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We have analyzed the applicability of the various Gaussian bases to the variational calcula-
tion under the absorbing boundary condition. Three kinds of Gaussian basis are investigated:
shifted, tempered, and oscillating Gaussians. All the basis functions are successful in describ-
ing a resonance with a sharp width, but the features of the non-resonant continuum states are
very different among the employed Gaussian bases. The energy eigenvalues calculated from the
shifted Gaussian show the regular sequence in a complex energy plane, while the energy distri-
bution obtained by the tempered and oscillating Gaussian deviates from the regular distribution.
The wave functions in the non-resonant continuum are investigated for the individual Gaussian
bases. The shifted Gaussian nicely describes the extensively oscillating feature over a wide spa-
tial range, but the wave functions of the other two bases concentrate around the interaction area.
The calculation of the shifted Gaussian and oscillating Gaussian largely reduces the errors con-
tained in the resonance wave function. The trajectories of the resonance, obtained by a variation
of the strength of the absorbing potential, are pursued in a complex energy plane. The resonance
trajectories for the shifted and oscillating Gaussian bases become stationary around the optimal
strength of the absorber, while such a stationary trajectory is not clearly observed in the cal-
culation of the tempered Gaussian. An appropriate combination of the basis functions and the
absorbing boundary condition is discussed.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The basis expansion method is one of the most powerful tools in the calculation of few-body quantum
systems. For example, the computational techniques of the basis expansion methods have progressed
rapidly in few-nucleon systems [1,2], and, therefore, the basis expansion technique has been applied
to few-body problems in cold atomic systems [3,4]. Most of the basis expansion methods have been
done by employing the Gaussian basis function [1–6]. The so-called tempered Gaussian, having a
functional form of exp(−νr2) [1], is the most widely used in few-body calculations because of its
mathematically convenient properties; specifically, the matrix elements on the tempered Gaussian
basis can be evaluated in an analytical way in many physical problems. A series of the tempered
Gaussian bases is generated by the geometric progression of the width parameter ν. The tempered
Gaussian basis especially succeeds in handling the ground and low-lying bound states. In addition,
a superposition of the tempered Gaussian basis can describe not only tightly bound systems but also
weakly bound systems, in which a tail of the wave function is largely extended due to the quantum
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tunneling effect. Thus, the tempered Gaussian basis is one of the standard trial functions in the basis
expansion method.

In contrast, current research in few-body problems is extended to unbound continuum states above
the particle threshold, and the dynamics of few-body resonances have been extensively explored. In
a naive treatment of the unbound states, a scattering boundary condition should be imposed among
the interacting particles, but imposing the scattering boundary condition for a few particles is com-
plicated in general. In particular, the exact treatment of the few-body scattering state requires special
techniques for the long-range interaction, such as the Coulomb force. In order to avoid the complexity
of the few-body scattering boundary condition, the scattering problem is often reduced to the bound-
state-like problem by transforming the Hamiltonian of a total system into a non-Hermite form. There
are two representative methods of the non-Hermitian transformations: the complex scaling method
(CSM) [6–14] and the method of the absorbing boundary condition (ABC), or the method of the
complex absorbing potential (CAP) [15–24].

In CSM [6–14], the coordinates of the position (r) and the momentum (k), contained in the original
Hamiltonian H(r, k), are simply scaled as r → reiθ and k → ke−iθ . A wave function of a resonant
state originally diverges at an asymptotic region, but this diverging tail is transformed into the damp-
ing form by the scaling for the coordinates. Since an amplitude of a scaled wave function is damped
at an asymptotic region, the scaled solutions can be obtained by the basis expansion technique, in
a similar manner to the bound-state problem. CSM is one of the most useful tools in handling the
few-body continuum; however, there are two limitations in its application. First, at the very least,
an explicit functional form of the total Hamiltonian must be obtained. This means that the CSM is
difficult to apply if we know only the matrix elements of the Hamiltonian instead of the Hamiltonian
itself. Secondly, there are some restrictions in the functional form of an employed interaction. If the
interaction cannot keep its analytic property for the complex scaling, a singularity appears in the
scaled equation, and the CSM calculation breaks down.

The other method for the resonant and continuum states is the absorbing boundary condition (ABC)
[15–24]. In this method, the negative imaginary (or complex) potential is placed at the interaction-free
region of the total system. The diverging tail of the resonant wave function is absorbed by the outer
imaginary potential, leading to the damping behavior of the resonant wave function at an asymptotic
region. Thus, the basis expansion method can be applied under ABC. In ABC, an absorber is intro-
duced in addition to an original Hamiltonian, and the matrix elements of the original Hamiltonian
are invariant with respect to the introduction of the absorber. Therefore, there is no restriction in
the functional form of interactions. Furthermore, in ABC, we need only the matrix elements of the
original Hamiltonian even if an explicit functional form of the original Hamiltonian is unclear. This
is one of the advantages of ABC in marked contrast to CSM. In fact, we encounter such a situation
in the microscopic cluster model, the generator coordinate method (GCM) [5], in which only the
matrix elements of the Hamiltonian are numerically evaluated. The ABC method works nicely in the
framework of GCM [20,21].

In recent studies, CSM has been applied to three-body nuclear systems, and its application has
been very successful in describing three-body dynamics in a continuum [7]. In the study of CSM,
the tempered Gaussian basis is employed to obtain the continuum solutions. Thus, CSM plus the
tempered Gaussian is considered to be an appropriate combination for the pragmatic calculation of
the continuum resonances. In contrast to CSM, the so-called difference method [22,23], in which
radial coordinates are discretized in a finite mesh, is mainly employed in the ABC calculation for
nuclear systems [22]. For example, a three-body nuclear reaction, induced by the deuteron breakup,
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is nicely described by the difference method plus ABC [22]. However, in nuclear systems, the appli-
cation of Gaussian expansion methods to ABC is still limited to only a few examples of two- or
three-body problems [20,21,24]. Many applications of ABC plus basis expansion exist in molecular
physics [15–19], but the eigenfunction of the harmonic oscillator or Legendre polynomial has mainly
been used as the basis function. In view of these situations, the authors think that the investigation
of the applicability of the Gaussian basis to the ABC problem is interesting and instructive.

In the present paper, we focus on several types of Gaussian basis functions, which are standard
in basis expansion methods, and their applicability to ABC is explored in a schematic two-body
problem. There are two versions of the tempered Gaussian basis: the shifted Gaussian [5] and the
oscillating Gaussian [3,4]. The shifted Gaussian is generated by shifting the peak position of the
tempered Gaussian to a finite distance S, such as e−ν(r−S)2

. A set of the shifted Gaussian is obtained
by varying the center position of S according to the arithmetic progression. The oscillating Gaussian,
which has been recently proposed, is given by a product of the tempered Gaussian and the trigono-
metric function such as sin(νr2)e−νr2

and cos(νr2)e−νr2
. Both the shifted and oscillating Gaussian

are appropriate for describing highly oscillating functions, in which the wave function has a large
number of radial nodes. In the ABC calculation, continuum wave functions reveal highly oscillating
behavior at a large distant region. Therefore, the shifted and oscillating Gaussians are expected to be
feasible in the ABC problem. We employ the three kinds of basis, the tempered, shifted, and oscil-
lating Gaussians in the ABC calculation, and the basis dependence of the continuum solutions will
be reported in detail.

The organization of this article is as follows: In Sect. 2, the employed Hamiltonian and the basis
functions are briefly explained. In Sect. 3, the energy distributions of the eigenvalues obtained by the
different Gaussian basis are investigated in the complex energy plane. We also discuss the behavior
of the wave functions in the resonant and continuum states. In the last part of Sect. 3, the sensitivity of
the resonant states with respect to the variation of the strength of the absorbing potential is analyzed.
In this analysis, the optimization of the resonance parameters and the resonance trajectory in the
complex energy plane are discussed. The final section is devoted to the discussion and summary.

2. Framework

2.1. Model Hamiltonian with an absorber

In the present analysis, we employ a model Hamiltonian with a schematic potential [25] as follows:

H = − �
2

2m
∇2 + V (r), (1)

V (r) = −V1e−μ1r2 + V2e−μ2r2
. (2)

Here the parameters of the potential V (r) are chosen as V1,2 = 8.0 (MeV), 4.0 (MeV) and
μ1,2 = 0.16 (fm−2), 0.04 (fm−2). In this Gaussian potential, there are short-range attractive and
long-range repulsive parts. The former attractive part corresponds to the nuclear interaction, while the
latter repulsive part simulates a Coulomb barrier. In the kinetic energy part, we set �

2

m (MeV·fm2) = 1
for simplicity. Thus, the dimension of the energy equals the (length)−2. The complex scaling method
(CSM) was applied to the resonance problem in this potential, and the resonant energies are reported
in Ref. [11].

In solving the eigenvalue problem for the Hamiltonian in Eq. (1) under the absorbing boundary
condition (ABC), we simply add the negative imaginary potential −iW (r) with a strength η, such as

Hη = H − iηW (r), (3)
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and the Schrödinger equation for Hη is solved by the basis expansion method. We should choose
the functional form of the absorber W (r). The functional form of W (r) is not arbitrary and various
conditions are required as discussed in Ref. [15].

The important requirement of an absorber W (r) is given by

�[W (r)] ≥ 0, r ≥ 0

�[W (r)] → ∞, r → ∞. (4)

Furthermore, the absorber should be polynomially bound to obtain the correct convergence of the res-
onance wave function at an asymptotic region. Therefore, the exponential potential W (r) = exp(αr)

cannot be used as an absorber. Although there is a theoretical development in the absorbing potential
[26], we employ the shifted polynomial function such as

W (r) = θ(r − ra) · (r − ra)
p. (5)

The polynomial absorber is standard and has been usually employed in previous studies [15–24].
A starting point of the absorber ra should be taken to the outside of the physical interaction region.
The power of the polynomial is set to p = 4 in the present calculation. According to the analysis
in Ref. [20], the lower power, such as p = 2, has been proven to be appropriate for searching a
broad resonance existing around zero energy. However, in the absorber with the lower power, the
minimization of the error, contained in the resonance parameter (resonance energy and the decay
width), is somewhat difficult. The power of p = 4 has been found to reduce the errors in the resonance
parameter [20,24] and, hence, we use the power of p = 4 in the present calculation.

2.2. Basis expansion method

The total wave function �(r) is given by a product of the radial part χL(r) and the spherical har-
monics YL M(r̂) with the orbital angular momentum L and its third component M . According to a
standard technique in a variational calculation, the radial part of the wave function χL(r) is expanded
by a series of the basis functions umL(r), such as

�(r) = χL(r) · YL M(r̂) =
M∑

m=1

CmL
umL(r)

r
· YL M(r̂), (6)

and we solve a set of the generalized eigenvalue equation for the mixing amplitude of CmL and the
energy eigenvalue E

N∑
m=1

(
H (L)η

nm − E N (L)
nm

)
CmL = 0 (n = 1 ∼ M) (7)

with the matrix elements of H (L)η
nm = 〈unL |H (L)η|umL〉 and N (L)

nm = 〈unL |1|umL〉. The
energy eigenvalue E is a complex number, which has the relation of E = ER − i�R/2 with the
resonance energy ER and the resonance width �R . Here H (L)η represents the Hamiltonian for the
partial wave L ,

H (L)η = H (L) − iηW (r) (8)

H (L) = −1

2

d2

dr2 + L(L + 1)

2r2 + V (r). (9)

In the present calculation, we handle the L = 1 problem, which has the same conditions as the CSM
study in Ref. [11].
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According to Eq. (8), the Hamiltonian matrix H (L)η
nm can be simply decomposed into two parts:

H (L)η
nm = H (L)

nm − iηWnm (10)

with Wnm = 〈unL |W |umL〉. Equation (10) means that any computational programs for the bound-
state problem, in which the matrix elements of H (L)

nm are calculated, can be directly used in the method
of ABC. That is, we can introduce the absorbing boundary condition by just adding the matrix ele-
ments of the absorber, −iηWnm , to the matrix elements of the original Hamiltonian, H (L)

nm . This is
one of the advantages in the absorbing boundary condition. In a pragmatic ABC calculation, how-
ever, we must superpose many basis functions over a wide spatial range. The necessity of the wide
superposition is because the reflection effect, which arises from the existence of the absorber, should
be minimized as much as possible.

2.3. Types of Gaussian basis

In the variational calculation under the absorbing boundary condition, we use three kinds of Gaussian
functions for the basis of unL(r): (1) a shifted Gaussian (SG), (2) a tempered Gaussian (TG), and (3)
an oscillating Gaussian (OG). In the following, we briefly explain the individual Gaussian bases.

(1) Shifted Gaussian basis. The functional form of the shifted Gaussian (SG) basis is

unL(r) = Nnre−ν(r−Sn)2
(11)

Sn = S1 + (n − 1)	S. (12)

Here Nn represents the normalization constant. Sn is a variational parameter generated by an arith-
metic progression in Eq. (12) with a constant difference 	S, and it approximately gives a peak
position of the nth basis function. The parameter Sn is often called the “distance parameter”. Usually,
the width parameter ν is taken to be a common value. A superposition of the SG basis is possible to
construct a highly oscillating function. Thus, the SG basis can handle highly excited states, in which
the higher nodal excitation occurs in the wave function. In the calculation of the matrix elements,
however, we must rely on the numerical integration, and numerical precision should be carefully
checked in an integration.

The SG function is one of the standard basis functions of the microscopic cluster model in the
framework of the generator coordinate method (GCM) [5,20]. In GCM, the basis function is called
the locally peaked Gaussian, which is given by the product of the modified spherical Bessel function
and the tempered Gaussian. The shifted Gaussian in Eq. (11) corresponds to the asymptotic form of
the locally peaked Gaussian, which is obtained by taking the limit of Sn or ν → large. In the locally
peaked Gaussian, there is the L dependence, but, on the basis of Eq. (11), the L dependence of the
basis functions vanishes. Thus, the SG basis itself does not satisfy the asymptotics of unL(r → 0) ∼
r L+1. The asymptotics of the wave function at r → 0 is possible to achieve in the superposition of
the SG basis under the variational principle.

(2) Tempered Gaussian basis. The tempered Gaussian (TG) basis is a series of the Gaussian function
obtained by varying the width parameters. The explicit functional form of the nth basis with L is
given by

unL(r) = NnLr L+1 exp
(
−νnr2

)
, (13)

νn = 1

2b2
n
, bn = b1an−1. (14)
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Here NnL is a normalization constant for the nth TG basis. The width parameters bn are generated
according to a geometric progression with the constant geometric ratio a. The TG basis has a smooth
radial dependence and, hence, it is appropriate to construct slowly oscillating functions, which mainly
appear in a ground state or low-lying states.

The TG basis has been widely used especially in few-body calculations because the matrix elements
can be calculated in an analytic manner if the interaction is expressed in terms of the polynomial,
Gaussian, and exponential functions on r [1]. Thus, mathematical treatments of the matrix elements
are easy in numerical calculations. Furthermore, the TG basis is good in describing weakly bound
systems, in which a tail of the wave function slowly damps beyond the classical turning point.
This applicability of the TG basis is because the superposition of the TG basis can reproduce the
exponentially damping function, which appears outside of a classical turning point.

(3) Oscillating Gaussian basis. The TG basis in Eq. (13) has a smooth radial dependence, but
an oscillating feature can be implemented by a complex scaling on the width parameter, νn →
(α + iβ)νn . The scaled function φnL(r) becomes

φnL(r) = r L+1 exp
(
− (α + iβ) νnr2

)
. (15)

A series of the oscillating Gaussian basis (OG) is generated from the linear combination of φnL(r)

and φ∗
nL(r),

unL(r) = NnL

(
φcos

nL (r) + φsin
nL(r)

)
, (16)

φcos
nL (r) = 1

2

[
φnL(r) + φ∗

nL(r)
]

= r L+1 exp
(
−ανnr2

)
cos

(
βνnr2

)
, (17)

φsin
nL(r) = i

2

[
φnL(r) − φ∗

nL(r)
]

= r L+1 exp
(
−ανnr2

)
sin

(
βνnr2

)
. (18)

Here NnL represents the normalization constant of the total basis function. The scaling parameters α

and β are usually fixed to a certain value in solving the eigenvalue problem of the total Hamiltonian.
The width parameters νn are generated by the geometrical progression shown in Eq. (14). φcos

nL (r)

and φsin
nL(r) are the product of the TG basis and the trigonometric functions, and the smoothed radial

behavior in the TG basis and the oscillating feature in the trigonometric functions are combined in
the OG basis. Due to this combination, the OG basis is considered to describe both the smooth and
oscillating functions. Therefore, the OG basis can handle highly excited states as well as less excited
states in a consistent manner. In addition, the mathematical structure of the OG basis is basically the
same as that of the TG basis and, hence, the matrix elements of the OG basis can be evaluated in an
analytical way similar to the TG basis.

2.4. Details of the computational conditions

The matrix elements of the original Hamiltonian H (L)
nm are analytically evaluated for the TG and OG

bases, while the numerical integration is performed for the SG basis. The starting point of the shifted
absorbing potential in Eq. (5) is set to ra = 7 fm. In the evaluation of the matrix elements of the
shifted absorber, Wnm , we must employ the numerical integration for all the basis functions. All the
numerical integration is done on the basis of the Gauss–Legendre method. The radial integration is
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Table 1. Set of the variational parameters. “min.” and “max.” denote the minimum and maximum
values of the variational parameters for the SG, TG, and OG bases. The additional parameters (α, β)
in the OG basis are (α, β) = (1,3), while ν and 	S in the SG basis are ν = 2 fm−2 and 	S = 0.5 fm,
respectively.

√
r2

max represents the root-mean-squared radius of the maximum basis functions. All the
lengths are shown in units of fm.

Basis prm. min. max. N
√

〈r2〉max

SG Sn 0.10 29.6 60 29.6
TG bn 3.0 × 10−4 40.0 100 63.2
OG(cos) bn 1.00 15.0 30 24.3
OG(sin) bn 1.00 15.0 30 23.1

performed up to about 80 fm for the SG and OG bases and 200 fm for the TG basis. A whole spatial
region is decomposed into bins of 1.2 fm, and twenty-four mesh points are prepared for each of the
spatial bins. We have checked the numerical precision of the integration by changing the size of the
bin. The integration value of the matrix elements of the absorber Wnm , for instance, is converged in
the order of magnitude of ∼10−8.

A set of the variational parameters for the individual Gaussian basis functions is listed in Table 1.
There are two parameter sets for the OG basis, the sine and cosine types. In the present calculation,
both the basis functions are included according to Eq. (16). In this table, the minimum (min.) and
maximum (max.) values of the variational parameters are shown. The root-mean-squared radius of
the maximum basis (

√
〈r2〉max in the rightmost column) represents the maximum distance that can

be covered by each of the basis functions. In the calculation of the absorbing boundary condition, a
series of the basis functions should cover the spatial region outside of the interaction range in order
to describe the smooth damping of the continuum wave function. However, an instability appears in
solving the generalized eigenvalue equation (7) if we extend the range of the basis function and the
starting point of the absorber ra to a much larger distance. For example, in the unstable solutions, a
series of the continuum states, which will be explained in the following section, is not in a regular
sequence, but in a random distribution in the complex energy plane. Thus, there is an optimal size in
the maximum range of the basis function in the pragmatic calculation. In the present calculation, we
set the computational range to be the region of r ≤ 30 fm. The sequence of the continuum energy
levels and the errors contained in the resonance parameters are optimized as much as possible within
this spatial range. We have confirmed that the computational results are not drastically improved even
if the spatial range of the basis functions is extended to a larger distance than r ∼ 30 fm.

The
√

〈r2〉max value of the OG basis is the smallest (23.1 fm for the sine OG), while that of the
TG basis is the largest (63.2 fm) of all the basis functions. The maximum range of the TG basis is
much larger than the previous study in Ref. [24]. The long-range setting of the TG basis is due to
the generation of the orthogonal basis set. The SG, TG, and OG bases are non-orthogonal functions
and, hence, the orthogonal basis must be constructed in solving Eq. (7). The orthogonal bases are
generated by diagonalizing the norm matrix N (L)

nm , and then the Hamiltonian matrices H (L)η
nm are

reconstructed by the orthogonalized basis. In generating the orthogonal basis, we must set a minimum
eigenvalue λmin for the diagonalization of the norm matrix and exclude the orthogonal basis that has
an eigenvalue smaller than λmin. This exclusion is because an orthogonalized basis belonging to an
extremely small norm eigenvalue induces a numerical instability. Thus, the original number of the
non-orthogonal basis (N in Table 1) is reduced to the “effective number” of orthogonalized basis.

In Table 2, the lower limits of the norm eigenvalue (λmin) are listed in the second column from the
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Table 2. The lower limit of the norm eigenvalues, λmin, that accepts the orthogonalized
basis. In the third column from the right, the number of excluded orthogonalized bases is
shown. The percentage (%) of the accepted basis number to the total basis number are shown
in the following column. The

√
〈r2〉max of the orthogonalized bases are shown in the right-

most column (units in fm). All the results are obtained for the variational parameter sets
shown in Table 1.

Basis λmin Excluded Accepted (%)
√

〈r2〉max

SG 10−7 0 100 17.8
TG 10−7 40 60 36.8
OG 10−7 0 100 25.1

left. For individual bases, λmin is fixed so as to reproduce the regular sequence of the energy eigen-
values and optimize the resonance parameters as much as possible. In the SG and OG calculations,
all the orthogonal bases are accepted and, hence, the effective basis number is 60, which is the same
as the number shown in Table 1 (N = 60). However, the accepted percentage of the orthogonalized
basis is about 60% in the TG basis under the condition of

√
〈r2〉max = 63.2 fm. Thus, the effective

number is reduced to 60 from the original number of N = 100. If the value of
√

〈r2〉max in the TG
basis is restricted to be

√
〈r2〉max ≤ 30 fm, generation of the 60 orthogonalized TG bases, which is

the same effective number as the SG and OG basis functions, is difficult. To keep the effective num-
ber of the orthogonalized basis common between the SG, TG, and OG bases, the maximum range of
the TG basis must be exceptionally extended to be

√
〈r2〉max = 63.2 fm, as shown in Table 1. Since

the non-orthogonality of the TG basis is the most prominent of all the basis functions, the spatial
range of the TG basis must be extended to generate a series of the orthogonalized TG basis, which
is comparable to the orthogonalized SG and OG bases.

In the rightmost column of Table 2, the mean radii for the orthogonalized bases are listed. The radii
of the orthogonalized SG and TG bases are 17.8 fm and 36.8 fm, respectively, which are reduced to
half in comparison to the respective radii before orthogonalization, shown in Table 1 (29.6 fm for SG
and 63.2 fm for TG). The SG and TG bases have a nodeless distribution, and one peak exists at an
external region. If the orthogonalization is imposed on such smooth bases, a finite amplitude with an
oscillation appears in the inner region. The appearance of the inner oscillation leads to the reduction
of the radius of the SG and TG bases. In contrast, the radius of the OG basis is almost invariant under
the orthogonalization; the orthogonalized radius is 25.1 fm, while the non-orthogonal radius is about
24 fm (Table 1). In contrast to the SG and TG bases, an inner oscillation is originally implemented in
the OG basis by introducing the trigonometric function. Thus, an orthogonalization is not so effective
on the OG basis. This is the reason why the radius of the OG basis is almost invariant under the
orthogonalization.

2.5. Schematic picture of the eigenvalues

The eigenvalues calculated from the Hamiltonian with an appropriate absorber that satisfies the con-
ditions in Ref. [15] becomes a purely discrete spectrum for all η > 0. Figure 1 shows a schematic
picture of the energy spectrum in the complex energy plane when the polynomial function shown
in Eq. (5) is employed as an absorbing potential. The energy sequence shown in Fig. 1 is empiri-
cally established through the numerical calculations with the harmonic oscillator basis [15–17]. In
this figure, the angle θ is given by the relation of θ = −π/(2 + p) with the power of the absorber
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Im E

Re E
B.S.

Resonancesθ

Fig. 1. Schematic picture of the eigenvalues calculated from the Hamiltonian with a polynomial absorber.
Eigenvalues are plotted in a complex energy plane. See text for details.

p [15,20]. One can clearly distinguish four groups of eigenvalues shown by the various symbols. The
individual symbols have the following meanings:

(1) Isolated states (solid symbols). The bound states (solid circle, B.S.) should be invariant under the
addition of the absorber. The resonant states are shown by solid squares, which are surrounded by
the line with a rotation angle θ , the real axis, and the string of eigenvalues parallel to the real axis.

(2) Converged non-resonant states (open triangles). A series of eigenvalues appears along the θ axis.
The wave function in these eigenvalues is smoothly damped within the computational radial space
due to the effect of the absorber.

(3) Indifferent states (open circles). In the levels parallel to the real axis, the wave functions strongly
oscillate, and they are almost real. Due to their comparatively high real energy, these states are only
weakly affected by the absorber and they are reflected at the end of the spatial grid.

(4) Diverging states (asterisks). A few eigenvalues exist below the θ axis. The wave functions for the
diverging state have a large amplitude at a large distance region. These non-converging states are an
artifact of the incomplete finite basis set.

3. Results

3.1. Energy distributions

In this section, we compare the distribution of the energy eigenvalues obtained for the three different
Gaussians, the SG, TG, and OG bases. In Fig. 2, the energy eigenvalues for the L = 1 states are
plotted in the complex energy plane. Panels (a), (b), and (c) show the results of the SG, TG, and OG
bases, respectively.

The strength of η = 1.8 × 10−5 is used for the SG calculation, and the result is shown in Fig. 2(a).
In this figure, there are three isolated levels shown by the double squares. The negative energy state
around �[E] = ER ∼ −0.7 fm−2 is a bound state, while the positive energy state around ER ∼ 1.17
fm−2 is the first resonant state. The width of this resonance is quite small (�R/ER ∼ 10−2) and
hence it appears quite close to the real axis. The second resonance appears at ER ∼ 2 fm−2 and
�R/2 ∼ 0.5 fm−2 with a broad width (�R/ER ∼ 0.5). These two resonances are clearly separated
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Fig. 2. Energy eigenvalues plotted in the complex energy plane. The abscissa and ordinate represent the real
and imaginary parts of the eigenvalues, respectively. Panel (a) shows the result of the SG basis, while the results
of the TG and OG bases are plotted in panels (b) and (c), respectively. The line plotted from the origin denotes
the rotation angle for the converged state (θ = −π/6). In all of the panels, the isolated states are shown by
double squares, while the continuum states are plotted by solid circles.

from the continuum states (solid circles) because the imaginary part of the continuum states is sys-
tematically larger than that of the separated resonant states. In the continuum states, we confirm a
regular sequence, which splits into three lines. Since the power of p = 4 is employed for the absorber,
the converged continuum states are on the θ = −π/6 axis (solid line), although they slightly deviate
from the θ axis in the higher energy region. The series of continuum levels parallel to the real axis
belongs to the line of the indifferent continuum states, while the two continuum levels appearing
below the θ axis correspond to the diverging states.

In contrast, we can see strange behavior in the energy distribution for the TG solutions (Fig. 2(b)).
Here the strength of the absorber is set to be η = 1.8 × 10−5. The bound and first resonant states
(double squares) can be clearly identified, but the regular structure of the splitting straight lines is
broken. In addition, the level density solved by the TG basis is much lower than that solved by the
SG basis. All the continuum states have a small imaginary part, and they locate at the region close to
the real axis. This result means that the solutions obtained by the TG basis do not feel the absorption
much; nevertheless, the maximum range of the TG basis is a much larger value than the SG basis.
The imaginary parts of the continuum energy levels are almost invariant even if the strength of the
absorber is artificially increased. Thus, the continuum states calculated by the TG basis are quite
insensitive to the variation of the strength of the absorber. Since the effect of the absorber is small
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for the TG basis, the second resonance with a large imaginary part cannot be separated from the
continuum states.

The variational calculation of the TG basis was also done for a similar Gaussian potential in
Ref. [24]. In this calculation, the resonant state with a broad width (�R/ER ∼ 0.7) was identified,
although the setting of the computational condition in Ref. [24] was different from the present cal-
culation. In the analysis of Ref. [24], the higher power of the radial coordinate is multiplied to the
original TG basis in order to identify the broad resonance. Due to this modification, the TG basis can
include the higher nodal property of the wave function. Therefore, to calculate the broad resonant
states, not only a simple extension of the maximum range, but also the modification of the functional
form will be needed for the TG basis.

The energy distribution calculated by the OG basis is shown in Fig. 2(c). In this calculation, two
resonances (double squares at �[E] > 0) are clearly separated from the continuum line. Here we
use the absorber strength of η = 3.0 × 10−4, which is stronger than the strength in the SG and TG
calculations (η = 1.8 × 10−5). The second resonance located at ER ∼ 2 fm−2 is not separated from
the continuum state if the strength of η = 1.8 × 10−5 is adopted. Thus, in the OG calculation, the
strength of the absorber is increased to identify the second resonance.

The distribution of the continuum levels in the OG calculation is considerably different from the
regular sequence observed in the SG calculation. A few continuum states starting from the origin
follow the converged continuum line of θ = −π/6 in the lower energy region, but the imaginary
part of the continuum states gradually decreases as the real part of the eigenvalues becomes high. As
a result of this decrease of the imaginary part, the series of the continuum states, corresponding to
the indifferent states, is not parallel to the real axis in the higher energy region. The sequence of the
continuum levels draws not a straight line, but a smooth curve, and the shape of the curve depends
on the strength of the absorber. The level density of the OG basis is considerably higher than that of
the TG basis, but the density is still lower than the result of the SG basis.

3.2. Wave functions in the continuum

The difference of the energy distributions, confirmed in Fig. 2, strongly suggests that the absorbing
effect is noticeably different among the employed basis functions. In order to see the effect of the
absorber more clearly, we analyze the wave functions for the continuum states. We show four kinds
of wave functions according to the categories in Fig. 1: (1) isolated resonant state, (2) converged
non-resonant states, (3) indifferent state, and (4) diverging state.

In the upper panel of Fig. 3, the continuum energies calculated from the SG basis are plotted, while
the real part of the reduced wave functions, rχL(r) (L = 1), are shown in the lower four panels,
(1)–(4). The wave functions shown in the lower panels of (1)–(4) correspond to the levels of (1)–(4) in
the upper panel (double squares), respectively. The resonance wave function shown in panel (1) has a
large amplitude inside of the interaction region, and the amplitude penetrates into the interaction-free
region. The penetrating part strongly oscillates, and its amplitude is smoothly damped as the distance
becomes larger. The smooth oscillation and damping is generated by the absorber, which starts at
ra = 7 fm.

In contrast, there is a difference in the distribution of the wave functions among the non-resonant
continuum shown in Fig. 3, panels (2)–(4). In the converged non-resonant state in panel (2), the wave
function is smoothly damped in the spatial region of r ≤ 30 fm, which is covered by the basis states
(see Table 1). There is a strong oscillation in the indifferent state (3), and its maximum amplitude is
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Fig. 3. Wave functions obtained for the SG basis. In the top panel, the energy levels in the complex plane are
shown, and are the same as in the panel (a) in Fig. 2. In panel (1), the wave function of the resonant state is
shown, while the converged non-resonant wave function is plotted in panel (2). Panels (3) and (4) show the
wave functions for the indifferent and diverging states, respectively. The ordinate in panels (1)–(4) show the
amplitude of the real part of the wave function, plotted in arbitrary units.

shifted to the outer region in comparison to the converged state (2). The distribution of the diverging
state (4) is localized at the largest distance region of all the continuum states. The amplitudes of
(3) and (4) are rapidly damped around the end point of the maximum basis, Smax = 30 fm. This
rapid damping means that both the indifferent state (3) and the diverging state (4) are generated
by the incompleteness of the finite basis expansion. All the non-resonant continuum wave functions
extensively oscillate at the interaction-free region. To get a regular sequence of the energy eigenvalues
in the complex plane, therefore, a superposition of the basis functions should describe the extensive
oscillation of the wave function over a wide distance region.

The same analysis on the wave functions is shown in Fig. 4 for the TG basis. In the upper panel, we
select the four continuum states (double squares) that have almost the same complex energy as the
four levels shown in the upper panel of Fig. 3. The respective wave functions are plotted in the lower
four panels, Fig. 4, panels (1)–(4). The shape of the resonant wave function in Fig. 4, panel (1) is
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Fig. 4. The same as Fig. 3, but for the results obtained by the TG basis.

almost the same as the SG resonance in Fig. 3, panel (1), although the oscillation of the TG resonance
around r ≥ 5 fm is weaker than the SG resonance. We can confirm that the oscillating pattern of the
non-resonant wave functions, Fig. 4, panels (2)–(4), in the TG basis is noticeably different from the
wave function in the SG basis, shown in Fig. 3, panels (2)–(4).

The peak position of the converged continuum solution in Fig. 4, panel (2) is shifted to a shorter
distance than that of the SG converged state, shown in Fig. 3, panel (2), and the oscillation of the
TG solution is much weaker than that of the SG solution. The indifferent state in Fig. 4, panel (3)
has a strong oscillation, but its main amplitude is noticeably concentrated on the interaction region,
about r ≤ 5 fm. This distribution in the TG solution is very different from the respective SG solution
in Fig. 3, panel (3), in which the maximum amplitude appears at the larger distance region. The
diverging state in Fig. 4, panel (4) also reveals the weak oscillation behavior in comparison to the
respective SG solution in Fig. 3, panel (4).

The continuum levels and the respective wave functions calculated by the OG basis are shown in
the upper panel and the lower four panels ((1)–(4)) in Fig. 5, respectively. The oscillation of the OG
resonant state in Fig. 5, panel (1) is similar to the respective SG resonance in Fig. 3, panel (1), but the
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Fig. 5. The same as Fig. 3 but for the results obtained by the OG basis.

damping of the OG resonance rapidly occurs. The nodal behaviors of the non-resonant continuum
in Fig. 5, panels (2)–(4) is almost the same as that of the SG continuum states in Fig. 3, panels
(2)–(4). However, the distributions of all the non-resonant wave functions in Fig. 5, panels (2)–(4)
are shifted to the shorter distance region in comparison to the SG non-resonances, shown in Fig. 3,
panels (2)–(4).

One of the possible reasons why the shrinkage of the wave functions occurs in the OG calculation is
because the strength of the absorber is increased in the OG calculation (η = 3.0 × 10−4). The wave
function is checked by performing the OG calculation with the weak strength of η = 1.8 × 10−5,
which is the same strength as the SG calculation. In this calculation, we have found that the amplitude
of the OG wave function tends to concentrate around a shorter radial region than that of the SG wave
function. The other possible reason for the shrinkage is the small radius of the employed OG basis (see
Table 1). To check the sensitivity to the maximum radius of the OG basis, we have done an extended
calculation, in which the maximum radius of the basis state is increased to be

√
〈r2〉max ∼ 30 fm.
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However, the distribution of the wave function is almost the same as the results shown in Fig. 5.
Moreover, in such an extended calculation, the optimization of the resonance parameters, which will
be explained in the next section, becomes worse.

The higher nodal behavior observed in the OG solutions is generated from the trigonometric func-
tions multiplied by the tempered Gaussian, as shown in Eqs. (17) and (18) [1]. The distribution range
of the OG continuum states is localized to the inner region in comparison to the SG continuum, and
such a tendency can be seen especially in the indifferent state (3). This result means that the OG basis
is feasible for describing the higher nodal states mainly appearing around the interaction region, while
the SG basis can describe the extensive oscillation over a wide spatial region.

3.3. Optimization of the resonance parameter

In the previous section, we fixed the strength of the absorber, η, to a constant value. However, we
search for an optimum value of η to determine the resonance energy and width. We denote the energy
eigenvalue as a function of the parameter η, E(η). If the basis set is complete, the correct resonance
parameters can be obtained as a limit of η → 0. In the finite basis set calculations, however, a finite
η gives approximate resonance parameters. The condition for an optimal strength ηo is

∣∣∣∣η
d E(η)

dη

∣∣∣∣
η=ηo

= min. (19)

Here the derivatives η · d E(η)/dη are obtained simply by employing the generalized Hellmann–
Feynman theorem [27] like

∣∣∣∣η
d E(η)

dη

∣∣∣∣ = η
∣∣〈χ̃η

L |W |χη
L〉∣∣ ≡ 〈W (η)〉, (20)

where χ
η
L represents the relative wave function in Eq. (6) calculated with an absorber of the strength

η. The tilde in the bra-state means that the complex conjugate is not taken in the radial integration.
An argument to justify the condition of Eq. (19) was presented on the basis of the asymptotic

expansion of the function E(η) [15,24]. Let us discuss the optimization of η in a simple argument. If
η is very small and the range of the basis function is limited to the shorter region, absorption occurs
in the region of large distance, where no basis functions exist. Then the resonant eigenvalue becomes
almost real. As η increases, the absorption can be efficiently described by a given basis set, and the
imaginary part of E(η) increases. When the spatial region of the dominant absorption sufficiently
overlaps the region of the basis functions, the imaginary part of E(η) will be close to the true width. If
one further increases η, the reflection due to the absorbing potential becomes substantial, and this will
cause the imaginary part of E(η) to decrease. Therefore, this consideration supports the conclusion
that there is an optimal value of ηo. The magnitude of the imaginary part in the eigenvalue exhibits
stationary behavior around η = ηo, which satisfies Eq. (19).

The η dependence of 〈W (η)〉 for the three bases, the SG, TG, and OG bases, is shown in Figs. 6, 7,
and 8, respectively. Here the mesh of the strength is commonly taken to be 	η = 1.0 × 10−6. In all
the figures, 〈W (η)〉 for the first resonance appearing around E ∼ 1.17 fm−2 is plotted. In the result for
the SG basis (Fig. 6), a minimum of 〈W (η)〉 appears at an optimal strength, ηSG

o = 2.6 × 10−5, and
the minimum value of 〈W (η)〉 is 6.5 × 10−9 fm−2. Around the optimal strength, a sharp minimum
structure appears in 〈W (η)〉 of the SG solution.

The result of 〈W (η)〉 for the TG basis is shown in Fig. 7. The behavior of 〈W (η)〉 in the TG solutions
is different from that in the SG solutions shown in Fig. 6. The minimum of the expectation value of
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Fig. 6. η dependence of 〈W (η)〉 obtained for the SG basis. The abscissa and ordinate represent η and 〈W (η)〉,
respectively. The scale of the abscissa (ordinate) should be multiplied by a factor of 10−5 (10−7).
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Fig. 7. Same as Fig. 6, but for the result calculated by the TG basis.

the absorber is 〈W (η)〉 = 1.2 × 10−3 fm−2 at the optimal strength, ηTG
o = 1.6 × 10−5. In a series

of 〈W (η)〉 for the TG solution, a broad minimum appears, and the 〈W (η)〉 varies smoothly around
the optimal ηTG

o value. In the OG basis shown in Fig. 8, the optimal strength is ηOG
o = 3.0 × 10−5,

and the respective minimum value is 〈W (η)〉 = 7.2 × 10−7 fm−2. In the OG calculation, a sharp
minimum structure appears in the curve of 〈W (η)〉, and the behavior of 〈W (η)〉 around the optimal
ηOG

o is similar to the result for the SG basis.
The resonance parameters (ER and �R/2) are determined at an optimal value of ηo. The resonance

parameters and 〈W (ηo)〉 at the optimal ηo are summarized in Table 3. The expectation value of
〈W (ηo)〉 represents a measure of errors in a resonance wave function at a given strength of ηo, which
arises from a finite set of the basis functions and a reflection from the absorber. The error of the SG
solution is the smallest of all the basis calculations, while that of the OG solution is larger by two
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Fig. 8. Same as Fig. 6, but for the result calculated by the OG basis.

Table 3. Resonance parameters at an optimal strength of the absorber. ER and �R are the resonance
energy and the decay width, respectively. ηo represents the optimal strength of the absorber, while 〈W (ηo)〉
shows the expectation value of the absorber, defined in Eq. (20), at an optimal ηo. In the bottom column,
the resonance parameters calculated by the complex scaling method are shown for comparison. All the
energies are plotted in units of fm−2.

Basis ER �R/2 ηo 〈W (ηo)〉
SG 1.174 4.97 × 10−3 2.6 × 10−5 6.5 × 10−9

TG 1.172 2.03 × 10−3 1.6 × 10−5 1.2 × 10−3

OG 1.172 4.91 × 10−3 3.0 × 10−5 7.2 × 10−7

CSM [11] 1.171 4.86 × 10−3 x x

orders of magnitude. However, this result does not necessarily mean that the SG basis is superior
because the magnitude of the error depends considerably on the precision of a whole numerical
calculation. We really keep the precision of the numerical integration at about ∼10−8 in the matrix
elements. This numerical precision corresponds to ∼10−13 for the matrix element of the absorber,
ηoWnm in Eq. (10). However, there is a possibility that the minimum value of 〈W (ηo)〉 is changed
by several factors, which depend on the numerical precision in solving the expansion coefficients,
CmL , in Eq. (7). Thus, in the present calculation, it is difficult to judge exactly whether the SG basis
is superior to the OG basis or not, although both the SG and OG bases are considered to give at least
better results than the result of the TG basis.

According to the difference in the error, 〈W (ηo)〉, the optimized resonance parameters are also
different among these three bases. All the basis calculations give almost constant resonance energy,
ER ∼ 1.17 fm−2, but the decay width �R in the TG solutions is smaller than in the other two bases.
As shown in Fig. 3, panel (1), the tail part of the SG resonant wave function has an oscillation with
a small amplitude. However, the TG resonant wave function in Fig. 4, panel (1) cannot completely
follow the oscillation confirmed in the SG solution of Fig. 3, panel (1). This insufficient oscillating
behavior of the tail part leads to a reduction of the decay width in the TG solution. The resonance
parameter calculated from CSM is shown in the bottom row for comparison. The CSM calculation
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Fig. 9. η trajectory of the resonance eigenvalue in the complex energy plane. In panel (a), the double square
shows the optimal point of the resonant level with η = ηSG

o . The solid circles show the eigenvalues around
η = ηSG

o , and their variation range of η is the same as the abscissa in Fig. 6. Panel (b) is an enlargement of
panel (a). In both panels, the abscissa and ordinate denote the real and imaginary parts of the eigenvalue,
respectively. The arrows indicate the moving direction of the resonant state.

is performed by employing the harmonic oscillator basis function [11]. The SG and OG results are
consistent with the result of CSM although the OG results seem to be close to the CSM calculation.

3.4. η trajectories of resonant states

We have confirmed that an optimal value of η really exists, which minimizes the error contained in the
resonance parameter. In this section, we observe the η trajectory, which is the trajectory of the res-
onance eigenvalue generated by varying the strength of the absorber. In particular, we check the
basis dependence of the η trajectory. According to the previous ABC studies in Refs. [15,18,19],
the η trajectory of the resonance state reveals the stationary behavior around the optimal strength
of ηo. Moreover, the CSM study [9,10] has pointed out that the stationary behavior (or “slow-down
behavior” in the authors’ terminology of Refs. [9,10]) occurs in the θ trajectory, which is a series
of resonance eigenvalues obtained by varying the rotational angle θ . The resonance trajectory as a
function of the controlling parameters, such as η in ABC or θ in CSM, is quite helpful in speculating
on the position of the exact resonance eigenvalue in the case of an insufficient basis number.

Figure 9(a) shows the η trajectory of the SG basis. The mesh of the η trajectory is set to
	η = 1.0 × 10−6 for this calculation. In this trajectory, the resonant eigenvalue moves in a clock-
wise direction as the strength η increases, and the series of eigenvalues describes a circular trajectory.
In this trajectory, the double square shows the eigenvalue at the optimal strength, η = ηSG

o , while the
solid symbols denote the eigenvalues around the optimal strength. The variation range of η for the
solid symbols in Fig. 9(a) is the same as the range of the abscissa shown in Fig. 6. Figure 9(b) is the
enlargement of the η trajectory around η = ηSG

o (	η = 5.0 × 10−7). In Fig. 9(b), we can observe
that a series of the eigenvalues becomes dense around the optimal strength of the absorber (double
square). This dense behavior means that the resonant state is stationary with respect to the variation
of the absorber strength; specifically, the resonance wave function is insensitive to the variation of
the absorber strength just around η = ηSG

o . The circular trajectory in Fig. 9(a) and the stationary
behavior in Fig. 9(b) are completely consistent with the previous analysis of ABC plus the harmonic
oscillator basis [15,18,19].
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Fig. 10. Same as Fig. 9(b), but for the result calculated by the OG basis. See text for details.
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Fig. 11. Same as Fig. 9(b), but for the result calculated by the TG basis. See text for details.

The η trajectory calculated for the OG basis is shown in Fig. 10. Here the mesh of the trajectory is
	η = 1.0×10−6. In Fig. 10, we can observe the stationary series of the resonant eigenvalues around
η = ηOG

o (double square), which shows similar behavior to the SG trajectory in Fig. 9(b). In both
the SG and OG trajectories, the sharp turning of the trajectory appears around the stationary region
with the optimal ηo, and the eigenvalue begins to move over a wide region if the strength goes beyond
the optimal ηo. In CSM, the resonance trajectory reveals slow-down behavior, in which a series of
the eigenvalues settles almost into a stable point, if the number of basis functions is sufficient. In the
ABC calculation, such slow-down behavior corresponds to the stationary behavior around the sharp
turning, but the eigenvalues begin to leave the optimal point when the strength of the absorber is
larger than its optimal value. This movement of the resonance is because a reflection effect from the
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absorber becomes prominent. The resonance trajectory, being apart from the optimal point after the
slow down, is also observed in the CSM calculation with an insufficient basis number [9,10].

Different behavior can be observed in the η trajectory of the TG basis, which is shown in Fig. 11. In
this trajectory, the mesh of η is set to be 	η = 1.0 × 10−6. In the TG solution, there is no stationary
and sharp turning behavior of the resonance around the optimal strength of ηTG

o , which is shown by
the double square. We can see a monotonous increase of the level density around the double square.
This monotonous variation is consistent with the broad minimum in the expectation value of the
absorber, 〈W (η)〉, shown in Fig. 7. This broad minimum means that the resonance wave function
is insensitive to the wide variation of the strength of the absorber around the optimal strength. This
insensitivity is in contrast to the results of the SG and OG bases in Figs. 6 and 8, respectively, in
which the sharp minimum points appear at the optimal strength.

4. Summary and discussion

In sum, we have applied the basis expansion method to a schematic two-body problem under the
absorbing boundary condition. Three kinds of basis functions are employed: the shifted Gaussian
(SG), the tempered Gaussian (TG), and the oscillating Gaussian (OG). The applicability of these
Gaussian basis functions is explored by observing the complex eigenvalues, the wave functions, and
the η dependence of the resonance eigenvalues.

First, we have focused on the properties of the energy eigenvalues of the continuum states, dis-
tributed in the complex energy plane. In the calculation by the SG basis, the distribution of the
continuum eigenvalues is in accordance with an empirical sequence composed of the converged,
indifferent, and diverging states. Moreover, not only the sharp resonance but also the broad reso-
nance is clearly separated from the continuum states. In contrast, the distribution of the continuum
states obtained by the TG basis deviates from the regular sequence. Some of the lower eigenvalues
in the TG bases can follow the θ line of the converged states, but the deviation from the regular
sequence is especially prominent in the indifferent states, which should have almost a constant value
for the imaginary part. In the TG solutions, the maximum range is much more extended in compar-
ison with the SG basis, but the broad resonance, which has a large imaginary part of the eigenvalue,
is difficult to find in the complex energy plane. The OG calculation is successful in identifying the
broad resonance, although the sequence of the non-resonant continuum deviates from the empirical
regular sequence.

Secondly, we have compared the wave functions calculated by three kinds of basis functions. There
is a strong basis dependence in the oscillation behavior of the wave functions. The non-resonant wave
functions calculated from the SG basis strongly oscillate over a region of wide distance, and the
amplitude of the non-resonant wave functions reaches a maximum at a distance far from the physical
interaction region. The oscillation of the indifferent states is the most extensive of the three continuum
states. The wave functions calculated from the TG bases cannot follow this extensive oscillation
outside of the interaction region. The OG solutions can describe the extensive oscillation, although
their main amplitudes are considerably localized at the inner region close to the physical interaction
region.

Thirdly, we have investigated the expectation value of the absorbing potential, which is a measure
of the error contained in the resonance wave function. In all the basis calculations, there is an optimal
strength of the absorbing potential, which minimizes the error, and the small error is realized in the
SG and OG bases. The η trajectory of the resonance is also observed in the complex energy plane.
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The η trajectory in the SG and OG calculations reveals stationary behavior around the optimal η, but
such stationary behavior does not appear in the trajectory of the TG calculation.

In view of the series of the present simple calculations, the shifted Gaussian is considered to be
the most appropriate basis for the absorbing boundary condition. Of course, the basic feature of the
oscillating Gaussian is the same as that for the shifted Gaussian and, hence, the oscillating Gaussian
is also an applicable basis to the absorbing boundary condition. In the basis expansion method under
the absorbing boundary condition, one of the errors arises from reflection by the absorber, which has
a diverging property at an asymptotic region. To reduce the reflection from the diverging absorp-
tion, damping of the wave function must occur slowly as the distance increases. This slow damping
requires that the basis functions are feasible enough to produce a broad and extensive oscillation of
the wave function. Since a set of the shifted Gaussian is simply generated by shifting the peak posi-
tion, a superposition of the shifted Gaussian can handle the wave function, which has an extensive
oscillation over a region of wide distance. The present results justify the successful application of
the ABC method to the microscopic cluster model, GCM, in which the shifted Gaussian naturally
appears in a basis function [20,21].

In the present results, the tempered Gaussian seems to be inferior to the shifted and oscillating
Gaussian bases. However, the tempered Gaussian itself is not necessarily inappropriate for the ABC
method. In the variational calculation by the tempered Gaussian, there is a difficulty in generating
the orthogonalized basis set, which is important in following the oscillating behavior over a wide
region in the continuum wave function. As shown in the present analysis, the total number of the
tempered Gaussian and its maximum range should be extended more than the calculation of the
shifted and oscillating Gaussian, to generate a sufficient number of the orthogonalized basis sets.
Thus, a pragmatic calculation employing the tempered Gaussian will be time-consuming in handling
few-body systems.

In marked contrast to the present results for the absorbing boundary condition, the application
of the tempered (and oscillating) Gaussian basis is successful in the complex scaling method [6,7].
In the complex scaling method, no asymptotic divergence in the matrix elements appears as long as
the analytic properties of the physical interactions in the original Hamiltonian are not destroyed by the
complex scaling. Thus, all the matrix elements of the physical interaction are safely damped in the
asymptotic region. Moreover, in the complex scaling method with the tempered Gaussian, the scaling
condition of r → reiθ is transformed into the inverse scaling of the width parameter such as ν →
νe−2iθ = (cos θ − 2i sin θ)ν [7]. Due to this inverse scaling, the tempered Gaussian has an oscillat-
ing feature, which is similar to the distribution of the oscillating Gaussian basis. Since the oscillating
Gaussian can nicely describe the extensive oscillation around the interaction region, the scaled
tempered [7] and oscillating [6] Gaussians are good trial functions for the complex scaling method.

Finally, we should comment on the application of the ABC method to few-body systems. In the
present binary system, both the shifted Gaussian and oscillating Gaussian are successful in describ-
ing the resonance and continuum solutions. However, the oscillating Gaussian is superior to the
shifted Gaussian if we consider the application of the ABC to few-body systems. In calculation of
three-body systems, for instance, the coordinate rearrangements are essential to obtain the conver-
gence of the total binding energy [1]. 2D integration appearing in the three-body matrix elements
must be numerically performed if we handle the coordinate rearrangements by employing the shifted
Gaussian basis. The multi-dimensional integration is quite time-consuming in few-body systems
beyond three particles. In contrast, the oscillating Gaussian is a flexible basis for handling the
coordinate rearrangements because the matrix elements with the rearrangements can be calculated
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in an analytic manner [1]. Due to this flexibility, the oscillating Gaussian will be a pragmatic basis
function in the few-body calculation under the absorbing boundary condition. We are now applying
the ABC method to the three-body problem with coordinate rearrangements.

In conclusion, we should carefully consider a combination of trial functions and a boundary condi-
tion according to a kind of non-Hermitian transformation. It would be better to choose a type of trial
function by considering the features of the non-Hermitian transformation. In the present analysis,
we have mainly discussed the properties of the energy eigenvalues and their wave functions. How-
ever, a similar investigation of the basis dependence is interesting for the calculation of the strength
function and the sum-rule value [7,11–14]. If we assume the extended completeness relation for the
bound, resonant, and continuum states under the absorbing boundary condition, which has already
been justified in the pragmatic calculations of the complex scaling method [7,12–14], we can easily
calculate the strength function from the discretized solutions of the absorbing boundary condition.
An analysis of the strength function and the extended completeness relation in the ABC method is
now underway.
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