this chain, each step conditioned on the current
position. These steps are controlled by the transition probability 70" — ') =
PO+ | 67).

For the marginal distribution P(6°) to be stationary, the chain should obey the

property known as detailed balance, where
PO)T(O — 6)=PO)T(O —0). (3.37)

The Markov chain should also converge to the desired target distribution, irrespective

of the starting point 8°=!. A Markov chain that has this property is said to be ergodic.

MCMC produces a Markov chain that obeys both of these properties, allow-
ing MCMC to be used to sample from a specified posterior distribution, as desired.
However, the Markov property results in consecutive samples being correlated. If in-
dependent samples from the target density are required, a shorter chain can be created
by selecting only every n points from the original chain, a process known as thinning
(e.g., Gelman et al., 2013). In addition, while the ergodicity of the chain guarantees
that it will eventually converge to the target distribution, the beginning of the chain
can be unrepresentative if a poor starting point is chosen. A solution to this is to burn
in, discarding the beginning of the chain and keeping only later samples. We discuss
the details of several variants of MCMC below.
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Metropolis and Metropolis-Hastings

The earliest MCMC variant is known as the Metropolis algorithm (Metropolis et al.,
1953). In order to sample from the target distribution P(@), this method makes steps
from the current position 6% in parameter space by randomly sampling a new position
0’ from a proposal distribution ¢(6’ | %) which is symmetric, i.e., ¢(8" | 8") = q(6' | €).
This new position is then accepted with a probability given by

, P
A(€',0") = min <1, %) : (3.38)
This can be achieved by sampling a uniform random number v ~ U(0, 1), and accepting
the new sample if u < A6, 0"). Note that when the step has resulted in an increase
in the target density P(@"™') > P(6"), the new sample is always accepted. If the new
sample is accepted, the Markov chain is updated ! = @'. If the new sample is

rejected, the current value of the parameter should be repeated as the new value, i.e.,
0i+1 — 91"

This simple method can be generalised into the Metropolis- Hastings algorithm (Hast-
ings, 1970) to allow a nonsymmetric proposal distribution ¢(€’ | 6°). In this case, the

acceptance probability is modified to be

' iy P(6') q(6" | 6')
A(6',6") = min (1’P(0i)q(0’ |91)) : (3.39)

The original Metropolis algorithm is now a special case of this more general form
when ¢(0' | 6") = q(6° | 6'). Note that the target density appears only as a ratio
in the acceptance probability. As a result, these methods are able to sample from
distributions where the normalising constant is not known, as is the case for many

Bayesian parameter inference problems.

The efficiency of a Metropolis-Hastings sampler is dependent on the choice of
proposal distribution which should be tuned for the specific target density. A com-
mon choice of proposal distribution is a Gaussian centred on the current position in

parameter space.

Hamiltonian Monte Carlo

As the dimensionality of the target distribution increases, a Metropolis-Hastings sam-
pler can struggle to explore the space efficiently, with the ratio of samples accepted

to those rejected decreasing (e.g., Gelman et al., 2013). In parameter spaces with
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more than ~ 10 dimensions, the efficiency of Metropolis Hastings is extremely low.
Given enough time, the samples will converge to the target distribution. In practice,
however, this convergence requires too many samples to be feasible, and Metropolis
Hastings cannot be used to sample to target distribution in a reasonable amount of
computational time. Posterior distributions for problems of interest, particularly those
derived from BHMs, can be higher dimensional than this, e.g., Jasche et al. (2015)
constructs a posterior distribution of > 107 dimensions in order to infer large scale
structure density fields from observed galaxy distributions. Metropolis Hastings is

therefore not a suitable choice of sampler for these problems.

Hamiltonian Monte Carlo (HMC, Duane et al., 1987) is an MCMC variant that
is able to sample these very high dimensional spaces. To do this, it utilises not only
the value of the density but also its gradient, evolving a dynamical system through
a phase space to explore parameter space efficiently. This phase space has twice the
number of parameters as the parameter space, consisting of the positions given by the
parameters 6, and the momenta p. The evolution of these quantities is described by a

Hamiltonian function

H(O,p)=U(0)+ K(p), (3.40)

where the potential energy U(0) is the negative log of the target density, i.e.,

U(@) =—log P(0), (3.41)
and the kinetic energy K(p) is given by

K(p)=5p"' M 'p. (3.42)

The matrix M is known as the mass matriz and provides a way to tune the performance
of the sampling algorithm. It is possible to generalise this procedure so that the mass
matrix varies in parameter space, i.e., M — M (0). This generalisation is referred to
as Riemannian Hamiltonian Monte Carlo (Girolami and Calderhead, 2011), and can

aid exploration in highly correlated parameter spaces.

One iteration of HMC sampling then proceeds as follows. First, an initial mo-
mentum pg is sampled from a Gaussian distribution with mean of zero and covariance
given by the mass matrix M. Next, the position and momentum are evolved according

to Hamilton’s equations, given by (e.g., Neal, 2012)

do; _
Tt] = (M 'p); (3.43)
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and

% _ _g_er (3.44)
for dimension j. To solve this in practice, a numerical method such as leapfrog inte-
gration must be used. After N timesteps of the numerical integration, the resulting
position and momentum vectors {8, p’'} are taken to be the new proposal values. The

acceptance probability is then given by
A({H/,p/}, {0i7p0}) — min (17 e*(H(ef,p/)*H(ei,po))> ’ (3_45)

where 0% is the previous parameter position, and py is the sampled initial momen-
tum. Note that, if it were not for errors introduced by the numerical integration,
the Hamiltonian would be conserved and every sample would be accepted. As in
Metropolis-Hastings, if the proposed sample is rejected, the previous parameter value
is repeated in it place. Also note that the momentum vector is always discarded, as a

new momentum vector is sampled at the beginning of each iteration.

The efficiency of HMC is sensitive to the number of timesteps performed in the
numerical integration step. The No-U-Turn Sampler (NUTS, Hoffman and Gelman,
2011) is a method to adaptively set this number of timesteps. This allows HMC to be
easily applied to a variety of problems without hand-tuning using probabilistic inference
software packages (e.g., Salvatier et al., 2016; Carpenter et al., 2017). This application

is also aided by the automatic differentiation methods described in section 3.2.3.

Gibbs sampling

The MCMC methods discussed above all rely on being able to evaluate the complete
joint distribution for the target density. For Bayesian inference problems, this is the
posterior distribution P(@ | d). Instead, Gibbs sampling (Geman and Geman, 1984) is
an MCMC method that samples from a joint distribution specified only by its condi-

tional distributions.

Consider a D-dimensional joint posterior distribution P(6 | d). The conditional
distributions of each of its parameters are then given by P(0; | 61 ...0;_1,6,41...0p,d)
for dimension j € {1...D}. Iteration ¢ of Gibbs sampling then proceeds by sampling
9; ~ Pl | 61...0;_1,0,41...0p,d) for each dimension j. Each of these samples is

accepted, forming the new parameter vector 6°.

Gibbs sampling can be a useful sampling method when the target density is most
easily written in terms of its conditional distributions, as is often the case in hierar-

chical models (e.g., Alsing et al., 2017). In fact, these conditional distributions can
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be obtained directly from the DAG of a model, a graphical representation commonly
used to represent hierarchical models as described in section 3.1.8. The samples from
each conditional can be obtained through any other sampling method. Gibbs sampling
is a particularly efficient choice when the conditional distributions can be analytically
sampled. However, MCMC methods such as Metropolis-Hastings and HMC can also
be used, forming Metropolis-within-Gibbs (e.g., Liu and Tong, 2019) and HMC-within-
Gibbs (e.g., Dang et al., 2017) samplers respectively.

Nested sampling

As discussed in section 3.1.6, evaluating the multidimensional integral required to
calculate the evidence P(d | M) can be computationally challenging. Nested sam-
pling (Skilling, 2006) is a Monte Carlo sampling method that samples the posterior,
efficiently calculating the evidence. The resulting samples, appropriately weighted, can

also be used for parameter estimation.

Nested sampling reduces the computational burden of calculating the evidence by
transforming the multidimensional integral into one over a single dimension only. Skilling

(2006) first defines the prior volume element dX = 7(0) d@ and the function
X(\) = / (6) d6, (3.46)
L(6;d)>A

where £(0; d) = P(d | 8, M) is the likelihood, 7(0 | M) = P(0) is the prior and 0 is
the N-dimensional parameter vector. This function X () gives the volume of the prior
where the likelihood is greater than the threshold A. This volume is therefore contained
within a boundary in parameter space, along which the likelihood is constant. This
boundary is known as an isolikelthood contour. The evidence can then be written as

the one-dimensional integral

z- / LX) X (3.47)

where the function L(X) is the inverse of equation 3.46, i.e., L(X) is the value of the
likelihood corresponding to the isolikelihood contour that contains X prior volume.
The problem of estimating the evidence then reduces to sampling a series of these
likelihoods L(X;) where X;,; < X;, i.e., progressively smaller prior volumes nested
within one another. Equation 3.47 can then be calculated using a simple quadrature

integration method.

This sampling process starts by initialising a pool of n random points sampled

from the prior. These points, referred to as the live points, each correspond to a
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particular likelihood value, and so each define an isolikelihood contour. The key insight
of Skilling (2006) is that, since the live points were sampled from the prior, the prior
volumes X contained within these contours are therefore uniformly sampled X ~
U(0,1).

The live point with the lowest likelihood is then removed as the first sample, and
the prior volume contained within its isolikelihood contour labelled X;. This point is
then replaced with a new point sampled from the prior, but with the condition that
its likelihood L > L(Xj); that is, it is contained within the isolikelihood contour of the
first sample. This therefore corresponds to uniformly sampling the prior volume X ~
U(Xo,1). This procedure defines a single iteration of the nested sampling algorithm

which repeats with the new set of live points.

At iteration ¢, the prior volumes of the isolikelihood contours of all the live
points are sampled uniformly between 0 and X;;. The lowest likelihood point is then,
by definition, the point that defines the contour containing the largest prior volume
X;. Thus, the prior volume X; can be estimated statistically using the distribution of
the N*" largest value in a uniform sample of N points. Values of this sort are known
as order statistics (e.g., David and Nagaraja, 2006). The prior volume at iteration i

can then be approximated as X; ~ /™.

This iterative process continues until a precision threshold for the evidence is
reached. Once it has, the m removed points are combined with the n remaining points

and used to approximate the evidence as (Feroz et al., 2009)

n+m

Z=> L(Xjuw;, (3.48)

j=1

X 1—X;
where w; = %J“

for a point removed during iteration j and w; = XT'” for the
remaining live points. In addition, this combination of points can be considered to be
weighted samples from the posterior that can be used for parameter estimation. The

weighting of point j is given by
pj = —2—2, (3.49)
corresponding to the fractional contribution of point j to the total evidence approxi-

mation.

Several variations of the nested sampling method exist (e.g., Brewer et al., 2009;
Feroz et al., 2009; Handley et al., 2015; Higson et al., 2017). Sampling from within an

isolikelihood contour is the most computationally expensive part of the nested sam-
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pling procedure. The work presented in chapter 6 uses the MultiNest nested sampling
method (Feroz et al., 2009), a method for improving the efficiency of this step by ap-
proximating the contour with a series of ellipses; this method is explained in more

detail in section 6.3.2.

3.2 Machine Learning

The Bayesian methods discussed in section 3.1 all involve the assumption of a physical
forward model, typically encoded in the likelihood function. In contrast, machine
learning methods make no reference to a physical model. Instead, these methods fit
extremely flexible models to large datasets known as training sets, using the information
obtained to make predictions. An advantage of these methods is the ease with which
they scale to very large datasets, a property that will become increasingly important as
the size of datasets grows, as discussed above. This section discusses machine learning

methods in general and their place within a scientific analysis.

3.2.1 Inference vs prediction

The applications of a statistical or machine learning data analysis can broadly be
summarised into two types. Following the notation of James et al. (2013), we refer to

these as inference and prediction.

Bayesian statistical analyses are typically used to perform inference. Either a
particular data generating process is assumed, as is the case for parameter inference,
or a series of such processes are, as in model comparison. When applied to the analysis
of cosmological data, this data generating process is typically informed by a theoretical
model that, as best as possible, approximates the true process of data generation found
in nature. Inference is therefore concerned with drawing conclusions about this model,
and by extension, the natural system under consideration. These conclusions can take
the form of posterior distributions over model parameters and relative probabilities of

competing models.

The application of statistical inference to scientific problems is therefore clear;
making inferences about processes found in nature is the goal of the scientific method.
In contrast, the goal of a predictive analysis is not to understand the true data gener-
ating process at all, simply to predict the effects of it; given a particular input, what
can be predicted about the output? Machine learning methods are typically used to

preform a predictive analysis. In these cases, the function that maps the inputs to
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their respective outputs can be a black box, lacking interpretability in any practical

sense (e.g., Lipton, 2016).

This lack of interpretability of machine learning models has been noted (e.g.,
Rudin, 2018) as a potential problem when these methods are applied to problems where
a full understanding of the inference is important. An example of a problem arising
from a lack of interpretability is the existence of adversarial examples (Goodfellow
et al., 2014), data that have been modified in a minimal way to cause the predictions
of machine learning methods to lose considerable accuracy. These modifications can
be extremely small, such as the addition of noise to an image (Kurakin et al., 2016),
resulting in changes that cannot be detected by a human but nevertheless cause a ma-
chine learning method to misclassify the image. These examples highlight the difficulty
of interpreting the workings of a highly complex black box method.

Given these concerns, it is reasonable to ask what the role of machine learning
methods in a scientific analysis should be. It is the view of the author that the distinc-
tion between inference and prediction can guide this. While it is possible for a machine
learning method to be trained to predict model parameters from simulated data to a
high accuracy (e.g., Ravanbakhsh et al., 2017), this task is one of inference and would
therefore benefit from interpretability. Model parameters are only meaningful quanti-
ties in the context of a model, and for the final conclusions of a scientific analysis to

be believed, they should be explainable.

However, prediction tasks are also a common part of cosmological data analysis
pipelines. The problem of estimating redshifts from photometric data, the subject
of this thesis, is an example of this. Indeed, photometric redshifts are an area that
has seen a proliferation of machine learning-based approaches; a variety of these are
discussed in more detail in section 4.1.2. The complete data generating process for
photometric redshift problems is complex, potentially encompassing star formation
and the details of the chemistry involved therein. For the purpose of cosmological
data analysis, this level of detail is both unnecessary and infeasible. In addition,
photometric redshifts are necessarily a noisy estimate with catastrophic failures due
to the loss of information when integrating a spectrum over photometric filters. The
pragmatic concern of photometric redshift methods is therefore the accuracy of their
predictions on a representative set of data, a goal which aligns with that of machine

learning methods.
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3.2.2 Supervised and unsupervised learning

Various different machine learning methods for data analysis tasks exist. However,
these methods can be characterised into two distinct types by the form of the data on

which they are trained. These are known as supervised and unsupervised learning?.

Supervised learning involves methods that use training data that contains both
an input & and output y. Such data is sometimes referred to as labelled data. The
aim of the machine learning method is then to learn a function which maps from the
inputs to the outputs. This can then be used to predict the output F(x) = ¢ cor-
responding to the inputs of other previously unseen data, known as test data. To do
this, a user must specify a loss function L(y,7y), a function which quantifies the ac-
curacy of the prediction as a scalar. Supervised learning is therefore an optimisation
problem (e.g., Bishop, 2006) where the loss function is minimised, given a particular
training set. These methods typically employ a gradient-based optimisation method,
as described in section 3.2.3. Examples of supervised learning methods include ran-
dom forests (Breiman, 2001), Gaussian processes (Rasmussen and Williams, 2005) and

neural networks (e.g., LeCun et al., 2012).

In contrast to supervised learning, unsupervised learning methods utilise un-
labelled data, where the training set has no output to be predicted. Instead, these
methods aim to find unspecified patterns in the data. An example application of this
is clustering, where samples from a dataset are categorised into several clusters based
on their similarity. K-means clustering (e.g., MacQueen, 1967; Jain, 2010) is an ex-
ample of a clustering algorithm which separates each sample into a single cluster. A
probabilistic generalisation of this is known as Gaussian mixture models (GMMs) (e.g.,
Fraley and Raftery, 1998), where each cluster is comprised of a multivariate Gaussian,
and each sample is probabilistically assigned to clusters. GMMs are also an example
of another application of unsupervised learning known as density estimation, where
samples in the training set are used to estimate the data-space probability distribution
from which they were sampled. These applications of unsupervised learning can be
used for several purposes, including the preprocessing of data for supervised learning
methods, known as feature engineering or feature extraction (e.g., Hastie et al., 2005),
or for deriving the conditional probability distributions; see chapter 7 for an example

of using conditional distributions derived from GMMs to infer photometric redshifts.

4A third type of machine learning method also exists, known as reinforcement learning (e.g., Li,
2017). This is a method to train software-controlled agents to make decisions by rewarding them based
on completing desirable goals. These methods are not typically applied in data analysis contexts, and
as such, we do not discuss them further here.
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3.2.3 Gradient-based optimisation

Optimisation is the numerical problem of maximising the value of an objective function
by modifying the values of the parameters that control it. In order to efficiently optimise
objective functions of many parameters, it is essential to use an optimisation method
that uses the derivative of the function, known as gradient-based optimisation methods.

This section reviews a variety of these methods.

Automatic differentiation

In order to optimise functions using their gradient, that gradient must, of course, be
specified in some way. While the gradients for a particular model can be derived ana-
lytically for evaluation, this is a time-inefficient process, particularly as the complexity
of the model and the number of its parameters increase. An alternative to this process
is automatic differentiation (e.g., Baydin et al., 2018), a method by which gradients

can be calculated for a particular model automatically.

Unlike numerical methods such as finite differencing, gradients calculated through
automatic differentiation are not approximations, but are exact. Mathematical models
M (x) = y are specified in terms of primitive operations f(z) such as addition, multi-
plication and exponentiation, i.e., M (z) = h(g(f(z))). The derivative of each of these
primitive operations with respect to their input parameters V f(x) is known. As the
model is evaluated, the application of each of these operations is recorded by the au-
tomatic differentiation software. The final derivative of the output value with respect

to the inputs can then be calculated using the chain rule.

Due to the high complexity of machine learning models that require gradients
for optimisation, automatic differentiation has been implemented in several machine
learning software packages (e.g., Maclaurin et al., 2015; Abadi et al., 2016; Paszke et al.,
2017). While the gradient-based optimisation methods discussed in the section are a
common use of gradients within statistical inference and machine learning applications,
another notable example is Hamiltonian Monte Carlo, discussed in section 3.1.9. Many
implementations of HMC also therefore make use of automatic differentiation (e.g.,
Carpenter et al., 2015).

Stochastic gradient descent

The simplest gradient-based optimisation method is known as gradient descent. At

each iteration, this method simply steps through parameter space in the direction
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of the negative gradient, i.e., downhill. Consider a multivariate function F(@). At
iteration 4, the gradient of the function VF'(6;) is evaluated at the current position in

parameter space 6. The parameters are then updated to be
01'4_1 = 01 —u;, (350)

where

is the update at iteration i. The step size 7 is a hyperparameter controlling the size
of the move at each iteration. This process continues until the optimisation is deemed
to have converged, typically measured through the change in the value of the function
between iterations, i.e., |F(60;) — F(60;_1)|.

While gradient descent is simple to implement, exactly evaluating the function
F(0) can be costly when the model is complex or the dataset is large. A faster alterna-
tive to this is stochastic gradient descent (SGD, e.g., Bottou, 2010). A common scenario
in machine learning optimisation problems is that the objective function F(0 | {d})

involves a summation over samples in the dataset, i.e.,

N
1
F(O[{d}) = f(O]d), (3.52)
i=1
where ¢ indexes the sample in a dataset of N samples. Stochastic gradient descent
replaces this gradient with an approximation given by the gradient evaluated on a

single sample j from the dataset, i.e.,
VF(@O |{d}) = Vf(O|d;). (3.53)

It can be seen that this is an unbiased estimate of the gradient by taking the expectation

over j, i.e.,
N

B (VSO d)] = S V(O d) = VF@ | {d)). (3.54)

j=1
This noisy estimate of the gradient is then used in place of the exact gradient calcula-
tion in equation 3.50. This procedure can be generalised to use small sets of samples
randomly selected from the full dataset in order to increase the accuracy of the gra-
dient approximation. This is known as mini-batch stochastic gradient descent. SGD
and its mini-batch variant have found widespread use within machine learning appli-

cations (see, e.g., LeCun et al., 2012).
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Figure 3.2: An example of the oscillatory behaviour that can occur when optimising a
valley-shaped function, e.g., f(z,y) = 2? + y using gradient descent.

Improvements to gradient descent

Several variants of SGD have been proposed which improve its ability to optimise
objective functions of many parameters. We summarise a review of these in Ruder
(2016) here. Firstly, the assumption of a single step size n in SGD is often sub-optimal.
Optimisation algorithms that utilise adaptive step sizes change this by modifying the
step size separately for each dimension. This was first introduced by the AdaGrad
algorithm (Duchi et al., 2011).

Another improvement to SGD is known as momentum (Rumelhart et al., 1986).
A common problem for gradient descent methods occurs in areas of the parameter
space where the gradient in one direction is significantly greater than in another, i.e.,
a valley. These can cause the optimiser to oscillate and therefore progress through the
space slowly, as shown in Figure 3.2. Momentum provides a simple way to counter this
issue by modifying the update at iteration i to be a linear combination of the gradient

step and the previous update, i.e.,

By doing this, movement in a consistent direction is amplified as the updates ac-
cumulate, while oscillatory motion is damped as the updates cancel. The Adam opti-
miser (Kingma and Ba, 2014) is an example of a method that incorporates momentum,

in addition to adaptive step sizes.

Finally, Nesterov accelerated gradients (Nesterov, 1983) are a modification to the

momentum method above that improves convergence by evaluating the gradient step
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after making the momentum step, i.e., defining the momentum step to be
m; = au;_, (3.56)
the update at iteration ¢ is given by
u; =nVE6;, —m;) + au;_; . (3.57)

This modification has been incorporated into the Adam optimiser (Dozat, 2016).

3.2.4 Variational inference

While machine learning methods have typically been formulated initially as determin-
istic function approximators, they are increasingly being interpreted in a probabilistic
manner (e.g., Murphy, 2012). For example, neural networks can be put into a frame-
work of Bayesian inference by inferring posterior distributions over their weight param-
eters (e.g., Graves, 2011; Neal, 2012; Blundell et al., 2015). A method of performing
probabilistic inference on these models and other Bayesian models in big data settings

is variational inference (VI).

The methods described in section 3.1.9 aim to draw samples from a posterior
distribution in order to make inferences. By expending more computational effort to
increase the number of samples, derived quantities such as expectation values con-
verge to their correct values. Sampling is therefore an example of an exact inference
method. However, as discussed above, the volume of data available for cosmological
analysis is set to increase significantly. Exact inference methods such as these can be

computationally expensive, and thus can be difficult to scale to very large datasets.

An alternative approach to scaling Bayesian methods to complex problems and
large datasets is to use approximate inference. These methods only approximate the
results an exact inference would achieve, but in return, are able to perform inference
on problems that are inaccessible through exact methods in practice. Likelihood-free
methods (e.g., Turner and Zandt, 2012; Leclercq, 2018; Alsing et al., 2019; Taylor et al.,
2019) perform inference on models where a likelihood cannot be evaluated. Instead,
the forward model is specified, and data is simulated from the model conditional on its

parameters.

Variational inference is another example of approximate inference. By recasting
posterior inference into an optimisation problem, VI is able to scale to much larger

datasets than is practically possible through sampling methods. The optimisation
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problem that VI solves is approximating the target posterior distribution P(6 | d)
with another, simpler distribution, known as the wvariational distribution (6 | ¢),
parametrised by ¢. This is done by minimising the KL Divergence (Kullback and
Leibler, 1951) introduced in equation 3.25 between the two distributions, i.e., the pa-

rameters of the variational distribution are given by

¢ = arg;nin Dir(a(0 | #) | P(6]d)). (3.58)

Evidence lower bound

We now summarise how VI solves this optimisation problem, following Blei et al. (2017).
We first note that the KL divergence defined in equation 3.25 can be rewritten in terms

of expectations by using the property that E[X + Y] = E[X] + E[Y], giving

Dy (q(60 | @) | P(0 | d)) = Eqo ) [logq(0 | ¢)] — Ego ) [log PO [ d)] . (3.59)

where Eqg | ¢) = [q(0 | ¢)... d6 indicates an expectation over ¢(0 | ¢). Since
the KL dlvergence requires normalised distributions, this cannot be evaluated with-
out calculating the expensive evidence integral as described in section 3.1.6. Hence,
inserting P(0 | d) = P(0,d)/P(d), equation 3.59 becomes

Dii. (a0 #) | P(8 | d)) = Eyio ) lom (8 | &)] — Eyo| o [log (8, d)] + log P(d)
= —ELBO(¢) + log P(d),
(3.60)
where the evidence has been moved outside of the expectation as it is constant w.r.t. 6.
In order to avoid calculating the evidence, VI instead optimises an alternative objective
function known as the evidence lower bound ELBO(¢), given by the negative of the

first two terms of equation 3.60, i.e.,

ELBO(6) = Eqyo| g llog P(8,d) — logq(6 | $)] . (3.61)

Since the evidence P(d) is constant, maximising the evidence lower bound is equivalent
to minimising the KL-divergence, as desired. This function can now be optimised in
order to approximate the posterior. We discuss two possible methods for performing

this optimisation below.
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Mean-field approximation

Early applications of variational inference (e.g., Attias, 1999; Ghahramani and Beal,
2001; Blei et al., 2003, 2006) derived analytic update rules to the variational distribu-
tions in order to optimise them. To do this, they used a particular form of variational
distribution known as the mean-field approximation, where each variational parameter

is assumed independent, i.e.,

D

90 | ¢) =[] a0 1 6. (3.62)

j=1

for a D-dimensional parameter vector. The optimal variational distribution for di-
mension j, holding other dimensions constant, can then be found to be (e.g., Bishop,
2006)

log q;(0; | &5) o< E 11 g0, | 6,0) log P(0; [ 01 ... 0;-1,0541...0p,d)] , (3.63)
3%
where E 74,0, 16,0[---] = ... Tlqp(0; | ¢j) db; indicates an expectation over
3'#5 J'#3

the product of variational distributions excluding dimension j. For posteriors where
the conditional distributions P(6; | 6y...6;_1,0;11...0p,d) are in the exponential
family of distributions® and the priors on all parameters are conjugate as described
in section 3.1.7, these expectations can be computed analytically to give variational

distributions that are also in the exponential family.

Black box variational inference

In order to enable the more general application of variational inference, numerical
methods must be employed. Black box variational inference (Ranganath et al., 2013)
is a method to optimise the variational parameters using stochastic gradient descent,
as described in section 3.2.3. This allows VI to be applied to a wider variety of models

than the analytic method described above.

To optimise the variational parameters in this way, we require the gradient of the

evidence lower bound defined in equation 3.61, i.e.,

d d
d—¢ELBO(¢) = d—¢Eq(9 1 ¢) log P(6,d) —logq(8 | ¢)] . (3.64)

5The exponential family of distributions contains many common distributions including the normal,
beta, gamma and Dirichlet distributions. Likelihoods that belong to this family of distributions will
always have a conjugate prior.
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Ranganath et al. (2013) show that this gradient of the expectation can be rewritten as

an expectation of a gradient, i.e.,

d
SGELBO) = Eo o) |15 1oua(0] ) (1o P(0.d) ~ losa(6 | #))] . (3.05)
This expectation can then be approximated using samples from the variational distri-
bution as
d
d—d)ELBO ok Z —logq (0] ¢)(logP(0,d) —logq(8 | #))|.  (3.66)

where 0; ~ q(6 | ¢) for s € {1...S5}. Equation 3.66 defines a noisy Monte Carlo
approximation to the gradient as required by stochastic gradient descent as described
in section 3.2.3. The requirements for applying VI have therefore reduced to being
able to sample from the variational distribution ¢(8 | ¢») and being able to evaluate the
gradient inside the square brackets. These gradients can be obtained using automatic
differentiation methods as described in section 3.2.3, a method known as automatic
differentiation variational inference (ADVI, Kucukelbir et al., 2016).



Chapter 4

Photometric Redshifts

As discussed in section 2.3, obtaining the redshifts of observed sources is an integral
part of utilising cosmological galaxy surveys. There are two distinct uses for these red-
shifts. Firstly, cosmological galaxy surveys typically separate their sources into several
redshift bins, a process known as tomography. Doing this enables redshift-dependent
measurements to be made without the complications of a full three-dimensional anal-
ysis, increasing the constraining power of the survey. Secondly, as detailed in sec-
tion 2.3.3, theoretical predictions of angular power spectra that can be measured from
cosmological galaxy surveys and used to constrain cosmology require knowing the red-

shift distribution of sources within each tomographic bin.

Spectroscopic observations allow the highest-precision determination of redshifts.
By observing the spectrum of each source of interest, emission or absorption lines
arising due to elements present in the source can be identified. Since these lines are at
known rest-frame wavelengths, their observed wavelengths provides a way to measure
the redshift of the source. In practice, this measurement is done by cross-correlating
the spectrum that is observed with an a priori specified set of templates (e.g., Tonry
and Davis, 1979; Baldry et al., 2014) or modelling the line profiles (e.g., Mink and
Wyatt, 1995). This is discussed in more detail in section 2.3.1.

The downside to utilising spectroscopic redshift is that observing spectra in this
way requires a large amount of telescope time. This therefore places a limit on the
total number of sources that can have their redshifts spectroscopically determined to
a sufficient signal-to-noise using a telescope with a particular sensitivity, given a finite

amount of observation time.

One factor controlling the precision of cosmological constraints obtained from
cosmological galaxy surveys utilising measurements such as cosmic shear and galaxy-

galaxy lensing is the number density of sources observed. These lensing effects can only
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be measured from galaxy shapes statistically since the intrinsic shapes of galaxies are
unknown. These statistical measurements therefore rely on having a sufficiently high
number density of galaxies to counter the statistical noise of this effect. Thus, in order
to obtain high-precision constraints from cosmological galaxy surveys, observations of
a large number of galaxies are required. As described above, this can be a problem for

spectroscopic observations.

An alternative to spectroscopic redshifts is photometric redshifts. In contrast
to spectroscopic observations which finely disperse the collected light, photometric
observations generally utilise a small set of filters, imaging the sky in each filter. The
flux of every source contained in these images can then be measured by summing the
flux of each pixel associated with a source and subtracting the background flux level,
referred to as photometry. A common tool to automatically identify the relevant pixels
for each source is SExtractor (Bertin and Arnouts, 1996); see chapter 5 for a more
detailed description of this method and a discussion about the complications to this
process posed by the blending of sources. The result of this process is a vector of
fluxes and associated uncertainties for each source of interest. Photometric redshift
methods are then statistical methods which utilise these outputs in order to determine

the redshift of the source.

By measuring the flux integrated over a series of colour filters centred at several
wavelengths, photometry can be seen as providing a low-resolution analogue to galaxy
spectra. The constraining power from these measurements typically comes from strong
features of the underlying spectrum such as the Lyman and Balmer breaks (Salvato
et al., 2019), absorption features at rest-frame wavelengths of 912A and 3650A re-
spectively. The ability for photometric redshifts to determine the redshift of sources
accurately therefore depends on the filters of the respective galaxy survey covering these
redshifted features. Choosing these filters carefully for the population of sources of in-
terest can significantly increase the precision of the resulting redshift estimates (Benitez
et al., 2009).

The statistical nature of photometric redshifts is important for a key part of
precision cosmology; namely, an accurate understanding of uncertainties in parameter
constraints. To enable this, uncertainties arising from each step of the analysis should
be accounted for and propagated onwards. In cosmological analyses, this is typically
accomplished using a Bayesian framework (e.g., Hildebrandt et al., 2017; Troxel et al.,
2017), allowing these uncertainties to be combined and marginalised over for the final
constraints. It is therefore essential that photometric redshift methods provide not

only point estimates of redshifts, but also a measure of their uncertainties.
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The uncertainty associated with a redshift estimate are sometimes represented
by a single number, i.e., a point estimate with an error bar. However, doing this
necessitates making an assumption about how the error is distributed. Uncertainties in
photometric redshifts can be highly non-Gaussian (e.g., Quadri and Williams, 2010),
and so are poorly described by a single number such as the variance. Photometric
redshift methods that instead characterise their results using a probability distribution
function (PDF) can capture all of this information. PDFs are discussed in more detail

in section 3.1.2.

Photometric redshifts can also suffer from degeneracies that result in high-redshift
galaxies having similar colours to those at low redshifts (e.g., Graham et al., 2018). As
a result, several well-separated redshifts are plausible, and an accurate representation
of the uncertainty should reflect this. While this can be easily described with a multi-
modal PDF, a single number can be misleading. Error bars that cover the full range
of parameter space between the low- and high-redshift estimates do not show that
redshifts between these are disfavoured, inflating uncertainties. Several photometric
redshift methods are able to produce PDFs as their result. These are discussed in more

detail in the following sections.

Ensuring that photometric redshifts are sufficiently accurate and precise is nec-
essary for obtaining unbiased constraints on cosmological parameters. Huterer et al.
(2006) found that future tomographic surveys would require the mean of each redshift
bin to be known to a precision of 0.003, though this requirement can be reduced by
self-calibration (e.g., Huterer et al., 2006; Sun et al., 2015; Samuroff et al., 2017) and
combining weak lensing data with other cosmological probes such as baryonic acoustic
oscillations (e.g., LSST Science Collaboration et al., 2009). Photometric redshifts are
also important in the calibration of other systematics. Multiplicative biases in the
measurement of shear can be detected and corrected for, provided that photometric
redshifts of galaxies in the sample are unbiased (Hoekstra et al., 2017). Weak lensing
shape measurement biases can themselves also be redshift dependent; without unbiased
redshift estimates to make corrections, these can lead to biases of a few percent in the

cosmological parameters og and wy (Semboloni et al., 2009).

A variety of photometric redshift approaches were compared by Schmidt et al.
(2020) in the context of them being applied to future LSST (Ivezié et al., 2019) ob-
servations. To do this, they used a simulated galaxy catalogue derived from N-body
simulations populated with galaxies using linear combinations of SDSS (Stoughton
et al., 2002) spectra. The primary aim of this work was then to evaluate the metrics
on which photometric redshift methods may be compared. This was done by propos-

ing a photometric redshift method where the PDF of the redshift of each galaxy was
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given by the redshift distribution of the simulated catalogue, irrespective of the input
photometry. Such a method would be of little use in real applications, and therefore
represents a useful test of metrics themselves; a metric on which this method scores
highly is unlikely to informative. Nevertheless, Schmidt et al. (2020) found that only a
single metric scored this method poorly, the conditional density estimate (CDE). The
CDE can be estimated for an inferred redshift PDF f(z | X) conditioned on data X
by

CDE = Ex V F2 | X)? dz] — 9By, [f(z | X)} v K, (4.1)

where the first expectation is over the data, the second is over the data and redshift,
and K is a constant. Schmidt et al. (2020) conclude by emphasising that an evaluation

metric should be chosen to reflect scientific goals in order to be of most use.

Photometric redshifts are the subject of the research work of this thesis, where
we generalise these methods for application to blended sources, described in chapter 5.
This chapter discusses the methods used to obtain photometric redshifts in general.
Section 4.1 details photometric redshift methods for determining the redshifts of in-
dividual sources; the two main methods for doing this, template-based and empirical
methods, are discussed in sections 4.1.1 and 4.1.2 respectively. Section 4.2 then details

methods for inferring the redshift distribution of a population of sources.

4.1 Photometric redshift Methods

As described above, photometric redshift methods are utilised for the analysis of cosmo-
logical galaxy surveys for two distinct uses, inferring the redshift of individual sources
and inferring the redshift distribution of a population of sources. This section describes

several photometric redshift methods for the first of these uses.

4.1.1 Template-based methods

A conceptually simple method to compute photometric redshifts is to frame the prob-
lem as a statistical regression by specifying the forward model of the data. In the
case of photometric redshifts, the forward model for the observed fluxes is simply the
redshifted spectrum of the source, integrated over the responses of each colour filter.
These responses quantify the proportion of light that passes through each filter as a
function of wavelength. While these responses are known for each filter, the same is

not true of the intrinsic spectrum of the source. Instead, we assume that this intrinsic
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spectrum is well-represented by one or more templates, model spectra that are speci-
fied a priori. Photometric redshift methods that determine redshifts in this way are

therefore termed template-based methods.

Early approaches to template-based photometric redshifts (e.g., Loh and Spillar,
1986; Gwyn and Hartwick, 1996) were maximum-likelihood based, where a likelihood
function is maximised w.r.t. the free parameters of the model. The free parameters
for template-based photometric redshifts are the choice of template itself, the redshift,
and a normalisation factor a. We label the model flux in a band b given by a template

t redshifted to z as Ty ,(z). The free parameters are then found by minimising

2 Z (Fb - aﬂ,b(z)f (42)

where Fj and o3, are the observed flux and the associated uncertainty in band b respec-
tively. The template ¢ is then chosen by computing x? for all templates and choosing
the one that gives the minimum x?. These maximum-likelihood methods are the basis
for several widely used photometric redshift codes such as Hyperz (Bolzonella et al.,

2000) and Le-PHARE (Ilbert et al., 2006).

Later template-based photometric redshift methods use Bayesian techniques, first
introduced to the field by Benitez (2000), implemented in his Bayesian Photometric
Redshifts (BPZ) code. Here, the output is not a maximum-likelihood estimate of
the redshift but rather a posterior distribution of the redshift, given the observations.

Bayesian methods are discussed more generally in section 3.1.

BPZ considers the flux data in the form of colours and the reference band mag-
nitude. The colours are defined for band b to be C, = F+/r,, where Fj is the flux
observed in a designated reference band. These colours C, alongside the magnitude in
the reference band my, form the data on which the posterior distribution is conditioned.
Modelling the colours rather than the flux itself allows us to avoid also constraining
the normalisation of the template. This posterior is then given by marginalising over

the discrete choice of template ¢, giving

P(z| C,mg) =Y P(z,t| C,mp)

! (4.3)
x> P(C |z t)P(z,t | mg).

Developing the posterior in this way involves making the assumption that the likeli-
hood depends only on the colours, and not on the reference band magnitude. This

magnitude mg appears only in the prior, allowing the redshift and type distributions
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to be magnitude dependent, and is assumed to have a negligible uncertainty as its
true value is not marginalised over. Benitez (2000) specified a Gaussian likelihood
for the colours. This is also an approximation, even if the fluxes have Gaussian un-
certainties. Nevertheless, flux uncertainties are typically sufficiently small that these

approximations are valid.

This choice of likelihood is also not integral to a Bayesian approach to template-
based photometric redshifts. The large number of photons observed for a detected
source suggest predominantly Gaussian statistics. However, non-Gaussian flux errors
can arise from difficulties in performing photometry on crowded fields, an effect that
can be successfully accounted for in photometric redshift applications by modifying the
likelihood (e.g., Wittman et al., 2007).

Bayesian methods have several advantages over maximum likelihood approaches.
Firstly, as described above, it is important the uncertainties arising from photometric
redshifts are rigorously accounted for an are able to be propagated throughout the
analysis. The posterior distributions resulting from Bayesian methods provide a way to
quantify these uncertainties more generally than simply specifying a variance. Secondly,
marginalising over templates as in equation 4.3 provides a way of incorporating the

uncertainty over this choice into the final posterior.

Finally, the prior distributions present in Bayesian methods provide a mechanism
by which astrophysical knowledge about the properties of galaxies can be included. For
example, it can be specified that brighter galaxies are more likely to be low redshift than
high redshift, and the very high redshift galaxies are rare in general. Including this prior
has been found to reduce the number of catastrophic outliers compared to a maximum-
likelihood approach (Benitez, 2000). Placing priors over other observable aspects of
the source have also been considered. For example, using a surface brightness prior
was found to reduce the number of outliers, the bias and the scatter of photometric
redshifts applied to both ground-based and space-based observations of sources at
redshifts 0.4 < z < 1.3 (Stabenau et al., 2008).

The use of priors within a Bayesian inference is discussed more generally in
section 3.1.7. In general, priors can be specified in a variety of ways, such as to express
ignorance about a quantity as in the case of non-informative priors, or for mathematical
convenience as in the case of conjugate priors. It should be noted, however, that the
priors that are present in these Bayesian photometric redshift methods often directly
correspond to physically meaningful quantities, e.g., the redshift distribution of the

population.

The accuracy of template-based photometric redshift methods depends on the
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templates. If the intrinsic spectra of the sources of interest are poorly-represented
by the template set, the inferred redshift will inevitably be of low accuracy due to
model misspecification. It is therefore important that the templates in the template
set represent the types of sources being observed and are numerous enough to densely

cover the range of possible galaxy types.

Template sets can be derived either from observations of real sources such as the
commonly used CCW (Coleman et al., 1980) and Kinney et al. (1996) templates, or
predicted by star-formation models (Brammer et al., 2008). It is also common practice
to interpolate between templates in order to increase the coverage of the template
set (Sanchez et al., 2014).

Methods have also been developed to address the potential mismatch between
galaxy spectra and templates. The Zurich Extragalactic Bayesian Redshift Analyzer (ZE-
BRA, Feldmann et al., 2006) uses a set of training galaxies with known redshifts in
in addition to their photometry in order to modify templates to be more represen-
tative using a regularised y? minimisation method. The photometric redshift code
EAZY (Brammer et al., 2008) also includes a template error function that accounts
for template mismatch by iteratively fitting the redshifts and determining the flux

residuals.

The work presented in chapter 6 is a generalisation of template-based photometric

redshift methods to the case of blended sources.

4.1.2 Empirical Methods

Unlike template-based photometric redshift methods where the relationship between
fluxes and redshift is specified a priori through a template set, empirical methods
determine this relationship from data alone. Given a training set of sources with both
photometry and known spectroscopic redshifts, these methods fit very flexible functions

that map between the fluxes and redshifts.

Empirical photometric redshift methods have a history almost as long as template-
based methods. The first empirical photometric redshifts were performed by Connolly
et al. (1995), who used linear regression to predict redshifts from four ground-based
optical bands using 254 spectroscopically observed galaxies. The predicted redshift

was then given by the typical linear regression formula
2=p07X, (4.4)

where 3 is a vector of coefficients to be determined, and X is a vector of features,
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i.e., functions of the data. Connolly et al. (1995) first tested linear features, where
Xpi1 = my, i.e., elements of the feature vector are simply the observed magnitudes.
The first element of the feature vector is given by a constant term X; = 1, so that the
corresponding coefficient 3; acts as an intercept. This approach resulted in an RMS
error of o, = 0.057. Connolly et al. (1995) also tested quadratic features where, in
addition to the previous linear features, elements of X are products of two magnitudes

m;m;. In this case, the RMS error reduced to o, = 0.047, a reduction of ~ 20%.

While empirical methods have a long history, their usage has grown significantly
with the development and introduction of machine learning techniques. The distinction
between machine learning and other empirical methods is somewhat blurred, though
modern machine learning methods such as neural networks (e.g., LeCun et al., 2012)
tend to have many more free parameters than the linear regression model above, and
so must be fitted with a considerably larger training dataset. However, the benefit
to undergoing this extra effort is that the resulting model is more flexible, and thus
more able to capture complex non-linear relationships between the fluxes and redshifts.

Section 3.2 introduces machine learning methods more generally.

The first application of modern machine learning techniques to photometric
redshift estimation was by Firth et al. (2003) who trained neural networks on 10%
SDSS (Stoughton et al., 2002) galaxies at redshifts z < 0.35, achieving an RMS red-
shift error of o, =~ 0.021. Neural networks consist of a series of layers, each comprising
many nodes. The values of the nodes in the first layer are set to the input data to the
network. The nodes in subsequent layers are then set to the result of passing a linear
combination of the previous layer’s nodes through a non-linear function, known as the

activation function f(...). Thus, the value of node j in layer n is given by

Tjn = f (Z wi,mxi,m> s (45)

where z; ., is node 7 in the previous layer m and w; ,, is the corresponding weight. The
nodes in the final layer of the network correspond to the output. The final layer in
the case of photometric redshift estimation therefore generally consists of only a single
node for the redshift!.

Training a neural network involves finding the optimum values for the weights.
This is done by specifying a loss function which quantifies the distance between the

prediction of the network and the spectroscopic ground truth. The weights can then be

"'While a single output network is most common, some neural network approaches to photometric
redshifts output several values parametrising a PDF in redshift space (e.g., D’Isanto and Polsterer,
2018)
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optimised iteratively using gradient-based optimisation methods; the process of recur-
sively applying chain rule to obtain the derivative of each weight w.r.t. the loss function
is known as backpropagation. Gradient-based optimisation methods are discussed in

more detail in section 3.2.3.

The neural network-based photometric redshift codes ANNz (Collister and La-
hav, 2004) and its successor ANNz2 (Sadeh et al., 2016) are now widely used in cosm-
logical galaxy surveys such as the Dark Energy Survey (DES, Sinchez et al., 2014;
Gschwend et al., 2018) and the Kilo-Degree Survey (KiDS, Bilicki et al., 2018). A vari-
ety of other machine learning methods have also been used for estimating photometric
redshifts such as random forests (e.g., Carliles et al., 2010; Carrasco Kind and Brunner,
2013), boosted decision trees (e.g., Gerdes et al., 2010), support vector machines (e.g.,
Wadadekar, 2005) and Gaussian processes (e.g., Way and Srivastava, 2006; Almosallam
et al., 2016).

An advantage of machine learning approaches is the ease with which they can
be extended to include extra input features. These features can simply be included
as extra inputs, provided that they are also available for the training set sources. For
example, Collister and Lahav (2004) investigated using Petrosian radii as inputs to
their model. The Petrosian radius (e.g., Blanton et al., 2001) is defined by measuring
the average surface brightness of a galaxy within an annulus of a particular radius.
The ratio of this value with the average surface brightness at smaller radii defines the
Petrosian ratio, with the Petrosian radius being the radius at which this ratio equals a
specified value. By including the 50% and 90% Petrosian radii of sources as additional
inputs, Collister and Lahav (2004) found that the RMS error was reduced by = 3%.

Soo et al. (2018) investigated the effect of including a variety of morphological
parameters as input. They found that the fraction of outliers was reduced by 14%
when utilising photometric data with five optical bands, and that the results for two
photometric bands with morphological information were comparable to those with five
photometric bands alone. Finally, machine learning methods designed for image analy-
sis, such as convolutional neural networks (CNNs) can be used to construct photometric
redshift methods that utilise entire galaxy images as input, rather than reducing this

information to a vector of fluxes (e.g., D’Isanto and Polsterer, 2018).

Another benefit to machine learning methods is that any systematic effects in
the photometry that is present in both the training and test sets is learnt as part of
the training process. As a result, these effects are automatically accounted for in the

final redshift estimates.

The data-driven approach of machine learning methods avoids the potential pit-
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falls of template mismatch, but instead relies on the training set being representative.
If this is the case, the accuracy of these methods can be greater than that of than
template-based methods (Hildebrandt et al., 2010) In practice however, training sets
are often shallower than the photometric sample. Redshift estimates of galaxies not
represented by the training data are much less reliable (Beck et al., 2017). The common
case where spectroscopic training data is shallower than the photometry can lead to
biases where the redshifts of high redshift galaxies are underestimated (Rivera et al.,
2018). In summary, machine learning methods are more effective at interpolation than

at extrapolation.

As described above, an accurate understanding of uncertainties in an important
aspect of photometric redshift methods, and these uncertainties are represented most
generally by PDFs. Many machine learning methods are able to produce PDFs as their
output. For example, ANNz2 (Sadeh et al., 2016) estimates the uncertainty due to
photometry uncertainties by using K-nearest-neighbours to identify the most similar
counterparts to the data in the training set and uses those to estimate redshift uncer-
tainties. These are then averaged over an ensemble of models with different hyper-
parameters. Similar ensemble approaches can also be used between different decision
trees in a random forest (Carrasco Kind and Brunner, 2013). Some machine learn-
ing methods, such as Gaussian process (e.g., Way and Srivastava, 2006; Almosallam
et al., 2016) are intrinsically probabilistic and so provide PDFs without modification.
Machine learning methods such as neural networks can also be trained to output pa-
rameters describing a PDF in the form of a Gaussian mixture model (e.g., D’Isanto

and Polsterer, 2018), an approach known as mizture density networks (Bishop, 1994).

It is worth noting that despite drawing comparisons between template-based
and empirical methods, these methods are not always so distinct in practice. For
instance, the priors of Bayesian methods typically include a set of parameters that are
fitted using a set of training data (e.g., Benitez, 2000; Schmidt and Thorman, 2013,
also see section 6.1.6). In addition, recent applications of photometric redshifts have
used hybrid methods that combine a template-based approach with machine learning
methods (e.g., Speagle and Eisenstein, 2017; Leistedt et al., 2018; Duncan et al., 2018).

The work presented in chapter 7 is a machine-learning based photometric redshift
method designed for inferring the redshifts of blended sources, but trained using a

training set of unblended sources.
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4.2 Inferring Redshift Distributions

The methods described above are designed for inferring the redshift of a single source.
However, as detailed in section 2.3.3, another necessary input for doing cosmology
with photometric galaxy surveys is the redshift distribution of the entire population
of sources in each tomographic bin. We therefore need photometric redshift methods

designed for this purpose.

A simple method for obtaining these distributions is stacking, where the redshift
posterior distributions of each source are summed together (e.g., Bonnett et al., 2016),
ie.,

n(z) = Z P(z | F}) (4.6)

where Fj is the flux vector of source i. However, estimating redshift distributions in this
way doesn’t provide a way to obtain uncertainties on the distributions, and can result
in a poor recovery of the true distribution; see Leistedt et al. (2016) for a discussion of

this problem.

Another type of photometric redshift method designed for inferring redshift dis-
tributions is clustering redshifts, introduced by Newman (2008). This method can be
seen as somewhat distinct from both template-based and empirical photometric red-
shift methods as it does not utilise the colours of the source. Instead, the redshift
distribution of the population is determined completely by its spatial distribution. By
cross-correlating the positions of the target sources with another population of sources
with known redshifts, the redshift distribution of the target sources can be be inferred

statistically.

Various authors (e.g., Schmidt et al., 2013; Ménard et al., 2013; Rahman et al.,
2016; Scottez et al., 2018; Bates et al., 2019) have further developed the method and
have applied it on real data. McLeod et al. (2017) presented a method to jointly con-
strain clustering redshifts and cosmological parameters self-consistently. Computing
clustering redshifts requires constraints or assumptions on the evolution of galaxy bias.
To model this, Rau et al. (2019) developed a hierarchical Gaussian process model to

jointly infer clustering redshifts and bias parameters.

Another recent method for inferring redshift distributions is known as DIR cal-
ibration (e.g., Hildebrandt et al., 2017) First developed by Lima et al. (2008), this is
a reweighting method that modifies spectroscopic redshift distributions so that their
photometric properties match those of the target population. This is done using a
nearest-neighbours method that estimates the ratio of the density in magnitude-space

of the spectroscopic objects with the corresponding magnitude space of the target popu-
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lation. This ratio can then be used to reweight the spectroscopic objects. The resulting
reweighted redshift distribution is then an estimate of the redshift distribution of the

target population.

The DIR calibration method was used by the Kilo Degree Survey (KiDS) for in-
ferring photometric redshifts in their cosmological weak lensing analysis (KiDS Hilde-
brandt et al., 2017). The template-based BPZ method (Benitez, 2000) was first used
to separate sources into tomographic bins. The redshift distributions of these bins were
then inferred using DIR. This is in contrast to the Dark Energy Survey (DES) which
utilised the stacking method described above for their year-1 analysis (Hoyle et al.,
2018), though clustering redshifts were also utilised for validation purposes. Recent
work by DES (Buchs et al., 2019) describes a method based on self-organising maps to
combine information from three distinct datasets; the target wide photometric dataset,
a small dataset with well constrained redshifts typically obtained from spectroscopy,
and a deep photometric sample. On simulated year-3 data, this method improved the

error on the mean redshift of each tomographic bin by 60% over the year-1 analysis.

4.2.1 Bayesian hierarchical approach

A Bayesian hierarchical approach to inferring redshift distributions from photometric
data was developed by Leistedt et al. (2016). Like the stacking method described
above, this can be seen as a generalisation of existing template-based photometric red-
shift methods for single sources. However, in contrast to stacking, using a Bayesian
hierarchical model is statistically rigorous and able to provide a full posterior distri-
bution over redshift distributions for propagating uncertainties. This method works as

follows.

While other Bayesian template-based methods such as BPZ (Benitez, 2000) use
informative priors, Leistedt et al. (2016) take a non-parametric approach, specifying

the joint redshift-magnitude-template prior as a three-dimensional histogram, i.e.,

e T
j,max J,min k,max k,min (47)

P(tazvm | {fzgk}) = Z

ijk

®(Z - Zj,min)®<zj,min - Z)@(m - mk,min)G(mk,min - m) y
where ¢ is the Kronecker delta, ©(...) is the Heaviside step function, and f;;; is the
coefficient that parametrises the height of bin ijk.

The goal of the inference is then to infer the joint distribution over the parameters

{z4,t5,my} for each galaxy g, and the histogram coefficients { f;;x}, given the flux of
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each galaxy {F,}. The joint posterior is therefore given by

P({zg,tg,mg}, {fizr} | {Fy}) < P({fiji}) HP(FQ | 2g,tg,mg) P(2g, tg, myg | {fiji})

(4.8)
where P(Fy | z4,t5,my) is the standard template-based likelihood, P(z,, tg, mg | { fiji})
is given by equation 4.7, and the coefficient prior P({fi;r}) is given by a Dirichlet
distribution; this choice of prior is discussed in more detail in section 8.1.3. Leistedt
et al. (2016) describe an efficient Gibbs sampling method to draw samples from this
joint distribution by describing sources in terms of the histogram bin they fall in,
rather than their continuous properties directly. The likelihood distribution for the
number of sources in each bin given their heights is then a multinomial distribution.
The conjugate prior of this likelihood function is the Dirichlet distribution, allowing

the conditional distributions to be sampled without rejection.

An extension to this approach was presented by Sanchez and Bernstein (2019).
This uses a similar Bayesian hierarchical model to combine a template-based photo-
metric redshift approach with the clustering redshifts discussed above. This is done
by modelling the spatial distribution of galaxies as a doubly-stochastic Poisson pro-
cess where galaxies are Poisson samples from an underlying density field that is itself
stochastic. Gibbs sampling of the resulting posterior is made tractable by assuming
redshift to be discrete and the stochastic density fields in each redshift slice to be inde-
pendent. Alarcon et al. (2019) then apply an extension of this model to a set of N-body
simulations. This is done by modelling the clustering probability using a kernel density

estimator and allowing the galaxy bias? to be redshift dependent.

The work presented in chapter 8 is a similar Bayesian hierarchical approach to
inferring redshift distributions of populations of blended sources. However, rather
than using a template-based approach, our method uses a training set, generalising the

Gaussian mixture model-based method for individual sources we present in chapter 7.

2The galaxy bias relates the underlying matter density to the density of the galaxies themselves.
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As discussed in section 2.3.5, future photometric galaxy surveys such as the Large
Synoptic Survey Telescope (LSST, Ivezié et al., 2019) will, among various other science
goals, constrain cosmological parameters to high precision. A factor contributing to
this increased precision over previous surveys is the photometric depth of LSST, which

will observe to a depth of m, < 27 (LSST Science Collaboration et al., 2009).

The result of this increase in depth is an increase in the number density of sources
observed compared to other wide area surveys, as sources that were previously too faint
can be present in the sample. To illustrate this, we can look at neg, a weak lensing-
specific measure of the effective number density of sources. This value was defined by
Albrecht et al. (2006) to be the number density of sources with perfectly measured
shear that would correspond to the same level of shear noise as the true sample of
sources, the shapes of which are not measured perfectly.

The effective number density of sources n.g was estimated by Chang et al.
(2013) for LSST to be nes ~ 31 — 36 arcmin™2, compared to nez ~ 17 arcmin™2
for CFHTLens (Heymans et al., 2012), an existing weak lensing survey. This sig-
nificant increase in the number density of sources, combined with an area coverage of
~ 18000 deg?, drives the increase in precision of cosmological parameter constraints
expected for future surveys like LSST. However, since LSST is a ground-based survey,

this also introduces a new problem that was negligible previously, known as blending.

Blending refers to observed sources overlapping to some degree when projected
onto the sky. Examples of blended sources identified in the GAMA blended sources
catalogue (Holwerda et al., 2015) are shown in Figure 5.1. The extent to which this
overlap occurs impacts the effect it has on cosmological measurements. When two
sources are overlapped only slightly with their centres otherwise well separated, blend-

ing can be easily identified. In contrast, this overlap can also be to such a degree that
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Figure 5.1: Four examples of blended sources identified by the GAMA blended sources
catalogue (Holwerda et al., 2015). Images are taken in the SDSS i-band (Stoughton
et al., 2002), and the red numbers are their corresponding GAMA survey (Baldry et al.,
2017) ID-numbers. Figure reproduced with permission from Holwerda et al. (2015).

blending cannot be successfully identified and thus the source is detected as a single
source only. This is known as ambiguous blending (Dawson et al., 2016). Throughout
this thesis, we refer to the underlying physical galaxies comprising a blended source as

constituents®.

The increased number density of sources in future cosmological galaxy surveys
such as LSST means that blending will impact a significant proportion of sources.
Dawson and Schneider (2014) estimate that 45 — 55% of sources will be blended to

Tt is common in deblending literature to refer to the physical galaxies in a blended sources as
components. However, chapters 7 and 8 make use of Gaussian mixture models, where the individual
Gaussian distributions are also typically referred to as components. To avoid confusion, we thus decide
to follow the latter usage of the term, and use constituent to refer to blended galaxies instead.
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some degree in LSST, with 15 — 20% of all sources being ambiguous blends. Blending
will therefore have a significant effect on inferences of cosmological parameters. For
example, incorrectly identifying multiple blended sources as a single source can have an
impact on shape measurements. Dawson et al. (2016) estimate that ambiguous blends
will result in a &~ 14% increase in shear noise. The superposition of fluxes from blended
sources is also expected to increase the rate of catastrophic failures of photometric
redshifts (Mandelbaum, 2018). Inferring photometric redshifts from blended sources is

the subject of the research work of this thesis.

As a result of the large effect caused by blended sources, several methods to
separate these sources into their individual constituents have been developed. These
deblending methods are discussed in section 5.1. Section 5.2 then describes some diffi-

culties with deblending that we aim to address in this thesis.

5.1 Deblending Methods

This section details a chronological development of deblending methods utilised by

cosmological galaxy surveys.

5.1.1 Automatic source extraction

In order to efficiently make use of the large datasets obtained from cosmological
galaxy surveys, automated techniques for identifying and extracting measurements
from sources are necessary. COSMOS deblender (Beard et al., 1990) and Source Ex-
tractor (SExtractor, Bertin and Arnouts, 1996) are two similar methods for doing this.

The latter is very commonly used throughout astronomy; we detail this method below.

Firstly, the background level of the sky is estimated. This is done through a
process of sigma clipping, where pixels are iteratively removed until the values of all
remaining pixels are within three standard deviations of the median. Then, if the
final standard deviation is within 20% of its original value, the background level is
taken to be the mean of the remaining pixels. If not, the background level is given
by 2.5 X median — 1.5 X mean. The values in this process were chosen as they were
found to give accurate results on simulated test data (Bertin and Arnouts, 1996). This
process is repeated over many regions of the image independently, and the results
linearly interpolated between to construct a background map that estimates the level

of background flux in each pixel.
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SExtractor then uses a multiple-thresholding technique to identify and separate
sources. The image is thresholded at several different levels, and contiguous regions of
pixels above the threshold are noted at each level. As the threshold is increases, regions
of pixels that were contiguous become separated by pixels that fall below the new
threshold. If the flux contained in these separated regions is over a specified fraction
of the total flux within the initially contiguous region, these regions are separated
into distinct subregions. If this fraction is too small, the thresholding-and-splitting

continues until this condition is met.

In this way, all pixels within the image are assigned to either the background or
a subregion. These regions must then be assembled into separated sources. To do this,
each subregion is fitted with a two-dimensional Gaussian profile. This profile is then

used to statistically assign pixels to sources.

While this method is an efficient way to identify and extract sources from an
image automatically, it is not well suited to deblending highly overlapping sources.
The reason for this is that the entire flux of each pixel is assigned to a single source
only. This is a poor model when sources are highly-overlapping, as the flux from each

pixel is a combination of all sources in that direction on the sky.

5.1.2 Fractional splitting of pixel fluxes

As described above, a deblending method that separates sources by assigning the entire
flux of each pixel to a single source is not a good model for highly-overlapping fields.
To combat this, several methods (e.g., Weir et al., 1995; Fukugita et al., 1995) have
been developed which split the flux of each pixel between several sources. One of these
methods is the SDSS deblender (Lupton, 2005), a method used to deblend images from
the Sloan Digital Sky Survey (SDSS, Stoughton et al., 2002).

The SDSS deblender works by constructing galaxy profile templates from images
by assuming a symmetry ansatz. A list of peak pixels is first identified in the image,
i.e., maxima pixels surrounded by pixels of a lower flux. This list is then reduced based
on a series of criteria, such as a specified minimum distance between peaks. Peaks
of flux F, should also not be connected by a contiguous region of pixels with fluxes

greater than F, — 3B, where B is the background flux.

Given a peak r corresponding to a single constituent galaxy, a profile template
T, ; is then constructed over pixels indexed by ¢. This is done by considering pairs of

pixels ¢ and j with fluxes F; and F} positioned symmetrically relative to the peak, and
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setting
Tr,i = Tr,j = min(E-, F}) . (51)

Doing this for all pixels allows the construction of a symmetric template 7).; without

a priori specifying a particular profile.

The model for the flux F; of pixel 7 is then given by the weighted sum over

templates, i.e.,
F, ~ Zerm- : (5.2)

where the weights are found by minimising the sum of the squared errors over pixels

E, given by
E=Y" <F - wTTm) : (5.3)

The total flux is then fractionally split between all constituents r according to the
weights w,, with the total flux being conserved. Thus, the flux corresponding to con-

stituent r in pixel ¢ is given by

rTri
Foi= Fre"

. 5.4
} Zr/ wr’Tr’,i ( )

In order to apply this deblending method to multi-band data, the peak pixels are
constrained to be in the same position over all bands. However, the templates in each
band are constructed independently of the other bands, meaning that the method is
fundamentally monochromatic. Deblending methods that utilise the colour information

across multiple bands are discussed in the next section.

5.1.3 Going beyond monochromatic deblending

Cosmological galaxy surveys observe sources in a variety of wavelength bands. The
resulting poly-chromatic data can potentially be very informative for the purpose of
deblending, as two galaxies with very different spectra can be identified from their
colours, even if they are closely overlapping. One deblending method which takes ac-
count of this information is MuSCADeT (Joseph et al., 2016). This method constructs
non-parametric models of galaxy profiles in a wavelet basis, enforcing that the resulting

solution is sparse in this basis to reduce degeneracies and ensure convergence.

An extension to the MuSCADeT method designed for LSST (Ivezi¢ et al., 2019)
observations is scarlet (Melchior et al., 2018). This method also allows non-parametric

fits to the colours of each constituent, rather than specifying them a priori as in MuS-
CADeT. This method works as follows.
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We label the matrix of pixel fluxes of a multi-band survey as M € R®*Y  where
B is the number of filter bands in the survey, each image consists of N pixels. This is

modelled as a matrix product over k constituents, given be
M =AS, (5.5)

where each column in A € RE** is the photometric amplitude of a constituent &, i.e.,
the flux that would be observed if this constituent were not blended, and each row
in § € R*¥ represents the spatial distribution of a constituent k. Both matrices A
and S are constrained to have all elements positive; equation 5.5 thus represents a

non-negative matrixz factorisation, a common dimensionality-reduction technique (e.g.,
Hoyer, 2004).

Like the SDSS deblender described in section 5.1.2, additional heuristic con-
straints are placed on the values of A and S. Firstly, a symmetry constraint is placed
on pairs of pixels ¢ and j surrounding the peak of the profile so that Si; = S ;. Sec-
ondly, the spatial distribution is constrained so that the resulting profile monotonically
decreases in flux radially outwards from the peak. Finally, penalties are imposed on

the norms of A and S to encourage sparse solutions.

The matrix factorisation is computed by minimising, subject to the constraints
above, the square of the Frobenius norm between the model M and the observed pixels
Y. ie,

f(A,8) = (|Y — AS|»)? (5.6)

DN | —

where the Frobenius norm is defined as

1X][2 = /ZZ!X % (5.7)

However, these constraints are non-differentiable, presenting a problem for typical
constrained optimisation methods. To counter this, scarlet utilises prozimal op-
erators, a method for performing constrained optimisation of a function f(x) with
non-differentiable constraints. If these constraints g(x) are defined such that the opti-
misation target is f(x) + g(x), the proximal operator, parametrised with the step-size

A, is given by
) 1
prox,, (@) = argmm{g< )+ g5l — ull) } . (5.8)

Since the proximal operators of many types of non-differentiable constraints can be
evaluated analytically, formulating in the problem in this way side-steps the issue of

non-differentiability. The value of & can then be updated iteratively using a gradient
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descent step, given at iteration i + 1 by
i1 _ i i
z'"" = prox, (z' — AV f(z)). (5.9)

The result of this optimisation procedure converges to the value of @ that minimises

the function subject to the constraints, as desired.

Alternative methods for poly-chromatic deblending include machine learning-
based methods such as convolutional neural networks (e.g., Reiman and Goéhre, 2019;
Burke et al., 2019) which are designed for image processing tasks. These methods learn
to deblend images by using a training set of blended sources and the corresponding
constituent images. These training sets can be constructed from a set of unblended
galaxy images by artificially combining them. Machine learning methods are discussed

in more detail in section 3.2.

5.2 Difficulties with Deblending

The deblending methods described above are commonly used in cosmological galaxy
surveys to analyse blended sources. One advantage of these methods is the ease with
which they can be incorporated into existing data analysis pipelines. Once a source
has been deblended into several images, each of these constituents can be analysed in

the same way as any other galaxy image.

However, analysing deblended sources in this way presents a problem for prop-
agating uncertainties. Once the constituent images are separated, analysing them
independently inevitably means that correlations between their fluxes are neglected.
Put another way, accounting for these correlations necessitates utilising analysis meth-
ods specifically designed for blended sources, even if these sources have been deblended
first. Neglecting these correlations could be problematic since, as the total flux of the
blended source is well constrained by observations, we expect a potentially large cor-
relation between the fluxes of each constituent. This is because the deblended flux in
one constituent can be traded for another constituent while remaining consistent with
the data. In addition, obtaining accurate uncertainties from these deblending methods
can be difficult (see, e.g., Melchior et al., 2018).

The photometric redshift methods described in the research work of this the-
sis use an alternative approach. Rather than deblending sources and analysing each
constituent separately, the analysis is performed on the blended data directly. In the

case of photometric redshifts, these data are fluxes obtained from aperture photometry,
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though in principle this same approach could utilise images of source themselves by con-
structing a forward model of these images. This is discussed in more detail in chapter 9.
While this approach requires modifications to existing photometric redshift algorithms,
it provides a rigorous statistical method for accounting for all uncertainties, including
correlations between the constituents. Accounting for these uncertainties properly is
important for ensuring that the final posterior distributions over cosmological param-

eters are an accurate representation of our state of knowledge.
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Chapter 6

Bayesian Photometric Redshifts of

Blended Sources

This chapter is heavily based on work from Jones and Heavens (2019a).

The deblending methods described in chapter 5 that produce a set of component-
separated maps are useful for later applying existing photometric redshift methods de-
signed for individual components to. However, as described in section 5.2, splitting the
analysis in this way can lose uncertainty information, such as the correlation between
deblending parameters and the parameters in a subsequent analysis. A photometric
redshift method that jointly constrains parameters directly from blended data provides

a self-consistent, principled way to characterise and propagate this information.

In this chapter, we present a method that generalises the Benitez (2000) Bayesian
photometric redshift (BPZ) method to the case of blended observations. This is a
template-based method where the task of determining the component redshifts is cast
as a Bayesian parameter inference problem. The product of such an inference is a
joint posterior distribution of the redshift and magnitude of each component in the
blended source. This distribution characterises the complete statistical uncertainty in
the result in a way that can be propagated through the rest of the cosmological analysis.
Determining the number of components in an observed source, i.e., whether or not it
is blended, is treated as a model comparison problem. In this way, our method allows

the identification of blended sources from aperture photometry alone.

A summary of our notation throughout this chapter is provided in Table 7.1. For
parameters defined for each constituent in a source, we index over constituent using
greek letters and indicate the collection of these using sets, i.e., {0} = {0,,60s,...0n}.

Vector quantities defined for each filter band are in bold q, and observed quantities
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are denoted with a hat §g. Where necessary, quantities defined for a specific number
of constituents are distinguished by a subscript number in brackets, i.e., ¢V is the

definition of ¢ for a single constituent.

This chapter is organised as follows. In section 6.1, we describe our formalism for
estimating redshifts as a parameter inference problem, describing its application to par-
tially blended systems in section 6.2. In section 6.3, we discuss our inference methods,
detailing how we use model comparison to identify blended objects in section 6.3.1. In
section 6.4, we test our method on simulated observations. Section 6.5 describes a test
of our method on the Galaxy And Mass Assembly survey (GAMA, Baldry et al., 2017)
blended sources catalogue (Holwerda et al., 2015), for which spectroscopic redshifts are

available. We conclude in section 6.6.

6.1 Blended photo-z formalism

6.1.1 Flux model

In the same way as other template-based photometric redshift methods, we assume
that each observed constituent is well represented by one of a set of T' templates.
Each template ¢ is defined by its rest-frame spectral flux density F;(Aem) as a function
of the emitted wavelength A.,. This template is redshifted and observed through a
broadband filter b, the response of which is denoted W, (Aops) as a function of observed

wavelength Agps.

The flux of template ¢, at redshift z and observed in band b is then given by

1 e A
T, = —— F | — A)AdA 1
o) = e [ (152 ) M, 61
where ¢*B = 3631 Jy is the zero-point of the AB-magnitude system and the normal-

oo Wi(A)
0 A

and the conversion between magnitudes and fluxes defined in the way is given by

d\. By including ¢*B, our fluxes are dimensionless throughout,

isation () =

F = 107%™ This template is then scaled by a normalisation a so that the flux of an

object modelled with template ¢, at a redshift z and observed in band b is given by
Ft(,llj) (Z, a) = alyy (z) . (6.2)

We model the flux of blended sources as a linear combination of individual constituent
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Table 6.1: A summary of the notation used throughout this chapter.
Symbol Description
N Number of constituents
T Number of templates
B Number of filter bands
Zo Redshift of constituent o
mM0,0 Reference band magnitude of constituent «
ta Template index of constituent o

00
Op

Ft(,llz) (Z’ mo)

Set of redshifts of each constituent

Set of reference band magnitudes of each constituent
Set of template indices of each constituent

Index over filter bands

Index of reference band filter

Observed flux in reference band

Vector of observed fluxes, excluding the reference band
Error on the reference band flux

Error on the flux in band b

Model flux for a single constituent in band b, at redshift z,
with reference band magnitude mg and templates ¢

F {(i\}[)b({z}, {mo}) Model flux for N-constituent blended source in band b, at

S (=)

redshifts {2}, with reference band magnitudes {m,} and tem-
plates {t}

Set of cosmological parameters §2,,,, Q5 and H

Combination of up to N-point correlation functions describ-
ing the extra probability of N galaxies jointly sitting at red-
shifts {z} due to clustering
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fluxes. For a blend of N constituents, the flux observed in band b is given by

{t}b ({=}.{a}) Zaaﬂa,b Za) ) (6.3)

where a, is the normalisation for constituent «. For the reasons specified in sec-
tion 6.1.3, we sample mg ,, the apparent magnitude of each constituent in the reference
band by rather than this normalisation directly. The normalisation a, is then defined
such that the model flux in the reference band is equal to mg,. Thus, the model flux

is given by
1070.4177,(%CK

F{(i\}[,)b({z}v {mo}) = Z mﬂa,b (2a) - (6.4)

a=1

6.1.2 Fully-blended posterior

For a fixed number of constituents, photometric redshift determination is a parameter
inference problem; we wish to infer the joint posterior distribution of the redshifts
and apparent magnitudes of each constituent given a data vector D of B broadband
fluxes. This data vector is split into two parts D = (F , ]3’0), where Fy is the flux of
the reference band and F' is the vector of the remaining B — 1 fluxes. This is done
since the normalisation of each constituent is defined in the reference band, and it is

the flux of this band on which the priors are conditioned.

Following BPZ (Benitez, 2000), we set the flux of non-detections to zero. Like-
wise, bands that are not observed are given a flux of zero, with the corresponding error
set to an extremely large value. As discussed in section 6.1.4, we assume that sources
are selected using a magnitude limit on a single selection band. We therefore require

that the source is detected in this band, by definition.

We start by writing our desired posterior as a marginalisation over templates for
each constituent. For N constituents, we marginalise over sets of N template indices
{t}; = {ta,ts...tn};. Each template index can take a value 1 < ¢ < T" and constituents

may share the same template, so there are TV of these sets to marginalise over, giving
TN

P({Z}a {mO} ‘ F7FO)X7 N) :ZP<{Z}7 {t}zv {mO} ’ F: F07X7N) : (65)
i=1

We have emphasised that our posterior is defined for a fixed number of con-
stituents by conditioning on N. In the general case where this number is unknown a

priori, it can be inferred from the data; this is discussed in section 6.3.1. We have also
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made the dependence on cosmological parameters, which are required for converting
between distance and redshift, explicit in the above expression. These parameters are

denoted by x = {Qum, Qa, Ho} for brevity. Applying Bayes rule, the posterior becomes

TN
P({=} Amo} | B Foox. N) o D7 P(F, By | {2}, {8 dmo}, N ) P({=h {8} {mo} | . )
i=1
(6.6)
Since only the prior is dependent on cosmological parameters, we have removed the
conditioning on y from the likelihood. We then factorise the likelihood so that it is

split in the same way as the data vector, giving

p<{2}7{m0} ’ ﬁ‘jﬁo,X,N> x Z P(F ‘ {Z}v{t}ia{m0}7N> X (6.7)

P(FO ‘ {mo), N)P({z}, {1}, fmo) ‘ X, N) .

Since the magnitude of each constituent in the reference band is a sampled parameter
in the posterior, our model for the reference band flux is simply the sum of these after
converting from magnitudes to fluxes. As a result, the conditioning on {z} and {t}; in
the reference band likelihood is unnecessary and so has been removed. We assume that
the error on the observed reference band flux is normally distributed with variance o3.

Thus, the reference band likelihood is given by

~ 2
L[ (s )

exp )
\/2mod 20

P(FO ] {mo}, N> - (6.8)

where my , is the sampled reference band magnitude for constituent a. Similarly, we

use an uncorrelated multivariate Gaussian likelihood for F ,

By — FY (=), fmo)))
{z},{t}i,{mo},N> =11 \/Q;TQXP _( b {}1,205 > ’

(6.9)
where F{(g)b({z}, {mo}) is the model flux is specified in equation 6.4 and o7 is the

P(ﬁ’

B

variance on the observed flux in band b.

The use of Gaussian likelihoods is shared with Benitez (2000). Measuring the flux
of an object is effectively an exercise in counting photons; we might therefore expect
the flux to be Poisson distributed. However, in the limit of a large number of counts,

the Poisson distribution can be well approximated by a Normal distribution, justifying
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this choice of likelihood. We also note that this specific choice of likelihood is not
central to the method presented in this chapter. These distributions could be replaced
by a different choice without impacting the rest of the formalism, though the results

and implementation presented throughout assume Gaussian likelihoods as above.

6.1.3 Separating the joint prior

We now develop the prior so that it can be written in terms of individual constituents.
We start by separating the joint prior into a product over priors on redshift, template

and magnitude. Removing unnecessary conditioning, the joint prior becomes

P({z}, {1}, {mo} ] X0 N) — P({z} } {1}, fmo}, v, N)P({t} ‘ {mo), N)P({mo} ‘ N> .
(6.10)

This splitting up of the joint prior is similar to the approach of Benitez (2000).
There are two important differences, however. Firstly, we include a prior on the appar-
ent magnitude of each constituent. This differs from the approach of Benitez (2000)
who considers the magnitude on which the redshift and template priors are conditioned
to be exactly the observed reference band magnitude. The uncertainty in the scaling of
the template is then represented by marginalising over a normalisation factor with an
assumed flat prior. However, while this normalisation is not defined as such, it is acting
to set the apparent magnitude of the source in the reference band. This magnitude is

a quantity about which prior information is known.

The prior information on the apparent magnitude of constituents is particularly
important in the blended case, as we need to consider more than just the overall mag-
nitude of the source. The individual magnitudes of each constituent are necessary for
scaling the model fluxes when predicting the model flux F {(gy)b({z}, {mo}). In addition,
motivated by existing galaxy observations and following Benitez (2000), our redshift
and template priors for each constituent are magnitude-dependent. The individual con-
stituent magnitudes are not directly observed in the blended case, and must therefore

be considered as random variables in our model.

An alternative to sampling the magnitudes directly would be to make the fraction
each constituent contributes the total flux a model parameter. However, the combi-
nation of intrinsic magnitude distributions and survey-specific selection effects would
give the distribution of this fraction a highly complicated shape. Instead, including a
prior on the magnitude of each constituent allows these effects to be easily accounted

for.
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The other important difference in the blended case is that each term in equa-
tion 6.10 is a joint prior over all constituents in the source. The redshift, type and
magnitude properties of individual galaxies are much more well studied than those of
blended sources. To make use of this information, we write these joint priors in terms

of priors on the individual constituents.

Firstly, we assume that the template priors for each constituent are independent,

i.e., galaxy types are not correlated. This allows us to split the template prior as

P<{t} ‘ {mg},N) - ﬁP(ta m07a> . (6.11)

We also make the assumption that the redshift of each constituent depends only
on its own type, not the types of other constituents. The redshifts of each constituent
cannot be assumed to be independent however, as galaxies are distributed in a corre-
lated way. The additional probability of finding N galaxies within a separation r over
a random Poisson process is described by galaxy correlation functions of up to order
N (Peebles, 2001). We denote the combination of correlation functions describing this

extra correlation as §§<N) ({z}), i.e., the excess probability for two galaxies is given by
1+ €2 (20, 25) = 1+ E(rag) (6.12)

where the separation r,3 = |7, — 7| is the comoving distance between constituents
a and f. In the two-constituent case, only the two point correlation function &(r) is
necessary. However for three or more galaxies, higher order correlation functions are

needed, i.e.,

1+ 5>(<3)(Za> 2, 2y) = 14+ E&(rap) +E£(rpy) +E(Tay) + C(Tap, T8y: Tary) 5 (6.13)

where ( (748, 78y, Tay) is the connected three-point galaxy correlation function.

The excess probability term §>(<N)({z}) is defined in the posterior as a function
of the constituent redshifts {z}, though the galaxy correlation function ¢ (and higher
order correlations) are defined in terms of comoving separation . We therefore need to
convert between the redshifts of each constituent and the comoving distance separating
them. The line of sight comoving distance as a function of redshift is given by (e.g.,
Hogg, 1999)

r(z) = Hio /O ) ECZ/,) , (6.14)
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s

Figure 6.1: Diagram showing the setup of the &g calculation. We assume that two
galaxies, represented by grey circles, will be blended if their angular separation is within
0. Given that these two galaxies are blended, the galaxy at a comoving distance 73
will lie within the disc.

where, neglecting radiation density and rewriting 2 = Q,, + (4,

E(z) = /(1423 + (1 = Q) (1L +2)2+ Q4 . (6.15)

We assume a flat Planck! (Planck Collaboration et al., 2016) cosmology throughout;
Qm = 0.3065, Qx = 0.6935 and Hy = 67.9kms™ ' Mpc ™.

However, the comoving distance separating constituents will depend not only on
their redshifts, but also on their angular separation on the sky. As a result, we derive

an effective correlation function &g that takes this angular dependence into account.

Consider the case of a two-constituent blend, as shown in Figure 6.1. The two
constituents are at comoving distances 7, and g from the observer, with separation
Ar =1rg—r,. From the definition of the correlation function, we can write the ratio of
the expected number of galaxies in a region with clustering N¢ and that without N°
as ¢

N
1 + feﬁ - m . (616)

Given that these constituents are blended, there is some maximum angular sepa-

ration 6 between them; we assume this to be small. We therefore compare the expected

number of galaxies in a disc of width dr and radius pmax = 750. The expected number

'We use the TT + lowP + lensing + ext values from Table 4.
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without clustering is given by

Niige = nar6°dr . (6.17)

To find the expected number with clustering, we integrate over the disc using the

volume element of an annulus with radius p, i.e.,

=0

T3
Niee =/ n[l+¢(r)] 2mpdpdr. (6.18)
P

Thus, writing r = \/Ar? + p? | the ratio becomes

rg

1+§eﬁc:%/pzo [1+5(\/W)] pdp. (6.19)

As described below, the effect of clustering is small. As a result, we adopt a

simple power law for the two point correlation function,

r -
&(r) o« (—> : (6.20)
To
Inserting this into equation 6.19 and integrating, the effective correlation function is
given by
2 Ar? 4202\ 172 Ar2\ "2
ot (T, 75) = — | — ) 6.21
eatrori = 5 | (T r ) - (5F) (020

The effect of the strength of clustering evolving with redshift can be included in
this formalism by allowing the parameters ry and v to vary with redshift (e.g., Sottan,
2016). We test the effect of this on the redshift inference by using a toy model where
v = 1.92 is kept constant, while ry linearly varies between ry = 5 Mpch™! at redshift
2z =2and ry = 6 Mpch~! at redshift z = 0.5, with a linear extrapolation outside of this
range. Since the value of &g is non-negligible only when z, ~ z3, this interpolation of

ro is evaluated using z, only.

We then simulated two-constituent blends from a prior with &g included as de-
scribed in section 6.4. Results assuming & = 0 showed negligible differences from
those where the effect was included. At the population level, the RMS scatter defined
in equation 6.45 changed by 0.205% between results including and excluding the cor-
relation function. There were also negligible changes to the results at the individual

source level. A comparison of maximum a posteriori results in each case are shown
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Figure 6.2: Comparison of the maximum a posteriori point estimates including the
effective correlation function and neglecting it, for sources simulated from a prior that
includes it. The lower redshift constituents z, are plotted with closed blue markers, and
2 are plotted with open green markers. Most sources show negligible differences, while
sources that show large differences are multimodal. In these sources, small differences
in the posterior result in point estimates moving between modes of slightly different
heights, illustrating a limitation of point estimates.

in Figure 6.2. The vast majority of sources show negligible differences, and visually
inspecting the posteriors with larger changes shows these are highly multimodal, with
modes of comparable heights. In these cases, small differences in the posteriors result
in larger differences in point estimates as the maximum a posteriori value moves be-
tween modes. This is a limitation of point estimates, and can be mitigated by using

the full information content of the posterior distributions, which do not vary strongly.

Due to the small effect, our results throughout include a simple non-evolving
correlation function with ry = 5Mpch™! and v = 1.77 (Peebles, 2001). A plot of this

is given in Figure 6.3.

Inserting the correlation function allows us to write the joint redshift prior sep-
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Figure 6.3: Plot of the effective correlation function g vs Az = 253 — 2, for various z,
used for the results throughout.

arated by constituent as

P({zH [t} ok x. V) = [1+ €M ({2}) Il Pz

a=1

to, m07a> . (6.22)

We separate the joint magnitude prior by assuming that the only correlation
between the constituent magnitudes is from the effect of a selection function S ({mg})
applied to the total magnitude, as discussed in section 6.1.4. The magnitude prior can

then be written as

P({mo} ] N) - S({m0}> ﬂ P(mo,a) , (6.23)

a=1

Finally, we impose a sorting condition. Without this, the constituents would be
exchangeable, i.e., swapping the constituent labels «, 8 ... would have no effect on the
prediction of the model. As a result, the marginalised posterior for the redshift of a
single constituent would contain contributions from every constituent in the source, as

demonstrated in Figure 6.4.

Imposing a sorting condition on either the magnitudes or the redshifts would
have the same effect of breaking the exchangeability of the constituents. In our tests,
sorting by redshift produced posteriors that recovered the true redshift more success-
fully. However, in high redshift samples, there is an intrinsic colour degeneracy that

can occasionally cause problems with a redshift sorting condition.
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Figure 6.4: By not imposing a sorting condition, the constituents in a source are ex-
changeable. This is demonstrated here for a simple two-constituent blend with redshifts
2o = 0.31, z3 = 1.19 as indicated by the orange lines. As a result of the exchangeabil-
ity, the 2D marginal redshift distribution is symmetric about the dashed black line,
and each 1D posterior contains a distinct peak for each constituent.
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The Lyman break and Balmer break are absorption features occurring at 912A
and 3650A respectively. If photometry over a sufficiently wide wavelength range is
not available, a Lyman break at high redshift can be confused with a Balmer break
at low redshift (e.g., Graham et al., 2018). If the sample is deep enough that these
high redshift solutions are not unlikely a priori, this can cause bimodal posteriors and

contribute to catastrophic outliers (Brimioulle et al., 2008).

Consider the case of a two-constituent blend where the redshift of one constituent
is well constrained but the other has a bimodal posterior. If the well constrained
redshift happens to lie between these two modes, it will appear in the 1D marginal
distributions of each constituent redshift, as whether it is the lower or higher redshift
object depends on which of the two degenerate peaks is being sampled. In this case,
sorting by magnitudes would result in a posterior more representative of the underlying
system, where the redshift of one constituent is well constrained while the other has
two well separated modes. We did not find this to be a problem in our tests however,

and so apply redshift sorting throughout.
The sorting condition A, is imposed by introducing Heaviside step functions ©
into the product over constituents, and is defined as
A,=1 for a=1

(6.24)
= O(¢a—1 — ¢a) otherwise,

where ¢ is either z or my depending on whether redshift or magnitude sorting is used.

In summary, the posterior for the fully-blended case is given by

TN

P({z} tmo} | B, Fox. N ) o 37 PF | {2}, {8} ma), N) P (o

1=

S({m0}> ﬂAaP<za

{mo}) [1+€M ({=1)] x

mo’a) P <m0’a> .

(6.25)

taa mO,a) P (ta

6.1.4 Accounting for selection effects

When considering the total apparent magnitude of a source, we must account for the
selection effect of the survey observing it. Galaxy surveys typically select sources by
imposing cuts on the apparent magnitude they observe m < myy,, since they cannot
observe arbitrarily faint sources. As we are sampling intrinsic magnitudes rather than
observed magnitudes, these selection effects do not impose a hard cut in our magnitude

prior.
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Consider a source with an intrinsic apparent magnitude exactly equal to the sur-
vey magnitude limit. Assuming a normal distribution for the observational error, the
probability of observing this source is 1/2, since its observed apparent magnitude is
equally likely to have been scattered above and below the magnitude cut. However,
since objects in the sample have been detected by definition, we know the source must
have been scattered brighter, effectively breaking the symmetry of the error distribu-
tion. As a result, intrinsic apparent magnitudes around the magnitude limit are less

probable and should be downweighted.

To account for this, we follow the approach described in Leistedt et al. (2016) for
including a selection effect. A discrete variable D representing the fact that an object
was detected is introduced, and each term in the posterior is conditioned on it. We
assume that our selection effect is imposed on a single selection band. Without loss
of generality, we derive the effect by assuming that the selection band is the reference
band by and so only the reference band likelihood is affected. Conditioning on D, the

likelihood can be written using Bayes rule as

P(D ‘ Fo, {mo), N)P(FO ‘ (mo), N)
I P(D ‘ oy, {mo}, N)P(FO {mo},N>dF0 '

P(FO ‘ {mo}, N, D) - (6.26)

The numerator of equation 6.26 is equal to the likelihood defined in equation 6.8
since the probability of detection for an object that we know has been observed is
P<D ‘ Fy, {mo}, N ,) = 1. After integrating over [y, the denominator depends only
on {mp} and represents the effect of the magnitude selection. We therefore choose to

write this term as part of the joint magnitude prior, defining the selection effect

S({mo}) _ /OOO P<D } Fy, fmo), N,)P(Fo

{mo), N) dF, (6.27)

that appears in the posterior in equation 6.25. The selection is a hard cut based on

the observed flux, and so

P(D ’ Fg, {mg}, N,) =1 for F() > 10_0'4m1im
(6.28)
=0 otherwise.

Thus, the integral becomes

o0

S({mo}) - /1 . P(FO ‘ {mo},N> dFy . (6.29)
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Figure 6.5: Plot of the selection function for a typical source from the GAMA blended
sources catalogue used in section 6.5. The dashed line shows the magnitude limit for
this source my, < 19.

Since the reference band likelihood is assumed Gaussian, this can be written in
terms of the normal cumulative distribution function as S ({m}) = 1 — ®(Fy), where

® is defined for a Gaussian distribution with mean p and standard deviation o to be

O(x) = % {1 + erf (i\_/;ﬂ . (6.30)

Inserting this into equation 6.29, the effect of the magnitude selection can be

1 1 10—0.4mhm _ ZJaV:1 10—0.4m07a
S({m0}> = 5 — 5 erf ( 0-0\/? . (631)

written as

By replacing the reference-band flux 32, 107%4™0 with the model flux F {(g)b ({z}, {mo}),
this selection can performed on any band. The selection function would then also be
dependent on the redshifts and templates, i.e., S <{z}, {t}, {mg}). This choice of se-

lection band is included in the implementation described in section 6.3.3.

A plot of this selection function for a galaxy from the GAMA blended sources

catalogue, described in section 6.5, is shown in Figure 6.5.
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6.1.5 Specifying the priors

Like all Bayesian methods, the choice of priors should be problem dependent. For ease
of comparison, we use the parametric forms given by Benitez (2000) with an additional
magnitude prior. However, we stress that this choice is not a necessary one for our

method and any joint P(z, t, m0> prior may be used.

The Benitez (2000) template and redshift priors are given by
P(t ) mo) = fre~Hmo =) (6.32)

and

z “
P(z]|t a — :
(z ,m0> x z*exp { [Zo,t T mmin):| } (6.33)

respectively, where my,;, is the bright-end magnitude cut as described below. The
parameters oy, 2o+, km ¢, f: and k; are set separately for early, late and irregular template

types. Their values are found using the procedure discussed in section 6.1.6 and are
listed in Table 6.2.

We use a magnitude prior given by
P<m0> o 109™0 (6.34)

The value ¢ = 0.6 gives the expression for the expected galaxy number counts in a
homogeneous, Euclidean universe (Yasuda et al., 2001), though we leave ¢ free to also
be found using the procedure discussed in section 6.1.6. When fitted to the GAMA
blended sources catalogue (Holwerda et al., 2015) discussed in section 6.5, this value
was found to be ¢ = 0.705, though the difference in results compared to fixing ¢ = 0.6

was negligible, and fitting to other datasets may yield a different value.

Since the selection effect applies to the total source flux, individual constituents
may be fainter than the survey magnitude limit, and so unobservable outside of a
blended source. As a result, an analytic magnitude prior is required to describe the
distribution of constituent magnitudes so that it can be used at faint magnitudes, where

observations of individual constituents are unavailable.

For the reasons discussed in section 6.3.2, we also apply a hard minimum and
maximum cut to each constituent redshift z, and constituent magnitude mg,. This cut
has little effect on the redshift priors which already go towards zero at large redshift;
the same is true of the magnitude prior at bright magnitudes. The faint-end of the
magnitude prior of the brightest constituent is also already forced towards zero by the

selection function. This is because in an N-constituent blend, the flux of the brightest
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constituent must be at least 1/N that of the total source flux, by definition. The
magnitudes of the other constituents are not constrained in this way however, and so

this cut represents a sharp boundary in the prior.

In our tests, the results of the redshift estimation were not strongly dependent on
the position of this faint-end magnitude cut my.,. However, the evidence calculation
described in section 6.3.1 is dependent on its position, as changing the position of the
cut alters the prior volume integrated over in equation 6.42. As a result, the position of
this cut must be decided; it defines the limit where a galaxy is considered to contribute

to a blend, and is therefore problem-dependent.

In principle, one could consider a galaxy to be blended if another arbitrarily faint
galaxy lies along the same line of sight. In practice however, observations have limited
precision, and the flux of an extremely dim galaxy cannot be detected. In other words,
a sufficiently dim galaxy should no longer be considered a blended constituent, but

rather a contribution to the noise.

In practice, a simple method to set this cut is to fix it for the entire sample.
However, the argument above suggests that this cut should be dependent on the noise
of the observation, i.e., that my., should be set to the faintest magnitude that would
have an observable effect. Fixing m .y is effectively an assumption that the sample has
sufficiently homogeneous noise properties that the change in this faintest magnitude is
negligible. For a sample where this is not the case, the magnitude cut can be set as an
nog flux deviation, i.e.,

Mumax = —2.510g,,(noy) , (6.35)

where o is the error on the reference band flux which varies for each source. In the

tests in section 6.5, we test both of these methods of setting M ay.-

6.1.6 Calibrating the priors using spectroscopic information

The joint prior is conditioned on a set of parameters 0, i.e., P (z, t,mg ‘ 0> , the posterior
distribution of which we wish to infer. We can use spectroscopic information of a sample
of galaxies from the population of interest to calibrate the above priors as suggested
by Benitez (2000).

We assume here that this calibration is done with unblended galaxies, though this
procedure can be extended to include blended galaxies too, provided that the number
of constituents N is known a priori. In that case, the reference band magnitudes of
each constituent would need to be included as a parameter in this model, and either

sampled along with 6 or marginalised out of the posterior analytically.
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We consider a sample of GG galaxies with photometry and spectroscopic redshifts
Zs. These redshifts are assumed to be exact, i.e., we neglect the error on Z,. The
set notation here now runs over each independently observed galaxy, not the blended

constituents as before.

We start by writing this posterior as a marginalisation over the photometric
redshift model parameters for each galaxy and applying Bayes rule. Since the likelihood

is independent of the prior parameters, we condition on € in the prior only, giving
P(0] 20 (F) (F0}) /dG{z}/dG{mo} «

TG
> ({23 AF Y AB} [ {21 {th {mo} ) P60, {2} {this Tmo} )
- (6.36)
We apply product rule to separate the joint prior and remove other unnecessary con-
ditioning. We also assume that the galaxies in the sample are independent, and so all
terms not shared across the population (i.e., P(f)) can be written as a product over

galaxies. The posterior then becomes

P(Q’{és},{ﬁ‘},{ﬁg}> ocp(e) ﬁ / dz, / dmo,, X

T

S P (Eog [moy ) P(B, [zt mag) < (37
ig=1
P(é&g zg>P<zg,t,~7g,m07g 9).

By assuming that the spectroscopic redshifts are exact, the redshift likelihood
zg) = §<zg - 2s,g>. We also assume
that the error on the reference band magnitude is negligible, allowing us to write
P(Fo,g mo,g> = 5<m07g — m(),g) where 1 4 = —2.5log; (FO g> is the reference band
flux of galaxy g, converted to magnitudes. Replacing these likelihoods with delta

can be written as a delta function, i.e., P<,§s,g

functions, the marginalisation can be done analytically using the sifting property of

the delta function to give

0).

(6.38)

Zs,ga ig) mO,g) P <Zs,g7 tiga mO,g

P(o] G2 (), {Fo)ocporji (¥,

To find the prior parameters 6 that maximise this posterior, we use L-BFGS-
B (Byrd et al., 1995), a local optimisation algorithm that approximates the Hessian of

the objective function and optimises the parameters subject to simple box constraints;
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Table 6.2: The maximum a posteriori values of the prior parameters for the GAMA
blended sources catalogue found after calibrating using 26782 unblended sources.

Parameters Early Late Irregular Type-independent

o 159 153  1.30 -
204 0.016 0.019 0.066 -
K.t 0.048 0.048 0.022 _
ke 0.044 0.024 - -
fi 045 051 - :
b - - - 0.71

we use these constraints to ensure our parameters are positive. This method requires

first-order derivatives which we approximate through a finite difference method.

The result of this procedure is an estimate of the maximum a posteriori values
of the prior parameters. Throughout this chapter, we use these values in the priors
directly. In principle, these parameters could form part of a hierarchical model and be
marginalised out as nuisance parameters. However, this would significantly increase
the dimensionality of the parameter space to be sampled and, thus, the computation
time required for each source. Table 6.2 lists the values of these prior parameters
GAMA test described in section 6.5. A plot of samples drawn from the resulting prior

is shown in Figure 6.6.

6.2 Partially-blended sources

We can modify the formalism above for the case of sources for which every constituent
does not contribute to every observation. We refer to these as partially blended sources.
This can be the case when combining photometry from a wide range of wavelengths,
e.g., optical and far-infrared observations. This partial blending may also occur for
some sources observed in both a ground-based and space-based survey, as the latter
does not suffer from atmospheric seeing and so can achieve a higher spatial resolution.
An example of a pair of such surveys is LSST (Ivezi¢ et al., 2019) and Euclid (Laureijs
et al., 2011). Utilising resolved photometry from Euclid could improve the precision of
photometric redshifts of sources that are blended in the higher signal-to-noise observa-

tions of LSST. This possibility is explored using simulated observations in section 6.4.2.

To generalise the method for this case, we introduce the measurement-constituent

mapping 0, m, an N X N,,, matrix, where [V, is the number of measurements, a generali-
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Figure 6.6: Plot of the prior found for the test on the GAMA blended sources catalogue
after calibrating using 26782 unblended sources. The dashed line in the bottom panel

shows a magnitude limit of r < 19.8.
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sation of the number of bands in the fully-blended case. This measurement-constituent
mapping acts as an indicator variable, consisting only of zeros and ones indicating

whether a particular constituent is present in a particular measurement.

An example of such a matrix is given below. Consider data containing N,, = 6
photometric measurements of N = 2 constituents. The first four measurements are
of individually resolved constituents, while the final two measurements are blended.
In a typical use case, we might expect the resolved measurements of each constituent
to share filter bands, though the model does not require this. In this example, the

measurement-constituent mapping is given by

101011
5= . (6.39)

010111

We can then write the blended flux of N constituents at a redshift z in measure-

ment m as
(V) Y 10~ 0-4mo.a
F ’ = 5am—Ta7m a) - 6.40
pms ({23 {mo}) ; e (2a) (6.40)

The only modification to the posterior of the fully-blended case needed to accom-
modate the partial-blending is to the sorting condition. As described in section 6.1.3,
the purpose of this condition is to prevent the exchangeability of constituents However,
this is not necessary in the partially blended case. Here, the constituents are intrin-
sically different as they appear individually in separate measurements and so are not
exchangeable. As a result, we drop the sorting condition for the partially blended case,
i.,e., A, = 1 over the entire parameter space. The posterior for the partially blended

case is then given by

P({z}, {mo} ‘ F,Fy x, N, 5) x T_ZN P(ﬁ‘ ] 23 {ths, fmo), N, 5)13(1%0 ] {m0}> X

=

[1+ €M ({21)] 5 ({mo})

mo,a)P<m07a> .

P (za

ton mO,a) X
1

Q
Il

P (ta

(6.41)
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6.3 Inference using Nested Sampling

6.3.1 Determining the number of constituents with model com-

parison

The posteriors in equations 6.25 and 6.41 are defined for a specific number of con-
stituents V. In general however, this number of constituents is not known a priori.
We therefore need a method to determine how many constituents are present in a
source. Since our model is defined for a fixed number of constituents, we treat finding

the number of constituents in a source as a model comparison problem.

Bayesian model comparison involves the calculation of the evidence Z, an integral
over the product of the prior and the likelihood (e.g., Trotta, 2008). Given a data vector

d, a model m and a set of model parameters {#}, the evidence is defined as
z = P(d‘m) - /P(d‘ {9},m>P<{9}’m>d{9}. (6.42)

This evidence term plays the role of the normalisation of the posterior and so is
typically ignored in parameter inference problems where this normalisation is irrele-
vant. However, the evidence is the quantity of interest for model comparison problems.
The ratio of the posterior probabilities of two models is proportional to the ratio of
their evidences, a quantity known as the Bayes factor. By considering the number
of constituents in a source as the model, we can write the relative probability of the

source containing n constituents compared to m constituents as

P(N:n‘ﬁ’,]%) P(F,FO‘N:n> P<N:n>

an:

)

P<N:m‘ﬁ‘7ﬁo)—P<F,ﬁO‘N:m>P(N:m)- (6.43)

Considering the cases of either isolated galaxies or blends of two constituents,
the model prior ratio P(N = 2) / P(N = 1) represents the probability that a galaxy
will be blended. Dawson and Schneider (2014) estimate the number of sources ob-
served by LSST that will be blended by convolving Hubble Space Telescope images
with a Gaussian point spread function (PSF) like that of LSST. They found this num-
ber to be 45 — 55% of the total sources observed, with 15 — 20% of observed sources
classified as catastrophic blends that would be identified as single sources by fitting a
profile template to a galaxy image. Chang et al. (2013) estimates that the rejection
of blended sources will reduce the number density of LSST sources by 16%, though

this estimate does not include the catastrophic blends of above. Studies such as these
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using existing high-resolution data or simulated observations can inform the blend-
ing prior ratio. Throughout this chapter, we present results where this prior ratio
is P(N = 2) /P(N = 1) =1, i.e., we do not prefer either of the blended or single-

constituent models a priori, though this information can be trivially included.

6.3.2 Nested sampling using MultiNest

Calculating the evidence directly through numerical integration presents a difficult
technical problem, particularly as the number of dimensions increases. To avoid this,
we use Nested sampling (Skilling, 2006), a Monte Carlo method for estimating the
evidence while also sampling the posterior for parameter inference. Nested sampling
reduces the problem of estimating the evidence to sampling a series of increasing like-
lihood thresholds, i.e., progressively smaller prior volumes nested within one another.
Equation 6.42 can then be calculated using a one-dimensional quadrature integration

method over this prior volume.

The computationally difficult part of the nested sampling algorithm is sampling a
new point from within the potentially complicated boundary defined by the likelihood
threshold. The MultiNest sampler (Feroz et al., 2009) does this efficiently by sampling
from a collection of ellipses approximating this boundary rather than the prior itself.
This collection of ellipses is formed by performing a clustering analysis on a fixed-sized
set of the previous samples, known as the live points. A new sample is drawn from
these ellipses, replacing the lowest likelihood point which is removed and stored as
a posterior sample. Samples are rejected until the likelihood boundary is respected,

though this occurs less frequently than when naively rejection sampling the prior.

The use of multiple ellipses when sampling has another distinct advantage in
that it naturally enables efficient sampling of multimodal posteriors, since each mode
is assigned a separate ellipse while low probability regions between these modes are
avoided. Multimodality is a feature that can cause difficulties for MCMC samplers, as
moving from one mode to another requires a move across the low probability region
separating them. As a result, these samplers can fail to explore the full posterior
distribution, instead sampling only a single mode. We expect our problem to exhibit
this multimodal behaviour due to the degeneracies described in section 6.1.3, and so

require a sampling method suited to this case.

The need for nested sampling methods to sample from the prior imposes some
constraints on our choice of prior. MultiNest natively samples from a unit side-length

hypercube and these samples are transformed into samples of the prior using a prior
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transform function. However, due to the discrete marginalisation over template, we
cannot separate the posterior to define a prior transform function. As a result, we take
the approach suggested by Feroz et al. (2009) of defining a uniform prior to sample

from, and defining the ‘likelihood’ for MultiNest as our marginalised posterior.

This has two main effects. Firstly, the sampling is likely to be less efficient, as
the prior sampling step is not guided by the true prior, and so low-prior regions may
be sampled frequently. Secondly, sampling from a uniform prior necessitates imposing
a hard cut on the prior range of each parameter. Since the location of these cuts effects
the value of the evidence Z, they should not be imposed thoughtlessly. At high redshift
and bright magnitudes, the priors tend to zero, meaning that the exact positions of
these cuts have negligible effect on the evidence. However, this is not the case for the

faint-end of the magnitude priors; setting this cut is discussed is section 6.1.5.

6.3.3 Dblendz package

We have written a Python package blendz to perform the redshift inference of blended
sources described in sections 6.1 and 6.2, and the identification of the number of con-
stituents using model comparison described in section 6.3.1. The package supports
analysis of blends with an arbitrary number of constituents using either the included
or user-supplied template sets. The output of such an analysis is a set of samples from
the joint posterior for each number of constituents considered, and an estimate of the
Bayes factor for model comparison. The model comparison can then easily include a

model prior through multiplication of the Bayes factor.

The package is also written in an object-orientated way, allowing the user to
easily redefine the priors. While the supplied prior is used in this work with galaxies
of either early, late or irregular types, it is written to be calibrated and used with
any number of possible types. For blended sources of more then two constituents, the
excess probability term §>(<N) is defined recursively to use the correct combination of

two-point terms and assumes higher order correlations are negligible.

Documentation and instructions for installation can be found at http://blendz.
readthedocs.io. The package can also be immediately installed from the official
Python Package Index? by using the pip install blendz command. Finally, the
source is available in a git repository hosted at https://github.com/danmichael jones/
blendz.

*https://pypi.org/


http://blendz.readthedocs.io
http://blendz.readthedocs.io
https://github.com/danmichaeljones/blendz
https://github.com/danmichaeljones/blendz
https://pypi.org/

150 Chapter 6. Bayesian Photometric Redshifts of Blended Sources

6.4 Results from mock observations

6.4.1 Fully-blended sources

As an initial test of the method, we used a Monte Carlo simulation to create a set of
mock photometric observations to test our method against. These mock observations
simulate an optical survey using the six LSST optical filters u, g, 7,4, z, Y (LSST Science
Collaboration et al., 2009), with an r-band magnitude selection of my;,, = 24. We also
applied hard cuts to the constituent magnitudes of my;, = 19 and my., = 26. We
then generated 1000 sources, each of which is a blend of two constituents in all bands.
This was done by sampling a prior describing this distribution of objects using the
Markov Chain Monte Carlo (MCMC) sampler emcee (Foreman-Mackey et al., 2013)
to generate the true parameters {z},{t}, {mo} for each simulated source. A plot of
this prior distribution, plotted using corner.py (Foreman-Mackey, 2016), is shown in

Figure 6.7.

The effect of the selection function and the faint-end magnitude cut can be seen
clearly in the two-peaked shape of the marginal distributions of mg, and mgg. The
brighter-magnitude peak is a result of the selection function. In the single-constituent
case, this would cause the prior to tend to zero at faint magnitudes. In the two-
constituent case however, the magnitude priors of each constituent extend beyond my;y,
as the selection effect is applied to the combined magnitude of both constituents. The
brighter constituent in a two-constituent blend must, by definition, contribute at least
half of the total flux. As a result, the selection effect prevents the magnitude of this
constituent from being too faint. Since we impose the sorting condition on redshifts,
and the brightest constituent in a source is not exclusively the lower-redshift one, this
action of the sorting condition causes the brighter peak in the marginal distributions
of both mg , and mg z. If we instead impose the sorting condition on the magnitudes,
these distributions become unimodal. Figure 6.7 also shows the effect of the redshift

sorting condition in the (z,, z3) marginal distribution as a hard diagonal cut.

The model fluxes for these sampled parameters were then generated using the
template responses defined in section 6.1.1. We use the template set of Coe et al.
(2006), containing one early type, two late type and one irregular type templates from
Coleman et al. (1980), two starburst templates from Kinney et al. (1996) and two
starburst templates from Coe et al. (2006). This same template set is then used during
the inference. This allows a test of the method without the effect of unrepresentative

templates, a source of error that is not unique to the case of blended sources.

Finally, we add an observational error to each observation. The flux error in
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Figure 6.7: Corner plot of the prior sampled to create the mock catalogue. As described
in the text, the bimodal shape of the marginal magnitude distributions is a result of
both the selection effect and sorting constituents by redshift. The redshift sorting
condition can be seen as a hard diagonal cut in the joint redshift distribution.
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Figure 6.8: The 4D posterior distribution output from our method for two example
sources. The true parameter values are shown in orange. The left panel shows a
well constrained source with some correlations between constituents, though the true
redshift is well recovered. The right panel shows an example of a bimodal posterior
that can arise in photometric redshift problems.

band b is randomly drawn from an uncorrelated, zero-centred normal distribution o}, ~
N (04]0, X). The noise is set for all sources to be the final 1o depth expected from
LSST (Ivezi¢ et al., 2019). We use these noisy observations to draw samples from the
one- and two-constituent posteriors to test both the redshift determination and model
comparison performance, setting the prior to the true distribution the photometry was

sampled from.

Figure 6.8 shows two examples of the 4D posterior that is the output from our
method for each sample. For plotting purposes, the number of live points used for sam-
pling is larger than that used for the inference and model comparison results throughout
this chapter. However, the change in the results is negligible. The left panel shows an
example of a well constrained source with a unimodal posterior. This posterior shows
correlations between the constituent parameters; this is expected, since the total flux of
each band that is well constrained by the observations is split between the constituents.
Reducing the model flux in a band of one constituent will result in a compensation in

the other constituent, correlating their parameters.

The right panel of Figure 6.8 shows a particularly prominent example of the
curved degeneracies that can arise in the blended posteriors. This is due to the total

magnitude of the source being well constrained by noisy observations, while constituent
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Figure 6.9: Scatter plot comparing the maximum a posteriori point estimates from the
photometric redshift estimation with the true redshifts for the mock observations. The
left panels distinguish the constituents, with z, plotted with closed blue markers, and 23
plotted with open green markers. The centre panels show the blend identification, with
sources identified as blends plotted with closed purple markers, and those misidentified
as single sources plotted with open red markers. The right panels show a 2D histogram
of the combined sample. Panels in the top row show the results for the full mock
catalogue, while the bottom row only includes sources where the standard deviation of
samples from each redshift marginal-posterior are sufficiently small, o, < 0.2V a. The
dashed lines in each panel show an error of 0.15(1 + z).

magnitudes are not themselves observable. This leads to a degeneracy that is curved
due to the non-linearity of adding magnitudes. A result of this curved degeneracy is
bimodality in the marginalised posterior of z3. However, there is still significant proba-
bility density around the true redshift, highlighting the importance of not compressing

the information content of a full posterior distribution into only a small set of numbers.

Figure 6.9 shows a comparison of the photometric estimation of the constituent
redshifts against their true simulated values. Point estimates of the redshift zyap are
obtained by taking the maximum a posteriori (MAP) value of each constituent redshift
posterior, marginalising over the other three parameters. The method recovers the

true redshift of each constituent from simulated photometry well. The performance of
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photometric redshift methods is often summarised by the RMS scatter ogys. We first

define the normalised error for galaxy g as

Zag — APy (6.44)

0z =
Zg 1 T 257g ’

where each galaxy ¢ is a single constituent of a blended source. Writing the total

number of galaxies in our test catalogue as Ny, we then define the RMS scatter as

ORMS = \/NL Z <5zg)2 : (6.45)

9 g

Computing this quantity for our mock blended observations, we find an RMS
scatter of ogyms = 0.163. This compares to a scatter of orys = 0.0267 when testing the
method with N = 1 constituents on mock observations of single sources. In this case,
the method almost reduces to the BPZ (Benitez, 2000) formalism, the only difference
being the magnitude prior which has a negligible effect in the N = 1 case. We verified
that this was the case by performing a test on the same N = 1 simulated data using the

BPZ code, finding a negligible difference between the results from BPZ and blendz.

This scatter can be improved by excluding sources with photometric redshifts
that, using the uncertainty information of the posterior distribution, are identified as
untrustworthy. This is done by comparing a summary statistic against a threshold that
controls the stringency of the test; we use the standard deviation of redshift marginal-
posterior samples o, separately for each constituent, though a variety of summary
statistics are available. Keeping only sources with o, < 0.2V a, the RMS scatter is
reduced to opyg = 0.064, with 37% of sources removed. The effect of this is shown in

the bottom row of Figure 6.9.

The percentage of outliers can also be quantified. Outliers are defined as sources
where either constituent has an error |zyap — 25| > 0.15(1 + Z5). For the full set of
mock observations, this percentage was found to be 18.6%. By keeping only sources

with o, < 0.2V« as described above, the percentage of outliers falls to only 6.0%.

The results of the detection of blends are also shown in the centre panels of
Figure 6.9. By using equation 6.43, we calculate Py ;, the relative probability that
a source is a two-constituent blend compared to a single source. The interpretation
of this probability is problem-dependent; a probability of In(P;) > 0 indicates a
preference towards the source being blended, while a threshold to In (Ps;) > 5 indicates
strong evidence (Kass and Raftery, 1995). Likewise, probabilities of In(Py;) < 0

and In(Py;) < —5 indicate a preference and strong evidence for the single source
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Figure 6.10: The left panel shows the distribution of the relative blend-to-single prob-
ability for the mock catalogue, with the inset showing the same distribution, zoomed
around lower relative probabilities and binned more finely. The right panel shows the
percentage of sources assigned as either blended, single sources or not assigned to either
as the threshold for deciding between each label is changed.

case respectively. As the blended and single thresholds are pushed more positive and
negative respectively, there are sources with values of In (P, ;) that fall between these

thresholds. In these cases, the source is assigned neither label.

As described in section 6.3.1, we assume the relative prior probability of a blend
to be P(N = 2)/P(N = 1) = 1, i.e., we give no preference to either model. Under
this assumption, the method identifies 92.7% of sources as blends and 7.3% as single
sources. Increasing the threshold to strong evidence, we find that 89.9% of sources
are identified as blends and 0.2% as single sources; the remaining 9.9% fall between
these thresholds. The distribution of the relative probability of blending and the effect
on blend identification of changing the threshold are shown in Figure 6.10. We also
performed the same test for N = 1 constituent simulated data, and found that the
method identified 96.3% of these sources as not being blended.

These results show that the method can both recover the redshifts from broad-
band observations of blended objects, and detect the blending of a large fraction of
these objects from their photometry alone. In addition, the output from these tests
are not just point estimates of redshifts, but the full four-dimensional posterior distri-
butions that capture the correlations between constituents that can be lost by working

with constituent separated maps.

These are the results of simulated observations, however; real data has the com-
plication that the flux model is no longer exact, i.e., the templates are not perfectly
representative of all galaxies observed. As such, we test the method on real data in

section 6.5.
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6.4.2 Partially-blended sources

To test the effect of adding resolved data, we created a set of mock photometric ob-
servations of two-constituent partially blended systems. These observations simulate
the same six-band optical survey as described in section 6.4.1, combined with a four-
band optical and infrared space-based survey using the Euclid filters vis, Y, J, H (Racca
et al., 2016). This latter survey is assumed to have made resolved measurements of each
constituent, while the former is fully-blended as before. Thus, our partially-blended

data vector contains 14 fluxes for each source.

For comparison with the partially-blended results, we repeat the inference several
times. Firstly, we compare against the fully-blended LSST-like case described above.
Next, we compare to an inference using the resolved Euclid bands only, testing the effect
of removing the difficulty of blending but using lower signal-to-noise data. Finally, we
test against the case of using both the LSST- and Euclid-like data, but assuming that
sources are blended in all bands. This allows us to separate the improvement as a

result of adding resolved data from that of simply having more bands available.

For the fully-blended bands, we reuse the simulated fluxes described in sec-
tion 6.4.1. For the resolved bands, we generate observed fluxes using the same ran-
domly sampled source parameters. The observed fluxes are then generated using the
flux model described in section 6.1.1 with added observational errors drawn randomly
from an uncorrelated, zero centred normal distribution. The noise in these resolved
bands is set to the final 1o depths expected from Euclid observations (Laureijs et al.,
2011).

We use the same prior as described in section 6.4.1 for both the simulation and
inference steps. The reference band over which the prior is defined is set to be the
r-band of the blended observations. This band is not present during the inference step
using only the resolved data. As a result, we use the flux model from section 6.1.1 to

convert between - and Y-band magnitudes before evaluating the prior.

Figure 6.11 shows a comparison of the photometric redshift point estimates with
the true simulated values for the four sets of inferences. As before, these point estimates

are the MAP values of the marginal redshift posteriors.

The left panel shows the fully blended case, the same results as section 6.4.1.
Again, the redshifts of many constituents are well recovered, though there is a signifi-
cant fraction of outliers. The RMS scatter in this case was found to be orys = 0.163.
The percentage of outliers, sources where either constituent has an error |zyap — 25| >
0.15(1 + ), was found to be 18.6%.
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Figure 6.11: Scatter plot comparing the maximum a posteriori point estimates for the
fully-blended, resolved and partially-blended cases. The closed blue markers represent
the redshift of the closer constituent, z,, while the open green markers represent the
redshift of the more distant constituent, z3.

The centre-left panel of Figure 6.11 shows the results for the resolved observa-
tions. Though finding the photometric redshift of resolved sources is an easier inference
problem, this is counteracted by the significant reduction in the signal-to-noise of this
data. As a result, we find an RMS scatter of ormg = 0.212 with 55.0% of sources

marked as outliers.

The centre-right panel of Figure 6.11 shows the results for combination of LSST-
and Euclid-like data in the fully blended case. We find that the addition of the four
Euclid bands significantly improves the precision of the redshift inference, which has an
RMS scatter of orys = 0.073. The fraction of outliers has also improved significantly,

with only 6.6% of sources marked as outliers.

Finally, the right panel of Figure 6.11 shows the results for the partially blended
case, combining the high-precision blended observations with the resolved data. Here,
we find that the RMS scatter has reduced to oryg = 0.065, a factor of 2.5 improvement
over the blended LSST-like data alone, and a factor of 1.12 over the combined LSST-
and Euclid-like blended data. The percentage of outliers has also been reduced. Here,
only 3.4% of sources are found to be outliers, a factor of 5 improvement over the fully-
blended case, and a factor of 1.9 improvement over the combined LSST- and Euclid-like
blended data.

While the most significant improvement was obtained through the increase in the
number of bands, these results show that the quality of photometric redshifts of blended
sources can be improved through the inclusion of resolved data. This is particularly
apparent in the reduction of outliers. One advantage conferred by the addition of
resolved data is a constraint on the relative magnitudes of blended constituents. In the

fully-blended case, the reference-band magnitude of each of the constituents must be
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Figure 6.12: The 4D posterior distributions for a two-constituent blended source in the
fully-blended and partially-blended cases. The left plot shows the result of inference
using blended data only. While their is significant posterior density around the true
parameter values shown by the orange line, this posterior is highly bimodal, with two
distinct solutions that cannot be distinguished. The plot on the right shows the result
of the partially-blended case that includes both blended and resolved observations.
The addition of information about the magnitude of each constituent separately has
removed the incorrect mode, resulting in a posterior that recovers the true solution
well.

inferred from the combined magnitude of the blended source only. This can lead to the
degenerate distributions shown in Figure 6.8. Adding resolved photometry can help
to break this degeneracy by providing information about each constituent individually.

The precision of the photometric redshift inferences is therefore improved.

An example of this phenomenon is shown in Figure 6.12. The left panel shows
a corner plot of the posterior distribution for a fully-blended source. The marginal
distributions for each constituent redshift are highly multimodal, with well separated
redshifts occurring at distinct magnitudes. Though there is significant posterior density
around the true redshifts, the MAP point estimate of zg would show a significant error,
as the incorrect mode has a higher posterior. The right panel of Figure 6.12 shows the
same source analysed in the partially-blended case after the addition of the resolved
photometry. Here, the width of the posterior has been significantly reduced by the
removal of the incorrect mode. The posterior now shows that the redshift of the source
has been well constrained, and the redshift point estimates would no longer have a

large error.
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6.5 GAMA blended sources catalogue

The Galaxy And Mass Assembly (GAMA) survey (Baldry et al., 2017) is a spectro-
scopic galaxy survey that observed 286 deg? of sky over several regions to a magnitude
limit of between r < 19 and r < 19.8. In doing so, it obtained precise redshifts of
> 150000 sources. The observed regions were chosen to overlap with existing imaging
surveys such as Sloan Digital Sky Survey (SDSS) (Stoughton et al., 2002) and VISTA
Kilo-degree Infrared Galaxy (VIKING) Survey (Edge et al., 2013). As a result, the
spectroscopic data is accompanied by a set of aperture-matched photometry covering
nine filter bands u, g,7,4, z,Y, J, H, K from optical to infrared wavelengths (Hill et al.,
2011).

The GAMA blended sources catalogue (Holwerda et al., 2015) contains 280
sources from the GAMA survey that have been spectroscopically identified as blended
objects. These were selected using an automated template-based spectrum fitting
method (Baldry et al., 2014) that cross correlates galaxy templates with the observed
spectra to determine the galaxy redshift. Sources where two different redshifts showed
strong cross-correlations were visually inspected, resulting in a selection of blended
galaxies. The motivation of Holwerda et al. (2015) was the identification of strong lens
candidates. However, a catalogue of spectroscopically identified blended galaxies with
accompanying nine-band photometry gives us an useful test case for the blended photo-
metric redshift estimation method on non-simulated photometry with secure redshifts

available for both constituents.

We first calibrate the prior using the procedure described in section 6.1.6. To
do this, we used 26782 unblended, well-observed galaxies. These were selected by
enforcing every band to be free from SExtractor (Bertin and Arnouts, 1996) error flags
and excluding all galaxies in the blended source catalogue. The resulting prior from the
calibration procedure is shown in Figure 6.6. As discussed in section 6.1.5, we test two
methods of setting the faint-end magnitude cut my,.y, firstly as a 50y flux deviation
using equation 6.35, and secondly, fixing mpy.x = 20.8. Throughout, we refer to these
as the sigma-my.x case and fixed-m,., case respectively. We then proceed with the

inference using the same template set® described in section 6.4.

The resulting redshift point estimates are shown in Figure 6.13. While noisier
than the simulated case, the method still recovers reasonable estimates; using equa-
tion 6.45, we find an RMS scatter of orys = 0.156 in the both the sigma-m.. and

3The templates used to fit the spectroscopic redshifts as described in Holwerda et al. (2015) do not
cover the full wavelength range of the photometry. As a result, we do not use them for the photometric
redshift inference.
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Figure 6.13: Scatter plot comparing the maximum a posteriori point estimates from
the photometric redshift estimation with the spectroscopic redshifts for sources from
the GAMA blended sources catalogue. The left panels distinguish the constituents,
with z, plotted with closed blue markers, and z3 plotted with open green markers. The
centre panels show the blend identification, with sources identified as blends plotted
with closed purple markers, and those misidentified as single sources plotted with open
red markers. The right panels show a 2D histogram of the combined sample. Panels in
the top row show the results for the sigma-my,., case, while those in the bottom row
show the fixed-m.x case. The dashed lines in each panel show an error of 0.15(1 + 2).

fixed-mmax cases. This compares to the scatter for a set of unblended GAMA sources of
orms = 0.116. Obtaining this value even without the added complication of blending

suggests a mismatch between the sources and the template set.

We also compute the inferred blend probability P,; for these galaxies. The
distribution of these probabilities is shown in Figure 6.14. As described in section 6.4,
In(P21) > 0 and In(Pyy) > 5 show a preference and strong evidence for a blended
source respectively, while In (P51) < 0 and In (Py;) < —5 show the same for the single
source case. The distribution of the blend probability and the effect of the evidence

threshold on blend identification is shown in Figure 6.14.

In our tests of the sigma-my., case, 71.6% of sources showed a preference for

being blended, with 28.4% preferring a single source. Increasing the threshold to
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Figure 6.14: Plots showing the differences in the model comparison results between
the two methods tested of setting the faint-end magnitude cut M.y, labelled the
sigma-myax and fixed-my,., cases. The left panel shows the distribution of the relative
blend-to-single probability for the mock catalogue, with the inset showing the same
distribution, zoomed around lower relative probabilities and binned more finely. The
solid line shows the sigma-m., case, and the dashed line shows the fixed-m ., case.
The two right panels shows the percentage of sources assigned as either blended, single
sources or not assigned to either as the threshold for deciding between each label is
changed.

strong evidence, these percentages fall to 61.8% and 18.2% respectively. Finally, the
incorrectly identified single sources can be excluded entirely by increasing the threshold
to |In (Pa1)| < 12.5, with 50.7% of sources identified as blends at this level.

The identification of blends was very similar in the fixed-m., case. We found
that 71.1% of sources showed a preference for being blended, and 28.9% preferred a
single source. At the strong evidence threshold, 60.4% of sources are correctly iden-
tified as blends, with 18.2% misidentified as single sources. The threshold to exclude
misidentified sources completely in the fixed-mp,, case is |In(Pa1)| < 13.9, slightly
higher than the sigma-my,, case. At this level, 48.0% of sources are still correctly

identified as blends.

These results show that photometric redshift estimates can be obtained for blended
sources, and that the method can identify many blended sources from just their broad-
band photometry. By adjusting the threshold of the probability P, 1, blended sources

can be selected in a way that trades off completeness and purity.

Several techniques for improving the scatter of photometric redshifts have been
proposed, such as rest-frame template error functions (Brammer et al., 2008), iterative
methods to modify templates to be more representative (Feldmann et al., 2006), using
clustering-based redshift estimation to calibrate systematic biases using galaxies (Gatti
et al., 2018) and intensity mapping observations (Alonso et al., 2017), and constructing

priors in terms of physical galaxy properties (Tanaka, 2015). While an investigation of
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these methods is beyond the scope of this chapter, they could also be applied while using
this method. This could help to reduce the scatter of the blended photometric redshift
estimates to a level necessary for future surveys, while retaining the full information

of the posterior for accurate error propagation.

6.6 Conclusions

Blended sources will become far more common in future galaxy surveys than are found
currently due to increases in the depth of photometry and as a result, the number den-
sity of galaxies. This chapter presents a Bayesian photometric redshift method that
generalises the existing BPZ (Benitez, 2000) method to the case of blended observa-
tions. We derive a posterior for the redshift and magnitude of each constituent which
we sample to obtain estimates of the redshift. We also use this posterior in a model

comparison procedure to infer the number of constituents in a source.

By doing this, the method is able to infer both the redshift of each constituent
within a blended source, and identify that a source is blended from its broadband pho-
tometry alone. The joint posterior distribution of the redshifts of all constituents in a
blend provides a complete accounting of the correlations in the final result, information
that can be lost when separating constituents and estimating redshifts for each sepa-
rately. This uncertainty information is essential for obtaining accurate uncertainties
on cosmological parameters that rely on the photometric redshift estimates. A Python

implementation of the method, blendz, is available to download.

By inferring the redshifts of constituents directly from their blended photometry,
the method presented here is directly applicable to ambiguously blended objects that
cannot otherwise be deblended. The partial-blending formalism described in section 6.2
also enables the catalogue-level joint analysis of sources in space- and ground-based
surveys such as Euclid and LSST. The complementarity of these surveys will allow
cosmological parameters to be constrained more precisely than either survey could
individually, and analysis of blended sources from their aperture photometry will be

simpler than a joint pixel-level analysis (Rhodes et al., 2017).

The method presented here could also be combined with existing deblending
methods that utilise the spatial information of images directly. These methods are com-
plementary; image-based deblending methods are effective provided that constituents
are sufficiently well separated. If this is not the case, there is too little spatial informa-
tion to be able to separate constituents, and colour information is necessary. Combining

these methods could allow future surveys to identify a greater proportion of blended
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sources, reducing their effects on cosmological constraints. Deblending methods that
also incorporate colour information would need to be combined with this method more
carefully however, as the colour information would be used twice and thus the blend-
ing probabilities would not be independent. This method could instead be extended
to incorporate imaging data by constructing a forward model of the galaxy in each
band and constraining both morphology and redshift simultaneously. This is discussed

further in chapter 9.

The method presented here is focussed on the problem of galaxy-galaxy blending.
However this formalism could also be applied to the problem of inferring photometric
redshifts of galaxies blended with other objects such as stars and quasars with minimal
modifications. For the latter problem, only the inclusion of quasar templates would be
required. If these templates were included alongside the existing galaxy templates as a
single template set, the marginalisation over templates would then also implicitly be a
marginalisation over the classification of each object into either a galaxy or a quasar.
The prior probability of the classification of each constituent could then be absorbed

into the template prior.

If a marginalisation over object classification was not desired, one could specify a
choice of object type for each constituent and marginalise over only the relevant tem-
plate sets for each. This would effectively make the template prior object-classification
dependent, e.g., the template prior for a galaxy template given a quasar classification
would equal zero. In this case, the object classification of each constituent would be-
come another model that could be compared with other choices using the same model

comparison procedure described above.

A similar procedure could be applied for star-galaxy blending. However, in this
case, the redshift of stars can be assumed to be negligible compared to that of galax-
ies. As a result, the redshift of the relevant constituent would no longer appear as a
parameter in the model, and the star would be described by only its magnitude and

template.



Chapter 7

Gaussian Mixture Models for
Blended Photometric Redshifts

This chapter is heavily based on work from Jones and Heavens (20195).

An alternative to deblending is to infer quantities of interest, such as photometric
redshifts, from blended data directly. This joint approach automatically accounts for
correlations between each galaxy in a blended source and correctly propagates these
uncertainties to the final results. This is the approach taken in chapter 6, which gen-
eralises Bayesian template-based photometric redshift methods to the case of blended

observations.

In order to sample the posterior and evaluate the evidence, chapter 6 uses
MultiNest (Feroz et al., 2009), an efficient implementation of the nested sampling
method (Skilling, 2006). However, even sampling with an efficient method such as
MultiNest can be computationally demanding; sampling the posteriors for both one-
and two-constituent models takes approximately two minutes per source on a work-
station with a 3 GHz Intel Xeon processor. While this is viable for small samples, it is

not scalable to the large samples of ~ 10° galaxies in a future survey like LSST.

This chapter takes the same joint-inference approach, but uses a Gaussian mix-
ture model to learn the flux-redshift relation from a training set of galaxies with known
redshifts. We then use this model as a prior to derive the posteriors and marginal-
likelihoods for sources consisting of one or two galaxies. Since these can be com-
puted analytically, this is significantly less computationally demanding than the nested
sampling-based method described in chapter 6, an important property for use in future
galaxy surveys. As a result, the one- and two-constituent inference and model selection

can be done for approximately ten sources per second, a speed-up of three orders of
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Table 7.1: A summary of the notation used throughout this chapter.

Symbol Description
N Number of constituent galaxies in a source
Zn Model redshift of constituent galaxy n
F, Model flux vector of constituent galaxy n
F Vector of observed fluxes
ZF Covariance matrix of observed fluxes
M Number of components in the mixture model
K Weight of mixture component k
puk Mean vector of mixture component k
>k Covariance matrix of mixture component k
&l Evidence for single-constituent model
&2 Evidence for two-constituent model
Nz | pX) Multivariate Gaussian PDF with mean vector g and covari-
ance matrix X
N (z|n,A) Multivariate Gaussian PDF in natural parametrisation with

parameters A =X 'andn=3X"'u

magnitude on the workstation described above. Photometric redshift inference is also
trivially parallelisable for high-performance computing environments, since each source

can be considered independently.

Throughout this chapter, we use the term constituent to describe the individual
galaxies comprising a blended source. Following convention, we refer to each multi-
variate Gaussian distribution in the mixture model as a component. We denote scalars
using an italic font x, vectors using a bold italic font & and matrices using a bold

sans-serif font . We summarise our notation in Table 7.1.

This chapter is organised as follows. In section 7.1, we introduce our formalism
for blended photometric redshifts with Gaussian mixture models. We use this to derive
expressions for the posteriors and evidences in section 7.2. We present results of tests
of our method on simulated data in section 7.3. Finally, in section 7.4, we present
these tests on real blended data from the Galaxy And Mass Assembly (GAMA) sur-
vey (Baldry et al., 2017).
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7.1 Gaussian mixture model photo-z

Photometric redshifts inferred using machine learning methods are often very accurate
when good training data is available. These methods perform regression, and use this
training data to learn the mapping from fluxes to redshifts. Many machine learning
algorithms are not inherently probabilistic; a particular input will map to a particular
output. However, accurate uncertainties on cosmological parameters rely on propagat-
ing uncertainties from all stages of the analysis. Machine learning photometric redshift

methods have therefore developed several ways to estimate these uncertainties.

One example that accounts for errors in the observed fluxes is to apply the chain
rule to successive layers of a neural network (Collister and Lahav, 2004), providing the
variance of the output redshift. Some machine learning methods such as a Gaussian
process (e.g., Way and Srivastava, 2006), are already explicitly probabilistic, naturally
producing variance estimates alongside their prediction. Other methods can represent
their uncertainties more generally by inferring PDFs as their output. This can be
done by training many machine learning algorithms to each independently estimate the
redshift and taking the distribution of the ensemble to be the redshift PDF (Sadeh et al.,
2016). A single neural network can also accomplish this by being trained to output
the parameters of a parametrised PDF rather than the redshift directly (D’Isanto and
Polsterer, 2018). PDFs represent the complete probabilistic knowledge over a system
under investigation, and are thus a general mechanism for quantifying and propagating

uncertainties within a statistical analysis (e.g., Gelman et al., 2013).

In addition to enabling the rigorous propagation of uncertainties, using full photo-
metric redshift PDFs has been shown to improve the accuracy of cosmological analyses
(e.g., Mandelbaum et al., 2008; Myers et al., 2009). PDFs also have an advantage
over simply representing uncertainty with the variance in their ability to represent
multimodality; that is, several distinct, well separated redshifts being plausible for a
given vector of fluxes. This is a common occurrence in photometric redshifts (Benitez
et al., 2009). Colour-redshift degeneracies mean that high- and low- redshift galaxies
can have similar colours, often due to spectral features such as the Lyman and Balmer

breaks being misidentified as one another (Graham et al., 2018).

Here, we treat the training data not as variables to regress between, but instead
as noisy samples from the joint redshift-flux distribution, turning the problem into one
of density estimation. The joint density is the most general probabilistic description
of the training data, allowing several quantities of interest to be derived. Given an
observed vector of fluxes F', the redshift can be inferred using the conditional distri-
bution P(z | F') which can be derived from the joint distribution. This PDF can be
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multimodal, capturing the degeneracy described above. These distributions can be
composed together to produce the conditional distribution of the redshifts of a blended
source P(z,7 | F) in a similar fashion. The joint distribution also permits calcula-
tion of marginal likelihoods, allowing Bayesian model selection techniques to be used
to infer the number of constituents in a source. Finally, the interpretation of the joint
distribution is clear, in contrast to other machine learning methods that can be ‘black-

boxes’, requiring additional ad-hoc techniques to improve their interpretability (e.g.,
Shrikumar et al., 2017; Shwartz-Ziv and Tishby, 2017)

We model the joint distribution of the latent, noise-free parameters as a Gaussian

mixture model (GMM), a weighted linear combination of multivariate Gaussians, i.e.,

P(z,F) =) w" N(z F | p*, "), (7.1)

By imposing that Y, w* = 1, this density is correctly normalised, i.e.,
Zwk//N(z,F\uk,zk)dzdF:Zwkzl. (7.2)
k k

This choice has several useful features. Firstly, GMMs are easy to train using
standard, well-tested methods. This is discussed further in section 7.1.1. Secondly,
inference with GMMs is computationally inexpensive as they can be efficiently sampled
as detailed in section 7.1.4. Lastly, GMMs are mathematically convenient. Both the
conditional and marginal distributions of multivariate Gaussians are also Gaussians.
The same is also true of both the product and convolution of several multivariate
Gaussians. These properties will be used frequently throughout this chapter to render
many calculations analytic. Despite this, GMMs can represent a wide variety of PDFs,

including those that are skewed or multimodal. This is demonstrated in Figure 7.1.

Using GMMs to infer photometric redshifts in this way was first done in Bovy
et al. (2012), who applied the method to obtain photometric redshifts of quasars and
used model selection techniques to separate stars and quasars. The method we present
in this chapter differs from this in several ways. Firstly, we extend the method to the

case of jointly inferring multiple redshifts directly from blended data.

Secondly, Bovy et al. (2012) fit a series of many GMMs to the fluxes and redshifts
of quasars in several magnitude bins. As a result, our model has significantly fewer
parameters to fit. Nevertheless, our use of cross-validation to set the number of mixture
components as described in section 7.1.3 provides the model sufficient flexibility to fit
the flux-redshift density with the full fidelity provided by the training set.
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Figure 7.1: Plot showing a variety of PDFs that can be represented by Gaussian mixture
models, given a sufficient number of components. The dashed grey curves show each
weighted Gaussian component, and the solid blue curves show the mixture formed by
the linear combination of these components.

The binning of Bovy et al. (2012) is not possible due to the extension to blended
sources. Observations in this case are of the flux of the blended source, while the
magnitude bin in that model is chosen based on the magnitude of an individual galaxy.
This quantity that is not observed in the blended case, and so cannot be used to choose
a magnitude bin. The same is true of colours, i.e., ratios of fluxes relative to the flux in a
particular reference band, which are often used in machine learning-based photometric
redshift methods. Since the reference-band flux of each galaxy in a blended source is
not observed, the colours for each galaxy cannot be calculated and so cannot be used
to infer the redshifts.

Finally, our derivation does not use the convolution property of multivariate
Gaussians described above, since integrals over fluxes are then implicitly evaluated
from —oo to oo as multivariate Gaussians have infinite support. These integrals there-
fore contain contributions from non-physical negative fluxes. This is a safe approxi-
mation when considering unblended sources, since their flux is strongly constrained by
observations. However, the same is not true of blended sources, where the individual
flux of each constituent is not observed. Instead, we evaluate these results using an
efficient Monte Carlo integration method. We therefore treat unblended sources in the

same way for consistency.

All fluxes throughout are renormalised for numerical stability. This is done by

dividing each flux by the standard deviation in the training set, e.g., for band b,

B
o({F}a)

Normalising the data in this way is a common preprocessing step in machine learning
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methods. Without this renormalisation, the observed fluxes are small enough that the
EM fitting procedure is dominated by numerical errors as the covariance matrices of the
components become poorly conditioned. The corresponding change in the covariance

matrix of each data point is given by

iy (7.4)

Zij — = = .
o({Fitu)o({F}}u)

We also note that magnitudes are commonly used for this purpose in machine
learning-based photometric redshift methods, since the logarithmic transformation of
the flux also effectively normalises them. However, an advantage of the GMM method
presented here is that expressions for posteriors and evidences can be calculated an-
alytically. This relies on the model for the flux of the blended sources being a linear
combination of the fluxes of the individual constituents, since this leaves the likelihood
of the sum a Gaussian. This would no longer be the case when using magnitudes, as
the model for the magnitude of a blended source would be a non-linear function of the

individual constituent magnitudes.

7.1.1 Training Gaussian mixture models

Our prior density P(z, F') is defined in terms of the true, latent parameters. Therefore,
this density must be fitted with a method that incorporates both the noisy data and the
covariance. To do this, we use extreme deconvolution (Bovy et al., 2011), an extension
of the expectation-maximisation (EM) algorithm (Dempster et al., 1977) commonly
used the find the maximum-likelihood parameters of GMMs. This is the same fitting
method as the quasar photometric redshift method of Bovy et al. (2012).

Extreme deconvolution generalises the EM algorithm to the case where the data
is subject to normally-distributed errors. The EM algorithm is a general method for
fitting models with some form of hidden data in addition to the observed data. Given
an initial guess at the parameters, the algorithm iteratively modifies these parameters

to increase the likelihood, converging to a local maximum.

For a single multivariate Gaussian, the maximum-likelihood parameters can be
found exactly through the derivative of the likelihood. However, the same is not true
of mixtures of Gaussians, as these parameters are not available in closed form. The
hidden information that would make this tractable is the identity of the component
from which each sample was drawn. If this were known, fitting the GMM would

reduce to the previous analytic case. Though this information is hidden, this points



170 Chapter 7. Gaussian Mixture Models for Blended Photometric Redshifts

to an iterative solution; first, the parameter guess can be used to update the hidden

information, then this information can be used to update the parameters.

In essence, expectation-maximisation is a probabilistic version of this procedure
that takes into account the uncertainty in the hidden information. By averaging the
likelihood over the probability of each sample being drawn from each component, the
maximum likelihood parameters can be found in closed form. Since the component

probability depends on the parameters being fitted, this process is iterative.

The extreme deconvolution method of Bovy et al. (2011) extends the EM algo-
rithm to fit data with Gaussian errors. This is done by replacing the likelihood with a

marginalised version given by

P(z | {0}) = /P(ﬁ:,a: | {6}) dx = /P(ﬁ: | x)P(x | {0}) dx, (7.5)

where @ is the vector of observed values, @ is the latent vector of true values and {0}
are the mixture parameters being fitted, i.e., weights, means and covariances. The data
likelihood P(& | x) is assumed to be a multivariate Gaussian, and P(x | {0}) is the
GMM. Due to the convolution property of multivariate Gaussians, this marginalised
likelihood is also a Gaussian mixture, and thus amenable to being fitted using an
expectation-maximisation approach. Using this extreme deconvolution method, we fit
the joint flux-redshift distribution P(z, F') while accounting for uncertainties in the

training set.

This fitting procedure assumes that the number of mixture components is fixed.

The method we use to decide on this number is discussed in section 7.1.3.

As discussed above, multivariate Gaussians have infinite support, and so non-
physical negative fluxes and negative redshifts are a priori allowed. No non-physical
fluxes will be present in the training set, and negative redshifts, while not non-physical,
are sufficiently rare that they can be presumed to not be present either. As a result,
there is no incentive for the training algorithm to assign significant prior volume here.
However, without an additional prior on the mixture parameters, prior volume in

negative regions is not penalised either.

It is possible to generalise EM-based methods such as extreme deconvolution to
maximise the posterior rather than the likelihood by adding a log-prior. However, while
this will ameliorate the problem of negative values, it cannot eliminate it completely;
the GMM having infinite support means that every point in parameter space will always

have non-zero density.

An alternative approach is to impose an additional prior that is zero is any
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negative regions of parameter space, i.e.,

P(z,F) = (2, F) ) uw*N(z F | p*, ") (7.6)

where

0 forz, FF <0
Uiz F) = (7.7)

1 otherwise.

This will exactly fix the problem of negative values. However, it will also force
otherwise analytic integrations to have to be done numerically. These cases are dis-

cussed in the relevant sections below.

Imposing this boundary prior will also change the normalisation of the prior from
unity, i.e.,

//1/;(2«, F)Y wN(z F | p¥ 2 dz dF # 1. (7.8)
k

The model selection described below requires that the prior be normalised. This nor-
malisation differs between the single- and two-constituent cases, with the latter also
being affected by the sorting condition. These normalisations are therefore discussed

in their respective sections below.

It should be noted that, since this is an empirical method that does not rely on any
underlying physical model in the way that a template-based method does, the redshift
can be transformed almost arbitrarily. The only restrictions in this transformation
are that it is both invertible and well-defined for all positive real numbers. The only
modifications to the method required to accommodate this are to the limits of redshift
integrals. For a transformation 7 (z), the lower and upper limits should be replaced
with 7(0) and 7T (c0) respectively.

The transformation 7 (z) = log(z) would seem to be a sensible choice, as the
lower and upper integration limits would become —oo and oo respectively, rendering
all the redshift integrations throughout analytic. This is the approach taken by Bovy
et al. (2012). However, in our tests, we found that this transformation reduces the
accuracy of the blended redshift inference. The difference in accuracy of the single
redshift inference was negligible. As a result, we do not transform redshifts throughout

this chapter.

A plot of this prior distribution, fitted to the simulated LSST-like training data
described in section 7.3 and plotted using corner.py (Foreman-Mackey, 2016), is
shown in Figure 7.2. The ability to plot this distribution is an advantage to this GMM

method. As described above, machine learning methods can act as black boxes, where
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what has been learned is a complicated function approximator that can be difficult to
interpret. In contrast, the central object being learned here is the joint flux-redshift
distribution, a meaningful statistical object that can be plotted, sampled from and

manipulated mathematically.

7.1.2 Utilising blended training data

The derivations detailed in sections 7.2.1 and 7.2.2 are presented for a scalar redshift z.
However, it should be noted that these single-constituent results also hold for a vector
z. As a result, this method can be generalised so that the model is fitted to blended
training data, i.e., a vector of blended fluxes with the associated vector of redshifts for

each constituent.

Utilising blended training data would allow the method to infer both redshifts
and the number of constituents accurately in cases where the blended constituents were
systematically different from non-blended constituents. The cost of this, however, is
an increase in the required size of the training set. Machine learning-based methods
require a training set that is representative of the test set in order to be accurate. A
blended training set would therefore have to contain sufficient examples of all possible
pairs of constituents, rather than the constituents alone as required for the results in

sections 7.2.3 and 7.2.4.

7.1.3 Cross-validating the number of mixture components

The procedure described in section 7.1.1 will fit the weights, means and covariances of
the GMM for a fixed number of components. However, it is difficult a priori to choose
this number; including more components within the mixture allows it more flexibility,
but too many will cause the model to overfit. Given enough mixture components, the
variance of each component will approach zero, with each being responsible for only a
single sample. While this will significantly increase the likelihood of the training set,

it will also cause the model to generalise extremely poorly.

Overfitting is a general concern when fitting machine learning models. As a
result, various techniques for preventing overfitting have been suggested. These include
restricting the dimensionality of the parameter space as we do here by fixing the number
of components, disfavouring overfitted parameters through regularisation (e.g., Hoerl
and Kennard, 1970) or Bayesian priors (e.g., MacKay, 1992), and stopping training
before overfitting occurs (e.g., Prechelt, 1998).
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Figure 7.2: Corner plot of an example flux-redshift distribution fitted by our model.
This density shown here is visualised using 10® samples drawn from a model that was
fitted to the LSST-like simulations presented in section 7.3.
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The ability for a machine learning method to generalise and whether it has been
overfitted can be tested by using a a validation set, an additional set of data where
the input and output are known but is not used during the training. By measuring
the difference between the prediction and the known ground truth, the model can be

evaluated.

It is useful to point out that a corollary to the notion of overfitting is that the
fitting procedure need not converge to a global maximum, as that set of parameters
will overfit the data. Instead, local maxima can be nearly as accurate on the test set,
while generalising much better (Choromanska et al., 2014). Therefore, it is reasonable
to use parameters corresponding to local maxima that are found to perform well during
validation. This can avoid expending significant optimisation effort attempting to fit

the global maximum.

To choose the number of components, we use k-fold cross validation, a method
that repeatedly splits the data into training and validation sets. The training set is
first split into k subsets. The model is then trained on k& — 1 subsets of this data, as-
suming a fixed number of mixture components M. The remaining subset is then used
for validation. By evaluating the model using the fluxes of this subset, the redshift
predictions can be compared to the known truth and scored based on their accuracy.
This training and validation is repeated k times for each number of components con-
sidered so that each subset is used for evaluation once. The average score can then be

used to evaluate each number of components.

To evaluate the accuracy of the redshift predictions, we use the RMS scatter.
Given a predicted redshift 2, , and a spectroscopic redshift Z, ; for galaxy g, the nor-

malised error is defined as

Zeg — 2
5, = 2f TP 7.9
g 1+ %, (7.9)

After calculating this error for n, galaxies, the RMS scatter for the sample is then

1 B
ORMS = [~ Z(Sg : (7.10)
§ g

This metric is evaluated using k-fold validation for each number of mixture components

given by

M being considered. We then choose M to be the number of components that minimises
the RMS scatter averaged over each of the k folds.
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7.1.4 Sampling from Gaussian mixture models

One of the significant advantages of using GMMs is that they can be efficiently sampled
from without using methods such as MCMC. Since they are simply linear combinations
of component distributions, a simple sampling scheme is to randomly select one of the
components with a probability given by the weights, and then to draw a sample from

the respective multivariate Gaussian.

This sampling scheme allows GMMs to be sampled efficiently and without rejec-
tion. However, the addition of the boundary prior described in section 7.2.1 means that
samples with negative fluxes and redshifts are rejected during inference. Nevertheless,
the efficiency of this sampling scheme means that this does not pose a problem, since
many samples can still be drawn from the relevant posterior with little computational
effort.

7.1.5 Compressed storage of PDFs

As described above, it is important that the results of photometric redshifts are rep-
resented as a PDF. However, given the large sample sizes of future galaxy surveys
like LSST, storing these PDFs can present a problem. While a point estimate of the
redshift and an associated error can be stored simply as two real numbers, a PDF will
generally require many more. A naive representation of this distribution is a histogram
where the redshift bins are fixed for all sources. While this is simple, it is not space

efficient.

This problem was first investigated by Carrasco Kind and Brunner (2014), who
proposed a sparse basis representation using Gaussian and Voigt distributions. Us-
ing this method, the PDF can be stored in a single signed integer per basis function,
with O(10) basis functions required to accurately reconstruct the original PDFs. Malz
et al. (2018) test PDF compression methods by measuring the Kullback-Leibler diver-
gence between the original and compressed PDFs. They suggest storing the redshifts

corresponding to equally-spaced quantiles as an alternative to histograms.

The posteriors presented here are GMMs, potentially multiplied by an additional
physical constraint. This representation permits a simple compression technique of
discarding low-weight components. By construction, the number of components in the
mixture describing the prior is the same as the mixture describing the redshift posterior.
However, the latter is generally significantly more compact, describing the density over

the parameter space for a single source only, rather than the entire population. It is
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therefore reasonable to expect that this posterior distribution could be represented by

fewer components than the prior.

If additional computation can be afforded for a further reduction in storage space,
mixture components can also be merged into a smaller number of approximating com-
ponents. This procedure is known as mixture reduction (see, e.g., West, 1993; Williams
and Maybeck, 2006; Runnalls, 2007; Schieferdecker and Huber, 2009).

7.2 Deriving posteriors and evidences

7.2.1 Single-constituent posterior

We now derive the posterior distribution assuming that the source consists of a single,
unblended constituent galaxy. The redshift under this model can then be inferred by
sampling from this posterior, as described in section 7.1.4. We start by marginalising

over the true, latent flux vector F', giving
P(: | F) :/P(Z,F | F)dF . (7.11)
Applying Bayes rule, this becomes
P(z | F) x /P(F | F) P(z, F) dF, (7.12)

where the unnecessary redshift conditioning has been dropped from the likelihood. We
assume the likelihood to be a multivariate Gaussian centred on the observed fluxes,
ie.,

P(F|F)=N(F | F, 2", (7.13)

where EF is the covariance matrix of the observation. Galaxy surveys typically assume
the errors on observed fluxes in each band to be independent, i.e., given as a flux and
an error. In this case, the covariance matrix would simply be diagonal. No assumption
is made about this covariance throughout however, allowing fluxes to be correlated in

general.

The prior in equation 7.12 is given by the GMM described above. This prior is
the only term involving the redshift; it fully represents the relation between flux and

redshift learned from the training set.

Inserting both the prior and the likelihood into equation 7.12, the posterior be-

comes
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P(z | F) x Zwk/N(F | F,=F) N(z, F | p*, %) dF . (7.14)

This posterior now contains the product of two Gaussian PDFs, albeit with dif-
ferent dimensionalities. We proceed by combining these two densities into a single
multivariate Gaussian. This is analogous to the derivation of Bovy et al. (2012). How-
ever, as described above, we do not make use of the convolution property of multivariate
Gaussians, instead forming the product explicitly. To do this, we write our posterior

in terms of a parameter vector 8 partitioned into redshift and fluxes, i.e.,
0= . (7.15)

Throughout, we label the redshift and flux blocks of parameters partitioned in the

same way with z and f respectively.

The likelihood involves only the flux partition of the parameter vector. However,
our prior has support over both redshift and flux, i.e., all of 8. The component param-

eters are thus partitioned in the same way so that the mean and covariance are given
by

k
ph = . (7.16)
pf
and
o Th
o = (7.17)
DI

respectively. The product of these two densities is most easily written in terms of the

natural parametrisation® of the multivariate Gaussian. This has a density given by
\/ T L 7
N(@|n,A) = exp |a+n'z - Sa'Az| (7.18)

where we have added a tilde to notate the alternative parametrisation. The normali-

sation factor is given by

1

a = —3 [dlog(2m) —log|A| +n"A™'n] , (7.19)

I This is also referred to as the canonical or information parametrisation.
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and the covariance matrix and mean vector are replaced with the natural parameters
A =X""'and n =X 'u. respectively. The inverse covariance matrix A is known as
the precision matrix. The product of the two densities in equation 7.14 can then be
combined into a single multivariate Gaussian written in this natural parametrisation,
given by

N(F | F, ") N(z, F | " 5 = SN (2, F | n"F, AT, (7.20)

where the new parameters are

R 0 0
AY = (2N A (7.21)
O (ZF)fl
and
kF k\—1, .k 0
R (7.22)
(Z")F

Conveniently, the constant of proportionality ¢ can also be written in terms of a mul-

tivariate Gaussian in standard parametrisation. This is given by
o = N(uf | F,. 25 +2"). (7.23)

These results are close to a standard property (e.g., Petersen and Pedersen, 2014) where
the product of two multivariate Gaussian densities is also a multivariate Gaussian.
However, the differing dimensionalities of the two densities in equation 7.20 slightly

alter the expressions for the new parameters.

Inserting these results into equation 7.14 and moving constant terms outside of

the integral, the expression for the posterior becomes

P(: | F) o Zwkcf;/mz,F |t ARF) A (7.24)
k

In principle, this integral can be done analytically by moving back to standard

N N\ —1 . o N
parametrisation, i.e., I* = (AkF ) and ptf = ZFpk The marginalisation can
then be done by dropping the corresponding elements from the mean vector and co-

variance matrix, giving

P(z | F)oc Yy whdN(z | uf" Z5). (7.25)
k
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Note that this is simply a one-dimensional Gaussian mixture model with a new set of

weights given by whf' = wkck,

An important caveat to this result, however, is that the limits of integration are
assumed to be (—o0, 00); that is, non-physical negative fluxes contribute to the integral.
This is the same assumption as used in the derivation in Bovy et al. (2012) using the
convolution property of multivariate Gaussians. For this non-blended photo-z, this
assumption is sound since the latent fluxes are strongly constrained by the likelihood,
meaning that negative fluxes will be strongly down-weighted. However, this will not
be the case for the blended photo-z derived in section 7.2.3 where only the sum of two

latent flux vectors is observed.

An alternative approach is to add the boundary prior ¢(z, F') as described in
section 7.1.1. This has two effects. Firstly, the prior with this addition must be
explicitly normalised, a necessary condition for the model selection. The normalisation

factor is given by an integral over the unnormalised prior, i.e.,
A = //¢(2,F) > wfN(z, F | p*, 5¥) dz dF . (7.26)
k

This integral can be efficiently estimated using Monte Carlo integration. First, a set of
redshifts and fluxes {z, F'} is sampled from the mixture, as described in section 7.1.4.
Since the prior without the boundary prior is normalised to unity as in equation 7.2,
this integral is then equal to fraction of these samples obeying the boundary prior, i.e.,
where ¢(z, F') = 1.

The second effect of adding the boundary prior is that marginalising over fluxes
is no longer analytic. Inserting the boundary prior and the corresponding prior nor-

malisation A, the posterior we want to sample from is given by

Pz | B) o A Y wheh / O(z, F)N (2, F | g°F, AFF) dF | (7.27)
k

However, the boundary prior makes this integral non-analytic and the resulting pos-
terior is not a standard GMM, meaning that it cannot be sampled as described in

section 7.1.4. Instead, we sample from the density given by

P(z,F| F) x A Zwkclf (2, F | nkF,Akﬁ). (7.28)
K

This is the desired posterior from equation 7.27 without the marginalisation over fluxes
and where we have neglected the boundary prior term. This can then be corrected for by

rejecting any sample that contains negative fluxes or redshift, leaving only the samples
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that obey the boundary prior. = The marginalisation can then be done trivially by
discarding the fluxes and considering only the redshift part of the remaining samples.
Since equation 7.28 is simply a new Gaussian mixture model as before, sampling from
this distribution is extremely computationally efficient, as detailed in section 7.1.4. As
described above, the inclusion of the boundary prior is most important for the blended
photo-z, though we include it here for completeness and consistency with the blended

case later.

7.2.2 Single-constituent evidence

One of the more computationally demanding aspects of the method of chapter 6 is the
use of nested sampling in order to calculate the evidence. A significant advantage of
the GMM method presented here is that this expensive integral can be evaluated much

more quickly, an important feature for applying the method to future surveys.

The single-constituent evidence &' is defined to be the integral of the unnor-

malised posterior over the full parameter space, i.e.,

://P(pr) P(z, F) dF dz. (7.29)

As described above, by ignoring the boundary prior, the integral over fluxes can be
performed analytically to give a new Gaussian mixture model. Inserting this result

into the evidence integral, equation 7.29 becomes

& / N(z | pbF 25 dz (7.30)

Since the multivariate Gaussian density of each component is normalised to unity,

the evidence is then given simply by the sum over the new mixture weights, i.e.,

Zw’f F=S Wb (7.31)

In this case, the evidence is analytic and therefore easy to compute. However, as
above, computing these integrals analytically implicitly involves contributions from

non-physical negative fluxes and redshifts.

To combat this, we can numerically integrate the non-marginalised posterior of

fluxes and redshifts including the boundary prior introduced in section 7.1.1 and the
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accompanying normalisation from equation 7.26, i.e.,
gl = //.A1 Zwkc’f (2, F)N (2, F | nkF,AkF) dF dz. (7.32)
k

This integral can be evaluated numerically by using fluxes and redshifts sampled
from the non-marginalised posterior with the boundary prior removed, given in equa-
tion 7.28. This is another Gaussian mixture model, and thus these samples are com-
putationally efficient to draw, as described in section 7.1.4. In addition, the posterior
samples drawn for inference are also sampled from equation 7.28 and so can be reused

here, saving computation.

Given a set of samples {z, F'} from equation 7.28, only a fraction F; of these
will contain no negative fluxes. Unlike equation 7.26, however, this density is not

normalised to unity, but rather
V) = Alzwkclf//./(/'(z,F | nkF,Akﬁ) dz dF
k

= A E whck .
i

(7.33)

By using this to compute a Monte Carlo estimate of the integral, the evidence can

therefore be estimated to be

51 =~ V1J7:1 = ./41f1 Zwkclf = ./41]:1 Z ka . (734)
k k

7.2.3 Two-constituent posterior

We now extend the inference method to the case of a blended source consisting of two
constituent galaxies by deriving the two-constituent posterior. Here, the parameters
we wish to infer are the redshifts of each constituent {z} = {z1, 22}, given the data

vector of observed fluxes F.

As before, we start by marginalising over the latent flux vectors. As this is the
two-constituent posterior, there are now two flux vectors to marginalise over, {F'} =

{Fi, F,}, one for each galaxy. The posterior is therefore given by

P({z} | F) = /P({Z},{F} | F) d{F}. (7.35)
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Applying Bayes rule, this becomes
P((=} | By [ PO (F)) P((:),(FD) d{F}. (7.36)

where P({z},{F'}) is the joint prior over flux and redshift for both constituents. This
prior can be factorised to be written in terms of the individual constituent priors
P(z, F), allowing the GMM to be inserted. However, as described in section 6.1, the

parameters of each constituent are correlated. Thus, the joint prior can be written as
P({z},{F}) < P(z1, F1)P(z2, F5) M (21, 23) , (7.37)

where the blending-related correlations have been factored into a single term
M (21, 29) = 7(z1, 29) [1 + &(21, 20)] - (7.38)

Here, &£(z1, 22) is the two-point galaxy correlation function, evaluated at the line-of-
sight comoving distance between 2z and z;. This correlation function is commonly
modelled as a power law (e.g., Peebles, 2001). However, we make no assumption of its
form throughout this derivation, requiring only that it can be evaluated given a pair of
redshifts. This correlation function was found to have little effect in chapter 6 so the
results throughout assume £(z1, 2z2) = 0. Nevertheless, we include it in the derivations

here for completeness. The term 7(z1, 22) represents the sorting condition, given by

1 for z; < 29
7T<21, 22) = (739)
0 otherwise.

The need for these terms is discussed in detail in chapter 6.

Any selection effects on the training set are already captured in the prior through
the training step. This assumes that the training set is sufficiently representative of
the test set, though we note that this caveat applies to machine learning methods in
general. The selection effect term of chapter 6 simply acts to disfavour inferring fluxes
such that the total flux is near the survey limit, as they are a priori less likely to
have been selected. Since the total flux is well constrained by observations, this term
has little effect on parameter inferences. Instead, its use is motivated by making the
magnitude prior proper. This is necessary for evaluating the marginal likelihood for
model comparison. However, our GMM prior is proper by construction. As a result,

we do not include the selection effect term here.

As in section 7.2.1, the model selection requires the joint prior to be normalised.
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We do this by integrating the prior using Monte Carlo integration. To be able to draw
samples from the prior efficiently, we insert the definitions of each term and combine
into another Gaussian mixture that can be sampled as described in section 7.1.4. We
also include the boundary prior described in section 7.1.1 in each constituent prior to

prevent contributions to the density from non-physical negative fluxes and redshifts.

Inserting the GMM, correlation and boundary prior terms into equation 7.37,

the joint prior becomes

P({z},{F}) oc M (21, 22)1(21, Fi)tb(20, F) Z Zwkwjx
O (7.40)

N(Z1,F1 | Mk,Zk)N(22,F2 | uj,zj)-

We now follow an analogous method to that of section 7.2.1 by combining the two mul-
tivariate Gaussians into a single density. We start by defining a partitioned parameter

vector that each density can be written in terms of. This is given by

21

F
P = . (7.41)

Z9

F;

The product of the densities in equation 7.40 can then be written as a single Gaussian

density in terms of this parameter vector
Nz, Fy | o8 B8 N (e, By | 0!, 27) = N (3 | p,29), (7.42)

where the new mean vector is given by

1y

k k

: H Feg
ki = = (7.43)

I I

J
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and the covariance matrix

SEoxk 00

L [Z0 5 X% 0 0
>k — | = |- (7.44)
0o X 0 o X, X

o o ¥,

This combination is trivial since we assume that all correlations between the two con-
stituents have already been factored out into M ({z},{F'}). As a result, the two con-
stituent priors are independent and can be combined with the block diagonal covariance

matrix defined in equation 7.44. The joint prior thus becomes

P({z},{F}) o< M (21, 2)0 (21, F1 (22, F) X
> D W N (| ph, ), (7.45)

k

i.e., a GMM multiplied by several additional terms. The normalisation of this prior is

then given by the integral

Ay = //// M (z1, 20)0 (21, F1) (29, F2) X

Z Zwkwj/\/(v,b | ¥, 2% dzy dz, AF, dFp.

kg

(7.46)

Analogously to equation 7.26, this can be evaluated using samples drawn from the

Gaussian mixture, i.e.,

{Zl,ZQ,Fl,FQ} ~ G(TP) = ZZwkw]N(w | .ukjvzkj) . (747)
ko J

Given ny of these samples {2}, 2 F} . F) | i = 1...n4}, we can compute a Monte
Carlo integration of Ay through importance sampling. Since G(%) is normalised to

unity, this integral is given by

Ay =

Z [1 + 5(217 Zé)] W(Ziv 25)1/1(,21, Ff)d’('zév FQZ> )

(7.48)
nA

i

If the correlation function and sorting condition were ignored, this would simply be

equal to the fraction of samples that obey the boundary prior, as in the definition of
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Aji. Thus, the joint prior is given by

P({z}, {F}) = Ay M (21, 20)00(21, F1)( 22, Fy) X
Y D wrIN(p | ). (7.49)

k

This joint prior can then be inserted into equation 7.36 alongside the definition of
the likelihood to develop the posterior. As before, we assume that the likelihood is a
multivariate Gaussian centred on the observed fluxes, though we now model the flux

as the sum of the constituent fluxes, i.e.,
P(F|F)=N(Fi+F, | F.x"). (7.50)
Inserting this likelihood and the joint prior into equation 7.36, the posterior becomes

P({z} | F) ocds / / M(z1, )1, B2 (2, F)
SN WrwIN(F + Fy | FL 2% (7.51)
k J

N | ph,Z%) dF, dF;.

To combine the prior term with the likelihood, we rewrite it in terms of natural

parameters partitioned in the same way as equation 7.41. These new parameters are

given by
77k
k k
. Ui n
b — " (7.52)
7’ n
n}
and
Ak Ak 0 0
- [AF 0 Af, Af 0 0
AR = = |- (7.53)
0 A 0 0 A, AL
0 0 A, A}

. o\ —1
By also rewriting the likelihood in terms of the natural parameters A" = <§F ) and
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np = AFF, the posterior becomes

P F) o [[ Aot )it B, B
Z Zwkij(Fl + F; | nF,Aﬁ)x (7.54)
kg
N | 0™, AM) dF, dF;.
The two remaining densities can now be combined into a single term given by

N(F + Fy | n", ATY N (9 | ", A%) oc N (3 | 97, ARIT), (7.55)

where the combined parameters are given by

T]k
k E
| nb+m
g = | (7.56)
m,
n +n’
and
A® Ak 0 0
| AL AR+AT 0 AT
ARE = [T ! . (7.57)
0 0 A‘;z Aif
0 AT AL AGAT

As before, the constant of proportionality cgj in equation 7.55 can also be written in

terms of another multivariate Gaussian density
= N (uﬁ + | F [zﬁ + ok Z‘QD . (7.58)
The posterior is thus given by

P} By [ [ A (o1 2)0e0 B )
o> Wl N | 0T ANT) ARy dF.
2

J

(7.59)

As in the single constituent case, it would be possible to do this integral an-
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alytically by ignoring the boundary prior ¢(z, F'). Converting back to the standard

parametrisation, the final posterior would then be given by

P({z} | F) oc AgM (21, 22) Zzwkchgj/\/(zl, 2y | N];jF»lecgﬁ)' (7.60)
ko J

With the boundary prior, the integral is no longer analytically tractable. As
a result, we take the same approach as in the single constituent case and sample
from the full, non-marginalised posterior. An additional complication here are the
extra correlations factored into M (21, z2). As a result of this term, the posterior is no
longer a Gaussian mixture and therefore does not permit the efficient sampling scheme

described in section 7.1.4.

Instead, we can sample from the full posterior distribution ignoring the contribu-
tion of both the the boundary prior and the correlations, modifying the samples post
hoc by rejection and reweighting to correct for these respectively. This set of samples

is thus drawn from the simplified posterior H (%)), given by

{2120 FL ) ~ H() oAy Y D whud N (| 97, AN, (7.61)

ko J

This simplified posterior is now a standard GMM, and can therefore be efficiently
sampled as described in section 7.1.4. The neglected terms can now be corrected for

separately.

Firstly, the boundary priors can be included by rejecting samples where the flux
or the redshift is negative, as in section 7.2.1. The sorting condition could also be
included by simply rejecting samples where it was not respected. However, this is
unnecessarily wasteful of computation. Note that mixture component-jk is identical
to component-kj under exchange of constituents. Every component is matched with
a pair in this way. As a result, the posterior is exactly symmetric, meaning that
samples with misordered redshifts can be corrected by simply swapping the order of

their constituents.

The redshift correlation function can be corrected for using importance sampling
by associating each sample with a weight [1 + £(z1, 29)]. All inferences done with these
samples would then need to account for these weights. The risk with this importance
sampling approach is that regions of parameter space where the correlation function
is large could be poorly sampled when using the modified posterior. The effect of the
correlation function would then be under-represented. However, chapter 6 found that

including the redshift correlation function when sampling the posterior had little effect
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on inferences. As a result, we expect any errors from the use of importance sampling

here to be negligible.

Given a set of corrected samples of redshift and flux, the marginalisation can
then be done in the same way as in section 7.2.1, by discarding the flux parts of the
samples. The distribution of the remaining redshift samples will then be proportional

to the marginalised posterior defined in equation 7.59, as desired.

7.2.4 Two-constituent evidence

The two-constituent evidence £2 is defined as the integral of the blended posterior over

both sets of fluxes and redshifts, i.e.,

& = [[ PE1{FY) PULAFD) e afF) (7.62)

Inserting the definitions of each term from the full posterior given in equation 7.59,

this expression becomes

£ = A, //// M (21, 20)0 (21, Fy)p (29, Fy) X

Z Zwkchgj./\f(z,b | nkjF,AkjF) dz; dzo dF, dF.

ko J

(7.63)

As before, we evaluate this integral numerically using Monte Carlo integration. To do
this, we can reuse the samples drawn for the blended posterior inference from H ()
defined in equation 7.61. Given a set of ny of these samples {z¢, 25, F{ F§ | i = 1...ny},

we can define the weighted fraction

Z [1 + 5(217 Zé)] 7T<Ziv Z%)l/}(,?:i, Ff)d’(’zév F21> )

na

Fy= (7.64)

i
This is analogous to Fi, the fraction of samples drawn from the non-marginalised
single-constituent posterior defined in equation 7.28 that obey the boundary prior, but
with the additional blending-related correlations. The simplified posterior H (%)) is not
normalised to unity. However, the normalisation constant V%, is given by the integral

over the full support of the distribution, giving
Yy = / A3 S wrwd N o | 9F, AR dg
Eo g

-
= A, E E whwicy’ .
kg

(7.65)
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Thus, the two-constituent evidence can be estimated by importance sampling to be

52 ~ ngg == AQFQ Z Zwkchgj . (766)
ko J

7.3 Tests on simulated sources

In order to test our method, we construct a two sets of simulated observations to
train our model and compare predictions against. These two sets correspond to an
LSST-like optical survey (Ivezi¢ et al., 2019), and the same survey with additional
Euclid-like infrared observations (Laureijs et al., 2011). The complementarity of LSST
and Euclid has been investigated previously (e.g., Rhodes et al., 2017); additional
filter bands will help to break colour-redshift degeneracies and therefore enable more

accurate photometric redshifts.

Simulated observations are generated by redshifting a template, integrating over
the relevant filter response curves, scaling the results to a given i-band magnitude,
adding observational noise and imposing selection criteria. We use the set of templates
assembled by Coe et al. (2006) containing eight templates. This is the default template
set in the commonly used BPZ (Benitez, 2000) photometric redshift software.

We randomly sample true redshift, magnitude and template parameters for each
source from a prior using emcee (Foreman-Mackey et al., 2013). The single-constituent
joint redshift-magnitude-template prior is defined as follows. First we factorise into

separate prior terms, i.e.,
P(z,m,t) = P(z | m)P(t | m)P(m), (7.67)

where t is an integer labelling each template and the redshift prior is assumed to be
independent of template. The redshift and magnitude priors are then given by the
LSST predictions in LSST Science Collaboration et al. (2009). The redshift prior,
based on simulated high-redshift galaxy populations (Kitzbichler and White, 2007) is
given by

Pla|m)= 2201(7”) <Zoim))2€xp (#;)) 7 (768)

2o(m) = 0.0417m — 0.744, (7.69)

where

and m refers to i-band magnitude. The corresponding i-band magnitude prior, fitted

to data from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS; Hoekstra
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et al., 2006), is then given by
P(m) oc 10°-31(m=25) (7.70)
We also use the template prior from Benitez (2000), given by

P<t ‘ m> — foexp (—ke[m — ma)) | (7.71)

where we set my = 20 and the parameters f; and ki, each dependent on the template

type, are set to the values given in Benitez (2000).

Once the redshift, magnitude and template are sampled from this joint prior,
the intrinsic fluxes are simulated by redshifting the template and integrating over filter
response curves. For the optical survey, we use the six LSST filters u, g, 7,4, z, Y (LSST
Science Collaboration et al., 2009). We use the three Euclid filters Y, J, H (Racca
et al., 2016) as additional infrared bands, giving a total of nine bands for the combined

Surveys.

Finally, we add magnitude-dependent observational noise to each band. For
the optical bands, this is given by the predicted LSST noise model (LSST Science
Collaboration et al., 2009). The 50 depth of point sources in the Euclid Y, J and
H bands is 24mag (Laureijs et al., 2011), the same depth as point sources in the
LSST i-band (LSST Science Collaboration et al., 2009). We therefore approximate the
observational noise in the Y, J and H bands by assuming that their signal-to-noise is
equal to that of the i-band.

In order to simulate the flux of blended sources, we add the intrinsic fluxes of two
simulated sources and add observational noise corresponding to the total blended flux.
The two-constituent prior also needs to account for the blended-related terms described
above. The redshift prior includes the sorting condition 7(z1, 25), though we assume
no clustering, i.e., £(z1,22) = 0, as it has a negligible effect at large separations when
21 % z3. We also impose a prior on the faintest i-band magnitude of either constituent
such that it must be brighter than a 5o detection. A cut like this is necessary since
it only makes sense to consider a source blended when each constituent is sufficiently
bright. If a constituent is too faint, it should instead be considered to be a contributor

to the background flux, rather than that of the source itself.

Finally, we select sources by imposing an i-band magnitude cut of m; < 25.
This corresponds to the LSST gold sample (LSST Science Collaboration et al., 2009),
a population of ~ 4 x 10° high signal-to-noise galaxies. For each of the two sets of

simulated sources, we randomly select 10000 single-constituent sources to act as a
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Figure 7.3: Results of the cross-validation for the LSST-like simulated data. The points
show the RMS scatter averaged over the three folds, while the error bars show the error
on the mean. We choose the number of components to be N = 90, minimising the
average RMS scatter as indicated by the dotted black line.

training set, a further 10000 single-constituent sources for the unblended test set, and

10000 two-constituent sources for the blended test set.

Given the unblended training set, we use the procedure described in section 7.1.3
to set the number of mixture components N. Using 3-fold cross-validation, we test
from N =5 to N = 100 in multiples of 5, measuring the RMS scatter ogyg defined
in equation 7.10 at each iteration. In order to evaluate this, we must define a way
to calculate a point estimate z, from a set of ny samples {z,; | ¢ = 1...ny} drawn
from the posterior defined in section 7.2.1. We therefore define this point estimate to
be the mean of these samples, as this is equivalent to a Monte Carlo estimate of the

expectation value of the redshift, i.e.,

1 .
ZPEn_Q;ZPJ%/P(ZlF)ZdZ‘ (7.72)

The results of this cross-validation are shown in Figure 7.3. We find the average
RMS scatter across all folds Trys to be minimised when N = 90 with grys = 0.108.
We therefore use a mixture comprised of 90 components to fit the entire training set

for use throughout.

Examples of one-constituent posteriors inferred using samples from the distri-
bution defined in section 7.2.1 and conditioned on the LSST-like data are shown in

Figure 7.4. The four panels in this figure show the variety of shapes of posteriors that
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Figure 7.4: Plot showing four examples of single-constituent posteriors sampled using
our method on the unblended LSST-like data. The black dashed lines indicate the
sample means we use to define the point estimates z,. The true redshifts are indicated
by the solid orange lines.

can result from photometric redshifts and can be represented by the GMMs presented

here.

The top two panels of Figure 7.4 shows examples of well constrained, accurate
posteriors; their shapes are symmetric and close to that of a single Gaussian. However,
the posterior shown in the bottom left panel is left-skewed. This long-tailed posterior
is a common occurrence in the results of photometric redshift inference. Despite being
very non-Gaussian, it can be represented by a mixture of components. Finally, the bot-
tom right panel shows an example of a bimodal posterior that can be easily represented
by a mixture of well separated components. While the true redshift is contained well
within the lower peak of this posterior, the bimodality has pulled the mean redshift to
between the two peaks. As a result, the point estimate is inaccurate, despite the true
redshift lying at a point of significantly non-zero posterior density. This demonstrates
the loss of information resulting from the compression of a full posterior distribution

to a single point estimate.

Examples of two-constituent posteriors inferred using samples from the distribu-
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22

Figure 7.5: Plot showing three examples of two-constituent posteriors sampled using
the GMM on the blended LSST-like data. The black dashed lines indicate the sample
means we use to define the point estimates z,. The true redshifts of each constituent
are indicated by the orange lines.

tion defined in section 7.2.3 are shown in Figure 7.5. These samples are also drawn

from posteriors conditioned on the LSST-like data.

The left panel of Figure 7.5 shows a well constrained posterior. One edge of the
joint distribution lies along the z; = z, line. As a result, the effect of the sorting con-
dition 7(z1, z2) can be seen clearly, sharply cutting the joint distribution. The centre
panel shows a joint posterior that results in highly skewed marginal distributions. As
before, the long tail of the z; marginal distribution pulls the mean redshift away from
the peak. This demonstrates that, since point estimates are inevitably less informative
than the full posterior distribution, the choice of how these point estimates are defined
can significantly alter their accuracy. In this case, the accuracy of the point estimate
would be increased by choosing z; to be the redshift where the posterior peaks, i.e.,
the maximum a posteriori (MAP) value. However, we found that MAP point esti-
mates were less accurate over the whole sample on average. Finally, the right panel
of Figure 7.5 shows an example of a highly multimodal posterior that can arise in the

two-constituent case.

While less informative than the full posterior distributions, point estimates are
still a common product of photometric redshift inference. A plot of these point es-
timates, defined as the mean of samples drawn from the posterior, against the true
redshift for single-constituent data from the two simulated surveys is shown in Fig-
ure 7.6.

This figure shows that the method performs well in the single-constituent case,
i.e., on the standard photometric redshift inference problem. The vast majority of
sources have their redshifts recovered accurately; this can be seen by the significant

density of points around the z, = Z line, demonstrated in the plot by the colour of the
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Figure 7.6: Plot showing the point-estimate results obtained from the GMM on the
unblended simulated data. The left and right scatter plots show the point estimate re-
sults for the LSST-like and the combined LSST-Euclid-like surveys respectively. These
plots show the benefit of additional bands and increased wavelength coverage from near-
infrared data in reducing outliers. The dashed line denotes z, = Z;, and the dotted
lines indicate our outlier definition where |z, — 25| > 0.15(1 + Z;). Points are coloured
according to their density on the scatter plots to illustrate overplotting. The right
panel shows the distribution of the normalised error 4, defined in equation 7.9. The
solid purple line shows the results for the LSST-like survey, while the orange dashed
line shows the results for the combined LSST-Euclid-like survey. The black dashed
and dotted lines are defined as in the scatter plots.

points. Comparing the panels for the two simulations, the most significant difference is
in the number of outliers, which is reduced in the simulations with additional infrared
data. This can also be seen in the third panel, a histogram of the reduced error 5
defined in equation 7.9. When zoomed around the majority of values at small errors,

the difference between the histograms for the two sets of simulations is negligible.

This reduction of outliers is expected, as the additional filters can help to lift the
colour-redshift degeneracies discussed in section 7.1. We define outliers to be sources

where |z, — 25| > 0.15(1 + Z5). This boundary is shown as a dotted line in Figure 7.6.

In order to quantify the accuracy of these point estimates, we can use several
metrics. Firstly, we use the RMS scatter defined in equation 7.10. We find this scatter
to be orms = 0.105 for the LSST-like simulations, and ogysg = 0.038 for the simulations
with additional infrared data. While this difference is significant, it is primarily driven

by the reduction of outliers by the infrared data.

In the LSST-like survey, 1.82% of sources are outliers. This is reduced to 0.10%
in the combined LSST-Euclid-like simulations. These outliers have significant errors by
definition, are therefore can have a significant effect on the measured RMS scatter. In
order to identify these outliers as the most significant driver of the difference in accuracy
between the two sets of simulations, we measure the RMS scatter while neglecting these

sources, as in the photometric redshift accuracy tests of Hildebrandt et al. (2010).
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Figure 7.7: Plot showing the point-estimate results obtained from the GMM on the
blended simulated data. The top row shows the results for the LSST-like survey, and
the bottom row shows results for the combined LSST-Euclid-like survey. The left
plots show 2,1, the point estimate of the redshift for the lower-redshift constituent in
each blended source. The centre plots show z, 2, corresponding to the higher-redshift
constituent in each blended source. The right plots combine both z,; and z,2. The
dashed lines denotes z, = Z5, and the dotted lines indicate our outlier definition where
|2, — Z5] > 0.15(1 + Z;). Points are coloured according to their density on the scatter
plots to illustrate overplotting.

When this is done, the RMS of the LSST-like simulations drops to oryms = 0.036, while
the scatter of the simulations with additional Euclid-like data becomes orymg = 0.031.
Since these values are now far closer and the latter change was less dramatic, we
conclude that the biggest benefit afforded by the additional bands is the reduction of

outliers.

We also evaluate the same metrics on point estimates of the redshifts of the
blended simulated data. These point estimates are defined to be the mean of posterior
samples, as in the single-constituent case. A plot of these point estimates for each set

of simulated data is shown in Figure 7.7.

The blended redshift inference is a more challenging problem than standard pho-

tometric redshifts of unblended sources. However, while the scatter plots in Figure 7.7
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are noisier than the single-constituent plots in Figure 7.6, many redshifts are still re-
covered accurately. This can be seen in the high density of points around z, = Z;, again
demonstrated by their colour. This increase in noise over the single-constituent case
is expected, as the same number of data-points per source are used here to constrain

twice the number of parameters.

As in the single-constituent case, the addition of additional bands in the infrared
reduces both the RMS scatter and the number of outliers. For the LSST-like survey,
we find the scatter to be orymgs = 0.171, while the combined LSST-Euclid-like survey
has a scatter of ogms = 0.145. The outlier rate of the former survey is found to be
17.5%, while that of the latter is reduced to 12.4%.

As discussed in section 7.1, an important part of the results of photometric
redshift inference are PDFs. Unlike simple point estimates, PDFs represent the full
statistical knowledge of the redshift being inferred and are essential for rigorously
propagating uncertainties. It is therefore also important that the quality of the resulting

PDFs are assessed.

A conceptual problem with assessing the quality of PDFs is that there is no true
PDF that they can be compared against. This is in contrast to point estimates where
the spectroscopic redshift provides a known ground truth against which to compare.
Instead, Wittman et al. (2016) introduce a frequentist method to test the widths of
PDFs that relies on credible intervals (Cls).

The definition of Cls follows directly from that of posterior PDFs. For a given
posterior P(¢ | d) that is correctly normalised, the conditional probability that the pa-
rameter ¢ will lie within an interval [¢iow, ¥nign] is given by the integral of the posterior

over that interval, i.e.,

high
P(¢low§w§¢high|d):/w ) P(y|d)dy. (7.73)
low
The CI corresponding to a particular percentage is then defined to be the interval over
which equation 7.73 equals this percentage. In general, this interval will not be unique,
since the integral over many different intervals can be the same. For this reason, the
credible interval is often defined to be the highest posterior density (HPD) interval,
the interval covering the shortest length in parameter space for a given integral. In
general, this region does not need to be contiguous; the HPD region of multimodal

posteriors will instead be made up of several subintervals.

A conceptually simple way to define this HPD region is to consider a horizontal

line spanning the entirety of parameter space, drawn on a plot of the PDF. As this
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line is moved downwards, it will begin to intersect the PDF. The regions between these
intersections can then be integrated to give an area. The intervals contained within
these intersections are the HPD region corresponding to this area. Since this area will
monotonically increase as the line is moved downwards, this provides a way to define

the HPD region for a given percentage CI.

An intuitive interpretation of these intervals is that, given many repetitions of
the experiment and the subsequent construction of many such intervals of area «,
the true parameter would be contained within a fraction « of these intervals. This
notion is the interpretation of frequentist confidence intervals as coverage probabilities.
However, while this interpretation is intuitive, it is not guaranteed by a Bayesian
analysis. Instead, posteriors where this coverage probability property holds are said to
be calibrated, with several methods having been proposed to calibrate posteriors (e.g.
Syring and Martin, 2018; Sellentin and Starck, 2019).

The method introduced in Wittman et al. (2016) tests whether the posteriors
resulting from a photometric redshift method are calibrated. If they are, we should
expect that 50% of sources have their true redshift within their 50% CI. The equivalent
statement can be made for all levels of CI, generalising this to a continuous test. The
test may therefore give an indication of the performance of the method, and such a
test has been widely adopted in the photometric redshift literature (e.g., Leistedt and
Hogg, 2017; Gomes et al., 2017; Duncan et al., 2018; Meshcheryakov et al., 2018; Amaro
et al., 2018; Rodriguez-Murnoz et al., 2019).

By definition, if the true redshift of a source lies within its 50% CI, it will also
lie within all CIs corresponding to larger percentages, as the 50% CI will be a subset
of these. It is therefore sufficient to measure only the threshold CI that just contains
the true redshift. This will have one of the interval edges at the true redshift. This
region can therefore be measured by drawing the horizontal line detailed above so that
it intersects the posterior at the true redshift. The area ¢ corresponding to this interval
is measured for each galaxy in the sample being tested. The cumulative distribution
function (CDF) of these areas CDF(c) can then be calculated. Wittman et al. (2016)
note that for calibrated posteriors, the plot of this CDF against areas should be di-
agonal, i.e., CDF(c) = ¢. The deviation away from this line therefore measures how

overconfident or underconfident the PDFs are.

A plot of this test for the LSST-like simulated data is shown in Figure 7.8.
This figure shows that both the one- and two-constituent posteriors are approximately

calibrated and their ClIs can therefore be interpreted in a frequentist manner.

Finally, Figure 7.9 shows the relative probability for the blended and unblended
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Figure 7.8: Plot showing the results of the posterior width test performed on posteriors
obtained from our method on LSST-like simulated data. The solid purple line shows
the results for the single-constituent posteriors, and the dashed orange line shows the
results for the two-constituent posteriors. The black dotted line indicates the result
where posteriors are calibrated, while lines that go above and below this indicate
posteriors that are wider and narrower than calibrated posteriors respectively.
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Figure 7.9: Histograms of the log of the relative probabilities for the blended and
unblended models obtained using Bayesian model comparison on the simulated blended
data. The solid purple histogram shows the result for the LSST-like survey, while the
dashed orange histogram shows the result for the combined LSST-Euclid-like survey.
The black dashed line indicates no preference for either the unblended or blended
model. Larger values of Py ; favour the blended model more.

models P, ; calculated for the blended data of both simulated surveys. This quantity is
calculated using the evidences derived in sections 7.2.2 and 7.2.4 using equation 6.43.
We assume a ratio of model priors of unity, i.e., we do not a priori favour either the
one- or two-constituent models. A blended source is then favoured when InP,; > 1.
We find that the LSST-like survey identifies 92.4% of blended sources, while the survey
with additional infrared data identifies 89.3%.

7.4 GAMA blended sources catalogue

In addition to the simulated observations presented in section 7.3, we also test our
method against real observations. To do this, we use data from the Galaxy And Mass
Assembly (GAMA) survey (Baldry et al., 2017), a spectroscopic survey of > 150000
sources. Alongside this spectroscopy, these sources were also imaged in optical wave-
lengths by the Sloan Digital Sky Survey (SDSS) (Stoughton et al., 2002) and in infrared
wavelengths by the VISTA Kilo-degree Infrared Galaxy (VIKING) Survey (Edge et al.,
2013). Hill et al. (2011) used this imaging data to create self-consistent, aperture-
matched photometry in nine bands w,g,7,i,2,Y,J, H, K for all sources within the
GAMA survey. As a result, these sources have both high-quality photometry and accu-

rate spectroscopic redshifts for training and testing our photometric redshift method.
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Figure 7.10: Results of the cross-validation for the GAMA blended sources catalogue
data. The points show the RMS scatter averaged over the three folds, while the error
bars show the error on the mean. We choose the number of components to be N = 45,
minimising the average RMS scatter as indicated by the dotted black line.

Holwerda et al. (2015) used this data to spectroscopically identify blended sources
in order to search for strong-lens candidates. The resulting GAMA blended sources
catalogue contains blended photometry for 280 sources, alongside the spectroscopic
redshift of each constituent. We therefore use this catalogue to test the performance
of our method on real observations of blended sources. To accompany this, we also

randomly select two sets of 10000 unblended sources for a training and test set.

As for the simulated observations, we use 3-fold cross-validation to find the num-
ber of mixture components N that minimises ogys the RMS scatter averaged over
all folds. The results of this are shown in Figure 7.10. We find the minimum scatter
when the number of mixture components is N = 45, giving gms = 0.066. We there-
fore continue with a GMM of 45 components fitted to the 10000 unblended training

sources.

We then compute point estimates of the single-constituent redshifts by averaging
samples drawn from the posterior as before. A plot of this is shown in Figure 7.11. We
find the RMS scatter to be orymg = 0.067, with 3.6% of sources being outliers.

A scatter plot of the two-constituent point estimates is shown in Figure 7.12. As
in the simulated case, the blended results are noisier than the single-constituent case.
We find the RMS scatter to be ogrmg = 0.091, and 10.8% of sources to be outliers.

Examples of single-constituent posteriors are shown in Figure 7.13. Like the

single-constituent posteriors conditioned on the simulated data, these distributions
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Figure 7.11: Plot showing the point-estimate results obtained from the GMM on the
unblended GAMA data. The dashed line denotes z, = %5, and the dotted lines indicate
our outlier definition where |z, — 25| > 0.15(1 + Z). Points are coloured according to
their density on the scatter plots to illustrate overplotting.
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Figure 7.12: Plot showing the point-estimate results obtained from the GMM on the
data from the GAMA blended sources catalogue, with various density ratio thresholds.
The left column shows z,, the point estimate of the redshift for the lower-redshift
constituent in each blended source. The centre column shows 2,9, corresponding to
the higher-redshift constituent in each blended source. The right column combines both
2p1 and zp9. The top row shows the results for the full sample, while the centre and
bottom rows have sources with expected density ratios less than 0.45 and 0.8 removed
respectively. where the expected density ratio is defined in equations 7.76 and 7.77.
Imposing this density ratio threshold removes sources that are least well-represented
in the training set, and so we would expect the results to improve as the threshold is
increased. As indicated in the text, the summary statistics improve as expected by
making these cuts. This can also be seen visually in this figure by comparing the lower
two rows with the full sample in the top row. The dashed lines denotes z, = Z,, and
the dotted lines indicate our outlier definition where |z, — 2| > 0.15(1 + Z5). Points
are coloured according to their density on the scatter plots to illustrate overplotting.
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Figure 7.13: Plot showing three examples of single-constituent posteriors sampled using
the GMM on the unblended GAMA data. The black dashed lines indicate the sample
means we use to define the point estimates z,. The true redshifts are indicated by the
orange lines.

show a variety of shapes. However, the posteriors for the GAMA data are significantly
less multimodal. This is likely because the GAMA sources are, on average, lower
redshift than the simulated sources. The main cause of the bimodality in the simulated
case is the colour-redshift degeneracy described in section 7.1, which low- and high-
redshift sources to be confused. However, high redshifts are a priori very unlikely here,
as they do not appear in the training set. As a result, these higher redshift peaks are

significantly disfavoured.

The same lack of multimodality is also exhibited in the blended posteriors con-
ditioned on the GAMA data. Examples of these are shown in Figure 7.14. These
posteriors show a variety of non-Gaussian shapes as in the simulated case, with many
of the marginal redshift distributions displaying long tails. The joint distribution in the
left panel of Figure 7.14 also shows the hard cut resulting from the sorting condition

7(21, 22), as the left panel of Figure 7.5 does.

Figure 7.15 shows the plot testing the posterior widths for both the one- and
two-constituent posteriors. As in the simulated case, the one-constituent posteriors are
very close to being calibrated. However, the CDF for the two-constituent posteriors lies
significantly below the diagonal, suggesting that the posteriors are overconfident, i.e.,
they are too narrow. As discussed above, while it is not guaranteed that Bayesian CIs
provide frequentist coverage probabilities, this suggests that there are features on the
flux-redshift relation of the blended constituents that are not captured by the model

trained on the unblended training data.

This interpretation is supported by Figure 7.16 which shows the inferred relative

probability of sources from the blended sources catalogue being blended and unblended
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Figure 7.14: Plot showing three examples of two-constituent posteriors sampled using
the GMM on data from the GAMA blended sources catalogue. The black dashed lines
indicate the sample means we use to define the point estimates z,. The true redshifts
of each constituent are indicated by the orange lines.
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Figure 7.15: Plot showing the results of the posterior width test performed on posteriors
obtained from our method on GAMA data. The solid purple line shows the results for
the single-constituent posteriors, and the dashed orange line shows the results for the
two-constituent posteriors. The black dotted line indicates the result where posteriors
are calibrated, while lines that go above and below this indicate posteriors that are
wider and narrower than calibrated posteriors respectively.
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Figure 7.16: Histogram of the log of the relative probabilities for the blended and
unblended models obtained using Bayesian model comparison on the blended GAMA
data. The black dashed line indicates no preference for either the unblended or blended
model. Larger values of P, ; favour the blended model more.

Ps1. Here, only 33.4% of blended sources are correctly identified as blended by hav-
ing P21 > 1. While the redshifts are reasonably well-recovered, the Bayesian model
selection will disfavour a more complicated model when the improvement in the fit is
insufficient. As above, this suggests a difference between the blended and unblended

constituents.

We can test for a difference between the blended and unblended constituents by
incrementally removing sources where this difference is greatest and checking whether
this leads to an improvement in the summary statistics. We therefore require a quantity
to probe the representativeness of a given vector of fluxes. For this, we consider the
density ratio P (F)

test
R(F) = Poan(F) (7.74)
where P (F') is the density of fluxes is the training set, P (F') is the density of
fluxes is the test set and F' is the flux vector at which both of these densities are

evaluated.

In order to estimate this ratio, we use the nearest-neighbour method of Kremer
et al. (2015). The method first considers the training set, and measures the hyper-
volume that contains the n,. nearest neighbours of a flux F'. The number of test-set

samples ngest (F') within that hypervolume centred on F' is then counted. The estimate
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for the density ratio is then given as the ratio of these counts, i.e.,

Tnei

R(F) ~ —ntest(F> )

(7.75)

This nearest-neighbour method for estimating the density ratio was first pre-
sented in Lima et al. (2008), and was used to estimate the redshift distribution of a
photometric galaxy sample by weighting spectroscopic galaxies. However, the accuracy
of this method depends on n,., the number of neighbours considered. If n, is too
large, the density ratio is estimated over too large a volume, while an estimate where
Nnei 18 too small will be dominated by statistical errors. To this end, Kremer et al.

(2015) present a model-selection method based on cross-validation to optimise 7.

As discussed throughout this chapter, a complication of blended sources is that
the flux of each constituent is not observed independently, only the blended combina-
tion. As a result, the destiny ratio must be evaluated using constituent fluxes sampled
from the marginal posterior P(F,|F), where F, is the flux of constituent n. As de-
scribed in section 7.2.3, this can be accomplished by sampling from the simplified
posterior defined in equation 7.61, and rejecting samples that do not obey the bound-
ary prior. The marginalisation over all redshifts and the flux of the other constituent

can than be done by simply ignoring these elements of the sampled vectors.

Given a set of np flux samples {F | i =i...nyp} from constituent n, we evaluate
the density ratio R(F'") for each sample and average the result to give the expectation

’,Z El l' E ’,Z E"L 77(;

This expectation value is the quantity we use to estimate the representativeness of
blended constituents. This allows us to test for differences between the blended and
unblended constituents. To do this, we keep sources in our sample only if the expec-
tation of the density ratio for both of their constituents is over a threshold value Ry,

i.e., sources that obey

>R 1,2 7.7
maX(E[R(F)]) ol th n e { ) }7 ( )
where we have normalised the expectation values by max(E[R(F')]), the maximum

expectation value over both constituents of all sources.

Figure 7.17 shows the change in summary statistics as the threshold ratio is
increased. As expected, the RMS scatter and number of outliers are both reduced

as this ratio is increased, at the expense of more sources being removed from the
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sample. This effect can also be seen in the lower two rows of Figure 7.12, where the
effects of two different threshold values on the point estimates are compared with the
unmodified results. When the threshold is set at Ry, = 0.45 as in the centre row, the
RMS scatter has been reduced to orys = 0.078, while the percentage of sources that
are outliers has reduced to 5.97%. At this level, 70.7% of sources remain in the sample.
By increasing the threshold to Ry, = 0.8 as in the bottom row, the RMS scatter and
percentage of outliers decrease to orys = 0.077 and 4.34% respectively. These are
modest improvements over the less strict threshold, but come at the cost of leaving

only 40.9% of sources remaining in the sample.

These results demonstrate the importance of representative training sets. Dif-
ferences between the training and test sets, often referred to as covariate shift, are a
general problem for machine learning-based methods that obtain all of their informa-
tion from the training set. A possible cause of differences here is that surveys select
sources based on a magnitude cut, imparting selection effects on the sample. Since
blended sources will be selected based on their total blended flux, blended constituents
can be fainter than those that are unblended. The simulated sources presented in
section 7.3 are selected in this way and so contain this effect. However, the intrinsic
properties of galaxies vary with magnitude, meaning that the test set could contain
faint constituents that have no corresponding examples in the test set. Selection ef-
fects imparted by the selection criteria of sources in the blended sources catalogue,
such as certain redshift differences being easier to select spectroscopically, are also not

accounted for here.

One solution to this problem is to improve the training set so that it is more
representative. By including sources in the training set fainter than the magnitude limit
of the test set, the model can learn the faint-end flux-redshift relation. The selection
effects of blended sources could also be learned directly by training using a blended
training set as described in section 7.1.1. However, as detailed above, assembling a
representative blended training set in practice could be difficult. For the tests presented
here, the GAMA blended sources catalogue contains far too few sources to be amenable

to fitting in this way.

7.5 Conclusions

Future galaxy surveys will observe to unprecedented depths in order to drive their
increases in precision of cosmological constraints. However, these improvements to

constraints on cosmological parameters will be accompanied by several new complica-
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Figure 7.17: Plot showing the change in summary statistics for the GAMA blended
sources as the density ratio threshold Ry, is increased. The top panel shows the RMS
scatter ogms. The centre panel shows the percentage of sources that are outliers,
defined as |z, — 25| > 0.15(1 + Z5). The bottom panel shows the percentage of sources
remaining from the original sample after the threshold has been applied.
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tions to the analysis. The increased number density of sources will increase both the

number of sources that are blended and the total number of sources observed.

This chapter presents a photometric redshift method for blended sources based
on Gaussian mixture models. Using these models, our method learns the flux-redshift
distribution from a set of unblended training galaxies. This choice of model permits
the derivation of posteriors that can be sampled efficiently, allowing the method to
scale to large samples. By using Bayesian model selection techniques, this method can

also infer the number of constituents within a blended sources efficiently.

This work extends previous uses of GMMs in photometric redshift applications (Bovy
et al., 2012) to the case of blended sources. It also extends the template-based method
to infer the redshifts of blended sources directly from their blended photometry first
introduced in chapter 6. The method described therein relies on nested sampling for
inference and so will not scale to the large sample sizes of future galaxy surveys such as
LSST (Ivezi¢ et al., 2019). The method presented in this chapter is significantly faster,
making it suitable for these upcoming surveys. Many modern methods of photometric
redshifts are machine learning-based, as training these methods on a representative
training set can allow them to achieve very high accuracy and avoid the problems asso-
ciated with small template sets. This chapter extends the blended photometric redshift
method of chapter 6 to this data-driven approach.

The accuracy of all machine learning-based photometric redshift methods is de-
pendent of the training set. Using training sets that are unrepresentative could result
in redshift inferences that are biased and posterior distributions that are too narrow.
In cases where unblended galaxies are not representative of individual components in
a blended source, potentially as a result of selection effects, our method can generalise
to learn the blended flux-redshift relation directly from blended training data. While
this naturally accounts for differences between blended and unblended galaxies, it also

increases the size of the required training set.

The method presented here represents a different approach to analysing blended
sources than is currently used. Rather than separating blended observations into sep-
arate constituents, we infer the redshifts jointly for all constituents. As a result, our
method naturally captures uncertainties and correlations which can be difficult to esti-
mate for deblending-based analyses. This approach could be extended to other quanti-
ties of interest for cosmological analysis such as galaxy shapes by constructing forward
models of source images. By doing this, correlations associated with blending can be
propagated fully throughout the rest of the analysis, providing the best understanding

of uncertainties on cosmological constraints.
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As with chapter 6, while the discussions in this chapter focus on galaxy-galaxy
blending, the method presented here could be applied to blends with other types of
objects such as stars and quasars. In fact, Bovy et al. (2012) use their GMM-based
model both to obtain photometric redshifts for quasars and as a probabilistic classifier
to distinguish between quasars and stars. To apply our model to these problems, we
would require a representative training set of each type of object on which separate
models would be trained. The model comparison procedure described above could then

be used to between models representing different combinations of object types.



Chapter 8

Bayesian Hierarchical Model for
Blended Redshift Distributions

Chapters 6 and 7 present methods that generalise photometric redshift methods to the
case of blended sources. The aim of both of these methods is to infer the posterior
distribution of the redshifts of individual sources, where the number of constituents in
those sources is unknown. However, as discussed in section 2.3, for many cosmological
applications of galaxy surveys, it is not only the redshifts of individual sources that
are required, but also the distribution of redshifts for the entire population of observed

sources.

This distinction between photometric redshifts for individual sources and popu-
lations is discussed in more detail in chapter 4. One of the methods detailed therein
is the use of a Bayesian Hierarchical Model (BHM), where the prior of a Bayesian
model is itself parametrised by parameters that are inferred and included within the
final posterior distribution. This allows observations of samples from a population to
be used to make inferences about the population itself. These methods can therefore
be applied to the problem of photometrically inferring the redshift distribution of a
population using flux observations of individual sources. BHMs are introduced more

generally in section 3.1.8.

This chapter described a method that builds on the Gaussian Mixture Model
(GMM) method described in chapter 7, extending it to the task of inferring redshift
distributions for populations of possibly blended sources. The model infers separate
redshift distributions for unblended sources in addition to the lower and higher red-
shift constituents in blended sources. Section 8.1 describes our hierarchical GMM ap-
proach to inferring these blended redshift distributions. Section 8.2 discusses a slightly

modified model that describes these distributions as discrete histograms rather than
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continuously. Section 8.3 shows the results of tests of these methods on simulated
data. Finally, section 8.4 discusses some possible further work which could extend

these methods.

8.1 Hierarchical Gaussian mixture model

The method presented in chapter 7 for inferring redshifts for each source independently
assumes that the joint flux-redshift distribution is the same for unblended galaxies and
for each galaxy in a two-component blended source. However, that need not be the
case. The selection effects on each galaxy in a blended source differ from those on
unblended galaxies by virtue of them having been selected on the total blended flux,
rather than their individual fluxes alone. The effect of this is that the constituent
galaxies present in blended sources can be fainter than unblended sources. This will
inevitably have an effect on the redshift distributions of these galaxies too, since higher

redshift galaxies will tend to be fainter.

In order to model this, we construct a Bayesian hierarchical model over the three
distinct populations, treating the priors on unblended sources and each component
in blended sources separately. Like the GMM approach described in chapter 7, the
relationship between fluxes and redshifts is learned from a training set of unblended
galaxies with spectroscopically obtained redshifts. We therefore begin by fitting a
GMM to represent the joint flux-redshift distribution of the training set, given by

P(Za F) = Zwltcr N(ZvF | “kaZk)v (81)
k

where we label the weight vector w™ to indicate that it corresponds to the training set.
As in chapter 7, this GMM is fitted using the extreme deconvolution method (Bovy

et al., 2011); this is discussed in more detail in section 7.1.1.

Next, to describe the unblended sources and each component in blended sources,
our model consists of three GMM priors. We assume that the mean vectors and
covariance matrices of these mixtures are fixed at their training set values {p} and
{X} as in equation 8.1, and are therefore same between each prior; future work that
would relax this assumption is described in section 8.4.3. Each GMM prior then differs
only through its weights. These weights are labelled w!, w® and w?, corresponding to
the unblended sources, the lower-redshift component of the blended sources, and the
higher-redshift component of the blended sources respectively. Our aim is therefore to

derive a posterior for the these three vectors of weights conditioned on the set of test-set
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fluxes {F'}. Given one of these weight vectors, the corresponding redshift distribution

is given by a GMM as in equation 8.1, marginalised over the flux distribution, i.e.,

P(z | w*) = /P(Z,F | w') dF = Zw;; N(z F|pt k), (8.2)
k

where w* € [w!, w® w”] is the weight vector corresponding to the particular distri-
bution, and p* and ¥ are the redshift parts of the k™-component mean vector and

covariance matrix respectively.

To develop our desired posterior, we first apply Bayes rule to give
P(w', w® w” [ {F}) o« P{F} | w', w®, w”) P(w', w®, w’) (8.3)

where we suppress the conditioning on the means and covariances for conciseness. We
then make the assumption that the fluxes are i.i.d., allowing us to rewrite the likelihood

as a product over the data, giving

P(w', w*,w” | {F}) x P(w', w*, w’) [ [ P(F; | w', w®, w"). (8.4)

The weights w!, w® and w”, along with the fixed means and covariances,
parametrise the flux-redshift distribution for single-component sources and for each

component in two-component blended sources respectively.

8.1.1 Developing the posterior through model averaging

Since we are fitting the weights to the test-set fluxes, we do not know a priori whether
or not each source is blended. To account for this, we use Bayesian model averaging.
As described in section 3.1.6, this technique introduces a latent parameter M, repre-
senting the choice of model which can be marginalised over. The posterior assuming a
particular model is then conditioned on it, i.e., P(0 | {d}, M;), where 8 are the model
parameters and {d} is the dataset.

Like marginalising over any other parameter, model averaging incorporates the
epistemic uncertainty into the final posterior and thus the parameter inferences. The
usual prescription, not applicable here, is to compute the model averaged posterior,
given by

PO |{d}) = PO, M;|{d})

(8.5)
_ Zp(e | {d}, M;)P(M; | {d}),
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where the first term is the posterior under model M; and the second is the probability
for that model. As described in section 3.1.6, this model probability is given by
P({d} | M;)P(M,)

PMAY) = S pdy [ M) P (8.6)

In the case of model averaging, it is assumed that the true model is contained within
the set {M;} = {M;, Ms... My} that is marginalised over.

In this way, the uncertainty over the choice of model can be included in the final
posterior. However, note that equation 8.5 marginalises over the model at the level of
the full dataset. It is assumed that only a single unknown model is responsible for the
generation of the entire dataset {d}. Since that model is unknown, the uncertainty

from the choice of model should be incorporated into the posterior by marginalising.

This assumption is not suitable for our problem, where the choice of model is the
number of constituents in a source. Since each source may be either a single source or
blended, there is no single model that describes the entire dataset of N sources. As a
result, in contrast to standard model averaging, we assume the model can vary at the
level of individual samples. To do this, we rewrite the likelihood by marginalising over
N latent model parameters C;, representing the number of constituents for sample ¢ to
give

2
P(F; | w' w®, w’) =) P(F,C = j | w' w* w’) (8.7)

j=1

Inserting this into the posterior, it becomes

2
P(w' w*,w” [ {F}) < Plw', w® w’) [ | Y] P(F.Ci=j | w' ww’)|. (88)
j=1

)

Further developing this joint 13‘1-, C; likelihood presents a problem. This likelihood
could be factorised in the form P(F;,C; | ...) = P(F; | C;...)P(C; | ...). The flux
likelihood P(F; | C;...) is then conditioned on the number of constituents C;; this is
necessary as this number controls which forward model and weight vectors are used to
evaluate the likelihood. However, conditioning in this way means that the P(C; | ...)
distribution does not depend on the observed flux for each source. As a result, develop-
ing the posterior in this way is unsuitable for inferring the blending probability of each
source from its observed flux, and would instead require this probability be specified a

priori using external data such as the morphology.

In this situation where the desired posterior can be written most readily in

terms of several conditional distributions, Gibbs sampling can be used to sample from
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the full joint posterior distribution. Here, it is possible to specify the problem in
terms of the joint posterior on both the weights and the number of components, i.e.,
P(w', w®, w? {C} | {F}), where {C} is the full set of N parameters. Since writing
the conditional distributions of each of these is tractable, this distribution is amenable
to Gibbs sampling. While this vastly increases the total number of parameters, each
blended probability is a simple discrete parameter C; € {1,2} which could be easily

sampled without rejection.

While Gibbs sampling would allow samples to be drawn from the desired poste-
rior, doing so would necessitate the creation of a custom Gibbs sampler. Due to time
constraints, this was not possible. Instead, we simplify the posterior so that it can be
sampled using standard sampling packages such as Stan (Carpenter et al., 2017). To

do this, we first note that, assuming a uniform prior over the weights, we can write

P(w', w® w” | {F}) < [ P(w", v, w” | F}), (8.9)

since the normalisations P({F}) = [, P(F}) are equal due to the i.i.d. assumption.
The term of the right-hand side is then the sample-i posterior corresponding to a single
source . This posterior can then be marginalised over the number of constituents C;

as described above, giving

J

P(w', w®, w’ | {F}) x H

> Pl wew G = j | F>] . s10)

Finally, rewriting the term inside the square brackets using product rule, this becomes

2
> Plw',w* w’ | F,,Ci = j)P(C;i = j | F)] . (811)

Jj=1

Pw', w® w’ | {F}) x H

The result of this manipulation is that the probability of the number of the number
of constituents P(C; = j | F;) is now conditioned on the observed flux as desired.
However, it is no longer conditioned on the weight vectors w!, w® and w?”. Instead,
we can calculate this probability using the model comparison techniques described in
chapter 7 by making the simplifying assumption that this probability is conditioned
on the previously fitted training set weights w', i.e., P(C; | {ﬁ’}) = P(C; | w", {13‘})
As a result, the blending probability is constant w.r.t. the parameters w!, w® and
w?. As with the means and covariances, we suppress the conditioning on w" in our

notation throughout.

By making this assumption of the blending probability remaining fixed, the pos-
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terior distribution for the weight vectors can be written in terms of one joint distri-
bution. This distribution is then amenable to being sampled using the Hamiltonian
Monte Carlo (HMC) sampler Stan (Carpenter et al., 2017). This significantly simplifies
the implementation of the method. Stan also provides an implementation of black box
variational inference (VI, Kucukelbir et al., 2015) as described in section 3.2.4. VI is
an approximate inference method that is significantly faster than HMC at the expense
of no longer being exact. Both of these inference methods are tested in section 8.3. We

now continue to develop the posterior using this approximation.

8.1.2 Approximating the blending probability as fixed

The term inside the square brackets in equation 8.11 now resembles the standard model
averaging case shown in equation 8.5, where the first term is the sample-i posterior
under a model of C; components and the second is the probability for this number of
components. We can then develop this individual posterior by applying Bayes rule to

give

P(w',w®,w’ | {F}) o
N

11

2

> P(E | whwt, w’,C = j)P(w! w w? | ¢ = j)P(C; = j | F)

i Lj=1
(8.12)
We now explicitly expand the sum over the number of components to give
Pw',w*,w’ | {F}) x
N
H P(F; | w', w™,w” C; = 1)P(w",w*,w” | C; = 1)P(C; = 1| F}) (8.13)

+ P(F, | w', w®, w”,C; = 2)P(w", w®, w’ | C; = 2)P(C; = 2| F})| .

We can now make some simplifications since each set of weights corresponds only
to a single model. As a result, these weights only appear in the likelihood of their

corresponding model, i.e.,
P(F; | w',w*, w?,C; = 1) = P(F; | w',C; = 1) (8.14)

and
P(E | w17wa7wﬁvci = 2) = P(E | wa7w57ci = 2) : (815)
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We can also make similar simplifications for the weight priors. Firstly, we assume that

the weight vectors are independent under both models, i.e.,
P(w',w*,w’ | C; = j) = P(w' | C; = j)P(w* | C; = j)P(w" | C; = j), (8.16)

for j € {1,2}. We now set the priors for the weight vectors such that each weight

vector can only have an influence under its respective model, i.e.,
Pw'|C=2)=Pw*|C=1)=Pw’|C=1)=1. (8.17)
Thus, the joint priors are given by
P(w',w*,w’ |C;=1) = P(w' | C; = 1) (8.18)

and
P(w', w*, w’ | C; =2) = P(w* | C; =2)P(w” | C; = 2). (8.19)

The final expression for the posterior then becomes

P(w', w®, w’ | {F})
N A~
I |P@E |w' Ci=1)Pw'|C=1)PC =1|F)

%

(8.20)

+ P(F; | w®,w’,C; = 2)P(w® | C; = 2)P(w® | C; = 2)P(C; = 2 | F})

8.1.3 Specifying the priors

We now specify the priors on the weights. These weights have several constraints
imposed on them; each weight w; should be within the interval 0 < w; < 1, and the
weights should be normalised such that ), w; = 1. A D-dimensional vector of weights
therefore lies on the unit (D — 1)-simplex, as demonstrated by Figure 8.1. As a result

of this, the weight prior should have support over this simplex.

The natural choice for this is the Dirichlet distribution, which can be thought of as
a distribution over discrete distributions. Our weights would then therefore distributed
like
P(w'|C; =1) = Dir(w' | a')

P(w® | C; = 2) = Dir(w® | a®) (8.21)
P(w” | C; = 2) = Dir(w” | a”)

where the vectors a', a®, a® are hyperparameters, and the D-dimensional PDF is given
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Figure 8.1: Surface plot showing a unit 2-simplex embedded within three-dimensional
space. This simplex is the support of the three-dimensional Dirichlet distribution.

by

Dir(z | a) = M [Tz (8.22)

where I'(...) is the gamma function. When all of the elements of a are equal, no
component is favoured a priori. This parameter is then given as a scalar a known as
a concentration parameter, and the corresponding distribution Dir(w | «) is said to be

symmetric.

When a symmetric D-dimensional Dirichlet distribution is parametrised with a
concentration parameter a = 1, the resulting distribution is uniform over the unit
(D — 1)-simplex, i.e., all sets of weights that obey the normalisation and nonnegative
conditions are equally likely. When the concentration parameter a < 1, this favours
samples that are more concentrated towards extreme values of the weights, meaning
that the corresponding discrete distribution is peaked. When the concentration param-
eter a > 1, samples where the weights are closer in value are preferred, meaning that
the corresponding discrete distribution is smooth. This behaviour is demonstrated in
the ternary plots shown in Figure 8.2, which display samples from a three-dimensional

symmetric Dirichlet distribution with several concentration parameters.

While the fixed blending-probability approximation made above relies on the
assumption of a uniform prior over the weights, naively using this prior would violate
the constraints on the weights described above. However, we note that a simple way to
transform a uniformly distributed set of weights w into a set of weights w’ that obey

these constraints is to define wj = *:l/3> jw,|. Thus, by replacing every instance of the
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Figure 8.2: Ternary plots of samples drawn from a symmetric three-dimensional Dirich-
let distribution Dir(x | o) with varying a. The left plot shows a = 0.25, where samples
are pushed towards having elements with extreme values. The centre plot shows o = 1,
indicating a uniform distribution over the simplex. The right plot shows a = 10, where
samples having closer elements is preferred. Each vertex of the triangle corresponds
to a dimension ¢ of the vector &, where points at the vertex indicate x; = 1, points at
the opposite edge indicate z; = 0 and the lines parallel to the opposite edge indicate
constant x;.

weights in the model with this redefinition, the model could be written to incorporate
a uniform prior over the weights. The resulting set of weights w’ will be uniformly
distributed over the simplex of weights that obey the nonnegative and normalisation
conditions required of the weights. As a result, this model with a uniform prior and the
corresponding redefined weights is equivalent to the original model where the weights

have a symmetric Dirichlet distribution with a concentration parameter a = 1.

Avoiding the redefinition of the weights increases the clarity of presentation of
the model. In addition, implementations of the Dirichlet distribution within HMC
software such as Stan (Carpenter et al., 2017) are designed to use transformations to
make the resulting posterior geometry easier to explore (e.g., Betancourt, 2012). We
therefore assume the weights have symmetric Dirichlet priors with a = 1 throughout

this chapter.

8.1.4 One-constituent likelihood

We now derive the single-constituent likelihood P(FZ | w',C; = 1). We start by
introducing and marginalising over latent parameters for the true redshift and fluxes,
giving

P(E|w1,Ci—1)—//P(ﬁ},E,zi]wl,Ci—l) dF, dz; (8.23)
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Applying product rule, this becomes
P(E| w6 =1) = [ [ PE| Fsw'.€ = DP(F, 2 | 0,6 = 1) dF, ds

N //P(E | F},C; = 1)P(F}, z; | w') dF; dz
(8.24)
where we have removed unnecessary conditioning. The first term of the integrand is

the flux likelihood, a multivariate Gaussian centred on the observed fluxes, i.e.,
P(F,| F,Ci=1) = N(F} | F,Z"), (8.25)

where ZF  is the covariance matrix of the flux observations. The second term of the
integrand is the Gaussian mixture prior including the boundary prior as described in

chapter 7, given by

P(F,z | w'.Ci=1) = Ai(z, F) Y wi N(F, 2 | ., ZF) . (8.26)
k

where ¢(z, F') is the boundary prior defined in equation 7.7, and A; is the prior nor-
malisation defined in equation 7.26. The product of these two terms can be written as
another Gaussian mixture as in equation 7.20. Thus, the single-component likelihood

becomes

’ (8.27)
//@D(Z,E)N(E,zi | n'*, A*) dF; dz

where the combined parameters °* and A are defined as they are in equations 7.21
and 7.22. We label the integral over flux and redshift by I, i.e.,

mE//wamNm%hﬁy%Mm% (8.28)

As in chapter 7, this integral is computed numerically to account for the boundary
prior t(z, F'). Without this term, the Gaussian density is normalised to unity, i.e.,
ff/\?(F,,zZ | m*, A") dF; dz; = 1. Thus, given a set of N samples {z;, Fj | j =
1... N} sampled from this density, the integral I;; can be approximated as the fraction

Fi of these samples within the boundary, i.e.,

~ Zjvzl U(z;, F))

L, N

(8.29)
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We also relabel the normalisation term in equation 8.27 arising from the product of

Gaussian densities to be
Vik = N(lef | Fivgl;f + X5, (8.30)
Thus, inserting these into equation 8.27, the single-constituent likelihood becomes

P(E ‘ wlaci =1)=A Zw’lﬁ YirLik
k (8.31)
= [} (w")

where we use the shortened notation £} (w') to refer to the one-constituent likelihood

for source 1.

8.1.5 Two-constituent likelihood

We now compute the two-constituent likelihood using the same approach of introducing
and marginalising out latent parameters. With the extra constituent, there are now

twice as many parameters to marginalise, so this likelihood is given by

P(E | w®, w’,C; =2) =
) (8.32)
/// / P(F, F, 20, F) 2] | w®w” € = 2) dFY dzf dF) dz)

As before, we separate the integrand by applying product rule to obtain

P(F; | w®,w’,C; = 2) /// F|F"‘FBC—2)
(8.33)
2 FP 2w w6 = 2) dFY dzf dF) d2]

Similarly to the single-component case, there are two probability densities here.

The first is a multivariate Gaussian likelihood, given by
P(F; | Ff F),C=2) = N(F* + F| F,2"). (8.34)

where ZF “ is the covariance matrix of the flux observations. The second term of the
integrand in equation 8.33 is the joint prior. As in the previous chapters we separate
the joint prior by constituent, where the correlations between these components are
assumed to be described completely by the redshift correlation function £(z2, z°) and

the sorting condition 7 (2%, z; ) The joint prior then contains two copies of the Gaussian
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mixture priors, each also including the boundary prior described in chapter 7. This

joint prior is therefore given by

P(F 2 FY 2 \wa w’,Ci = 2) = A (= FP (], FY)L+€(f 2)))
za % Zzwkwﬁj\/’ 9‘ zf‘ | lJ’k;Zk)N(E 72:1‘ |l-1'j72j>> (835)

where Aj is the prior normalisation defined in equation 7.48. Inserting these terms,

the two-constituent likelihood becomes

P(E‘wauwﬂ762:2>:~’42 /// wz Fa Z,Eﬁ)x

(28, 2 +5<z, Z>W<FO‘ F’ | F,25)x

17

N(F? 2 | e, SN (FL 2] | py, 27) dF dz dF) dz)

(8.36)

As in equation 7.55 during the derivation of the two-component posterior in chapter 7,
this product of three densities here can be written as another Gaussian mixture given

by

P(F; | w®,w’ ¢ =2) = A wiwy i [1+&(28, 2))m (=0, 2) %
35w [

(8.37)
V(e F (= FON(FY 20 B 2] | 7 A dF dzf dF dz]
where the normalising constant ~;;;. is given by
Yise =N (u? ol | By |SF 4 5k 4 2{4) . (8.38)

and the combined parameters 17% and AY* are defined as they are in equations 7.56

and 7.57. We label the integral in equation 8.37 by I;;, i.e.,

L= [[[ [ est <zl,z5>w<z?,ﬂa>w<z?,ﬂﬂ>x (5.3

N(F®, 28 FP 2P | % ATF) AF® dz0 dFP 27

As in the previous case of deriving the single-constituent likelihood, the integral I;;
cannot be evaluated analytically. Instead, we again use Monte Carlo integration to
calculate this. The Gaussian density N (F2, 22, F’ 20 | nii*, Aijk) is normalised to
integrate to unity. Thus, given a set of N samples {F? F’. 2 | j=1...N}

4,57 7,]7 4,59 1]
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sampled from this density, the integral I, is given by

S =y, 2 ) m (2, 2 (28, B (2], F)
N b

Iijk = (8-40)
i.e., the fraction of samples that obey both the sorting condition and the boundary
priors, weighted by the redshift correlation function. The two-constituent likelihood is

then given by

(F |'lU 'lU C —2 Zzw wk ’L]k,"Y’L]k‘

= L’?(wo‘,wﬁ),

where we use the shortened notation £2(w®, w”) to refer to the two-constituent likeli-

hood for source 1.

8.1.6 Blending probabilities

Finally, to evaluate the posterior, we need the probabilities for the number of compo-
nents. In principle, these can be specified a priori, e.g., by deriving blending probabil-
ities from morphological information. Here, however, we compute the approximation
that these probabilities are fixed using the training set weights w' that are otherwise
discarded. The single-component probability can then be calculated using Bayes rule

by explicitly including the conditioning on w' that was suppressed previously, giving
P(C;=1| F;,w") « P(C; = 1)P(F, | w",C; = 1) (8.41)

where we have assumed that the prior on the number of components is independent
of the test set weights. The evidence term P(F; | w™ C; = 1) is then equal to the
single-constituent likelihood defined in equation 8.23, though now conditioned on the
training set weights w' rather than the parameters w'. Thus, using the result from

equation 8.31, the one-constituent probability is given by

k (8.42)
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Similarly, the two-component probability is given by evaluating the two-constituent

likelihood at the training set weights, giving

P(C; =2 | F;,w'™) < P(C; = 2)P(F} | C; = 2, w"™)
J k

= P(C; =2 | F;,w")

The constant of proportionality for these terms cannot be ignored as it varies with
sample. However, we can calculate this by assuming that C; = 1 and C; = 2 are the

only possible models. The constant of proportionality is then given by

~ ~ ~

Z;=PC=1|F,w") + P =2| F;,w")

The probabilities for one and two components are then given by

- . A1 P(C; =1)
P(Cl = 1 | ijt ) = ZZ ;’Ujk Wzkllk
=p!
and AsP(C; = 2)
- r 2 i = r, tr
P(C;=2| F,w"™) = T ;;w; wltc Lijiyigin

= p?

respectively, where we have defined the shortened notation P} and P2

8.1.7 Final posterior

By inserting the above quantities, we find the final expression for the posterior to be

N
P(w', w* w’ | {F}) < [ |Dir(w" | a") L} (w")P/+

i (8.44)
Dir(w® | a®)Dir(w” | a?) L (w®, w”)P?

8.2 Histogram model

The only way for the above model to fit each of the redshift distributions is to reweight

the existing Gaussian components. The flexibility of the model therefore depends on
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the marginal redshift distributions of these components. For example, if these are
too wide, the model will be unable to fit narrower features in the test-set redshift

distributions.

In order to allow the model more flexibility in the redshift distribution fitting, we
can constrain the marginal redshift distributions of each component before fitting the
mixture to the test set. We specify these marginal redshift distributions to be uniform
bins within a fixed range, so that the redshift distribution inferred by the mixture is a
flexible piecewise constant model, i.e., a histogram. We start developing the prior by

marginalising over components to give

P(F;,z | w) =v(F)> P(F,z.k|w). (8.45)

where ¢ (F;) is the boundary prior. This boundary prior now only applies to the fluxes,
as we assume that the redshift histogram bin edges are defined such that they enforce

positivity. Separating using product rule, this becomes

P(F;, z; | w) :?ﬁ(Fi)ZP(k | w)P(F}, 2 | k)
F (8.46)

V(F) Y wpP(F, 2% | k),

where we have inserted the definition of the weights as the probability of each compo-

nent.

We now come to specifying the prior while constraining the marginal flux and
redshift distributions of each component to be a multivariate Gaussian and histogram
bin respectively. In order to allow the likelihood terms to be derived analytically, we
make the assumption of conditional independence; given a component k, we assume
that the flux and redshift are independent. Separating the right-hand side of equa-
tion 8.46 using product rule and utilising this assumption, the prior can be written

as

P(F:,z | w) = y(F) > w.P(F | k)P(z | k). (8.47)
k
Finally, we insert the desired marginal distributions, giving

. Slo hi__ .
P(F, % | w) = 0(F) S N (F; | py, 5 25— 0O = =), (5.48)
k

R Rk

where 2/° and z]' are the lower and upper boundaries of the redshift bin corre-

sponding to component k respectively, and ©(...) is the Heaviside step function.
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If each redshift bin is associated with a single component, the height of that
bin is wg/(z]" — z)°). In general, however, more complicated flux-redshift relations
can be captured by associating each redshift bin with several components. This is
equivalent to giving each redshift bin its own Gaussian mixture model with a small
number of components. In this case, the height of the redshift bin j is given by

D ke(ky; We/ (2P1 — 21°), where {k}, is the set of components associated with redshift bin

VR

8.2.1 Training the Gaussian-constant mixture model

As a simple modification to standard GMMs, the Gaussian-constant mixture model
can be easily trained. First, the training set redshifts are binned into a histogram of
N, bins. Each redshift bin b has a height h;, where the heights have been renormalised
so that ), hy = 1.

The fluxes of the training set galaxies within each redshift bin are then fit with
a Kjp-component GMM. The result is a set of weights {w, | x = 1...K,}, means
{pr | kK = 1... K} and covariances {X, | kK = 1...K,} for each redshift bin. The
sets of means and covariances can simply be combined into sets of N, x K; component
parameters for the full Gaussian-constant mixture model. However, the weights must

first be normalised by the bin heights, so that
Wg = hkwk, (849)

where hy, is the height of the redshift bin corresponding to component k, and wy, = wyp
is the GMM weight of the component indexed by k in the full model and by & in the
GMM fitted to redshift bin b. Since these were both normalised to unity, the final

model weights are correctly normalised too'.

8.2.2 Single-constituent likelihood

In order to insert this Gaussian-constant mixture prior into the above model in place of
the GMM, we need to recalculate the (1) = Lixyi, and (177)ik = Lijeviji terms; that
is, the product of the likelihood and the prior, marginalised over the latent flux and
redshift. The prior normalisations A; and A5 also must be recalculated using samples

from the new prior instead of the previous ful-GMM prior. Since the structure of the

" we = 2 b = 3 he 3wy = oy hy = 1
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two models is the same except for the new prior, the other results all hold once these

are replaced. We first calculate the one-component term, defined as
(IV)q = // P(F;| F,,C; =1)P(F}, 2 | k) dF; dz; . (8.50)

Inserting the definition of each term, this becomes

. R [} hi .
= [ [N R B SFNE| ,5) QE O g
o (8.51)

As we did before, the two Gaussian densities can be combined into a single multivariate
Gaussian. This is a standard result, as the dimensionalities of both densities match,
giving

N(F, | F, SN (F; | iy, Z) = v N(Fy | p*, 2% | (8.52)

where the constant of proportionality is given by
Vie =N | B, 2 + 27, (8.53)

and the new parameters pu’* and X°* are given by the results in section 8.1.8 in Petersen

and Pedersen (2014). The redshift histogram density is normalised to integrate to unity,

ie.,
@ ;- lo@ hi ;
R — *g

provided that every value contained within the bin is positive. The edges of the redshift
histogram bin can be chosen freely, so we assume this to be the case. Thus, (I7y)

becomes

()i = Ny | B2+ 27 / SEIN(F | w*, £%) dF,  (8.55)

As before, the integral here can be calculated numerically through Monte Carlo inte-

gration to be

/¢(E)N(E | u““,Z”“) dF; ~ w’ (8.56)

given a set of N samples {F}; | j =1... N} drawn from the density in the integrand.
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8.2.3 Two-constituent likelihood

We now calculate the two-component term (/7);,. This is defined to be

= [[[[ PEE B PER 22 | D@D Wr(er ) dB? g dBY d
(8.57)
where we have neglected the correlation function £(z1, z9) to allow analytic redshift in-

tegrations. Inserting the definitions of each of the terms in the integrand, this becomes

(1) = / / N(EE + F | By SPON(E |y S)N(E? | i S0(F () x

//@(Zia — 20)0(2) = =) O(z] — )02l — 27)
: X
z;“ z

lo hi lo
- Ak T Rk

J
AR Nad

m(22, 20) dz® dzf] dF® dF’ .
(8.58)

Because of the sorting condition, the result of the redshift integrals depends on the
values of j and k. Assume that the bins are ordered so that increasing index corresponds

to increasing redshift. Then, the redshift integral is given by

Oz — YO (hi — o B _ o hi _ 8
Y}kz// < Zﬁl) (' = 2f) Ol = )0z ZZ)W(z?,zf) dz2 dzl . (8.59)
Z =2

lo hi lo

This integral can be evaluated analytically to be

0 when j >k
Yir = % when j =k (8.60)
1 when j <k

Inserting this into the equation above, we get

(F)on = Vo [ AR 7 | BSOS | BN B
G(E)O(F) AFY dF)

We can combine the two prior terms trivially as they are independent, giving

N(F | py SON(F | i Zp) = N(FF] | g, ) (8.62)
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where

w % 0

i = I - (5.63)
p 0 2,

We can then define the corresponding natural parameters as A, = gj—,j and n;, =

2;,: Wk, the blocks of which we label as

! oA A
mE=| A= NE (8.64)
m' Al A

where all of the blocks of each parameter are of equal size. The remaining two densities

can now be combined to give

(I7)ije = Yie N (p; + py | E, [ZFi‘i‘zj +35;]) x

(8.65)
/ / N(ES FP | oy, S 0(F)0(FY) dFY dFY
where
i+ 0" [ A AT AL AT
Nijk = AT = ) |- (8:66)
m o+ ' Al + A" Af + AT

The integral over fluxes can then be approximated through Monte Carlo integration as

S G(FS)Y(FL)
N b

/ / NERFP | s SO (FOY(FP) dFE dFP ~ (8.67)

given a set of N samples {F Ffj | j=1...N} drawn from the Gaussian density in

i7j )
the integrand.

8.3 Testing the models on simulated data

In order to test the two methods above, we used the simulated LSST (Ivezi¢ et al.,
2019) and Euclid (Laureijs et al., 2011) datasets described in section 7.3. We simulated
10000 unblended sources and 10000 two-constituent blended sources as inputs to the
methods, and assumed a uniform prior on the number of constituents, i.e., P(C; = 1) =
P(C;=2)=0.5.
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We implemented both models using Stan (Carpenter et al., 2017), a probabilistic
programming language and inference library. Using Stan, inference can be performed
on models using three different methods. Firstly, the maximum a posteriori (MAP)
parameters can be found using the L-BFGS (Byrd et al., 1995) optimiser. Secondly,
the posterior distribution can be sampled using NUTS (Hoffman and Gelman, 2011),
an automatically-tuning variety of Hamiltonian Monte Carlo (HMC). Finally, the pos-
terior distribution can be approximated using variational inference (VI), where an un-
correlated multivariate Gaussian approximating distribution is fitted in a transformed
parameter space where constrained parameters are transformed to have infinite sup-
port (Kucukelbir et al., 2015). See chapter 3 for further discussion of these inference

approaches.

The (I7)ix = Liyik and (I7y)ijx = Lijkyijr terms and the blending probabilities
P} and P? are constant w.r.t. the weight vectors, and so can be pre-calculated and
cached. We then perform inference on each model using the three inference methods
above. The results of these tests on each of the models using the same simulated

dataset are detailed below.

Figure 8.3 shows the inferred redshift distributions for the hierarchical GMM
method described in section 8.1. The top row shows the inferred distributions for
the unblended, low-redshift-blended and high-redshift-blended constituents obtained
using HMC. While the overall width of the true distributions has been approximately
identified, these results exhibit strong oscillatory behaviour that has not been accounted
for. Further work would be required to identify the cause of this effect. The bottom
row shows the same results obtained using variational inference. These results are
very similar to those obtained by HMC despite variational inference only being an
approximate inference method. As a result, variational inference offers a significant
computational advantage. After caching several terms as described above at a rate of
~ 10 sources s~!, VI completed inference in ~ 1 hr., compared to ~ 12 hrs. for HMC
on this dataset of 20000 sources.

Figure 8.4 shows the inferred redshift distributions for the histogram method
described in section 8.2. The restriction in the distributions that can be described
by this model mean that less oscillatory behaviour is seen than in the results of the
previous model. However, the true distributions are still not successfully recovered to
the precision implied by the posterior distributions over bin heights. More work would
again be required to understand the cause of this. This figure also shows that the
results obtained using variational inference again closely match those obtained using

HMC while offering a similar gain in computational efficiency.
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Figure 8.3: Plots showing the inferred redshift distributions from simulated data using
the hierarchical GMM method. The blue histograms show the true distributions, while
the blue lines shows a kernel density estimate of these distributions to smooth them for
comparison with the continuous inferred distributions. The left panels correspond to
the unblended sources, the centre panels correspond to the lower-redshift constituent of
the blended sources, and the right panels correspond to the higher-redshift constituent
of the blended sources. The orange curves in the top row are samples from the exact
posterior sampled using HMC, and the orange curves in the bottom row are approx-
imations obtained using variational inference. The black dashed lines in all panels
show the maximum a posteriori distributions found by the L-BFGS (Byrd et al., 1995)
optimiser.
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Figure 8.4: Plots showing the inferred redshift distributions from simulated data using
the histogram method. The top panel corresponds to the unblended sources, the centre
panel corresponds to the lower-redshift constituent of the blended sources, and the
bottom panel corresponds to the higher-redshift constituent of the blended sources.
The orange histogram shows the true distribution, and the black dashed lines show the
maximum a posteriori distributions found by the L-BFGS (Byrd et al., 1995) optimiser.
The violin plots show the distribution of bin heights inferred from the posterior, with
the samples from HMC shown in the blue left-halves and the samples from variational
inference shown in the green right-halves.
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Both of these models show somewhat promising results that still require some
work to improve. It is possible that the approximation of fixed blending probability
made in both of these methods is a poor one that negatively affects the results. Further

work to relax this assumption through Gibbs sampling is described below.

8.4 Further work

This section describes several possible extensions to improve the above methods.

8.4.1 Gibbs sampling

As described in section 8.1.1, an alternative to the approximation of fixed blending
probability made above is Gibbs sampling. Rather than marginalising over the num-
ber of constituents {C}, we can include these parameters in the joint posterior, i.e.,
P(w', w®, w? {C} | {F}). We then write this is terms of two conditional distributions
that can be Gibbs sampled. Firstly, we can use Bayes rule and assume i.i.d. data to

write the conditional distribution for the weights as

P(w', w® w’ | {F},{C}) « P(w', w* w’ | {C}) [[ P(F: | w', w®, w”,C;) (8.68)

where the sample-: likelihood is given by
- P 1:—11 wlaci =1)= U)l ]
P(Fz-\wl,'w“,wﬁ,ci): <A | ) = Dk Wi ik
P(F, | w*, w?,C;=2) = 5. Y wow Ty, (8:69)
c

= L5 (w!, w*, w"”)

as shown in section 8.1. We assume that the weight priors are independent of each

other and of the number of components for each sample, i.e.,
P(w',w*, w” | {C}) = P(w', w*, w®) = P(w')P(w®)P(w") (8.70)
We also assume that each of these are Dirichlet distributed as above, i.e.,

P(w') = Dir(w' | a')
P(w®) = Dir(w® | a®) (8.71)
P(w”) = Dir(w” | a”)
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Thus, the conditional distribution for the weights is given by

P(w', w®,w’ | {F},{C})

N (8.72)
 Dir(w' | a")Dir(w® | a®)Dir(w” | o) [ [ £7 (w', w®, w”)

Next, we derive the conditional distribution for the number of components. Again

assuming independence, this can be written

PH{C} | {F},w", w*, w?) = HP(CZ' | Fy,w', w®, w”) (8.73)

Applying Bayes rule, this becomes

P{C} [ {F} w' w® w”) o [[ P(E; | Ciow' w0, w”) P(Ci | w' w0, w’) (g7

Finally, we assume that the prior probability of blending is independent of the
weights, e.g., it’s set by the proportion of sources we expect to be blended in the sample,
or whether sample i is in a cluster or the field. Thus, P(C; | w!,w®, w?) = P(C;).

Equation 8.74 can then be written using the likelihood result from above as

P({C} | {F}, w', w*, w’) x H P(C)LF (w', w?, w) (8.75)

8.4.2 Relaxing the assumption of conditional independence in

the histogram model with copulas

In the derivation of the histogram model in section 8.2, we made use of the assumption
of conditional independence where, given a component k, the flux and redshift were
assumed independent. This allowed us to analytically specify a prior distribution where
the marginal redshift distribution was constrained to be a histogram bin. In principle,
however, it is possible to construct probability distributions by separately specifying the
desired marginal distributions and correlation structure by using copulas (e.g., Trivedi

et al., 2007).

Copulas make use of a property known as the probability integral transform. Let
CDF(z) be the cumulative distribution function corresponding to the a distribution
with PDF P(z). Then, given samples drawn from this distribution # ~ P(z), the CDF
can transform these samples by y = CDF(z) so that the transformed parameter y is

uniformly distributed, i.e., y ~ U(0,1). The inverse CDF can be used to make the
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inverse transformation, i.e., CDF~!(y) = x.

This probability integral transform can be used to construct a copula as follows.
First, we sample a ~ P(x) from a probability distribution with the desired correla-
tions. Next, this is transformed by b = CDF(a) to obtain vectors with elements that
are correlated but have uniform marginal distributions. We then make a final transfor-
mation ¢; = CDF; ! (b;) where CDF;'(...) is the inverse CDF of the desired marginal
distribution of dimension i. The vector ¢ will then be distributed with a correlated

joint distribution but with the specified marginal distributions as desired.

While this is possible in principle, further work would be required to determine

whether inference could still be performed efficiently for a copula model.

8.4.3 Fully hierarchical model over components

A major simplifying assumption made above is that the mixture parameters {u} and
{¥} are initially fitted to a training set as described in section 8.1 and then held con-
stant. This approach has some significant computational benefits. By assuming these
parameters to be fixed and varying only the weights, the resulting posterior distri-
bution is easy to explore. If these parameters are instead allowed to vary, inference
can become extremely difficult. Mixture components can be exchanged, meaning that
the resulting posterior is highly multimodal. While enforcing an ordering in the com-
ponents would remove this degeneracy, e.g., by including a prior that w; < w;q,
Bayesian mixture models with strongly-overlapping components still exhibit patholog-
ical posterior geometries that can render sampling extremely inefficient (Betancourt,
2017).

Nevertheless, if further work were able to overcome these computational difficul-
ties, a fully hierarchical approach which jointly inferred the mixture parameters could
have some advantages. By giving the model freedom to vary the mixture parameters,
a set of Gaussian components that fits both the training and test sets could be found,
rather than assuming that a set of components fitted only on the training set would be
applicable to the test set. To do this, we would need to condition on both the training
and test set data in the posterior. The posterior over the quantities we’re interested

in could then be obtained by marginalising over the full hierarchical posterior like
P(w', w®,w’ | {F}, {F"},{z"}) =

J[[ Pt wt () (B0 HEYE), ) dut du) 4200
(8.76)
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This posterior could then be developed to allow Gibbs sampling as described in sec-
tion 8.4.1. Alternatively, the training set could be fitted separately with a GMM as
above, and the resulting weights, means and covariances used to calculate the fixed

blending probability only.

8.5 Conclusions

In order to use photometric galaxy surveys to do cosmology, it is necessary to esti-
mate the redshift distribution of the observed sources. Photometric redshift methods
designed for inferring these population distributions are therefore an important part
of the cosmological analysis pipeline. If uncertainties in cosmological parameters are
to be an accurate reflection of our state of knowledge, uncertainties from all parts of
the analysis should be correctly propagated, meaning that these redshift distributions

should have associated errors.

This chapter extends the GMM method of chapter 7 into a Bayesian hierarchical
model that can be used to infer posterior distributions over redshift distributions for a
population of possibly blended sources. This is done by modelling unblended sources,
the lower-redshift constituent of blended sources, and the upper-redshift constituent
of blended sources as three separate mixture models. These mixtures share means
and covariances that are initially fitted to an unblended training set, but vary in their
weights. This chapter also describes an alternative model where each mixture compo-
nent is a multivariate Gaussian in fluxes and a small bin in redshift. The result of this

is that the overall mixture describes that redshift distribution as a histogram.

We test these models using a dataset of simulated LSST and Euclid sources,
inferring posterior distributions using both Hamiltonian Monte Carlo and variational
inference. While the GMM model recovers the overall width of each distribution,
the resulting distributions show an unexplained oscillatory behaviour. The histogram
model prevents this oscillatory behaviour but does not recover the distributions well.
These results suggest that more work would be required before the methods could be
applied to the analysis of cosmological galaxy surveys. However, our results indicate
that variational inference offers a good approximation to Hamiltonian Monte Carlo
for this problem while providing a substantial increase in computational efficiency, an

important trait for application to large future datasets.

The models in this chapter are based on the Leistedt et al. (2016) hierarchical
Bayesian model for inferring redshift distributions. The biggest difference between

these approaches is that the models in this chapter show a generalisation to blended
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sources. However, there are also additional differences beyond this. Firstly, the models
in this chapter are machine learning-based, learning the flux-redshift distribution from a
labelled training set. In contrast, the model in Leistedt et al. (2016) is template-based.
In addition, inference in the Leistedt et al. (2016) model is performed using a custom
Gibbs sampling approach. Instead, due to the choice of model and approximations
made throughout, the models in this chapter are amenable to being implemented in
general purpose inference software such as Stan (Carpenter et al., 2017), allowing both

Hamiltonian Monte Carlo and variational inference.

Clustering redshifts (e.g., Newman, 2008; Schmidt et al., 2013; Ménard et al.,
2013) are another method for inferring redshift distributions of photometric samples.
These methods utilise only the positional information from photometric observations
rather than the colour information. The position of sources is likely to have a small error
provided that a source has been successfully observed, while faint sources may have
large photometric errors that make colour-based photometric redshifts inaccurate. In
addition, clustering-based methods require a population of sources with known redshifts
that overlap with the target population in both redshift and position on the sky. In
some sense, this is a stronger requirement than a training set that covers the full range
of redshifts only. However, the overlap population need not be representative of the
target sources, a requirement of colour-based machine learning photometric redshift

methods such as the models presented in this chapter.

Clustering information and colour information are complementary and thus can
be combined. The model described in Sanchez and Bernstein (2019) and Alarcon et al.
(2019) is an extension of the Leistedt et al. (2016) model to also include clustering data.
Such an extension could also be performed for the models presented here, though the

clustering would also need to be generalised to the case of blended sources.

The models in this chapter are also similar in spirit to the DIR calibration method
of Lima et al. (2008). In that approach, the photometric redshift distribution is given
by the redshift distribution of a training set of spectroscopic sources where each source
is weighted. This weight is give such that the flux distribution of the weighted sam-
ple matches that of the photometric test set, as measured using a nearest neighbour
method. The models presented in this chapter also involve inferring a set of weights.
However, since these weights correspond to mixture components rather than each train-
ing galaxy, their number is significantly smaller than in the DIR method. This enables
inference methods such as MCMC, in contrast to the bootstrapping method utilised for
uncertainties in the DIR approach (e.g., Joudaki et al., 2019). This modelling approach

also enables the extension to blended sources that motivated this work.



Part 111

Conclusions

238



Chapter 9
Thesis Summary and Future Work

Despite the substantial successes of the ACDM cosmological model, several open prob-
lems and tensions remain. Many of these open problems could be addressed by future
cosmological galaxy surveys, dedicated experiments which systematically image large
volumes of the universe. In order to place constraints on cosmological parameters and
conduct tests of ACDM which could lead to progress on these outstanding problems,

galaxy surveys require knowledge of the redshifts of the sources that they observe.

Due to limitations in the telescope time and the large depths these surveys will
observe to, spectroscopic measurements of redshifts are infeasible in practice. As a
result, photometric redshifts will continue to be a vital tool in the cosmological analy-
sis of galaxy surveys. Photometric redshifts are statistical methods that estimate the
redshifts of sources from photometry, a handful of flux measurements obtained from
images using a small number of broadband filters. In addition some photometric meth-
ods are designed for inferring the redshift distribution of a population of sources from

their photometry.

Future galaxy surveys will observe to greater depths than previous surveys have,
driving an increase in the precision of the resulting cosmological constraints. However,
this increase in depth also increases the fraction of sources that will overlap along the
line of sight, an effect known as blending. For future surveys such as LSST, around half
of sources will be blended to some degree. Methods to separate blended sources, known
as deblending, have therefore been developed. However, completely propagating all
uncertainties from measurements made on deblended sources, including all correlations,

can be difficult.

The work in this thesis take a different approach to deblending. We develop
photometric redshift methods that infer the redshifts from blended data directly. By

framing the problem in this manner, all uncertainties can be accounted for simply.
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In chapter 6, we generalise existing Bayesian template-based photometric redshift
methods to the case of blended sources. We derive an expression for the posterior distri-
bution over the redshift and magnitude for each constituents galaxy in a blended source
with an arbitrary number of constituents. Using Bayesian model comparison, we are
also able to determine probabilities for the number of constituents in each source. We
test this method on both simulated data and real spectroscopically confirmed blended
data with known redshifts. We also test the method on simulated partially-blended
sources where only some bands are blended, finding that this reduces the fraction of

outliers.

In chapter 7, we tackle the same physical problem using the other main type of
photometric redshifts, empirical methods. We model the joint flux-redshift distribution
of galaxies as a Gaussian mixture model (GMM), and fit this model to a training
set of unblended sources. Given this model, we derive both the redshift posterior
distributions and the Bayesian evidences for of one- and two-constituent sources. Due
to our choice of using GMMs, the posterior distributions can be efficiently sampled
without MCMC techniques. In addition, Bayesian model comparison can be used to
provide probabilities for the number of sources much faster than the template-based
method in the previous chapter, an important property for the large datasets of future
surveys. As before, we test this method on both simulated and real data. We find
that redshifts are well recovered in regions where sources are well represented in the
training set, though the results are expectedly worse for sources fainter than the depth

of the training set.

Finally, chapter 8 extends the GMM of the previous chapter to a hierarchical
model in order to infer posterior distributions over the redshift distributions of a pop-
ulation of possibly blended sources. To do this, we model the distributions of the
unblended galaxies, the lower-redshift constituent of blended sources, and the higher-
redshift constituent of blended sources as three separate GMMs that share the sets of
means and covariances but differ in their weights. We test this method on simulated
sources using both Hamiltonian Monte Carlo and variational inference techniques, find-
ing that the overall width of the distributions is well recovered, though the distributions
in detail display oscillatory behaviour that would require more work to understand. In
addition, we also test a mixture model where each component is a multivariate Gaus-
sian in the fluxes but is a uniform bin in redshifts. The resulting output is therefore a
posterior distribution over redshift distributions histograms. This stops the oscillatory
behaviour of the previous model, though the distributions are not well recovered to
the precision suggested by the posterior distributions. Chapter 8 also describes several

possible extensions to the models described that could improve their results.



Table 9.1: A summary of the research results in this thesis.

Chapter 6

Chapter 7

Chapter 8

Method type

Inference target

Inference method

Redshift scatter on
simulated blended
data

Blends identified in
simulated blended
data

Redshift scatter on

GAMA blended
sources catalogue

Blends identified in
GAMA blended
sources catalogue

Computation time

Template-based

Per-object redshift PDFs
and Bayesian evidence for
each number of constituents

Nested sampling (MultiNest)

orms = 0.163
92.7%
orms = 0.156
71.6%

~ 2 mins per source

Empirical (GMM)
Per-object redshift PDFs
and Bayesian evidence for
each number of constituents

Rejection sampling

orms = 0.105
92.4%
orms = 0.091
33.4%

~ (0.1 secs per source

Empirical (GMM)

Population redshift
distribution PDFs

HMC and VI
N/A

N/A

N/A

N/A

~ 0.1 secs caching per source +

12 (HMC) / 1 (VI) hrs sampling
for 20000 sources

17e
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We summarise and compare the results of each research chapter in Table 9.1.
The methods in chapters 6 and 7 tackle the same per-source photometric redshift
problem generalised to blended sources using different methods. These methods are
then tested on both simulated and real datasets. It is worth noting that both methods
achieved a slightly lower scatter on the real blended sources from the GAMA blended
sources catalogue (Holwerda et al., 2015) than the simulated LSST-like data. A likely
reason for this is that the GAMA dataset represents a lower-redshift population than
the simulations. As a result, the degeneracies associated with photometric redshifts
described in chapter 4 where high-redshift sources can be confused for low-redshift
sources are less of a problem. This is because erroneous inferences of sources being at

high redshifts are a priori unlikely in a low-redshift sample.

It is also noteworthy that while the GMM approach in chapter 7 achieves a lower
RMS scatter in both the simulated and GAMA blended source catalogue (Holwerda
et al., 2015) tests, it fails to identify many of the sources in the latter test as being
blended.

Since the GMM model is trained on real unblended sources, its flux-redshift
distribution well represents the types of sources selected into the GAMA survey. One
possible explanation of the results compared to chapter 6 is that the GMM model was
able to constrain the redshifts by using strongly distinguishing features of the galaxy
spectra, e.g. the Lyman and Balmer breaks, while failing to adequately describe the
distribution of blended fluxes overall. This failure may be expected due to features of
blended galaxies such as absorption due to dust that model does not account for. Such
an effect would alter the shape of the spectrum without altering the position of strong
break features, leading to the above behaviour. Since the Bayesian model selection
procedure disfavours more complicated models without a sufficiently large increase in
the likelihood, we would expect the above behaviour to result in a reasonably low

scatter but poor identification of blended sources, as was observed.

The template-based model in Chapter 6 identifies more blended sources but also
achieves a larger scatter. This could be explained by the template set characterising
the flux distribution of GAMA galaxies less well than the empirically-trained model.
If this were the case, we would expect that the scatter in the template-based model
would be higher, as was observed. However, the additional freedom afforded by the
blended model would not be as discouraged as in the GMM case by the Bayesian
model comparison, since the single-constituent model being compared against is a
poorer description of the data than the corresponding comparison in chapter 7. As
a result, we would expect to see a higher scatter but better identification of blended

sources than the empirical model.
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The aim of the methods presented in this thesis is to generalise inferences of pho-
tometric redshifts to the case of blended sources, ultimately improving cosmological
parameter inferences over neglecting these sources. However, it is difficult to estimate
how cosmological parameter inferences are affected by neglecting blending. Photomet-
ric redshifts are only one aspect of the cosmological analysis pipeline that we would

expect to be affected by unaccounted-for blending.

The priors in template based methods are generally useful in reducing the rate of
catastrophic outliers (e.g., Benitez, 2000), but blending-related selection effects would
make these priors less applicable to the survey population, increasing the rate of catas-
trophic outliers. These catastrophic outliers are able to induce systematic biases in
inferences of cosmological parameters (e.g., Hearin et al., 2010). In addition, machine
learning-based methods are particularly sensitive to the degree to which their training
sets are representative of the population on which they are applied. Blended sources
are likely to affect this, reducing the accuracy of these methods. The impact of such
effects and how they interact with other effects of blended sources throughout the
rest of the analysis pipeline would need to be tested through simulation of the full

data-generating process.

We can test for the degree to which photometric redshifts are affected by neglect-
ing blending by applying a standard photometric redshift method that does not account
for blending to simulated blended data. To do this, we use simulated blended LSST-like
data as described in chapter 7 and apply the GMM method described therein assuming
the number of constituents N =1 and N = 2. We then assign sources to tomographic
bins of width Az = 0.1 based on the point estimate of the redshift given by the mean of
the posterior samples. Finally, we stack the redshift posteriors corresponding to each

tomographic bin and obtain the mean redshift in each.

This mean redshift of sources in each tomographic bin is an important quantity for
inferring cosmological parameters. For example, the dark-energy science goals of LSST
require the error on this value to be < 0.003(1 + z) with a goal of < 0.005(1 + z) after
the first year (The LSST Dark Energy Science Collaboration et al., 2018). Figure 9.1
shows the distribution of this error over tomographic bins for simulated blended data
analysed assuming N = 1 and N = 2. We find the average of this error over all
tomographic bins to be 0.226(1 + z) for the analysis that neglects blending, while the
error reduces to 0.054(1 + z) when using the blended photometric redshift method.

While the error from the blended photometric redshift method is still larger
than required for LSST, we emphasise that this is only simple test. In particular,

stacking posteriors is a poor method for obtaining redshift distributions, as discussed in
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Figure 9.1: Distribution of error in the mean redshift in each tomographic bin, cal-
culated from simulated LSST-like data. The solid purple line shows the results for a
standard photometric redshift method that neglects blending, while the dashed orange
line shows the results for a blended photometric redshift analysis.

chapter 4. The simulated observations are also only somewhat representative of future
LSST observations as they do not simulate the observational pipeline in detail. A
more complete understanding of the cosmological impact of blending would come from
applying well-established methods for inferring redshift distributions, alongside the rest
of the data analysis pipeline, on detailed simulated observations. Nevertheless, this test
demonstrates that a photometric redshift method applied to blended data that does
not account for this blending results in an increased error in cosmologically relevant
metrics and will ultimately have an impact on the resulting cosmological parameter

inferences.

Several additional avenues to extend the work in this thesis are possible. Firstly,
since machine learning methods do not require a mathematical formulation of the
forward model of the data, it is simple to train them for a variety of tasks. It would
be worthwhile investigating how well a machine learning-based photometric redshift
method trained with a training set of blended sources could recover vectors of redshifts.
The single-constituent results presented in chapter 7 are also applicable for predicting
a vector output. However, without the need to be able to construct blended posteriors

from unblended training data, any machine learning methods could be used.

A potential problem for using blended training data is ensuring that the training
set is sufficiently large and representative. Examples of all pairs blended training data
would need to be available for training, increasing the size of the required training set.
One possible solution to this problem would be to utilise multi-task learning, where
a machine learning method such as a neural network is trained to perform multiple

different predictions tasks. This could be applied to the blended photometric redshift
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Figure 9.2: Figure showing the two modes of the possible multi-task blended photo-
metric redshift neural network described in the text. The left figure shows the blended
mode, where the network first predicts unblended fluxes, before using these vectors as
input into multiple copies of the photo-z network with shared weights to predict the
redshifts. The right figure shows the unblended mode, where only the photo-z network
is used with unblended fluxes as input.

problem as follows.

A neural network model can be considered in two distinct sets of layers, as shown
in Figure 9.2. The first set, labelled npnoto-» is used to map fluxes of unblended sources to
a single redshift. The second set of layers, labelled ngepiena is used to map blended fluxes
onto multiple sets of unblended fluxes. The network can then be trained using standard
backpropagation techniques using both blended and unblended training data. When
unblended training data is used, only the npneto, layers are backpropagated through.
The nphoto-» layers therefore learn how to predict photometric redshifts. However, when
blended training data is used, the ngepena layers first output unblended flux vectors that
are then each used as input to one of several copies of the nppoto layers with shared
weights. Thus, by backpropagating through all layers, the deblending network can be
trained to predict fluxes that the photo-z network maps to the correct redshift.

Another potential extension of this work is to using images as inputs. The work
in this thesis shows a different approach to the typical deblending approach by inferring
the quantities of interest from blended data directly. This is done by constructing a
forward model of the blended data. If a forward model of galaxy images could be
constructed, the same method could be applied to images themselves. This forward
model could be a simple parametric model such as an Gaussian profile, convolved with
the telescope beam. Generative machine learning models such as conditional variational

autoencoders could also be used for this purpose, which may be more computationally
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efficient and thus able to scale to the large datasets of future surveys.

A cosmological application of this method would be shape measurement, a nec-
essary measurement for weak lensing surveys. By having both the brightness in each
band of each constituent in a blended source and their corresponding shapes as inputs
to the forward image model, these parameters could be fitted to blended images, pro-
viding joint distributions over the shapes and photometric redshifts of all constituents

in a blended source.

Future cosmological galaxy surveys hold much promise for great increases in the
precision of cosmological constraints, and an increased understanding of cosmology in
general as a result. If these progressions are to come to fruition, much care will need
to be taken to ensure we thoroughly understand and account for all uncertainties in
these results. The very large datasets these surveys will produce promise to provide
a significant challenge for existing statistical analyses, and are a scenario well-suited
to machine learning methods. By combining these methods with existing statistical
viewpoints to enable probabilistic approaches to machine learning, we can tackle both
of these statistical and big data challenges, enabling the progress promised by a new

generation of cosmological galaxy surveys.
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