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Commutation Relations, Normal Ordering, and Stirling Numbers provides an intro-
duction to the combinatorial aspects of normal ordering in the Weyl algebra and 
some of its close relatives. The Weyl algebra is the algebra generated by two letters U 
and V subject to the commutation relation UV − VU = I. It is a classical result that 
normal ordering powers of VU involve the Stirling numbers. 

The book is a one-stop reference on the research activities and known results of nor-
mal ordering and Stirling numbers. It discusses the Stirling numbers, closely related 
generalizations, and their role as normal ordering coefficients in the Weyl algebra. 
The book also considers several relatives of this algebra, all of which are special cases 
of the algebra in which UV − qVU = hVs holds true. The authors describe combinato-
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they define associated generalized Stirling numbers as normal ordering coefficients in 
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the book presents the relation to operational calculus, describes the physical motiva-
tion for ordering words in the Weyl algebra arising from quantum theory, and covers 
some physical applications. 
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Preface

Very early in my study of physics, Weyl be-
came one of my gods. I use the word “god”
rather than, say, “outstanding teacher” for the
ways of gods are mysterious, inscrutable, and
beyond the comprehension of ordinary mor-
tals.

Julian Schwinger

This book gives an introduction to combinatorial aspects of normal ordering in the Weyl
algebra and some of its close relatives. For our considerations, the Weyl algebra is the
complex algebra generated by two letters U and V (with unit I) satisfying the commutation
relation

UV − V U = I.

A concrete representation is given by the operators D = d
dx and X , where (Xf)(x) = xf(x)

for any function f . In this representation, the noncommutative nature of D and X was
recognized by the pioneers of calculus. Normal ordering a word in D and X means to bring
it, using the commutation relation, into a form where all operators D stand to the right.
For example, (XD)2 = X2D2 +XD. Presumably, Scherk in 1823 was the first to explicitly
normal order (XD)n (and a few other words). The coefficients which appear upon normal
ordering are the Stirling numbers of the second kind. However, Scherk did not recognize the
coefficients he determined as the numbers Stirling had considered in a different context.
In the middle of the 19th century, many – mostly formal – results were derived in the
operational or symbolical calculus, often in connection with special polynomials (this line of
research was revived in the 1970s, in particular after Rota’s work on finite operator calculus,
a modern incarnation of umbral calculus). Later, noncommutative structures – first in the
form of Lie algebras and Lie groups as well as in the emerging abstract algebra – rose to a
central place in mathematics, where they have stayed ever since.

In the physical discourse of this time, noncommutative structures per se played no role.
This changed suddenly when Heisenberg postulated in 1925 the fundamental commutation
relation

pq− qp = −i�1

for the physical observables representing momentum and location, and where � denotes
Planck’s constant. (In fact, the postulate in this form was written in a follow-up publication
by Born, Heisenberg, and Jordan.) Thus, the basic structure of this “matrix version” of
quantum mechanics is the Weyl algebra. Since then, noncommutative structures pervade
theoretical physics. One particularly important toy model is the harmonic oscillator. To
describe it, one makes use of the creation operator â† and the annihilation operator â.
These two operators also satisfy the commutation relation of the Weyl algebra. Since the
harmonic oscillator describes the first-order deviation from equilibrium it is an important
model, and its properties can be applied in many different situations. From the practical
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point of view, where one has to determine expectation values of operator functions in â†

and â, it is advantageous to write them in normal ordered form where all operators â stand
to the right. One way to achieve this is to use Wick’s theorem, which expresses the normal
ordered form of an operator function as a sum over all its possible “contractions”. In this
context, Katriel discovered in 1974 that by normal ordering powers of the number operator
n̂ = â†â, the Stirling numbers appear as normal ordering coefficients, thereby rediscovering
Scherk’s result in a physical context. Until this seminal work, individual research papers on
various aspects of normal ordering appeared, but there was no focused research interest. This
changed when several groups of authors developed new research directions. They studied
normal and antinormal ordering and its connections to combinatorics, for example, set
partitions, lattice paths, and rooks. Other focuses were on the coefficients that appear in
normal ordered forms and on their applications. More generally, the new academic discipline
“combinatorial physics” (even “physical combinatorics” is used) has emerged, devoted to
the interplay of combinatorics and physics. One particular aspect has been the study of
“q-deformed” structures, which began in the mid 1990s. Roughly speaking, a structure gets
q-deformed by introducing a parameter q into its defining relation (such that for q → 1 the
defining relation of the undeformed structure is recovered). For example, the relation

UV − qV U = I

defines the q-deformed Weyl algebra. In the physical context, the creation and annihilation
operator of a q-boson satisfy this commutation relation, and normal ordering these operators
is beneficial in diverse physical applications. However, the extension of normal ordering
results to the q-deformed situation is not always straightforward.

In this book we give an introduction to the topics mentioned above. The Stirling num-
bers, some closely related generalizations, and their role in normal and antinormal ordering
are discussed. We also consider several variants of the Weyl algebra, all of which are special
cases of the algebra generated by letters U and V satisfying the commutation relation

UV − qV U = hV s.

We describe combinatorial aspects of these algebras and of normal ordering words in the
letters U and V . In addition to the combinatorial aspects, we describe the relation to op-
erational calculus. Also, the physical motivation as well as some physical applications are
sketched. To give a comprehensive account of this field of research and some of its ramifi-
cations, many additional topics are treated in remarks (or problems). Even if the subject
looks rather focused, many connections to different mathematical objects are mentioned. A
similar study of algebras generated by three generators would be much more ambitious.

Although it is impossible to give an exhaustive or complete bibliography, we strive to
provide a comprehensive bibliography with many references to original publications (but,
alas, neither of us is a historian). We also indicate some of the early historical development
of Stirling and Bell numbers.

The later chapters of this book are based on our own research and on that of our
collaborators and other researchers in the field. We present these results with consistent
notation and we have modified some proofs to relate them to other results in the book. As
a general rule, results listed without specific references either are well-known and presented
in standard references mentioned, or give results from articles by the authors and their
collaborators, while results from other authors are given with specific references.
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Audience

The book is intended for advanced undergraduate and graduate students in discrete
mathematics as well as for graduate students or researchers in physics interested in combi-
natorial aspects of normal ordering operators. Additionally, the book serves as a one-stop
reference for a bibliography of research activities on the subject, known results, and research
directions for any researcher who is interested in studying this topic.

Outline

In Chapter 1 we present a historical perspective of the research on normal ordering and
Stirling numbers and give an overview of the major themes of the book: Stirling and Bell
numbers as well as generalizations thereof; the Weyl algebra, quantum theory, and normal
ordering; the q-deformed Weyl algebra and the meromorphic Weyl algebra; the q-deformed
generalized Weyl algebra.

In Chapter 2 we introduce techniques to solve recurrence relations, which arise naturally
when dealing with normal ordering and Stirling numbers, and illustrate them with several
examples. We also provide definitions and combinatorial techniques that are used later
on, such as lattice paths, partitions, Ferrers boards, rooks, Riordan arrays, and Sheffer
sequences.

In Chapter 3 we recall the definition and basic properties of the classical Stirling and
Bell numbers. Furthermore, we discuss the Dobiński formula as well as Spivey’s Bell number
relation. Also, a q-deformation of Stirling and Bell numbers is introduced and several of its
properties are discussed.

In Chapter 4 we consider several generalizations of Stirling and Bell numbers. The start-
ing point for generalizations are the operational interpretation of Stirling numbers and their
interpretation as connection coefficients. We survey many properties of these generalizations.
Connections between different versions of generalized Stirling numbers are mentioned.

In Chapter 5 we define the Weyl algebra and mention some of its early history. The main
focus of the chapter is on elementary quantum theory and some of its consequences. We show
why the Weyl algebra is of interest to physicists and discuss the operator ordering problem
of “quantization”. The harmonic oscillator is discussed and the creation and annihilation
operators are introduced. Several examples for normal ordering are presented.

In Chapter 6 we continue the study of normal ordering in the Weyl algebra and collect
many results. In addition, we discuss Viskov’s identity, the connection of normal ordering to
rook numbers, an identity of Bender, Mead, and Pinsky, and Wick’s theorem. Connections
between normal ordering and further combinatorial structures are mentioned and a survey
of other operator ordering schemes is given.

In Chapter 7 we consider normal ordering in three variants of the Weyl algebra: the q-
deformed Weyl algebra (UV −qV U = h), the meromorphic Weyl algebra (UV −V U = hV 2),
and the q-deformed meromorphic Weyl algebra (UV − qV U = hV 2). To warm up, we begin
with a brief discussion of the quantum plane (UV = qV U).

In Chapter 8 we introduce a generalization of the Weyl algebra where one has UV −V U =
hV s. After discussing some general aspects of normal ordering, we introduce generalized
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Stirling numbers Ss;h(n, k) as normal ordering coefficients of (V U)n. The properties of these
numbers – and of the corresponding generalized Bell numbers Bs;h(n) – are investigated in
detail.

In Chapter 9 we extend the results of the previous chapter to variables U and V satisfying
UV − qV U = hV s. We discuss the binomial formula for (U + V )n, and we describe other
“noncommutative binomial formulas” and “noncommutative Bell polynomials”. Also, we
define associated q-deformed generalized Stirling numbers Ss;h|q(n, k) as normal ordering
coefficients of (V U)n and present several properties of these numbers.

In Chapter 10 we study a generalization of the Touchard polynomials which is motivated
by its connection to normal ordering and the generalized Stirling numbers Ss;h(n, k) and
Bell numbers Bs;h(n).

The Appendices provide basic background from different areas of mathematics, namely,
q-calculus, symmetric functions, graph theory, Lie algebras, and Hilbert spaces.

Most chapters start with a section describing the history of the particular topic and its
relation to previous chapters. New methods and definitions are illustrated with examples.
At the end of each chapter we present some exercises and research problems.
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Chapter 1

Introduction

In this chapter we introduce the main objects of study and describe their early history
as well as some later developments. In Section 1.1 the most classical of these objects –
set partitions – are introduced and first properties of the corresponding Stirling and Bell
numbers are discussed. Several further results are mentioned which will be discussed in later
chapters in detail (and from different angles). In Section 1.2 the early history of the formal
theory of operational or symbolical calculus is described and several results mentioned.
Furthermore, the connection to the physical theory of quantum mechanics is elucidated,
thereby motivating the same structure from a physical point of view. In Section 1.3 the
“abstract” Weyl algebra and some close relatives are introduced and some of the more
recent developments mentioned. Finally, in Section 1.4, the content of the book is described
in more detail.

1.1 Set Partitions, Stirling, and Bell Numbers

The first known application of set partitions arose in the context of tea ceremonies and
incense games in Japanese upper-class society around 1500. Guests at a Kado ceremony
would be smelling cups with burned incense with the goal to either identify the incense or
to identify which cups contained identical incense. There are many variations of the game,
even today. One particular game is named genji-ko, and it is the one that originated the
interest in n-set partitions. Five different incense sticks were cut into five pieces, each piece
put into a separate bag, and then five of these bags were chosen to be burned. Guests
had to identify which of the five were the same. The Kado ceremony masters developed
symbols for the different possibilities, so-called genji-mon. Each such symbol consists of
vertical bars, some of which are connected by horizontal bars. For example, the symbol
indicates that incense 1, 2, and 3 are the same, while incense 4 and 5 are different from
the first three and also from each other (recall that the Japanese write from right to left).
Fifty-two symbols were created, and for easier memorization, each symbol was identified
with one of the chapters of the famous Tale of Genji by Lady Murasaki. Figure 1.1 shows
the diagrams1 used in the tea ceremony game. In time, these genji-mon and two additional
symbols started to be displayed at the beginning of each chapter of the Tale of Genji and in
turn became part of numerous Japanese paintings. They continued to be popular symbols
for family crests and Japanese kimono patterns in the early 20th century, and can be found
on T-shirts sold today.

How does the tea ceremony game relate to set partitions? Before making the connection,
let us define what we mean by a set partition in general.

1www.viewingjapaneseprints.net/texts/topictexts/artist varia topics/genjimon7.html
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2 Commutation Relations, Normal Ordering, and Stirling Numbers

FIGURE 1.1: Diagrams used to represent set partitions in 16th century Japan.

1.1.1 Definition of Stirling and Bell Numbers

In the following S will be a set of natural numbers where 0 is included, that is, S ⊆
N0 = N ∪ {0}. For the particular set of the first n natural numbers we use the convenient
notation

[n] = {1, 2, 3, . . . , n}.

Definition 1.1 A set partition π of a set S is a collection B1, B2, . . . , Bk of nonempty
disjoint subsets of S such that ∪ki=1Bi = S. The elements of a set partition are called blocks,
and the size of a block B is given by |B|, the number of elements in B. We assume that
B1, B2, . . . , Bk are listed in increasing order of their minimal elements, that is, minB1 <
minB2 < · · · < minBk. The set of all set partitions of S is denoted by Π(S).

Note that an equivalent way of representing a set partition is to order the blocks by
their maximal element, that is, maxB1 < maxB2 < · · · < maxBk. Unless otherwise noted,
we will use the ordering according to the minimal element of the blocks.

Example 1.2 The set partitions of the set {1, 3, 5} are given by

{1, 3, 5}; {1, 3}, {5}; {1, 5}, {3}; {1}, {3, 5} and {1}, {3}, {5}.

Definition 1.3 The set of all set partitions of [n] is denoted by Πn = Π([n]), and the
number of all set partitions of [n] by �n = |Πn|, with �0 = 1 (as there is only one set
partition of the empty set).

Example 1.4 For [1], there exists exactly one set partition. Thus, �1 = 1. For [2], the
set partitions are {1}, {2} and {1, 2}, implying �2 = 2. The set partitions of [3] are given
by {1, 2, 3}; {1, 2}, {3}; {1, 3}, {2}; {1}, {2, 3} and {1}, {2}, {3}, giving �3 = 5. In the same
way one determines �4 = 15 as well as �5 = 52. Thus, the sequence of �n starts with
1, 1, 2, 5, 15, 52, . . ..

Definition 1.5 Let π be any set partition of [n]. We represent π in either sequential or
canonical form. In the sequential form, each block is represented as sequence of increasing
numbers and different blocks are separated by the symbol /. In the canonical representation,
we indicate for each integer the block in which it occurs, that is, π = π1π2 · · ·πn such that
j ∈ Bπj , 1 ≤ j ≤ n.

Example 1.6 The set partitions of [3] in sequential form are 123, 12/3, 13/2, 1/23, and
1/2/3, while the set partitions of [3] in canonical representation are 111, 112, 121, 122, and
123, respectively.
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Example 1.7 The set partition 14/257/3/6 has canonical form 1231242.

The two representations can be distinguished easily due to the symbol /, except in the
single case when all elements of [n] are in a single block. In this case, π = 12345 · · ·n, and
its corresponding canonical form is 11 · · ·1. On the other hand, the set partition 12345 · · ·n
in canonical form represents the set partition 1/2/ · · ·/n in sequential form. The canonical
representations can be formulated in terms of words satisfying certain conditions. At first,
we explain what we mean by the concept of a word, and then we characterize which kind
of words correspond to a canonical representation of a set partition.

Definition 1.8 Let a finite set A = {a1, a2, . . . , an} of objects be given. We call each ak
(for k = 1, . . . , n) a letter and A the alphabet. An element of AN will be called a word
in the alphabet A (of length N). A word ω = (ai1 , ai2 , . . . , aiN ) will be written in the
form ω = ai1ai2 · · · aiN , that is, as concatenation of its letters. For convenience, we also
introduce the empty word ∅ ∈ A0. If ω is a word, we denote the concatenation ωω · · ·ω (k
times) briefly by ωk. In the case A = [k], an element of An is called k-ary word of size n.
Words with letters from the set {0, 1} are called binary words or binary strings, and words
with letters from the set {0, 1, 2} are called ternary words or ternary strings.

Example 1.9 The 2-ary words of size three are 111, 112, 121, 122, 211, 212, 221, and 222,
the binary strings of size two are given by 00, 01, 10, and 11, while the ternary strings of
size two are given by 00, 01, 02, 10, 11, 12, 20, 21, and 22.

Example 1.10 Let A = {a, b} be an alphabet with two letters. Then ω1 = abba, ω2 = baba
and ω3 = aabb are words of length 4 which in general are not related. Note that we can write
briefly ω1 = ab2a, ω2 = (ba)2 and ω3 = a2b2.

In the following we are interested in expressions which are sums of words. Two words
can be added if they are equal and we then write ω+ω = 2ω (since in our applications the
letters are not numbers, no confusion can arise).

After having clarified what we mean by a word, we can characterize which words arise
as the canonical representation of a set partition of [n].

Fact 1.11 A (canonical representation of a) set partition π = π1π2 · · ·πn of [n] is a word
π such that π1 = 1, and the first occurrence of the letter i ≥ 1 precedes that of j if i < j.

Now we draw the connection between genji-ko and set partitions: each of the possible
incense selections corresponds to a set partition of [5], where the partition is according
to flavor of the incense. Thus, can be written as the set partition 123/4/5 of [5]. As
�5 = 52, there are 52 genji-mon, as mentioned at the beginning of Section 1.1 and drawn
in Figure 1.1. According to Knuth [675], a systematic investigation to find the number of
set partitions of [n] for any n, was first undertaken by Takakazu Seki and his students in
the early 1700s. One of his pupils, Yoshisuke Matsunaga, found a recurrence relation for
the number of set partitions of [n], as well as a formula for the number of set partitions of
[n] with exactly k blocks of sizes n1, n2, . . . , nk with n1 + · · · + nk = n.

Theorem 1.12 (Matsunaga) Let �n be the number of set partitions of [n]. Then �n

satisfies the recurrence relation

�n =

n−1∑
j=0

(
n− 1

j

)
�j (1.1)

with initial condition �0 = 1.
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Proof Assume that the first block contains j + 1 elements from the set [n], where 0 ≤ j ≤
n − 1. Since the first block contains the minimal element of the set, namely 1, we need to
choose j elements from the set {2, 3, . . . , n} to complete the first block. Thus, the number of
set partitions of [n] with exactly j + 1 elements in the first block is given by

(
n−1
j

)
�n−1−j .

Summing over all possible values of j, we obtain that

�n =

n−1∑
j=0

(
n− 1

j

)
�n−1−j =

n−1∑
j=0

(
n− 1

n− 1 − j

)
�n−1−j =

n−1∑
j=0

(
n− 1

j

)
�j,

with �0 = 1. �

Theorem 1.13 (Matsunaga) The number of set partitions of [n] with exactly k blocks of
sizes n1, . . . , nk with n1 + · · · + nk = n is given by

k∏
j=1

(
n− 1 − n1 − · · · − nj−1

nj − 1

)
.

Proof The proof is similar to the one for Theorem 1.12. For the first block, we choose
n1 − 1 elements from the set {2, 3, . . . , n}. From the n−n1 available elements, we place the
minimal element into the second block and then choose n2− 1 elements from the n−n1− 1
remaining elements, and so on, until we have placed all elements. Thus, the number of set
partitions of [n] with exactly k blocks of sizes n1, n2, . . . , nk with n1 + n2 + · · · + nk = n is
given by (

n− 1

n1 − 1

)(
n− 1 − n1

n2 − 1

)
· · ·

(
n− 1 − n1 − · · · − ns−1

ns − 1

)
,

which completes the proof. �

A more general formula for the number of set partitions of [n] into kj blocks of sizes nj
with k1n1 + · · · + kmnm = n can be obtained directly from Theorem 1.13. These results
were not published by Matsunaga himself, but were mentioned (with proper credit given)
in Yoriyuki Arima’s book Shūki Sanpō, which was published in 1769. One of the questions
posed in this text was to find the value of n for which the number of set partitions of [n]
is equal to 678.570 (the answer is n = 11). Additional results were derived by Masanobu
Saka in 1782 in his work Sanpō-Gakkai. Saka established a recurrence for the number of
set partitions of [n] into k subsets, and using this recurrence, he computed the values for
n ≤ 11.

Definition 1.14 The set of all set partitions of [n] with exactly k blocks is denoted by Πn,k.
The number |Πn,k| of set partitions of [n] into k blocks is denoted by S(n, k) and is called
Stirling number of the second kind (Sequence A008277 in [1019]).

Example 1.15 From Example 1.4 one reads off that the set [3] has exactly one partition
with one block (123), three partitions into two blocks (1/23, 12/3 and 13/2), and one parti-
tion into three blocks (1/2/3). Thus, S(3, 1) = 1, S(3, 2) = 3 and S(3, 3) = 1. In particular,
�3 = S(3, 1) + S(3, 2) + S(3, 3).

Remark 1.16 Note that, by definition,

�n =

n∑
k=0

S(n, k). (1.2)

The numbers �n are also known as Bell numbers (in honor of Eric Temple Bell) and
denoted by Bn (Sequence A000110 in [1019]).
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Theorem 1.17 (Saka) The number S(n, k) of set partitions of [n] into exactly k blocks
satisfies the recurrence relation

S(n+ 1, k) = S(n, k − 1) + kS(n, k),

with S(1, 1) = 1, S(n, 0) = 0 for n ≥ 1, and S(n, k) = 0 for n < k.

Proof For any partition of [n + 1] into k blocks, there are two possibilities: either n + 1
forms a single block, or the block containing n+ 1 has more than one element. In the first
case, there are S(n, k − 1) such set partitions, while in the second case, the element n + 1
can be placed into one of the k blocks of a partition of [n] into k blocks, that is, there are
kS(n, k) such partitions. �

Saka was not the first one to discover the numbers S(n, k). James Stirling, on the
other side of the globe in England, had found these numbers in a purely algebraic setting
in his book Methodus Differentialis [1040] in 1730. Stirling’s interest was in speeding up
convergence of series, and the S(n, k) arise as connection coefficients between monomials
and falling polynomials.

Definition 1.18 Polynomials of the form z(z− 1) · · · (z−n+ 1) are called falling polyno-
mials and are denoted by (z)n.

Example 1.19 The first three monomials can be expressed in terms of falling polynomials
as

z1 = z = (z)1,

z2 = z + z(z − 1) = (z)1 + (z)2,

z3 = z + 3z(z − 1) + z(z − 1)(z − 2) = (z)1 + 3(z)2 + (z)3.

The values of the coefficients in the falling polynomials were given in the introduction of
Methodus Differentialis, reproduced as Figure 1.2, where columns correspond to n, and rows
correspond to k. For example, S(7, 3) = 301. The relation (1.2) shows that �n is given as
the sum of the entries in the nth column of Figure 1.2. Thus, the sequence �n of Bell
numbers starts with 1, 1, 2, 5, 15, 52, 203, 877, 4.140, 21.146, . . ..

The description given by Stirling on how to compute these values makes it clear that
he did not use the recurrence given by Saka (Theorem 1.17). To read more about how
Stirling used the falling polynomials for series convergence, see the English translation of
Methodus Differentialis with annotations by Tweddle [1091] (or [1090]). Despite Stirling’s
earlier discovery of the numbers S(n, k), Saka receives credit for being the first one to
associate a combinatorial meaning to these numbers, which are now named after James
Stirling.

Theorem 1.20 (Stirling) For all n ≥ 1, one has that

zn =

n∑
k=1

S(n, k)(z)k. (1.3)

Proof We proceed the proof by induction on n. The first few cases can be checked by
comparing Example 1.19 and Figure 1.2. Assume that the claim holds for n and let us prove
it for n+ 1. By the induction hypothesis, we have that zn+1 =

∑n
k=1 S(n, k)(z)k(z−k+k).

Using that (z)k(z − k) = (z)k+1 and shifting the index from k to k − 1, this yields

zn+1 =

n+1∑
k=1

S(n, k − 1)(z)k +

n+1∑
k=1

kS(n, k)(z)k.
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FIGURE 1.2: Stirling numbers of the second kind from Stirling’s Methodus Differentialis.

Writing this in one sum and using the recurrence given in Theorem 1.17, one obtains that
zn+1 =

∑n+1
k=1 S(n+ 1, k)(z)k, as was to be shown. �

We introduce Stirling numbers of the first kind in analogy to (1.3) as connection coeffi-
cients.

Definition 1.21 The Stirling numbers of the first kind s(n, k) are defined as connection
coefficients between falling polynomials and monomials,

(z)n =
n∑
k=1

s(n, k)zk. (1.4)

Combining (1.3) and (1.4), this gives the orthogonality relations

n∑
k=1

s(n, k)S(k, l) =

n∑
k=1

S(n, k)s(k, l) = δn,l, (1.5)

where δn,l is the Kronecker symbol (δn,l = 1 if n = l and δn,l = 0 if n �= l).
Let us mention that another notation is also used for Stirling numbers, see, for example,

[508] and the discussion in [674]. One writes{
n

k

}
= S(n, k),

[
n

k

]
= (−1)n−ks(n, k).

1.1.2 Early History of Stirling and Bell Numbers

While set partitions were studied by several Japanese authors and Toshiaki Honda de-
vised algorithms to generate a list of all set partitions of [n], the problem did not receive
equal interest in Europe. There were isolated incidences of research, but no systematic study.
The first known occurrence of set partitions in Europe also occurred outside of mathemat-
ics, in the context of the structure of poetry. In the second book of The Arte of English



Introduction 7

Poesie [921], George Puttenham in 1589 compared the metrical form of verses to arithmeti-
cal, geometrical, and musical patterns. Several diagrams, which are in essence the same as
the genji-mon, were given in [921].

The first mathematical investigation of set partitions was conducted by Gottfried Wil-
helm Leibniz in the late 1600s (the manuscript was written probably in 1676). The un-
published manuscript shows that he tried to enumerate the number of ways to write an

as a product of k factors, which is equivalent to the question of partitioning a set of n
elements into k blocks. He enumerated the cases for n ≤ 5, and, unfortunately, double-
counted the case for n = 4 into two blocks of size 2 and the case for n = 5 into three
blocks of sizes one, two, and two. These two mistakes prevented him from discovering that
S(n, 2) = 2n−1 − 1 and also the recurrence given in Theorem 1.17. Further details can
be found in the commentary by Knobloch [668, Pages 229–233], [669] and the reprint of
Leibniz’s original manuscript [670, Pages 316–321].

The second investigation was made by John Wallis, who asked a more general question
in the third chapter of his Discourse of Combinations, Alternations, and Aliquot Parts
in 1685 [1125]. (For example, see Jordan [610], Riordan [935], Goldberg et al. [484], or
Knuth [672].) He was interested in questions relating to proper divisors (=aliquot parts)
of numbers in general and integers in particular. The question of finding all the ways to
factor an integer is equivalent to finding all partitions of the multiset consisting of the prime
factors of the integer (with multiplicities). He devised an algorithm to list all factorizations
of a given integer, but did not investigate special cases.

Back in Japan, a modification of Theorem 1.12 was given by Saka in 1782, when he
showed that the number of set partitions of [n] with exactly k blocks is given by S(n, k),
the Stirling number of the second kind. After 1782, the Bell numbers �n received more
attention. It seems that the first occurrence in print of the Bell numbers has never been
traced, but these numbers have been attributed to Euler (see Bell [73], but there is no
reference for this statement). Following Bell [73,74], they are also called exponential numbers.
Touchard [1077,1079] used the notation an to celebrate the birth of his daughter Anne, and
later Becker and Riordan [67] used the notation Bn in honor of Bell. Throughout this book,
we will use the notation Bn or �n.

The first appearance of the numbers Bn seems to be in a paper by Christian Kramp [686]
from 1796, who considered an expansion of the function ee

x−1 (which we now know is the
exponential generating function of the Bn). Tate [1058] gave in 1845 formula (1.26), which
is equivalent to the Dobiński formula (1.25). This formula was discussed by Dobiński [358]
in 1877 and he gave an explicit formula for the nth Bell number. One year later, in 1878,
Ligowski [729] gave a more general formula involving the exponential generating function
ee

x−1. These results were preceded by the work of Grunert [521], who in 1843 had considered
expressions which contain the Dobiński formula. The Dobiński formula also appeared as
a problem in Mathematicheskii Sbornik in 1868 with solution provided in the following
year [1, 2]. Whitworth [1139] discussed in the classical book Choice and Chance from 1870
problems of set partitions and derived explicit formulas for the Stirling and Bell numbers
using the generating function ee

x−1. In 1880, Peirce [900] gave explicit expressions for the
Bell numbers. In the context of difference equations, Cesàro [214] also considered the Bell
numbers and rederived the Dobiński formula in 1885. D’Ocagne [360] studied in 1887 the
generating function for the sequence {�n}n≥0. In 1901, Anderegg [32] showed that

2e =
∑
k≥1

k2

k!
, 5e =

∑
k≥1

k3

k!
, 15e =

∑
k≥1

k4

k!
,

and also obtained the general Dobiński’s formula. In the 1920s, Ramanujan studied the Bell
and Stirling numbers in his unpublished notebooks. His work is presented and discussed in
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[93]. In the 1930s, Becker and Riordan [67] studied several arithmetic properties of Bell and
Stirling numbers, and Bell [73,74] recovered the Bell numbers. Later, Epstein [399] studied
the exponential generating function for the Bell numbers (see also Williams [1146] and
Touchard [1077,1079]). Rota [946] presented in 1964 a modern approach to Bell numbers and
set partitions. Concerning Bell numbers, we refer the reader to the bibliography compiled
by Gould [502], which contains over 200 entries.

The Stirling numbers of the first and second kind were considered in different contexts,
for example, as connection coefficients, in the calculus of finite differences, in the theory
of factorials, in connection with Bernoulli and Euler numbers, and evaluation of partic-
ular series (and, of course, in connection with the Bell numbers). Apart from Stirling’s
work mentioned above, they were considered – explicitly or implicitly – by many famous
mathematicians, for instance, Euler (1755 [404]), Emerson (1763 [397]), Kramp (1799 [687]),
Lacroix (1800 [702]), Ivory (1806 [580]), Brinkley (1807 [154]), Laplace (1812 [714]), Herschel
(1816 [552], 1820 [553]), Scherk (1823 [959], 1834 [960]), Ettingshausen (1826 [403]), Grunert
(1827 [520], 1843 [521]), Gudermann (1830 [523]), Oettinger (1831 [880]), Schlömilch (1846
[966–968], 1852 [969], 1858 [970], 1859 [971]), Schläfli (1852 [964], 1867 [965]), Catalan
(1856 [204]), Jeffery (1861 [600]), Blissard (1867 [119], 1868 [120]), Whitworth (1870 [1139]),
Worpitzky (1883 [1158]), and Cayley (1888, [208]). The Stirling numbers were so named by
Nielsen [872–874] in 1904 in honor of James Stirling. From the beginning of the 20th century
we single out Tweedie (1918 [1092]), Ramanujan (1920s, see [93]), Ginsburg (1928 [475]),
Carlitz (1930 [183], 1932 [184]), Aitken (1933 [15]), Jordan (1933 [609]), Touchard (1933
[1077]), Becker and Riordan (1934 [67]), Bell (1934 [73,74]), Goldstein (1934 [487]), Toscano
(1936 [1068]), Epstein (1939 [399]) and Williams (1945 [1146]).

The Stirling numbers of the first kind were also discussed by Stirling [1040] in 1730. In
fact, in roughly the same context Thomas Harriot had come across these numbers already
in 1618 in his unpublished manuscript Magisteria Magna [531] (reprinted and annotated
in [68]). Some remarks concerning the history of Stirling numbers can be found in [140,230,
232, 609, 610, 674, 675].

1.2 Commutation Relations and Operator Ordering

A commutation relation describes the discrepancy between different orders of operation
of two operations U and V . To describe it, we use the commutator [U, V ] ≡ UV −V U . If U
and V commute, then the commutator vanishes. Nowadays, many examples for noncommut-
ing structures are well-known, for example, matrices, Grassmann algebras, quaternions, Lie
algebras, but the formal recognition of the algebraic properties like commutativity or asso-
ciativity emerged rather slowly and at first in concrete examples. How far a given structure
deviates from the commutative case is described by the right-hand side of the commutation
relation. For example, in a complex Lie algebra g one has a set of generators {Xα}α∈I with
the Lie bracket [XαXβ] =

∑
γ∈I f

γ
αβXγ , where the coefficients fγαβ ∈ C are called struc-

ture constants. The associated universal enveloping algebra U(g) is an associative algebra
generated by {Xα}α∈I , and the above bracket becomes the commutation relation

[Xα, Xβ] =
∑
γ∈I

fγαβXγ .

One of the earliest instances of a noncommutative structure was recognized in the context of
operational calculus (also called symbolical calculus). Recall that one of the basic properties
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of calculus is the product rule, which implies that D(x · f(x)) = D(x) · f(x) + x · Df(x).
Interpreting the multiplication with the variable as an application of the multiplication
operator X , this can be written in the form (D ◦X−X ◦D)f = f , or, suppressing “◦” and
the operand f , as commutation relation between the operators X and D,

DX −XD = I. (1.6)

1.2.1 Operational (or Symbolical) Calculus

In this section we present some of the early development of operational calculus, following
mainly the account given by Koppelman [681] (and, in addition, the remarks given in [331,
Chapter 1]). In both accounts many references to the original literature can be found.
Furthermore, the classical book [201] of Carmichael from 1855 and [127] of Boole from 1859
are recommended.

The first steps in the formal theory of linear operators can be traced back to a letter
from Leibniz to Johann Bernoulli in 1695; a published account appeared in 1710 [718]. In
it Leibniz discussed the formula for higher derivatives of a product of functions (what we
call today the Leibniz rule) and stressed the analogy to the binomial formula. Furthermore,
he discussed a beautiful combinatorial argument for the coefficients appearing. If we denote
the derivative with respect to x by D and let Dmf ≡ f (m), then Leibniz showed that

Dn(ψu)(x) =
n∑
k=0

(
n

k

)
ψ(n−k)(x)u(k)(x). (1.7)

In 1772 Lagrange [703] discussed many operational formulas which would later be inter-
preted as the first steps in the calculus of finite differences. Let us introduce in addition to
D the shift operator

Eu(x) = u(x+ 1) (1.8)

and the operator of finite difference

Δu(x) = u(x+ 1) − u(x). (1.9)

Clearly, one has Eu(x) = (1 + Δ)u(x). In this notation, Taylor’s theorem can be formally
denoted by f(x + h) = ehDf(x), where the right-hand side has to be expanded using
the conventional exponential series. Thus, Eu(x) = eDu(x). Introducing a constant ξ and
denoting Δξu(x) = u(x+ ξ) − u(x), Lagrange derived the operational relation

Δλ
ξu =

(
eξ

du
dx − 1

)λ
. (1.10)

A proof of (1.10) was given by Laplace [713] in 1776. The next big step was taken by
Arbogast in his book Du Calcul Des Dérivations [40] from 1800 (following ideas of Lorgna).
His idea was to separate the “symbols” (that is, operators) from the subject on which they
act and to consider the rules the symbols satisfy algebraically. For example, he wrote (1.10)
for λ = 1 as

1 + Δξ = eξD,

that is, as equation between the symbols itself. By considering the symbols apart from the
subjects on which they act and manipulating them as if they were algebraic quantities, he
was clearly working in the realm of operational calculus. In 1814, Servois published two
notable papers [987, 988], in which he showed that the reason for the analogy between op-
erational and algebraical symbols was that both types of symbols satisfy the distributive,
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associative and commutative law. Servois introduced the names “distributive” and “com-
mutative”, but the name “associative” seems to be due to Hamilton. Cauchy [205] discussed
operational calculus in 1827 (mentioning, in particular, the work of Brisson) and showed,
among many other results, that

F (D)[erxf(x)] = erxF (r +D)f(x), (1.11)

where F is a polynomial. Cauchy used these results to solve particular differential equa-
tions, and he inquired into the convergence of the series obtained by formal processes and
considered methods for establishing the validity of results of operational methods.

However, the operational methods did not become popular on the continent. The accep-
tance of the methods and notation of the continentals was surprisingly quick in England,
and it was here that the calculus of operations was extended in scope and its applica-
tions. The first mathematicians in England who were responsible for this development were
Babbage, Herschel, Peacock, and Woodhouse; see [681] for a discussion. In the next 30–40
years, from the late 1830s to the 1870s, many important results were achieved. In 1837
Murphy published a paper [855] in which a very clear and general account of the theory of
linear operations was given, and in which he also noticed explicitly the difference between
commuting and noncommuting operations. The next mathematician whom we single out
is Gregory, who in the late 1830s and early 1840s published several papers in which the
operational calculus was applied to differential and difference equations. He also discussed
more general questions concerning operational calculus and its algebraic contents, see, for
example, [516, 517]. Some information about Gregory, who died at the early age of 30, can
be found in [29,342,681]. The work of Murphy and Gregory influenced Boole and his most
important work concerned with operational calculus appeared in 1844 [126] (and can also
be found in his book [127]). For example, in [126] he considered symbols π and ρ which
are assumed to be associative and distributive and which satisfy for any function f , which
can be developed into a power series in x, that ρf(π) = λf(π)ρ, where λ acts on π so that
λf(π) = f(φ(π)). He showed that one can write

f(π + ρ) =
∑
m≥0

fm(π)ρm,

where f0(π) = f(π) and fm(π) = λ−1
(λm−1)πfm−1(π). Furthermore, he showed that f(π)ρmu =

ρmf(π +m)u. Choosing π = d
dθ = D and x = ρ = eθ, this implied that

f(D)emθu = emθf(D +m)u, (1.12)

reproducing (1.11). As a second application, Boole derived for D = d
dx that

xD(xD − 1)(xD − 2) · · · (xD − n+ 1)u = xnDnu, (1.13)

which he called “known relation”. In the late 1840s and early 1850s many attempts to extend
and generalize Boole’s results appeared. One of the most prolific adherents was the Reverend
Bronwin, who devoted several papers to the symbolic method; see, for example, [157, 158].
Another follower was Hargreave, whose most important contribution appeared in 1848 [530].
His generalization of the Leibniz rule (1.7) can be written as

φ(D)[ψ(x) · u(x)] = ψ(x)φ(D)u(x) + φ′(x)ψ′(D)u(x) +
1

2!
ψ′′(x)φ′′(D)u(x) + · · · ,

where φ and ψ were assumed to be functions which can be developed in ascending or
descending integral powers of the variable. Shortly after that, the Reverend Graves [510]
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discussed the symbolical content of Hargreaves’s results and introduced for that purpose
symbols π and ρ satisfying

πρ− ρπ = α, (1.14)

where α was assumed to commute with π and ρ. Graves discussed that a particular represen-
tation for this commutation relation is given (for α = 1) by π �→ D = d

dx and ρ �→ X , where
X denotes again the operator of multiplication with the independent variable x. He also
showed that this commutation relation implies an abstract version of Hargreaves’ results.
In fact, a few years earlier, in 1850, Donkin [362] had considered a more general situation
in which symbols ω, ρ1, . . . , ρn+1 are involved which satisfy

ωρ− ρω = ρ1

ωρ1 − ρ1ω = ρ2
...

ωρn − ρnω = ρn+1.

Clearly, if ρk = 0 for k ≥ 2, this reduces to the situation considered by Graves. Assuming
that f(x) can be expanded in integral powers of x, Donkin showed, for example, that
f(ω)ρ = ρf(ω)+ρ1f

′(ω)+ ρ2
2! f

′′(ω)+ · · · , and applied this to several questions in differential
and difference calculus. In another interesting paper [509], Graves considered the action of
eg(x)D on functions u(x). He discovered that if eg(x)Du(x) = f(x), then f can be described
as

f(x) = u{G−1[G(x) + 1]}, (1.15)

where G(x) =
∫ x dt

g(t) and G−1 is the inverse function of G. For example, if g(x) = xm with

m ∈ N \ {1}, then

eλx
mDu(x) = u

{
x

m−1
√

1 − (m− 1)λxm−1

}
. (1.16)

In the particular case m = 1, one obtains for the exponential of the Euler operator xD due
to G(x) = ln(x) for λ ∈ R the well-known result

eλxDu(x) = u(eλx). (1.17)

In the early 1860s a series of papers of Russel [951–953] appeared in which he con-
sidered noncommutative symbols along the lines of Boole (but satisfying slightly different
commutation relations), and in 1882 Cazzaniga [209, 210] gave a systematic exposition of
symbolical calculus. Around this time, Crofton [308–311] and Glaisher [476–479] published
several interesting papers. From 1881 on, Heaviside worked out his operational calculus (the
so-called Heaviside calculus) in a long series of publications; see the discussion in [331,903].
The importance of this work was recognized in 1910–1920, and several mathematicians tried
to give it a rigorous foundation (for a well-known early work; see Wiener [1141] and the
references therein). Let us also mention the work of Carmichael, Cockle, Greatheed, DeMor-
gan, Roberts, and Spottiswoode (see the discussion in [681]). As Davis [331] remarked, the
period of formal development of operational methods may be regarded as having ended by
1900. At this time, the theory of integral equations began fascinating mathematicians, and
from these beginnings the modern theory of functional analysis emerged. Since the 1970s,
Gian-Carlo Rota and collaborators revived many of these classical topics in finite operator
calculus – or also under the classical name umbral calculus; see, for example, [939–941,947].



12 Commutation Relations, Normal Ordering, and Stirling Numbers

1.2.2 Early Results for Normal Ordering Operators

The problem of bringing operators into a convenient order arose with the appearance
of noncommutative objects (“symbols”). Clearly, if the operators under consideration com-
mute, one can write them in any order one wishes. Recall the terminology considering words
introduced in Definition 1.8. Let us turn to the concrete situation where the alphabet con-
sists of the two operators X and D. An arbitrary word ω in these letters can be written
as

ω = XrnDsn · · ·Xr2Ds2Xr1Ds1 (1.18)

for some rk, sk ∈ N0. In our context (1.6) holds true, that is, two adjacent letters X and D
in a word can be interchanged according to this relation. Each time one uses it in a word
ω, two new words result. If we write the original word as ω = ω1DXω2 (where each ωk can
be the empty word), then applying (1.6) yields that ω = ω1XDω2 + ω1ω2.

Example 1.22 The simplest example results when ω1 = ω2 = ∅, and ω = DX can be
written as DX = XD + 1. The more complex word D2XD can be written as DDXD =
DXDD +DD = DXD2 +D2.

Using successively (1.6), one can transform each word in X and D into a sum of words,
where each of these words has all the powers of D to the right.

Definition 1.23 A word ω in the letters X and D is in normal ordered form if ω =
ar,sX

rDs for r, s ∈ N0 (and arbitrary coefficients ar,s ∈ C). An expression consisting of
a sum of words is called normal ordered if each of the summands is normal ordered. The
process of bringing a word (or a sum of words) into its normal ordered form is called normal
ordering. Writing the word ω in its normal ordered form,

ω =
∑
r,s∈N0

Ar,s(ω)XrDs,

the – uniquely determined – coefficients Ar,s(ω) are called normal ordering coefficients of ω
(the sum is only finite). In a similar fashion, ω = br,sD

rXs is called antinormal ordered.

As shown above, the normal ordered form of DX is XD + 1. As the next example, we
show that it is possible to interpret the Leibniz rule (1.7) as a formula concerning normal
ordering. Indeed, if we consider the left-hand side Dn(ψu)(x) as the successive application
of the multiplication operator ψ(X) followed by Dn on u, we can write this relation as

(Dn ◦ ψ(X))u(x) =

n∑
k=0

(
n

k

)(
ψ(n−k)(X) ◦Dk

)
u(x),

which we interpret as the following normal ordering relation

Dnψ(X) =
n∑
k=0

(
n

k

)
ψ(n−k)(X)Dk.

Choosing ψ(X) = X , one gets back (1.6) for n = 1. Choosing ψ(X) = Xm with m ≥ n, one
can use that Dl(xm) = l!

(
m
l

)
xm−l to find

DnXm =

n∑
k=0

(
n

k

)(
m

k

)
k!Xm−kDn−k. (1.19)

Let us point out that this interpretation of the Leibniz rule (1.7) is an unhistorical one.
Maybe the first explicit results concerning normal ordering were derived by Scherk [959] in
his dissertation from 1823.
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Theorem 1.24 (Scherk) Let X and D satisfy (1.6).

1. The powers (XD)n have for n ∈ N the normal ordered form

(XD)n =

n∑
k=1

aknX
kDk, (1.20)

where the coefficients akn satisfy the recurrence relation

akn = ak−1
n−1 + kakn−1. (1.21)

2. The powers (eXD)n have for n ∈ N the normal ordered form

(eXD)n = enX
n∑
k=1

cknD
k, (1.22)

where the coefficients ckn satisfy the recurrence relation

ckn = ck−1
n−1 + (n− 1)ckn−1.

Note that eX is an infinite series and is treated formally. Scherk also gave combinatorial in-
terpretations and explicit expressions for the expansion coefficients akn and ckn. He considered
in his dissertation also briefly the expansion of (XpD)n with p ∈ N and wrote

(XpD)n = Xnp−n
n∑
k=1

bknX
kDk, (1.23)

where the coefficients bkn are described combinatorially as a sum over certain partitions.
Scherk [960] mentioned in 1834 the following recurrence for them,

bkn = bk−1
n−1 + ((n− 1)p− n+ k + 1) bkn−1.

Murphy derived in the already mentioned paper [855] from 1837 several remarkable formulas.
If v denotes an arbitrary function, he found the expansion

(vD)n = vnDn +

(
n

2

)
v′vn−1Dn−1 +

(
n

3

){3n− 5

4
(v′)2 + v′′v

}
vn−2Dn−2 + · · · , (1.24)

but gave no explicit expression for the general term; in fact, Scherk [959] had also considered
this expansion. Relation (1.13) mentioned by Boole [126] was used frequently as a starting
point to obtain generalizations. Grunert [521] considered in 1843 the expansion (1.20) and
found the recurrence (1.21). Cesàro [214] considered in 1885 (1.20) and derived for the

coefficients the expression akn = Δk0n

k! , where a symbolic notation of the calculus of finite

differences is used. Applying (1.20) to ex and using on the left-hand side ex =
∑

k≥0
xk

k! as

well as (XD)nxk = knxk, the left-hand side gives
∑

k≥1
knxk

k! . On the right-hand side, one

obtains
∑n

k=1 a
k
nx

kex. Comparing both sides for x = 1, one obtains that (here we use that
akn = S(n, k))

1

e

∑
k≥1

kn

k!
= �n, (1.25)
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where �n are the Bell numbers (Cesàro did not recognize these numbers as partition num-
bers). Thus, Cesàro derived the Dobiński formula (1.25), and he also derived the exponential
generating function ee

x−1 of the numbers �n. Note that we can write (1.25) also as

1n

1!
+

2n

2!
+

3n

3!
+ · · · = e

{
Δ0n

1!
+

Δ20n

2!
+

Δ30n

3!
+ · · ·

}
. (1.26)

In this form, (1.26) was already shown by Tate [1058] in 1845, and he considered the
case n = 3 explicitly (where �3 = 5). In the beautiful paper [360] from 1887 d’Ocagne
obtained several results for the “remarkable numbers” Kk

n, which he defined by (1.21), that
is, Kk

n = Kk−1
n−1 + kKk

n−1 (since the initial values coincide, one has Kk
n = akn). D’Ocagne

derived (1.20) and also

(DX)n =
n∑
k=0

Kk+1
n+1X

kDk.

In addition, denoting φm+1(x) =
∑m

k=0K
k+1
m+1x

k, he derived the expression

(X +DX)n =

n∑
k=0

φ
(k)
m+1(X)

k!
XkDk.

Several other expansions were treated, in particular in connection with higher derivatives
of “functions of functions”. In this context, we should mention the work of Meyer [812,813],
Schlömilch [966–971], and Schläfli [964, 965]. These authors noticed the appearance of in-
teresting coefficients and studied their properties. Nielsen [872,873] introduced in 1904 the
name “Stirling numbers” for the coefficients akn, and Tweedie [1092] wrote a first compre-
hensive paper in 1918. Shortly after that, Schwatt [984] noticed in 1924 that the coefficients
in (1.20) are given by the Stirling numbers (of the second kind), that is, we can write

(XD)n =

n∑
k=1

S(n, k)XkDk. (1.27)

In the early 1930s, Carlitz [183, 184], seemingly unaware of the work of Scherk, defined
in analogy to (1.20) and (1.23) generalized Stirling numbers Sr,s(n, k) as normal ordering
coefficients for r ≥ s by

(XrDs)n = Xn(r−s)
∑
k≥0

Sr,s(n, k)XkDk. (1.28)

Clearly, S1,1(n, k) = S(n, k) = akn and Sp,1(n, k) = bkn. Independently, Toscano followed the
same idea and, beginning in 1935, treated the generalized Stirling numbers in a long series
of papers [1067–1075]. McCoy [791] considered in 1934 arbitrary words (1.18) in X and D,

XrnDsn · · ·Xr2Ds2Xr1Ds1 = X |r|−|s|
∑
k≥0

Sr,s(k)XkDk, (1.29)

where r = (r1, . . . , rn) and |r| = r1 + · · · + rn (and, similarly, for s). The coefficients
Sr,s(k) generalize the Stirling numbers of Carlitz: If rk = r and sk = s for k = 1, . . . , n,
then Sr,s(k) = Sr,s(n, k) and (1.29) reduces to (1.28). Since many classical polynomials –
for example, the Bell, Bessel, Hermite, and Laguerre polynomials – allow an operational
treatment, many other researchers followed this line of research and discovered many in-
teresting relations involving Stirling numbers or their generalizations; see, for example,
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Cakić [175–178, 392, 393, 826], Chak [216–219], Comtet [279], Gould [496–499, 501, 503],
Lang [710–712], Mitrinović [834–836], Al-Salam [17, 18], and Al-Salam [19–21].

Let us point out another way to generalize Stirling numbers. Introducing the generalized
factorial (z|γ)n = z(z−γ) · · · (z−(n−1)γ), Hsu and Shiue [568] defined generalized Stirling
numbers S(n, k;α, β, r) as connection coefficients,

(z|α)n =

n∑
k=0

S(n, k;α, β, r)(z − r|β)k. (1.30)

Clearly, (1.3) and (1.4) are particular instances of (1.30), and many previous generalizations
of Stirling numbers are special cases of S(n, k;α, β, r).

1.2.3 Operator Ordering in Quantum Theory

Recall from the preceding section that Graves discovered in the 1850s that the main
property to derive many of the algebraic consequences of operational calculus is the com-
mutation relation (1.14) (with α ∈ C), which is an abstract version of (1.6). Unfortunately,
he was roughly 70 years ahead of his time. In 1925, Werner Heisenberg [545] discovered
that to understand the physics of the atom one should depart from classical notions, im-
plying in particular that the mathematical objects representing physical properties need
not commute. The relations he postulated for the momentum and location were recognized
immediately by Born and Jordan [131] as the commutation relation

pq− qp = −i�1 (1.31)

for the infinite matrices p (resp. q) which represent the momentum (resp. location) and
where � = h/2π denotes Planck’s constant. Independently, Dirac [349–351] considered ab-
stract q-numbers satisfying (1.31) and developed a quantum algebra for them. Thus, this
noncommutative structure – coinciding with (1.14) considered by Graves – lies at the heart
of quantum theory. Very shortly after the discovery of this matrix mechanics, a different
version of quantum theory was found by Erwin Schrödinger in the form of wave mechanics
– the famous Schrödinger equation. However, it was soon established that both versions of
the theory are equivalent.

Born and Jordan [131] recognized that one needs to consider particularly ordered forms
of expressions in the noncommuting objects p and q. Calling an expression in these two
variables normal ordered (resp. antinormal ordered), if all powers of p stand to the right
(resp. left) of the powers of q, they gave the following normal ordering formula

pnq = qpn + n(−i�)pn−1,

as well as the analogous antinormal ordering formula

qnp = pqn − n(−i�)qn−1.

More generally, they also mentioned that

pnqm =

min(n,m)∑
k=0

k!

(
n

k

)(
m

k

)
(−i�)kqm−kpn−k, (1.32)

and gave the analogous antinormal ordering formula. Note that (1.32) has the same structure
as (1.19) due to the common algebraic structure. In the subsequent paper [130] together
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with Heisenberg , they derived for any function f(q, p), which can be formally expressed as
power series in p and q, the rule

pf − fp = (−i�)
∂f

∂q
,

as well as

qf − fq = (−i�)
∂f

∂p
. (1.33)

Dirac, who independently found (1.31) in [349], considered in his subsequent work [351]
algebraic consequences of (1.31) and also derived (1.33). Furthermore, Dirac showed that

f(q, p)eiαq = eiαqf(q, p + α�),

which one recognizes as (1.12) already discussed by Boole – or, even earlier, by Cauchy
(1.11). Dirac [350] considered many other interesting consequences of (1.31). Coutinho [304]
gave a beautiful account of the early history of the underlying Weyl algebra. From a more
mathematical point of view, several consequences of relation (1.31) were discussed in the
early 1930s by McCoy [786–791] as well as Kermack and McCrea [649,650,792]. An instruc-
tive discussion of their work from a modern perspective can be found in [306]. Motivated by
the example of “quantum algebra”, Littlewood [733] started in 1933 a thorough examination
of this algebra.

Let us turn back to quantum theory. In its applications, it is often convenient to switch
to Fock space and consider two adjoint operators in it satisfying the bosonic commutation
relation

ââ† − â†â = 1. (1.34)

Note that this is again an instance of (1.14)! The creation operator â† (resp. annihilation
operator â) has the interpretation of creating (resp. annihilating) one quantum in the system
considered (for example, a photon). In the simplest example a physical state just denotes
the number of quanta present in the system, and a state representing n quanta is denoted
by |n〉. Fock space F is the linear span {|1〉, |2〉, . . . , |n〉, . . .} of these states, and one has
that

â†|n〉 =
√
n+ 1|n+ 1〉, â|n〉 =

√
n|n− 1〉.

Destroying the last quantum, only the vacuum remains, that is, â|1〉 = 0. The number
operator n̂ = â†â has the property n̂|n〉 = n|n〉, hence its name. To calculate expectation
values of interesting operators in â and â†, it is advantageous to write them in normal
ordered form, meaning that the powers of â† stand to the left of the powers of â. The
reason for this is that destroying more quanta than are present, the vacuum results, that
is, (â†)mâk|n〉 = 0 if k > n.

For the states one has that 〈n||m〉 = δn,m. A simple calculation gives 〈n|â†|m〉 =√
m+ 1〈n||m + 1〉 =

√
m+ 1δn,m+1. One easily finds that 〈m|n̂k|m〉 = mk for any k ∈ N.

As an example, consider k = 2, where n̂2 = â†ââ†â. Using (1.34), one obtains that
n̂2 = (â†)2â2 + â†â, hence,

〈m|n̂2|m〉 = 〈m|(â†)2â2|m〉 + 〈m|â†â|m〉 = m(m− 1) +m = m2,

as it should. Higher powers of the number operator can be written as

n̂n =
n∑
k=1

Tn,k (â†)k âk (1.35)

for some coefficients Tn,k. Normal ordered expressions for powers of n̂ were derived by
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Agarwal and Wolf [8] in 1970. In the same context, similar relations had been discussed a
few years earlier by Schwinger [985,986], Mandel [755], Louisell and Walker [741], Marburger
[775,776], Wilcox [1102,1142,1143]), Peřina [904,905]), and Cahill and Glauber [170]. Gluck
[482] considered in 1972 closely related operators. For our considerations, two important
papers appeared in the mid 1970s: Navon [861] considered in 1973 the anticommutation
relation

f̂ f̂ † + f̂ †f̂ = 1 (1.36)

for fermionic creation and annihilation operators – compare with (1.34) – and showed that
the normal ordering coefficients for arbitrary words in the multi-mode case can be expressed
as rook numbers. Katriel [634] recognized in 1974 that the coefficients in (1.35) are Stirling
numbers of the second kind, that is,

n̂n =

n∑
k=1

S(n, k)(â†)kâk. (1.37)

The work of Katriel was generalized from the 1980s up to the present, beginning by himself
[635–638] and Mikhăılov [822,823], to more general expressions. Katriel [637] discovered in
2000 (see also [638]) that the Bell numbers appear as expectation values of n̂n with respect
to coherent states. Since normal ordered expressions are useful in applications, this more
combinatorial approach gained speed after 2000 and more and more authors contributed to
an understanding of normal ordered expressions. By considering instead of n̂n = (â†â)n the
expressions ((â†)râs)n, generalized Stirling numbers Sr,s(n, k) were introduced by Blasiak,
Penson, and Solomon [114–116] in 2003 for r ≥ s by

((â†)râs)n = (â†)n(r−s)
n∑
k=0

Sr,s(n, k)(â†)kak, (1.38)

and many of their properties were studied. Since â �→ D and â† �→ X (hence, n̂ = â†â �→
XD) furnishes a representation of the commutation relation, the generalized Stirling num-
bers Sr,s(n, k) from (1.38) equal the generalized Stirling numbers Sr,s(n, k) introduced by
Carlitz (1.28).

In the above physical situation, Arik and Coon [41] considered a q-analog of (1.34), that
is, they introduced the q-deformed commutation relation

âqâ
†
q − qâ†q âq = 1 (1.39)

of a q-boson (where q ∈ C). Considering q → 1 gives the bosonic commutation relation
(1.34), while considering q → −1 gives the fermionic commutation relation (1.36). Here
the same problems as in the undeformed case appear and normal ordering powers of the
corresponding number operator involves the q-deformed Stirling numbers of the second kind,
as was shown in 1992 by Katriel and Kibler [642]. Many properties of this algebra have been
considered, and an extensive bibliography up to 2000 can be found in [549].

Since Katriel’s seminal work [634], the combinatorial aspects of boson normal ordering
have received a lot of attention; see, for example, [101, 113, 114, 116, 117, 181, 356, 357, 417,
419, 453, 494, 637, 639, 711, 764, 768–770, 807, 822, 974, 976, 989, 991, 1099, 1100, 1149] (more
references are given in later chapters). Wick’s theorem is the physicist’s way to determine
the normal ordered form of an arbitrary operator function in â and â†. A closer look reveals
that the contractions used in it can be described in terms of set partitions, providing a
conceptual reason for the appearance of S(n, k) in (1.37).

Concerning introductions to normal ordering, we recommend the beautiful survey of
Blasiak and Flajolet [106], where many combinatorial aspects are discussed. An older ref-
erence is [740], while [113] provides an elementary first introduction. Also, [761] contains a
discussion on normal ordering.
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1.3 Normal Ordering in the Weyl Algebra and Relatives

For us, the Weyl algebra Ah (where h ∈ C) is the complex algebra generated by the
letters U and V satisfying UV − V U = hI, where the identity I on the right-hand side will
usually be suppressed. This relation is exactly (1.14) considered by Graves, and a concrete
representation is given for h = 1 by V �→ X and U �→ D, see (1.6) (or, V �→ â† and U �→ â,
see (1.34)). The normal ordering results mentioned above only depend on the commutation
relation between the “symbols”, so also hold in A1. For example, normal ordering (V U)n

gives rise to the S(n, k) as normal ordering coefficients. In 2005, Varvak [1100] showed that
the normal ordering coefficients of an arbitrary word in U and V can be expressed as rook
numbers (Fomin [448] had shown the same in a different context in 1994). More precisely,
to a word ω in U and V one can associate a Ferrers board Bω, and it is then possible to
write for a word ω having m appearances of V (resp. n of U) the normal ordered expression

ω =

min(m,n)∑
k=0

rk(Bω)V m−kUn−k, (1.40)

where rk(Bω) denotes the kth rook number of the board Bω. For example, if ω = (V U)n,
then the corresponding Ferrers board is given by the staircase board Jn,1, for which one
knows rn−k(Jn,1) = S(n, k). Thus, (1.40) gives

(V U)n =
n∑
k=0

rn−k(Jn,1)V kUk =
n∑
k=0

S(n, k)V kUk, (1.41)

that is, the well-known result (1.27).
The q-deformed Weyl algebra Ah|q is defined – in analogy to Ah – to be the complex

algebra generated by the letters U and V satisfying

UV − qV U = h, (1.42)

where q ∈ C is assumed to be generic. A physical representation is given for h = 1 by
U �→ âq and V �→ â†q; see (1.39). An operational representation of (1.42) is given for h = 1
by V �→ X and U �→ Dq, where Dq denotes the Jackson derivative. The action of the
Jackson derivative on a function f is defined by

(Dqf)(x) =
f(x) − f(qx)

(1 − q)x
.

Diaz and Pariguan [345] considered in 2005 the meromorphic Weyl algebra which results
by considering X−1 and D (instead of X and D, as in the Weyl algebra). One finds that
DX−1 −X−1D = −(X−1)2, that is, abstractly,

UV − V U = −V 2. (1.43)

One can consider different combinatorial aspects in this algebra, for example define associ-
ated Stirling numbers as normal ordering coefficients of (V U)n. In the context of algebraic
geometry this algebra is known as Jordan plane and appeared occasionally in the litera-
ture. In more recent times, Shirikov [1005–1008] studied it thoroughly; see also [581]. From
a different point of view, Benaoum [77] had considered in 1998 the binomial formula for
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variables U and V satisfying (1.43) in the form UV − V U = hV 2. For these variables, he
introduced h-binomial coefficients and derived a normal ordered expansion

(U + V )n =

n∑
k=0

(
n

k

)
h

V kUn−k,

in close analogy to the conventional case (recovered for h = 0). In 1999 Benaoum [78]
considered a q-deformation of this situation, where

UV − qV U = hV 2, (1.44)

and introduced (q, h)-binomial coefficients, which reduce for q = 1 to the h-binomial coef-
ficients. Note in particular that the degenerate case h = 0 of (1.44) leads to q-commuting
variables, that is, UV = qV U , and the corresponding binomial formula is the classical
q-binomial theorem [917, 983],

(U + V )n =

n∑
k=0

[
n

k

]
q

V kUn−k, (1.45)

where q-binomial coefficients are used. Variables U and V satisfying (1.44) have been con-
sidered also by other authors, for example, [255,346,544,945,1184]. In a completely different
context, Burde [162] considered in 2005 finite dimensional matrices U and V satisfying the
commutation relation

UV − V U = V p (1.46)

for p ∈ N, and also considered the coefficients resulting from normal ordering (UV )n. In the
same year, Varvak [1100] suggested to consider normal ordering expressions in variables U
and V satisfying (1.46) and drew a connection to p-rook numbers introduced by Goldman
and Haglund [485] in 2000. Comparing the different algebras considered above, a common
generalization emerges.

Definition 1.25 The q-deformed generalized Weyl algebra As;h|q is defined for s ∈ N0, h ∈
C \ {0} and q ∈ C as the complex algebra generated by U and V satisfying

UV − qV U = hV s. (1.47)

Relation (1.47) can be specialized in different ways, thereby reducing to relations con-
sidered above. For example, the Weyl algebra Ah corresponds to A0;h|1, and A2;−1|1 is the
meromorphic Weyl algebra; see (1.43). Recall from (1.41) that the Stirling numbers S(n, k)
can be defined as normal ordering coefficients of (V U)n in Ah. This motivates the following
definition [765].

Definition 1.26 The q-deformed generalized Stirling numbers Ss;h|q(n, k) are defined as
normal ordering coefficients of (V U)n in As;h|q, that is,

(V U)n =

n∑
k=1

Ss;h|q(n, k)V s(n−k)+kUk. (1.48)

The generalized Stirling numbers Ss;h(n, k) = Ss;h|q=1(n, k) are a subfamiliy of the gener-
alized Stirling numbers S(n, k;α, β, r) from (1.30), and one has that S0;1(n, k) = S(n, k).
Particularly interesting is the case s = 2 (corresponding to the meromorphic Weyl algebra),
where the generalized Stirling numbers are given by Bessel numbers. These generalized
Stirling numbers were studied in several papers [289, 290, 763, 765–767,771–773].
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Now that we have defined the chief characters of the book, we can succintly describe
its focus as follows: We discuss different aspects of normal ordering in As;h|q and in several
interesting specializations, like A2;−1|1. Apart from general results, we are particularly in-
terested in the word (V U)n, giving rise to the generalized Stirling and Bell numbers, and
in (U + V )n. Along the way we also present rewarding ramifications.

1.4 Content of the Book

In Chapter 2 we introduce techniques to solve recurrence relations which occur naturally
when enumerating set partitions. This chapter also contains many examples of important
integer sequences, such as the Fibonacci and Catalan numbers, to illustrate the techniques
of setting up and of solving recurrence relations. Methods for solving recurrence relations in-
clude guess and check, iteration, characteristic polynomial, and generating function. Lattice
paths and trees as basic combinatorial structures are treated, including Dyck and Motzkin
paths, rooted trees and k-ary trees. We also discuss other combinatorial objects (rooks,
Sheffer sequences, etc.) in this chapter for easy reference in later chapters.

In Chapter 3 we discuss the classical Stirling and Bell numbers. After presenting some
basic properties, such as recurrence relations and generating functions, several combinatorial
interpretations are given. We then treat Touchard (or exponential) polynomials and discuss
some more specialized topics which will be generalized in later chapters, for example, a
differential equation for the generating function of the Bell numbers, the Dobiński formula,
and Spivey’s Bell number relation. Also, a q-deformation as well as a (p, q)-deformation of
the Stirling and Bell numbers are reviewed.

In Chapter 4 several generalizations of the Stirling and Bell numbers are considered. The
first starting point for generalization is the operational interpretation of Stirling numbers;
see (1.27). Considering instead of (XD)n other words in X and D gives rise to different
generalizations of Stirling numbers; see, for example, (1.28) and (1.29). We present Comtet’s
result about normal ordering

(
v(x) d

dx

)n
, and give an explicit expression for the general term

in (1.24). The second starting point for generalization is the interpretation of the Stirling
numbers as connection coefficients; see (1.3). We present the generalization (1.30) due to Hsu
and Shiue, which unified many of the previous generalizations of the Stirling numbers. After
surveying many of their properties, a q-deformation and a (p, q)-deformation are treated.
At the end of the chapter we briefly mention a selection of further recent generalizations of
the Stirling numbers.

In Chapter 5 we focus on the Weyl algebra, which is the complex algebra generated
by U and V satisfying UV − V U = h for some h ∈ C. After presenting some elementary
properties and a few remarks on its history, we give an introduction to elementary aspects of
quantum mechanics (stressing its connection to the Weyl algebra). The “operator ordering
problem” in quantization is discussed and several approaches to handle it are mentioned.
As a particularly important toy example the harmonic oscillator is treated in detail, and the
creation and annihilation operators are introduced. Several examples for normal ordering
words in these operators are considered, and the connection to (generalized) Stirling and
Bell numbers is elucidated.

In Chapter 6 we continue the study of normal ordering in the Weyl algebra. We discuss
some special relations, for example, Viskov’s identity and the identity of Bender, Mead,
and Pinsky, and also the connection to rook numbers. Also, Wick’s theorem is discussed
from a combinatorial as well as a physical point of view. Considering the normal ordering of



Introduction 21

particular expressions gives connections to a variety of combinatorial problems, for example,
counting trees with particular properties. In addition to the operator ordering schemes
discussed in more detail (normal ordering, antinormal ordering, Weyl ordering), we mention
a collection of other such schemes. At the end of the chapter we briefly discuss a few aspects
of the multi-mode case and provide some literature.

In Chapter 7 normal ordering in several variants of the Weyl algebra is treated. We
begin with a brief discussion of the quantum plane, where the generating variables satisfy
UV = qV U , and derive the q-binomial formula (1.45). Then we turn to the q-deformed Weyl
algebra characterized by (1.42) and show how the q-deformed Stirling and Bell numbers arise
upon normal ordering. Several examples are treated and the q-deformed Wick’s theorem
derived. A connection to rooks is presented and a binomial formula given. Then, we consider
normal ordering in the meromorphic Weyl algebra characterized by (1.43) and derive a
binomial formula. The associated Stirling and Bell numbers are defined as normal ordering
coefficients and some of their properties are studied. Most of these results are then extended
to the q-meromorphic Weyl algebra.

In Chapter 8 the generalized Weyl algebra As;h = As;h|1 is introduced; see Definition 1.25.
We first survey the literature and point out close relatives of this algebra. Since it is an
example of an Ore extension, we mention a few properties of Ore extensions and also describe
some elementary normal ordering results for them. Then we discuss basic properties of As;h
and also derive normal ordering results. In the main part of the chapter we introduce
generalized Stirling numbers as in Definition 1.26 and study their properties (and those of
the associated Bell numbers) in detail. Since it turns out that they are a particular subfamily
of the generalized Stirling numbers of Hsu and Shiue, many properties follow from those
reviewed in Chapter 4. We single out the particularly nice case s = 2, where the generalized
Stirling numbers are given by Bessel numbers.

In Chapter 9 we treat the algebra As;h|q, see Definition 1.25. After deriving some basic
normal ordering results, we turn to the binomial formula for (U +V )n and give operational
interpretations for several special cases. We present “noncommutative Bell polynomials”
and a “noncommutative binomial formula” in two different versions. Then we introduce the
q-deformed generalized Stirling numbers as in Definition 1.26 and study their properties.
An interpretation in terms of rook numbers is given and special cases are related to other
q-deformed numbers.

In Chapter 10 we introduce a generalization of Touchard polynomials related to normal
ordering

(
xm d

dx

)n
. By definition, there exists a close connection to the generalized Stirling

and Bell numbers considered in Chapter 8. Due to the operational treatment one can obtain
binomial formulas for particular values of parameters, giving new examples for the results
of Chapter 9. Generalizing from operators of the form

(
xm d

dx

)n
to

(
v(x) d

dx

)n
, one can use

Comtet’s result discussed in Chapter 4 to introduce and study so-called Comtet–Touchard
functions. Finally, a q-deformation of the generalized Touchard polynomials is introduced
and several properties are studied, in particular, a Spivey-like relation.
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[4] N.H. Abel. Sommation de la série y = ϕ(0)+ϕ(1).x+ϕ(2).x2+ϕ(3).x3+· · ·+ϕ(n).xn,
n étant un nombre entier positif fini ou infini, et ϕ(n) une fonction algébrique ra-
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[43] M. Arik and G. Ünel. Stirling probability and q-bosons. J. Phys. A: Math. Gen.,
31:1121–1125, 1998.

[44] V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer, 1989.

[45] M. Artin and W.F. Schelter. Graded algebras of global dimension 3. Adv. Math.,
66:171–216, 1987.

[46] W. Asakly, T. Mansour, and M. Schork. Representing elements of the Weyl algebra
by labeled trees. J. Math. Phys., 54:023514, 2013.

[47] N.M. Atakishiyev, A. Frank, and K.B. Wolf. A simple difference realization of the
Heisenberg q-algebra. J. Math. Phys., 35:3253–3260, 1994.

[48] M. Awami, M. Van den Bergh, and F. Van Oystaeyen. Note on derivations of graded
rings and classification of differential polynomial rings. Bull. Soc. Math. Belg., Sér.
A, 40:175–183, 1988.
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[64] M.R. Bazrafkan, F. Shähandeh, and E. Nahvifard. Combinatorial approach to boson
anti-normal ordering problem. Preprint, arXiv:1204.3652v1 [math-ph].
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some properties and physical applications. J. Phys. A: Math. Gen., 39:4999–5006,
2006.

[113] P. Blasiak, A. Horzela, K.A. Penson, A.I. Solomon, and G.H.E. Duchamp. Combina-
torics and boson normal ordering: A gentle introduction. Am. J. Phys., 75:639–646,
2007.

[114] P. Blasiak, K.A. Penson, and A.I. Solomon. The boson normal ordering problem and
generalized Bell numbers. Ann. Comb., 7:127–139, 2003.

[115] P. Blasiak, K.A. Penson, and A.I. Solomon. Dobiński-type relations and the log-
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Polar-Operationen. Math. Ann., 29:331–338, 1887.

[181] S. Caracciolo and A. Sportiello. Noncommutative determinants, Cauchy–Binet for-
mulae, and Capelli–type identities. II. Grassmann and quantum oscillator algebra
representation. Ann. Inst. Henri Poincaré D, Comb. Phys. Interact., 1:1–46, 2014.
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[271] F. Coester and H. Kümmel. Short-range correlations in nuclear wave functions. Nucl.
Phys., 17:477–485, 1960.

[272] L. Cohen. Expansion theorem for functions of operators. J. Math. Phys., 7:244–245,
1966.

[273] L. Cohen. Generalized phase-space distribution functions. J. Math. Phys., 7:781–786,
1966.

[274] L. Cohen. Hamiltonian operators via Feynman path integrals. J. Math. Phys.,
11:3296–3297, 1970.

[275] L. Cohen. Correspondence rules and path integrals. J. Math. Phys., 17:597–598,
1976.

[276] L. Cohen. Quantization problem and variational principle in the phase-space formu-
lation of quantum mechanics. J. Math. Phys., 17:1863–1866, 1976.

[277] L. Cohen. The Weyl Operator and Its Generalization. Birkhäuser, 2013.
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[332] J.A. de Azcárraga and A.J. Macfarlane. Group theoretical foundations of fractional
supersymmetry. J. Math. Phys., 37:1115–1127, 1996.

[333] M.A. de Gosson. Born–Jordan quantization and the equivalence of the Schrödinger
and Heisenberg pictures. Found. Phys., 44:1096–1106, 2014.

[334] M.A. de Gosson and F. Luef. Preferred quantization rules: Born–Jordan versus Weyl.
The pseudo-differential point of view. J. Pseudo-Differ. Oper. Appl., 2:115–139, 2011.

[335] A. de Médicis and P. Leroux. Erratum: A unified combinatorial approach for q- (and
p, q-) Stirling numbers. J. Stat. Plann. Inference, 35:267, 1993.

[336] A. de Médicis and P. Leroux. A unified combinatorial approach for q- (and p, q-)
Stirling numbers. J. Stat. Plann. Inference, 34:89–105, 1993.

[337] A. de Médicis and P. Leroux. Generalized Stirling numbers, convolution formulae
and p, q-analogues. Can. J. Math., 47:474–499, 1995.

[338] M.-P. Delest and G. Viennot. Algebraic languages and polyominoes enumeration.
Theor. Comput. Sci., 34:169–206, 1984.

[339] G. Della Riccia. Riordan arrays, Sheffer sequences and “orthogonal” polynomials.
J. Integer Seq., 11:08.5.3, 2008.

[340] E.E. Demidov, Y.I. Manin, E.E. Mukhin, and D.V. Zhdanovich. Non-standard quan-
tum deformations of GL(n) and constant solutions of the Yang–Baxter equation.
Prog. Theor. Phys. Suppl., 102:203–218, 1990.

[341] B. Derrida, M.R. Evans, V. Hakim, and V. Pasquier. Exact solution of a 1D asym-
metric exclusion model using a matrix formulation. J. Phys. A: Math. Gen., 26:1493–
1517, 1993.

[342] S.E. Despeaux. “Very full of symbols”: Duncan F. Gregory, the calculus of oper-
ations, and the Cambridge Mathematical Journal. In Episodes in the History of
Modern Algebra (1800–1950), J.J. Gray and K.H.Parshall (Eds.). American Mathe-
matical Society, 2007.

[343] A. Di Bucchianico and D.E. Loeb. Operator expansion in the derivative and multi-
plication by x. Integral Transforms Spec. Funct., 4:49–68, 1996.

[344] R. Dı́az and E. Pariguan. Symmetric quantum Weyl algebras. Ann. Math. Blaise
Pascal, 11:187–203, 2004.

[345] R. Dı́az and E. Pariguan. Quantum symmetric functions. Commun Algebra, 33:1947–
1978, 2005.



Bibliography 437

[346] R. Dı́az and E. Pariguan. On the q-meromorphic Weyl algebra. São Paulo J. Math.
Sci., 3:281–296, 2009.

[347] R. Dı́az and E. Pariguan. Feynman–Jackson integrals. J. Nonlinear Math. Phys.,
13:365–376, 206.

[348] I.H. Dimovski and V.Z. Hristov. Nonlocal operational calculi for Dunkl operators.
SIGMA, Symmetry Integrability Geom. Methods Appl., 5:030, 2009.

[349] P.A.M. Dirac. The fundamental equations of quantum mechanics. Proc. Roy. Soc.
Lond. (A), 109:642–653, 1925.

[350] P.A.M. Dirac. On quantum algebra. Math. Proc. Camb. Philos. Soc., 23:412–418,
1926.

[351] P.A.M. Dirac. Quantum mechanics and a preliminary investigation of the hydrogen
atom. Proc. Roy. Soc. Lond. (A), 110:561–579, 1926.

[352] P.A.M. Dirac. The Principles of Quantum Mechanics. Oxford: Clarendon Press,
1958.
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[525] H. Hadwiger. Über eine Formel mit einem speziellen Differentialoperator. Comment.
Math. Helv., 15:353–357, 1943.

[526] J. Haglund. q-rook polynomials and matrices over finite fields. Adv. Appl. Math.,
20:450–487, 1998.

[527] A. Hamdi and J. Zeng. Orthogonal polynomials and operator orderings. J. Math.
Phys., 51:043506, 2010.

[528] H. Han and S. Seo. Combinatorial proofs of inverse relations and log-concavity for
Bessel numbers. Eur. J. Comb., 29:1544–1554, 2008.

[529] R.X.J. Hao, L.X.W. Wang, and H.R.L. Yang. Context-free grammars for triangular
arrays. Acta Math. Sin., Engl. Ser., 31:445–455, 2015.

[530] C.J. Hargreave. On the solution of linear differential equations. Philos. Trans. R.
Soc. Lond., 138:31–54, 1848.

[531] T. Harriot. De numeris triangularibus et inde de progressionibus arithmeticis, Mag-
isteria magna. reproduced in: [68], 1618.

[532] T. Hashimoto. Generating function for GLn-invariant differential operators in the
skew Capelli identity. Lett. Math. Phys., 93:157–168, 2010.

[533] T. Hayashi. Q-analogues of Clifford and Weyl algebras – spinor and oscillator rep-
resentations of quantum enveloping algebras. Commun. Math. Phys., 127:129–144,
1990.

[534] T.-X. He. Generalized Stirling numbers and generalized Stirling functions. Preprint,
arXiv:1106.5251v1 [math.CO].

[535] T.-X. He. A symbolic operator approach to power series transformation-expansion
formulas. J. Integer Seq., 11:08.2.7, 2008.

[536] T.-X. He. A unified approach to generalized Stirling functions. J. Math. Res. Appl.,
32:631–643, 2012.

[537] T.-X. He. Expression and computation of generalized Stirling numbers. J. Comb.
Math. Comb. Comput., 86:239–268, 2013.



Bibliography 447

[538] T.-X. He, L.C. Hsu, and P.J.-S. Shiue. Symbolization of generating functions; an
application of the Mullin–Rota theory of binomial enumeration. Comput. Math.
Appl., 54:664–678, 2005.

[539] T.-X. He, L.C. Hsu, and P.J.-S. Shiue. The Sheffer group and the Riordan group.
Discrete Appl. Math., 155:1895–1909, 2007.

[540] T.-X. He, L.C. Hsu, and P.J.-S. Shiue. A symbolic operator approach to several
summation formulas for power series. II. Discrete Math., 308:3427–3440, 2008.

[541] T.-X. He, L.C. Hsu, P.J.-S. Shiue, and D.C. Torney. A symbolic operator approach
to several summation formulas for power series. J. Comput. Appl. Math., 177:17–33,
2005.

[542] T.-X. He, L.C. Hsu, and D. Yin. A pair of operator summation formulas and their
applications. Comput. Math. Appl., 58:1340–1348, 2009.

[543] H. Heffner and W.H. Louisell. Transformation having applications in quantum me-
chanics. J. Math. Phys., 6:474–478, 1965.

[544] A.S. Hegazi and M. Mansour. Some special functions of noncommuting variables.
Int. J. Theor. Phys., 41:1815–1825, 2002.
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identities, and generalized Stirling numbers. J. Math. Sci., 127:2073–2081, 2005.

[744] A. Lundervold and H. Munthe-Kaas. On algebraic structures of numerical integration
on vector spaces and manifolds. Preprint, arXiv:1112.4465v2 [math.NA].

[745] A. Lundervold and H. Munthe-Kaas. Hopf algebras of formal diffeomorphisms and
numerical integration on manifolds. Contemp. Math., 539:295–324, 2011.

[746] S.L. Luo. Wick ordering for q-Heisenberg algebra. Phys. Lett. A, 234:159–162, 1997.

[747] L. Ma, Z. Tang, and Y.D. Zhang. The q-deformed normal-ordered product. Nuovo
Cimento B, 108:1075–1080, 1993.

[748] S.-M. Ma, T. Mansour, and M. Schork. Normal ordering form and the extensions of
the Stirling grammar. Russ. J. Math. Phys., 21:242–255, 2014.

[749] A.J. Macfarlane. On q-analogues of the quantum harmonic oscillator and the quan-
tum group SU(2)q. J. Phys. A: Math. Gen., 22:4581–4588, 1989.



458 Bibliography

[750] G.W. Mackey. The Mathematical Foundations of Quantum Mechanics. Dover Pub-
lications, 1980.

[751] G.W. Mackey. The Scope and History of Commutative and Noncommutative Har-
monic Analysis. American Mathematical Society, 1992.

[752] P.A. MacMahon. Combinatory Analysis. Vol. I. Cambridge University Press, 1915.

[753] P.A. MacMahon. Combinatory Analysis. Vol. II. Cambridge University Press, 1916.

[754] S. Majid. Free braided differential calculus, braided binomial theorem, and the
braided exponential map. J. Math. Phys., 34:4843–4856, 1993.

[755] L. Mandel. Physical significance of operators in quantum optics. Phys. Rev., 136
B:1221–1224, 1964.

[756] L. Mandel. Configuration-space photon number operators in quantum optics. Phys.
Rev., 144:1071–1077, 1966.

[757] M.M. Mangontarum, A.P. Macodi-Ringia, and N.S. Abdulcarim. The translated
Dowling polynomials and numbers. Int. Sch. Res. Not., Discrete Math., 2014:678408,
2014.

[758] Y.I. Manin. Topics in Noncommutative Geometry. Princeton University Press, 1991.

[759] Y.I. Manin. Gauge Field Theory and Complex Geometry. Springer, 1997.

[760] Y.I. Manin and A.O. Radul. A supersymmetric extension of the Kadomtsev–
Petviashvili hierarchy. Commun. Math. Phys., 98:65–77, 1985.

[761] T. Mansour. Combinatorics of Set Partitions. CRC Press, 2012.

[762] T. Mansour, S. Mulay, and M. Shattuck. A general two-term recurrence and its
solution. Eur. J. Comb., 33:20–26, 2012.

[763] T. Mansour and M. Schork. On q-deformed generalized Touchard polynomials.
Preprint 2013, in press: Indag. Math.

[764] T. Mansour and M. Schork. On the normal ordering of multi-mode boson operators.
Russ. J. Math. Phys., 15:77–88, 2008.

[765] T. Mansour and M. Schork. The commutation relation xy = qyx + hf(y) and
Newton’s binomial formula. Ramanujan J., 25:405–445, 2011.

[766] T. Mansour and M. Schork. Generalized Bell numbers and algebraic differential
equations. PU.M.A., Pure Math. Appl., 23:131–142, 2012.

[767] T. Mansour and M. Schork. The generalized Touchard polynomials revisited. Appl.
Math. Comp., 219:9978–9991, 2013.

[768] T. Mansour, M. Schork, and S. Severini. A generalization of boson normal ordering.
Phys. Lett. A, 364:214–220, 2007.

[769] T. Mansour, M. Schork, and S. Severini. Wick’s theorem for q-deformed boson
operators. J. Phys. A: Math. Theor., 40:8393–8401, 2007.

[770] T. Mansour, M. Schork, and S. Severini. Noncrossing normal ordering for functions
of boson operators. Int. J. Theor. Phys., 47:832–849, 2008.



Bibliography 459

[771] T. Mansour, M. Schork, and M. Shattuck. On a new family of generalized Stirling
and Bell numbers. Electron. J. Comb., 18:P77, 2011.

[772] T. Mansour, M. Schork, and M. Shattuck. The generalized Stirling and Bell numbers
revisited. J. Integer Seq., 15:12.8.3., 2012.

[773] T. Mansour, M. Schork, and M. Shattuck. On the Stirling numbers associated with
the meromorphic Weyl algebra. Appl. Math. Lett., 25:1767–1771, 2012.

[774] T. Mansour and M. Shattuck. A combinatorial approach to a general two-term
recurrence. Discrete Appl. Math., 161:2084–2094, 2013.

[775] J.H. Marburger. Conditions for the existence of closed solutions by the normal
ordering method. J. Math. Phys., 7:829–832, 1966.

[776] J.H. Marburger. Relation of normal-ordering methods to linked diagrams. Phys.
Rev., 158:1557–1560, 1967.

[777] W. Marcinek. On commutation relations for quons. Rep. Math. Phys., 41:155–172,
1998.

[778] W. Marcinek and R. Ralowski. On Wick algebras with braid relations. J. Math.
Phys., 36:2803–2812, 1995.

[779] V.P. Maslov. Operational Methods. Mir Publishers, 1976.

[780] V.P. Maslov. Application of the method of ordered operators to obtain exact solu-
tions. Theor. Math. Phys., 33:960–976, 1978.

[781] V.P. Maslov and V.G. Danilov. Quasi-invertibility of functions of ordered operators
in the theory of pseudodifferential equations. J. Sov. Math., 7:695–795, 1977.

[782] V.P. Maslov and V.E. Nazaikinskii. Algebras with general commutation relations
and their applications. I. Pseudodifferential equations with increasing coefficients. J.
Sov. Math., 15:167–273, 1981.

[783] I.W. Mayes and J.S. Dowker. Hamiltonian orderings and functional integrals. J.
Math. Phys., 14:434–439, 1973.

[784] J. McCammond. Noncrossing partitions in surprising locations. Am. Math. Mon.,
7:598–610, 2006.

[785] J.J. McCoy and L.N. Frazer. Pseudodifferential operators, operator orderings, march-
ing algorithms and path integrals for one-way equations. Wave Motion, 9:413–427,
1987.

[786] N.H. McCoy. On commutation formulas in the algebra of quantum mechanics. Trans.
Amer. Math. Soc., 31:793–806, 1929.

[787] N.H. McCoy. On commutation rules in the algebra of quantum mechanics. Proc.
Natl. Acad. Sci. USA, 15:200–202, 1929.

[788] N.H. McCoy. On some general commutation formulas. Am. J. Math., 53:710–720,
1931.

[789] N.H. McCoy. Certain expansions in the algebra of quantum mechanics. Proc. Edinb.
Math. Soc., II. Ser., 3:118–127, 1932.



460 Bibliography

[790] N.H. McCoy. On the function in quantum mechanics which corresponds to a given
function in classical mechanics. Proc. Natl. Acad. Sci. USA, 18:674–676, 1932.

[791] N.H. McCoy. Expansions of certain differential operators. Tôhoku Math. J., 39:181–
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[822] V.V. Mikhăılov. Ordering of some boson operator functions. J. Phys. A: Math. Gen.,
16:3817–3827, 1983.
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[965] L. Schläfli. Ergänzung der Abhandlung über die Entwicklung des Products 1(1 +
x)(1+2x)(1+3x) . . . (1+(n−1)x) = Πn(x) in Band XLIII dieses Journals. J. Reine
Angew. Math., 67:179–182, 1867.

[966] O. Schlömilch. Allgemeine Sätze für eine Theorie der höheren Differential-
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arXiv:1412.1110v1 [math.CO] to appear: Filomat.

[997] M. Shattuck. Generalized r-Lah numbers. Preprint, arXiv:1412.8721v1 [math.CO].

[998] M. Shattuck. Bijective proofs of parity theorems for partition statistics. J. Integer
Seq., 8:05.1.5, 2005.

[999] M. Shattuck. Classical q-Numbers: A Study of the Case q = −1. Lambert Academic
Publishing, 2010.

[1000] M. Shattuck. On some relations satisfied by the p, q-binomial coefficient. Šiauliai
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Comb., 39:B39c, 1997.



472 Bibliography

[1026] M.Z. Spivey. A generalized recurrence for Bell numbers. J. Integer Seq., 11:08.2.5,
2008.

[1027] M.Z. Spivey. On solutions to a general combinatorial recurrence. J. Integer Seq.,
14:11.9.7, 2011.

[1028] M. Springborg. Phase space functions and correspondence rules. J. Phys. A: Math.
Gen., 16:535–542, 1983.

[1029] R. Sprugnoli. Riordan arrays and combinatorial sums. Discrete Math., 132:267–290,
1994.

[1030] R. Sridhar and R. Jagannathan. On the q-analogues of the Zassenhaus formula for
disentangling exponential operators. J. Comput. Appl. Math., 160:297–305, 2003.

[1031] H.M. Srivastava and J.P. Singhal. A class of polynomials defined by generalized
Rodrigues’ formula. Ann. Mat. Pura Appl., IV. Ser., 90:75–85, 1971.

[1032] J.T. Stafford and M. Van den Bergh. Noncommutative curves and noncommutative
surfaces. Bull. Am. Math. Soc., New Ser., 38:171–216, 2001.

[1033] J.T. Stafford and J.J. Zhang. Examples in non-commutative projective geometry.
Math. Proc. Camb. Philos. Soc., 116:415–433, 1994.

[1034] S. Stanciu. The energy operator for infinite statistics. Commun. Math. Phys.,
147:211–216, 1992.

[1035] R.P. Stanley. Differential posets. J. Amer. Math. Soc., 1:919–961, 1988.

[1036] R.P. Stanley. Enumerative Combinatorics. Vol. 1. Cambridge University Press, 1997.

[1037] R.P. Stanley. Enumerative Combinatorics. Vol. 2. Cambridge University Press, 1999.

[1038] J.F. Steffensen. Interpolation. Chelsea Publishing Company, 1950.

[1039] J.R. Stembridge. Some hidden relations involving the ten symmetry classes of plane
partitions. J. Comb. Theory, Ser. A, 68:372–409, 1994.

[1040] J. Stirling. Methodus differentialis: sive Tractatus de Summatione et Interpolatione
Serierum Inifinitarum. London, 1730.
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