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专题: 高能重离子碰撞过程的自旋与手征效应

费米子的相对论自旋输运理论*

高建华 1)†    盛欣力 2)    王群 3)    庄鹏飞 4)

1) (山东大学空间科学与物理学院, 山东省光学天文与日地空间环境重点实验室, 威海　264209)

2) (INFN-Firenze, Via Giovanni Sansone, 1, 50019 Sesto Fiorentino FI, Italy)

3) (中国科学技术大学近代物理系, 合肥　230026)

4) (清华大学物理系, 北京　100084)

(2022 年 12 月 31日收到; 2023 年 3 月 25日收到修改稿)

Λ在重离子碰撞中 , 自旋轨道耦合可以导致整体极化现象 . 自从 2017年 , STAR工作中发现超子   在

Au+Au碰撞中的整体极化, 整体极化效应引起了学术界的广泛关注. 整体极化效应的微观产生机制可以利

用粒子之间非定域的散射过程来描述：在重离子碰撞中产生了热密物质, 热密物质中的粒子之间通过非定域

的碰撞过程实现了轨道角动量向自旋角动量的转换, 从而导致散射后的粒子自旋极化. 为了描述这一微观过

程, 在相空间描述自旋轨道耦合更加方便, 而自旋轨道耦合又是一种量子效应, 所以基于协变维格纳函数的

量子动理学理论将是描述整体极化现象的有力工具. 本文介绍了基于维格纳函数的量子动理学理论以及自

旋输运理论. 近期自旋输运理论的发展为以后数值模拟自旋极化现象的时空演化提供了理论基础.

关键词：维格纳函数, 量子输运, 自旋输运理论
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 1   引　言

Λ

在相对论重离子非对心碰撞中, 两个原子核在

碰撞平面的法向存在巨大的初始轨道角动量, 在碰

撞形成的热密物质中初始轨道角动量通过物质粒

子的自旋轨道相互作用转变为末态粒子的自旋角

动量, 这种自旋极化效应被称为整体极化效应 [1],

它是相对于碰撞平面的, 因此有别于在质子质子碰

撞中的自旋极化效应. 2017年 STAR (solenoidal

tracker at RHIC)合作组在重离子碰撞实验中观

察到了  超子的整体极化效应 [2]. 自从 STAR实验

观测发表之后, 整体极化效应引起了学术界的广泛

关注. 描述整体极化效应的理论和现象学模型有很

多, 在理论方面, 有粒子碰撞自旋轨道耦合理论 [3–6]、

量子统计理论 [7–10]、基于量子动理学的自旋输运理

论 [11–21]、自旋流体力学理论 [22–26] 等; 在现象学模

型方面, 主要有输运模型和流体力学模型等 (见综

述文献 [27−30]). 本文将介绍自旋为 1/2的有质量

费米子的自旋输运理论及其最新进展, 它基于以维

格纳函数为基本构造单元的量子动理学 (见综述

文献 [31−33]).

本文首先介绍无碰撞项的量子动理学方程, 包

括协变维格纳函数方法和等时维格纳函数方法, 然

后介绍有碰撞项的自旋动理学方程 , 包括基于

Kadanoff-Baym方程的自旋动理学、基于量子场

论方法的自旋动理学以及其他方法.

 2   无碰撞项的量子动理学方程

近年来, 为了描述相对论重离子碰撞中可能存

在的各种手征效应, 比如手征磁效应、手征涡旋效
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应、手征分离效应等, 人们建立并发展了手征动理

学理论 [34–45] 并逐步实现了数值模拟计算 [46–53], 这

一理论被证明是可以描述手征量子效应的成功理论.

但是手征动理学理论只适用于无质量的费米

子, 相对论重离子碰撞中夸克的质量其实并不是

零, 只有在高能情形下可以近似为零. 尤其最近几

年在 RHIC (relativistic  heavy ion collider)实验

中发现在较低能量情形下超子的整体极化现象更

明显 [2]. 在当前情形下, 超越手征极限, 发展一个有

限质量情形下的量子动理学理论成为必要, 成为了

近年来这一方向的热点理论问题, 并取得了很大的

发展, 这一点在综述文章 [29−33]已有介绍和总

结. 本文将总结一下最近几年在这方面的理论进

展, 但主要集中在维格纳函数方法推导动理学方

程的工作, 并且都采取了背景场近似而忽略了碰撞

项 [12–16]. 希望通过这些总结, 读者能够很清晰地看

出维格纳函数方法的独特性、以及各种不同结果的

相似性和差异性, 从而可以对这一方向有一个大致

的了解.

 2.1    协变维格纳函数方法

4× 4

维格纳函数是维格纳首先在 1932年基于量子

力学引入的、用于描述微观粒子相空间运动的分布

函数 [54]. 它与经典相空间分布函数的差别是维格

纳函数不是正定的, 对于单粒子运动, 它由波函数

的两点关联函数确定, 是与波函数等效的量子力学

描述. 自从 20世纪八十年代, 为了描述相对论重

离子碰撞产生的多粒子系统的量子输运过程, 人们

开始发展基于量子场论的协变维格纳函数方法 [55–57].

在量子场论中首先定义协变的维格纳算符, 对于狄

拉克费米子体系, 它是双线性狄拉克场, 在旋量空

间是  的矩阵算符: 

Ŵαβ(x, p) =

∫
d4y
(2π)4

e−ip·yψ̄β (x+)

× U (x+, x−)ψα (x−) , (1)

U x− ≡ x− y/2 x+ ≡ x+ y/2

y y → −y x+ ↔ x−

(2π)4

ρ

其中  代表连接两点  和 

的直线规范链, 它与施加给费米子系统的外电磁场

有关. 在上面的维格纳算符的定义式中, 可以改变

 的符号, 即   , 则   , 这样即可得到

完全等价的维格纳函数 . 另外 ,  (1)式中的因子

 也是一种约定, 在有的文献中是没有这个因

子的 [21], 见第 3.1节中的维格纳函数定义式 (28).

维格纳函数就定义为维格纳算符在密度矩阵  下的

系综平均值: 

W (x, p) = Tr
[
ρŴ (x, p)

]
, (2)

4× 4

本节将要介绍的工作 [12,13,15,16] 都是基于这些定义

开展的. 取系综平均后, 维格纳函数就只是在旋量

空间   的普通矩阵了, 可以把它在 Clifford代

数下进行展开: 

W (x, p) =
1

4

[
F + iγ5P + γµVµ + γ5γµAµ

+
1

2
σµνSµν

]
, (3)

F P Vµ

Aµ

Sµν

其中   代表标量分量,    代表赝标量分量,    代

表矢量分量,    代表轴矢量 (即自旋矢量)分量,

而   代表反对称 (极化)张量分量, 它们都是相

空间的分布函数. 这些分量不全是独立的, 根据研

究的物理问题, 可以选择不同的分量作为独立变量.

F Aµ

ℏ F Aµ

文献 [12]中选择  和  作为独立分量, 在按

照  的半经典展开的一阶近似下,   和  可以表

示为 

F =δ
(
p2−m2

)
F+ ℏ

m
F̃µνp

µAνδ′
(
p2−m2

)
, (4)

 

Aµ=δ
(
p2−m2

)
Aµ+

ℏ
m
pν F̃µνFδ′

(
p2−m2

)
, (5)

F̃µν = (1/2)ϵµναβF
αβ Fαβ

F Aµ

δ

其中   是电磁场场强张量  

的对偶张量, 新引入的分布函数  和  已经把奇

异在壳  函数扣除掉剩下的正常分布函数了. 这些

分布函数满足协变的维格纳方程: 

p · ∇
[
Fδ
(
p2 −m2

)
+

ℏ
m
F̃µνp

µAνδ′
(
p2 −m2

)]
=

ℏ
2m

(∂xλF̃µν)∂
λ
p

[
pµAνδ

(
p2 −m2

)]
, (6)

 

p · ∇
[
Aµδ

(
p2 −m2

)
+

ℏ
m
pν F̃µνFδ′

(
p2 −m2

)]
= Fµν

[
Aνδ

(
p2 −m2

)
+

ℏ
m
pλF̃

νλFδ′
(
p2 −m2

)]
+

ℏ
2m

(∂xλF̃µν)∂
λ
p

[
pνFδ

(
p2 −m2

)]
. (7)

Aµ

pµAµ δ
(
p2 −m2

)
= 0

∇µ ≡ ∂µx − Fµν∂pν

δ

p0 = (0,∞)

除 此 之 外 ,     还 需 要 满 足 一 个 限 制 方 程

 . 在上面的公式中定义了算

符   . 这些方程中包含奇异的狄拉

克   函数 , 为了去除这些奇异性 , 把方程对动量

的  分量积分, 得到正能部分的三维动量

方程: 
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(∇t + v · ∇∇∇)F

= − ℏ
2mEp

[
(B +E × v)(v · ∇∇∇+ Ep

←−
∇∇∇x · ∇∇∇p)

− (B · v)(v · ∇∇∇+ Ep
←−
∇∇∇x · ∇∇∇p)v

]
· AAA, (8)

 

(∇t + v · ∇∇∇)AAA

= B×AAA−E(v · AAA)− ℏ
2mEp

× (B +E × v)(v · ∇∇∇+ Ep
←−
∇∇∇x · ∇∇∇p)F , (9)

v = p/Ep Ep =
√
p2 +m2

∇t = ∂t +E · ∇∇∇p ∇∇∇ =∇∇∇x +B ×∇∇∇p

∇∇∇x

其中定义速度矢量  , 能量 

以及算符  和  . 在

算符  上的左向箭头代表算符只作用在左方的电

磁场上. 三维动量的动理学方程更适合数值计算.

V

Σ̄µν

文献 [13]也是从有质量费米子的协变维格纳

方程出发推导出维格纳函数各分量满足的量子动

理学方程, 他们选择了标量分布函数   和反对称

(极化)张量分布函数  作为独立变量:
 

F =δ
(
p2−m2

)
mV − ℏ

2
FµνΣ̄

µνδ′
(
p2−m2

)
, (10)

 

Sµν=δ
(
p2−m2

)
mΣ̄µν−ℏFµνV δ

′ (p2−m2
)
, (11)

这些分布函数满足演化方程: 

0 = δ(p2 −m2)

[
p · ∇V +

ℏ
4
(∂αxF

µν)∂pαΣ̄µν

]
− ℏ

2
δ′(p2 −m2)Fαβ p · ∇Σ̄αβ ,

0 =δ(p2 −m2)

[
p · ∇Σ̄µν−Fα

[µΣ̄ν]α +
ℏ
2
(∂αxFµν)∂

α
p V

]
− ℏδ′(p2 −m2)Fµν p · ∇V, (12)

Σ̄µν以及关于  的约束方程
 

pνΣ̄µν δ(p
2 −m2) =

1

2
ℏδ(p2 −m2)∇(0)

µ V . (13)

文献 [13]只给出了未积分的协变动理学方程, 但是

特色之处是发现了这些方程在如下变化下是保持

不变的: 

Σ̄µν → ̂̄Σµν = Σ̄µν + (p2 −m2)δΣ̄µν ,

V → V̂ = V − ℏ
2
FµνδΣ̄µν . (14)

δ利用这些变换, 方程中的  函数的导数项可以

省略, 从而大大简化了动理学方程的最后结果.

V µ A µ

V µ A µ

文献 [15]从   和   出发, 利用维格纳方程

和自由量子场论的结果, 可以得到   和   的一

般形式: 

V µ =2πpµfV δ(p2 −m2) + 2πF̃µνaνδ
′(p2 −m2)fA

+ 2πδ(p2 −m2)Gµ, (15)
 

A µ =2πaµfAδ(p2 −m2) + 2πF̃µνpνδ
′(p2 −m2)fV

+ 2πδ(p2 −m2)Hµ, (16)

Gµ Hµ Sµν
m(n)其中  ,   ,    定义为

 

Gµ =
ϵµνρσnν
2p · n

[∇ρ(aσfA) + FρσfA] ,

Hµ =Sµν
m(n)∇νfV , S

µν
m(n) =

ϵµναβpαnβ
2a · n

∇νfV . (17)

nµ在这里四矢量  对应于在一个局域参考系的四维

速度矢量, 也可认为是自旋量子化的方向. 最后文

献 [15]得到一个标量方程:
 

0 =δ(p2 −m2)

[
p · ∇fV + ℏ

(EµS
µν
a(n)

p · n
∆ν

+ Sµν
a(n)(∂µFρν)∂

ρ
p +

(
∂µS

µν
a(n)

)
∇ν

)
fA

]

− δ′(p2 −m2)

p · n
Bµ2µν ã

ν +
ℏ
2
δ(p2 −m2)ϵµναβ

×

[
∇µ

(
nβ
p · n

)[
(∆νaα) + Fνα

]
+

nβ
p · n

(
(∂µFρν)

× (∂ρpaα)+
[(
∇νaα

)
−Fρν

(
∂ρpaα

)]
∇µ

)]
fA, (18)

Eµ = nνFµν Bµ =
1

2
ϵµναβnνFαβ Sµν

a(n) =

ϵµναβaαnβ/(2p · n)

其中 ,    ,    ,   

 是自旋张量. 文献 [15]得到的另

一个方程是轴矢量方程:
 

0 =δ(p2 −m2)
(
p ·∆(aµfA) + F νµaνfA

)
+ ℏpµ

×

{
δ(p2 −m2)

[
(∂αS

αν
m(n))∇ν +

Sαν
m(n)Eα∆ν

p · n+m

+ Sρν
m(n)(∂ρFβν)∂

β
p

]
−δ′(p2 −m2)

p ·B
p · n+m

p · ∇

}

× fV + ℏm
{
δ(p2 −m2)ϵµναβ

2(p · n+m)

[
m(∂αnβ)∇ν

+ (mnβ+ pβ)

((
Eα− ∂α(p · n)

)
p · n+m

∇ν − (∂νFρα)∂
ρ
p

)]

+δ′(p2 −m2)
(mnβ + pβ)F̃

µβ

p · n+m
p · ∇

}
fV . (19)

文献 [15]的工作中分析了如何从有限质量到零质
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量的平滑过渡问题.

U(1)

V µ A µ

文献 [16]发展了弯曲时空中的有质量费米子

的量子动理学方程, 这些量子动理学方程保证了在

 规范变换、定域洛伦兹变换和一般微分同胚映

射下都是协变的, 从而保证了与广义相对论基本原

理相一致. 在此情形下, 文献 [16]给出  和  的

具体形式: 

V µ = 4π
[
δ(p2 −m2)

(
pµf +

ℏ
2p · n

ϵµνρσnν∆ρĀσ

)

+ℏδ′(p2 −m2)F̃µν

(
Ā − p · A

p · n
nν

)]
,

A µ = 4π
[
δ(p2 −m2)mθµfA + ℏδ′(p2 −m2)F̃µνpνf

]
.

(20)

而最终的量子动理学方程由四个独立的演化方程

组成: 

0 =δ(p2 −m2 ∓ Σαβ
S Fαβ)

×
{[
pµ∆µ ±

ℏ
2
Σµν

S

(
DρFµν − pλRλ

ρµν

)
∂ρp

]
f±

+
ℏ
2
fA
(
DρFµν − pλRλ

ρµν

)
∂ρpΣ

µν
S

}
, (21)

 

0 =δ(p2 −m2)

[
fAp ·∆θµ − fAFµνθν + θµp ·∆fA

− ℏ
4m

ϵµνραpα
(
DσFνρ − pλRλ

σνρ

)
∂σp f

]
. (22)

∆µ = Dµ + Γλ
µνpλ∂

ν
p − Fµν∂

ν
p

Dµ nµ

n2 = 1 p · n ̸=
0 θµ θµθµ = 0 pµθµ = 0

f± = (f ± fA)/2 Σµν
S = ϵµνρσθρpσ/2m

Rρ
σµν

在上面的公式中   , 其

中  是表征一般坐标变换下的协变导数;   是类

时矢量, 满足归一化条件  和横向条件 

 ;   是类光横向矢量, 满足  和  ; 分

布函数   以及   ;

公式中的  是黎曼张量. 文献 [16]也讨论了如

何从有质量动理学方程过渡到无质量情形下的手

征动理学方程.

 2.2    等时维格纳函数方法

p0

等时维格纳函数 [58,59] 是把协变维格纳函数的

 积分掉得到的: 

W(x,p) =

∫
dp0W (x, p)γ0. (23)

p0

相应地也可以得到等时维格纳函数的量子动理学

方程. 把  积分掉的主要优点是使动理论方程变成

可以求解的初始问题, 且不论粒子是否处于质壳

上. 等时维格纳函数可以分解为 [14]
 

W =
1

4
[f0 + γ5f1 − iγ0γ5f2 + γ0f3 + γ5γ0γ · g0

+γ0γ · g1 − iγ · g2 − γ5γ · g3] . (24)

f0 g0如果选择费米子数密度  和自旋流  作为独立变

量, 则它们满足的动理学方程为  (
∇t ±

p

Ep
· ∇∇∇
)
f±0

=
ℏE
2E2

p

· ∇∇∇× g±
0 ∓

ℏ
2E3

p

B · (p · ∇∇∇)g±
0

+
ℏB × p

E4
p

·E × g±
0 ,

(25)

  (
∇t ±

p

Ep
· ∇∇∇
)
g±
0

=
1

E2
p

[
p×

(
E × g±

0

)
∓ EpB× g±

0

]
∓ ℏ

(
B

2E3
p

± E × p

2E4
p

)
p · ∇∇∇f±0

∓ ℏ
(
(p ·E)(E × p)

E5
p

± p× (B ×E)

2E4
p

)
f±0 , (26)

+

g3

g0

其中上标“  ”和“–”分别代表粒子和反粒子. 作者

还选择了另一个独立的磁矩分布函数  来代替自

旋分布函数  , 其满足的演化方程为 

p ·
(
∇t ±

p

Ep
· ∇∇∇
)
g±
3

= − p2

E2
p

(
E ± p

Ep
×B

)
· g±

3 ∓
m2

E3
p

p · (B × g±
3 )

+
m

2E4
p

(p ·B)(p · ∇∇∇)f±0 ∓
m

2E3
p

p · (E ×∇∇∇)f±0

± 3m

2E5
p

(p ·B)(p ·E)f±0 ±
mp2

2E5
p

(B ·E)f±0 . (27)

文献 [14]还分析了质量效应对手征动理学方程的

修正, 发现在质量展开的一阶项, 质量修正更像附

加的碰撞项, 对手征动理学方程的结构并没有影响.

近来还有一些工作研究了从有限质量量子动

理学方程到手征动理学方程的平滑过渡问题 [17,60,61],

在最近的工作 [61] 中, 研究者利用维格纳函数方法

推导出了推广的手征动理学方程, 实现了量子动理

学方程从有质量到无质量的平滑过渡.
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 3   有碰撞项的自旋动理学方程

在相对论重离子非对心碰撞中, 两个原子核在

碰撞平面的法向存在巨大的初始轨道角动量, 在碰

撞形成的热密物质中初始轨道角动量通过物质粒

子的自旋轨道相互作用转变为末态粒子的自旋角

动量, 从微观上看, 这一过程是通过粒子间的非定

域碰撞实现的 [1,19−21,62]. 本节将简要介绍关于自旋

为 1/2的费米子系统的带碰撞项的自旋动理学的

理论进展.

 3.1    基于 Kadanoff-Baym 方程的自旋动
理学

为了研究自旋为 1/2的费米子系统, 考虑其定

义在闭时路径上的格林函数 [63,64]: 

Gαβ(x, p)≡
∫

d4yeip·y
⟨
TCψα

(
x+

y

2

)
ψβ

(
x− y

2

)⟩
≡

(
GF

αβ(x, p)G
<
αβ(x, p)

G>
αβ(x, p)G

F̄
αβ(x, p)

)
,

(28)

TC

t0

t→ +∞ t0

x± y/2

2× 2

x+ y/2

x− y/2
ψ ψ

G<(x, p)

其中  表示按照算符在闭时路径上的顺序进行排

序. 该路径从某初始时刻  开始, 沿时间方向到达

 , 然后返回   时刻. 该路径的上半分支的

方向与时间方向一致, 下半分支的方向则相反. 因

此根据   在路径上的位置, 可以将上述格林

函数表示为   的矩阵形式, 其中第一行和第二

行分别对应于  处于路径的顺时和逆时部分,

第一列和第二列分别对应于  处于路径的顺

时和逆时部分. 对算符  和  之间的相对位置做傅

里叶变换, 即得到相空间中的两点格林函数, 也叫

作维格纳函数. 从闭时路径上的戴森-施温格方程

出发, 可以得到格林函数满足的 Kadanoff-Baym

方程, 其中  满足以下方程:  [
γ ·
(
p+

iℏ
2
∂

)
−m

]
G<(x, p)

= − iℏ
2

[
Σ<(x, p)G>(x, p)−Σ>(x, p)G<(x, p)

]
− ℏ2

4

[ {
Σ<(x, p), G>(x, p)

}
PB

−
{
Σ>(x, p), G<(x, p)

}
PB

]
, (29)

Σ

{A,B}PB ≡ (∂xA) · (∂pB)− (∂pA) · (∂xB)

式中 ,    表示由于相互作用导致的自能修正 ,

 为泊松括

ℏ ℏ
号. 对方程 (30)右边的碰撞项进行关于普朗克常

数  的准经典展开, 并保留  的领头阶与次领头阶

项. 方程 (30)的共轭方程为 

G<(x, p)

[
γ ·
(
p− iℏ

2

←−
∂

)
−m

]
= − iℏ

2

[
G<(x, p)Σ>(x, p)−G>(x, p)Σ<(x, p)

]
− ℏ2

4

[ {
G<(x, p), Σ>(x, p)

}
PB

−
{
G>(x, p), Σ<(x, p)

}
PB

]
, (30)

G

Σ

其中的相互作用项可以通过交换方程 (30)中的 

和  得到.

G<† = γ0G<γ0由于维格纳函数满足   , 因此可

以用 Clifford代数的 16个生成元: 

Γa ∈
{
1, iγ5, γµ, γ5γµ, σµν =

i
2
[γµ, γν ]

}
, (31)

展开为如下形式: 

G<(x, p)=
1

4

(
F+iγ5P+γµVµ+γ5γµAµ+

1

2
σµνSµν

)
,

(32)

F P Vµ Aµ Sµν

Tr(ΓaG
<)

Vµ
Aµ

γ · (p+ iℏ∂/2) +m

Γa

展开系数   ,    ,    ,    , 以及   都是定义在相

空间中的实函数, 它们分别是维格纳函数的标量、

赝标量、矢量、轴矢量和张量分量 , 可以通过

 得到. 这些维格纳函数分量都具有明显

的物理含义, 例如矢量分量   表示相空间中的粒

子数 (守恒荷)流密度, 轴矢量分量  表示相空间

中的自旋流密度 , 等等 . 文献 [21]通过将方程

(30)左乘  , 然后向 Clifford 代数

的生成元  上投影, 并分离实部与虚部, 得到了上

述分量满足的质壳条件以及玻尔兹曼方程:  (
p2 − ℏ2

4
∂2x −m2

)
Tr(ΓaG

<)

= ReTr
{
Γa

[
γ ·
(
p+

iℏ
2
∂x

)
+m

]
Icoll

}
ℏp · ∂x Tr(ΓaG

<)

= ImTr
{
Γa

[
γ ·
(
p+

iℏ
2
∂x

)
+m

]
Icoll

}
, (33)

Icoll

Icoll

Icoll

其中  代表方程 (30)右边的碰撞项. 文献 [21]通

过分析碰撞项   满足的约束, 发现在玻尔兹曼

方程中, 维格纳函数与   的离壳部分在相互作

用的领头阶恰好抵消, 这大大简化了玻尔兹曼方

程. 他们还引入了粒子的矩阵形式的自旋分布函数
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f
(+)
sr r, s = +,−  (  ), 其定义如下:

 

f (+)
sr (x, p) ≡

∫
d4q

2(2π)3
δ(p · q)e−iq·x

×
⟨
a†s

(
p− q

2

)
ar

(
p+

q

2

)⟩
. (34)

a† a

b† b f
(−)
sr

将粒子的产生与湮灭算符   和   替换为反粒子的

相应算符  和  , 即得到反粒子的自旋分布函数  .

文献 [21]还进一步假设了维格纳函数的在壳部分完

全由上述分布函数给出, 其中标量及轴矢量分量为
 

F(x, p) =− 2πℏ
m

Ep

{
δ(p0 − Ep)tr

[
f (+)(x, p)

]
+δ(p0 + Ep)tr

[
f (−)(x, p̄)− 1

]}
,

Aµ(x, p) =− 2πℏ
m

Ep

{
δ(p0 − Ep)n

µ
j (p)

× tr
[
τ T
j f

(+)(x, p)
]
+ δ(p0 + Ep)n

µ
j (p̄)

× tr
[
τ T
j f

(−)(x, p̄)
]}

, (35)

τj j = 1, 2, 3 rs

j = 1, 2, 3

nµj (p) j

其中    (  )是自旋指标   空间中的泡利

矩阵,    标记在费米子静止系中的三个基

矢方向, 其中一个基矢方向被选为自旋量子化方

向,   是沿着  方向的极化矢量:
 

nµj (p) =

(
nj · p
m

, nj +
nj · p

m(Ep +m)
p

)
, (36)

nj

n3

tr
[
f (±)(x, p)

]
tr
[
τ T
j f

(±)(x, p)
]

j

p0 > 0

这里的  是费米子或反费米子静止系中的三维基

矢量, 构成右手直角坐标系, 其中  的方向设定为

自旋量子化的方向. 依据维格纳函数的物理意义,

可以将  解释为相空间中的粒子 (守恒

荷)数密度, 将   解释为相空间中的

沿着   方向的自旋密度. 将方程 (33)与方程 (35)

结合, 并通过对  积分分离粒子部分, 即得到

粒子数密度和自旋密度的玻尔兹曼方程:
 

ℏ
Ep

p · ∂xtr
[
f (+)(x, p)

]

= − 2

∫
dp0
2πℏ

ImTr(Ioncoll)−
ℏ
m

∫
dp0
2πℏ

ReTr(γ · ∂xIoncoll),

ℏ
Ep

p · ∂xtr
[
nµj (p)τ

T
j f

(+)(x, p)
]

=
1

m

∫
dp0
2πℏ

ϵµναβpν ImTr(σαβIoncoll)

+
ℏ
m

∫
dp0
2πℏ

ReTr(γ5∂µx I
on
coll). (37)

Σ

ℏ ℏ

文献 [21]以 Nambu-Jona-Lasinio (NJL)模型的四

费米子相互作用为例, 对 2-2散射过程带来的自能

修正   进行了计算, 并给出了 (37)式中的碰撞项

在   的零阶与一阶的具体形式. 在   的一阶, 碰撞

项依赖于分布函数的梯度, 因此可以导致轨道角动

量与自旋之间的相互转化.

Σ文献 [18]对维格纳函数以及自能   均采取了

(32)式的分解, 并假设各分量的阶数如下: 

F ∼ O(ℏ0), Vµ ∼ O(ℏ0), Aµ ∼ O(ℏ),

Sµν ∼ O(ℏ), P ∼ O(ℏ2),

ΣF ∼ O(ℏ0), Σµ
V ∼ O(ℏ

0), Σµ
A ∼ O(ℏ),

Σµν
T ∼ O(ℏ), ΣP ∼ O(ℏ0). (38)

ℏ精确到  阶, 文献 [18]得到了如下方程: 

δ(p2 −m2)

{
p · ∂(aµfA) + aµpνΣ̂ν

V fA +m2Σ̂µ
AfV

−pµpνΣ̂ν
AfV +m

(
aµΣ̂SfA −

1

2
ϵµνρσpνΣ̂TρσfV

)
+ ℏ
[
pµSρν

m(n)
̂(∂ρΣV ν)fV −m

(
Sµν
m(n)

̂(∂νΣS)fV

+
ϵµνρσ(pρ +mnρ)

2(q · n+m)
̂(∂σΣV ν)fV

)]}
= 0,

(39)

Sµν
m(n) ≡ ϵ

µναβpαnβ/[2(q · n+m)] nµ

n2 = 1 fV

fA aµ

其中   ,    为任意

的类时单位矢量, 即满足  ,   为粒子数分布

函数,   为轴荷分布函数,   为局域极化矢量. 文

献 [18]还给出了有电磁场时的自旋演化方程, 并且

确认了其理论与手征动理学的一致性. 作为该理论

在夸克胶子等离子体 (quark-gluon plasma, QGP)

中的应用, 他们还计算了领头对数阶的自旋扩散效

应及其非相对论极限. 文献 [65]采用了类似的方

法, 研究了无质量电子穿过介质时, 由于量子电动

力学 (quantum electrodynamics, QED)相互作用

导致的极化效应.

ℏ
文献 [66]同样对自能项采用了 (32)式所示的

分解, 与文献 [18]不同的是, 文献 [66]在  的任意

阶均保留了展开式的所有项, 这使得自旋密度的动

理学方程更加复杂. 文献 [66]还考虑了 NJL 模型

的的标量耦合, 计算了自能项, 并推导出了动理学

方程的精细平衡条件导致的局域热平衡的自旋密度.

 3.2    基于量子场论方法的自旋动理学

文献 [19,20]采用与 Kadanoff-Baym方程不

同的基于量子场论第一性原理的方法, 推导出了自
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旋动理学方程. 其出发点为含有相互作用修正的狄

拉克方程: 

(iℏγ · ∂ −m)ψ(x) = ℏρ(x), (40)

ρ ≡ −(1/ℏ)∂LI/∂ψ LI其中   ,    为拉氏量的相互作用

部分. 从上述狄拉克方程, 可以得到维格纳函数的

运动方程:  [
γ ·
(
p+

iℏ
2
∂

)
−m

]
Wαβ(x, p)

=

∫
d4y

(2πℏ)4
e−

i
ℏp·y

⟨
: ρα

(
x− y

2

)
ψβ

(
x+

y

2

)
:
⟩
.

(41)

γ · [p+ (iℏ/2)∂] +m将算符   作用在该方程的左边,

并分离实部与虚部, 即得到维格纳函数的玻尔兹曼

方程: 

p · ∂ Wαβ(x, p) =

i
2

∫
d4y

(2πℏ)4
e−

i
ℏp·y

⟨
:
[
ρ
(
x+

y

2

)
×(−iℏγ ·

←−
∂ +m)

]
β
ψα

(
x− y

2

)
− ψβ

(
x+

y

2

) [
(iℏγ · ∂ +m)ρ

(
x+

y

2

)]
α
:
⟩
. (42)

Cαβ

若只考虑粒子间的 2-2散射过程, 则 (42)式右边

的碰撞项 (简记为   )可以用 2-2 过程的散射矩

阵元表示为 

Cαβ =
(2πℏ)6

(2m)4

∑
r1,r2,s1,s2

∫
d4p1d4p2d4q1d4q2

× in

⟨
p1 −

q1
2
, p2 −

q2
2
; r1, r2 |Φαβ(p)| p1

+
q1
2
, p2 +

q2
2
; s1, s2

⟩
in

×
2∏

j=1

usj

(
pj +

qj
2

){
W (x, pj)δ

(4)(qj)

−iℏ
[
∂µqjδ

(4)(qj)
]
∂µW (x, pj)

}
urj

(
pj −

qj
2

)
, (43)

Φαβ(p)

f(x, p, s)

其中  可以进一步用相互作用的 t-矩阵表示 [20].

文献 [19, 20]通过扩展相空间, 引入了自旋依赖的

标量分布函数  : 

f(x, p, s) ≡ 1

2

[
F̄(x, p)− s · A(x, p)

]
≡ mδ(p2 −m2 − ℏδm2)f(x, p, s), (44)

sµ F
ℏδm2

p · ∂ f(x, p, s)

f(x, p, s)

其中  为归一的、与动量垂直的自旋方向,   为扣除

掉相互作用修正的维格纳函数的标量部分,   

为质壳修正. 将算符   作用在   上, 结合

方程 (42), 即可得到  满足的玻尔兹曼方程: 

δ(p2 −m2)p · ∂ f(x, p, s) = δ(p2 −m2)C̃on−shell[f ].
(45)

pµ该方程中的动量   都是在壳的, 因为离壳的部分

自然抵消. 方程中的碰撞项由以下表达式给出: 

C̃on−shell[f ] =∫
dΓ1dΓ2dΓ ′W̃ [f(x+∆1, p1, s1)

−f(x+∆2, p2, s2)−f(x+∆, p, s)f(x+∆′, p′, s′)]

+

∫
dΓ2dS1(p)W f(x+∆1, p, s1)f(x+∆2, p2, s2),

(46)

dS(p) ≡ δ(s · s+ 3)δ(p · s)
√
3π/
√
p2

dΓ ≡

d4pδ(p2 −m2)dS(p) ∆µ

其中, 相空间积分  ,  

 , 而方程中的空间位移   为 

∆µ ≡ − ℏ
2m(p · t̂+m)

ϵµναβpν t̂αsβ , (47)

t̂µ = (1, 0, 0, 0)

W̃ W

Φαβ(p)

pµ p′µ

∆µ

其中  为时间方向的单位矢量. (46)式

的第一项代表的碰撞过程既改变粒子的动量, 也改

变粒子的自旋; 而第二项代表的过程不改变粒子的

动量, 仅改变粒子的自旋, 是第一项在动量转移为

零时的特殊情况. 方程中的  与  分别为两个过

程对应的散射振幅, 由 (43)式中的   在两粒

子态上的期望值计算得到. 在这个计算过程中, 采

用了玻尔兹曼近似, 忽略了动量为  和  的末态

粒子的泡利阻塞 (Pauli blocking)项. 轨道角动量

与自旋之间的转换来自于方程 (46)中的非定域效

应, 即其中的位移项   . 文献 [19,20]还讨论了精

细平衡条件导出的含有自旋的局域热平衡分布, 以

及由玻尔兹曼方程得到的流体力学方程.

 3.3    其他方法

文献 [67]考虑了洛伦兹协变性的要求, 发现

由 (34)式定义的矩阵分布在洛伦兹变换下, 不仅

有自旋空间中的转动 (维格纳转动), 还有非平庸的

时空平移. 作者定义了矩阵分布 

F (x, p) ≡f(x, p) + ℏ
4(u0 · p)(u0 · p+m)

ϵµναβu0,µpν

×
{
nβ(p)jτ

T
j , ∂αf(x, p)

}
, (48)

uµ0 = (1, 0, 0, 0) nµ(p)

tr(F )

tr[nµ(p)jτ T
j F ]

uµ

F ′

其中  为时间方向的单位矢量,  

由 (36)式给出. 该分布的迹  为相空间中的粒

子数密度, 而  为相空间中的自旋密度.

在相对于当前参考系以速度  运动的另一参考系

中, 矩阵分布  为 
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F ′ = D(Ru,p)

[
F +

ℏ
2

{
∆µ

u0u, ∂µF
}]
D†(Ru,p),

(49)

D(Ru,p)

∆µ
u0u

其中  为上述参考系变换对应的维格纳转动

在自旋空间中的表示, 位移项  的定义为 

∆µ
u0u = ∆µ

u0
−∆µ

u,

∆µ
u ≡ −ϵµναβnjν(p)pαuβτ T

j /(2mu0 · p), (50)

∆µ
u

ū

F̄

p̄ · ∂̄F̄ (x̄, p̄) = C̄[F̄ ]

其中  为自旋空间中的矩阵. 上述非平庸位移项

的出现, 说明带自旋的微观粒子, 其能量密度的中

心位置并不是洛伦兹矢量. 因此在粒子碰撞的过程

中, 在某个参考系中的对心碰撞, 在另一个参考系

中则是非对心碰撞. 假设存在某一个参考系  , 使

碰撞过程中轨道角动量和自旋分别守恒, 那么在这

个参考系中可以合理地忽略非定域的碰撞项, 假设

分布函数   在这个参考系中满足玻尔兹曼方程

 , 那么在实验室系中, 玻尔兹曼

方程的形式为 

p · ∂ F̃rs =
1

4(2πℏ)9
∑
ri,si

∫
d3p1

2Ep1

d3p2

2Ep2

d3p3

2Ep3

(2πℏ)4

× δ(4)(p1 + p2 − p− p3)

×M(p1, p2; s1, s2 → p, p3; r0, r3)

×M∗(p1, p2; r1, r2 → p, p3; r, s3)

×
{
F̃r1,s1(p1)F̃r2,s2(p2)

[
δr0s − F̃r0s(p)

]
×
[
δr3s3 − F̃r3s3(p3)

]
− F̃r0s(p)F̃r3s3(p3)

[
δr1s1 − F̃r1,s1(p1)

]
×
[
δr2s2 − F̃r2,s2(p2)

]}
+ h.c., (51)

h.c. r s

F̃ = F +
ℏ
2

{
∆µ

u0ū, ∂µF
}

F

M

其中的   表示前面项的复共轭并交换   ,    指标,

 ,    为实验室系中的矩阵

分布,    为带自旋的粒子之间的 2-2 散射过程的

散射振幅. 这一结果同样与无质量费米子的手征动

理学相符合.

如果不在意相互作用的细节, 那么文献 [68]提

出的维格纳函数的弛豫时间近似不失为一种简单

而有效的方案, 其中维格纳函数满足的方程为  [
γ ·
(
p+

iℏ
2
∂

)
−m

]
W (x, p)

= − iℏ
2
γ · u

W (x, p)−Weq(x, p)

τ
， (52)

Weq(x, p) uµ其中   为热平衡的维格纳函数,    为局域

τ的流速,   为弛豫时间. 由此得到的自旋密度的动

理学方程为 

p · ∂Aµ = −u · p
τ
δAµ +

ℏ
2τT

ϵµναβp
νωαβ

T δfV , (53)

ωαβ
T ≡ [∂α(Tuβ)− ∂β(Tuα)]/2

δAµ δfV

其 中   是 温 度 涡 旋

场 [69,70],   与  是自旋密度与粒子数密度相对

平衡态的偏离. 文献 [68]讨论了如何对 Kadanoff-

Baym方程做弛豫时间近似, 并且在 NJL模型标

量相互作用的框架下, 对粒子数演化以及自旋演化

的阻尼率进行了计算.

除了上述工作以外, 最近几年还有其他未在此

详细描述的工作, 例如文献 [71]从维格纳函数的

Kadanoff-Baym方程出发, 系统地研究了量子电

动力学中的费米子与光子的自旋动理学; 文献 [72]

研究了夸克在色电磁场背景中的动理学, 等等. 目

前, 有质量粒子的含相互作用的动理学仍处于刚起

步的阶段, 不同的理论框架给出的结果有相同之处

也有不同之处, 同时也存在怎样得到局域热平衡

解、如何从动理学方程得到自旋流体力学方程等问

题, 仍有待进一步深入研究.

 4   总　结

Λ

整体极化效应是重离子碰撞中反映自旋轨道

耦合效应的重要物理现象, 自从 STAR合作组于

2017年在 Au+Au碰撞实验中观测到   超子的整

体极化效应之后, 该效应引起了学术界的广泛关

注. 在重离子碰撞产生的热密物质中, 自旋轨道耦

合来自于粒子之间的非局域碰撞, 而碰撞过程的轨

道角动量涉及碰撞粒子的空间和动量信息, 所以需

要在相空间中描述有自旋轨道耦合效应的粒子碰

撞. 另外自旋轨道耦合是一种量子效应, 需要量子

理论. 基于维格纳函数的量子动理学就成为描述整

体极化效应的一个有力工具. 本文介绍了自旋为 1/2

的费米子系统的基于维格纳函数的量子动理学, 以

及在此基础上发展起来的自旋输运理论. 在自旋输

运理论方面的最新进展为模拟重离子碰撞中的自

旋极化效应的时空演化提供了坚实的理论基础.
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Abstract

Λ

Global polarization effect is an important physical phenomenon reflecting spin-orbit couplings in heavy ion

collisions. Since STAR’s observation of the global polarization of     hyperons in Au+Au collisions in 2017, this

effect has attracted a lot of interests in the field. In the hot and dense matter produced in heavy ion collisions,

the  spin-orbit  couplings  come  from  non-local  collisions  between  particles,  in  which  the  orbital  angular

momentum  involves  the  space  and  momentum  information  of  the  colliding  particles,  so  it  is  necessary  to

describe the particle collisions with spin-orbit couplings in phase space. In addition, the spin-orbit coupling is a

quantum  effect,  which  requires  quantum  theory.  In  combination  of  two  aspects,  the  quantum  kinetic  theory

based on covariant Wigner functions has become a powerful  tool  to describe the global polarization effect.  In

this paper, we introduce the quantum kinetic theory for spin-1/2 Fermion system based on Wigner functions as

well as the spin transport theory developed on this basis. The recent research progress of spin transport theory

provides  a  solid  theoretical  foundation  for  simulating  the  space-time  evolution  of  spin  polarization  effects  in

heavy ion collisions.
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