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ABSTRACT

In the era of large-area surveys, cosmology has seen enormous growth in the amount of

available data and a corresponding decrease in the statistical uncertainty of measurements

made with this data. The increased precision has led to the discovery of differences

between measurements based on the local versus early Universe. One of the most notable

differences is a 4.4f tension between the expansion rate of the Universe measured directly

with Type Ia supernovae versus that inferred frommeasurements of the CosmicMicrowave

Background (CMB). This tension could be an exciting indication of new physics or a result

of unknown systematic uncertainties becoming increasingly important as the statistical

uncertainty decreases. In this dissertation, I first explore the possibility of systematic

uncertainties due to various observing conditions, such as sky brightness and exposure

time. Variations in these conditions lead to variations in the observed density of galaxies,

which are difficult to differentiate from variations sourced by cosmology. I introduce

a novel method for mitigating the impact of these observing conditions and correctly

propagates the uncertainty due to the mitigation into the resulting cosmological analysis.

I apply the method to Year 1 (Y1) data from the Dark Energy Survey (DES) and compare

the results to the fiducial DES Y1 analysis. I find that this new method results in a

modest improvement in the goodness of fit for the recovered cosmological parameters

(Δj2 = −6.5 with no additional parameters). Second, I propose a new method for

measuring the distance-redshift relation that is independent of both the distance ladder and

the theoretical systematics of CMB measurements. I show that such a method is already

feasible with existing data, and I forecast the constraining power of this measurement with

near-future data from the Dark Energy Spectroscopic Instrument (DESI). Without any

added information, this method applied to DESI data will result in a ∼1.3 % measurement

of the expansion rate. Adding cosmological supernova data improves the constraint to

0.7 %. This level of precision is enough to distinguish between local measurements of the



9

expansion rate and those based on the CMB at high confidence.



10

CHAPTER 1

INTRODUCTION

Cosmology is the study of the origin and evolution of the Universe. It seeks to discover

everything from how the Universe began to how it might one day end. In 1929, Edwin

Hubble discovered that the distance to other galaxies is linearly related to the speed of the

galaxies (Hubble, 1929), a relation now known as the Hubble law:

EA = �03. (1.1)

In the above equation, EA is the velocity of the object, 3 is the distance to the object, and

�0 is a proportionality factor known as the Hubble constant. Hubble’s law implies that

the farther an object is from us, the faster it appears to be moving away from us. This

discovery was one of the foundations of modern cosmology.

Much like the Doppler effect, the apparent motion of distant objects away from us

causes the light emitted by the objects to stretch. For the Doppler effect, the light from an

object moving at speed E relative to an observer will be stretched by an amount

Δ_

_em
=
E

2
,

where 2 is the speed of light and _em is the wavelength of the light when it was emitted.

In cosmology, we denote the term Δ_/_em from the left hand side of the equation as the

redshift I, with I = 0 today. We can therefore relate the velocity from the Hubble law to

this redshift, and rewrite eqn. (1.1) as1

3 (I) = 2I

� (I) , (1.2)

where � (I) is the Hubble parameter with � (I = 0) ≡ �0 and 3 (I) is the distance to an

1This expression is only valid for small redshifts. At larger redshifts, the correct form is 3 (I) =
∫ I

0
2 dI
� (I) .
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object with redshift I. Thus the redshift of an object can be used as an indicator of its

distance, assuming we know what the function � (I) looks like. There are two ways to

approach this: (1) use a model of the Universe to determine � (I) theoretically; or (2) use
measurements of distance and redshift to determine � (I) empirically. Both approaches

have advantages and disadvantages.

In order to study cosmology, scientists make observations of distant objects across the

full electromagnetic spectrum. These observations can be spectroscopic or photometric.

Spectroscopic observations involve breaking the light from an object into its component

wavelengths. In doing so, we can see what the chemical composition of the object is based

on the emission and absorption features in the spectrum. By comparing the wavelengths

at which these features are observed to the wavelengths at which they occur in laboratories

on Earth, we can get an accurate measurement of the redshift of the object. However, it

takes a lot of light to measure a spectrum well. This means that only bright objects or

objects close to us can be observed. It also means that making spectroscopic observations

over a large portion of the sky takes a long time, which is expensive. Photometric

observations on the other hand are just like taking pictures with filters that let through only

specific wavelengths of light. The ranges of allowed wavelengths on each filter are broad,

which means we lose some of the information about where the emission and absorption

features are and therefore we get much less accurate redshift estimates (fI ∼ 0.017(1 + I)
compared to fI ∼ 0.0005(1 + I)). But it takes significantly less light to observe an object
photometrically, so many more objects can be observed within a given amount of time

than with spectroscopic measurements. In this dissertation, I use both photometric and

spectroscopic data. The spectroscopic data is used to get accurate redshifts for measuring

� (I) empirically, while the photometric data is used to constrain the model for � (I) with
much larger amounts of data. I also use photometric data to identify clusters of galaxies,

although we use spectroscopic data to verify that the identified galaxies are actually related

to each other and not just close to each other by random chance.

The next sections will briefly cover the standard model of cosmology as well as

describe both approaches in slightly more detail. The interested reader should consult

other sources for a more in depth explanation of the concepts starting from first principles
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(e.g., Weinberg, 1972; Dodelson, 2003; Carroll, 2019).

1.1 Standard Model of Cosmology

As discussed above, we know that the Universe is expanding. To quantify this expansion,

we define the scale factor, 0(C). Suppose we have an object with size G0 at time C0. Then

at time C1 > C0, the object will appear to have size 0(C1)
0(C0) G0 > G0 due to the expansion of the

Universe. The scale factor is normalized so that 0(C0) = 1 when C0 is the time today. Note

that this also means that

I =
Δ_

_em
=

1 − 0
0

or

0(I) = 1
1 + I .

Recall from eqn. (1.1) that the Hubble constant is equal to velocity divided by distance.

As velocity is the time derivative of distance and we have G(C) ≡ 0(C)G0, we see that the

Hubble parameter is related to the rate of change of the scale factor, specifically

� (C) ≡ ¤0(C)
0(C) . (1.3)

The right hand side of this equation can also be found using the Friedmann equation(
¤0
0

)2
=

8c�
3

d − :2
2

02 +
Λ22

3
, (1.4)

where d is the energy density of the Universe, : is a parameter that characterizes the spatial

curvature of the Universe (: = 0 in a flat Universe), and Λ is the cosmological constant.

Observations have tightly constrained the spatial curvature to be : = 0, so we will assume

this is true from now on. We define the critical energy density dcrit = 3�2
0/8c� and we

denote the density parameters ΩG ≡ dG (C0)/dcrit and ΩΛ ≡ Λ22/3�2
0 , where G denotes

a given contribution to the energy density (for instance, G = < for matter or G = A for

radiation).
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With these definitions and the Friedmann equation, we can rewrite eqn. (1.3) as

� (I) = �0

√
ΩΛ +

∑
G

ΩG (I). (1.5)

The redshift dependence of the density parameters is determined by the equation of state for

the component being considered. For instance, in the case of matter,Ω< (I) = Ω< (1+ I)3,
while for radiation ΩA (I) = ΩA (1 + I)4. At low redshifts, the contribution from radiation

is much smaller than that of the matter, so it is common to write

� (I) = �0
√
Ω< (1 + I)3 + (1 −Ω<) (1.6)

The standard model of cosmology is known as the flat Λ cold dark matter, or ΛCDM,

model. Flat refers to having zero spatial curvature, Λ refers to the cosmological constant

and the fact that the dark energy density is constant, and cold dark matter refers to the

assumption that dark matter is non-relativistic and is therefore treated as part of the total

matter density (so Ω< includes both regular and dark matter). The Hubble parameter as

defined in eqn. (1.6) is the correct form for low redshifts in the flat ΛCDM model. For

the remainder of this dissertation, unless otherwise noted, we will assume eqn. (1.6) is

correct.

1.2 Model-Based Approach

The model-based approach to determining the relationship between distance and redshift

fundamentally involves figuring out the correct values for Ω< and �0 in eqn. (1.6),

although alternate parameterizations are sometimes used depending on what a given

experiment can best measure. In any case, the key to measuring these parameters is that

they impact how gravity works, and therefore change how matter is distributed in the

Universe. To understand why this is and how we measure it, we must first discuss the

statistical properties of the matter distribution, which depend only upon the assumptions

of isotropy and homogeneity. Isotropy means that the Universe is the same in every

direction: if you were to split the Universe in half, you would not be able to tell which half
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was which, no matter how the split was made. Homogeneity means that the Universe is

the same everywhere: observers on a planet in a galaxy far, far away would measure the

same properties of the Universe as us here on Earth. Together, these two assumptions are

called the cosmological principle, which is based on the idea that we are not in a special

location in the Universe and therefore no point in the Universe is special. Importantly,

however, isotropy and homogeneity only hold statistically over large scales; without small

inhomogeneities in the early Universe, there would be no galaxies, stars, or planets today.

1.2.1 The Density Field and the Correlation Function

As stated above, the distribution of matter in the Universe is statistically homogeneous

and isotropic, with local inhomogeneities. We can therefore characterize the density field

d(®G) as fluctuations X(®G) around some mean density d,

d(®G) = d (1 + X(®G)) . (1.7)

Because we know the mean of the density field is d, we must have that the expectation

value of the density fluctuations is zero,

〈X(®G)〉 = 0. (1.8)

We define the correlation function (or two-point function) as the covariance in the density

fluctuations between two points,

b (®G, ®G′) ≡ 〈X(®G)X(®G′)〉.

Because of statistical homogeneity, the correlation function cannot depend on either

location ®G or ®G′, only on the difference ®A ≡ ®G − ®G′. Statistical isotropy implies that the

correlation function also cannot depend upon the direction of ®A, only upon its magnitude

A ≡ |®A |. So the correlation function is

b (A) = 〈X(®G)X(®G′)〉. (1.9)
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Fundamentally, the correlation function can be thought of as the excess probability of

finding matter separated by a distance A relative to if the matter were uniformly distributed.

The correlation function for a smooth uniform distribution is zero at all scales. The shape

of the correlation function then tells us about how much matter there is and how much

expansion the Universe has undergone. More matter means that gravity is stronger and

initial density fluctuations will grow more, resulting in a steeper correlation function.

If the expansion were faster, on the other hand, gravity would be less effective and the

correlation function would be flatter.

1.2.2 Measuring the Correlation Function

The correlation function as defined in eqn. (1.9) depends on the magnitude of the three-

dimensional distance A , which requires accurate redshifts. Whenworkingwith photometric

data, it is common to instead measure the angular correlation function F(\), which can

be thought of as an average of the correlation function over a range of redshifts. Using

the angular correlation function does lose some information, but most of that information

is already lost because of the uncertainty in photometric redshifts. This is the correlation

function we consider in the next chapter.

Another subtlety of eqn. (1.9) is that the density field from which we started was the

matter density field, which includes both regular matter and dark matter. As we cannot

directly observe dark matter, we can only measure this correlation function if we look at

the gravitational effect of the dark matter on other objects. Weak lensing seeks to directly

measure the correlation function of matter by looking at the distortion of the shapes of

galaxies due to the matter in front of them. It assumes that the orientation of galaxies are

random (e.g., the long axis of galaxies do not point in some preferred direction), but that

the presence of large amounts of matter makes the orientations appear to align. This can

be a source of noise in such measurements, but it is still a direct measurement of the matter

correlation function. Alternatively, regular matter (such as galaxies) can be used as a tracer

of the dark matter: where there are more galaxies, there is likely more dark matter and vice

versa. Because regular matter interacts with itself in ways other than gravitationally, this

is not an exact mapping, and a multiplicative bias is introduced in the correlation function
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of galaxies relative to that of matter. As long as this bias only depends on redshift–which

seems to be the case for tracers at large separations–the bias does not impact the shape of

the correlation function. Using a tracer like galaxies in combination with weak lensing

also helps to fix the bias, and has been used inmany recent analyses (see, e.g.,Mandelbaum

et al., 2013; More et al., 2015; Joudaki et al., 2018; van Uitert et al., 2018; Abbott et al.,

2018). Surveys such as the Kilo Degree Survey (KiDS; Hildebrandt et al. 2017), the Dark

Energy Survey (DES; The Dark Energy Survey Collaboration 2005; Dark Energy Survey

Collaboration 2016), and the Hyper Suprime-Camera Survey (HSC; Aihara et al. 2018)

have been built with a focus on performing cosmological “3×2pt” analyses, in which the

correlation function is measured for galaxy shapes and galaxy positions, as well as the

cross-correlation between shapes and positions.

Measuring galaxy density is in large part a counting problem, and so the uncertainty in

such measurements–and on the cosmological parameters inferred from them–gets better

with larger samples of galaxies. Wide field dark energy experiments have been designed

to observe larger and larger portions of the sky, as well as larger and larger redshifts, so

the number of observed galaxies has increased substantially within the last decade, and

will only get larger with upcoming experiments such as the Dark Energy Spectroscopic

Instrument (DESI; Levi et al. 2013), the Vera C. Rubin Observatory’s Legacy Survey of

Space and Time (LSST; Ivezić et al. 2019), the Nancy Grace Roman Space Telescope

(Spergel et al., 2015), and Euclid (Laureijs et al., 2011). This is not the only source of

uncertainty on such measurements, however. In Peebles (1973), the author points out

that the variable effects of “galaxy obscuration and confusion” almost always cause the

apparent density of galaxies to vary across the sky, and that coherent patterns of large

angular scales “must be treated with caution unless one can make a reliable correction

for [them]”. In order for systematic uncertainties to remain the sub-dominant source of

noise in future measurements, we must improve our understanding and treatment of such

systematic effects on the galaxy density field. This is the focus of chapter 2, which is

based on Wagoner et al. (2020).
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1.3 Empirical Approach

While it is important to understand and characterize the potential systematic effects that

might impact the cosmological parameters inferred by current measurements, it is also

critical to find new and independent measurements that can distinguish between existing

results. This involves developing new methods for determining the Hubble parameter that

do not rely on the assumptions of existing measurements. In chapter 3 of this dissertation,

I introduce one such distance measurement which fits the Hubble parameter empirically

based on the work in Wagoner & Rozo (in prep).

The empirical approach to determining the Hubble parameter involves comparing the

redshift of objects with their distances measured via some other means. This presents a

challenge, as the distance scales in question are so large: the distance between the Earth and

the Sun is∼150 million km, the distance to the next closest star is about 270 thousand times

greater than that, and the distance to the closest large galaxy is more than 600 thousand

times larger still. Typical methods for measuring distance don’t work at these scales.

Instead, cosmologists rely on things they can measure that are related to distance in some

known way. For instance, the ratio of the apparent brightness of an object and its intrinsic

brightness is inversely proportional to the square of the distance. For objects with known

intrinsic brightness–referred to as “standard candles”–, the apparent brightness can be

used to estimate distance. This is used with Type Ia supernovae (SNe Ia), which were

the first indicators that the expansion of the Universe is accelerating (Riess et al., 1998;

Perlmutter et al., 1999). However, the use of SNe Ia standard candles inherently assumes

that all SNe Ia have the same intrinsic brightness, and that we know what that intrinsic

brightness actually is.

Another method of estimating distances on cosmic scales uses the fact that the physical

size of an object is equal to its angular size times the distance to it. Objects with a known

physical size are therefore “standard rulers”. One common example of this in cosmology

is Baryon Acoustic Oscillations (BAO; e.g. Zarrouk et al. 2020), the imprint of sound

waves from the early Universe on the distribution of matter. However, this measurement

depends on distances fixed from observations of the early (high redshift) Universe. These
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early Universe observations, such as measurements of the CosmicMicrowave Background

(CMB) by Planck Collaboration (2018), are in 4.4f tension with recent measurements

base on SNe Ia (Riess et al., 2019).

The alternative empirical method for measuring the Hubble parameter I present in

chapter 3 makes use of the results of Tomooka et al. (2020; hereafter Paper III), which

identifies an observable “kink” in the radial profile of the velocity dispersion of cluster

galaxies as an edge radius for galaxy clusters. This identification has been indirectly

corroborated by a corresponding dark matter halo edge radius identified in the three-

dimensional velocity field by Aung et al. (2020; hereafter Paper IV). Assuming this

edge radius is a standard ruler which can be calibrated in simulations, I show that it can

be used along with relative velocities of galaxies near clusters to measure distances and

constrain the Hubble parameter. I demonstrate the feasibility of such a measurement with

current data and perform a forecast for how well such a measurement could be made with

near-future data.
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CHAPTER 2

MITIGATING GALAXY CLUSTERING SYSTEMATICS

This chapter is based on Wagoner et al. (2020), in which I detail and implement a method

for determining andmitigating the impact of various observing properties on cosmological

analyses using galaxy densities. I begin in the next section with motivation for this work,

including detailing the types of mitigation schemes that have been used previously. For

the rest of the chapter, I focus primarily on my method in comparison with the method

implemented in the analysis of the DES Year 1 (Y1) data presented in Elvin-Poole et al.

(2018; hereafter Paper II), and the resulting change in the 3×2pt cosmology analysis

presented in Abbott et al. (2018; hereafter Paper I).

The organization of this paper is as follows: in the next section, I give an overview of the

different types of mitigation methods that have been performed previously. In section 2.2,

I introduce the data that I used for this analysis. Section 2.3 describes the method we

use for characterizing the impact of observing properties, and in section 2.4, I describe

how I generate mock catalogs for testing the method. In section 2.5, I characterize how

the mitigation impacts the noise, and how that noise is included in the final cosmological

analysis. The results are presented in section 2.6.

2.1 Motivation

There are a large number of potential contaminants that can result in the type of coherent

fluctuations warned about in section 1.2.2. These include star-galaxy separation, stellar oc-

cultation, extinction, and variations in observing conditions like airmass or sky brightness.

Differentiating between the true cosmologically-sourced fluctuations and those caused by

such survey properties has been the subject of many studies over the years (see, e.g.,

Rybicki & Press, 1992; Tegmark, 1997; Tegmark et al., 1998; Vogeley, 1998; Hivon et al.,

2002; Slosar et al., 2004; Ho et al., 2008; Ross et al., 2011, 2012; Ho et al., 2012; Bergé

et al., 2013; Pullen & Hirata, 2013; Leistedt et al., 2013; Leistedt & Peiris, 2014; Suchyta
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et al., 2016; Prakash et al., 2016; Ross et al., 2017; Delubac et al., 2017; Laurent et al.,

2017; Elsner et al., 2017; Raichoor et al., 2017; Elvin-Poole et al., 2018; Bautista et al.,

2018; Alonso et al., 2019; Nicola et al., 2020; Rezaie et al., 2020; Weaverdyck & Huterer,

2020). Rezaie et al. (2020) identify three broad categories of mitigation techniques:

(a) Monte Carlo simulation of fake objects; (b) mode projection; and (c) regression.

The first of these methods, involving injecting artificial sources into real images, is

extremely promising. It results in forward-modeling the survey selection mask imposed by

real imaging properties. Examples of this method include Bergé et al. (2013) and Suchyta

et al. (2016). However, this technique is computationally expensive, and therefore less

utilized than the other methods.

Techniques utilizing mode projection typically involve down-weighting the spatial

modes that are strongly correlated with survey properties by assigning a large variance to

them. This technique is explained and utilized in, e.g., Rybicki & Press (1992); Tegmark

(1997); Tegmark et al. (1998); Hivon et al. (2002); Slosar et al. (2004); Ho et al. (2008);

Pullen & Hirata (2013); Leistedt et al. (2013); Leistedt & Peiris (2014); Elsner et al.

(2017); Alonso et al. (2019); Nicola et al. (2020). The variance of the estimated clustering

increases as more survey properties are considered unless a threshold is used to limit the

number of survey property maps. However, using such a threshold has been shown to

introduce a bias in the resulting two-point function (Elsner et al., 2016).

Regression-based techniques attempt to model the impact of the survey properties on

the galaxy density, fitting the parameters of the model by cross-correlating the galaxies

and systematic fluctuations or by using a least-squares estimate (see, e.g., Ross et al., 2011,

2012; Ho et al., 2012; Prakash et al., 2016; Ross et al., 2017; Delubac et al., 2017; Laurent

et al., 2017; Raichoor et al., 2017; Elvin-Poole et al., 2018; Bautista et al., 2018). For

instance, Ross et al. (2011); Howlett et al. (2012) fit for the impact of observing conditions

in the correlation function and power spectrum, respectively. The disadvantage with this

method is that any spurious correlation between the 2-point function of the galaxies and

the survey properties will result in a correction, even if the fluctuations are not spatially

related. This makes it easy to over-correct for systematic fluctuations, which may bias the

resulting correlation function estimate.
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As part of the analysis of theDESY1 “Gold” data release, Paper II also fit for the impact

of survey properties, but using one of the alternative suggestions from Ross et al. (2011)

of applying the corrections one at a time in order to account for potential correlations

between different sources of systematic fluctuations. Briefly, the method of Paper II is as

follows: the average number of galaxies per pixel #gal is measured for all pixels with a

survey property value B within a bin B ∈ [Bmin, Bmax] for one of the survey property maps,

relative to the average number of galaxies per pixel in all pixels 〈#gal〉. A model is fit

across all bins of the survey property values, and the Δj2 for this model compared to a

null test where #gal/〈#gal〉 = 1 is calculated. The significance of the survey property map

is defined by comparing this Δj2 to the sixty-eighth percentile of the equivalent quantity

measured in 1000 contaminated Gaussian mock catalogs. This procedure is repeated for

each survey property map and the maps are ranked by significance. A correction is applied

for the most significant map to the measurements of #gal/〈#gal〉, and the significance of

each map is re-calculated. To avoid over-correction, this iterative process continues

until none of the survey property maps have a significance above some target threshold.

However, it is not necessarily the case that the effects of the various survey properties

can be separated in this manner. For instance, this method precludes the possibility that

significant systematic fluctuations can arise from the coherent contribution of multiple

sources of systematics despite each individual survey property map being negligible by

itself. Also, the analysis in Paper II included the spatial structure of the galaxy distribution

only through the covariance in the galaxy densities binned by survey property. The analysis

method introduced in this paper explicitly incorporates the density and spatial separations

of neighboring pixels for determining the coefficients of the fluctuations sourced by survey

properties: it is a much finer-grained look at that spatial structure.

Several other recent studies have attempted to use the regression-based technique

directly with the galaxy density field while incorporating the spatial structure of the galaxy

density field (see, e.g., Prakash et al., 2016; Delubac et al., 2017). However, as discussed

in Rezaie et al. (2020), these models are also often vulnerable to over-correction. The

regression method used by Rezaie et al. (2020) differs from previous regression-based

techniques in that it does not assume a functional form for the impact of the survey
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properties on the observed galaxy density. Instead, Rezaie et al. (2020) rely on a neural

network approach and feature selection to achieve accurate systematic corrections without

over-correction. However, this method fails to propagate the statistical and systematic

uncertainties due to the correction into the error budget of the galaxy clustering signal.

The methodology presented in this chapter is an improved version of the linear model

described in Prakash et al. (2016). Relative to that work, we reduced the number of

free parameters by one by enforcing the condition that in the absence of systematic

fluctuations, the observed galaxy density field will be equal to the true galaxy density

field with a mean of zero (i.e., we do not include the constant term in equations 13 and

14 of that paper as a free parameter in our model). The analysis explicitly incorporated

the spatial clustering signal of the galaxy density field in an iterative approach, and mock

catalogs are used to calibrate and correct for the residual bias due to over-correction.

The combination of using a Markov chain Monte Carlo (MCMC) to fit our model and

utilizing mock catalogs to correct for the bias allows us to estimate both the statistical

and systematic uncertainty of our systematics-corrected galaxy correlation function. This

procedure therefore correctly inflates the error budget associated with the measurement of

the galaxy correlation function, enabling us to trivially propagate these uncertainties into

cosmological constraints downstream.

2.2 Data

We will estimate and correct for systematic-sourced fluctuations in the density of the DES

Year 1 redMaGiC galaxy sample (Paper II). We use the same redshift binning as the Y1

analysis, shown here in table 2.1, along with the number count and galaxy density in each

bin. As described in section 2.3, our analysis leads us to remove survey regions with large

systematic-sourced fluctuations. This cut removes ∼3.5 % of the fiducial Y1 redMaGiC

footprint, for a final area of ≈1274 square degrees. The counts and galaxy density after our

systematic cut is shown in the fourth and fifth columns of table 2.1. Fig. 2.1 compares the

redshift distributions in each bin before and after the systematics cuts. The gray lines are

the distributions for the full redMaGiC sample, while the colored lines of the same style
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Table 2.1. Galaxy counts and densities by redshift bin

I range Y1 #gal Y1 =gal #gal =gal
(arcmin−2) (arcmin−2)

0.15 < I < 0.3 63719 0.0134 61621 0.0134
0.3 < I < 0.45 163446 0.0344 157800 0.0344
0.45 < I < 0.6 240727 0.0506 231649 0.0505
0.6 < I < 0.75 143524 0.0302 138450 0.0302
0.75 < I < 0.9 42275 0.0089 40812 0.0089

Note. — The redshift binning with information about the number of galaxies and
number density both from the DES Y1 analysis and the current analysis. The second and
fourth columns are the total number of galaxies in each of the redshift bins, while the third
and fifth give the galaxy density per square arcminute. Note that there is a change in the
mask in going from the Y1 counts and number density of columns two and three to our
own in columns four and five, which reduces the area by ∼3.5 %.

are the distributions in the same bin after cutting based on systematics. The distributions

are not normalized, so differences in height are caused by the difference in the number of

galaxies before and after the cut.

We estimate the galaxy correlation function using the Landy&Szalay (1993) estimator,

F̂(\) = �� − 2�' + ''
''

, (2.1)

where ��, �', and '' are the number of pairs of galaxies with angular separation \

given a galaxy sample � and a random catalog '. We measure the number of pairs using

TreeCorr1 (Jarvis et al., 2004), and our random catalog is the same one used by Paper II,

except for the fact that we remove the random points in the survey regions excluded by our

analysis.

We consider a total of 18 potential sources of systematics for the observed galaxy

correlation function. Each of these is represented as a map which is pixelated on the sky

1http://ascl.net/1508.007

http://ascl.net/1508.007
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Figure 2.1: The redshift distribution for each redshift bin, found by stacking Gaussian distri-
butions with mean and standard deviation equal to the redMaGiC redshift and error. The colored
lines are the distributions with our new mask, and the gray dash-dotted lines are the corresponding
distributions from Paper II. The curves are not normalized, so differences in height are from the
number of galaxies in the bin.
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using the HEALPix2 (Górski et al., 2005) pixelization scheme. Themajority of themapswe

consider are imaging properties from the DESY1 ‘GOLD’ catalog release (Drlica-Wagner

et al., 2018). In each of the four bands (6A8I), we have maps of

(i) total exposure time;

(ii) mean PSF FWHM;

(iii) mean sky brightness, due to e.g. the moon; and

(iv) mean airmass,

For all mean quantities, the value on a pixel in a given band is computed as the weighted

mean over all exposures in that band which contribute to the pixel. The exposure time

is instead the sum of the exposure times for each exposure contributing to the pixel.

Unlike Paper II, we do not include any depth maps, as these depend on the other imaging

properties in a complicated way, and therefore are not linearly independent from the

other imaging properties—including the depth maps would be double counting the other

imaging properties and would likely increase any over-correction biases that might exist.

We therefore have 16 imaging property maps. We also consider contamination due to

foreground stars, for whichwe use the stellar densitymap described in section 5 of Paper II.

Galactic extinction is included using the dust opacity map from the Planck Collaboration

(Planck Collaboration, 2014). Both stellar density and extinction were considered in

Paper II, but were found to have no correlation with the galaxy density and thus were

ultimately excluded from that correction. We include both here because we do not want

to preclude the possibility that they could still add coherently with other potential sources

of contamination and thus impact the observed galaxy density. Collectively, we refer to

the set of 18 imaging property, stellar density, and Galactic extinction maps as “survey

property maps”. Where necessary, we use the routines of healpy (Zonca et al., 2019) for

manipulating both survey property and density maps.

2https://healpix.sourceforge.net

https://healpix.sourceforge.net
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2.3 Method

We determine the impact of observing conditions in the clustering of galaxies by relying

on the spatial structure of the survey properties. Specifically, we estimate the extent to

which the galaxy density maps are contaminated by systematic fluctuations by measuring

the extent to which the galaxy density map traces the various survey property maps.

We begin by constructing a low-resolution (#side = 128) map of the galaxy density

field. This choice limits the number of empty pixels to a small percentage (≤10 %) of the

total pixels. Working at this resolution, the average number of galaxies per pixel is ≥10 at

all redshifts.

We degrade the resolution of our survey property maps to match the resolution of

our galaxy density map, properly accounting for the masked portions of every pixel.

Specifically, the degraded survey property mapS′ is related to the original survey property
map S via

S′ 9 =
∑
8∈ 9 S8 5 8∑
8∈ 9 5 8

, (2.2)

where 5 8 ∈ [0, 1] is the fraction of pixel 8 (at the original map resolution) that is detected in

the footprint. The sums are over all high resolution pixels 8 that fall within low resolution

pixel 9 . We also degrade the pixel fraction map 5 8, such that the fraction 5 ′ 9 of low

resolution pixel 9 in the footprint is related to the high resolution fraction by

5 ′ 9 =
1
#̃

∑
8∈ 9

5 8, (2.3)

where #̃ is the number of high resolution pixels within a low resolution pixel.

The degraded survey property maps are used to compute standardized fluctuationmaps

as follows. Let S′8
V
be the value of survey property map V on low resolution pixel 9 . We

define the mean SV and fluctuation scale f̂V of S′ 9V via

SV ≡ #pix∑
9=1

5 ′ 9S′ 9
V

/
#pix∑
9=1

5 ′ 9 (2.4)
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and

f̂V ≡ 1.4826 MAD
(
S′ 9
V

)
, (2.5)

The median absolute deviation in eqn. (2.5) is

MAD
(
S′ 9
V

)
≡ #pix∑

9=1

���S′ 9V −med
(
S′ 9
V

)���/#mask ,

where #mask is the number of pixels not removed by the mask. The “fluctuation scale”

f̂V defined above is an estimator of the standard deviation for Gaussian fluctuations, but

its value is more robust to outliers than estimates based on the sample variance. The

standardized fluctuation map for survey property V is defined as

(
9

V
≡
S 9
V
− SV
f̂V

. (2.6)

Rather than working with the fluctuation maps themselves, we construct an orthogonal

map eigenbasis as follows. We assume the survey properties on each pixel are an indepen-

dent random realization from an #maps-dimensional distribution. We find the covariance

matrix I of the standardized maps at the fit resolution, where

IUV = 〈((U − 〈(U〉)
(
(V − 〈(V〉

)
〉,

and 〈·〉 is the spatial average over all observed pixels. We define the rotation matrix X

from the eigenvectors of I such that

I = XJX>,

where J is a diagonal matrix with the eigenvalues of I along the diagonal. The rotated

and standardized survey property value for map U on pixel 9 is

B
9
U ≡ X>UV(

9

V
. (2.7)
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Each B 9U is, therefore, a linear combination of the fluctuations in the original SP maps

{S′ 9
V
} on a given pixel. For the rest of the paper, unless otherwise noted, the term “SP”

refers to the eigenmap B 9U of eqn. (2.7) rather than the original survey property map S8
V
.

Since fluctuations in the density field can’t be sensitive to a constant non-zero SP

value—any non-zero constant would simply shift the mean value of the galaxy density

field—, the observed galaxy density must only depend upon the fluctuations of the SPs.

Thus, we write X 9obs ≡ Xobs

(
{B 9U}

)
, where {B 9U} is a vector containing the value of pixel 9

across all SP maps U. Expanding around {B 9U} = ®0 to first order, we have

X
9

obs

(
{B 9U}

)
≈ X 9true +

∑
U

0UB
9
U, (2.8)

where the coefficient 0U is the derivative of Xobs with respect to BU at {B 9U} = ®0. Note

that any impact on the monopole of the galaxy density field by the survey properties

gets absorbed into the mean observed galaxy density, and therefore has no impact on the

galaxy fluctuations. Since our expansion is at first order, we can ignore the monopole

as any impact with couplings to the linear perturbations would be second order. In the

expansion, we have used the fact that X 9obs

(
{B 9U} = ®0

)
= X

9
true, where X

9
true is the true galaxy

overdensity on pixel 9 . We have also assumed that the impact of SP on the galaxy density

field is local: the SP in pixel 9 only impact the galaxy density at pixel 9 .

Our task is to find the set of coefficients {0U} in eqn. (2.8). We do this by fitting

the likelihood %
(
®Xobs | | ®Xsys

)
of the observed overdensity map given the systematics map

®Xsys ≡
∑
U 0U®BU, where the vector symbol denotes the full map. As discussed below, our

procedure allows for covariance between pixels, so that this likelihood distribution does

not in general reduce to a product over all pixels. We assume aGaussian likelihood for ®Xobs.

This explains why it is important for the mean number of galaxies in the galaxy density

map to be large. We test our sensitivity to using a Gaussian distribution in section 2.4.2.

The ensemble average over realizations of the observed density field at fixed systematics

is simply 〈
®Xobs

〉
= ®Xsys. (2.9)
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We can thus write our Gaussian likelihood for ®Xobs as

ln %
(
®Xobs | | ®Xsys

)
= − 1

2
log

���obs��
− 1

2

(
®Xobs − ®Xsys

)> (
�obs

)−1 (
®Xobs − ®Xsys

)
, (2.10)

where we have dropped all constant terms, and again

®Xsys =
∑
U

0UB
9
U . (2.11)

The model parameters characterizing ®Xsys are the coefficients 0U for each survey property,

which we aim to recover from the data.

The covariance matrix for our likelihood can be written as the sum of two terms,

�obs = �VT + �Y\ . (2.12)

The first term contains the Poisson noise in the density field, and takes the form

�VT
9 : = f2

6 X 9 : ,

where f6 is a constant for which we can fit and X 9 : is the Kronecker delta. It will become

clear shortly why we allow f6 to be an unknown constant, rather than fixing it to the

Poisson expectation. The second term in eqn. (2.12) accounts for the sample variance.

We fit for our SP coefficients in two iterations. During the first iteration, we assume

there is no sample variance, so that �obs is diagonal. In this case, we can analytically solve

for the variance f2
6 and coefficients {0U} that minimize the likelihood in eqn. (2.10) by

solving the simultaneous set of equations obtainedwhen setting all of the partial derivatives

with respect to the survey parameter coefficients andf2
6 to zero. We are also able to find the

19×19-dimensional parameter covariance matrix analytically as the inverse of the Hessian

matrix evaluated at the minimum—we use this parameter covariance matrix (excluding

the row and column corresponding to f2
6 ) in the second iteration to select random starting
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locations within the 18-dimensional parameter space.

Once we complete our first iteration, we use our results to estimate ®̂Xtrue. We then

define �Y\ via

�Y\
9 : = (1 − X 9 : ) F̂true

(
\ 9 :

)
,

where F̂true is the correlation function of our estimated true overdensity field ®̂Xtrue and \ 9 :
is the angular separation between pixels 9 and : . We artificially set the diagonal elements

of �Y\ to zero because we cannot differentiate between the sample variance and Poisson

noise within a single pixel. This also explains why we treated f6 as an unknown constant:

fg is really the sum of the Poisson and zero-offset sample variance terms. We therefore

continue to use the f6 obtained from the minimization in the first iteration as the only

term on the diagonal of �obs in the second iteration.

We use the resulting “Poisson” and sample variance noise estimates to refit for the

coefficients of each of the SP parameters. In the second iteration, we use a Markov Chain

Monte Carlo (MCMC) algorithm (specifically emcee; Foreman-Mackey et al. 2013) to

sample our parameter space and estimate the posterior distribution. Our best fit coefficients

after the second iteration are the mean parameter values from the chain3. To check for

convergence, we look at the shift in the coefficients between the first and second halves

of each chain relative to the error from the chain. We find a median shift (over all 18

parameters) of 0.19, 0.29, 0.18, 0.26, and 0.14 for redshift bins 1 through 5 respectively,

and the worst convergence in any single parameter for each redshift bin is 0.60, 0.72,

0.55, 0.53, and 0.34. We have verified that using the coefficients from the second iteration

to update �Y\ and performing a second MCMC (i.e. getting a third iteration of the

coefficients) does not have a significant impact on our results.

Once we have our coefficients, we correct for the effect of systematic fluctuations on

the correlation function. We do so by defining weights for each galaxy based on the

systematics map value on the pixel containing the galaxy. For calculating galaxy weights,

we use the systematics map at a resolution of #side = 4096. While we must fit at low

3We run our chain with 36 walkers for 1000 steps each. We do not use a burn-in when fitting to the real
data as we generate the initial positions by drawing from amultivariate Gaussian with a mean and covariance
matrix given by the coefficients and parameter covariance from the first iteration. We use a burn-in of 300
steps per walker when fitting to mock catalogs.
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resolution to ensure that our likelihood is roughly Gaussian, the fundamental assumption

of our method is that survey properties only produce local modulations of the galaxy

density field. Since our model is linear, all the local modulations add together when

smoothing to go to lower resolution, so the relation between the survey properties and the

galaxy density must be the same at low and high resolution. We standardize and rotate

the high resolution maps as we did with the low resolution maps, but we use the mean,

fluctuation scale, and rotation matrix determined from the low resolution maps for the

purposes of defining the high resolution eigen-maps. This is critical, as the definition of

the maps must match that employed in our fits. The weight for a galaxy on high-resolution

pixel 8 is

F8 =
1

1 +∑
U 0UB

8
U

. (2.13)

We refer to the correlation function measured using these weights as Fcorr0. As previ-

ously mentioned, when calculating the systematics-corrected correlation function, we also

exclude any galaxies on pixels with X8sys > 0.2. This should restrict us to only areas of

the sky where our first order approximation is valid. The resulting footprint is ∼3.5 %

smaller than the original Y1 footprint, and a total of 23 359 galaxies are removed across

all redshift bins.

The above procedure tends to over-correct the data for the impact of SPs. We calibrate

the amount of over-correction in the correlation function from our method using mock

galaxy catalogs, and use these to de-bias our procedure, which will result in an updated

systematics-corrected correlation function estimate Fcorr1. The details of this de-biasing

are presented in the next section. We describe howwe incorporate statistical and systematic

uncertainties due to our correction in the error budget of the observed correlation function

in section 2.5.

2.4 Methodology Validation with Mock Catalogs

There are three potential sources of systematic bias in our analysis. These are, in no

particular order, (i) the first order approximation from eqn. (2.8) is not accurate, (ii) the

Gaussian likelihood is not correct, and (iii) the estimates of the SP coefficients are noisy
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and too much correlation is removed from the data, an effect usually referred to as

over-correction. As mentioned in section 2.2, we restrict our final data set to pixels where

the linear prediction of the SP-sourced galaxy density fluctuations are ≤0.2. This serves

to minimize potential biases from non-linear responses in the systematics correction. We

test the robustness of our methodology to non-Gaussian fields and noise by testing it on

log-normal mock galaxy catalogs. We further use these catalogs to calibrate the bias in

our method due to over-correction.

2.4.1 Mock Catalog Generation

To create our log-normal mock catalogs, we use the fiducial cosmological parameters from

Paper II: Ω< = 0.295, �B = 2.260574× 10−9, Ω1 = 0.0468, ℎ = 0.6881, and =B = 0.9676.

We run CAMB (Lewis et al., 2000; Howlett et al., 2012) and Halofit_Takahashi (Smith

et al., 2003; Takahashi et al., 2012) using CosmoSIS (Zuntz et al., 2015) to compute the

angular galaxy clustering power spectrum. We then use this power spectrum to generate a

log-normal random field for the true galaxy over-density, Xtrue, in each of our five redshift

bins via the code psydocl4. This galaxy density field is generated at high resolution

(#side = 4096). When appropriate (i.e. depending on the test being pursued, see below),

we add systematic fluctuations to the galaxy density field using our linear model. We then

calculate the expected number of galaxies in each pixel, taking into account the masked

fraction in each pixel. Finally, we randomly place # galaxies within each pixel, where #

is a Poisson realization of the expected number of galaxies.

We generate 100 independent realizations of Xtrue for each redshift bin. Each realization

is then used to create two mock catalogs, one with no SP contamination and another with

SP applied using the best fit coefficients from our analysis of the DES Y1 data set. We

refer to these as uncontaminated and contaminated mocks, respectively. Note that while

both the uncontaminated and contaminated mocks share the same underlying over-density

fields, they have different Poisson realizations.

We use our methodology from section 2.3 to estimate the impact of SPs in our mock

galaxy catalogs, and compare the resulting corrected correlation function to the underlying

4https://bitbucket.org/niallm1/psydocl/src/master/

https://bitbucket.org/niallm1/psydocl/src/master/
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true mock galaxy correlation function. To increase computational efficiency, we restrict

our mock catalogs to the final mask employed in our analysis of the DES Y1 galaxies.

That is, we do not re-apply the X8sys ≤ 0.2 cut in every mock. Doing so would have

forced us to recompute random pairs for every mock due to slight differences in the final

footprint. Because systematic fluctuations are linear in the mock catalog by construction,

this additional restriction has no bearing on the conclusions drawn from our simulations.

Unfortunately, this also means our mock catalogs do not allow us to test how sensitive our

method is to non-linear contamination.

We test whether our contaminated mock galaxy catalogs have comparable levels of SP

contamination to the data as follows. For the data and both sets of mock galaxy catalogs

we compute the raw observed correlation function, and the corrected correlation function

Fcorr0 as described in section 2.3. We then calculate the difference between these two

correlation functions in all three cases.

The blue solid line in fig. 2.2 shows the biased systematic correction of the DES Y1

redMaGiC data computed using the first iteration of our method, while the orange dashed

line is the mean correction from the 100 contaminated mock galaxy catalogs. The green

dashed-line is the mean of the uncontaminated galaxy catalogs. The width of the bands

show the sample standard deviation for each of the two sets of mocks. It is immediately

apparent that the amplitude of the systematic correction in our uncontaminated mocks is

significantly smaller than that of the data in redshift bins 3, 4, and 5. That is to say, we

have robustly detected the presence of systematic fluctuations in the DES Y1 data set.

More generally, the correction derived from our contaminated mocks is comparable to

that in the data, particularly for the redshift bins that exhibit strong systematic fluctuations.

Thus, fig. 2.2 provides evidence that the contaminated mock galaxy catalogs used in our

analysis are a reasonable match to the data.

2.4.2 Methodology Validation: Recovery of the SP Coefficients

We fit for the SP coefficients in both sets of 100 mocks for each redshift bin, for a total

of 1000 independent mock catalogs to be analyzed. Because we know the SP coefficients

used to generate the mocks, we can test whether we correctly recover the input coefficients
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Figure 2.2: Comparison of the bias between the systematics-corrected (Fcorr0) and uncorrected
(Fcont) correlation functions for the DESY1 data and the uncontaminated and contaminatedmocks,
relative to the DES Y1 errors (see text for details). The blue solid line is the result for the data. The
mean and sample standard deviation for the contaminated mocks is shown as the orange dashed
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is once again the small scale cut used by Paper II.
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with our analysis. To do so, we calculate the j2 of the mean coefficients estimated from

our posterior and the input for each mock. That is, for each mock catalog a we compute

j2
a =

(
{0̂U}a − {0U}0,a

)>
Î−1
a

(
{0̂U}a − {0U}0,a

)
, (2.14)

where {0U}0,a is the input vector of 18 coefficients used in generating mock catalog a,

{0̂U}a is the mean vector of the posterior from our analysis for mock a with length 18, and

Îa is the parameter covariance matrix estimated from the MCMC chain for mock a with

dimensions 18 × 18. We show the distribution of the j2
a statistics for all 1000 mocks as

the blue histogram in fig. 2.3. For reference, the green line is the expected j2 distribution

for 18 degrees of freedom, 18 being the number of SPs. It is clear that the distribution of

j2 values is biased relative to our expectation.

Hartlap et al. (2007) pointed out that noise in the covariance matrix biases j2 statistics.

In our case, the noise in the covariance matrix is only partly due to a finite number of

realizations in the MCMC: noise in the data will also generate noise in the empirically

estimated covariance matrix, which will in turn bias the recovered j2. In the absence of

a first principles prescription for the expected bias in our analysis, we adopt an ad-hoc

correction by demanding the average j2 over all our simulations be equal to the number

of degrees of freedom in the problem (18). That is, we de-bias every j2 value by dividing

it by the factor _ ≡ 22.33/18 = 1.24. The resulting distribution is shown as the orange

histogram in fig. 2.3, which is now an excellent match to expectations.

As discussed in Hartlap et al. (2007), the bias due to noise in the covariance matrix

estimate propagates into the parameter posteriors. Consequently, we increase the statistical

uncertainty in our recovered corrections for the correlation function by a factor of
√

1.24.

The fact that our recovered distribution of j2 values matches expectation implies that we

are successfully recovering the input systematic coefficients within our re-scaled noise

estimate.
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Figure 2.3: The distribution of j2, as defined in eqn. (2.14), for all contaminated and un-
contaminated mocks in all redshift bins. The blue histogram is the original distribution. The
orange histogram is the result of re-scaling every j2 by 18/〈j2 〉. The green line is the expected j2

distribution with 18 degrees of freedom, for reference. Note that both histograms are normalized.
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2.4.3 Over-Correction Calibration

The orange dashed line and shaded band in fig. 2.4 show the mean and 1f region for the

difference between the observed and true correlation functions of our 100 independent

systematics-contaminated mock catalogs, in units of the statistical uncertainty of the DES

Y1 analysis. The 1f region is computed as the error on the mean. The blue solid line

and shaded band are the same as the orange, but for the systematics-corrected correlation

function with no bias correction (i.e. Fcorr0). While there is a significant improvement

when going from no correction to our systematics correction, it is also clear that our

method somewhat over-corrects the data.

We seek to calibrate the amount of over-correction for our method based on the results

from fig. 2.4. However, note that the level of over correction is itself sensitive to the input

amount of contamination. This is apparent in fig. 2.5, which shows the mean and error

on the mean of the over-correction for both uncontaminated (orange) and contaminated

(blue) mock galaxy catalogs.

We use the results in fig. 2.5 to reduce the impact of over-correction, and to characterize

the remaining systematic uncertainty associated with this effect. Because we see that the

level of over-correction is sensitive to the amount of contamination and we do not know

the actual contamination level in the data, we must account for this sensitivity when we de-

bias. The contaminated and uncontaminatedmocks represent the two extreme possibilities

for the data, so we de-bias our correlation functions using the mean of the over-correction

measured in the contaminated and uncontaminated mocks. That is, we define

ΔF(\) ≡ 1
2

[
〈Fcont

corr0(\) − Ftrue(\)〉 + 〈Funcont
corr0 (\) − Ftrue(\)〉

]
, (2.15)

where Fcont
corr0(\) is the systematics-corrected correlation function at \ for the contaminated

mock galaxy catalogs prior to de-biasing, and Funcont
corr0 is the equivalent quantity computed

for the uncontaminated mock galaxy catalogs. The average 〈·〉 above is over the simulated

data sets. Given ΔF, we define an updated systematics-corrected correlation function

Fcorr1 via

Fcorr1(\) ≡ Fcorr0(\) − ΔF(\) . (2.16)
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Figure 2.4: The difference between the various correlation functions for the contaminated
mocks and the true correlation function. The orange dashed line shows the offset for the correlation
function without any corrections. The blue solid line shows the offset when the systematics weights
are applied, but no bias correction is used. The green dash-dotted line is the final offset, with both
the systematics weights and the bias correction. Each line is the mean for the 100 mocks, and
the shaded regions are the error on the mean. Note that the offset is also divided by the sample
standard deviation of the true correlation function. We only scales with \ > 8′ for clarity. The
gray shaded region shows the small scale cut used by Paper II, so any scales within that region will
not impact the cosmology results.
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deviation of the true correlation function. The orange dashed line shows the mean bias for the
100 uncontaminated mocks, and the orange shaded region is the error on the mean. Similarly, the
blue solid line and shaded region are the mean and error on the mean for the 100 contaminated
mocks. Note that there is a non-trivial bias even for the contaminated mocks indicating that we are
over-correcting for SPs. We only show scales with \ > 8′ for clarity. The gray shaded regions are
once again the small scale cuts from Paper II.
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The green dash-dotted line and shaded band in fig. 2.4 show themean and 1f region for the

difference between our updated systematics-corrected correlation function estimatesFcorr1

and the true correlation function, as estimated using 100 contaminated mock catalogs.

Recall that the y-axis is scaled in units of the purely statistical uncertainty of the DES

Y1 analysis. It is clear from the figure that while a residual bias remains, the amplitude

and uncertainty is much smaller than the statistical uncertainties for the DES Y1 data set.

Moreover, the true underlying correlation function is within the expected errors in the

measurement.

2.5 The Impact of Systematics Removal on the Noise

The covariance matrix used in Paper II when fitting the galaxy clustering signal was solely

based upon theoretical considerations, as described in Krause & Eifler et al., (2017).

In particular, it accounted only for Poisson noise and sample variance in the galaxy

density field, where the latter includes both Gaussian and connected terms, as well as the

super-sample covariance contribution. In practice, removing the imprint of systematic

fluctuations on the galaxy density field carries with it additional uncertainty that needs to

be propagated into the covariance matrix used to analyze the data. We now characterize

this additional noise contribution.

We start with the statistical uncertainty in our method. Because we use an MCMC to

fit for the coefficients describing the impact of SPs, we can readily sample the posterior

distribution to arrive at the statistical uncertainty in our corrections. Specifically, we draw

#real random samples from our MCMC chain on the data, and calculate the systematics-

corrected correlation function Fcorr0 for each of these realizations of the SP coefficients.

We calculate the covariance matrix of the correlation function from these realizations,

and re-scale it by the factor of 〈j2〉/18 = 1.24 from the discussion in section 2.4.2. This

defines the statistical covariance matrix Istat which characterizes statistical uncertainties

in the systematics correction.

The systematic uncertainty associated with our de-biasing procedure of section 2.4.3 is

calculated as the sum in quadrature of two distinct terms. The first term sets the systematic
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uncertainty to half the amplitude of the applied correction, i.e. large corrections will result

in large uncertainties. The second term accounts for the difference in the amount of over-

correction inferred from the contaminated and uncontaminated mocks. If the inferred

over-corrections are vastly different, the resulting mean correction should be assigned a

large uncertainty. This uncertainty is set to half the difference between the over-correction

inferred from the contaminated and uncontaminatedmocks. The corresponding covariance

matrix characterizing these systematic uncertainties takes the form

Isys
01
≡ 1

4
[ΔF(\0)ΔF(\1) + XF(\0)XF(\1)] , (2.17)

where 0 and 1 index angular bins, and where we have defined

XF(\) ≡ 1
2

[〈
Fcont

corr0(\) − Ftrue(\)
〉
−

〈
Funcont

corr0 (\) − Ftrue(\)
〉]
.

As in eqn. (2.15), the average 〈·〉 above is over all simulated data sets.

The final covariance matrix estimate for the data is I_1 + Istat + Isys, where I_1 is

the theoretical covariance matrix used in Paper II. The green dash-dotted line and band

in fig. 2.6 show the mean and uncertainty of the ratio between the diagonal elements

of Isys, as defined in eqn. (2.17), to the diagonal elements of I_1. The orange dashed

line and band is the same ratio but for Istat. We have checked that increasing the

number of realizations used to estimate Istat does not significantly change our measured

covariance. The combination of the systematic and statistical covariance relative to the

Y1 covariance is shown as the blue solid line and band. The gray shaded region in each

panel shows the region excluded by the small scale cuts for the cosmology analysis in

Paper II, for which our changes will not impact the inferred cosmological parameters.

While uncertainties in our de-biasing procedure for over-correction are negligible, we see

that the statistical uncertainties in our systematics mitigation algorithm start to become

comparable to statistical uncertainties in the correlation function at large scales.
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Figure 2.6: A comparison of the diagonal elements from various components of the covariance
matrix relative to the diagonal elements of the theoretical covariance matrix utilized in Paper II.
In all cases, the denominator of the quantity on the y-axis is the diagonal elements of I_1. The
numerator for the orange dashed line is the statistical component coming from the uncertainty on the
best fit SP coefficients. The numerator for the green dash-dotted line is the systematic component
resulting from the bias correction. The numerator for the blue solid line is the combination of the
systematic and statistical terms. The shaded regions for each line show the error on the covariance
matrices, with the orange region being the statistical uncertainty in the sample variance and the
green region being estimated using a jackknife re-sampling of the 100 mocks used to computeIsys.
The gray shaded region is the small scale cut from Paper II, and will not impact the cosmology
results.
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2.6 Results

As a brief summary of sections 2.3, 2.4 and 2.5, we assume fluctuations in SPs introduce

artificial galaxy fluctuations through a local linear response. We calibrate these response

coefficients using the observed galaxy density maps and SP maps, and use them to remove

the impact of systematic fluctuations in the galaxy density field. Using mock galaxy

catalogs, we demonstrate that our method results in some small amount of over-correction,

which we calibrate. We further characterize the additional statistical and systematic

uncertainty introduced by our systematics-mitigation algorithm. We now apply our full

systematics-correction algorithm to the DES Y1 data set.

In fig. 2.7, we show the angular correlation function in each of the five redshift

bins using our systematics weights and bias correction as blue circles, with errors from

the combined I_1 + Istat + Isys covariance matrix. For comparison, we also show the

correlation function without correction and the systematics-corrected correlation function

from Paper II. We note that in arriving at our updated correlation function, there is a small

change in the mask to mitigate the impact of non-linear systematic fluctuations, so that

the areas over which the correlation functions are computed are not precisely the same.

The bottom panel in each figure shows the difference of each of the correlation function

relative to the systematics-corrected estimate of Paper II. We see that the two different

methods for estimating systematic corrections are in excellent agreement relative to the

statistical uncertainty of the DES Y1 data set. Nevertheless, some small differences are

clearly present. It is interesting to note that in the second redshift bin, our correction

results in slightly more correlation than the uncorrected correlation function, rather than

less. This boost is due to the over-correction de-biasing procedure calibrated in the mocks.

To quantify the difference in the correlation functions from the two different weighting

methods, table 2.2 shows the j2 statistic for the DES Y1 correlation function and our

correlation function, namely

j2 = (F.1(\) − Fcorr1(\))> I−1 (F.1(\) − Fcorr1(\)) ,

where the choice of covariance matrix I used requires some discussion (see below). In
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Figure 2.7: The correlation function in each redshift bin for the DES Y1 redMaGiC galaxies.
The gray dashed line is the correlation function without correcting for SPs. The orange solid
line is the systematics-corrected correlation from Paper II. The blue points are the de-biased
correlation function using our linear model weights, and the error bars are obtained from the full
(I_1 + Istat + Isys) covariance matrix. Note that while the gray and orange lines are computed
with the DES Y1 mask, the blue points use our restricted mask with Xsys ≤ 0.2, resulting in ∼3.5 %
less area.
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Table 2.2. j2 relative to DES Y1

I range j2
stat+sys j2

tot Angular bins

0.15 < z < 0.3 0.5 18.0 8
0.3 < z < 0.45 2.0 120.0 10
0.45 < z < 0.6 0.9 97.0 11
0.6 < z < 0.75 0.9 46.0 12
0.75 < z < 0.9 1.9 340.0 13

Note. — The j2 for the systematics-corrected correlation function from Paper II and
this work in each redshift bin. The last column is the number of angular bins used
to calculate the j2, which are the bins outside the small scale cut represented by the
gray shaded regions in fig. 2.7. The second column is the j2 when including only the
uncertainty from the systematics correction, while the third column is the j2 relative to
the full covariance matrix. Notice that the large values in the second column indicate that
the correlation functions do not agree, while the ratios of the values in the third column
to those in the fourth column being . 0.2 imply that the difference will not significantly
impact the resulting cosmological inference.



46

calculating j2, we exclude any angular bins that are removed with the small scale cut

(the gray regions in fig. 2.7). The number of remaining angular bins after the small

scale cut is shown in the last column of the table. The difference between the correlation

functions should not be subject to Poisson noise or sample variance, as these are the same

for both correlation functions. Therefore, in the second column of table 2.2, we show

the j2 when we use I = Istat + Isys. While in principle this comparison should also

be subject to the uncertainty due to the method of Paper II, that paper demonstrated that

the uncertainties in their systematics correction didn’t impact the cosmological priors and

therefore those uncertainties were not characterized. Consequently, our comparison does

not account for the uncertainty in the Y1 systematics correction. It is clear that our weights

method results in a correlation function that is formally inconsistent with that of the Y1

analysis assuming zero uncertainty from the Y1 weights method. However, the size of

the cosmology contours is sensitive to the full covariance matrix I_1 + Istat + Isys. The

third column in table 2.2 shows the j2 when we use the full covariance matrix for I.

Notice that in this case, the j2/dof ≤ 0.1 for most redshift bins. This result explicitly

demonstrates that the difference in the correlation function produced by the two methods

is small relative to the statistical uncertainty.

We use our new de-biased systematics-corrected correlation function and full I_1 +
Istat + Isys covariance matrix in combination with the cosmic shear and galaxy-galaxy

lensing data vectors and covariancematrices from theDESY1 cosmology analysis (Abbott

et al., 2018) to re-run the DES 3×2pt cosmology analysis. The resulting cosmology

contours for Ω<, �B, and (8 are shown in blue in fig. 2.8. For our analysis, we use an

updated version of CosmoLike (Krause & Eifler, 2017; Fang et al., 2020) and use emcee

(Foreman-Mackey et al., 2013) as our sampler. The result with this pipeline and our

updated data vector and covariance matrix are shown in red in fig. 2.8.

As we use a different pipeline and sampler than the fiducial Y1 analysis of Paper I, it is

unclear howmuch of the difference between the red and blue contours in fig. 2.8 is because

of our changes to the data vector and covariance matrix and howmuch is a reflection of the

differences in the modeling pipeline. We therefore show as black dashed lines in fig. 2.8

the results of using the updated CosmoLike pipeline when run on the fiducial Y1 data
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Figure 2.8: A comparison of the cosmology contours for the 3×2pt analysis, with each 2-
dimensional contour showing the 68 % and 95 % confidence levels, and the shaded regions in the
1-dimensional plots signifying the 68 % confidence level. The blue contours are the public DESY1
results as in Paper I. The red contours are the results with our new correlation function and updated
covariance matrix. Note that the blue and red contours use a different version of CosmoLike
and different samplers. The black dashed lines also show the contours using the DES Y1 data
vector, but using the same version of CosmoLike and same sampler as was used to generate the
red contours. The minimum j2 for the DES Y1 data vector and our updated data vector are shown
as the black and red text, respectively, with 444 degrees of freedom.
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vector and covariance matrix. The differences between the red and black contours are due

to the difference in the estimated correlation function and its corresponding covariance

matrix. It is clear that our weighting method does not have a significant impact on the

cosmological inference relative to the Y1 analysis. This is expected given that both the

difference in the correlation functions with the two different weighting methods and the

uncertainty in our systematic correction are small relative to the statistical uncertainty of

the measurement.

The black and red text above the histogram of (8 in fig. 2.8 show the minimum

j2 values for the fiducial Y1 data vector and our updated data vector, respectively, for

each data vector compared to the model with 444 degrees of freedom (see Paper I). The

minimum j2 in each case is −2 log !max at the maximum likelihood point in the MCMC

chain. It is encouraging to see that even though our method does not significantly change

the cosmological inference, it does result in a significant improvement in the goodness of

fit (Δj2 = −6.5 with no additional parameters). This improvement in the j2 is due to both

the increased error from our systematics correction and the shifts in the data vector that

occur when replacing the Y1 weighting method with ours. To show that this is the case,

we consider the calculation of the best fit j2 with our updated data vector and covariance

matrix, which we now write as

j2
new =

(
®3.1 + ®Δ − ®<.1

)> (
I_1 + %I

)−1 (
®3.1 + ®Δ − ®<.1

)
,

where ®3.1 is the original data vector from the Y1 analysis, ®<.1 is the best fit model vector

from the original Y1 analysis, %I ≡ Istat + Isys is the change in the covariance matrix,

and ®Δ is the change to the difference between the data vector and best fit model vector

introduced by our weights method. Note that this means that ®Δ is sensitive to both the

change in the data vector as well as changes to the best fit parameters. We can expand this

equation around %I = 0, dropping terms that are beyond first order in %I as well as terms
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involving ®Δ >%I. Doing so, we find

Δj2 ≈ ®Δ >
(
I_1

)−1 [
2
(
®3.1 − ®<.1

)
+ ®Δ

]
−

[(
I_1

)−1 (
®3.1 − ®<.1

)]>
%I

[(
I_1

)−1 (
®3.1 − ®<.1

)]
.

The first term in this expression gives the Δj2 resulting from changing the data vector and

the difference in the resulting best fit model vector. The second term is the Δj2 caused by

the change to the covariance matrix from our systematics correction. We find Δj2 ≈ −3.6

for the first term and Δj2 ≈ −3.2 for the second. From this, we conclude that both the

shift in the data vector (and resulting shift in the best fit) and the increased uncertainty due

to our systematics correction contribute to the improvement in the fit.
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CHAPTER 3

MEASURING � (/) DIRECTLY

The text of this chapter is based on a draft of Wagoner & Rozo (in prep). In it, I present a

novel method for directly measuring the Hubble parameter which is independent of both

early Universe observations and the assumptions needed when using SNe Ia. I perform a

sample analysis with existing data from the Sloan Digital Sky Survey (SDSS), and I also

present a forecast for how well such a measurement could perform with near-future data

from theDark Energy Spectroscopic Instrument (DESI). Throughout this chapter, I assume

fiducial cosmological parameters �0 = 100 h km s−1 Mpc−1, ℎ = 0.7, and Ω< = 0.3 for

eqn. (1.6) as needed.

3.1 Methodology

Fig. 3.1, taken directly from Paper III, shows the radial profile of the stacked line-of-

sight velocity dispersion of galaxies relative to the central galaxy of SDSS redMaPPer

clusters. The points with error bars are the SDSS measurements, while the blue band

corresponds to the best fit model of Paper III. The key feature we wish to highlight is the

presence of an obvious “kink” on this plot. This kink was interpreted in Paper III as the

spatial extent of galaxies orbiting redMaPPer clusters, and it referred to this scale as the

edge radius. This interpretation received indirect theoretical support from Paper IV, which

analyzed the three dimensional analysis of substructure velocities around darkmatter halos

in numerical simulation, and established the presence of a qualitatively similar feature in

the three-dimensional velocity field. They also demonstrated that this “edge radius” is

a simple re-scaling of the traditional splashback radius (Bertschinger, 1985). In future

work, we will establish that the three dimensional “edge radius” observed in Paper IV does

in fact correspond to the “kink” in the line-of-sight velocity dispersion profile shown in

fig. 3.1 (Aung et al, in preparation).
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Figure 3.1: The radial dependence of the velocity dispersion of galaxies dynamically associated
with SDSS redMaPPer clusters. At small radii, the velocity dispersion decreases with increasing
radius. At large radii, the velocity dispersion appears constant with radius. The boundary between
these two regimes is the cluster “edge radius” which we seek to use as a standard ruler. Recreated
from the right panel of Figure 2 of Paper III.
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Our idea then is simple: it is relatively obvious that halos with larger line-of-sight

velocity dispersions must also have larger edge radii. In other words, more massive halos

occupy more space. If one can calibrate the relation between halo size and the galaxy

velocity dispersion, we can use line-of-sight velocity dispersion measurements to infer the

physical size of a halo. By comparing the physical size of the halo to the angular scale

defined by the “kink” in fig. 3.1, we can infer the distance to the galaxy cluster in question.

We detail below how such a measurement can be made in practice.

Following Paper III (albeit with slightly updated notation) we assume that the radial

dependence of the line of sight velocity dispersion of orbiting galaxies in a cluster is given

by

fE,orb(') =
forb√

1 + :'/'edge
. (3.1)

In the above equation, : is a shape parameter, which could be fit from the data, or which

could be calibrated from numerical simulations. Here, we will conservatively assume that

this shape parameter is fit from data rather than known a priori, but we will discuss the

impact of such prior information throughout. The amplitude of the velocity dispersion

profile for orbiting galaxies is governed by the parameter forb. We assume in turn that this

parameter is related to the halo edge radius via a simple power-law,

'edge = 'p

(
forb
forb

)0 (
1 + Icen
1 + Ip

)1
, (3.2)

where forb is a pivot scale set by the experimenter. Based on the results from Paper III,

we chose forb = 788 km s−1. Note that we have included a possible redshift dependence

of the relation between velocity dispersion and edge radius. We assume the parameters

'p, 0, and 1 are calibrated from simulation. These parameters could in principle be

cosmology-dependent. Our naive expectation is that any such dependence will be weak,

as the dynamical structure of the halo should primarily reflect the halo’s absolute mass.

In practice, however, a dedicated calibration effort is clearly needed. For this work, we

will assume that 'p, 0, and 1 are known (though see below). With these assumptions, the

velocity dispersion profile of galaxy clusters is governed by either one or two parameters
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(forb, :), depending on whether we hold shape of the profile fixed a priori or not.

When fitting survey data, however, we are unable to fit each cluster individually.

Instead, we consider a stack of galaxy clusters binned according to some mass proxy, e.g.

the richness _ of redMaPPer clusters. Here, we will assume the velocity dispersion of

orbiting galaxies in a galaxy cluster is perfectly correlated with cluster richness, so that

we can write

forb(_) = fp,orb

(
_

_p

)Uorb (
1 + I
1 + Ip

) Vorb

(3.3)

Of course, in practice there will necessarily be scatter between the two mass tracers. We

will postpone the investigation of how scatter impacts our analyses to future work. For

now, we simply note that while our forecast relies on cluster richness as a mass tracer,

one could readily perform a similar analysis using X-ray or SZ-selected cluster samples.

Again, we defer a study of the impact of cluster selection effects on the measurement

proposed here to future work.

To summarize: eqn. (3.3) characterizes the amplitude of the orbiting velocity disper-

sion profile as a function of richness. The edge radius of a cluster is a function of this

orbiting velocity dispersion, and is given by eqn. (3.2). The radial dependence of the

velocity dispersion profile is given by eqn. (3.1), where the shape parameter : can either

be fit by the data or calibrated using numerical simulations. With this model in hand, the

probability that an orbiting galaxy observed at a separation angle \ from the central galaxy

of a cluster have line-of-sight velocity E is given by a Gaussian of zero mean and velocity

dispersion forb(��\) where �� is the angular diameter distance to the cluster.

We consider the simplest possible case, in which �� depends only on the Hubble

constant parameter ℎ, an approximation valid only at low redshifts. In this case, the

model parameters that are allowed to vary in our analysis are ℎ, fp,orb, Uorb, Vorb, and the

shape parameter : , for a total of 5 parameters. However, this model is still incomplete.

A full model must account for the existence of in-falling galaxies, as well as projected

galaxies along the line of sight. The velocity probability distribution for each of these

components are also modeled as Gaussians with radius-independent velocity dispersions.

The velocity dispersions are assumed to scale with richness and redshift, leading to analogs
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of eqn. (3.3):

finf (_) = fp,inf

(
_

_p

)Uinf (
1 + I
1 + Ip

) Vinf

(3.4)

flos(_) = fp,los

(
_

_p

)Ulos (
1 + I
1 + Ip

) Vlos

(3.5)

The above consideration add an additional 6 parameters to our model, namely fp,inf and

fp,los, along with the corresponding richness and redshift slopes.

Finally, we must also model the radial profile of the fraction of galaxies that are

orbiting, in-falling, and line-of-sight projections, all as a function of radius. Again, we

rely on the model of Paper III. The fraction of galaxies that are dynamically associated

with the cluster (in-falling or orbiting) is set to

5da(') =


1 + 01('/'edge) for ' ≤ 'edge

1 + 01 + 11('/'edge − 1) for ' ≥ 'edge

. (3.6)

Note that this differs from equation 14 of Paper III in two ways: we do not include the

quadratic term 02('/'edge)2 as 02 was found to be consistent with zero, and we explicitly

make the substitution that 10 = 1+ 01 required for continuity. The fraction of dynamically

associated galaxies that are orbiting is set to

5orb(') =


20 + 21('/'edge) + 22('/'edge)2 for ' ≤ 'edge

0 for ' ≥ 'edge

, (3.7)

where we enforce that the equation is continuous at 'edge by requiring that 20 = −(21+22).
These two radial profile add an additional 4 free parameters (01, 11, 21, and 22) that are

to be fit from the data, bringing the total number of free parameters in the model to 15.

Our final model for the line-of-sight velocity for a galaxy at an angular separation \ from

a galaxy cluster of richness _ is

%(E, \)) = 5da [ 5orb�orb(E) + (1 − 5orb)� inf (E)] + (1 − 5da)� los(E) (3.8)
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where �orb, � inf , and � los are Gaussians with velocity dispersions forb(��\ |_), finf (_)
and flos(_), respectively. By fitting this model to spectroscopic survey data, we are able

to measure the Hubble parameter ℎ.

3.2 Prospects for Measuring ℎ with SDSS

We demonstrate our method using spectroscopic galaxies and redMaPPer clusters from

SDSS. Here, we make use of the same catalogs as Paper III. Briefly, our cluster catalog is

the SDSS Data Release 8 (DR8; Aihara et al. 2011a,b; Eisenstein et al. 2011) redMaPPer

catalog (v5.10; Rozo et al. 2015b). Our analysis is restricted to galaxy clusters with

redshift I ∈ [0.1, 0.3] whose central galaxy has a spectroscopic redshift. We also restrict

our sample to clusters of richness _ ≥ 20. We refer the reader to Paper III for a more

detailed description of the catalogs. The total number of clusters in our sample is 5015.

Our spectroscopic galaxy catalog is comprised of spectroscopic galaxies from the SDSS

Data Release 14 (DR14; Blanton et al. 2017; Abolfathi et al. 2018). The catalog is cut

to galaxies within a richness-dependent velocity offset from the cluster’s central galaxy

(roughly ≈3000 km s−1), and within ≈ 5'_ of the galaxy cluster center, where '_ is a

richness-dependent radius used by the redMaPPer algorithm to define the cluster richness

(Rykoff et al., 2014). Again, we refer the reader to Paper III for additional details. Our

final galaxy catalog is found by stacking the cuts for all clusters, and results in a total of

∼91 k potential satellite galaxies.

To estimate the constraining power of this cluster and galaxy sample, we begin by

assuming the parameters linking the orbiting velocity dispersion to the edge radius are

perfectly calibrated. That is, we assume 'p, 0, and 1 are known. Based on the results

of Paper III, we set them to the values '? = 2.4 Mpc, 0 = 0.64, and 1 = −0.94. Note

that Paper III assumed a fixed cosmology to recover these parameters, so our analysis

is circular. That is, we are not deriving any cosmological constraints. We are simply

determining the precision with which we could measure ℎ if the parameters 'p, 0, and 1

were known from simulations.

Wefit ourmodel by sampling our 15-dimensional parameter spacewith aMarkovChain
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Monte Carlo (MCMC) via emcee (Foreman-Mackey et al., 2013). We find fℎ ≈ 0.021,

corresponding to a 3 % measurement of the Hubble constant.

In practice, our analysis will be sensitive to any theoretical uncertainty in the input

parameters 'p, 0, and 1 linking the velocity dispersion to the cluster edge radius. To

quantify the sensitivity of our measurement to this uncertainty, we repeat our measurement

allowing for uncertainty in our calibration parameters. Specifically, we modify eqn. (3.2)

by introducing three new parameters, Δp, Δ0, and Δ1, as per eqn. (3.9).

'edge = 'p
(
1 + Δp

) (
forb(_, I)
forb

)0+Δ0 (
1 + Icen
1 + Ip

)1+Δ1
. (3.9)

We consider varying each of these parameters, one at a time, while holding the other two

parameters fixed. When varying the calibration parameters Δ , we adopt a Gaussian prior

for the parameter being varied. The prior has mean zero, with the standard deviation in Δ

varied over the range 0.001 to 0.1. That is, the parameters Δ characterize the uncertainty

with which the parameters '?, 0, and 1 are known. We find that the posterior in ℎ is not

sensitive to variations of these magnitudes in 0 or 1. For the pivot radius '?, however,

we do see that fℎ increases with increasing calibration uncertainty as shown in fig. 3.2.

The black dashed line in fig. 3.2 is the fiducial uncertainty, and the blue points are the

recovered uncertainty when allowing Δp to vary. The orange line is our naive expectation

due to error propagation,

fℎ =

√(
ℎfidf'p

'p

)2

+ f2
ℎ,fid. (3.10)

Unsurprisingly, the quality of the recovered Hubble constant constraint is sensitive to

uncertainties in the calibration of the relation between the halo edge and the halo velocity

dispersion. Enabling a percent level calibration of the Hubble constant using halo edges

requires that halo edges be calibrated with better than percent level precision.

We note that our forecast of fℎ ≈ 0.021 for an SDSS measurement is obtained while

floating the shape parameter : . If the shape parameter : is assumed to be knownwe recover

instead fℎ ≈ 0.018. In addition, numerical simulations can in principle also be used to

calibrate the relation between orbiting and in-falling line-of-sight velocity dispersions, as
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Figure 3.2: The uncertainty in ℎ as a function of the uncertainty in the calibration of the
pivot radius (blue points). The orange line is the naive expectation from error propagation (see
eqn. (3.10)). The black dashed line is the fiducial estimate in the case of a perfect calibration.
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well as the profiles for orbiting and in-falling galaxies, which would in turn effectively fix

the fractions 5da and 5orb. If we hold the parameters 01, 11, 21, 22, finf , Uinf , and Vinf fixed

in addition to : , we find fℎ ≈ 0.0088, i.e. a 1.2 % measurement of the Hubble constant

with SDSS spectroscopy. In what follows, we make the conservative assumption that none

of the above parameters is calibrated from simulations when forecasting the precision that

the DESI experiment would reach. However, we will also assume that the relation between

the orbiting velocity dispersion and the halo edge radius is exactly known. If desired, our

resulting forecasts can be easily downgraded to account for calibration uncertainties using

eqn. (3.10)

3.3 DESI Forecast

We forecast the precision with which the Hubble constant could be measured by im-

plementing our proposed measurement with the DESI data set. For these purposes, we

assume that the redMaPPer cluster catalog is extended to redshift I = 1 across the full

footprint. This is an overly aggressive assumption, but will help with the interpretation of

our results (see below). The cluster density out to redshift 1 is estimated using the DES

Year 1 redMaPPer catalog (McClintock et al., 2019). Specifically, we fit a power law to

the number of redMaPPer clusters at low redshifts, and use this power law to estimate the

number density at larger redshifts. We also estimate the galaxy density that is expected

for the DESI survey from Figures 3.2 and 3.8 of DESI Collaboration (2016). We use the

estimated density of the Bright Galaxy Sample (BGS) for redshifts I ∈ [0.1, 0.4). At

redshifts I ≥ 0.4, we use the average of the estimates from COSMOS (Ilbert et al., 2009)

and SDSS for the Luminous Red Galaxy (LRG) sample. The number density for both

DESI galaxy samples as well as the cluster number density can be seen in fig. 3.3.

While we only considered variations in the Hubble parameter ℎ in our analysis of

SDSS data, our analysis will be sensitive to additional cosmological parameters with

deeper surveys such as DESI. To determine the constraining power of our method in

these cases, we note that our measurement is intrinsically sensitive to ��, which is itself

proportional to ℎ−1. Consequently, we simply forecast the error for ℎ in DESI with all other
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Figure 3.3: The number densities as a function of redshift used for the DESI BGS (blue
solid line), DESI LRG (orange dashed line), and DES redMaPPer cluster (green dash-dotted line)
samples. These number densities are used for the forecast, as described in section 3.3. Note that
the DES number density is obtained by fitting a power law to the number of clusters as a function
of redshift at lower redshifts, and then extending that power law to higher redshifts.
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cosmological parameters fixed, and then reinterpret this error as a percent uncertainty in

��. By binning the clusters in redshift bins, we arrive at an array of predicted constraint

on �� along a grid of redshifts. The resulting Hubble diagram can then be fit to recover

cosmological parameters of interest.

In the absence systematics, we expect that the measured error on ℎ will scale with

the square-root of the number of galaxies used to estimate it, which we call #m. The

subscript m indicates that these spectroscopic galaxies must be matched to a cluster. The

expected uncertainty in ℎ from a single redshift bin measurement, and assuming all other

cosmological parameters are fixed, is given by

fDESI
ℎ (I) =

√
#SDSS

m

#DESI
m (I)

fSDSS
ℎ , (3.11)

where #Gm is the number of matched galaxies found for survey G (SDSS or DESI), and

fSDSS
ℎ

= 0.021 is the measured error on ℎ in SDSS as estimated in the previous section.

The number of galaxies matched to a cluster in a redshift bin should be proportional to the

number of clusters in that redshift bin times the average number of galaxies per cluster:

#< (I) = �#cl(I)#g/cl(I), (3.12)

where � is a proportionality constant.

The first term in eqn. (3.12) can be found as the number density of clusters times the

volume within the redshift bin:

#cl = =cl(I)+ (I). (3.13)

The second term in eqn. (3.12) is the number density of galaxies times the volume within

which a galaxy is considered a match to the cluster, +m:

#g/cl(I) = =g(I)+m(I). (3.14)

For the match volume, we consider the same criteria as in Paper III (section 3.1), assuming
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all clusters have a richness equal to the median richness of the redMaPPer clusters. Our

matching volume takes the form

+m(I) =
25c
ℎ2

(
_(I)
100

)0.4
[j(I + ΔI) − j(I − ΔI)] (3.15)

where 2ΔI is the width of the redshift bin of interest. The richness _(I) should in principle
be the median richness within the redshift bin. In practice, however, the median richness

of redMaPPer clusters was found to be largely independent of redshift, so for this forecast,

we instead used the median richness of all clusters.

We determine the proportionality constant � in eqn. (3.12) using the SDSS data set.

With these assumptions in hand, we can estimate the error fℎ inferred from clusters in

redshift bins of width ±ΔI = 0.05 between I = 0.1 and I = 1. As noted earlier, in

practice, our measurement is sensitive to ��, not ℎ, so we re-interpret the predicted error

as a percent error on �� at a grid of redshifts I = 0.15, 0.25, . . . , 0.95. Fig. 3.4 shows the

predicted error on ��. The green dashed lines show the change in �� when ℎ changes

by 0.01. The lower panel shows the residual from the fiducial angular diameter distance.

We consider the cosmological constraints that could be derived from such a data set.

To do so, we generate an artificial data vector comprised of the fiducial angular diameter

distance and the errors from fig. 3.4, and fit for the cosmological parameters ℎ and Ωm

assume a flat ΛCDM model. The results are shown as the blue contours in fig. 3.5. We

find fℎ ≈ 0.009, corresponding to a ≈1.3 % measurement of ℎ. The uncertainty in the

recovered matter density parameters is large: fΩ< ≈ 0.042. This can be compared to

the constraint derived from the combined Pantheon supernova sample from Scolnic et al.

(2018), shown in fig. 3.5 as a green band (Ωm = 0.298±0.022). Adding the Pantheon data

set as an external prior, our constraint on the Hubble parameter improves to fℎ ≈ 0.005,

or 0.7 %. This is shown as the red contours in fig. 3.5.

The large uncertainty in the recovered matter density parameter in our analysis demon-

strates that the sensitivity of the proposedmeasurement tomatter density and dark energy is

quite limited: this measurement is simply not competitive with supernova measurements.

This could in principle change if the cluster density is increased, and provided all shape
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Figure 3.4: Forecast of the error on the estimated angular diameter distance for DESI. The solid
black line is the angular diameter distance for our fiducial cosmology. The dashed green lines are
the angular diameter distance when the dimensionless Hubble constant is change by 0.01 relative
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that can be measured by the DESI BGS sample assuming perfect calibration, and the orange error
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parameter can be calibrated from simulations, but our analysis suggests such prospects

are dim. By contrast, the predicted uncertainty in the Hubble parameter is exciting, and

provides strong evidence that implementing the proposed measurement in the DESI data

set, particularly within the context of the Bright Galaxy Survey, may result in highly com-

petitive measurements of the Hubble constant. We emphasize that these constraints would

be calibrated through the dynamical structure of halos as predicted from simulations. As

such, this standard-ruler measurement is calibrated exclusively through our understanding

of gravity. While baryonic physics could in principle impact these predictions, the fact

that the cluster radii are so large suggests that they will be largely insensitive to baryonic

physics. Of course, this expectation will need to be verified in simulations. Given these

features, our measurement is much more akin to sound-horizon based measurements than

supernova measurements. That is to say, our calibration is coming from well understood

physical processes.
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CHAPTER 4

CONCLUSIONS AND DISCUSSION

As previously discussed, there is currently tension in measurements of the expansion rate

based on SNe Ia and those relying on observations of the early Universe. In order to

determine whether this tension is the result of some previously unconsidered source of

noise or new physics not described by current models, we need to fully understand and

correct for sources of noise in current measurements, and also make new measurements

independent of existing data.

4.1 Noise in Galaxy Clustering

The analysis presented inWagoner et al. (2020) (see chapter 2) made use of a novel method

designed to improve the treatment of observing conditions as a source of systematic error

in galaxy clustering analyses. It was also designed to allow the uncertainty introduced by

the correction to be easily propagated into cosmological analyses. While this method did

not result in a large difference in the recovered cosmological parameters for the DES Y1

data relative to the analysis of Paper I, it did result in a slight improvement in the goodness

of fit. This improvement was due to both the slight change in the best fit parameters

themselves and the inclusion of the extra sources of noise introduced by the correction, in

nearly equal parts. I therefore expect that the inclusion of this noise will become important

in future analyses with larger data sets and therefore smaller theoretical uncertainty.

4.1.1 Further Work

Despite the fact that the treatment of observing conditions I introduced in chapter 2

results in a slight improvement in the goodness of fit statistic for the 3×2pt analysis, the
weighted correlation function (Fcorr0) was biased relative to the true correlation function

(see fig. 2.5). Furthermore, the level of contamination in the data did not always look
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like the mocks (see fig. 2.2), which represent the two extremes in terms of the amount of

contamination given the observing conditions considered. As such, it might be possible

to improve upon my mitigation technique using a hybrid of my approach and the one used

in Paper II.

Specifically, I define the importance of an SP map as

gU ≡ med
���0̂UB 9U��� , (4.1)

where 0̂U is the best fit coefficient for SP map U. With this definition in hand, I rank order

the SP maps. I can also compute the error on gU by propagating the uncertainty on 0̂U.

The blue points with error bars in fig. 4.1 show the importance I found for each SP map

using the redMaGiC data. I can also calculate the importance of the SP maps for each

of my contaminated and uncontaminated mocks, so that I have 100 sets of ordered {gU}
for the contaminated mocks and 100 for the uncontaminated mocks in each redshift bin. I

can then calculate the 68 % confidence region for the contaminated and uncontaminated

mocks, shown as the green and orange bands, respectively, in fig. 4.1. I can use these two

bands, especially the orange band, to quantitatively determine whether the contamination

from an SPmap is consistent with zero. Specifically, any SPmap for which the importance

is consistent with the importance of the same rank for the uncontaminated mocks does not

actually contribute to the contamination. For instance, in the second redshift bin, all of

the SP maps are consistent with the uncontaminated mocks. This is saying that we should

not actually correct for any of the SPs, which might explain why our final systematics-

corrected correlation function in that bin was larger at some scales than the uncorrected

correlation function (see fig. 2.7). Meanwhile, the third redshift bin seems to have no SP

maps consistent with no contamination, and is also the bin with the largest difference in

the bias of Fcorr0 between the contaminated and uncontaminated mocks (see fig. 2.5).

To improve upon this, then, one could use the consistency with the uncontaminated

map importance as a way to exclude some SP maps from the correlation function weights:

only weight for the maps that aren’t consistent with zero. This should help to reduce the

over-correction bias, but should not require any user decisions and thus could still be part
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Figure 4.1: The sorted importance (as defined in eqn. (4.1)) of each SP map. The blue points are
for the redMaGiC data, while the orange and green shaded regions show the 68 % region for the
100 contaminated and 100 uncontaminated mocks, respectively. In most cases, the most important
maps (those with lower rank number) agree with the orange band while the least important maps
(with higher rank number) agree with the green band. In the case of the second redshift bin (top
row, middle column), which also agreed better with the uncontaminated mocks in fig. 2.2, all of
the points appear to agree with the green band instead. Likewise, for the third redshift bin (top
row, right column), for which the data seemed to show more contamination than the contaminated
mocks in fig. 2.2, none of the points appear to agree with the green.
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of the automated pipeline. It would also slightly decrease the covariance matrix of the

correlation function, although the exact amount would depend on how many maps are

removed and how well measured the coefficients are for the most important maps. I leave

it to future work to determine how much this impacts the results found in chapter 2.

4.2 Novel Distance Measurement

Meanwhile, in Wagoner & Rozo (in prep) (see chapter 3), I present a novel method for

estimating distance based on the results of Paper III and Paper IV. I showed that measuring

the velocity dispersion of galaxies can allow us to measure the size of halos in simulations.

This size can then be used as a standard ruler, enabling ameasurement of distance to galaxy

clusters. Critically, this is a first-principles physics-based calibration, and therefore does

not rely on the assumptions needed for distance measurements with SNe Ia. At the

same time, it shares no theoretical systematics with baryon acoustic oscillation and CMB

measurements. I showed that such a measurement is already possible in existing data from

SDSS, although how well the measurement can be made depends on how well-calibrated

the cluster/halo size is. I also presented a forecast for how well such a measurement can be

done with near-future data from DESI, resulting in a ∼1.2 % measurement of the Hubble

constant assuming a flat ΛCDM cosmology. Including information on Ω< from Scolnic

et al. (2018) improves this to ∼0.7 %, which is enough to unambiguously distinguish

between existing values of the Hubble constant.

4.2.1 Outlook

The forecast I presented in section 3.3 was, of course, a best case scenario. Real measure-

ments will be subject to several sources of systematic contamination, which could bias

results if not properly handled. These sources of contamination could come from both the

calibration of the standard ruler and from the data used to make the measurement.

As demonstrated by fig. 3.2, the constraint on the Hubble constant depends on how

well we can calibrate 'edge as a standard ruler. One detail that I did not address is that the

constraint equation for 'edge uses the velocity dispersion as a proxy for cluster mass. In
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simulations, the mass is instead measured directly. Therefore, this measurement will also

be sensitive to howwell the relationship between cluster/halo mass and velocity dispersion

is known.

One of the largest potential sources of contamination from an observational standpoint

is the impact of cluster selection effects on the recovered Hubble parameter. I made

this forecast assuming a cluster catalog with a density similar to that of the DES Y1

redMaPPer clusters, even though that catalog was not as deep as the DESI galaxy samples.

For a real measurement, it would be necessary to use a deeper cluster catalog, which

would result in different definitions of cluster richness. Also, the redMaPPer algorithm is

designed specifically to select cluster members via a red sequence template. It therefore

preferentially detects clusters with red sequence galaxies while under-counting clusters

for which few members are on the red sequence. Cluster catalogs based on alternative

algorithms or those selected from X-ray or SZ data will likely exhibit very different

selection effects than the redMaPPer catalogs. Another potential contaminant is mis-

identification of the cluster centers. This measurement is based on the line-of-sight

velocity of galaxies relative to the central galaxy of clusters. The relative velocity must

necessarily be different if the central galaxy is changed. Clusters detected with X-ray and

SZ data can have very different definitions of the cluster center, especially as they do not

necessarily identify a central galaxy, while the redMaPPer algorithm always chooses a

galaxy as the center of the cluster. Offsets between the designated cluster centers from

redMaPPer and X-ray or SZ-selected (see, e.g., Sadibekova et al., 2014; Rozo et al.,

2015a) clusters have been demonstrated, and such offsets would undoubtedly impact the

constraining power of this measurement.

While such systematics may well increase the final delivered error substantially, there

also exists the possibility of significant improvements relative to our forecast, particularly

by calibrating additional halo structural parameters, most notably the galaxy density

profiles and the in-fall velocity dispersion profiles. Consequently, I believe that the results

of chapter 3 provide strong motivation for aggressively pursuing the proposed Hubble

constant measurement as a means to help resolve the current Hubble tension problem.

Any such resolution will be crucial to our future understanding of cosmology, and it is
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exciting to be so close to resolving this tension which has been growing for the last decade.
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