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Abstract

Operation of the Large Hadron Collider (LHC) with protons has revealed that dif-
ferent bunches evolve differently mostly due to the interaction between the two
colliding beams and due to electron clouds that form inside the vacuum chamber.
This thesis studies these effects through modelling with numerical simulations and
analysis of the available experimental data. The analysis of the beam loss rates
measured during Run 2 of the LHC, and identifies that electron clouds forming in
the common beam chamber of the quadrupole magnets near the high-luminosity
interaction points are the main cause of beam losses. Moreover, the evolution of the
beam observables (beam loss rate and emittance growth) is slow enough that it can
only be observed over a timescale that lasts multiple hours. The simulation of such
timescales is typically very time-consuming and can become impractical to simulate.
In this work, Graphics Processing Units are employed to simulate distributions of
particles in parallel for longer timescales (in the order of several tens of minutes).
Simulations of the long-term effect of the beam-beam interaction done in the con-
text of this thesis show that under the weak-strong approximation, the qualitative
behavior of the beam loss rate evolution is reproduced. Additionally, they showed
that the beam-beam interaction by itself does not contribute to emittance growth or
to the development of tails in the transverse beam profile distributions. Simulation
of the effect of the electron cloud on the slow beam degradation is much more chal-
lenging than for the beam-beam interaction. In fact, due to the complex electron
distributions that form in the electron cloud, simulations of such effects need special
care. Here, a framework for the simulation of slow beam degradation due to electron
cloud effects is developed. In this framework, the weak-strong approximation is used
to apply the map that describes the interaction with an electron cloud distribution
that is at its typical dynamic equilibrium. The electron distribution is calculated
with Particle-In-Cell simulations during pre-processing and the scalar potential that
describes the interaction is interpolated with a tricubic interpolation scheme in order
to preserve the symplectic structure of the map. Moreover, a method is developed to
refine the potential in order to combat the limitations of the interpolation scheme.
The simulations performed in this work show a clear slow beam degradation due to
electron clouds through Frequency Map Analysis, calculation of dynamic aperture,
as well as through the estimation of beam loss rates and of slow emittance growth
from simulations with particle distributions. In addition, a stochastic and non-linear
model for the response of the PICOSEC Micromegas detector is developed in the
context of research and development for particle detectors. The presented model is
constructed in order to gain insight on the main physical mechanisms causing the
previously observed behavior in the response of the detector, found both in mea-
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surements and detailed simulations. The model is based on a simple mechanism of
“time-gain per interaction” and employs a statistical description of the evolution of
the electron avalanche that forms. It describes quantitatively the dynamical and
statistical properties of the microscopic quantities, which determine the PICOSEC
timing characteristics, in excellent agreement with the simulations. In parallel, it
offers phenomenological explanations for the behavior of these microscopic variables.
The formulae expressing this model can be used as a tool for fast and reliable predic-
tions, provided that the input parameter values (e.g. drift velocities) are known for
the considered operating conditions. Overall, this thesis identifies the main mecha-
nisms for beam losses in the LHC and develops a practical approach for modelling
such long-term effects in numerical simulations of beam-beam and electron cloud
interactions, which are critical for the success of high-luminosity particle colliders.
Furthermore, it proposes a simple model to explain the behavior of the PICOSEC
Micromegas detector which can be used to optimize its performance. The developed
methods, tools and simulation results provide critical input for the high-luminosity
upgrade of the Large Hadron Collider and upgrade of detectors.
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Extetouevn Ileglindm

H Aertoupyla tou Meydhou Emtoyuvty Adpoviwy (LHC) pe mpwtovia amoxdhupe 6Tt
OLopopeTIXEG UTOOECUES EEEAIOOOVTOL BLapORETING XUPlwe AOY® NG ahAnienidpaong
HETAZ) TV U0 CUYXPOUOUEVLY BECUMY XAl AOY( TOV VEQMY NAEXTEOVIWY TOU Oy NUo-
tiCovton péoa oto Védhauo xevol. H mapodoo datelr| availel Toug puiuols am®Aelog
0éounc mou peTprUnXay xotd TN Sidpxela TN dedtepou xOxAou Asttoupyiog Tou LHC
xou TeoodLopileL OTL Tal VEQT NhexTeoviny Tou oyruatilovia 6Tov xov6 VdAaLo déoung
TWY TETPATOAXOY LAY VNTOVY XOVTE 6TaL orela ahAnienidpaone LPnifc puTevoTnTog
ebvon 1 wOpLor antiorn yior TiC opYEg amwheleg déoune. Emmiéoy, n eCEMEN Tov Topatnerot-
uov ueyedov e déoune (puduodg ammdhelag déoune xo adENoT TNS EXTEUTTIXOTNTOC)
elvon apxeTd apyr) (ote vo unopel va topatneniel uovo oe Ui yeovixr) xAluaxo Tou
oapxet apxetéc Hpec. H mpocopoinwon tétolmy ypovixmy xhudxwy eivor cuvidwe to-
AO yeovoopa xaL 1) TPocoUolncn TNg UTopel Vo xoTas TEL avEPXXT. XTNV TpoLo
epYaold, YENOWOTOOUVTOL UOVAOES EMEEEQYUCIOG YRUPIXWY YId TNV TPOCOUOIOT) Xo-
TOVOUMY CWUATLOIY TUREAANIL Y10t UEYOADTERES YPOVIXES XAlpoxes (TNg TEENG YeptxdY
dexddwy hemtwv). Ot TPOGOUOLWOELS TNG haxpompoeoung enldpaone Tne alAnienidpo-
ong 6éoung-déoung mou €yvay 6To Thaloto auTAS TNG daTe3ric detyvouv 6Tl uTS TNV
ao¥eVh-loyLEY TEOGEYYIOT, 1) TOLOTIXY| CUUTERLPORE TNE ECEMENG TOU pUUUOY aAmWAELNS
¢ Béoung avamapdyeton. Emmiéoy, €deilav 6T 1 alknienidpact déounc-6éoung amod
HoVN TNS 6ev oLUBAAAEL 0TNY OENCT) TNG EXTEUTTXOTNTAC 1) OTNV AVATTUET OUPWY OTIC
XOTAVOUES TWV CWUATOIWV TNE 0éoune oTo eyxdpoto eninedo. Anéd tnv dhAn Thevpd,
Ol TPOCOUOLOCELS TNG ETUOEAOTS TOU VEQPOUS NAEXTEOVIWY oty apy? utofBdiuion tng
dcoung Oev eyel pehetniel 1600 AETTOUERNS 600 1) AAANAETDEACT) BEOUNG-OECUNG OTN
BBhoypapio. EE outiog Ty TOAITAOXWY XATAVOUMY NAEXTEOVIWY Tou oy nuatilovTo
07O VEQOC NAEXTEOVIWY, Ol TPOGOUOWOCELS TETOLWY EMIBEACEWY YpeldlovTtat oLiTep
Teocoy Y. LNy Topolou pyaucio TapouctdleTal xat avamTOCoETAL Vol TAXLGLO Yol TNV
Tpocouoiwon NS apyhc LTofdiuone tTne Béoung AdYw VEQOUS NAEXTEOVIWY. XE auTod
T0 TAXLCLO, YPNOWOTOLETOL 1) ACVEVAC-LOYLET] TPOCEYYLOT] YId TNV EQUPUOYT TNG ATEL-
XOVIOT|G TIOU TEQRLYPAPEL TNV UAANAETIOPAOT) UE IOl XAUTUVOUT] VEQOUG NAEXTEOVIKY TOU
Beloxetan oty TUTKA TNG Buvor| loopporio. H xatavour| niextpoviwy utoloyileton
ue mpoocopolwoelg Particle-In-Cell xotd to otddo tng npoeneéepyasiac xa to Bard-
HWTO BUVAULXO TIOU TEELYRAPEL TNV OAANAETIDPACT) TOREUBAAAETOL UE €Vl TELOOLEG TOTO
©xUPW6 oy o TapeUBolhc TeoxEWEVOU Vo SlatnenUel 1 GUUTAEXTIXY| DOYT| TNG ATEMOVL-
ong. Emmiéov, avartiooeton pio pedodog yio T BeATiton) Tou Suvouxo) TROXEWEVOU
VoL xoTamoheunoly ol Teploplolol Tou oy fuatog TapeuBoiric. Ol TPOGOUOWOOELS TOU
mpoydatomot\dnxay oe auth TNV gpyacta delyvouv wor cagy apyr| utofBdduion tng
OEOUNG AOYW TV VEQPOY NAEXTEOVIWY UECK TNG AVAAUCTS ATEOVIONS CUYVOTHTWY,
TOU UTIOAOYLOUOU TOU BUVAUIX0U €0p0ug, xad®e ot PEow TNG EXTUNONG TV pUIUGOY

vii



ATOAELG BECUNG ot TNG apYHS AOENONG TNG EXTEUTTIXOTNTAS OO TEOCOUOWMCELS UE
AATUAVOUES COUATIOV.

Y1y npoondletd Toug va meptypdhouy Toug VEUEALMOELS VOUOUS TNG QUOLXTC, Ol
puoLxol €youv oTEAPEl OTY YEYON ETULTAYUVTOY CWUATIOIY TEOXEWEVOU VO EXTEAEGOLY
eAEY Y OUEVA TELRUOTA UE CwPaTiOl UPNATS evépyEtag. O oyedlaoudg EVOg EMTUYUVTH
ETXEVTPOVETAUL oLUVATLG YOpw amd Ty ‘ontixh’” Tou. H omtnd| ouvicTtatan ovolaoTi-
%8 OTN CUYXEXPWEVT TROQod0GtN PEVNTOS Xde pay VTN TeoXEWEVOU Vo emtteuy Vel
€vog ouyxexpévog otoyos. [ mopdderyua, ol xUplol TeTpamoAxol poryviTeg Teo-
(odOTOUVTOL ETOL HOTE Ol TAAAVIWOELS TWV TV TEwToviny va unv urtepBaivouv o
otadéotuo dvoryuo péoa 6To VAo %xEVoD. 2 Eva GAAO TEOTO, LoYUEd TETEUTOAN TO-
rodeTolvTar YOpw and o onuels olYREOUOTE COUUTIOIWY GTOV ETLTAYUVTY, Ta oTtola
TEOPOOOTOVVTAL PE TETOLO TEOTO WOTE To Uéyedog TNng Béoung va ebvar eAdytoto 6To
onuelo ahhnhenidpaone Twv 800 BeCU®Y, ALEAVOVTAS ETOL TNV TUXVOTNTA TWV TEwW-
TOVIWY XL GUVETKE TOV optlud TwV cuyxpoloewy. And tny drodn e QUohAC TNS
dEoung, meeNEL var dovel 1oLalTepn TEOCOY Y| TROXEYWEVOU Vol atoPeUYJOUY QuVOUEVA TTOU
ebvor emlAuter yior T o TadERT| XIVNoT) TWV TEWTOVIKY HECU OE EVOY XUXAMXO ETLTUYUVTH
vmArc evépyetag. Mot onuovTnd xatnyopia TETOIWY EMLAUWY QAUVOUEVLY Eval QUTA
TOL OVOUALOVTOL LOVO-CWUATIONNXS UN-Y OIS (pouvoueva xow cuVdwe oyetiCovTon ue
UNFYEoXd dary viTixd Tedlor ot dtdtadn tou emtoyuvTr. O yayvhtee udmihc téing
(eZomohixol, oxtamolxol, dexamolixol, x.AT.) yenotpomoolvton yia T Stoednorn twy
TV UN-YEUUUIXOY ATERELDY 6T TEdla TwV poryvtey. Emmiéov, ot e€amohixol xou
OXTUTOAXOL LY VATES YENOLOTOUVTUL GUVATWE YLl VO TROXUAECOLY Ulal GUCYETLON
HETOEY TNG CLYVOTNTOG TAAAVTWOTG EVOS TEWTOVIOU UE TNV EVEQYELS TOU 1) TO TAdTOC
¢ TaAdvTwoTc Tou. O éleyyog auThc TNg oy€orng elvor amapaiTnTog Yo TNV AmoQuUYN
oUUQwNG aoTodg xivnong Tng Béoung, €va QUIVOUEVO TOU QVAXEL OTNY XUTNYopid
TWY CUAOYWOY Qawvopévey. EE oplouol, to cuhhoyind qawvoueva elvon exeltva to o-
ol ogeilovTton 610 YEYOVOS OTL TOMATAG oeuaTidl eival TUPOYTH GTO ECWTERIXG TOU
emToyLVTH. Axohoudoly oplouéva tapadetyuata TETOLWY Qouvouévwy. H ahhnienidpo-
o1 HETAED BLopOpeY COUTIOIWY oTny (Blor SEoUT avapépeTol CUVATWS WS ~QUVOUEVO
duecou ywewol goptiou”. H duson adinienidpoon puetall 800 SLopORETIXOY BEGUMDY
(070 onuelo 6mou oL déopeg ouyxpovovtan) ovoudlovto “awvoueva dEoUNe-6Eoung”.
To tpwtdvia unopolyv entong va aAANAeTOEoLY uueca. [or Tapdderypua, o YEWUETEL-
%8 bptor Tou Vahopou xevol (VToVETOVTaG TENELX AYWYLLOTNTA) ELGEYOUY TO (QPOVOUEVO
TOU "EUPECOU Yweixol @opTiou”, Tor onola cuVH IS TEPLYEAPOVTL AT EOVIXA QOp-
tlo. Emmiéov, ol Ydhouol Twv omolwy Tor TolyOUaTta @EpoLY NAEXTEWXY avTicTaon 1
ATOTOPES HETUPBAOELS OTN YEWUETPIO TOUG UTOPOUY VoL TROXAAEGOUY NAEXTEOUNY VITIXG
medlor Tou emdyovTon amd Tr dEoun xou xaduoTepoLy authc. ‘Eva dAlo eldog éuueong
aAnhenidpaong efvar auTd TV QovouEvwy VEQoug niexteoviwy. H (B 1 déoun uro-
Pl VoL EUVOY|OEL T CUCCMOPEVCT) TIOYLOEUHEVLY NAEXTEOVIWY EVTOC TV TOLYWUATWY TOU
YoAdpou d€oung, av 10 UAXO TOU TOOUATOS Tou Yokduou déounc TAneol oploUéveg
TEoUTOVETES Xl ETUTEENEL TOV TOMATAACIUOUO TWV NAEXTEOVIWY. XtV mopoucio
(PULVOUEVGY VEQPOUS NAEXTEOVIWY, Tol CLUUTIO TNG DECUNG XAl TO VEPOG NAEXTEOVIKV
A NAETOEoUY UeTOEY Toug. ‘Ohot Tol TORATAVE QPOUVOUEVOL UTOPOUY VoL ETNEECCOULY
N evotdieln TG B€oung, Omou Ta CWUATIO TNG GEoUNG EXTEAOVUY GUUPUCLXES To-
AAVTOOELS oL OTolEC EMNEEGCOUV Tol GLWUATIOWL TS BEoUNG, awgdvovTag xdle opd To
TASTOC TWV TOAAVTOOEWV.
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QoTt600, axdun xo 6toy oL acTddEleg TG CUVEXTIXNC Oéoung EAEYYOVTAL, TOl E-
Ty OUEVA NAEXTEOMOY VNTXE TEDio amd o Td Tor PouvoUeva eivor GLVATWS UN-YEUUUIXA.
AuTd o un-y o s NAEXTEOUOY VTG TEG{0L TROXUAOUY UN-YROUULXOTNTA OTIC TPOYLES
TWY PEUOVOUEV®Y COUATIONY TNG OECUNG, TUEOUOLOL UE TU TEOUVIUPEQVEVTA (POUUVOUEVAL
UELOVOUEVWY COUATIOWY. Xe auTh TNV TepinTwot), ovopdlovTal Un-CuUQactxd @al-
voueva (nhadi| xde couatidio extelel TUAAVTOOELS TOU €YOLV BLOPORETIXY QAo ATo
o utdrotna copatidi). To neplocdtepa un-cuvextixd Qouvouevo odnyolv o€ Toh)
oY1) aOENOT TNS EXTEUTTIXOTNTAC TN BEoUNG Xt OE PElwon Tou yeoévou Nulwnic Tne
ocoune. To un-cuvextind gouvéueva €xouy cuV L TOAVTAOXT TEQLYEAUPY| X0k TO ATO-
TEAEOWE TOUG elvol TUPATNEHOW HOVO OE PEYBAES YPOVIXESG XAluaxeg, oL omoleg elvor
oLVNIWE ATEOGITEG GE TPOCOUOLOELS. LTNY TOEOUCA BLATELEY, Tl UN-CUUPUCLXS (ot
voueva ou apatneolvton otov Meydho Entayuvth Adpoviwy (LHC)[I] peketdvro.
O LHC civar o peyolltepog péypl OAUEpa EMITOUYLVTAC UE TNV UPNAOTERT EVEQYELX
xévtpou pdlog. Ipdxettan yia éva o0y ypoTteov, Ue didtaln enavahauBavouevey FODO
(Eotiaong-Andxiiong) xehidv mou anoteholy T cuvtelntixy| Thetodmela tne Sudtadnc
Tou, 1 omoia ywelleton o 8 t6&a xou 8 mepLoyéc eloaywYHc. Evod ta 8 16&a anotelo-
OvTon oyedov €€ ohoxhfpou and xehd FODO, uio mowakior e€omhiopol nepthopBdveto
OTIC TEPLOYES ELCAYWYNG (Insertion Regions). ISwadtepne onuaotog eivar 1 teployn et-
oaywyhc 1 (IR1), n nepoyy| eroaywyhc 2 (IR2), n neproyn ewoaywyhc 5 (IR5) xou 7
neploy Y| eloaywyrc 8 (IR8), 6mou tonodetolvta ov aviyveutéc ATLAS[2], ALICE[3],
CMS[4] xow LHCb[5] avtiotorya. O otdyoc tou LHC elvan va cuyxpoloviar mpemtdvia
(1 dAAa aBpbvia) oTo *évtpo xoevoe oamd toug aviyveutéc. ‘Eva péyedoc mou eivo
aveldpTtnTo amd 10 UG TN avapopds xal oyetileton o peydho Podud e Tov aprdud
TWY CUYXEOUCEWY EVOL 1] PWTEWVOTN T

O x0prol mapdyovteg mou emnpedlouv Tn QwtewvotnTa eivon TAnducpol twv uto-
OéouwY, 0 oELiUoC TV LTOBECUMOY Xou 1) (I.1M.8.) EXTUON TWY BECUWY OTO EYXJQECLO
eninedo, oto ornuelo g olyxpouonc. Alhol mopdyovteg ennEedlouy T1 PWTEVOTNTA
elvor oL YoVie BlaoTadpwong YETAED TwV 800 BECUMY, Ol UN-UETOTIXES CUYXQEOUCELL,
Ol UMY XUOUGLOVES XATUVOUES COUATIOWY TwV BEOU®Y, HETUEY GAAwY. 'Evo uixpdtepo
uéyedoc déounc xan €voc ulmidTepog TANUUOUOEC BECUNG WEAVOUY TNV ToEOYOUEVN
putevdTnTa. Me TV ehayiotonolnon g abénong TN EXTEUTTIXOTNTAS, 1) OTolal OyE-
Tileton dueoa ye to péyetog Tng GEoUNG, Ao UEYIOTOTOIOVTAS TO YPOVo NUloNg TNg
OEOUNG, 1) PWTEVOTNTA XAl ETOUEVKC 1) ‘Topory WYY ouyxpeoLoewy’ avidvetar. H uehét
TOL TEOVCLACETOL EOG APORA TAL UN-CLUVEXTIXG GUAAOYIXS (ouvOpeva ToL ool uTto-
Borduilouvy t0 yedvo NUIleNc TNg d€oung xon TEoXAAOLY adENCT TNG EXTOUTTIXOTNTOG
oTi¢ 0€oueg Tpwtoviwy otov LHC. Ta 800 mo onuavtixd @ouvoueva autol Tou TUToU
Becinxay va ebvon 1 aAAnAentidpoor) BECUNG-OECUNG XAl T PULVOUEVY. VEQPOUS NAEXTRO-
viwy. Ot TpOCOUOIMCELS TV UN-CUVEXTIXWY QUIVOUEVGY DECUNG-OEOUNS EYOLY UaXEd
loTopla Ye Bdom tov @oppoioud mou avartiydnxe oty avapopd [6] xou yenotpomol-
ovtog Ty acvevi-loyuey| tpocéyyiorn. H aclevric-loyuer| mpocéyyion avagpépeton oe
TEOGOUOLWOELS 6oL Eva ‘acVeVES cwuatidlo yehetdtar LTS TNV enidpoon Uiog ‘ioyu-
e’ 80voung 1 omolo dev unopel va ennpeactel amd 1o ‘aceveég’ cwpatido. Tpdxeiton
Y10 Lot TROGEYYLOT) TTOU EfVal XUTUAANAT] VLot 0EY S UN-CUVEXTIX (QPOUVOUEVA AOY ) TOU
OTL TEOXAAOVUY HOVO Uixpég aAlayéc oTor Teogih tng déounc. Me autév Tov tpdTO,
oL NAEXTROMOY VITIXE TEd{ar Tou Topdyovtar and uior dhkn déoun (o oAAnhemidpdoels
Béopng—Béow}g) 1 and €va VEQOg nhextpoviwy unopel vo utohoyiotel uio gopd xan va
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yenoworoiniel yioo Ty eniAUCT) TOAMATAGY POPGY TV EELOMOENY xivnong Tou “dove-
voUg” owuaTdlou uTtd TNV ENidEAUCY| TOUG.

H 1o7oplor TV Un-cuvextixdy Qouvouévmy Tou VEQoug NAeXTeoviny ypovohoyeitol
xatd T tehevtadeg 600 dexoetiec. To mpwiua anoteAéopata TpocoUOlwoNg amoTE-
AoOvTal amd UTOAOYIOUOUEC TNG OLICTIORAS TWV CLUYVOTATWY TOAAVTWONS, TWY CTEE-
BAOOEWY TV BNTATEOVIXGY CUVIRTACEWY Xl TNG BLAoToRdS, xadng xou Tng o0leuing
ouYYEoTEOVIXWV-BNTatpovixdy Tohavtdoewv(T, 8, 0]. Optouévec npoondieies éytvoy
Yoo TV TEpLypapr) TG EEMENS TOU VEQOUC NAEXTEOVIWY PE TN YPNOT ATAOTONUEVCY
HoVTERWV[LI0] xou vor UTOAOYLETOUY AVOAUTIXG Ol SUVGUELC TOU TEOXUAOUVTOL GTOL G-
potidla Tng déounc. Autéc ol mpooeyyioelg Peédnxay Bohxéc and dmodn yedvou u-
TOAOYIGUO0, 0AAS BEV UTOPOUGUY VoL TEPLYEAPOUY PEUMGC TIXES XUTAVOUES TOU VEQPOUC
NAEXTEOVIWY %ATE TNV ToEousta XAIOEWY GTO Yoy VNTXO TEBLO TNG U1 CUVEXTIXTG &-
TdpaoNg TOLU VEQOUS NAEXTEOVIWY PECE AUTOCUVETY TROGOUOIWOERY CWUATOIY
Particle-In-Cell[IT]. H mpocéyyion auty dlomotainxe 6t eivon eonpetind amantn-
TIX) OE UTOAOYLO TIXO YPOVO Xal BEV UTopoUGE Vo ETLTEEDEL TNV TEOGOUOIWGT) UEYIAWY
YEOVIX®Y XAUEX WY TOU ATOUTOUVTAL YL TNV UEAETY] AUTOV TOV QUUVOUEVKY GE PEAALC TL-
%€ dlapoppnoelg. Emyeipfinxe n aceviic-loyuer| tpoceyyion otic ocvoccpopég[12, 13],
OTIOU OL BUVYUELS TOU VEQPOUS NAEXTEOVIOY TEO-XATHYAPNXAUY OE EVal OLOXQLTO TAEY-
uo pe Bdomn mpocopolhoelg TN duvouxrc Twv niexteoviwy Particle-In-Cell. Av xou
TOAD TayUTEpa and dmon and TAEVEAS YEOGVOU UTOAOYIGUOU, amoLTElTaL 1) YeHoN EVOC
oy AuaTOC TUEEUSOAAC VLol TOV UTOAOYLOUO TwV BUVANEWY O oToldN|toTe Vé€or Tou
cwuatdiou e 6éounc. Xe auTég TIC epyaoiec, To (ATNUA TNG CUUTAEXTIXOTNTAC OEV
elye avtetwmioTel.

H perétn mou moapouctdleton otnyv mopodoo dlatel3y| TeoTelvel T yeNon Wiog mo-
pouolag mpooéyyiong mou Bacileton oty acevi-loyver tpocéyyiorn. (2oTdo0, TO
oo ToEEUPOAAC EMAEYETAL €TOL MOOTE Vo DLATNEELTAL 1) CUUTAEXTIXY) Bopn TwY €L
owoewv xivnong, mpoxewévou va Pehtiwiel ) aprduntiny oxelBeta. H yprjon cuule-
ATV ATELXOVIOEWY Elvar eTtloNg YVWOTO 6Tl xaTas TEAAOLY TNV TEYVNTY avamTuén N
anbofean oTg THAVTOOES (BNTaTEoviey Xot cUYYEOTEWY) TWV COUATIIWY oE Evoy
ETUTAYLVTH OTIOL 1) XIVNoT TwV ouuaTdiwy uropel vo Yewpniel Xouhtoviavi[I4]. Xoy-
pwvo Ue TNy aodevi-loyuen Teocéyyion, To {hTnua Tou YopiBou Aoy w Tou dluxpttol o-
ELIUOU TOV HOXPOCKHUATIONMY TOU EXPEALOLY TNV XATUVOUT| TOU NAEXTEOVLOXOU VEQOUS
Zemepvi€tan PE TN PEOT TYY| TOAAATAMY TEOGOHOWWoEWY. Emlong, éva oyfua yio
Behtiowon Tou duvouLxol Tou TERLYRAPEL TNV IAANAETIDEUOT TOU VEQOUS NAEXTEOVIWY
VO TUCOETOL TEOXEWEVOU VAl VAL XATATOAEUNI00V OL TEPLOPIGUOL TOU Oy AUATOC TOREY-
Bohfc. Me autd o epyahelo, 1 SuvouLxn TwWV TEWTOVIWY LTO TNV ETIBEACT) PEAMO TIXWY
XUTAVOUMY VEPOUS NAEXTEOVILY TOOCGOUOLOVETOL EVE) YPTOULOTIOLETOL EVOL UMY QOUUIXO
wovtého tne mohlmhoxne owdtagne tou LHC. Ou ypovixée xhipoxes npocouoiwong e-
xtebvovTon £6¢ xou apxeTd Aemtd amoifxcuong 6éoune otov LHC, napéyovtag ye autodv
TOV TPOTO TOGHTNTEC TOU UTOEOUV Vo Topatnendody 6T CUVIHXES TOU TELAUATOC.
Téhog, 1 woyl¢ and UOVTEPVES XUPTES YEAUPLXWY (Graphics Processing Units) olo-
ToLe{Ton Yo TNV TUEdAANAT TeocouolwoT peydiou apriuol TpwToviemy. ¢ anotéle-
OO, TTROGOUOLWVOVTOL PEUALS TIXEG XATAVOUES CWUATIOIMY UEGW UEYAANG axpifelog xou
CUUTAEXTIXGY HOVTEA®Y TOc0 TNng Owdtadne tTou LHC 600 xan twv adnhemidpdoenmy
TOU VEQOUG NAEXTEOVI®Y, YLl PEXAMCTIXEC YPOVIXEG XAUUXESC. XTO TEMOTO XEPAAUO
aUTAS TNG OLaTEB1|C, DIVETOL Lol YRTYORY) AVAGKOTNGT] TNG OYETAG DUVIUIXAS TV [E-



HOVOUEVODY owuatdlny. Avantdocetal 0 QOPUUAOUOS TNG LY VNAATNONS CWUATIOIY
UE TN YENOT CUUTAEXTIXOVY amEXOVIoEWY xad®¢ xaL To TAdloto avdAuvong tne xivnong
autolpetor CUCEUYUEVODY COUUTIOWY PE TN YEHON YROUUIXDY XOVOVIXWDY Uoppwy. E-
A0V, oL eEICMOELS XIVNONS Yo COUATIOW TOU EXTENOUV GLYYPOVIXES TUNAVTWOELS
ex@pealovTal Ue T YeNoT EAAEITTIXGY GUVAPTHOEWY Jacobi, Tpoxeiévou va optoToly
HOTAVOUES OWUOTLOIY TOUELIC TES UE TNV SLATOEY) TOU EMTOYUVTY| UE To ETMUUNTS Yoo
XTNELO TG, 170 BEVTERO XEPSAALO, O UNYOVIOUOC TOU VEPOUS NAEXTROVIWY TEPLYPApETOL
X0l GNUELWVOVTAL OL CTUAVTIXOTEPES TUPAUETEOL YLt TO GYNUATIons Tou. Ilopadelypota
OYNUATIOUOU VEQPWY NAEXTEOVIWY GE BLdpopa Loy vTixd Tedlar TapouotdlovTon Xon oavo-
TTUOGETOL O POPUUMOHOG TV OUVAUENY TTOU 0oX0VVTAL GTO COUATIOW TNG BEOUNG oo
T0 VEQog nhextpoviny. Emlone mopouctdleton gl GUVIOUTN avaGKOTNOT TV TEAEUTO-
{wV amOTEAEOUATOV OYETNE UE T UN-CUVEXTIXG (QOVOUEVO TOV VEPMY NAEXTEOVIOV.
270 Tplto AEPIANO, PETPNOELS TWV JRYOV UTWAELOY TN OECUNG VLol CUYXPOUVOUEVEG
0éopec mpwtoviwy otov LHC mapoucidlovton. H avdhuon towv anwheidy outdy ovd
UTOOECUY UMOXUAUTITEL OTL TO VEQOS NAEXTEOVIMV €lvor £Vog ONUAVTIXOS ToREYOVToG
mou xadopilel autéc Tic anwAieec. To TéTapTo Xe@dhono aoyOheiTon UE UAXPOYEOVIES
TPOGOUOLWOELS CUYXPOUOUEVWY BECUMY, TNV EXTIUNCT TOV UTOAEWOY xadC Xou TNV
eZEMEN TWV EYXAPOLWY XUTAVOUMY TN OECUNG. LTO TEUTTO XEQPIAALO, TO TAGICIO TKV
TPOCOUOLWOEWY UE QPOUUVOUEVA VEPOUSC NAEXTEOVIWY UTO TNV aoVEVHC-LOYURT| TROCEY Y1
on avamTOOCETL XaL EQUEUOCETOL GTNY TepinTwoT TewToviwy otov LHC oe evépyeia

450 GeV.

Me tnv ad&nomn g OTEWOTNTAUC TOU TOEAYETAL O EVOV ETUTUYUVTH CWUATLOILY,
0 pLIUOS TV CUYXEOVCEWY auEdveTar avayxaoTixd. Ilpoxewévou vo avahudoly cw-
OTd OL CUYXPEOUGCELS CLUATIOIWY, OL ALY VEUTEG CLUITIOMWY TpETEL Vo efvon og Jéon va
OLoxplvouy YETAE) SlapopeTmy cuyxpoloewy. H mapoloa pehétn napovotdlel éva
OTOYUCTIXO KO UN-YEOUUIXO QOUVOUEVOROYIXO HOVIEAD TOV YPOVIXMV YUQUXTNELO Ti-
AWV TV ONUATLY TOU TORAYOVTOL GTOUS avly VELTES agplou yeulopatog. Ewbixdtepa,
HOVTEAOTIOLEL TIC AVUBUOUEVES WOLOTNTEC TOU GHUATOS, OL 0TolEg oelhovTaL oTr) uETddO-
on/olNodnon xot, TaUTOYEOVA, OTOV TOAATAAGINCUS (XATUOVIOUS) TwY NAEXTEOVIWY
U6 TNV eTdpacT EVOS NAExTEIX0U Tedlou. To poviého autd avartiooeTon 6To TANGLO
Tou aviyveutry PICOSEC-Micromegas, o onoloc oToyelel 6 xaAlTERN YEOVIXY| Olo-
XELUTIXY) XavOTNTA (Tng TAENG HERPXAY mxoBEUTspo)\émwv) OTOV EVTOTUOUO TNG GPLETNg
TWV CWUATLOMWY.

H Swre3y) yopiletar oe 800 uéen. To mpmto yépog etvar aplepwuévo otr UeAET
TV UN-CUVEXTXXOVY Qouvouévwy otov LHC. Yto mpdto xegpdioio tou mpodTtou uépoug
TS NG OatEIPrc, Yilvetar wiar cUVTOUY AvVICXOTNGY] TNG OYETIXNG OUVOULXAS TOV
HELOVWUEVWY CWaTdlwy. O Qopuahlouds Tng tyYNAATNoNG CuUaTdlwY Ue TN yerion
CUUTAEXTIXWY UTELXOVICEWY avamTUooETOL Xodog ot To mhaiolo avdhuong tng xivr-
ong awdolpetor GLLELYUEVWY CWUATIOIOY UE TN YENOT YRUUUIXMY XAVOVIXMDY HORPOY.
Emniéov, ou eiowoeic xivnong v couotidi Tou eEXTEAODY GUYYPOTEOVIXES Toho-
VIOOELG ex@palovial PE TN YPNom EAMENTIXGOY cuVapTHoEwY Jacobi, mpoxewévou va
0pLOTONV TOUELUG TEG XUTAVOUES CWUATDIWY PE Tor EMVUUNTS YapaxTNElo Tixd. XTo Oe-
UTEPO XEPSAAO, O UNYAVIOUOS TNG ONtoupYiag VEQOUS NAEXTROVIWY TEQLYPAPETOL X ol
OTMUELOVOVTAL Ol GNUOVTIXOTEPES TUPGUETEOL Yidt TO oyNuUaTiold Tou. Iopadelypota
OYNUATIONOU VEQOY NAEXTEOVIWY GE BLdpopa haryvnTixd medla Ttopouctdlovtal xal o-
VOTTUCOETOL O POQUANOUOS TWV BUVIHUEWY TIOU 0O1YOUVTOL U0 TO VEQPOS NAEXTEOVIKV
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xou Spouv ota cwpatidio e déounc. Tlapovoidleton eniong wa cUvToun ovaoxoTN-
oY) TWV TO TEOCPUTWY ATOTEAEOUATLV OYETXA UE TO UN-CUVEXTIXS (QULVOUEVO TIOU
TeoxahoUVTOL a6 VEPT NAEXTEOVIWY. YT TEITO XEPAAALO, TaPOLCLAloVTOL UETRHOELS
TWY QYWY ATWAEIWY TNG OEOUNG YL CUYXPOUOUEVES OECUES TpwToviwy otov LHC.
H avéivon twv anwheidy autodv avd UToBEoUT AmOoXUAUTITEL OTL TO VEQPOS NAEXTEO-
Vi etvan évag onuavtindg Topdyovtag mou xadopilel autéc Tic anwieec. To tétapto
XEQPSAALO ACYONEITOU UE UOXPOYPOVIEC TTIOOCOUOLWGELS CUYXPOUOUEV®Y DECUMY YLoL TNV
exTUNOT TV ATOAELWOY XIS xat TNY EEEMEN TWV XATAVOUDY CWUATIOIWY GTN déoun.
2TO TEUTTO XEQPGAALO AVUTTUCOETOL TO TAXUOLO TPEOGOUOLOCEWY UE POUUVOUEVH VEQPOUG
NAEXTEOVIWY UTO TNV AoVEVH-IoYURT| TEOCEYYIOT) X0l EQUPUOLETAL OTNV TERITTWOT TV
mewtoviwy otov LHC evépyetoc 450 GeV.

To debtepo pépog tng datpifric e€etdlel T0 QPUVOUEVOAOYIXO UOVTENO TOU avoi-
TTOYUNXE Yior vor eEENYHOEL TA YOROXTNELO TIXE YEOVIGUOU TNS ATOXELOTG TOU AVLY VEUTN
PICOSEC Micromegas. ¥10o éxto xe@dhato (Tp®Tto xe@dAaio Tou deltepou Uépoug),
ofveton Wi olvtoun emoxdmnon yio tov aviyveut) PICOSEC Micromegas, ouunept-
AopfBorvougvng TN TEOTYOLUUEVNG EMTUYLNG TNG AVUTURUYWYNS TOV YAQUXTNELO TIXODVY
YPOVIOUOU TOU UE AETTOUEQEIC TPOGOUOLOOELS, ot culnTolvTal ol Bacixés ToEadoyEg
TOL €YWY OTO UOVTEND. X110 £PBO0OHO XEPIANLO, UOVIEAOTIOLOUVTOL OL UEGOL YEOVOL
HETEO00TNG TV NAEXTEOVIWY, 0TV EXPEACOVTOL WG CUVIPTACELS TOU UAXOUC TOU XOo-
TOLOVIOUOU NAEXTEOVIWY X0l ¢ CUVIPTACELS TOU TOu aptduod Twv NAEXTEOVIKY oTov
XUTUOVIOUO.  XTO Y000 XEQPIAALO, UOVIEAOTOLELTOL 1) YEOVIXT DLOXELTIXY IXUVOTN T
OToY EXPEACETOL WS CUVHRTNON TwV BV0 TEOUVAPEPUEVTOVY UETOBANTOY Xat NG ETldpa-
oNG TV NAEXTEOVILY Tou dlatpéyouv To mAyuo Micromegas evowuatovovial 6To
HOVTELO. XTO €VaTO XEQAAoL0, GULNTOUYTUL Ol XATUVOUES TOU EXPEALOLY Ta YEOVIX
YOEOXTNELO T TWV YEOVLY UETABOOTS.

Téhog, napouctdletar hio GUVOPT TWV TEOTYOUUEVKDY XEQUAiwY Xou cuLNTOUYTOL OL
EMUTTOOELS VLol TIC PeAAoVTIXES avaBorduioec Tou LHC xadde xon o tpdmog pe tov omo-
fo To yovtého umopel va yenowponomdet yio Ty avofdiuion tou aviyveutr) PICOSEC
Micromegas. 37to IHopdptnuo A, o mhcovéxtnua g yerone TewuPuic mopeuo-
Mc amewovileton ye TNy aprdunTe emthAuoT TV eEI0MOEOY XIVNONG EVOS TAEYUATOC
Toda[l5], yenotponodvtog anewxovioel nov Bacilovton oe oy AuaTor XUBIXAC Ko YEO-
e mapepBornc. O aprduntixée AOoELS cUYXEIVOVTAL OTT) GUVEYELN UE TIC AVOAUTIXES
yior vor Bel€ouv OTL 1) TELUPBNY ToEeUBOAY| amodidel TOA) Xah0TEQ O SLUTHENOT) TOV
ohoxinpwudtonv e xivnong. Xto Ioupdptnua B, avagepovton or cuyxhioeg twy ye-
AETOV UE VEQN NAEXTEOVIWY, TIOU BEYVOUV OTL Ol TPOGOUOLWOELS CUYXAIVOUY UE TNV
eTAOYY| TV aEiunTIXOY TopauETewy. 2To tpocdptnua C mepthouBdvovton mivaxeg
TOEUUETEMVY YOl TIC UETUBANTES TTOU YENOLLOTOLOUVTOL OO TO AVATTUYUEVO (PULVOUE-
vohoyix6 povieho tou aviyveutr) PICOSEC Micromegas. Télog, oto Ilopdptnua D,
ToputileTol 0 QOPUANOUOS TOU TEOTIOU UTOAOYIOUOU TNG DLUXOUAVONG LG METOBANTAG
Tou e€apTdTaL Am6 Yo AN UETABANTH.

H ovédhuon twv apy®dv anwewdy avd utodéoun amoxdhule OTL 1o Un-CUVEXTIXA
CUALOYIX OUVOUEVAL TIOU TROEEYOVTOL aTtd TIC AAANAETLOPAOELS DECUNG-OEOUNS Xou Tl
VEQT NhexTpoviwy elvon ol x0pleg TNYES TV amwAELY apyY¢ déoung otov LHC. Ei-
OXOTERY, 1) ELOAYWYY TNG METWTIXAC UAANAETIOPAOTC BECUNG-OEoUNG OTAY Ol BECUEC
tidevTon oe 0lYXEOLCT) TEOXUAEL Lol AMOTOUY TEOCKWELVY AOENCT] TV UTWAELDY APYHC
0éounc, 1 omola PELOVETOL UEGO OTNY ETOUEVN oo AEOUEC GTNY 0LPE TWV XOTo-
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VOOV TNG O0€oung QolveTal vor UTOQPEPOLY GUOTNUATIXG amtd LUTOPoIULICUEVT DldpXELd
Cong tne 6éounc. Autd amodideTAL GE QPUUVOUEVY VEQOUS NAEXTEOVIWY GTIC TEQLOYES
eloaywYnc Yopw amd To onuela aAAnAenidpaone 1 xou 5, 6mou oTeydlovTton To TELRSo-
T ATLAS xon CMS. Autd GUVEDEL UE Lol CNUOVTIXT TUXVOTNTO NAEXTEOVIOY OTNY
eowtep| TpIAéTa TeTpomdAwy (Inner Triplet), n onolo eniong evioyeton onuovTixd
amd TNV Topousta Twv BV0 BEcUWY GTov (Blo VdAapo xevol. Xenoylomotfinxay Teo-
COHOLOCELS LY VNAATNONE TEOXEWEVOL var TeofBAegiel 1 utoBdduion amd tétolou eldoug
UN-OUVEXTIXES CUANOYWKEC ETOpdoelc. AdYw NG TEdcYATNE TEOOBOU GTNV AVATTUEN
AOYIOUIXOU TROGOUOIWONG LY VNASTNONG, Ol XEPTEC YRUPLXWY UTOPOLCAY VoL YENOYLO-
romndolv wote va emteuydel onuovTng adénon Tng ToydTNTIC UTOAOYLoHOU, OTIOU Ta
owpatida topaxolovoivial tapdiinioa oe 6hn TN ddtadn Tou LHC xon cuunepihop-
BoVOUEVOL TV GYETIUWY GUAROYIXOV QPouvOopuévmy (aAAnhemidpdoels déounc- déoung
1) (POUUVOUEVOL VEQOUC nksxrpov&ov) M mpotn Tpoondela 0T YeNoT TEOCGOUOLOOE-
OV TopoxohoVINoNE CWUATBILY HTAV 1) AVATUEAY WYY TNG CUPTERLPORAS OTIC ARYEC
ATOAELEG Béoung 6Ty ot 800 6éoueg ouyxpolovtar. H pehétn €deile om1, péow tng
aOENoNE OTNV UTOAOYLOTIXT LoY Y, Ol TORUTNRHOWES TOCOTNTES OTWS 0 PUUUOS 0RY OV
ATWAELDOY TG BEOUNG Xt 1) AOENOT) TNG EXTEUTTIXOTNTOS UTOPOLY Vol TROCOUOWWO-
OV UE TROGOUOLOOELS LY YNAUTNONG COUATIONY O PEAAIC TIXES YPOVIXES XALUAXES, TNG
TAENG OPXETOV AETTWY, €mG ot UoHS Opag. Emmiéov, 1 cuumeptpopd TV apyov
ATWAELOY TNG BEOUNG AOYW NG ELOAYWOYNS TNG UETWTXAS aAANAenidpacng dEoune-
dEoung, avamapdyUnxe Ue emTuyla 0TI TEOCOUOLWOELS. 'Evag onuavtindg teploploude
oTNV TocOoTIXY TREOBAEYN TwV aEYOY AMWAEIOY TNg 6éoung dlamotadinxe OTL elvor 1)
ofeBardtTnTor 0TOV TANHUCUO TWV OUPMY TWV EYXAEOLLY XATUVOUMY COUNTIOIWY TNS
0éoung, Yl TNV omolo OEV LTHEYEL axEU3NG XL CUCTNUOTIXY PETENOT.  LNUAVTIXO
Briua TEOOBOL EYIVE OTIC TROCOUOLWOELS TWV UT-CUVEXTIXMY QUVOUEVLY TOU VEPOUG
nAextpoviwv. Ot UETENOE TRV AMWAEWWY TNG apyhS dEoung xodme ot Tng avénong
NG EXTEUTTUXOTNTAC amoxdALday OTL TO PEYETOC QUTOVY TV PAUVOUEVLY EIVOL OEXETA
e WOTE Vo eTTEENETAL 1) YeNon Tne acevoic-loyuphic Teoceyylons. Emmiéov
OLamo THUNUE OTL 1) YENOT KARTOV YRAUPXODY TUREYEL TO XATIAANAO UTOAOYIOTIXG TEQL-
BaAhoV yior TNV EXTEREDT] TEOCOUOIWOENY AOY W TNG Palixd TUPEAANANG OOYLTEXTOVIXNC
TOUG UE OYETXE MEYSAN WvAun (o€ oUyxplon Ue T dldEoyun pviun o Evay TUTXO
wovo- moenvo xoufo CPU evoc unoloyiotixod cuumhéyuatoc). H oyetnd peydin
uviun amonteltor Aoy TOU UEYSAOU OmOTUTOMOTOS UWVAUNG (TN TEENS TwV opXETOVY
GB) TNG UTELXOVIONG TIOU TEQLYRAPEL Lol AAANAETLOROT) UE EVal VEQOC nAexTpoviwy. H
ATOUTOUUEVY UVAUN ElVOL TOCO PEYEAN ETEWDN 1) BUVAULXY| TV NAEXTEOVIWY GTO ECWTERL-
%0 NG XUTAVOUNG EVOG VEPOUS NAEXTEOVIWY ONULoVEYEL TOAUTAOXA NAEXTEOUY VITIX
Tedlar Tou e€aPTOVTOL amd Tov Yeovo. Mia avoluTixy) TEOGEYYLoT AUTKOY TWV TEdIWY
yivetonw 6ho xan mo BUGXOAT), Wiwe oe mopoucia xhloewy poyvnTixod medlov. Kotd
ouvéneLa, tpocopolwoel; Particle-In-Cell ypnoylomololvtot yio Ty eVPECT AUTOY TOV
YEOVOEEUPTOUEVLY NAEXTEOUXY VITIXWY TES{wY ot éva Blaxpitd mAéyua. To yeyovéc
ot Ta medla ebvan YVwo Téd uovo o Eva Blaxpltod TAE YU omontel Waltep TPocoy N €V 1)
dLVAULXY| TNG BEoUNG TEETEL Vo Tpocouolwiel ue Ty mapousta toug. H Xoudtovidvn
OOMT) TNG SUVOIXTC TV TEWTOVIKY TNE BEOUNS UTOONAMVEL OTL 1) Y101 CUUTAEXTIXOY
ametxovioewy unopel vor audroel onpovtind Ty axeifBeia oty apriuntixd enthuon Tov
e€loOOENY XVNOTNE TWY TEOTOVILY Tou Taédebouy oTn didtaén Tou LHC. ' 1o oxond
oawTo, avamtOyUnxe uo pédodog mou yenoudomolel eva oy Aua TEUPBinNS TapeUSoATC
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oToL dlaxpitd onueia Ty TEdlwY Tou VEQoug nhexTpoviou, Tpoxelwévou va dlatnendel n
CUUTAEXTIXT] DoY) TNG AMEWOVIONG TIOU TEPLYPAPEL TNV AAANAETDRUCT) UE TO VEPOG 7-
Aextpoviov. Ernione, avantiooeton pla apriuntixt| uédodog mou umopel xou xatoc TEAAEL
ATOTEAECUATING. UG TNUXTLXG ELIUNTIXE CPIAUUTA TTOU ELOEYOVTOL XUTd TO GTABLO TNG
TopeuBolrc.  Xpnowomoimvtog Ty avantuyvelon yédodo, mpoyuatonot|dnxay meo-
COHOLOOELS LYVNAATNONG COUATIOIWY Yior TpwTtovia ot evépyeta 450 GeV oto mhéyua
tou LHC, und tnv enldpaon Un-cuvextixdv Qouvopévewy amd vVEQN NAEXTEOVILWY oTa
t6¢a e Sudtane tou LHC. To anotedéopota €deilav OTL oL BEXTEC UN-YEUUUIXAC
OLVAULXY|C TNG BECUNG OTWE TO BUVAULXO EVPOC XL 1) AVEAUGCT] UTELXOVIOTG CLYVOTHTOVY
UTOPOLY VoL ETNEEACTOOY ONUAVTIXG antd TNV ERIOEAOT) TOL VEQOUS NAEXTEOVIWY. Emi-
TAéov, mapatneriinxe utofBdiuior Tou yedvou NUILWAC NS BECUNE AV XAl 1) TOCOTIXN
TeOBAed TEploploTXE XU TTHAL amd TNV ABEBAUOTNT OTIC OUPES TWV TWV EYXIOCLOY
XOTAVOUWY TNE BEoUNG. Ao TNV GAAN TAEURY, Ol TPOCOUOUWMOELS EBELEAY Lol GUVEYN
aOEnom NG EXTEUTTIIXOTNTOC TNS (Blag TEENS eyEDoug Ue exelvn Tou Tapatneinxe oe
TEONYOUUEVES UETPNOELS ToU avapépoval 6o BifMoypapla. Auty elvar 1) TEGTY Popd
TOU AETTOUEQPEIC TOOGOUOLOOELS TOU UN-OUVEXTIXOU (POUIYOUEVOU TV VEQOY NAEXTEO-
viwy €youv mpayuatononiel Topousia Tou Un-YeUUUXoU HOVTEAOU TOU TAEYUATOS TOU
LHC, yio yeydhec xon TopatnefoES YPOVIXEC XAUUXES, XU TOPOVGTA TOANATAGY TN
Y&V VEQoug NhexTeoviwY, dNAadT VEPN nhexteoviny Ttou oynuatiCovial ot BLmohixd xou
TETEATOAXS pary VNTixd medio. Ot uereteg auTég amoxTtoly GA0 xou UEYUAVTERY onuaoia
AOY® TNG aUENUEVNS avnoLylag amd TNV ETBEAOT VEQPWY NAEXTEOVIWY TNV ActTovpyia
tou LHC. ¥e »xdle o and 1 cuvinerioeig waxpds dwxonhic Asttoupyiog tou LHC, 7
am680CT) GTY) DEUTEQOYEVY| EXTIOUTY| NAEXTEOVIKY TOU Yahduou xevol mopatrnpeeiton 6Tt
vpiotatan un-avaoteédiun urofdduon. H yeyalitepn anddoon deutepoyevols exmo-
UTAS NAEXTEOVILY EYEL (G ATOTEAEOUA LOYVEOTERX VEQPT NAEXTEOVIWY ToL OTolo UTOEOUY
Yeryopa vou 0dnyioouy o€ Uelwon tou duvouxol edpoug. Emmiéov, ioyupdtepa vépn
NAEXTEOVIWY OTOUTOUY LOYUPOTEQES UN-YEUUUXOTNTES OTOL Yoy vNTd edlar Tng dudto-
&nc tou LHC (ypouatxdtnro xou €0pog 6Ty ouyvOTNTa TUAUVTOOEWY COUATIOWY)
TEOXEWEVOU VoL EAEYY YO0V Ol GUVEXTIXEC Ao TAUELES TN BEOUNG TOU TEOXAAOLYTOL O
To 10 (810 T0 VEQOG MhexTEovimv. AUTEC Ol IoYUROTERES UNFYPUUUIXOTNTES UTOPOLY
vor uroPoiuicouy axdun TeplocdTERo To duvouxd €0pog. Katd tn didpxeio autrc TNng
MEAETNG, To VEPT NAEXTEOVIWY GTA TETEATOAN TNG ECMOTEPIXNG TELTAETAS EYOLY EVTOTI-
otel wg N xOpLo TNy onuavTixrg utofdiuieng Tou yedvou NN TN BECUNS XAUTA TN
Aertovpyio Tou LHC. ¥to mhaloto tng avaBdduione tou LHC udnifc pwtevdtntog, ta
TETPATOAN TNG EOWTEPAG TEMAETAG Oy EOLElETon Vor avTixatacTodoly. O empdveleg
TOU VUAYUOU XEVOU TWV VEWY TETPATOAWY TN E0WTEPNE TEMAETAS Yo emixaiugioly
UE Quop@o dvipuxd, MOTE VoL TEQLOPLOTEL O OYNUATIONOC VEQOY NAEXTEOVIWY.

Y10 TAalolo TNG MOVIEAOTIOMNONG TV YURUXTNPLOTIXMY YPOVICHOU TOU GVLYVEUTH
PICOSEC Micromegas, 1 mopolou epyacio yenowonotel T oUyxplon TELQUUATIXGDY
0edOPEVWY UE AeTTOUERELC TpocoUOOOELS, Bactopéves oTto hoyiouxd GARFIELD++,
%O CUUTIANPWUEVEC UE UL0 OTATIO TIXT| TEQLYQEUPY| TOU Y NUATIONOU TOU NAEXTEOVIXOD
ONUATOC, YL TOV TPOGOLOPIOUS TV UXEOOXOTIXOY PEYEVOY Tou xadopilouv Ta yo-
paxtnelo Tixd ypoviopol tou PICOSEC. Y11 cuvéyela, avamtiooeTon £Va GTOY UG TN
HOVTENO TIOU TEPLYQRAPEL TIC LOLOTNTES TWV TUPATAVE TOCOTHTMY, TROCPEPOVTAS (Lol (Pall-
VOUEVOAOYIXT|, UXQOOXOTUXY) EQUNVEIN TWV TUPATNPOVUEV™Y OLOTATWY YPOVIGUOU TOU
aviyveutr|. To yovtého Baoileton oe:
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1. To yeyovog 6T éva niextpdvio Tou ohoYalvel oe Eva aéplo UTO TNV eidpaoT EVOC
0MOYEVOUC NAEXTEIXOU TEBIOL EMITLY YAVEL HEYahUTERT Tory UTrTar OhicUnong oTay,
EXTOC ATO TNV EAACTIXY| OXEDACT], UPIOTATOL XU AVEAACTIXEG UAANAETUORACELC,

2. Tnv unddeon OTL Evar VEOTIOROYOUEVO NAEXTEOVIO UEGK LOVIOUOU AOX T £V 0pL-
OUEVO YPOVIXO XEEDOC OE GYEGT) UE TOV YOVEX TOU X0 OTT) GUVEYELN TUQUCUPETOL
ME TNV (Blot Ty OTNTAL UE TO YOVEX NAEXTEOVLO.

Or opdueteot €16650U TOU LOVTEAOU EfVAL XOWOC YENOULOTOLOUUEVES CTATIC TIXES |UE-
TofAnTég, Ue efalpeon TNV TUPAUETEO TOU YpoVixoU X€pdoug mou €yel elcayVel €-
0w, XAl €YOUV TEOCOIOPLOTEL UE TNV AVIAUOT TWV ATOTEAECUATLY TPOCOUOIKGTS TOU
GARFIELD++-. Ou mocotixéc mpofiédeic Tou yovtéhou ouyxpidnuay eXTEVHOS YE To
oyetxd anoteréoyata npocouoiwone GARFIELD++ xou Swmotddnxe ot Peioxo-
Vo o eCEETIXY ouUgwvia o OAeg Tic cuviixeg Aettovpylag Tou PICOSEC mou
e€eTdoTXOY OTNY TaEOUCA PEAETY), ATMOOEWYUOVTUSC TNV EMTLUYIA QUTAC TNS OTOYO-
ouxfg epunvelag. Onwg emdevieTon HECW TG TapoLoag epyaolag, To HOVIEAO TOU
avomTUyInxe elvon TOA) ETLTUYTUEVO GTNY TOROY Y| TATROPOELOY YOl TOUG XUPLOUS KO-
OXOTXOUC Uy oVIGUOUE oL %ardoptlouv Ta YopoX TNELO TXE TOL YPOVIOUOU TOU UVLY VEU-
1), XL OTNY CUVEXTWXH| EEVYTOT) TN ATPOGOOXNTNG CUUTEQLPORAS ULXPOTHOTUXWY UEYE-
Vv, To omolar €youv Yon mapatneinxay otic mpocouoiwoele GARFIELDA+-+. Adyw
™G TOAD xahfg cupgpuviag TV TEoPAégewy Tou povtélou ue to GARFIELDA++-, ot
TOTOL TTOL AVATTOYUNXAY €DC) UTOPOLY VA Y ENOLOTOINDOLY (G EPYUAE(D Yior YRTYOPES
TeoPAEdelg, U TNV TEOUTOUEST OTL Ol TWES TWV TURPUUETEWY EIGOOOL TOU UOVTENOU
ebvan yvwotég v Tig eetalouevee ouvinixeg Aettovpyiag. Autd meplopiCel Ty eap-
HoYT| Tou HoVTEAOU Tou avamTUYINXE W autdvouo epyaielo. 2oTdc0, Ue dlodéotueg
TWES TOV TOPUUETEWY ELGOBOU Yo 0PLOUEVES ActToupyixég pululoeic, etvar Suvatéy va
TOEUUETEOTOLNUOUY EUTELRXE, MOTE VoL YENOLLOTOMNDOLY Yial VoL TUREYOUY DEDOUEVA. EL-
600U 0TO PHOVTEAO Lo Ut EVEUTEQT) TEQLOYT| AELTOURYIXGY PUUUIGEWY TTOU XUADTTOVTOL
Ao TNV AVWTEQL TURUUETEOTONGT.
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Introduction

In the quest for describing the fundamental laws of physics that describe nature,
physicists have turned to the usage of particle accelerators in order to perform
controlled experiments with high energy particles.

The design of the accelerator is typically centered around its “optics”. The
optics consist essentially in the specific powering of each magnet in order to achieve
a certain aim. For example, the main quadrupole magnets are powered such that the
oscillations of the protons do not exceed the available aperture inside the vacuum
chamber. In another fashion, strong quadrupoles are placed around the colliding
points in the accelerator, which are powered in such a way that the beam size is
small in the interaction point of the two beams, hence increasing the proton density
and therefore the number of collisions.

From the beam physics point of view, special care has to be taken in order to
avoid effects that are deleterious to the stable motion of the protons inside a high-
energy circular accelerator. An important category of such deleterious effects are
those called single-particle non-linear effects and are typically related to non-linear
magnetic fields in the lattice of the accelerator. High-order magnets (sextupole,
octupole, decapole, e.t.c.) are employed to correct the possible non-linear imperfec-
tions in the fields of the magnets. Moreover, sextupole and octupole magnets are
typically used to induce a relation between the oscillation frequency of a proton with
its energy or its amplitude of oscillation. The control of this relation is essential in
order to prevent coherent beam instabilities, an effect which belongs in the category
of collective effects.

By definition, collective effects are those which are driven by the fact that multi-
ple particles are present inside the accelerator. Some examples of such effects follow.
The direct interaction between the different particles in the same beam is typically
referred to as “direct space-charge effect[27]”. The direct interaction between dif-
ferent particles of different beams (at the point where the beams collide) are called
“beam-beam effects[28]”. The protons can also interact indirectly. For example, the
geometric boundaries of the beam chamber (assuming perfect conductivity) intro-
duce the effect of “indirect space-charge effects[27]”, which are typically described
by image currents. Moreover, chambers with resistive walls or sudden transitions in
their geometry can induce effects of “beam-induced wakefields[29]”. Another kind
of indirect interaction is that of electron cloud effects[30]. The beam itself can favor
the accumulation of trapped electrons within the walls of the beam chamber, if the
material of the beam chamber wall meets certain conditions and allows the multi-
plication of electrons. In the presence of electron cloud effects, the particle beam
and the cloud of electrons interact with each other.
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All of the above effects can influence the coherent stability of the beam, where the
beam particles perform coherent oscillations which feed back into the beam particles,
increasing each time the amplitude of the oscillations[31]. However, even when the
coherent beam instabilities are controlled, the induced electromagnetic fields from
these effects are typically non-linear. These non-linear electromagnetic fields induce
non-linearities in the trajectories of the individual beam particles, similar to the
aforementioned single-particle effects. In this case, they are called incoherent effects.

Most incoherent effects lead to a very slow increase of the beam emittances and a
decrease of the beam lifetime. Incoherent effects have a typically complex description
and their outcome is only observable on long time scales, which are usually out of
reach in simulations.

In this thesis, incoherent effects observed at the Large Hadron Collider (LHC)[I]
are studied. The LHC is the largest collider to date with the highest centre-of-
mass energy reach. It is a synchrotron, with an arrangement of repeating FODO
(Focusing-Defocusing) cells consisting the vast majority of its layout, which is split
into 8 arcs and 8 insertion regions (IR). While the 8 arcs consist almost entirely
of FODO cells, a variety of equipment is included in the IR regions. Of particular
importance are the Insertion Region 1 (IR1), Insertion Region 2 (IR2), Insertion
Region 5 (IR5) and the Insertion Region 8 (IR8), where the detectors ATLAS[2],
ALICE[3], CMS[4] and LHCb[5] are positioned, respectively. The aim of the LHC
is to collide protons (or other hadrons) at the center of each of these detectors. A
quantity that is independent of the frame of reference and is very much related to
the number of collisions is the luminosity L, which for two head-on colliding beams
with Gaussian profiles can be calculated by the overlapping integral between the
density of protons in the two colliding bunched beams [32]:

_ N1N2f Ny,

L ,
droyoy

(1)

where N1 and Ny are the two bunch populations, f is the revolution frequency of
the particles, Nj, is the number of bunches in the beam, while o and o, are the
horizontal and vertical r.m.s. beam sizes. Several other factors affect the luminosity
like crossing angles between the two beams, collision offsets, non-Gaussian beam
profiles, among others. However, it is clear that a smaller beam size and a higher
bunch population increase the luminosity produced. By minimizing the emittance
growth, which is directly related to the beam size, and maximizing the beam lifetime,
luminosity and therefore “physics production” is increased.

The study presented here concerns the incoherent collective effects which are
degrading the beam lifetime and causing an increase of the emittance in the proton
beams at the LHC. The two most important effects of this type are found to be beam-
beam interactions and electron cloud effects. Simulations of incoherent beam-beam
effects have a long history based on the formalism developed in Ref. [6] and using
a weak-strong approximation. The weak-strong approximation refers to simulations
where a “weak” particle is studied under the influence of a “strong” force which
cannot be influenced by the “weak” particle. This is an approximation that is well
suited to slow incoherent effects due to the fact that they cause only small changes
in beam profiles. In this way, the electromagnetic fields produced by another beam
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(in beam-beam interactions) or by an electron cloud can be calculated once, and
used to solve multiple times the equations of motion of the “weak” particle under
their influence.

The history of incoherent electron cloud effects dates back to the last two decades.
Early simulation results consist of calculations of tune spreads, distortions of beta-
tron functions and dispersion as well as synchro-betatron coupling[7, 8, 9]. Some
attempts were made to describe the evolution of the electron cloud using simpli-
fied models [I0] and compute the forces induced on the beam particles analytically.
These approaches were found convenient in terms of computation time but they
could not describe realistic electron cloud distributions in the presence of mag-
netic field gradients. Attempts to study the incoherent effect of electron cloud
through self-consistent Particle-In-Cell (PIC) simulations of particles[11] were also
made. This approach was found to be extremely demanding in computational time
and could not allow the simulation of long time scales required for the study of
these effects in realistic configurations. The weak-strong approach was attempted
in Refs. [12, [13] where the electron cloud forces were pre-recorded on a discrete grid
based on Particle-In-Cell electron dynamics simulations. Although, much faster in
terms of computation time, an interpolation scheme was required to compute the
forces on an arbitrary location of the beam particle. In those works, the issue of
symplecticity was not addressed.

The study that is presented in this thesis proposes the use of a similar approach
based on the weak-strong approximation. However, the interpolation scheme is cho-
sen such that the symplectic structure of the equations of motion is preserved in
order to improve the numerical accuracy. The usage of a symplectic map is also
known to suppress artificial growth or damping in the (betatron and synchrotron)
oscillations of particles in an accelerator where particle motion can be considered
Hamiltonian [I4]. Under the weak-strong approximation, the issue of noise due to the
discrete number of macroparticles expressing the electron cloud distribution is over-
come by averaging multiple simulations. A scheme to refine the potential describing
the electron cloud interaction is also developed in order to combat the limitations
of the interpolation scheme. With these tools in hand, the proton dynamics under
the influence of realistic electron cloud distributions is simulated while employing a
non-linear model of the complex LHC lattice. The simulation time-scales extend up
to several minutes of beam storage in the LHC, providing this way quantities that
can be observed in the experiment conditions. Finally, the power of Graphics Pro-
cessing Units is leveraged in order to simulate a large number of protons in parallel.
As an outcome, realistic particle distributions are simulated through accurate and
symplectic models of both the LHC lattice and the electron cloud interactions, for
realistic timescales.

By increasing the luminosity produced in a particle collider, the rate of events
necessarily increases. In order to properly analyse the particle collisions, particle
detectors need to be able to distinguish between different collisions. This study
presents a stochastic and non-linear phenomenological model of the timing char-
acteristics of signals produced in gas-based detectors. In particular, it models the
emerging properties of the signal, which are due to the transmission/drift and, at
the same time, multiplication (avalanche) of the electrons under the influence of
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an applied electric field. This model is developed in the context of the PICOSEC-
Micromegas detector which aims at a better timing resolution (in the order of several
picoseconds) in pinpointing the arrival of particles.

The thesis is split into two major parts. The first part is devoted to the study
of incoherent effects in the LHC. In the first chapter of the first part of this the-
sis, a quick review of the relevant single-particle dynamics is given. The formalism
of particle tracking using symplectic maps is developed as well as the framework
of analysing arbitrarily coupled particle motion using linear normal forms. More-
over, the equations of motion for particles performing synchrotron oscillations are
expressed using Jacobi elliptic functions in order to define matched particle distri-
butions with the desired characteristics. In the second chapter, the mechanism of
electron cloud buildup is described and the most relevant parameters to its forma-
tion are noted. Examples of electron clouds forming in various magnetic field are
shown and the formalism of electron cloud-driven forces acting on beam particles
is laid out. A short review is also presented on the latest results concerning in-
coherent electron clouds effects. In the third chapter, measurements of slow beam
losses for colliding proton beams in the LHC are presented. The bunch-by-bunch
analysis of these losses reveals that electron cloud is a significant factor determining
these losses. The fourth chapter is concerned with long-term simulations of colliding
beams and the estimation of losses as well as the evolution of the beam profiles. In
the fifth chapter, the framework of simulations with electron cloud effects under the
weak-strong approximation is developed and applied to the case of protons in the
LHC at injection energy.

The second part of the thesis discusses the phenomenological model that is de-
veloped to explain the timing characteristics of the PICOSEC Micromegas detector
response. In the sixth chapter (first chapter of the second part), a quick overview
is given about the PICOSEC Micromegas detector including the previous success
of reproducing its timing characteristics with detailed microscopic simulations, and
discusses the basic assumptions made in the model. In the seventh chapter, the
mean transmission times of the electrons are modelled, when expressed as functions
of the length of the electron avalanche and as functions of the number of electrons
in the avalanche. In the eighth chapter, the timing resolution is modelled when
expressed as the function of the two aforementioned variables and the effect of the
electrons traversing through the Micromegas mesh are incorporated in the model.
In the ninth chapter, the distributions that express the timing characteristics of the
transmission times are discussed.

Finally, the conclusion presents a summary of the previous chapters and discusses
implications for the future upgrades in the LHC and how the model can be used to
upgrade the PICOSEC Micromegas detector. In Appendix A, the advantage of using
tricubic interpolation is illustrated by solving numerically the equations of motion
of a Toda lattice[15], using maps based on cubic and linear interpolation schemes.
The numerical solutions are then compared to the analytical ones to show that
tricubic interpolation performs much better in preserving the integrals of motion.
In Appendix B, the convergence of studies with electron clouds are reported, showing
that the simulations are converged with the choice of the numerical parameters. In
Appendix C, parameter tables are included for the variables used by the developed
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phenomenological model. Finally, Appendix D, lays out the formalism of how the
variance of a variable dependent on another variable can be calculated.
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Chapter 1

Single-particle dynamics

1.1 Relativistic particles in electromagnetic fields

A relativistic particle of mass m, charge ¢ and with momentum p = (px, py, p;)
in an electromagnetic field associated to a scalar potential @ and vector potential
A = (A, Ay, A;) moves according to the Hamiltonian[33] [34]

H =cV(P - gA)? +m2c2 + q®, (1.1)

where c is the speed of light and P = (Py, Py, P;) is the canonical momentum E|
defined as:

P, =py+qAy, (1.2)
Py = py +qA,, (1.3)
P,=p;+qA;.

The Hamiltonian H expresses the total energy of the particle with:
H =&+ q9, (1.5)

with & = ymc? and y = (1 — f2)Y/2, where B is the ratio of the particle’s speed to
the speed of light. The differential equations that govern the particle’s motion are:

. gg, (L6)
R (1.8)
% - ;‘Z—’;’ (1.9)
d—f - a—g, (1.10)
d;;z = —g—g, (1.11)

Tt is reminded that the canonical variables are those variables for which the equations of motion
can be derived from the Hamiltonian in the form of Eqs. (1.6)-(1.11).
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1. Single-particle dynamics

where the time 7 is the independent variable and X,Y,Z are the physical cartesian
coordinates.

In an accelerator beam line, the electromagnetic fields come from dedicated static
components, e.g. magnets. If an accelerator beam line is considered such that the
components are aligned along the Z coordinate, it is convenient to make a change of
variable such that Z is the independent variable. This way the equations of motion
can be integrated from one accelerator component to another.

The change of independent variable can be done by recalling the stationary-
action principle, which states that a system’s equations of motion are defined such
that the action is stationary along the system’s trajectory. Instead of considering the
action that is defined by the path integral in time from 74 to tg of the corresponding
Lagrangian:

' s dX dY dZ
S = Ldr = Pr—+P,—+P,— — Hdr, 1.12
/,A ,/,A “ar Thw T (1.12)

a change of variable is made to express the action as path integral in the coordinate
Z from Z4 to Zp:

2t Zs dX dy  d(-1)
= L—dZ = Pi— +P,— +H — (=P, dZ. 1.1
S /ZA az /ZA vz thaz iz — P (1.13)

By comparing Egs. and [1.13] the change of independent variable is accomplished
by considering —P, as the new Hamiltonian. In the comparison, it also possible to
see that the new pair of canonical conjugate variables is the (—¢, H) pair. By re-
arranging Eq. and renaming H as E, it follows that

(E — q®)> 2
p.- —\/C—2 (P gA) - (PygA) - mi—gA (L)

Typically the involved magnetic fields are complex, and analytical solutions for
the equations of motion are difficult to find. In fact, in the most general case, the
equations of motion are non-integrable, i.e. their analytical solutions do not even
exist, and can lead to chaotic dynamics. It is therefore necessary to employ numer-
ical methods to solve the equations of motion. To assist the numerical integration
process, new variables can be defined such that they remain small as the particle
propagates along the beam line. Initially the Hamiltonian is divided by a reference
momentum Py to define a new Hamiltonian:

_PZ
Py

H, = (1.15)
Although, the reference momentum can take any value, it is convenient to have it be
equal to the momentum of the ideal particle for which the accelerator is designed.

Equation becomes

- - ==, 1.16
P3c? P2 P2 P2 Po (1.16)

2
Hy = _J (E - q(I))2 _ (Py - qAx)2 _ (Py - qu) m2c? qA,
0
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1. Single-particle dynamics

After this scaling, Hamilton’s equations will hold for the following pairs of canonical
conjugate pairs.

Px
X, P,=—, 1.17
= (1.17)
y, B,= D 1.18
B y = P_07 < . )
. E
—-t, E=—. 1.19
= (1.19)
To ease notation, scaled potentials can be defined as:
qP
= 1.20
o= (1.20)
qAx
, 1.21
Ax Py ( )
qu
= —, 1.22
ay PO ( )
qA;
—. 1.23
az Py ( )
The Hamiltonian of Eq. (1.16) expressed in the newly defined variables becomes:
~ 2
E ~ 2 - 9  m2c2
Hi=—\|[—-¢| - (Px—a\)" = (Py-ay) - —5 —az. (1.24)
c Py

The coordinate that is related to time is rather inconvenient as it will be constantly
increasing. An additional transformation is made to use instead a variable related
to time that also expresses the longitudinal distance of a particle with respect to the
ideal reference particle. In order to ensure that the canonical form for the equations
of motion is preserved, a generating function of the second kind is employed. These
kind of functions are of the form

Fy = Fy(qi, Ps 5), (1.25)

where the pairs of the old canonical variables (g;, p;) are related to the pairs of the
new canonical variables (Q;, P;) and where s is the independent variable. The old
and new variables are defined from the relations:

OF,
o= o2 1.26
Pi= G (1.26)
dF,
o= o2 1.27
0 P, (1.27)
OF,
K=H+—2, 1.28
e (1.28)

Here Eq. (1.28) relates the old Hamiltonian H to the new Hamiltonian K. The
particular generating function of the second kind that is interesting in this case is:

S 1
Fy(q1,P1, g2, P2, q3, P3; s) = q1P1+ q2P2 + (,6’_0 + 6613) (,8_0 + P3) , (1.29)
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1. Single-particle dynamics

where By is a constant equal to the B factor of the ideal reference particle. By

substituting this F» in Eqgs. (1.26))-(1.28)), we obtain:

p1 =P, (1.30)
p2 = P, (1.31)
=c (i +P ) (1.32)

pP3 = Bo 3] .
Q1 = q1, (1.33)
Q2 = q2, (1.34)
Q03 = % +cqs, (1.35)

1 P3

K=H+—=+—. 1.36
+ ﬂ% + 7o (1.36)

Replacing the old variables, the Hamiltonian and renaming the independent variable
from z to s, the system of equations becomes:

Pi=P,, (1.37)
Py =Py, (1.38)
E 1
P3=———, 1.39
T Bo (1.39)
01 =x, (1.40)
Q2 =y, (1.41)
s
Q3 =— —ct, 1.42
Bo (1.42)
1 P
K=H+—+—. (1.43)
ﬁo ,30
To ease notation once more, the new variables are renamed as:
py = Py, 1.44
Py = Isy’ 1.45)
E 1
=— -, 1.46
Pr ¢ Bo ( )
= o, (1.47)
Bo
L pe
K=H+—+=—. 1.48
B: Bo (148)

Finally, the Hamiltonian is renamed to H, the longitudinal component of the vector
potential a, is renamed to match the independent variable s and the constant term
1 /ﬁg is dropped as it does not contribute to the dynamics of the particle. The
Hamiltonian is finally written as:

2 1

Pr 1 ’
H=——\/(pr+ﬁ—0—¢) — (px—a)* = (py —ay) _[m—as (1.49)
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1. Single-particle dynamics

NY

Figure 1.1: Curved coordinates system with respect to the Cartesian coordinate
system. Figure adapted from Ref. [14].

1.1.1 Curved coordinate system

So far the beam line has been assumed to be straight. Instead, circular accelerators
have, by definition, components that bend the trajectory of particles. It is therefore
important that the independent variable s measures the distance in the curved path
that an ideal particle would follow when moving through such components. For
simplicity only a curvature in the horizontal plane is assumed here and we call p the
curvature radius of the trajectory. The cartesian coordinates (X,Y,Z) are related
to the curved coordinates (x,y, s) through the relations:

X=(x+p) cos( ) - p, (1.50)

Y =y, (1.51)

). (1.52)

V| =

Z:(x+p)sin(

V=

To properly transform the coordinate system and preserve the Hamiltonian struc-
ture of the equations, a mixed-variable generating function of the third kind is used:

F3 = F3(pi, Qi; 1) (1.53)
where the old variables, the new variables and the new Hamiltonian are defined
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through the relations:

0F;
R , 1.54
ql 8]7; ( )
0F;3
pPi=——" 1.
l 0, (1.55)
0F;3
K=H+—. 1.56
* 5 (1.56)

The generating function that produces the transformation in Eqs. (1.50)-(1.51]) is:

F3=— ((Q1 + p) cos (%) - p) p1—Q2p2 — (Q1+p)sin (%) D3- (1.57)

Applying the transformation from the Cartesian coordinate system (old) to the
curved coordinate system (new) the momenta are transformed as:

P, =Py cos(f) + Py sin(f), (1.58)
p p

P, = Py, (1.59)

P, =Py (1+£) cos (£)+PX (1+£) sin (E), (1.60)
p p p] " \p

Finally, the vector potential should be transformed as well to match the components
in the new coordinate system, where the vector potential becomes:

A, = Ay cos (i) + Az sin (i) , (1.61)
p p

Ay = Ay, (1.62)

A, = Ay cos(f) + Ay sin(f). (1.63)
p p

Following the same steps as in the previous section, we consider —P} as the new
Hamiltonian and we apply the appropriate canonical transformations, obtaining the
Hamiltonian in a curved coordinate system:

9 1
070
- (14 hx)a,, (1.64)

. A
H:%_(l‘l‘hx)\/(pr"'ﬁ_o_(ﬁ) _(px_ax)Z_(py_ay)

where the scalar ¢ and vector (ay, ay, ay) potentials have been scaled as before.

In practice, accelerators are usually composed of multiple components, e.g. dipole
magnets or quadrupole magnets, with each one occupying a region in s. The scalar
and vector potentials therefore will be functions of s. The particle can be propagated
from the entrance of an accelerator component to its exit by solving the equations
of motion according to the Hamiltonian. This is repeated for all the accelerator
components, each one with a different Hamiltonian, until the particle completes a
full turn around the accelerator. This defines one turn for a particle and, of course,
multiple turns can be simulated as required.
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1. Single-particle dynamics

1.1.2 Symplectic integration of motion in an accelerator lat-
tice

It quickly becomes apparent when inspecting Eq. that the equations of motion
are difficult to solve for arbitrary potentials ¢, ay, ay, a; which are generally functions
of x,y and, in some cases, also functions of 7. Often, numerical integration is the
only practical way to study the particle motion.

When simulating the dynamics of particles in an accelerator, it is of particular
importance to choose a numerical integration scheme that preserves the symplec-
tic structure of the equations of motion. If the numerical model is not symplec-
tic, artificial growth or damping can be introduced in the amplitude of the par-
ticle trajectories[35]. As an example, the well-known Runge-Kutta scheme is not
symplectic[35].

It is important to note that the combination of two symplectic maps applied
successively is also a symplectic map. The most widely used scheme is based on the
splitting of the Hamiltonian H in two integrable Hamiltonians with known solutions.
The simplest case is having one dependent on the coordinates H; and one on the
generalized momenta Hs, in which case the solution to the equations of motion
becomes trivial:

H(X, px,y, Py, T, Pz 8) = Hi(x, y, 75 8) + Ha(px, py, P 8). (1.65)

Using Lie algebra notation[35], the solution to the equations of motion according to
a Hamiltonian H can be written as:

X(so+L) =e LM X(sp), (1.66)

where : H: is the operator of the Poisson bracket:

OH & O0H 8
‘H:=[H, ]= PR el (1.67)

By solving the equations of motion for the Hamiltonians Hi, Hs the following maps
are known:
e—Ll 2H1:’ e—L2 :HQI’ (168)

where the exponential operator is defined as:
o 1
Sy~ g 1.69
e ;) 5 S (1.69)

The Baker-Campbell-Hausdorff (BCH) formula can be used to concatenate such
maps. The BCH formula reads:
e:f:e:g: — e:h:’ (170)

where f and g are arbitrary functions of the dynamical variables and

h:f+g+%:f g+%(f g+:82 [)+0((f.9)"). (1.71)
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This shows that the successive iteration of the two maps in Eq. produces a
map, which corresponds to a Hamiltonian that is approximately equal to the original
one. Several schemes exist to arrange the successive multiple iteration of the maps
in Eq. in order to approximate the original Hamiltonian to higher orders.
The most popular schemes include the Leapfrog integrator, the Yoshida-Forest-
Ruth integrators [30, [37], while most recent developments include the CSABA,,
integrators [38]. For example, the Leapfrog scheme approximates the solution of the
Hamiltonian in Eq. with the following arrangement of maps:

e—L H: e—(L/Q) :Hg:e—L :lee—(L/Q) :HQ:' (172>

We note that the square root in the Hamiltonian of Eq. cannot be split
and typically produces equations of motion that cannot be solved. For this reason,
the square root is typically Taylor-expanded around the origin.

The maps for the most popular high energy accelerator components are reported
in the following subsections [39, [40].

Straight drift space

The Hamiltonian in a straight (h = 0) and field-free (¢ = ay = ay = a; = 0) region of
length L is:

2
Pr 1 ) 2 _ 2 1
H=——\[lp:+—=—]| —-pi-p5—-—- (1.73)
Bo \/( " Bo T By
The map resulting from this Hamiltonian is:
xox+ 2 (1.74)
Pz
y r—>y+&L, (1.75)
e
1 1
T|—>T+(——pT+ /EO)L, (1.76)
Bo Pz

with

( + ! )2 2_p2_ 1 (1.77)
Pz = P - —Px—DPy— . :
Z T ﬁ() y ﬁ%y%

The expanded Hamiltonian in a straight, field-free region of length L is:

_pr_ g, PAEPY
~ Bo 2(1+6)

5= [p2+225 11, (1.79)
Bo
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1. Single-particle dynamics

The corresponding map is:

Px

X x+ 1+(5L’ (1.80)
yHy+1T;L (1.81)
2, 52
THT+H|— - Pr__ Px7 Py ) (182)
Bo 146 2B(1+06)2
with ) 18
pr+ 0

Dipole magnet

The Hamiltonian describing the particle motion in a dipole magnet of length L in
a curvilinear reference system of constant curvature h in the horizontal plane and
with a uniform magnetic field By can be found from the vector potential:

qu hx2
=0, ay=0, a,= - . 1.84
x @y =P, (x 2(1+ h) (1.84)

The expanded Hamiltonian for the dipole magnet becomes:

2 2
pi+p
H=Pr 2

1
By 2 1+6

—(1+hx)(1+6) + ko ()H_thZ)’ (1.85)

where kg = %. The Hamiltionian can be split in two terms:

Cpe 1PEEDY
Harigt = — + =
Bo 2 1+0

-0, (1.86)
which is the expanded Hamiltonian for a straight drift, and:
hx?
Hgipole = —hx(1+06) + ko x+7 , (1.87)

which can be considered as the Hamiltonian of a “thin” dipole and produces the
following map:

Dx I—>px+(h—k0+h6—k0hx) L, (188)
h
T HT—FXL. (1.89)

Multipolar fields

The Hamiltonian expressing a “thin” multipolar field is:

H=a,=L-R

> (kn-kiﬁn)(x-+iy)"+1], (1.90)

n=0
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1. Single-particle dynamics

where R is the real part of the complex number and the normalized normal compo-
nents k, and normalized skew components k, are defined as:

q Bn+1
k, = nl L2m1 1.91
n=~n Py r6, ( )
A q A
k. =nl=L , 1.92
=g (192

with B,, A, being the normal and skew magnetic fields defined with an arbitrary
reference radius rq.
The map produced by this Hamiltonian is:

1 .
pr pa—L-R|D (kn +ikn) (x+iy)"|, (1.93)
!
1 .
py py+ L3>~ (k,, +ikn) (x+iy)"|, (1.94)
pors n!
where J is the imaginary part of the complex number.
RF cavity
The scaled vector potential for an idealized RF cavity is equal to:
qV
s = —— - kT), 1.95
;== cos (90 - k) (1.95)

where V is the cavity’s voltage, ¢q is a constant phase and k is proportional to the

frequency f of the RF field:
2
k=L@ (1.96)
c c

The map of this “thin” ideal RF cavity is:

\%4
Pr |—>pT+q—sin (p—kT). (1.97)
PoC

In this convention, the RF cavity is phase-locked to the reference particle.

1.2 Normalized phase space

Due to the large number of dimensions in the phase space (6D) and due to the fact
that there is intrinsic coupling between oscillations in one plane and another, it is
helpful to make an eigenvector analysis of the motion in order to find the uncoupled
modes of oscillation (uncoupled to first order in the dynamical variables).

This is achieved by analyzing the one-turn map linearized around the closed orbit.
If the closed orbit is defined by the vector zg = (xo, px,0, Y0, Py.,0, 70 pT,O)T then the ap-
plication of the linearized one-turn map M brings the vector z = (x, px, y, py, T, po)T
from the turn sg to the next turn sg + C as:

2(so+C) —z0 = M (z(s0) — 20) - (1.98)
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Evaluation of the one-turn map

The components of the linearized one-turn map M;; are equal to:

_ 82,’ (S() + C)

M;; = , 1.99
J 6Zj (SO) ( )

<0

i.e. each component is equal to the partial derivative of the i-th component of the
final 6D position with respect to the j-th component of the initial 6D position,
evaluated at the position of the closed orbit. This one-turn map can either be found
at machine precision by using automatic differentiation[4I] or a finite difference
method can be applied to approximate it.

Symplectification of the one-turn map

The one-turn map must be symplectic since it is the result of the concatenation of
multiple symplectic maps. However, especially if the finite difference method is used,
the map will be found to be only approximately symplectic due to the precision of
the method. The map can be symplectified (made symplectic) by constructing a
matrix that is approximately equal to a non-symplectic matrix M but is symplectic.
This can be obtained by using Healy’s symplectification algorithm [42]:

M, = (I1+SW)(I-SW)™, (1.100)
where
T
W= V;V , (1.101)
V=S{I-M)(I+M)!, (1.102)

with I being the identity matrix and

01 0 0 0 0
-10 0 0 0 0
000 0 1 0 0
5=l 0 10 0 ol (1.103)
00 0 0 0 1
000 0 0 -1 0

Diagonalization

After M has been symplectified, its six complex eigenvalues A; and six complex
eigenvectors v; can be calculated. Since M is a real and symplectic matrix, the
eigenvalues and eigenvectors form complex conjugate pairs, A7 and v}, respectively,
with £k =1,2,3 and

Vi = ag *iby, (1.104)
A = cos py + i sin pug, (1.105)
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1. Single-particle dynamics

where uy are real numbers and ay, by are real vectors. The matrix M can be written
in the form:

M = WRW !, (1.106)
with
cos i1 sin uy 0 0 0 0
—sinpu; cos 0 0 0 0
_ 0 0 coS {g  Sin uo 0 0
R = 0 0 —sinus cospus 0 0 ’ (1.107)
0 0 0 0 cos M3 sin ug
0 0 0 0 —sin yug cos us
and

ai1 big as1 ba1 asi baa

ai2 bio asz2 baa asp bi3o

_la13 b1z az3 baz asz3z bs3
W= . (1.108)

aia bia ass boa ass b3y

ais bis azs bas ass b3p

aie bie aze bag asg bsg

Rescaling of the eigenvectors

The columns by, by and b3 in Eq. ((1.104]) are rescaled to have the symplecticity
condition on W:

WISW =8, (1.109)

which imply
at Shy =1, (1.110)

with which three of the six eigenvalues and eigenvectors are selected.

Ordering of eigenvectors

The ordering of the eigenvectors and eigenvalues is done such that mode 1 is associ-
ated to the horizontal plane, mode 2 is associated to the vertical plane and mode 3
to the longitudinal plane. This is achieved by ordering them such that the following
conditions hold

|611,1 + ib1,1| > |6l1,3 + ib1,3| , |a1,5 +iby 5|, (1.111)
|a2,3 + ibg,gl > |612’1 + ib2,1| , |612,5 =+ ib2,5 , (1.112)
|a3,5 + l.b375| > |a3,1 + ib3,1| s |a3,3 + ib3,3| . (1.113)
Courant-Snyder parameterization
Finally, each eigenvector is rephased such that
bioj-1=0, j=1,2,3. (1.114)

This choice is frequently referred to as the Courant-Snyder parameterization.
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Normalized coordinates

The coordinates in the normalized phase space can be defined as:
EZW_]- (Z_ZO): (ﬁ,ﬁx,y,ﬁy,%’ﬁ‘r)- (1115)
The “linearized” action and angle variables can also be defined:

G+8 _ 24P

e (1.116)
tan ¢ :_%:_%’ (1.117)
J2:2§;23:y2;ﬁ3, (1.118)
tan gy = -2—;* - —%, (1.119)
Js = 25;25 _P ;ﬁg, (1.120)
tan ¢3 = —;—g = —A?. (1.121)

1.3 Synchrotron motion in action-angle variables

Although synchrotron motion of particles inside a bunched beam is non-linear, it is
integrable when it is driven by an RF cavity of a frequency. It is directly equivalent
to the pendulum problem [43], one of the most studied non-linear problems.

Above the transition energy[14] and without acceleration, the synchronous phase
is equal to m and the Hamiltonian H describing the synchrotron motion is:

_ qVRF cos 27TfRFT _Tp P2
21 frrPoCo c Qﬁ% i

(1.122)

where ¢ is the charge of the particle, Vg is the amplitude of the voltage powering
the Radio-Frequency (RF) cavity, fgr is the frequency of the RF cavity, Cy is the
accelerator’s circumference and 7, is the phase slip factor equal to:

1
M =ap — 3, (1.123)
Y0

with @, being the momentum compaction factor defined by the beam optics[14]. To
make notation easier, the following variables are introduced:

- _aVer (1.124)
27 frr PoCo
2
p = NIk (1.125)
C
Np
=L (1.126)
22
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Using Eqs. (1.124)), (1.125)) and (|1.126]) the Hamiltonian becomes

H = Acos (Bt) — CpZ. (1.127)

For the “libration” case, i.e. for stable motion inside the “RF bucket”, the value of
H ranges in the interval [0, A]. H = 0 corresponds to the separatrix line separating
“libration” and “rotation” of the pendulum, while H = A corresponds the value
for the synchronous particle, which is the hypothetical particle that always passses
through the RF cavity at the same phase. Using the trigonometric identity

0
cos (0) = 1 — 2sin? (5) , (1.128)
Eq. (1.127)) is rewritten as
2 2 B 2
H=A|1l-2sin 57 - Cps, (1.129)
.o (B 2
—H+ A =2Asin 57 + Cpz, (1.130)

— 1.131
o 57)+ p3. (1.131)

“H+A _ (B C
= Sin
24

Introducing the variable

_-H+A
m=— (1.132)
Eq. (1.131]) becomes
. 9B C
m = sin (5 ) 2ApT (1.133)

The value of m ranges in the interval [0,1] with m = 0 corresponding to the
synchronous particle and with m = 1 corresponding to the separatrix. The stable
fixed point is located at T = 0 while the unstable fixed points are located at 7 = +%

The action variable is defined as:

1
J = -d 1.134
5 P prdr ( )
14 ’ d 1.135
—%/0 p-at ( )
2

\/ﬂ/ \/ m — sin? —Td (1.136)

Through a change of variables with
: . (B
Vmsin ¢ = sin (ET) ) (1.137)

and

2m cos ¢

d¢ =dr, (1.138)
B /1 - msin? 0]
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the action becomes

2V2A
J = \/_ \/m msin? ¢dr (1.139)

= 27:/\/2? \/_ 1 —sin? ¢dr (1.140)

= 2\/%/ \/m cos ¢dt (1.141)

_ V24 % meos® ¢ (1.142)
nBNC Jo \/1 — msin?

_ 4V2A m cos> ¢ (1.143)

JTB\/E 0 +1- m sin?

_ AV2A % m - msin? ¢d¢ (1.144)

aBVC Jo  \1-msin?¢

AN2A [Em—-1+1-msin?¢

= d 1.145

nBVC Jo \/1—msin2 ¢ ( )
4V2A 21— msin? ¢

= - 1.146

nBVC o )-/ V1 —msin? ¢ V1 —msin? ¢ ) ( )

(1.147)

From this one can write:

j;/f/_é/ \/1 — msin? ¢d¢—(1—m)/ — d¢) (1.148)

In this expression it is possible to recognize the complete elliptic integral of the first
kind:

(1.149)

3 1
K = —d
(m) /0 V1 —msin? ¢ ¢

and the complete elliptic integral of the second kind:

E(m) = : 1 — msin? ¢ d¢. 1.150
(m) /O\/ msin? ¢ dg (1.150)

By substituting Eqgs. (1.149)), (1.150) into Eq. (|1.148)):

424
" ZBVC

(E(m) — (1 -m)K(m)). (1.151)
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The frequency of the synchrotron oscillations is:

0H

V=22 (1.152)
OH (87"
- (%) (1.153)
-1
-1

_ _TBV24C ”42AC aim (E(m) — (1= m) K(m)) (1.155)

BV2AC | 2
=T : K(m)) (1.156)

BV2AC
- _ﬂzK(_m) , (1.157)
(1.158)
or

V() = N7 fRFGQVRFTp (1.159)

cVPoCoK (m(J))’
where m can be found by inverting Eq. (1.151]). The angle variable is then defined
as:
¢=v()t+a, (1.160)

with a being an integration constant.
The original variables are related to the normalized coordinates by the following
relations:

T= %sin_1 (Vm - sn (4K (m)v(m)t|m)), (1.161)

pe = ,/2?" - cn (4K (m)v(m)t | m), (1.162)

where the Jacobi elliptic functions sn and cn have been used, which are given by:

sn (u|m) = sin ¢, (1.163)
cn (u|m) = cos ¢, (1.164)

with ¢ defined as the inverse of the function:

¢ dé
u _/0 ——— = F(¢|m). (1.165)

1—msin?@

This means that in order to evaluate the sn and cn functions for a variable u and a
given parameter m, the above equation must be inverted:

o =F ' (ulm). (1.166)
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After ¢ has been determined, the Jacobi elliptic functions can be evaluated by using
Eqgs. and .

For a given value in the action variable, the T and p; coordinates can be sampled
by choosing a random v(m)t € (0,1) to have a “matched” distribution. A matched
distribution is one that does not depend on time. Although each particle is moving
according the equations of motion, their distribution remains unchanged at the limit
of an infinite number of particles.

In the case where all particles are “captured” by the RF system and there is no
particle executing “rotating” motion, synchrotron motion is bounded for any value
of the action, or equivalently of m. A result of this is that for a given projection, a
distribution p.(7) or p,, (p+), there exists a unique distribution of the action p;(J)
or of the normalized Hamiltonian p,,(m). The projection can be decomposed as:

N

pr(x) = Y g(xlmi) - pm(mi) Am;. (1.167)
i=1
where x can be either 7 or p., and g(x|m;) is the projection of matched distribution
given a single value m;. This distribution can be evaluated with randomly sampling
pairs of 7, p; by choosing uniformly in ¢ from 0 to 27, and taking the projection
to x. Because synchrotron motion is bounded, a recursive relation can be used to
compute p,,(m):

px(xn) = g(xnlmy) - pm(my)Amy,
px(xn-1) = px(xn) + g(xn=1|lmn-1) - pm(my_1)Amy_1,
px(xn—2) = px(xn-1) + g(xN—2|mN_2) - pm(mMN_2)Amy_2,

px(x0) = px(x1) + g(x0lmo) - pm(mo)Amy,

where the given projection p,(x;) has been discretized in the samples x; = i- Ax. The
variable m; is found by using Eq. (1.133]) and setting the conjugate variable of x to
0. For example, if x = 7, then:

B
m; = sin’ (Ex,-) : (1.168)

The term Am; comes from the fact that the coordinate change from x to m; is a
non-linear transformation. If x = 7, it can be approximated as:

N P

Am; ~ sin?

After p, has been found, a matched 2D distribution (with a given projection in
either 7 or p;) can be acquired by randomly sampling m (according to p,(m) and
v(m)t (uniformly in [0, 1]), and finally transforming the pairs (m, v(m)t) to (7, p).

1.4 Large Hadron Collider

The Large Hadron Collider (LHC) [I] is the largest collider to date and holds the
record for the highest center-of-mass energy in collisions between protons. It is
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a synchrotron, mostly composed of repeating FODO (Focusing-Defocusing) cells.
A structure of FODO cells is a repeating structure of quadrupole magnets with
alternating polarity. A quadrupole that focuses on one plane, defocuses on the other.
By alternating the polarity of the quadrupole magnets it is possible to contain the
particle trajectories inside the aperture of the vacuum chamber. Dipole magnets are
inserted between the quadrupole magnets to bend the trajectories of the particles
in order to form a periodic “storage ring” that closes on itself.

The layout of the LHC is split into 8 arcs and 8 Insertion Regions (IR) also
referred to as long straight sections. The 8 arcs consist almost entirely of FODO
cells composed of dipole, quadrupole, sextupole and octupole magnets. Next to
each of the dipole magnets, there are spool-pieces correctors attached to them that
allow them to induce high-order multipolar fields (up to decapolar fields) in order to
compensate for the multipolar fields induced by magnet imperfections. The source
of the magnet imperfections is the discrete nature of coils that induce the magnetic
fields in the superconducting magnets of the LHC. Although their design is optimized
to minimize such imperfections, they cannot be eliminated completely. Moreover,
small deviations in the manufacturing process can also contribute to such effects.

The main dipole magnets each sit inside their own cryostat which enables them
to reach low temperature and achieve a superconducting state. Each arc is made
from 23 regular cells, each consisting in 6 dipole magnets of length equal to 14.3
meters. This makes 1168 dipole magnets in the LHC arcs regular cells. Each arc
and insertion region is connected by a “dispersion suppressor region”, whose primary
aim is to cancel the horizontal dispersion that is generated by the dipole magnets.
Each dispersion suppressor region consists of an additional 8 main dipole magnets,
thus bringing the total of the main dipole magnets in the LHC to 1232.

Each of the main quadrupole magnet (of length equal to 3.1 meters) in the arc
regular cells sits in a “short straight section” cryostat. The main sextupole (of length
equal to 0.369 meters) and main octupole (of length equal to 0.32 meters) magnets
sit inside the same cryostat that defines the short straight section.

The different IRs include a variety of equipment. Most notably,

1. The detector of the “A Large Toroidal Apparatus” (ATLAS) experiment is
hosted in IR1.

2. The detector of the ALICE experiment and the injection point of the beam
rotating clockwise are hosted in IR2.

3. The momentum cleaning collimators are hosted in IR3, where a large dis-
persion function is set in order to intercept particles with large longitudinal
amplitude oscillations.

4. Most beam instrumentation is hosted in IR4, e.g. the Beam Current Trans-
formers used to measure the intensity of the beam, the Wirescanners used to
measure the size of the beam, together with the RF cavities used to accelerate
the protons and to perform phase focusing to preserve the bunched structure
of the beam.

5. Insertion region 5 hosts the detector of the Compact Muon Solenoid (CMS)
experiment.
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TIR

TI8

Figure 1.2: Schematic layout of the LHC. Beam 1 circulates clockwise and Beam 2
counter-clockwise. Figure adapted from Ref. [1].
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Figure 1.3: Schematic layout of an LHC FODO half-cell. Figure adapted from
Ref. [1].
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Figure 1.4: Schematic layout of an LHC dispersion suppressor region next to IR2.
Figure adapted from Ref. [1].
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Figure 1.5: Schematic layout of the right side of IR1. Figure adapted from Ref. [I].

6. Insertion region 6 is where the LHC beam dump system is placed.

7. The betatron collimation system of the LHC, hosted in IR7, intercepts protons
with large amplitudes of betatron oscillations. At the same time, it ensures
that all debris that arises from the collisions between protons and collima-
tors are also intercepted safely by secondary collimators to minimize energy
deposition in the superconducting magnets.

8. Finally, the detector of the Large Hadron Collider beauty (LHCb) experiment
is hosted in IR8, along with the injection point of the beam rotating counter-
clockwise.

At the center of each of the four detectors (ATLAS, CMS, LHCb, ALICE) there
is an interaction point at which the particle bunches collide. The two particle beams
collide at an angle in order to avoid collisions in places other than the interaction
points. In order to put the particle trajectories such that they form an angle, dipole
correctors are used in the Insertion Region around the corresponding interaction
point.

A particularly important set of magnets in the LHC lattice are the Inner Triplet
(IT) quadrupoles around the interaction points. Those are used in order to de-
crease the beam size at the interaction point and therefore increase the produced
luminosity. The reduction of the beam size leads to an increase of the relative os-
cillation amplitude inside the I'T quadrupole magnets. Moreover, the Inner Triplet
quadrupoles have “common beam chambers” which means that the two beams are
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1. Single-particle dynamics

not isolated from each other and they can influence each other through the electro-
magnetic fields they produce. An overview of the layout at the right side of IR1 is
visible in Fig. [[.L5] The layout, which is identical to the one in IR5, is symmetric
around the interaction point.
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Chapter 2

Electron clouds

2.1 Overview of electron cloud buildup

The formation of electron clouds (e-clouds) is often observed in synchrotrons that
are operating with closely spaced bunches of positively charged particles. This is
the result of an exponential multiplication of electrons in the beam pipe driven
by secondary electron emission and photo-emission from the surface of the beam
pipe [30, 44 [45].

Primary electrons

The process of the e-cloud formation begins with the emission of the primary elec-
trons. The two most dominant mechanisms for the production of primary electrons
are the residual gas ionization and the photoemission due to synchrotron radiation.
Residual gas ionization occurs when the beam particles ionize the molecules of the
residual gas in the imperfect vacuum. At high beam energies, the photoemission
due to synchrotron radiation is dominant primary production effect. Synchrotron
radiation is emitted when a particle accelerates in a direction perpendicular to its
direction. This happens mostly at bending magnets but any magnetic field causes
transverse acceleration and therefore emission of synchrotron radiation. The energy
spectrum of the emitted photons consisting the synchrotron radiation ranges from
zero up to a “critical” energy equal to:
3
E, = 30l (2.1)
2p
where % is the reduced Planck constant, ¢ is the speed of the light, . is the
relativistic gamma factor of the beam particles and p is the radius of the curvature
of the trajectory.

If this energy is larger than the work function of the beam chamber’s material,
electrons can be emitted through the photoelectric effect. It is important to note
that photons emitted through synchrotron radiation can also be reflected multiple
times from the surface of the beam chamber and therefore impact on different spots.
Because of this, even though the emission of the photons from the particle beam
happens in a narrow cone that is tangential to particle beam direction, primary
electrons can be emitted basically anywhere on the chamber’s walls.
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Figure 2.1: Secondary Emission Yield curve with 6y, = 1.7 for the elastic compo-
nent (green), the secondary emission component (red) and their sum (blue). The
right figure is a magnification of the left figure in the low energy region. Figure
adapted from Ref. [I7].

2.1.1 Secondary electrons

During the passage of a particle bunch, the primary electrons are accelerated by
the beam’s electromagnetic field. When the bunch has fully passed through, the
electrons are typically moving towards the vacuum chamber’s walls with energies
that depend on the charge distribution of the particle bunch, which can reach a few
keV. When an electron hits the wall, it can either get elastically scattered back, it
can get absorbed by the wall, or it can induce the emission of more electrons in a
process called secondary electron emission. The average number of electrons emitted
is characterised by the Secondary Emission Yield (SEY). The modelling of the SEY
is based mostly on laboratory measurements [46, 47, 48] [49] [50]. The SEY depends
both on the energy and the angle of the impinging electron.

A typical SEY curve is presented in Fig. 2.1 where the component of elastic
scattering d¢. (green), of secondary emission dis(red) and of their sum § (blue) are
also shown. In the model usually used to characterize the beam chamber surface for
CERN accelerators[48], the elastic component is parameterized by the function:

2

VE - VE+Ey (2.2)

VE+VE+ E,
where Ry and E( are parameters of the model. For the LHC chambers, these pa-

rameters have been estimated as Ry = 0.7 and Ey = 150eV [4§]. The component
corresponding to the secondary emission is parameterized by

Oel. (E) =Ry

E

S
Emax
6ts(E) = Omax (23)

E \*
s—1+( )
Emax

where s is a shape parameter and Eyax is the energy corresponding to the maximum
of the SEY curve. For the LHC chambers, the parameters are estimated as s = 1.35
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Figure 2.2: Maximum SEY as a function of the dose for different impinging electron
energies at normal incidence on colaminated Cu of the LHC beam screen. Figure
adapted from Ref. [18].

and Epax = 332eV. The parameter 0y, expresses the maximum SEY and is highly
dependent on the properties of the chamber’s walls as well as its history. In the next
chapters, dmax Will be referred to as simply SEY. Further details on the modelling
of the SEY can be found in Ref. [I7].

2.1.2 Scrubbing — SEY reduction

Experimental studies have shown that the SEY of many materials decreases when
the surface is exposed to electron irradiation[I8]. This phenomenon is frequently
called as “conditioning” or “scrubbing” and is the basis for mitigating electron cloud
effects in the Large Hadron Collider[I]. An example of how the SEY evolves with the
impinging electron dose can be seen in Fig. 2.2 The SEY can be strongly reduced
by irradiation with electrons. Hence the e-cloud is a self-conditioning process in the
sense that the electrons of the cloud impact the vacuum chamber surface gradually
reducing the SEY and, in turn, the e-cloud generation.

In practice, dedicated “scrubbing runs” are scheduled to reduce e-cloud effects
in the accelerator. The run consists in storing a particle beam that produces the
maximum e-cloud that can be withstood by the accelerator in terms of beam stability
and other machine constraints like acceptable vacuum pressure or cryogenic capacity.
When the SEY has reduced sufficiently, a beam that generates a larger e-cloud can
be injected and stored to continue the self-conditioning in a more efficient way.
Typically, to increase the electron irradiation dose rate delivered by the e-cloud, it
is possible to increase the number of circulating bunches.
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Figure 2.3: Number of electrons during an example of the electron cloud build-up.
Figure adapted from Ref. [17].

2.1.3 Electron cloud buildup

The repeating passage of bunches can drive the buildup of the electron cloud. Each
bunch generates a number of primary electrons and at the same time accelerates
the existing electrons. After the passage of an individual bunch, the accelerated
electrons hit the walls and according to their energy they induce the emission of
more electrons. Until the passage of the next bunch, the electrons diffuse within the
vacuum and get absorbed by the walls. If the ratio between the number of electrons
after and before a bunch passage is larger than unity, then the total number of
electrons increases exponentially and the buildup is said to follow the “multipacting”
regime. If it is less than unity then it follows the “seed accumulation” regime where
most electrons that are produced are primary electrons and there is a dynamic
equilibrium between primary electron production and absorption. In the case of
multipacting, the number of electrons will continue to increase until the space charge
forces of the electrons themselves decelerate the electrons and a dynamic equilibrium
is reached [51].

An example of an e-cloud buildup in the multipacting regime is visible in Fig. 2.3
Two trains, each of 72 bunches spaced at 25 ns are driving the buildup. During the
passage of the first train, the density of electrons grows exponentially. Between the
trains there is a gap of 450 ns, where the density of electrons drops by roughly an
order of magnitude. During the passage of the second train (¢ > 2 ys), the density
quickly grows to a steady state value and the dynamic equilibrium is reached.

2.1.4 Buildup in externally applied fields

The spatial profile of the electron density in the electron cloud depends heavily on
the geometry of the beam chamber and on the magnetic field. In particular, the
magnetic field plays a major role on the formation of the electron cloud. Typi-
cally these fields are designed to control high-energy particles for which the particle
accelerator is designed. The electrons in the cloud however have a substantially
smaller energy, and therefore perform small rapid cyclotron oscillations. The rela-
tion between the magnetic field and the cyclotron period and radius is illustrated in
Fig. The cyclotron radius is very small and the electrons are practically trapped
on the magnetic field lines of the externally applied magnetic field.
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Figure 2.5: Simulated electron distribution in an LHC arc dipole (left) and arc
quadrupole (right) at injection energy as seen right before the arrival of a bunch
(from a Particle-in-Cell simulation). Figure adapted from Ref. [19].

Buildup in dipolar fields

In the LHC beam screens, the profile of the electron density in the cloud assumes
two columns on either side of the beam location whose distance depends mainly on
the intensity of the beam. An example of this is visible in the left plot of Fig. 2.5
Moreover, at moderate intensities (of 0.7 - 10!! protons per bunch), a column of
electrons appears at the location of the beam [20].

The projection of the electron density on the horizontal plane can be seen in
Fig. for different bunch intensities. Different colors correspond to different
bunches inside the bunch train. As the bunch intensity increases, the two columns
on the left and right of the beam location move further away from the beam loca-
tion, while the peak density does not change significantly. Moreover, as the bunch
intensity decreases, a middle column of large electron densities appears directly at
the beam location.
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Ref. [20].

Buildup in quadrupolar fields

The gradient of the magnetic field in high-order magnets (quadrupolar fields, sex-
tupolar fields, and so on), favours the trapping of electrons through the magnetic
bottle effect, frequently used to trap charged particles[52]. The magnetic trapping is
often not sufficient to limit the multiplication of the electrons but is enough to limit
the absorption of electrons inside the beam chamber walls. The magnetic field lines
confine the electrons and in that way, the spatial density of electrons resembles that
of the magnet’s field lines. For this reason, high-order multipolar fields favour the
appearance of increased electron densities at the origin of the field coordinates. An
example of an electron distribution in one of the LHC arc quadrupoles at injection
energy can be seen in the right plot of Fig. 2.5

Dependence on bunch intensity

Simulations have predicted that the dependence of the heat load from e-cloud effects
is not strictly proportional to the bunch intensity[19]. Instead, it was found in
Ref. that an interplay between the spectrum of the impacting electrons and the
shape of the SEY curve can induce a non-monotonic dependence of the heat load on
the bunch population. In particular simulations reveal that the induced heat load
from e-cloud decreases at high bunch populations in quadrupolar magnetic fields
(with the configuration of the LHC beam parameters and vacuum chamber).
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2.2 Electrodynamics in the electron cloud

The formalism of the effect of an e-cloud on the trajectory of a proton is summa-
rized in this section based on Ref. [53]. The equations of motion are developed
by employing a thin-lens approximation for the effect of an electron distribution,
in conjunction with the “smooth approximation”, which essentially states that the
beam particles traverse the e-cloud in a straight line along the longitudinal direction.
In the laboratory frame of reference for a single e-cloud, the electrons in a cloud
will be distributed according to a charge distribution p(x,y,s,t) and their motion
will define current density J(x,y,s,t). In a lattice element, neglecting fringe fields
and cavities with time-dependent electromagnetic fields, the electrons will be un-
der the influence of magnetic fields, if any, which are independent of the position
s. Moreover, the electromagnetic field of the charged beam as felt by the electrons
will only produce transverse electromagnetic forces in the ultra-relativistic approx-
imation. This implies that 1) the longitudinal component of the electron current
density vanishes (J; = 0), and 2) the evolution of the e-cloud follows the passage
of the bunch and the fields of the e-clouds will be stationary when expressed with
respect to the coordinate 7:
s
T 7o ct, (2.4)
As such, the charge and current densities can be written as p(x,y,7) and J(x,y, 1),
under the above approximations. Because of this dependence, it is convenient to
move to the rest frame of a rigid bunch, one whose distribution does not change
while crossing the e-cloud and moves straight along the longitudinal position s. The
Lorentz transformation [34] that moves the coordinates from the laboratory frame
to the rest frame of the rigid bunch is:

ct’ =yo (ct = os) , (2.5)
X' =x, (2.6)
Y=y, (2.7)
s" =0 (s = Boct) = Boyot- (2.8)

This transformation defines the charge p’ and current J’ = (J’ J: J’) densities in

x> vy Js
the rest frame of the rigid bunch as:

cp’ =0 (cp = Bols), (2.9)
I =y, (2.10)
=1, (2.11)
Js =0 (Js = Bocp) - (2.12)

Using the approximation that J; = 0, Egs. (2.9) and (2.12)) become:

P’ =yop, (2.13)
J; = —’}/Qﬁocp. (214)
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The sources (p” and J}) of the electromagnetic fields are time-independent in this
frame of reference and therefore the fields are also stationary. Choosing the Lorentz
gauge, it follows from Maxwell’s equations that for stationary fields:

4
v = -2, (2.15)
€0

V2AL = —pod; = poPocp’ (2.16)

where €y and ug are the permittivity and permeability of free space, respectively,

and with
H2 0? 02

ax/2 + 6y12 + 6.5'/2.
By comparing Eqgs. (2.15)) and (2.16)), it is clear that due to the absence of longitu-
dinal currents, the potentials are related through:

Bod’

A== (2.18)

v = (2.17)

The inverse transformation of the scalar ¢ and vector A = (Ax, Ay, As) potentials is:

? =70 ((ﬂ +ﬂ0A;) , (2.19)
c c
Ay = A, (2.20)
Ay = A, (2.21)
As =%o0 (A; +ﬁ0C¢) . (222)
Substituting Eq. (2.18]) in Eqs. (2.19) and (2.22)), it follows that:
¢I
_ 2 2.23
0-2 229
Ay =0. (2.24)

Additionally, from the definition of 7 (see Eq. (2.4))) and from Eq. (2.8)), the operator
in Eq. (2.17) is rewritten as:

9% o? 1 62

Vis — 4+ —+ : (2.25)
ox*  0y?  B2y2ot?
The substitution of Egs. (2.13)), (2.23)) and (2.25) in Eq. (2.15)) leads to:
02 02 1 02
A b__L (2.26)

0x2  0y? ,887(2) a2 g

The dynamics of e-clouds in the LHC manifest in scales of Ax ~ 1073 m, Ay ~
1073 m, At ~ 1072 m. Moreover, the relativistic factor yg = 450 for protons at
injection energy of the LHC, makes the longitudinal derivative much smaller than
the transverse ones by several orders of magnitude.

%¢ 9%¢ 1 0%
s > .
0x2’ 0y? ,8373 ot

(2.27)
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This justifies the approximation of neglecting the term with the second order deriva-
tive in 7 and Eq. (2.26)) becomes:

% ¢ _ _p
—t+— == 2.28
0x2  0y? €0 (2:28)
It should be reminded that both ¢ and p depend on the coordinate 7. The
electrons will move according to the scalar potential of the e-cloud ¢ and the inter-
action with the proton beam. This will lead to a change of p with respect to the t
coordinate which will in turn lead to a change of ¢ with respect to 7.

2.2.1 The electron cloud map

In the previous subsection, all of the potentials in the rest frame of the rigid beam
(K’) have been related to the potentials in the laboratory frame K. The derivation
of the e-cloud map is done on the rest frame of the rigid proton beam so as to take
into account only the contribution from ¢’ since the particle in the rigid beam is
approximated as if at rest.

In the laboratory frame, the beam particle has a constant speed in the longitu-

dinal direction.
As
— = . 2.29
At Poc ( )

Also in the laboratory frame, the e-cloud has a length equal to As = L. Therefore,
the interaction of a beam particle with the e-cloud, from the moment it enters until
the moment it exits, will last for At = ﬁ With this information, the duration of

the interaction in the frame K’, according to Eq. (2.5)), is equal to:

L
At = . 2.30
Boyoc (2.30)
The change of momentum after the interaction in the frame K’ is:
At’
AP’ = —q/ V'¢'dr’, (2.31)
0
or
L
AP = -y, (2.32)
Boc
This vector equation is written as:
,_ 9L 9¢
AP, = ————, 2.33
X ,80C 8x, ( )
Lo
ap, = 9L 09 (2.34)
Y Bocdy’
Lo
ap, = 4L 9% (2.35)
Boc ds’
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Since the Lorentz transformation does not affect the quantities x, y, Py, Py, Egs. (2.33)
and (2.34)) give the transverse deflections after they are divided by the reference mo-
mentum Py:

AP, gL 0¢
Ap, = = — -—, 2.36
p P() ﬁoPoC o0x ( )
AP L 0
Ap, =~ - __4L 07 (2.37)

Py BoPocdy’

For the longitudinal part of the map Ap., the change of energy in the laboratory
frame is calculated. In the rest frame of the rigid beam, the energy E’ of a particle

is related to its momenta (P;, P’y, P;) as:

E = \/mgc4 + (P24 P21 P2) 2, (2.38)

Both before and after the interaction with the e-cloud, the momentum of the particle
will be small with respect to its mass in this frame of reference and Eq. (2.38) can
be approximated as:

(2.39)

,2 ’2 ’2
E’:moc2(1+P)C thTHR )

2m?c?
The Lorentz transformation defines the energy E in the laboratory frame with re-
spect to the energy E’ and the longitudinal momentum P5 in the rest frame of the

rigid beam as:
E =7y (E"+ BocP}) . (2.40)

Substituting Eq. (2.39) in Eq. (2.40)), the energy is written as:

Pl2+P12+P12
E:)/o(moc2 (1+ al 2m§c2 i
0

+ﬁ0cP;) , (2.41)

and neglecting terms which are of second order in the momentum, we obtain:
E = yg (moc* + BocP%) . (2.42)
The energy change AE due to the interaction with the e-cloud is therefore equal to:

AE = ’)/OﬁocAP;. (243)

Using Eq. (2.35)), the definition of 7 and dividing both parts with Pyc, the energy

change becomes:
AE gL 0¢

—_— = 2.44
Poc Boc 0T ( )
which is equal to the change in p; due to the interaction with the e-cloud:
gL 9¢
Apr = ————. 2.45
Pr Boc 0t ( )
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Summarizing Eqgs. (2.36)), (2.36) and (2.45)), the full map describing the interaction

with an e-cloud which is described by the scalar potential ¢ is:

X X, (2.46)
Lo

Dx P Dy — ,%ﬁ_f (x,y,7), (2.47)

Y=, (2.48)
gL 9¢

_ako¢ L. 2.49

Py~ Py ﬁocay(xyf) (2.49)

T T, (2.50)
gL 9¢

P Pr Boc 91 (x,y,7). (2.51)

This map is generated by the Hamiltonian:
L
H = q—qb (x,y,7)6 (s — s0), (2.52)

BoPoc

and is therefore symplectic by construction.

2.3 E-clouds effects at the LHC

The electrons and the generated electromagnetic fields can affect the operation of
an accelerator in several unwanted ways. The flux of electrons onto the walls of the
vacuum chamber can cause [30]

1. A dynamic pressure rise, degrading the vacuum.
2. Heat deposition, raising the temperature of the affected device.
3. Interference with beam instrumentation leading to spurious signals.

The electromagnetic fields generated by the e-cloud can affect the beam dynamics
leading to performance limitations in the accelerator. In particular, they can lead
to:

1. A tune-shift that is bunch-by-bunch dependent [54].

2. A synchronous phase-shift along the bunch trains through the energy loss (of
the beam particles) when interacting with the electrons[55].

3. Coherent beam instabilities causing to fast beam loss or emittance blow-up[20,
56].

4. Incoherent effects to cause slow beam loss or slow emittance growth|[12] [45] [10]
7, 7).

In the LHC, the e-cloud results in strong coherent transverse instabilities, which
need to be mitigated with the usage of a feedback system and by operating with
large chromaticity and tune spread from octupole magnets[57, 58, 201 56].
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2.3.1 SEY measurements in the LHC

The SEY in the LHC has been estimated by comparing heat load measured during
the operation of LHC and heat load simulated using the PyECLOUD software [59].
The estimation of SEY is described in Refs. [21] 60]. By simulating the heat load
in the dipole magnets, the quadrupole magnets and the drift spaces in between,
using the beam conditions during the measurements, the SEY that reproduces the
measurements if found for each half-cell of the LHC individually. The estimated SEY
per half-cell is shown in Figs. [2.7|and [2.8|for the different arcs and for measurements
recorded during 2012 and during 2018.

A peculiar feature that is observed is that there are strong variations of the SEY
across different half-cells. In fact, sectors 78, 81, 12 and 23 show a systematically
larger SEY than sectors 34, 45, 56 and 67. The difference in SEY is attributed
to the appearance of different oxides on the surface of the LHC beam screens [61].
However, the systematic difference of SEY between the different sectors is still under
investigation at the time of writing.

2.4 Incoherent e-cloud effects

Even when instabilities are successfully controlled, the e-cloud can still induce sig-
nificant beam degradation through incoherent effects, resulting in slow beam losses
and transverse emittance growth. Notably, at the Large Hadron Collider (LHC) [I]
e-clouds induce a significant beam lifetime degradation both at injection energy and
in collision [62], 24], 22]. The modelling of such beam degradation is particularly dif-
ficult since these effects are the result of an interplay between the non-linear e-cloud
forces and the non-linearities of the accelerator lattice. Furthermore, such effects
are often visible only on very long time scales corresponding to several millions of
beam revolutions. Therefore, numerical models and computer programs used for
this purpose need to be at the same time sufficiently accurate to correctly describe
the phenomena and sufficiently fast to allow the simulation of such long time scales.

Incoherent effects from e-cloud were addressed by different studies over the last
two decades. Furman et al. [7] showed that e-clouds can cause a tune spread, distort
the betatron functions and dispersion, as well as cause a synchro-betatron cou-
pling. The incoherent tune shift was also studied by Romano et al. [§],as well as
Petrov et al. [9]. Franchetti et al. [I0] used simplified cloud distributions to ex-
press analytically the forces induced on the beam particles by the e-cloud. Such
an approach is very convenient in terms of computation time but lacks the capabil-
ity of accurately describing realistic e-cloud distributions, especially in the presence
of magnetic field gradients. Ohmi and Oide [II] studied the incoherent emittance
growth driven by e-cloud with self-consistent Particle-In-Cell simulations of the cou-
pled dynamics between the e-cloud and the beam particles. Such an approach is
extremely demanding in terms of computation time and ultimately does not al-
low the simulation of the long time scales required for the study of these effects in
realistic configurations.

Incoherent modifications of the beam distribution driven by e-cloud effects are
typically slow processes. Hence, it is reasonable to assume that over a relatively large
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LHC sectors in 2012 (blue) and 2018 (red). Figures adapted from Ref. [21].
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Figure 2.8: Estimated SEY in the half-cells of the 56 (a), 67 (b), 78 (c¢) and 81 (d)

LHC sectors in 2012 (blue) and 2018 (red). Figures adapted from Ref. [21].
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2. Electron clouds

number of turns the impact of the changes in the beam distribution on the e-cloud
dynamics can be neglected. Based on this consideration, Benedetto et al. [12] [13]
introduced the approach of pre-recording the e-cloud forces on a discrete grid and
computing the forces on the beam particle location using an interpolation scheme. In
this work the authors do not address the issue of the symplecticity of the simulated
interaction. As will be discussed in more detail in Section the usage of an
interpolation scheme does not guarantee the preservation of the symplecticity of
the particle interaction with the e-cloud. If the numerical model is not symplectic,
artificial growth or damping can be introduced in the amplitude of the particle
motion, leading to unacceptable modifications on observables of interest like beam
lifetime and emittance evolution [14].

The e-cloud pinch

The dynamics of the e-cloud depends on a large set of parameters, including spac-
ing between bunches, bunch charge, transverse beam sizes and bunch length. It
also depends on properties of the accelerator, for example the magnetic field con-
figuration, the geometry of the vacuum chamber and the material properties of the
vacuum chamber’s walls, in particular their Secondary Electron Yield (SEY). Fig-
ure 2.9 shows a typical evolution of the e-cloud charge density during the passage
of a bunch in the absence of externally applied magnetic fields.

X [mm]
o

logio o [e7/m?]

1.0 0.5 0.0 -0.5 -1.0
t[ns]

Figure 2.9: Time evolution of the x = 0 slice of the electron density distribution
during an e-cloud pinch. The head of the bunch is at ¢t < 0.

While the bunch passes through the cloud, the electron density increases signif-
icantly at the bunch location and complex structures appear in the density profile.
This is commonly referred to as the e-cloud “pinch” [10} [63]. The field generated by
such an evolving charge distribution has very specific features illustrated in Fig.[2.10]
In the transverse plane, the field changes sign very abruptly within the core of the
bunch, as shown in Fig. 2.10h. Moreover, strong oscillations of the fields are ob-
served as a function of time as illustrated in Fig. 2.10p. It is evident that describing
such a field behaviour with analytical expressions is practically unfeasible.

Furthermore, in the presence of a magnetic field the electrons are confined by
the field lines and the electron dynamics can get even more complicated. Both the
non-linear behavior of the transverse field distribution and its time-varying nature
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Figure 2.10: (a) Horizontal field as a function of horizontal position x at y = 0,¢ = 0.
(b) Horizontal field as a function of time 7 at y = 0,x = 5 pm.

have a strong impact on the dynamics of the beam particles that are subject to these
fields. It is therefore important to correctly model these features when simulating
the beam dynamics in the presence of the e-cloud.
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Chapter 3

Bunch-by-bunch measurement of
slow beam losses in the LHC

In 2018, during the LHC Run 2 [64] in 2018, a large fraction of the physics lumi-
nosity production was performed with a beam energy of 6.5 TeV, a bunch spacing
of 25 ns and beta functions of 30 cm at the high luminosity interaction points. Be-
cause of the luminosity burn-off, the intensity of the two counter-rotating beams
was gradually reducing during the fills. This allowed to gradually reduce the cross-
ing angle between the two beams in order to maximize the integrated luminosity
produced[65]. In this chapter, the available experimental observations are reviewed
that allow disentangling the contributions to the observed beam degradation caused
by the different collective effects, namely the beam-beam and the electron cloud
effects. As it will be shown, e-cloud effects are the most significant contributors in
the degradation of the beam lifetime. A bunch-by-bunch analysis of different spe-
cialized tests points to the fact that the e-cloud in the final focusing quadrupoles of
the Inner Triplet (IT) assemblies is mostly responsible (see Sec.

In the analysis, only the beam circulating in the clockwise direction(so called
beam 1) is considered. The same features are observed in the beam circulating
counter-clockwise (so called beam 2), but they are more pronounced in beam 1.
The beam loss rate is calculated from the drop of intensity as measured by the
Fast Beam Current Transformer, in intervals of five minutes. The losses of beam
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Figure 3.1: Total beam losses separated into luminosity burn-off and other sources,
as a observed during a single typical LHC fill in 2018. Figure adapted from Ref. [22]
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3. Bunch-by-bunch measurement of slow beam losses in the LHC

AT- LHCb CMS ALICE -LAS
AT- LHCb CMS ALICE -LAS

Figure 3.2: Typical BCMS filling scheme used during the LHC Run 2 in 2018. Figure
adapted from Ref. [23].
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48 bunches (25ns spacmg)
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Figure 3.3: Magnification in a small region of Fig. .

1 are shown in Fig. where they are split in two contributions. The blue line
shows the contributions of burn-off, i.e. of protons lost because of inelastic proton-
proton collisions. This burn-off is calculated by using the instantaneous luminosity
L, provided by the ATLAS and CMS experiments. and is is equal to

dN
—— =L Oipel

= : (3.1)

where L is the instantaneous luminosity [32] and oype is the total inelastic cross
section which is equal to 79.5 + 1.8 mbarn at /s = 13 TeV [66]. The contribution to
the instantaneous luminosity from the ALICE and LHCb experiments is considered
negligible. Subtracting the burn-off contribution from the total loss rate, the losses
due to other sources are obtained, visible in the red line of Fig. 3.1l While the con-
tribution of burn-off decays with time due to the decaying intensity, the additional
losses remain constant after a fast decrease during the first hour. One observes that
the additional losses are comparable to the burn-off losses, especially towards the
end of the fill. The analysis of the additional losses can help identify the sources
that cause them.

3.1 Analysis strategy

Significant insight can be gained from the bunch-by-bunch analysis of the losses,
allowing to attribute the losses to either single-bunch effects or effects that affect
each bunch differently. The typical filling scheme used during Run 2 of the LHC is
based on the Bunch Compression Merging and Splitting (BCMS) production scheme
in the LHC injectors [67]. This is illustrated in Fig. where each bar represents a
bunch train for a total of 2556 bunches in each beam. Apart from 12 non-colliding
bunches, the filling scheme consists of batches of 48 bunches, with a bunch spacing
of 25 ns, produced in the Proton Synchrotron. A magnification on the filling scheme
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Figure 3.4: Number of BBLR interactions per high luminosity interaction point for
each bunch in a train consisting of three batches. Figure adapted from Ref. [22].

is shown in Fig. A train of two batches and two trains of three batches are
shown. Each batch in a train is separated by 200 ns, necessary for the rise time
of Super Proton Synchrotron injection kicker. The trains are separated by gaps of
800 ns, necessary for the rise time of the LHC injection kicker.

There are two main effects that can affect the losses of each bunch differently.
The first one is the e-cloud, which builds up from the head of the train towards
the tail of the train. The 200 ns gap between batches just barely reduces the
electron density in the cloud but the 800 ns gap between the trains is enough that
e-clouds almost completely decay. Depending the on the vacuum chamber, the SEY
of its walls and the characteristics of the beam, the e-cloud may or may have not
reached saturation. Additionally, the bunches will encounter Beam-Beam Long-
Range (BBLR) interactions close to interaction points where they collide head-on
with the other beam. The number of encounters depends on the bunch structure of
the opposite beam. For a train of three batches, the number of BBLR encounters
according to the position of the bunch in the train is plotted in Fig. The number
of BBLR interactions is symmetric with respect to the center of the train. The first
and last bunches of the train exhibit the minimal amount BBLR interaction.

Using these signatures of bunch-by-bunch patterns, four groups of bunches are
selected in order to disentangle the two effects, illustrated with the colored bands in
Fig. 3.4 Their properties are the following:

Group 1: Bunches at the head of the leading batch of the train. These experience
the minimal amount of BBLR interactions and small e-cloud densities.
Group 2: Bunches at the center of the leading batch of the train. These experience
the maximal amount of BBLR interactions and small e-cloud densities.
Group 3: Bunches at the center of the trailing batch of the train. These experience
the maximal amount of BBLR interactions and large e-cloud densities;
Group 4: Bunches at the tail of the trailing batch of the train. These experience
the minimal amount of BBLR interactions and large e-cloud densities.
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Figure 3.5: Bunch-by-bunch additional loss rate for three consecutive bunch train
and its evolution with time, beginning from the onset of collisions in a typical LHC

physics fill. The loss rate from luminosity burn-off has been subtracted. Figure
adapted from Ref. [22].
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Figure 3.6: Bunch-by-bunch loss rates for three consecutive bunch train at time
t = 2 hours since the onset of collisions in a typical LHC physics fill. The additional

losses (red) are plotted alongside the losses due to burn-off (blue) subtracted. Figure
adapted from Ref. [22].
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Figure 3.7: Additional loss rates for the four groups of bunches, as measured during
a typical LHC physics fill. The losses are shown for group 1 (light green), group 2

(dark green), group 3 (light red), group 4 (dark red), defined in Fig. 3.4 Figure
adapted from Ref. [22].
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Figure 3.8: Snapshot of a simulated electron cloud distribution in a slice of an I'T
quadrupole magnet. The positions and size of the two beams is indicated by the
blue and red ellipses. Figure adapted from Ref. [22].

3.2 Beam losses during collisions

Figure [3.5] shows the evolution of the bunch-by-bunch loss rate for bunches in three
consecutive bunch trains, where the contribution of burn-off to the loss rate has
been subtracted. The evolution is shown beginning from the moment when bunches
are put into collision. A slice at time 7 = 2 hours of these losses is shown in Fig. [3.6]
The additional loss rate exhibits a trend that is increasing from the leading bunches
towards the trailing bunches of each train.

The additional loss rates are calculated for the four groups of bunches described
in Sec. and their evolution in time is shown in Fig. 3.7, For all groups of
bunches, strong losses are observed at early times, 7.e. right after the beams are
put into collision, which then decay within an hour. In the following part of the
fill, bunches belonging in group 1 show negligible losses, while for group 2 losses
are small. Bunches in groups 3 and 4 show very similar loss rates This means that
the number of BBLR interactions doesn’t appear to have a significant effect on the
beam lifetime. These facts indicate that the strongest source of losses is most likely
e-cloud effects. It should be noted that it is expected that the BBLR interaction
wouldn’t significantly degrade the beam lifetime as the operational settings (crossing
angle and betatron tunes) have been chosen in order to minimize the effect of the
BBLR interactions.

Effect of crossing angle

During physics fills in the LHC Run 2, as the bunch intensity decreases (mostly
due to the luminosity burn-off), so does the strength of the BBLR interactions.
This increases the margin available in terms of single-particle stability and allows to
reduce the crossing angle in order to maximize the produced luminosity [68]. Indeed
such a strategy is adopted in the operation of the LHC and the crossing angle is
gradually reduced from 320 prad to 260 prad.

The crossing angle between the beams is created through a closed orbit bump
in the insertion regions. Reducing the crossing angle makes the closed orbit bump
smaller, bringing the two beams closer to the center of the IT quadrupoles. A
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Figure 3.9: Additional loss rates for the four groups of bunches, as measured during
a test LHC physics fill with a constant crossing angle. The losses are shown for

group 1 (light green), group 2 (dark green), group 3 (light red), group 4 (dark red),
defined in Fig. [3.4] Figure adapted from Ref. [22].

snapshot of the e-cloud in a slice of the IT can be seen in Fig. [3.8] where the beams
are also illustrated with the red and blue solid ellipses. As is typical in a quadrupolar
magnetic field, there is a large electron density concentrated in the center of the
chamber and on the two diagonals passing through the four poles of the magnet.
Therefore, a reduction of the crossing angle increases the effect both of the BBLR
interactions and of the e-cloud in the insertion region around the high luminosity
interaction points. Apart from the IT, the rest of the beam pipe in the common area
is coated with a low-SEY material, completely suppressing the formation of e-cloud.

In order to investigate whether the change of crossing angle affects the beam loss
rate, a special test fill is analyzed, where the crossing angle was kept constant at
320 prad for the entire duration. The resulting loss rate for the same four groups
of bunches is shown in Fig. |3.9] By comparing Figs. and (3.9} it is clear that the
loss rates reduce with time in all of the groups. Also for this fill, the fact that the
loss rate is identical between bunches in group 3 and group 4 indicates that e-cloud
effects are the most significant contributor to the degradation of the beam lifetime.
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Figure 3.10: Bunch-by-bunch loss rates measured with a single circulating beam. A
small train of 12 bunches is injected in the other beam as is visible by the blue line
corresponding to the luminosity burn-off losses. Figure adapted from Ref. [22].
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Figure 3.11: Electron density as a function of time, simulated in a slice of an IT
quadrupole magnet with one circulating beam (a) and two circulating beams (b).
The bunch pattern is plotted on top of the figures for beam 1 (blue) and beam
2 (red). A train of 4 long batches of 72 bunches is simulated to also study the
saturation of the electron density. Figure adapted from Ref. [22].
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Single-beam losses

In an additional dedicated test the losses were recorded with trains that do not
encounter the other beam, in the same configuration used for the typical physics
fills. To precisely replicate the machine and beam configuration, a small train is
present in beam 2 for technical reasons. The bunch-by-bunch loss rates that are
measured during this experiment are shown in Fig. |3.10, By comparing Figs.
and it is evident that the losses are significantly smaller, and show a different
bunch-by-bunch pattern. In this configuration, the strong non-linear forces from
the beam-beam interactions (either head-on or long-range) are absent. Moreover,
the e-cloud density in the I'T quadrupoles is expected to be reduced in the presence
of a single circulating beam, when compared to the case where both beams are
circulating [69]. Due to the large size of the vacuum chamber in the IT quadrupoles,
a 200 ns gap between batches is enough to significantly limit the buildup of the
e-cloud. However, the presence of an additional counter-rotating beam can sustain
the electron density in the e-cloud during this 200 ns gap. Simulations of the e-
cloud buildup in an IT quadrupole are illustrated in Fig. for a single circulating
beam (a) and two counter-rotating circulating beams (b). By comparing the e-cloud
buildup of Fig. to the bunch-by-bunch loss rate pattern of Fig. [3.10] and the
e-cloud buildup of Fig. to the bunch-by-bunch loss rate pattern of Fig. the
similarity is evident. Therefore, the e-cloud that forms in a common beam chamber
under the influence of both beams is correlated to increased losses.

Different optics configuration

Another test that points to the e-cloud in the I'T quadrupoles as the driving source
behind the beam lifetime degradation was conducted during the validation of a
special beam optics configuration to prepare for the LHC Run 3 [70, [71]. In the
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typical physics fill configuration, the horizontal and vertical betatron functions at
the high luminosity interaction points were equal to f* = 30 cm with a telescopic
index r = 2. In the beam optics configuration used in this test, the betatron functions
were equal to 8* = 65 cm with a larger telescopic index of r = 3. The telescopic index
determines the amplification of the betatron functions in the strong sextupoles of the
arcs left and right of the high luminosity interaction points. Because of the larger
B*, the maximum betatron function in the IT is significantly smaller, while because
of the increased telescopic index, the betatron functions in the S12, S45, S56 and
S81 LHC arcs are increased. The measured bunch-by-bunch loss rates are shown in
Fig. B.12] They are significantly lower compared to those in Fig. [3.6] This shows
that the contribution of the e-cloud in the arcs to the beam lifetime degradation
is negligible while the reduction in losses is explained by the fact that a reduced
betatron function at the IT quadrupoles results in weaker effects from the e-cloud
at those location.

3.3 Beam losses during the betatron squeeze

During the typical operation of the LHC, the betatron function at the interaction
points is 8 = 1 m at the end of the energy ramp. Before the beams are brought into
collision, B8* is a reduced to the value of 30 cm. This happens in a dedicated process
called the betatron squeeze. The evolution of B* during this process is illustrated in
the top of Fig. In the bottom of Fig. [3.13] the total loss rate, averaged over
several fills, is shown for two fill categories, before and after the optimization of the
beam lifetime. In order to optimize the beam lifetime, the betatron tune settings
that are used during the betatron squeeze were changed from (Qy, Q) = (0.31, 0.32)
to (0.305,0.315). The blue line in Fig. shows the average loss rate for fills before
the change of the set betatron tunes while the red line shows the average loss rate
for those after.

The modification of the tune betatron settings was motivated by simulations of
dynamic aperture through particle tracking. In these simulation studies, magnetic
non-linearities and BBLR effects were included, but e-cloud effects were not. The
simulations showed that a larger dynamic aperture can be obtained by lowering the
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Figure 3.12: Bunch-by-bunch additional loss rates (red) and luminosity burn-off
losses (blue) measured during a test with larger betatron functions in the arcs and
smaller ones in the ITs. Figure adapted from Ref. [22].
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Figure 3.13: Top: evolution of f* during the betatron squeeze. Bottom: Total beam
loss rate measured during fills before (blue) and after (green) the optimization of
the betatron tunes. Figure adapted from Ref. [24].

tunes. For coherent stability issues due to residual linear coupling in the transverse
motion [72], the difference between the fractional horizontal and vertical betatron
tunes was kept constant.

Bunch-by-bunch loss rates for two fills before and after the optimization can be
seen in Fig. A significant improvement is observed with respect to the total
beam losses. Features of both BBLR interactions and e-cloud effects can be noticed.
After the tune change, the pattern of the BBLR interaction disappears in the bunch-
by-bunch loss rates. while the pattern of e-cloud remains unchanged. This is in line
with the fact that simulations with only BBLR effects were used to optimize the
lifetime.

A systematic analysis of these losses was carried out following the strategy of the
four groups defined in the Sec. 3.1} The average loss rate is presented in Fig. [3.16
for bunches in group 1 (top left), bunches in group 2 (top right), bunches in group
3 (bottom left) and bunches in group 4 (bottom right). It is easy to notice that the
bunches showing the best lifetime are those belonging in group 1, 7.e. those with the
minimum number of BBLR interaction and reduced e-cloud effects. Additionally,
bunches in group 2 show a significantly better lifetime compared to bunches in group
3, even though they experience the same number of BBLR interactions. Moreover,
after the optimization of the lifetime, bunches in group 3 and group 4 show similar
losses. Finally the lifetime of bunches in group 3 and group 4 is always larger than
the lifetime of bunches in group 1 and group 2.

Since the evolution of losses is correlated with the evolution of the * and equiv-
alently of the betatron functions in the I'T quadrupole magnets, these observations
are consistent with the hypothesis that the e-cloud in the I'T quadrupole magnets is
the most significant source contributing to these losses. The fact that the change of
betatron tunes for the optimization of the lifetime did not affect bunches in group 4,
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Figure 3.14: Dynamic aperture as a function of the set betatron tune settings in
simulations at the end of the betatron squeeze with BBLR interactions. The dots
represent tune settings used during operation before (blue) and after (green) the
change of the tune settings. Figure adapted from Ref. [24].
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Figure 3.15: Bunch-by-bunch loss rates for three consecutive trains of bunches at
B* =33 cm for a fill before the tune change (blue) and a fill after the tune change
(green). Figure adapted from Ref. [24].

shows that the cause of the losses cannot be a coherent tune-shift along the trains.

3.4 Remarks

The analysis of bunch-by-bunch slow beam losses reveals that the e-cloud in IT
quadrupole magnets is a strong source of non-linearities causing a degradation of
slow beam losses. This is consistent with a large set of measurements at a proton ref-
erence energy of 6.5 TeV. For the High-Luminosity LHC upgrade, the beam screens
of the ITs are planned to be coated with amorphous carbon (a-C) [73]. The amor-
phous carbon coating features a low SEY, which is expected to lead to a mitigation
suppression of thee-cloud multipacting and buildup in the ITs.

68



3. Bunch-by-bunch measurement of slow beam losses in the LHC

Group 1 Group 2

-
N

=

)

—s— Before Optimization

o
o
=

=

—— After Optimization

. _ [2) ,//

Loss rate [%/h]
- = o0
Loss rate [%/h]
- D Q0

0 2 4 6 8 10 0 2 4 6 8 10
Time [min] Time [min]
Group 4
12 12
—10 —10
= =
< 3
8 &
26 86
© ©
e ¢
w 4 n 4
1] [}
o o
= 2 = 2
00 2 4 6 8 10 00 2 4 6 8 10
Time [min] Time [min]

Figure 3.16: Measured loss rate for bunches belonging in the groups defined in
Fig. 3.4] averaged over several fills before (blue) and after (green) the optimization
of the beam lifetime. Figure adapted from Ref. [24].
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Chapter 4

Long-term simulations of particle
distributions for colliding beams

in the LHC

From the analysis conducted in Chapter |3] it is clear that when looking at Figs.
and there are strong additional losses at early times with respect to the on-
set of collisions for all of the bunches. These losses are thought to come from the
introduction of the beam-beam head-on interaction between the two beams. The
topic of this chapter is the usage of particle tracking simulations to compute the im-
pact of incoherent effects on observable quantities like beam lifetime and emittance
evolution.

4.1 Description of the simulation

In recent software development of particle tracking engines, SixTrackLib [74] was
created in order to efficiently use Graphics Processing Units (GPU). In comparison
to the few number of powerful cores that a typical Central Processing Unit (CPU)
has, a GPU holds typically a few thousand, but slower, cores. The CPU cores
can execute instructions independently of each other, while the GPU cores need
to execute in relatively large groups the same instructions. Such architecture fits
very well conveniently the requirements of tracking simulations in which multiple
particles need to be propagated along the same lattice. An example of the time
needed to track particles as a function of their number is shown in Fig. for
the case of using a typical single-threaded, single-core CPU (red) and GPU (blue).
Naturally, on the single-threaded single-core CPU the computation time is simply
proportional to the number of particles that are being simulated. On the GPU,
instead, the computation time is constant with respect to the number of particles
until the capacity of the GPU is reached. Then for a larger number of particles,
the relation becomes again roughly proportional. It is import to note that, if only a
very small number of particles needs to be tracked, then a CPU will have a shorter
computation time than the GPU. On the other hand, the GPU offers a significant
speedup when many thousands of particles need to be tracked concurrently.
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Figure 4.1: Total computation time as a function of the number of particles that
are being simulated when using a single-core CPU core (red) and a GPU (blue).

Modelling of the beam-beam long range interactions

For the setup of the simulation, SixTrackLib parses the MAD-X [75] description of
the LHC lattice and converts it to a sequence of elements used to propagate the
particles’ motion. The lattice is “thin”, in order to numerically solve the equations
of motion, in the sense that each element has been sliced to sequences of drifts
(elements that change the position of the particle) and kicks (elements that change
the momentum of the particle). The beam-beam interaction is applied using a
weak-strong approximation where the simulated particles belong to a “weak” beam
which is unable to influence the opposing “strong” beam. This approximation is
appropriate to address the single-particle stability of individual particles when the
particle distribution of the two beams changes very little over the simulated time.
In this and the following subsection, a brief summary of the modelling used for the
beam-beam interaction is presented from the literature [76], 77, 6, [78, [79)].

For the beam-beam long range interaction, the length of the bunch is neglected.
The Hamiltonian that describes this beam-beam interaction between bi-Gaussian
beams is the following [77. [76]:

H = &U(x,y;ax,ay) o(s), (4.1)
P()C
where N corresponds to the bunch intensity, ¢ is the charge of the simulated particle
in the weak beam, ¢ is the speed of light and Py is the reference momentum of the
particles in the weak beam. oy and oy are the r.m.s. horizontal and vertical beam
sizes of the bi-Gaussian distribution, respectively. The scalar potential U is:

x> )’2
q oo EXp 202+u 202+u
- L " du
Are ’
0Jo V202 +u 20'y2 +u

where g, is the charge of the particles in the strong beam and &g is the permittivity
of free space. factor. According to this Hamiltonian, the normalized canonical

U(x,y;0x,0y) = (4.2)
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momenta of the particles change as:

N
Pr = Pr+ oL fulx, yi oy ay), (4.3)
P()C
Ng
Py = py+ 3 Sy (x, y; 0%, 0y)s (4.4)
oC

where the forces f, fy are equal to:

e

fx= X
2e04/27 (O'X2 - 0'y2)
a- . o
: 2 2 X=+iy=>
+ x
x Im |w| —— —exp(— x2 - y2) ik S , (4.5)
2(02 - o) 205 205 )\ (2 (02 - o)
e
fy= 2 _ 2 *
204/ 2m (O’x - O'y)
(o
- 2 2 x4y
x Re|w Y —exp(—XQ— yZ)w ik S , (4.6)
2 (02 - (Tyz) 20 205 2 (02 - (Tyz)

for elliptic beam with o > o and with w(z) being the Faddeeva function, defined

as
w(z)=e® (1 + %/0 etht) . (4.7)

For the special case of round beams with o, = o, = o, the forces become

i 5 on
x+y x

= 1- - , 4.8

S 2neo | P ( 2072 ) x2 +y? (4:8)
1| x2+y2\] oy

= 1- - . 4.9

Iy 2reo | P ( 202 ) x2 + y2 (4.9)

Modelling of the beam-beam head-on interaction

The beam-beam head-on interaction requires a significantly more detailed descrip-
tion. This is needed because 1) the collision point between a particle in the weak
beam and the strong beam has a strong dependence on the coordinates of the par-
ticle (including 7) and 2) because the beam size in the collision point changes with
the longitudinal position 7 of the particle inside the weak beam. The dependence
on 7 also implies that the interaction will lead to an energy change (a change of
pr). This interaction is modelled using the synchro-beam mapping described in
Refs. [6l [78], [79]. The modelling is based on using a Lorentz-boosted reference frame
where the weak and the strong beam are moving towards each other on a line. The
boosted strong beam is then approximated as a finite number of thin slices. The
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collision point between a slice of the strong beam and the weak particle will differ
from the interaction point. For each slice, the weak particle and the strong beam
slice are propagated to their collision point where the transverse forces are applied.
Due to the crossing angle, the forces (which are transverse to the strong beam)
introduce an energy change (longitudinal force). Additionally, the energy change
will have a component that is directly related to the gradient of the strong beam’s
potential with respect to the variable 7. For the final part of the interaction, the
particle of the weak beam is drifted back to its original s coordinate and the inverse
Lorentz-boost to recover the reference frame.

A brief summary of the beam-beam head-on interaction steps is presented here
but details about its technical and numerical implementation can be found in Ref. [77].
The opposing beam is split into a finite number of slices. The interaction between
a particle and a slice of the opposing beam can be calculated through the following
steps:

1. Transform the coordinates of the particle with a Lorentz-boost to a frame of

reference with no crossing angle.

2. Compute the particle coordinates at the point where it collides with the slice

of the opposing beam.

3. Compute the transverse and longitudinal kicks from the slice based on the

coordinates at the collision point.

4. Transform the kicks back to the original coordinates of the particle.

5. Transform the coordinates back to the original frame of reference with the

inverse Lorentz-boost.

6. The process is repeated for each slice of the opposing beam.

It should be noted that transporting the slice (from the interaction point to the
collision point) also changes its distribution. The slice and its beam distribution
momenta are calculated at the collision point according to the optics functions of
the accelerator.

Modelling of the LHC lattice

In this study, the LHC lattice is modeled including dipolar, quadrupolar, sextupolar
and octupolar magnetic fields. Magnet imperfections and misalignment are not
considered. The nominal parameters of a typical fill from the 2018 run are used,
which are summarized in Table It is noted that there is a strong sextupolar
component in order to set the horizontal and the vertical chromaticity equal to 15.
Moreover, a particularly strong octupolar component is needed, as the octupole
magnets are powered with 500 A. Both of these settings are needed in operation to
prevent coherent beam instabilities caused by electron cloud effects.

The effect of the beam-beam interaction has a non-linear nature. For small
amplitudes of oscillation (of up to around one r.m.s. beam size), the interaction can
be approximated with linear defocusing force. For moderate amplitudes (between
one and five r.m.s. beam sizes), it becomes very non-linear while the effect of
the beam-beam interaction vanishes as the amplitudes tend to infinity. However,
because of the strong sextupolar and octupolar magnetic fields in the ring, the
particle motion at large amplitudes becomes unstable. The combination of beam-
beam interactions with the strong sextupolar and octupolar magnetic fields drives a

74



4. Long-term simulations of particle distributions for colliding beams in the LHC

Table 4.1: Typical operational parameters of the LHC during Run 2 with beams in
collision, used in the simulations.

Bunch population [p/bunch] 1.25- 101
Reference energy [GeV] 6500
R.m.s. bunch length [cm)] 9
R.m.s. horizontal emittance (normalized) [pm] 2
R.m.s. vertical emittance (normalized) [pm] 2
Horizontal betatron tune 62.31
Vertical betatron tune 60.32
Synchrotron tune 2.1073
Horizontal chromaticity 15
Vertical chromaticity 15
Octupole magnets’ current [A] 500
Amplitude detuning coefficient [80], @, [pm™] 0.27
Amplitude detuning coefficient [80], ayy [um™] 0.28
Amplitude detuning coefficient [80], @y [pm™] -0.19
RF voltage [MV] 12
Bunch spacing [ns| 25

significant decrease of the dynamic aperture. Dynamic aperture is a beam dynamics
indicator which defines the extend of phase phase in which particles remain stable
over a certain amount of time [8I]. In the simulation, particles are considered lost
when they escape from the aperture which is set to 1 m. This number is artificial
and is typically set large enough so that the trajectory of the particle is stopped
before it escapes to infinity. In post-processing of the simulation data, the value of
the aperture, which is typically defined by the primary collimators in the LHC, is
varied to investigate its effect.

4.2 Evolution of slow beam losses

Typically in the LHC, the longest simulations in terms of simulated beam time
are those of dynamic aperture, where particles are being tracked typically for 10°
turns to estimate the extent of the region of single-particle stability. Moreover, the
number of particles needed to estimate dynamic aperture is relatively small (in the
order of 100 particles). Finally, dynamic aperture is a powerful qualitative indicator
of the non-linear beam dynamics but it can become difficult to relate to observable
quantities like the rate of the slow beam loss. For this reason, taking advantage
of the property of the GPU to be efficient when simulating tens of thousands of
particles at the same time, the slow beam loss is simulated directly through the
tracking of particle distributions.
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Monte-Carlo integration

The intensity of a bunch I(¢) is, by definition, the number of particles at any moment
t. By considering particles that exist at + = 0 and are lostEI at a time t = t7, the
bunch can be written as:

N

1=)s (r, r(L")) : (4.10)
i=1
where the i-th particle is lost at time t(Li), N is the number of particles at t = 0 and
S is the step function defined as:

- 1 if 1<
S(t, 1) = L 4.11
(.17 {O if r> til) ) (4.11)

Due to the large number of particles typically in a bunch at the LHC (~ 10! pro-
tons), it is convenient, and a good approximation, to consider a continuous particle
density distribution. The intensity can be then written as:

I(t) = [V S(t,11) P (x, px,y, py, T, pr) dxdp,dydpydrdp- , (4.12)
6D

where t; = t7(x, px,y, Py, T, pr) is a function of all the canonical variables and the
function P(x, px,y,py, 7, ps) expresses the distribution of particles at time t = 0
normalized such that

Iy = / P (x, px, ¥, Py, T, pr) dxdp,dydp,drdp- , (4.13)
Vep

with Iy being the initial bunch intensity. The integration is performed over the
available 6D phase-space Vgp. It is easier to define the distribution of particles in
terms of linear normal form analysis of the accelerator one-turn map as described
in Section A change to the normalized phase space variables (X, px, ¥, Py, T, pr)

transforms Eq. (4.12)) as:
10 = [ S10) P& o3 ot pe) didpudidp,dedpe . (410
Vep

In a typical fill in the operation of the LHC, the majority of particles remain
stable for timescales longer than the fill itself. It is therefore inefficient to count the
remaining particles and, instead, the lost particles should be counted to define the
loss rate directly. This can be realized by integrating the derivative of the intensity

'In the LHC, particles are lost when their oscillations can reach large amplitudes at which point
they are intercepted by the collimators.
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with respect to time, between times ¢#; and t5.

2.d1
Al (t1,19) = —/ —dr’, (415)
n dr
2d4s(e,t N o e e N eta e aa
= — (—,L) dr"| P (%, px. 3. Py, T, Pr) drdpdydp,dtdp. ,
dr
Vb n
(4.16)
2
_ / ( / 5(1 —1z) dt’) P (%, pr. $: By £, Pr) didpsdidp,dsdp, ,
Vep \J11
(4.17)
where the property of the Dirac delta function ¢ was used:
dsS(z, ¢
S(t—1t1) = —(d—tL) : (4.18)

The integral of the ¢ function appearing in Eq. (4.17)) defines the piecewise function:

2

K(tp;t1,t9) = / 5(¢' —1p) dr”, (4.19)
151
1 if n<tp<ty,

Kttty =4 PSSR (4.20)
0 otherwise .

Substituting Eq. (4.20) into Eq. (4.17)), the loss rate becomes
AI (t17t2) = K(tL; llJZ) P (jéap\X7 )A]’ ﬁyﬂ%ﬁ?’) dﬁdﬁxdydﬁydfdﬁ‘r . (42]‘)

Vsp

Another approximation that can be made to simplify the equation is to factorize
the initial particle distribution P into a transverse and a longitudinal one. The
factorization is as follows:

P (ﬁ,ﬁx’ j\}aﬁy’ fapAT) = IO 'p (xA’ﬁXa )A],pAy) : h (TA’pAT) B (422)

where [ is the initial bunch intensity, p is the transverse initial distribution, nor-
malized to unity in the 4D transverse phase space and h is the longitudinal initial
distribution, normalized to unity as well in the longitudinal phase space. Addi-
tionally, the longitudinal distribution can be approximated as unaffected by the
transverse motion and the longitudinal variables 7, p; can be transformed back to
their canonical coordinates 7, p,:

h (T, pr) dt,dpr = h (7, pr) d7,dpr . (4.23)

Another change of variable can be made to bring the system to action-angle coor-
dinates as described in Sec. [L.3t

h(z,pr) dr,dpr = h (Jz, ¢7) dJr, dg: . (4.24)

77



4. Long-term simulations of particle distributions for colliding beams in the LHC

A distribution that is matched in the longitudinal plane is one that will depend only
on J; and therefore it follows that

h(t, pr) dt,dpr = h (Jr) dJr, dér . (4.25)
Substituting Eq. (4.22)) and (4.25) into Eq. (4.21)), separating the integrals in the

transverse phase space volume V;p and in the longitudinal phase space, the loss
rate becomes

2r Jutp
AL (11, 19) = / / K(tzst1,02) o p (5 oo 9. 5y) h(Jr)dsdpedsdp,dlsdey .
+=0JJ:=0 Vap

(4.26)
where Jyug, is the value of J; which corresponds to the unstable fixed point in the
separatrix of the single-harmonic RF potential. Assuming that ¢, does not depend

on the initial angle ¢-, Eq. (4.26)) becomes

AI(Z‘l,lg) Jutp A ot A
7 = 27r/ / K(tp;t1,t2) p (x,px, y,py) dxdp,dydp, | h(J7) dJ: .
0 J+=0 Vap
(4.27)
Here, t7 is a function of the variables %, p, ¥, py, T, pr. The term in the parenthesis
can be renamed as:

AI (tlatz;JT) _

7 / K(trit,t2) p (32, De> Y, ﬁy) dxdpdydp, , (4.28)
0 “Vap

and is equivalent to the loss rate computed for a transverse distribution p and a
longitudinal distribution that is a ¢ function in the action variable of the longitudinal
phase space. In this expression of the loss rate, J; is considered a parameter. The
total loss rate, including the contribution of the longitudinal distribution is equal to

AI (f1,1 Tuto AT (11, 19: J¢
Altntd) _ o, / AL 12300) gy ay, (4.29)
J

Iy =0 Iy

By bringing the equations in this form, the total loss rate can be calculated by dis-
cretizing J; and calculating Al (t1,t2;J;) /Iy in each case. The integral in Eq.
is calculated by applying the Monte-Carlo integration technique [82 83] by ran-
domly sampling X, py, 9, py uniformly in a 4D hypersphere, each time for a spe-
cific value of the action J,. Each sample defines a particle with initial coordinates
x®, p,(f), y®, p;i), 7@, pg) that is tracked with SixTrackLib through the model of the
LHC lattice for 2-107 turns and the time that each particle is lost t(Li) is calculated.
By applying the Monte-Carlo integration technique, Eq. is rewritten as:

N
Al (t1,t2;J:)  Vap (i) ) A o) AG)
N K(t 1t ) (A(l)’ " ’A(l), o ) , 4.30
- Y ; Vitt) - p(29, 5,59, by (4.30)

where N is the number of particles and V,p is the volume of the hypersphere inside
which the simulated particles were sampled. By considering only particles that were
lost between 1 and fo, the Monte-Carlo estimator becomes

Al (11,12;J7) _ Vap () A0) () A0
IO - N lep(x sPx »Y ,py ) 4 (431)
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with j such that .
n<t <ty (4.32)

The variance associated to this estimator is equal to:

V[AI (ll,fz;fr)] N

Iy
2
Vip [ 1 Y0 ) ) [ 1 oy
4D 2 (o) A o0) () () AU o) AU
N N;p (x(”,px’ ,y(J),pyJ)— (N;p(x(ﬂ,px’ 39, By )) . (4.33)

This variance expresses the degree of belief in the estimation of the loss rate. Ac-
cording to Monte-Carlo theory, the degree of belief in the estimation of the loss rate
is expressed by a Gaussian distribution whose mean value is equal to the estimator
in Eq. and whose variance is equal to the one in Eq. 182, 83].

It is clear from Eq.(4.33)) that the r.m.s. error (square root of variance) is pro-
portional to the volume of integration Vyp. In this way, the discretization of J; has
enabled the reduction of the error associated to Monte-Carlo integration. Moreover,
this also allows the study of the loss rate as a function of the longitudinal action J;
(or equivalently the longitudinal oscillation amplitude).

It is important to note that in this framework, the distributions p and h are de-
fined at the post-processing of the simulated data and do not influence the tracking
simulations themselves. This allows to study the dependence on the beam distri-
butions without repeating the time-consuming simulations. Moreover, the aperture
defined by the primary collimators can be also be varied during the post-processing
of the simulated tracking data, allowing also to study the dependence of the loss
rate on the aperture. Finally, what is left is to define the expressions to be used for
the distributions p and h.

For the LHC, experimental measurements of the transverse beam profiles p show
that their core can be described very well by Gaussian distributions. However,
measurements of the tails of the beam profiles are more difficult. The available data
based on destructive “beam scraping measurements” suggests that the tails of the
profiles are slightly overpopulated with respect to a purely Gaussian distribution [84].
The loss rate is strongly related to the population of particles in the tails due to
their large oscillation amplitude. In order to study the sensitivity of our results to
the tail population, we use 4D g-Gaussian distributions in which the population of
the tails is controlled by a g parameter [85] [86].:

1

1-g¢g

(4.34)

~2 ) 52 A2

A A oA xX“+p; Y +tp

P, px, Y, Dy) < [1=(1-¢q) =+ .
2e, 2ey

For g = 1, the distribution is a Gaussian distribution, for ¢ > 1 the distribution has
overpopulated tails, and for g < 1 the tails are underpopulated.

For the longitudinal case, three different distributions are considered in order to
study their effect: 1) an exponential:

hi1(J;) o< exp (—Z—T) , (4.35)

T
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Figure 4.2: Simulations of loss rate (a) and intensity (b) for Gaussian distributions
as a function of time for different values of J. (max(p;)= Sinit)-

2) a g-exponential with ¢ = 0.85:

1
J _
s 1= o (Z)|1 79 (4.36)
T
3) a parabolic distribution in the action variable J.
T2
hs(J;) « [1 - (s_T)] . (4.37)

In each case, the parameter &; is chosen in order to have the desired r.m.s. bunch
length. It is easy to see that the parabolic distribution is a special case of the g-
exponential with g = 0.5. In all of the cases, the parameters of the distributions are
chosen such that the r.m.s. bunch length is kept constant.

Simulation results

By applying Eq. on different sets of tracking simulations, each with a different
initial longitudinal action J; and by assuming Gaussian distributions in transverse
planes, the loss rate is shown in Fig. It is evident that the loss rate increases
for larger longitudinal actions.

By considering all of the simulations, the loss rate at the latest time interval is
shown as a function of the longitudinal amplitude in Fig. , by using Ay (red), ho
(green), h3 (blue) for the longitudinal distribution. It is apparent that the largest
fraction of the lost particles are not located at the largest longitudinal amplitudes
when considering the longitudinal distribution. This happens because the popu-
lation of particles falls faster with respect to the longitudinal amplitude than the
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Figure 4.3: Simulations of loss rate for different values of J; (max(p;) =
max(Ap/p)).
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Figure 4.4: Simulations of the final loss rate as a function of time, considering the
exponential distribution A (red), the g-exponential distribution hs (green), and the
parabolic kg distribution (blue).

loss rate increases. The final loss rate is equal to the integral of these functions.
Although the choice of the distribution appears to affect the loss rate as a function
of the longitudinal action, it increases in some regions while it decreases in some
others. The total area under the curve appears to be affected only barely by the
choice of distribution.

By integrating the loss rates appearing in Fig. [£.3] as in Eq. [£.29] the total
loss rate as a function of time is calculated and shown in Fig. for the different
longitudinal distributions. The loss rates become approximately constant for late
times (¢ > 10 min). Moreover, the choice of longitudinal distribution barely affects
the loss rate, except at very early times (¢ < 10 min).

Another parameter that can influence the loss rate is the aperture limitation
induced by the primary collimators in the LHC. The evolution of the final loss rate
for different settings of the aperture (distance of the primary collimators in the LHC)
is illustrated in Fig. [£.5] A slightly smaller aperture strongly increases the loss rate
at early times, which then converges to a steady loss rate.

The strongest uncertainty of the loss rate arises from the uncertainty in the tails
of the transverse distributions. The evolution of losses is presented in Fig. for
different values of the ¢g. Larger g corresponds to a larger population in the tails of
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Figure 4.5: Simulations of the final loss rate as a function of time for an aperture
set at infinity (black), 4.80 (red), 5.00 (green) and 5.30- (blue). The beam size

o here refers to the nominal o according to the design report [I], for normalized
emittances of 3.5 pm.

10°

Loss rate [%/h

10"

0 5 10 15 20 25 30
Time [min]

Figure 4.6: Simulations of the final loss rate as a function of time for the g parameter
values: (gold) ¢ = 1.00, (orange) g = 1.05, (red) ¢ = 1.10, (brown) g = 1.15, (purple)

q = 1.20, (blue) ¢ = 1.25, (black) ¢ = 1.30, controlling the population of particles at
the tails of the transverse distributions.

the distribution and leads to larger loss rates.

4.3 Evolution of the transverse beam profiles

Additionally to the estimation of loss rate, the horizontal and vertical profiles can
be estimated from the tracking simulations. From these profiles, the emittance can
be calculated by fitting a Gaussian distribution on the core of the distribution. This
is done in order to mimic the conditions under which the emittance measurement is
done practically at the LHC. The horizontal and vertical profiles are shown in Fig. [1.7]
at time r = 0 and at + = 2- 107 turns, assuming Gaussian initial transverse profiles.
Figure shows the profiles assuming a g-Gaussian initial transverse distribution
with ¢ = 1.1. By comparing the initial and final profiles it is easy to see that there
is no significant change in the profiles. If the initial profiles are Gaussian, then they
remain Gaussian. If the initial profiles have over-populated tails, then the tails are
preserved throughout the simulated time interval.
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Figure 4.7: Simulations of the initial horizontal profile (a), initial vertical profile
(b), final horizontal profile (c), final vertical profile (d). The value ¢ = 1.0 was used
for the initial distribution. The final profiles correspond to those at the end of the
tracking simulations at 2 - 107 turns.

10! 10~!

w107 zho?

E 10-3 2 107

NN =2 -t o %

im ' g - iw ~ . ~
10-5} @/ Tail Content (|x| > 3a) \ e 10- e / Tail Content (|y| > 3a) .
o = 1.53% N = 1.52% .

—6 -4 -2 0 2 4 6 —6G —4 -2 0 2 4 6
x [o] y o]
(a) (b)
107! 107"

@t wo?

£ 107 £ 10-°

£ : ,

im“ s . > Ew“ ' d %
10-" : Tail Content (|x| > 3a) \ ® 10-%} &/ Tail Content (|y| > 3a) %
1o-oLal =1.84% | 10-8L-a = 145% )

—6 —4 -2 0 2 4 6 —6 —4 -2 0 2 4 6
x [o] y [o]

(c) (d)

Figure 4.8: Simulations of the initial horizontal profile (a), initial vertical profile
(b), final horizontal profile (c), final vertical profile (d). The value of g = 1.1 was
used for the initial distribution. The final profiles correspond to those at the end of
the tracking simulations at 2 - 107 turns.
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Figure 4.9: Evolution of the horizontal (blue) and vertical (red) emittances for g = 1
(a) and ¢ = 1.1 (b) in the initial transverse distributions.

The evolution of the horizontal (blue) and the vertical (red) emittances as esti-
mated from these profiles are shown in Fig. for ¢ =1 (a) and for g = 1.1 (b).
As also deduced from the comparison of the initial and final profiles in the previous
figures, the emittance stays practically constant over the whole simulated time.
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Chapter 5

Simulations of incoherent electron
cloud effects for the LHC at
injection energy

5.1 Symplectic implementation of the e-cloud map

The forces that describe the effect of an e-cloud on a beam particle are conveniently
calculated in the frame of the reference particle. In such a frame, the forces are pro-
portional to the gradient of a scalar potential ¢, which, for ultra-relativistic beams,
can be calculated with good approximation by solving the 2D Poisson equation [53]:

0°¢ (x,y,7) 0 (x,y,7) _ p(x,,7)

Ox2 dy? £ (5:1)

where gy is the vacuum permittivity and p (x,y, 7) is the charge density of the e-
cloud. Such an approximation is used in most simulation codes used for this purpose,
for example PyECLOUD[59], POSINST[87], HEADTAIL[S8], OPENECLOUDI89].
The integrated forces from the e-cloud in a small segment of the accelerator of length
L, which is centered around the longitudinal position sg, can be generated from the
following Hamiltonian

_ 4t -
H = ﬁopoc¢(x’y, T)&(S SO)’ (52)

where By is the ratio between the speed of the reference particle and the speed of
light ¢, and Py is the total momentum of the reference particle. More details about
the canonical conjugate variables used in this coordinate system can be found in
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Section [I.1} The map obtained from this Hamiltonian is:

X, (5.3)

gL
pXpr_ﬁOPOCex (x’y9T)’ (54)
yre=y, (5.5)

q

Py Py~ g (x,y,7), (5.6)
THT, (5.7)

qL
pTl_)pT_meT(-x7y’T)7 (58)

where 56 y "

“E T T ey T o (5.9)

As discussed in Section changes in the beam distribution driven by inco-
herent e-cloud effects are typically slow processes. Over a relatively large number
of turns, the impact on the e-cloud dynamics from the modifications in the beam
distribution can be neglected. Therefore, the e-cloud dynamics can be simulated
once and , in a form of a “weak-strong approximation”, the corresponding potential
can be stored to apply the e-cloud forces to the beam particles over multiple turns
without repeating the time-consuming calculation of the potential. Moreover, fol-
lowing this approach, the same e-cloud forces can be applied in multiple locations
of the accelerator where the beam size and the geometry of the chamber are the
same. This is convenient especially in lattices with a strong degree of periodicity
such as those of high energy accelerators. Furthermore, the resulting map does not
exhibit turn-by-turn fluctuations from the limited number of macroparticles used to
describe the electron distributions. This is particularly important as these fluctu-
ations can lead to artificial modifications in the results and need to be controlled
with special care.

5.1.1 Tricubic Interpolation

The standard tool for the simulation of the e-cloud dynamics is codes based on the
Particle-In-Cell method. For this purpose, the PyECLOUD [59] code is used in LHC
studies. It has been extensively benchmarked against experiments [60, 21] as well
as other simulation codes [90]. PyECLOUD provides the charge density p(x,y, )
and the scalar potential ¢(x, y, 7) on a regular three-dimensional grid with cell sizes
Ax, Ay, At:

¢7* = p(xi,yj. 1), (5.10)
p7* = p(xiyyj, T, (5.11)

where x; = xo +iAx, y; = yo + jAy, 7x = 19 + kA7 and xq, yo, 70 define the position
of the grid in the three-dimensional space. In PyECLOUD, the fields are calcu-
lated by solving Eq. (5.1)) with a finite difference method, evaluating the gradient
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Figure 5.1: Horizontal field of the e-cloud as a function of 7 in a single simulation
(a) and the average of 4000 simulations (b).

of the potential at the grid nodes with central differences and then using a linear
interpolation scheme to get the field at the location of the electrons.

The field map obtained by such simulations with typical numerical settings ex-
hibit significant macroparticle noise as visible in Fig. [5.1p. This does not affect the
motion of electrons because it is largely dominated by the beam’s field. However, it
is not acceptable when evaluating its effect on the beam particles over many turns.
As the potential table is computed and stored before starting the beam particle
tracking simulations, such a problem can be effectively solved by simulating the dy-
namics of the e-cloud multiple times. Each simulation will have a different random
seed in the generation of the initial electron distribution, and therefore averaging the
resulting charge density and scalar potential will lead to a more accurate estimate
of the charge density and scalar potential with less macroparticle noise. The result
of such an averaging process over 4000 simulations is shown by the black points of
Fig. [5.1pb.

A map in the form given by Egs. — is symplectic if the following condi-

tions are verified:

9 (09 9 (0¢

9 _9 , 5.12
ox \ oy 0y \ ox ( )
0 (0¢ 0 (0¢

—_— RS = — _— .1
ox\or| or\ox)’ (5.13)
0 (0 0 (0¢

— === = 5.14
oy \ ot ot \dy ( )

If the potential ¢ is a smooth function, for example if it is an analytic function,
these conditions are automatically satisfied. However, the potential ¢“/* from the
PyECLOUD simulation is known only on a discrete grid. As such, an interpolation
scheme needs to be used to obtain the potential or the field in an arbitrary point
in space. The conventional interpolation scheme that is used in PIC simulations, is
based on linear interpolation and finite differences for evaluation of the fields. This
scheme does not preserve symplecticity of the map as it is shown in Appendix [A]
The symplecticity condition will hold, however, if the derivatives are computed
analytically from an interpolating function ¢™ (x, y, t), which has continuous mixed
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derivatives:
82 ¢int 62¢int 82 ¢int
0xd0y’ 0x0t’ dyotr’

(5.15)

Such a function could be created by fitting globally a high-order polynomial in three
dimensions to the discrete samples ¢//%. The order of such a polynomial would need
to be prohibitively high to accurately reproduce complex features of typical e-cloud
forces. For this reason, the usage of a local interpolation scheme is investigated that
can preserve symplecticity.

Such a scheme can be realized by following the approach introduced by Lekien
and Marsden [91], which consists in a a local tricubic interpolation scheme that is
able to preserve the global continuity of the functions:

a¢int a¢int a¢int 62¢int 82¢int 82¢int a3¢int
Ox = Oy = Ot ~ 0xdy’ dydr’ 0xdt 0x0yotr

o, (5.16)

Such a list of globally continuous quantities includes those in Eq. (5.15)). There-
fore the symplectic structure of the scheme is guaranteed. In such a scheme, the
interpolating function is a piece-wise polynomial:

3
oM (v, )= Y agedyl T, (5.17)
ij k=0

where the coefficients a;;; are different for each hexahedral cell of the grid and are
calculated by imposing the quantities listed in Eq. at the 8 nodes of the
corresponding cell. By imposing these quantities on the 8 nodes of each hexahedral
cell, all functions in Eq. are shown to be globally continuous across the domain
covered by the grid. Since the exact derivatives of the potential are not known for
e-clouds, central differences are used to evaluate them from the discrete samples
¢k for example:

Ak gLk _ gimlik

i e (5.18)

5.1.2 Refinement of the potential

For a typical e-cloud distribution, a direct application of the scheme described in the
previous section can lead to unacceptable artifacts on the interpolated forces. This
is shown by the red line in Fig. [5.2] It is evident that the interpolating function is
irregular. This is due to the fact that the derivatives

6€;nt _ 62¢int 0€;nt _ 62¢int aeirnt ~ 62¢int
dx x99y o9y’ ar 9t

(5.19)

are not globally continuous and, in fact are discontinuous across the x, y, T directions,
respectively, as discussed in Ref. [91]. Expressions for the first derivative of €™ at
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Figure 5.2: (a) Horizontal forces from the e-cloud interaction as a function of the
transverse coordinate x in the vicinity of the closed orbit of the beam for x = 0,7 = 0.
The (red) interpolating function obtained by the direct application of the tricubic
method is shown alongside the (blue) result obtained with the refinement procedure.
(b) Corresponding discontinuities on the first derivatives.

the grid points are derived in Ref. [91]

Heint i+1,7.k _ i jk i+1,j.k +9 i.j.k

g | g2 AL . (5.20)
dx x—xT A)C2 Ax

Heint ¢i—1,j,k _ ¢i,j,k oLk gtk

— =-6 5 +2-2 Sl (5.21)
ax X—X. A.X AX

from which the discontinuity at the grid nodes can be computed as

int int i+1,7,k i-1,j,k i+1,j.k iLjk | i-1j.k
sik _ oe; _ Oy 3 _6¢’ SR — = ol +4e”" + ey
T B 2
0x . 0x . Ax Ax
(5.22)
ijk

Taking into account that e;" are evaluated by directly applying central differences
(see Eq. (5.18)) on the discrete samples ¢“*, it follows that:

ik _ ¢i+2,j,k _ 2¢i+1,j,k + 2¢i—1,j,k _ ¢i—2,j,k
x,direct Ax2 :

(5.23)

By Taylor expanding ¢(x, y, 7) with respect to x around x;, the discontinuity reads:

3

E e = =25 (11, T8) A+ O(A) (5.24)

The expression shows that the discontinuity could be lowered by reducing the grid
spacing Ax in the PIC simulations of the electron dynamics. However, when the
grid spacing is reduced by a factor of & in all three dimensions, the number of
macroparticles need to be increased by a h3 factor so as to avoid the introduction
of numerical noise. In a realistic e-cloud simulation, this approach quickly becomes
restrictive both in terms of memory consumption and computation time.

It is important to note that the chosen Ax is sufficient to properly resolve the
electron dynamics and the introduced forces on the grid. It is only at the inter-
polation stage that the artifact is introduced. Therefore, it is possible to leave Ax
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unchanged in the PIC simulation and instead apply a refinement scheme directly
on the result of such a simulation. Specifically, the resolution of ¢ can be increased
locally by linearly interpolating p on a grid with spacing reduced by a factor of h

Ax
h 9
and solving once more the Poisson equation on this finer grid. This provides the

potential in additional grid points, for example along the x direction of the cell with
indices i, j, k:

Axreﬁned = (525)

@ik gLk gi2fhgk gD bk gLk (5.26)

Working on such a refined grid allows for a more local estimate of all quantities
in Eq. on the grid nodes using central differences, for example:
ijk i+1/h,j .k _ pi=1/h,jk
0_¢J zh¢ Ihik _ g /J.
ox 2Ax
The memory required to store such quantities in all nodes of the finer grid scales
with 43. In practical cases, this strongly limits the choice of the factor h. To avoid
this limitation, the quantities in Eq. as obtained from the refined grid are
stored only on the nodes of the original (coarse) grid, where they are used to apply
the tricubic interpolation scheme. The quantities in the rest of the (fine) grid are
discarded. The discontinuities introduced through this scheme can be evaluated by
following the same approach as before, obtaining:

(5.27)

GiLIk _ gi=lik _ gk g git1=1 /R

ijk B
x.refined — 6 Ax2 +h Ax2 (5 28)

4Gk g Agi=1 ik _ gi= 1+ bk gi=1=1/ Rk

Ax2
Expanding ¢(x, y, T) as a Taylor series with respect to x around x;, the discontinuity
becomes:

+h

3
ijk 0°¢ Ax B
8x],reﬁned =-2 Ox3 (xi’ Vi Tk) ﬁ + O(h 4A-x3) . (529)
The comparison of Egs. (5.24]) and ([5.29)) shows that the proposed refinement scheme

is able to arbitrarily reduce the discontinuities while keeping the memory required
to store the interpolation coefficients independent of the choice of h. The result
obtained by applying such a scheme to the samples in Fig. is shown by the blue
line in the same figure. Evindently, the artifacts are practically suppressed. Fig-
ure provides a quantitative comparison of the observed discontinuities, showing
that the artifacts are reduced by an order of magnitude across the domain of the
grid.

The importance of using this refinement scheme is visible in Fig. where
Poincaré plots of the non-linear motion of the beam particles over several turns are
shown in the normalized phase space. The Poincaré plots were produced by tracking
in the two degrees of freedom x, p, through the successive applications of the e-cloud
forces shown in Fig. interleaved with a one-turn-map that is linear on the particle
coordinates. The artifacts introduced by the direct interpolation method result into
modifications of the particle dynamics, which are removed when using the refined
interpolation method.
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Figure 5.3: Poincaré plot in normalized phase space with direct interpolation (a)
and refined interpolation (b) of the e-cloud scalar potential.

5.2 Electron clouds in the LHC arcs

To illustrate the potential of the method presented in the previous sections, the case
of the LHC is considered. In particular the simulations focus on the operation with
protons at injection energy with the typical configuration used during the LHC Run
2. The main parameters defining the considered scenario are listed in Table [5.1]
In this configuration, the effect of the beam-beam interaction is negligible and the
optics do not have very large betatron functions around the interaction points, as
opposed to when the beams are put in collision. The strongest non-linear effects
apart from the e-cloud non-linear forces are due to the large current used to power
the magnetic octupoles. This is necessary to introduce a sizable amplitude detuning
in order to to mitigate coherent beam instabilities from e-cloud effects. The e-clouds
in the LHC arcs only are considered, as they constitute the largest fraction of the
ring circumference. Specifically, the model includes the effect of e-cloud developing
in the main dipole magnets (MB) (~66% of the ring circumference) and the main
quadrupole magnets (MQ) (~7% of the ring circumference). The e-cloud buildup
and the electron dynamics are simulated with the PyECLOUD code [59]. More
information on such a simulation model and its comparison against experimental
data can be found in Refs. [211 [60].

Figure shows the simulated electron distribution in an arc dipole magnet
(MB) for the nominal bunch intensity of 1.2 - 101! p/bunch. It is characteristic of
the e-cloud developing in the dipolar field of the LHC MB magnets that the two
vertical stripes form on the left and on the right of the proton beam’s closed orbit
position [20]. For the nominal bunch intensity, such stripes are located far away from
the beam location and the force exerted within the bunch is rather linear as shown
in Fig. [5.4p. The situation is significantly different when considering a reduced
bunch intensity, as is visible in Fig. for 0.6 - 101 p/bunch. Here the electron
stripes overlap with the beam distribution introducing significant non-linearities in
the forces within the bunch, as shown in Fig. [5.5b.

In the main quadrupole magnets magnets (MQ), the e-cloud overlaps with the
beam distribution independently of the considered bunch intensity and generate
non-linearities in the forces within the bunch, as shown in Figs. and [5.7] for the
nominal and reduced bunch intensities, respectively.

Each arc of the LHC consists of 23 regular FODO cells each including 6 MB
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Figure 5.4: Snapshot of the e-cloud density in an MB magnet (a) and horizontal
field in the plane y = 0 at different moments during the bunch passage (b) for the
nominal bunch intensity of 1.2 - 10! p /bunch.
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Figure 5.5: Snapshot of the e-cloud density in an MB magnet (a) and horizontal
field in the plane y = 0 at different moments during the bunch passage (b) for the
reduced bunch intensity of 0.6 - 10! p/bunch.
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Figure 5.6: Snapshot of the e-cloud density in a focusing MQ magnet (a) and hor-
izontal field in the plane y = 0 at different moments during the bunch passage (b)
for the nominal bunch intensity of 1.2 - 10* p/bunch.

400
14%

g 2 ‘g _. 200
130 £

E O Q > 0
>_o 12 g %
o Q

119 —200

-10 -5 0 5 10
x [mm] —400

Figure 5.7: Snapshot of the e-cloud density in a focusing MQ magnet (a) and hor-
izontal field in the plane y = 0 at different moments during the bunch passage (b)
for the reduced bunch intensity of 0.6 - 10" p/bunch.
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Table 5.1: Typical operational parameters of the LHC in Run 2 used in the simu-
lations.

Bunch population [p/bunch] 1.2-101t
Reference energy [GeV] 450
R.m.s. bunch length [cm)] 9
R.m.s. horizontal emittance (normalized) [pm] 2
R.m.s. vertical emittance (normalized) [pm)] 2
Horizontal betatron tune 62.27
Vertical betatron tune 60.295
Synchrotron tune 5.1-1073
Horizontal chromaticity 15
Vertical chromaticity 15
Octupole magnets’ current [A] 40
Amplitude detuning coefficient [80], a,, [pm™] 0.31
Amplitude detuning coefficient [80], @y, [nm™] 0.32
Amplitude detuning coefficient [80], ayy [um™] -0.22
RF voltage [MV] 6
Bunch spacing [ns| 25
MB magnet’s length 14.3
MB magnet’s field [T 0.535
MQ magnet’s length 3.1
MQ magnet’s field gradient [T m™] 12.1
Primary collimators’ set distance [o] 7.5
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Figure 5.8: Betatron functions and horizontal dispersion in the FODO cells of the
LHC arcs. The arrows indicate the places where the e-cloud interactions are applied.

magnets and two MQ magnets [I]. A small part of an arc is shown in Fig. m where
the beta functions and the horizontal dispersion are plotted alongside an illustration
of the position and extent of the main magnets.

The dynamics of the protons are simulated using the SixTrackLib code [74],
where each element of the lattice is modelled with an appropriate number of thin
lenses. To model the e-cloud, four e-cloud interactions are included in each cell,
two modelling the e-cloud in the MB magnets and two modelling the e-cloud in
the MQ magnets. Their locations are marked by the arrows in Fig. In the
simulation, particles are intercepted by the LHC primary collimators [I] which limit
the amplitude of the betatron oscillations to 7.5 times the r.m.s. beam size. This
is done in order to limit betatron oscillations to a domain where the e-cloud forces
are defined.

A large number of turns needs to be simulated to study incoherent effects from
e-clouds, which results in a significant computation time. For this reason, it is
convenient to perform the simulations using GPUs instead of conventional CPUs,
which is possible within the framework of the SixTrackLib code. For the simulations
illustrated in the following sections, the usage of high-end GPUs provide a speedup
in computation time of about 100 with respect to a single-thread simulation on a
typical CPU.

5.3 Tracking simulations

5.3.1 Non-linear dynamics characterization

To characterize the single-particle stability in the presence of the different e-clouds,
the DA [81] of the machine is evaluated through tracking simulations. As it is typical
for LHC studies, the DA is defined as the normalized transverse oscillation amplitude
above which particles are lost within 10% turns. The particles are initialized with
an energy deviation of p, = 5.5 - 107 (corresponding to around two thirds of an
RF bucket height), in order to include effects from synchrotron oscillations in the
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Figure 5.9: Dynamic aperture as a function of the bunch intensity and SEY with
simulations including e-clouds in the MB magnets only (a), in the MQ magnets only
(b) and in the MB and MQ magnets (c).

evaluation of DA.

Results are shown in Fig.[5.9 as a function of the bunch intensity and for different
values of the SEY. The dashed black line marks the DA obtained in simulations
without e-cloud effects.

Figure [5.9n shows the DA when only the e-cloud in the MB magnets is included
in the simulations. Increasing the SEY makes the e-cloud stronger, which results
in a decrease of the DA. The e-cloud in the MB magnets causes a degradation of
the single-particle stability that is stronger for relatively low bunch intensities, for
which the stripes in the electron distribution come closer together and overlap with
the bunch resulting in stronger non-linear forces (see Fig. [5.5)). For comparison,
simulations approximating the actual SEY in the LHC dipole chambers were per-
formed. In fact, the beam pipes in the different half-cells of the LHC arcs show
different SEY as a result of different oxidation states of the surface [61]. The red
dotted curve shows the DA computed with a special e-cloud potential which has
been constructed by averaging over the potentials obtained from simulations per-
formed with the appropriate SEY for each half-cell (as estimated through cryogenic
heat-load measurements). The measurement and estimation of the SEY distribution
is carried out and explained in Ref. [21].

Figure [5.9b shows the DA when only the e-cloud in the MQ magnets is included
in the simulation. The effect of the e-cloud in the MQ magnets on the DA is
significantly weaker compared to the case where only e-clouds in the MB magnets
are included and there is a very small dependence on the bunch intensity. This
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tunes in the absence of e-cloud (a) and with e-clouds in the MB magnets only (b),
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corresponds to the working point set during operation. Contours of DA equal to
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is in agreement from a qualitative comparison of the electron distributions for the
different intensities, as illustrated for example in Figs. and [5.6f The combined
effect of e-clouds in both MB and MQ magnets is shown in Fig[5.9c.

The dependence of the DA on the betatron tune settings has also been studied
through simulations. As shown in Fig. [5.10] the effect of the e-cloud reduces the
region of the tune diagram available for operation, defined such that DA > 5o . For
coherent beam stability issues, a minimum difference of at least 0.01 is recommended
in the fractional part of the tunes [72]. For this reason, the tune settings used in
the operation of the LHC are set to Q, = 62.27 and Q, = 60.295, which is marked
by the red star in Fig. [5.10

Additional insight on the beam dynamics in the presence of e-cloud effects can
be obtained through the Frequency Map Analysis (FMA) technique [92]. In this
study, the FMA is realized by simulating a particle distribution that is uniform in
the horizontal and vertical normalized amplitude space, which is tracked for 2 - 10
turns. The turn-by-turn positions are then used to estimate the betatron tunes in the
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Figure 5.11: Frequency Map Analysis for on-momentum particles without e-clouds
(a) and with e-clouds in the MB magnets at nominal intensity (1.2 - 10'* p/bunch)
(b), in the MB and MQ magnets at nominal intensity (c), in the MB magnets at
reduced intensity (0.6 - 10' p/bunch) and in the MB and MQ magnets at reduced
intensity (e). Transverse resonance lines up to order 7 are shown.
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first 10* turns (Qy.1, @y.1) and the last 10* turns (Qy.2, @y.2). The numerical analysis
of fundamental frequencies algorithm (NAFF) [93] is used for the identification of
the tunes. The distance in the betatron tunes between the two time intervals defines
a tune diffusion rate:

D = (Qez - 0n)’ + (042 - 0y1)> (5.30)

The FMA simulations are carried out on-momentum, 7.e. particles are initialized
in the absence of synchrotron oscillations, as the estimation of the betatron tunes can
become elusive in the presence of strong tune modulation effects [94]. The results
of the FMA simulations are presented in Fig. for the two bunch intensities.
Figure shows the FMA without e-cloud while Figs. [5.11p, d show the FMAs
including only MB-type e-clouds and Figs. [5.11k, e show the FMAs with MB and
MQ-type e-clouds. In all figures, the red marker indicates the betatron tune settings
of the machine and the magenta marker shows the tune found for low-amplitude
particles, as a result of the detuning forces from e-cloud effects.

For nominal intensity and e-clouds only in the MB magnets, there is no significant
impact of the e-cloud on the on-momentum FMA, as observed when comparing
Figs. and b. When including the e-cloud in the MQ magnets, as presented in
Fig. [5.11k, a much stronger low-amplitude tune-shift is observed, together with the
excitation of several resonances as well as a significantly larger tune diffusion over
the entire simulated particle distribution. The observations seem counter-intuitive
when compared to the simulations of DA in Fig. 5.9, where it was observed that the
effect of the e-cloud in the MB magnets was stronger than that of the e-cloud in
the MQ magnets. This is caused by the fact that the losses from e-cloud are mostly
driven from off-momentum particles, as will be discussed in Section [5.3.2] while only
on-momentum particles are shown in Fig. [5.11] For this reason, these studies would
strongly profit from the development in the future of advanced FMA techniques
that would work robustly in the presence of strong tune modulations driven by
synchrotron motion (recent attempts in this direction were made in Ref. [94]).

A similar analysis is presented in Figs. [5.11d, e for the reduced bunch intensity.
In this case, an even stronger tune shift and resonance excitation are observed.
These effects are visible even when the e-cloud is present only in the MB magnets,
due to the increased electron density at the beam location (see Fig. compared
to the case with nominal bunch intensity.

5.3.2 Direct simulation of the beam evolution

Dynamic Aperture and FMA simulations provide important understanding on the
non-linear beam dynamics. Nevertheless, it is usually difficult to use such results in
order to infer observable quantities like beam lifetime and the evolution of the beam
profile. Such effects, which at the LHC are visible only on very long timescales (in
the order of several minutes), need to be studied with direct tracking simulations.
For this purpose, we simulate 107 turns, corresponding to approximately 15 minutes
of beam time.

The choice of the initial particle coordinates plays an important role in the
simulation. One possibility would be to initialize the particles according to the

98



5. Simulations of incoherent electron cloud effects for the LHC' at injection energy

Loss rate [%/h]
=
o
&
-
Q
Il
=
=)

—— Without e-cloud
—— With e-cloud

0.0 2.5 5.0 7.5 10.0 12,5 15.0 175
Time [min.]

Figure 5.12: Loss rate as a function of time for three different values of the ¢
parameter that defines the population of particles at large amplitudes. The red
lines correspond to simulations with e-clouds in both MB and MQ magnets for
nominal intensity and the blue lines to simulations without e-clouds. The loss rate
is calculated over 30 seconds.
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Figure 5.13: Average loss rate as a function of the synchrotron oscillation amplitude.

realistic beam distribution, for example a Gaussian distribution. However, such a
choice is not optimal due to the fact that very few particles would be generated with
large oscillation amplitudes, although it is especially such large-amplitude particles
that determine observables like the beam lifetime.

Instead, it is convenient to generate particles randomly following a uniform dis-
tribution over the normalized transverse phase space (%, px,y, py) and to repeat
simulations for different synchrotron oscillation amplitudes in order to cover the
entire 6D phase space. The distributions are matched to the optics by using the
normalizing transformation W obtained by an eigenvector analysis of the linear 6D
one-turn map as described in Sec. [I.2]

The loss rate and the evolution of the beam profile for the real non-uniform beam
distribution can be calculated by assigning a weight to each particle according to
the local phase density of the assumed particle distribution, following the procedure
defined in Sec.[4.2] This approach has the advantage that the same tracking data can
be used to estimate the evolution for different initial particle distributions extending
over the same phase space area by simply changing the particle weights.

Experimental measurements of the transverse beam profiles in the LHC show
that their core can be described very well with Gaussian distributions. However,
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Figure 5.14: Long-term tracking simulation with particle distributions for the nom-
inal intensity and SEY phax based from measurements. The relative loss rate (top),
the horizontal (middle) and the vertical emittance (bottom) are plotted as a func-
tion of time for simulations without e-clouds (blue) and with e-clouds in both the
MB and MQ magnets (red). The black dashed lines correspond to linear fits.

measuring the tails of the beam profiles is more difficult. The available data suggests
that the tails of the profiles are slightly overpopulated with respect to a purely
Gaussian distribution [84]. The beam loss rate is directly related to the population
of particles in the tails due to their large oscillation amplitude. As done in Chapter [4]
in order to study the sensitivity of the results to the tail population, 4D q-Gaussian
distributions are used. The population in the tails is controlled by the g parameter.
For g = 1, the distribution is a Gaussian distribution, for ¢ > 1 the distribution has
overpopulated tails, and for ¢ < 1 the tails are underpopulated [85], 86].

In the simulations, the longitudinal distribution is expressed as an exponential of
the action variable of the single-harmonic RF potential, which is a realistic assump-
tion based on profile measurements [95]. The parameters of the distribution are
chosen such that the r.m.s. bunch length is equal to the one reported in Table [5.1]

Fig. [5.12] shows the evolution of the loss rate as a function of time without e-
cloud (blue) and in the presence of e-cloud in both MB and MQ magnets (red).
The evolution is illustrated for three different values of the parameter ¢ of the
transverse distribution. It is evident that the losses are very sensitive to the initial
tail population.

It is interesting to observe the dependence of the losses on the synchrotron os-
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cillation amplitude. This is shown in Fig. [5.13| where it is visible that losses are
basically absent for on-momentum particles while they become larger as the oscilla-
tion amplitude increases.

Figure[5.14shows the emittance evolution without e-cloud (blue) and in the pres-
ence of e-cloud in both MB and MQ magnets (red). The emittance is computed by
fitting Gaussian functions on the projections of the weighted particle distributions.
The fit is made on the core of the transverse distribution as done in measurements of
the transverse emittance in the LHC. No emittance growth is found in the absence
of e-cloud while a weak linear emittance growth is found in the simulations with
e-cloud effects.

The simulations were repeated for different bunch intensities, considering e-cloud
effects a) only in the MB magnets and b) in both MB and M(Q magnets of the LHC
arcs. All configurations, qualitatively, show the same features. With respect to the
loss rate, a small increase is observed within the first 10 minutes while it becomes ap-
proximately constant in the last minutes of the simulated time interval. Concerning
the emittance growth, if any, it is observed as linear across all configurations.
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Figure 5.15: Simulations of loss rate (a), horizontal emittance growth rate (b) and
vertical emittance growth rate (c) for different bunch intensities and (grey) without
e-clouds, (blue) with MB-type e-clouds, (red) with MB and MQ-type e-clouds.

1.1 1.2

The summary of all configurations is illustrated in Fig. Simulation results
1) with both MB and MQ-type e-clouds are shown in red, 2) with only MB-type
e-clouds are shown in blue, while 3) the reference simulation without e-clouds is
presented in gray. For the loss rate (Fig. [5.15a), the quoted number corresponds
to the loss-rate within the five last minutes of the simulations. For the horizontal
(Fig. 5.15p) and the vertical (Fig. |5.15c) emittance, the graphs present the slopes

101



5. Simulations of incoherent electron cloud effects for the LHC' at injection energy

Ey [V/m]

Figure 5.16: Electron cloud snapshots in MB magnets of (a) the charge density and
(b) the horizontal field along y = 0 for a bunch intensity of 1.2 - 10! protons per
bunch and a uniform initially distribution of electrons equal to 10'% e/m3.

of the linear fits as in Fig. [5.14] i.e. the emittance growth rate.

Apart from the critical value of the bunch intensity at 0.6 - 10'! p/b, the effect
of the MB-type e-clouds on the loss rate is a small increase. The addition of the
MQ-type e-cloud then increases the loss rate without an obvious dependence on the
bunch intensity. Concerning the emittance growth, there is no emittance growth
when including only the MB-type e-clouds except at the reduced bunch intensity
of 0.6 - 10! p/b. Instead, at the nominal configuration of the LHC, it appears
that the MQ-type e-clouds are the ones that contribute the most to the emittance
growth. While the MQ-type e-clouds drive an emittance growth that is similar in
the two transverse planes, the MB-type e-cloud has a stronger effect on the vertical
emittance. Furthermore, the interplay between the MB-type and MQ-type e-cloud
is not always straightforward since at the low bunch intensity of 0.6 x 10'! p/b, the
emittance growth decreases when introducing the MQ-type e-cloud.

5.3.3 Additional uniform e-cloud

In the estimation of the SEY in the LHC half-cells, PyECLOUD was used to produce
heat-load simulations which were compared to heat-load measurements. However,
the heat-load in the dipole magnets is dominated by the electrons in the two large
stripes, while the non-linear beam dynamics is mostly dominated by the density of
electrons in the vicinity of the beam. While PyECLOUD can model and predict
the heat-load at the LHC to a good extent, it is unknown whether it can accurately
predict the density of electrons in the vicinity of the beam, due to the difficulty in
measuring this density.

To probe the sensitivity to such densities, an additional e-cloud interaction is
attached to the MB-type e-cloud interaction. For this interaction, the magnetic field
of the MB magnet is used but the initial electron distribution is uniform in space
and is a free parameter of the interaction. The evolution of the pinch that happens
due to the interaction of the protons and the electrons is simulated normally. A
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Figure 5.17: Dynamic aperture as a function of an additional initially electron den-
sity of the MB-type e-clouds, for a bunch intensity of 1.2 - 10! p/b.

snapshot of the charge density is illustrated in Fig. [5.16a while the horizontal field
is plotted in Fig. [5.16p as a function of the horizontal position in the chamber for
y = 0 and three different values of time: (red) 7 = —0.2m, (green) 7 = 0m, (blue)
7=0.2m.

In this set of simulations the nominal operational parameters are used where
the bunch intensity is equal to 1.2 x 101! p/b. The dynamic aperture is scanned in
Fig. as a function of the electron density of the newly introduced interaction
and a strong dependence is found on it. For reference, as can be seen in Fig. [5.4]a,
the maximum of the initial electron density in the stripes of the MB-type e-cloud
is equal to about 1.5 - 102 e~/m?3 while around the closed orbit the density is <
0.1-10'2 e~ /m3. Figures [5.18h, [5.18b and [5.18 show the loss rate, the horizontal
emittance growth rate and the vertical emittance growth rate, respectively, which are
calculated through the tracking of particle distributions. As before, the simulations
are carried out with only MB-type e-clouds (blue) as well as both MB-type and
MQ-type e-clouds (red). Naturally, the beam quality worsens as the electron density
becomes larger; the loss rate is larger and the emittance growth rate is also larger.
Since in the newly introduced e-cloud interaction the magnetic field is the same as
the one in the MB magnet, a behaviour that is qualitatively similar to the MB-
type e-cloud is expected. Indeed, the vertical emittance growth is larger than the
horizontal one.
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Figure 5.18: Simulations of relative loss rate (a), horizontal emittance growth (b)
and vertical emittance growth (c) as a function of the additional initial electron
densities in the MB-type e-clouds in simulations without e-clouds (gray), with MB-
type e-clouds (blue), with MB and MQ-type e-clouds (red).
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Part 11

Phenomenological Model of the
PICOSEC Micromegas detector
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Chapter 6

The PICOSEC detector

6.1 Introduction

The PICOSEC Micromegas detection concept is realized by a two-stage Micromegas
detector [96] coupled to a window that acts as a Cherenkov radiator, coated with
a photocathode. The drift region of the detector is very small (~ 200 pm), which
minimizes the probability of direct gas ionization as well as diffusion effects on the
timing of the signal. The high electric field drives photoelectrons to undergo some
pre-amplification in this drift region. The readout is a bulk Micromegas[97], consist-
ing of a woven mesh and an anode plane that is separated by a gap of approximately
128 pum, mechanically defined by pillars. A relativistic charged particle that goes
through the radiator window produces UV photons, which are simultaneously (with
an RMS of less than 10 ps) converted into primary photoelectrons at the photo-
cathode. These primary photoelectrons produce pre-amplification avalanches in the
drift region (which hereafter will be referred to as the pre-amplification region). A
fraction of these pre-amplification electrons manage to traverse through the mesh
and enter the amplification region where they continue with the main amplification.
The main detector components and a schematic representation of the microscopic
processes producing the signal are visible in Fig. [6.1]

Electrons that arrive at the anode produce a fast signal component (with a rise
time of approximately 0.5 ns) which is referred to as the electron-peak (“e-peak”).
On the other hand, the movement of ions produced in the amplification gap generate
a much slower (~ 100 ns) ion-tail component. This type of detector can reach
high enough gain to detect single photoelectrons when operated with gas mixtures
base on Ne or CF4. The PICOSEC Micromegas detector (hereafter referred to as
PICOSEC) has the potential to time Minimum Ionizing Particles (MIPs) with a
precision below 25 ps[25]. A very good timing resolution in detecting single photons
was also demonstrated through extensive tests with laser beams|26]. These laser
beam data are also used for the calibrating the detector, and are referred to as
“calibration data” in the following.

The PICOSEC approach to charged particle timing results in a significant im-
provement over the time resolution obtained when using a gaseous detector that
is sensitive to ionization produced by charged particles traversing the gas volume.
With multiple ionization and without the pre-amplification in the drift region, the
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Figure 6.1: Illustration of the main PICOSEC detector components (dimensions
are only indicative): the radiator of typical thickness 3 mm, the photocathode,
the pre-amplification (drift) region of depth D (200 pm), the mesh, the amplification
region (128 um) and the anode. A photoelectron, after drifting for a distance D — L,
produces a pre-amplification avalanche of length L, ending on the upper surface of
the mesh (on the mesh). A fraction of the avalanche electrons traverse through to
the lower surface of the mesh (after the mesh) and each produce avalanches in the
amplification region. Figure adapted from Ref. [16].

timing resolution of a gaseous detector is of the order of a few nanoseconds[98]. With
the above modifications to the typical Micromegas design, PICOSEC managed to
achieve a far better precision in timing for two reasons. Firstly, the photoelectrons
enter the drift region simultaneously. Secondly, the pre-amplification in the very
thin drift region allows for the time-averaging of the electrons traversing through
the mesh structure to arrive in the amplification region.

In this study, a full phenomenological description of the PICOSEC performance
is given and a detailed model is provided that can be used for further optimization
of this device to a mature and robust detector. With this model in hand, questions
such as the following can be addressed:

1. What is the relative importance of the drift stage to the amplification stage
in the time jitter of the PICOSEC Signal Arrival Time (SAT)?

2. How does the SAT that is generated by a single photoelectron depend on the
fluctuating distance of where the avalanche is initiated in the drift region?

3. How does the time resolution depend on the properties of the gas mixture
(that fills the detector) and on the voltage settings?
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Figure 6.2: Distributions of the e-peak charge induced by a single photoelectron,
for several drift voltage settings (300 V, 325 V, 350 V, 375 V, 400 V and 425 V). The
black points represent calibration data published in Ref. [-] 5] while the red triangles
correspond to GARFIELD++ simulated PICOSEC e-peak waveforms treated the
same way as the experimental data, as described in Ref. [26]. The data distributions
are affected, at low e-peak charge values, by the amplitude threshold applied for data
collection. Figure adapted from Ref. [16].

4. What is the effect of the transmission through the mesh structure on the time
resolution?
5. Which is the optimal structure?

A detailed microscopic description of the physics principles underlying the PICOSEC
detector is necessary to answer these questions.

The timing resolution of the PICOSEC detector depends on the drift and the
anode operating voltages. During the tests with laser beams, where the anode
voltage had to be high (> 400V), it was observed that the timing resolution of
detecting single photoelectrons is determined mostly by the drift field. Additionally,
it was found the the SAT of the PICOSEC and the time resolution are functions
of the size of the e-peak, i.e. the e-peak voltage amplitude or the respective e-
peak charge. Their functional forms were shown to be practically the same for drift
voltages in the range of 300V to 425V. It should be noted that these dependencies
were found to not be systematic artifacts of the experimental timing technique[25)],
20]. Instead they emerge from the physics determining the production of the signal.

Detailed simulations performed with the GARFIELD++[99] package, and in-
cluding the simulation of the electronic response of the detector and the contribution
from noise, were able to reproduce the observed PICOSEC performance character-
istics when detecting single-photons[26]. By comparing the simulation predictions
with the calibration data from the tests with laser beams, the Penning transfer rate
(Ptr) [1I00] of the COMPASS gas could be estimated. The term “COMPASS gas”
refers to the mixture 80% Ne, 10%CoHg, 10%CFy4, as is used by the COMPASS
Collaboration. The Ptr for this gas mixture was estimated to be approximately
50%. The e-peak charge distribution of the simulated waveforms agrees well with
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Figure 6.3: (left) Mean SAT as a function of the electron peak charge. (right)
Time resolution as a function of the electron peak charge. In both figures black
points represent experimental measurements[25] while colored symbols correspond
to simulations[26]. The gas used is the COMPASS gas with an anode voltage of 450
V and for drift voltages of (red) 300 V, (light green) 325 V, (blue) 350 V, (cyan)
375 V, (magenta) 400 V and (dark green) 425 V. Figure adapted from Ref. [16].

the calibration data, as shown in Fig. Moreover, in Fig. [6.3] the SAT and the
timing resolution of the simulated waveforms depends on the e-peak size in exactly
the same way that is found in the measurements.

The agreement between simulations and measurements is exploited in order to
identify the microscopic physical variables that determine the observed timing char-
acteristics. In particular, simulations with GARFIELD++ show that the number of
pre-amplification electrons traversing the mesh, and therefore entering the amplifica-
tion region to initiate avalanches, determine the size of the PICOSEC (a macroscopic
and observable quantity) as is visible in the left plot of Fig.[6.4 The number of pre-
amplification electrons traversing the mesh is a microscopic quantity and hereafter
will be referred to as the “electron multiplicity after the mesh”.

In the simulation, one has the ability, for each pre-amplification electron travers-
ing the mesh to determine the time it enters the anode region, measured from
the time instant of the photoelectron emission. The average times over all the pre-
amplification electrons defines the microscopic variable that will be called “total-time
after the mesh”. This microscopic variable has the same properties as the measured
SAT of the PICOSEC signal, which is defined at a constant fraction (20%) of the
e-peak amplitude (as described in Ref. [25]). In the right plot of Fig[6.4] for sim-
ulated single photoelectron events with the same e-peak size, the RMS spread of
the microscopic “total-time after the mesh” are found equal to the spread of the
corresponding SAT, i.e. the macroscopic PICOSEC timing resolution. Moreover, it
is visible in the middle plot of Fig. that the mean value of the “total-time after
the mesh” differs only by a constant time offset from the respective mean values
of the PICOSEC SAT. This offset does not depend on the e-peak size and comes
from the fact that the SAT also includes the propagation time of the amplification
avalanches and the signal rise time up to the 20% of the e-peak amplitude.

After identifying the relevant microscopic variables that determine the timing
characteristics of the PICOSEC detector, the detailed simulations are further used
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Figure 6.4: (left) The mean e-peak charge of simulated PICOSEC signals versus
the respective “electron multiplicity after the mesh”. The middle and right plots
demonstrate that the macroscopically determined PICOSEC SAT has the same
properties as the microscopic variable “total-time after the mesh”, as described in
the text. Figure adapted from Ref. [16].

in this work to study the evolution of the PICOSEC signal in terms of electron mul-
tiplicities and other important variables, like the primary photoelectron drift path
and the length of the pre-amplification avalanches. Furthermore, to gain insight
on the physical mechanism causing the dependence of the PICOSEC timing char-
acteristics on the signal size and the weak influence of the mesh transparency on
the timing resolution, a stochastic model is constructed. This model is based on a
simple concept of “time-gain per interaction” and reproduces the PICOSEC timing
characteristics as well as the simulations with the GARFIELD++ software. More-
over, the model offers a phenomenological interpretation to a number of peculiar
statistical properties found in the GARFIELD++ results.

An overview of this chapter is given in Sec. while the other sections contain
a description of the stochastic modelling of all relevant processes and demonstrate
the performance of the model.

6.2 Overview

In this work, the GARFIELD++ package (https://gitlab.cern.ch/garfield /garfieldpp,
commit e018bcca, 8 May 2017), is used to describe microscopically the PICOSEC
timing properties by simulating in detail the relevant processes. The statistical inter-
pretation of the simulation leads to several observations which are counter-intuitive.
For example:
o The primary photoelectron drift velocity seems to depend on Ptr (Penning
transfer rate),
o The avalanche electrons drift faster than the primary photoelectron,
o The average speed of the avalanche as a whole is larger than the drift velocity
of its constituent electrons,
o The longitudinal diffusion of the avalanche is almost independent of its length,
o The 25% transparency of the mesh has a very minor effect on the PICOSEC
timing resolution.
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Moreover, it is observed that the PICOSEC timing resolution is mainly determined
by the drift path of the primary photoelectron. However, when expressing the timing
resolution as a function of the number of electrons passing through the mesh (i.e. the
e-peak size), the related photoelectron and avalanche contributions to the resolution
were found heavily correlated.

To identify the main physical processes causing the observed behaviour, a simple
phenomenological model is presented. The model is based on a simple mechanism of
“time-gain per interaction” and it employs a statistical description of the avalanche
evolution. It describes well the aforementioned phenomena in agreement with the
GARFIELD++ simulation results, as demonstrated in the following sections.

The parameters of the model (i.e. drift velocities, ionization probabilities per
unit length, multiplication and diffusion coefficients, mean value and variance of
the “time-gain per interaction”, average mesh transparency and longitudinal dif-
fusion around the mesh, etc.) are commonly used statistical variables with values
that depend on the PICOSEC gas filling and the operating voltage settings. The
values of these parameters are estimated from the GARFIELD++ simulations for
the COMPASS gas mixture, assuming several values of Ptr (Penning transfer rates:
0%, 50%, 100%), anode voltage fixed to 450 V, and various drift voltages: 300 V,
325V, 350 V, 375 V, 400 V and 425 V. A compilation of these parameters can be
found at the end of this chapter. The predictions of the model were compared with
the GARFIELD++ results for all of the above operating conditions, which will be
referred to as the “considered operating conditions”. When the PICOSEC operating
conditions are not explicitly stated, Ptr of 50% Ptr, anode voltage of 450 V and a
drift voltage of 425 V are implied.

The model is based on the observation (see Ref. [I01]) that an electron which is
drifting in an homogeneous electric field and is undergoing only elastic scatterings,
drifts along the field with less average velocity than an electron suffering energy
losses through its interactions. In Sec. [6.3] this concept is quantified with a “time-
gain per interaction”. It is used to explain the different drift velocities between a
photoelectron prior to ionization and of an avalanche electron. It also explains the
apparent effect of the Ptr on drift velocities.

Sections to describe the modelling of the microscopic processes up until
the mesh. At this point, the important microscopic variables are:

1. The number of pre-amplification electrons arriving on the mesh (electron mul-

tiplicity on the mesh),

2. The average of the arrival times of the individual pre-amplification electrons

on the mesh (total time on the mesh).
The transfer of the pre-amplification through the mesh is modelled in Sec. [8.3

In particular, the average avalanche velocity is a statistical outcome over several
dynamical effects, including those that determine the growth of the avalanche. Sec-
tion[7.1)investigates the properties of the GARFIELD++ simulated pre-amplification
avalanches including the statistical distribution of the avalanche electron multiplic-
ity before and after the mesh. The mean mesh transparency to pre-amplification
electrons is observed to be constant and independent of the avalanche characteris-
tics, for all of the considered operating conditions. This brings the implication that
size of the signal is effectively determined by the “electron multiplicity on the mesh”.
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6. The PICOSEC detector

The simultaneous drift and growth of the pre-amplification avalanche is also mod-
eled in Section and the “avalanche transmission time”, defined as the average of
the arrival times of the pre-amplification avalanche electrons of the mesh, starting
from the instant of the first ionization which initiated the avalanche, is expressed in
terms of its length and its electron multiplicity. The model explains in quantitative
terms the GARFIELD++ prediction that the avalanche, as a whole, moves faster
than its constituent electrons.

In Sec. [7.2] by integrating properly the results of Sec. the model quantifies
the dependence of the “total time on the mesh” on the number of pre-amplification
electrons.

The arrival times of the avalanche electrons on a plane are mutually correlated,
due to the sharing of common parent electrons. This correlation is quantified in
Sec. .1} Evaluating the avalanche contribution to the statistical spread of the
“total time on the mesh”, the model predicts that it is almost independent of the
avalanche length. The longitudinal diffusion of the primary photoelectron, along
its drift path prior to the first ionization, is the major factor that determines the
PICOSEC timing resolution. However, due to the fact that the photoelectron drift
path and the avalanche length sum up to the pre-amplification region, the timing
resolution indirectly depends on the avalanche length.

Although the length of the avalanche is an important physical parameter, it is not
an experimental observable. In Sec. [8.2] the statistical spread of the “total time on
the mesh” is expressed as a function of the pre-amplification electron multiplicity by
modelling the growth of the avalanche. The influence of the mesh on the PICOSEC
timing properties is quantified in Sec. in terms of the mesh transparency, the
number of the pre-amplification electrons reaching the mesh and an extra time-
spread term, due to the electrons drifting through the inhomogeneous electric field
around the mesh.

Finally, the limitation of the model to describe accurately the PICOSEC tim-
ing characteristics in the case of very small electron multiplicities on the mesh are
discussed in Sec. [9] There the model extension to predict the complete probability
density function, which determines the timing properties of the PICOSEC signal, is
presented.

6.3 Electron drift velocities and basic model as-
sumptions

Electrons which are moving forward lose time when they are back-scattered elas-
tically from gas molecules before the electric field or another collision brings their
motion forward again, when compared to electrons that are losing energy from their
interactions and are also profiting from longer mean-free paths at low energies due to
a smaller scattering cross section (Ramsauer minimum). The fact that an electron
gains in transmission time when it loses energy is used to explain the different drift
velocities observed in the detailed simulations with GARFIELD++.

Let L be the length of a pre-amplification avalanche inside a pre-amplification
region of depth D. Then, D — L will be the corresponding drift length of the
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Figure 6.5: On the left, the plots show the distributions of the “total time on the
mesh” (top), the “avalanche transmission time” (middle) and the “photoelectron
transmission time” (bottom), in the case that the length of the simulated avalanche
(L) is between 144.45 and 144.75 pm. The solid lines represent fits with the Wald
distribution function. The right plot presents the mean values of the above times,
as well as the mean of the “total time after the mesh”, versus the length of the
respective pre-amplification avalanche. It is worth noticing that the total time after
the mesh differs only by a constant time-offset from the respective total time on the
mesh, at all considered avalanche lengths. Figure adapted from Ref. [16].

photoelectron before the first ionization that initiates the avalanche. Let T,(L)
be the time taken from the emission of the photoelectron until the first ionization
(hereafter referred to as “photoelectron transmission time” or just “photoelectron
time”). Measured from the time instant of the first ionization, let T(L) be the aver-
age time that the avalanche electrons take to reach the mesh (hereafter referred to
as “avalanche transmission time” or just “avalanche time”). The “total-time on the
mesh”, T;,,(L) is equal to the sum of the photoelectron and avalanche transmission
times, or T;o,(L) = T, (L) + T(L). All of these time-variables behave statistically as
random variables and follow probability distributions that are well approximated
by Inverse Gaussian (Wald) functions, as visible in the left plot of Fig. using
GARFIELD++ simulations. The simulations also show that the mean values of the
above time distributions depend linearly on the avalanche length, as is shown in the
right plot of Fig. |6.50 The mean value of the time T,,(x), which is the time than a
single avalanche electron takes to cover a distance x along the drift field, was also
found to depend linearly on x. The slopes of the above linear dependencies define
the inverse of the respective drift velocities.

Hereafter, V), stands for the “photoelectron drift velocity”, V, is the “avalanche
drift velocity” and V,, denotes the “drift velocity of an avalanche electron”, assuming
that all electrons in the avalanche drift with the same velocity. The above drift
velocities have been estimated and are compiled in Tab. [C.1] for three different Ptr
(Penning transfer rate) values and using the default voltage settings, while they are
presented in Tab. for only 50% Ptr, 450 V anode voltage but several drift voltage

114



6. The PICOSEC detector

—
=]

Fraction of Events

)
T

—
=]
T

T
—.——

{
[
i
DT A 1 JHJL;.‘.ﬁf:ﬁ'lﬁh.%”m..

0 20 40 60 80 100 120 140 160 180
Photoelectron Path Length Before Ionization (um)

Figure 6.6: Distributions of the photoelectron drift path length, before the initiation
of the avalanche, produced by GARFIELD-++ simulations with 425 V drift voltage
and Ptr equal to 100% (black circles) and 0% (red squares). The solid lines represent
the results of exponential fits. Figure adapted from Ref. [16].

settings. The V), V, and ., values are estimated with linear fits to the T,,(L) versus
L, T(L) versus L and T,,(x) versus x dependencies, respectively, as resulted from
the GARFIELD++ simulations. The linear fits show small non-zero constant terms
which are attributed to the fact that the stochastic description of the electron drift
and the avalanche development starts to be valid only after a statistical equilibrium
is reached. All of the above drift velocities increase with the drift voltage. However,
the photoelectron drift velocity is smaller than the drift velocity of the avalanche as
whole. Furthermore, as a function of Ptr, the photoelectron drift velocity decreases,
the drift velocity of the avalanche as a whole increases, while the drift velocity of a
single electron in the avalanche remains constant.

The model presented here attributes the different values for the above drift ve-
locities to time-gains per inelastic interactions. The frequency of these interactions
is related to the probability per unit length that an electron provides enough energy
for the production of a new, free electron in the gas (either by direct or by indirect
ionization). The probability per unit length (which is the first Townsend coefficient,
hereafter denoted by “a”), is estimated by an exponential fit to the distribution of
the photoelectron longitudinal drift path length, up to the point of the ionization
that initiates the avalanches. Example of these fits are visible in Fig. [6.6] Values
of the first Townsend coefficient a, estimated with GARFIELD-++ simulations for
different Ptr and drift voltage settings are compiled in Tabs. and [C.§|

The ionization probability per unit length depends on the Ptr value, r, as a(r) =
a(0) +r - B, where 8 = a(1) —a(0) is the increase of the ionization probability per
unit length due to the Penning transfer effect for a 100% transfer rate. The values
of the first Townsend coefficients in Tab. [C.2] show indeed a linear dependence on
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r and a linear fit estimates: a(0) = 0.0519 + 0.0003 pm~' and B = 0.0366 + 0.0007
pm_l.
An electron that is drifting in a noble gas mixture loses energy with probability g8
per unit length, due to the excitation of the atoms, independently of the Ptr. When
the first ionization occurs though, there is a probability of fracr - Ba(0) +r - B that
the ionization was a result of the Penning transfer effect.

Considering a photoelectron, before the first ionization, that drifts for a distance
Ax in a time interval of At, it will undergo on average (1—r)-B-Ax inelastic collisions,
exciting noble atoms and providing enough energy for the indirect ionization though
without such an ionization taking place. If the photoelectron does not lose energy
this way, it would drift with a velocity V. However, assuming that the photoelectron
gains on average a time 7 after each such energy loss, the following relation holds:

AI:E—(l—r)-ﬁ-T-Ax, (6.1)
Vo

or

1 A Ax

Veff(r) B Ax B V()

where V,r¢(r) is the observed effective drift velocity for Ptr equal to r. It is clear
that for r = 1, Vo = Vess(1). Equation shows that by increasing the Ptr
value, the effective velocity of the photoelectron decreases, in accordance with the
GARFIELD-++ results. Indeed, Eq. fits the drift velocities of Tab. [C.1] result-
ing in an estimate of V = 142.6 £ 0.6 nm/ns and a value for the mean time-gain per
interaction of T =17.9-1073 £ 1.2 - 1073 ns.

After the photoelectron initiates the avalanche, its effective drift velocity is de-
termined by the time-gain every time it loses energy, either due to the excitation of
the noble atoms or due to their direct ionization. However, the energy loss effect on
the drift velocity cannot be dependent on whether the excitation of the noble atom
results in a subsequent ionization through the Penning transfer effect. Therefore, it
can be expected that the drift velocity of an avalanche electron will not be depen-
dent on the Ptr value. This is confirmed with the GARFIELD++ simulations, as
shown in Tab. [C1l

By definition, a photoelectron doesn’t undergo interactions that produces new
electrons before initiating the avalanche. An avalanche electron undergoes the same
number of such interactions per unit length but also ionizes directly atoms and
molecules. Following the argument that more frequent energy losses results in larger
drift velocities, it is expected that electrons in an avalanche drift faster than the
photoelectron before the first ionization. This is true for any Ptr value and is in
agreement with the GARFIELD-++ simulation results reported in Tab. [C.1]

The drift velocity of the avalanche as a whole is determined by a combination of
the “time-gain per interaction” and the electron multiplication processes that occur
during the evolution of the avalanche. These effects are described in the following
Section.

(1-r)-B-7, (6.2)
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Chapter 7

Modelling of the electron
transmission times

7.1 Drift of the pre-amplification avalanche

Following the assumptions of the model, every time an electron in the avalanche
ionizes, it gains a time &; relative to an electron that undergoes only elastic scat-
tering. Any new electron that is produced by ionization starts with low energy. At
the start of the new electron’s path, it suffers from a smaller delay due to elastic
back-scattering compared to its parent. For this reason, the model assumes that
such a newly produced electron will advance in time by p;, relative to its parent.
The parameters &7 and p; should follow a joint probability distribution determined
by the physical process of ionization and the respective properties of interacting
molecules. As discussed in Sec. [6.3] the collective effect of time-gains &; is a change
in the drift velocity from V), which is the photoelectron drift velocity before ion-
ization, to an effective drift velocity V,,, which is the drift velocity of an ionizing
electron in the avalanche. By taking V,, to be the drift velocity of any electron in
the avalanche, the effect of the energy loss on the drift of the parent electron is taken
into account. However, the time-gain p; of a newly produced electron is assumed to
follow a distribution with a mean value equal to p and a variance equal to w2. After
that moment, this new electron will drift with a velocity V,,, as any other electron
in the avalanche. Notice that this way, the model approximates the time gains of
the parent and daughter electrons as uncorrelated variables.

Considering an avalanche that has been developed up to a length of x — Ax, the
number of electrons reaching the plane at x — Ax will be equal to n(x — Ax). Let An
be the number of electrons that are produced by ionization in the next development
step which is of length Ax. Without loss of generality, the production of the new
electrons (visible in red in Fig. is assumed to take place on the plane at x — Ax.
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Figure 7.1: Schematic representation of the change in the electron multiplicity in
two stages of the avalanche evolution, depicted as a plane at x — Ax and a plane at
x. Figure adapted from Ref. [16].

The average arrival time of the n(x) electrons at plane x can be written as:

n(x)
T, () = == > 1x(x) (7.1)
k=1
1 [n(x—Ax) An
"7 | ; (tk(x—Ax)+Atk)+; (tf(x—Ax)+AT,) (7.2)
1 [1n(x—Ax) An n(x—Ax) An
- Z tk(x—Ax)+th(x—Ax)+ Z Atk+ZA‘rj , (7.3)
nx) | = =1 k=1 J=1

where all the times are with respect to the instant of the first ionization that initiated
the avalanche. The times #; (x) and 7, (x—Ax) refer to the time when the k-th electron
reachs the planes on x and x — Ax, respectively. The time that the parent electorn of
the j-th newly produced electron reaches the plane on x—Ax is t{ (x—Ax). Obviously,
t'J’.C(x — Ax) is one of the 7 (x — Ax), with k = 1,2,3,...,n(x —Ax). The time spent by
the k-th electron that arrived at x — Ax to reach the plane at x is Aty and At; is the
time that is spent by the j-th electron (produced at x — Ax) to arrive at the plane
on x.

A newly produced electron gains a certain time, p;, with i = 1,2, ..., An, relative
to the parent electron. Therefore, Ar; can be written as Atj.c — pj. The set

{t{(x — A, (v = A, (= AY), Lt (- Ax)} , (7.4)
can be any An-sized subset of

{tl(x — Ax),tp(x = Av), 13 = Ax),tf (- Ax)} : (7.5)

For this reason, any of the n(x—Ax) electrons has the same probability, An/n(x—Ax),
to produce a new electron. Moreover, any of the At{ Jfor j =1,2,3,..., An, coincides

with one of Aty, for k =1,2,3,...,n(x—Ax). Consequently, averaging Eq. (7.5]) over
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all the possible configurations of An newly produced electrons, it follows that:

13 (en() = (T (v n(6), (76)
1 n(x—Ax) 1 n(x—Ax) 1 An
:—n(x_A_x) ; tk(x_AX)-l-—n(x—Ax) ; Atk—m;pj
(7.7)

Additionally, by averaging Eq. (7.7) over the possible values of Az, the mean
time that the avalanche drifts in order to reach a plane on x is:

T (x,n(x)) = (T1 (x,n(x))) ar » (7.8)

or
An

T (x,n(x)) =T (x — Ax,n(x — Ax)) + (At) — ﬂp, (7.9)
n(x
where T (x — Ax,n(x — Ax)) = n(xEAx) ZZS{AX) tr(x — Ax) and p = (p) is the mean
value of the time-gain.
Finally, the definition V,, = (Ax/At;) can be used after taking the limit for an

infinitesimal Ax and integrating up to an avalanche length L in order to obtain:

d. d
dT (x,n(x)) = Vx - Tz)p, (7.10)
or .
T(L,NL):V —p-ln(NL)+C, (711)

ea

where N is the number of the avalanche electrons reaching a plane on L and C
is an integration constant which is approximated also independent of L. The rea-
son for this approximation will be discussed later in this Section. Equation ([7.11])
predicts that the avalanche transmission time depends on the drift length L lin-
early, as is the case for each individual electrons of the avalanche, but it also de-
pends logarithmically on the electron multiplicity of the avalanche. The quantity
AT(Np) =T(L,Ny) - L/V,, however does not depend explicitly on the length of the
avalanche. For this reason, the average residual time (AT (Np));, over all avalanches
with Ny electrons arriving on the mesh, depends only on Ny. If G(L|Ny)dL is the
conditional probability of an avalanche with Ny electrons arriving on the mesh to
have an avalanche length in the region [L, L + dL], then the average residual time
is written as:

(AT(NL)), = /0 T op In(NL) +C] - G (LIN,) dL. (7.12)

or
(AT(N1)), = —p - In (Np) +C. (7.13)

Equation expresses the mean deviation of the avalanche transmission time
to the time that would be expected in case the drift velocity of the avalanche is equal
to the drift velocity of its constituent electron. Simulations with GARFIELD++
show that this mean time-deviation is described well for all considered operating
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Figure 7.2: Mean deviation ((AT)) of the avalanche transmission time from the
naively expected time (see text) versus the respective avalanche multiplicity of elec-
trons. The points represent results of GARFIELD++ simulations, assuming 50%
Ptr, anode voltage 450 V and drift voltage 375 V. The line represents a fit using
Eq. (7.13). Figure adapted from Ref. [16].

parameters by the logarithmic expression of Eq. , as is visible in Fig. [7.2]
The mean value of the time-gain p and the constant term C were estimated by
fitting results of GARFIELD++ simulations with the expression of Eq. . The
estimation for the above parameters are compiled in Tabs. and for various
Ptr values and drift voltages, respectively.

At the beginning of their path, newly produced electrons would gain in average
the same time independently of their production mechanism, ¢.e. through direct
ionization or Penning transfer. Therefore, the estimated values of the parameter p
shouldn’t depend on the Ptr value. This was confirmed by fitting GARFIELD-++
simulation results (see Tab. . Furthermore, as the newly produced electrons
accelerate and reach equilibrium faster at higher (rather than at lower) drift fields, it
is to be expected that the time-gain parameter, p, should decrease as the drift voltage
increases. This is in agreement with the estimated values presented in Tab. [C.§]

Equation (|7.11)) was derived by treating the simultaneous drift and growth of
the avalanche differentially. Consequently, the integration constant, C, depends on
a minimum avalanche length, after which the growth of the mean avalanche electron
multiplicity can be described with a differential treatment. This minimum avalanche
length depends on the avalanche electron multiplication, which in turn depends on

the Ptr and the drift voltage, as can be observed in Tabs. and [C.§|

The drift velocity of the avalanche can be determined by expressing the mean
avalanche transmission time, (T'(L)), as a function of the avalanche length, L. This
can be achieved by averaging Eq. (7.11)) over all the possible values of the electron
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Figure 7.3: The points represent GARFIELD++ simulation results. (top-left)
Distribution of the number of electrons arriving on the mesh, produced in avalanches
with a length between 144.45 and 144.75 pm. The solid line represents a Gamma
distribution function fitted to the simulation results. (top-right) The mean value of
the avalanche electron multiplicity on the mesh versus the length of the respective
avalanche. The solid line represents exponential fit to the simulation results, as
described in the text. For the sake of completeness, GARFIELD-++ simulation
results, related to the electron multiplicity after the mesh, are also presented in the
bottom-row plots. Figure adapted from Ref. [16].

multiplicity in the avalanche:
(T(L)) = / T (L,Nr)-II(N;|L)dN], (7.14)
0

where IT(L|Ny) expresses the conditional probability density function of observing
that Nz number of electrons are produced in an avalanche that has length L.

By using GARFIELD—++ simulations, IT(N|L) can be well approximated using
the Gamma distribution function P (Np;q(L),6), where g(L) is the mean value
and 6 is the shape parameter of the Gamma distribution. The success of this
approximation can be observed in the top-left plot of Fig. [7.3]

Even though the shape parameter is found to be independent of the length of the
avalanche, the mean value depends exponentially on the it, i.e. g(L;a.rr) = 2-e%/f L
as shown in in the right plot of Fig. @ The exponential slope a.ry, which will be
hereafter called “multiplication factor”, is the probability per unit length for the
production of a new electron. The values of a.rr and 6 have been estimated using
the GARFIELD++ simulations with different values of Ptr and drift voltage and
are compiled in Tabs. [C.4] [C.5 and [C.8|

It can be observed that the electron multiplicity after the mesh also follows a
Gamma distribution function with the same 6 shape parameter as the respective
distribution of the electron multiplicity on the mesh, as is demonstrated in the
left-bottom plot of Fig. [7.3] (see also Tab. |C.5)).

The mean electron multiplicity after the mesh is also found to depend exponen-
tially on the avalanche length, as it is shown in the bottom-right plot of Fig. [7.3]
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Furthermore, the exponential slope is found to be equal to the multiplication factor,
a.rr which implies that the transparency of the mesh does not depend on the length
of the avalanche length. Moreover, it is deduced from GARFIELD++ simulations
for all considered operating conditions, that the mean electron multiplicity after the
mesh is consistently 25% of the number of the avalanche electrons arriving on the
mesh, (see Tables nd . Taking into account that the PICOSEC e-peak sig-
nal size was found (see Fig. to depend linearly on the electron multiplicity after
the mesh, the constant mesh transparency implies that the observed signal size is
practically determined by the electron multiplicity on the mesh.

After expressing the term IT(Ny|L) of Eq. (7.14)) as a Gamma distribution func-
tion, P (Np; q(L) = 2¢%/+L,9), and substituting T(L, Np) from Eq. (7.11), the aver-
age time that it takes for an avalanche to drift along a length L, for any number of
electrons Ny follows:

(T(L)) = Vi —p- /Ooo In (N.) P (NL; g(L) = 2e%rrL, 9) AN, +C. (7.15)

ea

By using the properties of the Gamma distribution function, Eq. (7.15) can be
written as:

—p-aerr|+[-pIn(2)+C+pln(0+1) —py (6+1)], (7.16)

ea

1
(T(L)=L- [V

where (x) is the digamma function.

Equation ([7.16|) relates linearly the mean value of the avalanche transmission
time to the avalanche length. It can be easily verified by using numerical values for
the model parameters (p, 6, a.ry, C from Sec. that the constant term,

[-pIn(2)+C+pln(0+1)—py (6+1)], (7.17)

takes very small values for all of the considered drift voltages and Ptr values. For
this reason, the effective avalanche drift velocity is determined by the inverse of
the term [é -p- ae_f_f]. Both p and a.f; are positive parameters and therefore
the model predicts that as the avalanche as a whole drifts with a higher velocity
than any of its constituent electrons, as was also observed in the GARFIELD++
simulations. Moreover, the GARFIELD++ simulations are found to agree well with
the model predictions of Eq. (7.16)), visible in Fig. [7.4l The agreement holds for all

of the considered operating conditions.

7.2 'Transmission times vs the electron multiplic-
ity of the avalanche

In Sec.[6.1]it was shown that the total time after the mesh determines the PICOSEC
signal arrival time (SAT). Nevertheless, as will be discussed in detail in Sec[8.3] the
total time after the mesh differs from the respective total time on the mesh by
only a constant interval, which does not depend on electron multiplicities and drift
lengths. Moreover, in Sec. it was shown that the mean electron multiplicity
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Figure 7.4: The average time needed by an avalanche, of a certain length, to arrive
on the mesh (the avalanche transmission time) as a function of the length of the
avalanche. The points are GARFIELD++ simulation results for 50% Ptr and a
drift voltage of 425 V. The solid line represents the model prediction, expressed by
Eq. (7.16). Figure adapted from Ref. [16].

after the mesh, which is the variables that determines the signal size, is a constant
fraction (25%) of the electron multiplicity on the mesh. Therefore, the expression
of the mean total time as a function of the electron multiplicity on the mesh, by
properly integrating Eq. , should provide the microscopic description of the
PICOSEC SAT dependence on the signal size (visible in Fig. [6.3)).

By using Bayes’ theorem, the conditional p.d.f., G(L|N), that an avalanche with
N electrons reaching the mesh has a length in the region [L, L+dL], can be written
as:
p(NIL)R(L)

p(N)
Here, R(L) is p.d.f of an avalanche to have length equal to L, p(N|L) is the condi-
tional p.d.f that an avalanche produced N electrons, if it has a length equal to L.
The normalized term p(N) is defined as:

G(LIN) = (7.18)

p(N) = / " p(NIL)R(L)AL. (7.19)

1

and expresses the p.d.f. that an avalanche has N electrons reaching the mesh, and
any length in the region x; < L < x3. The lower integration limit x; is equal to
0. However, the maximum avalanche length xo is not equal to D because, as is
observed in the simulations with GARFIELD++, the initial photoelectron needs to
travel a minimum distance before it gains enough energy to initiate an avalanche.
Naturally, this distance depends on the drift voltage, as shown in the values compiled
in Tab. [C8
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7. Modelling of the electron transmission times

In this model, p(N|L) is being approximated by the Gamma distribution function
P (Np;q(L) = 2edeftL 6), as discussed in Sec. . The p.d.f. R(L) can be expressed
in terms of the first Townsend coefficient a as:

exp [a- L]

R(L)=R(L;a)=a : (7.20)
exp la-x2] —exp [a - xi]
The conditional p.d.f then becomes:
P (Np;q(L) = 2¢%rL @) R(L;a
G(LIN) = (Nz;q(L) ) R(L;a) (7.21)

f P (Np;q(L) = 2e%srL,0) R(L; a)dL

Using Eq. (7.11), the average transmission time, (T(N)) = /x)lm T(N,L)G(L|N)dL

follows:
(LN
Vea
where (L(N)) = fx :2 L-G(L|N)dL is the average length of avalanches that result in
N electrons on the mesh.

As in Sec. [6.3] the mean transmission time of the photoelectron before it ionizes
depends on its drift path D — L:

(T(N)) =

plnN +C, (7.22)

Tp(L) =

+ d{,ff, (7.23)
14

where the d, s constant term comes from the fact that the drift velocity is a statis-
tical quantity which characterizes the drift of an electron only after it has undergone
enough scattering to be described statistically. The mean transmission time of the
photoelectron from its emission until the first ionization that creates an avalanche
with N electrons on the mesh is:

(n,0) = [T, (mGLNL (7.24)
. D - (L(N))
(T,(N)) = —— *tdoss- (7.25)
p

The total time taken for all the electron to reach the mesh, (T;,;(N)), will be the

sum of the two terms given in Eqgs. (7.22)) and (7.25)):

(Trot(N)) = (T, (N)) +(T(N)), (7.26)
or
T, (N))—(L(N))[L—i]— InN + 2+C+d ] (7.27)
< tot = Vea Vp P Vp of f| - .

The third term in the right hand side of Eq. represents the total time
on the mesh in absence of any “time-gain” caused by the interactions. In such a
case the SAT should be constant (¥ D/V,), determined only by the photoelectron
drift velocity (V},) and should not depend on the signal size. However, due to time-
gains because of inelastic interactions, the avalanche electrons drift faster than the
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Figure 7.5: The points represent GARFIELD++ simulation results related to the
mean transmission times versus the respective multiplicity of the avalanche electrons
arriving on the mesh, for 50% Ptr; 425 V and 450 V drift and anode voltages respec-
tively: (red) the transmission time of the photoelectron before the first ionization,
(blue) the transmission time of the avalanche from its beginning until the mesh and
(golden) the transmission time of the whole process, from the photoelectron emis-
sion until the avalanche reaches the mesh. The solid lines represent the predictions
of Egs. (7.22)), (7.25)), (7.27)), respectively. The inset plot details the dependence of
the total time on the mesh on the number of electrons arriving on the mesh. Figure
adapted from Ref. [16].

photoelectron. Therefore, the first term corresponds to the total time gain by a
collection of electrons drifting with V,, relative to a photoelectron drifting the same
distance. Finally, the second term represents an extra time gain, since each newly
produced electron in the avalanche gains on average a time p relative to its parent.
Considering that the average avalanche length is a positive and increasing function
of N, both of the above time gain terms increase in absolute value as N increases.
Equivalently, Eq. predicts that, due to the time gain concepts employed by our
model, large size PICOSEC signals should arrive earlier than smaller pulses, which
is in accordance with both the experimental observations and the GARFIELD++
simulation results.

The model predicts, as shown in Fig.|7.5 that the photoelectron (Eq. ), the
avalanche (Eq. (7.22)), and the total (Eq. (7.27)) transmission times and their depen-
dence on the electron multiplicity on the mesh are agreeing with the GARFIELD-++
simulation results. Furthermore, using the appropriate values to the model pa-
rameters, e.g. from Tab. the model can successfully reproduce the respective
GARFIELD+++ results for all of the considered operating conditions of PICOSEC.
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Chapter 8

Modelling of the timing resolution

8.1 Timing resolution versus the length of the
avalanche

As it was shown in Fig. [6.4] the timing resolution of the PICOSEC signal is de-
termined by the spread of the total-time after the mesh. However, the processes
occurring in the pre-amplification region influence the statistical SAT fluctuations
in a much stronger way than the passage of the pre-amplification electrons through
the mesh, as discussed in Sec[8.3] This section focuses on describing stochastically
the spread of the total-time on the mesh as a function of the avalanche length. The
longitudinal diffusion of the primary photoelectron and the spread of the avalanche
transmission time are the sources of this spread. The latter emerges as the combi-
nation of:

1. The individual avalanche electrons diffusion,

2. the electron multiplicity increase as the avalanche grows and

3. the statistical correlation between the drift times of the individual electrons.
It should be noted that the avalanche length (L or its residual D — L) is the natural
parameter to express the photoelectron diffusion, as well as the avalanche growth
and the correlation between its electrons.

In GARFIELD-++ simulations the variance of the photoelectron transmission
time V [Tp(L)], and the variance of the drift time of an avalanche electron V [T, (x)]
depend linearly on the respective drift lengths:

V[T, (L)]=(D-L) -0, +®, (8.1)

and
V[Tou(L)] = 0% - x + ¢. (8.2)
The slopes (077, o) and the constant terms (®, ¢) in the above relations are
evaluated with linear fits to the GARFIELD++ simulation results. In which case
simulation results refer to the variances of the respective time distributions, esti-
mated with fits to Wald distributions, as discussed in Sec. (see Fig.[6.5). Es-
timated values of these parameters, for all of the considered PICOSEC operating

conditions, are compiled in Tabs. [C.6[{C.§
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Figure 8.1: The points represent GARFIELD++ simulation results. (left) The
variance of the photoelectron transmission time at the point of the first ionization
versus the respective drift length. (right) The variance of the time taken by an
avalanche electron to drift a certain length versus the respective length. The solid
curves represent linear fits to the points. Figure adapted from Ref. [16].

Across all estimations, the variable @ is found to take negative values. This is
due to the fact that the photoelectron motion at its initial part has not yet reached
statistical equilibrium, as can be seen in the left plot of Fig.[8.1] On the other hand,
only positive values were found for ¢, as it is shown in the right plot of Fig. [8.1]
A positive ¢ value implies that an avalanche electron inherits some time spread
before it starts drifting which is, however, consistent with the phenomenological
model advocated in this study. Indeed, all the terms expressing time-gains in this
model behave as random variables, with variances contributing to the variance of
the respective drift times. For this reason, the constant term ¢ corresponds to the
variance of the time that is gained by the first avalanche electron when it initiates
the avalanche. Nevertheless, the contribution of the constant term, ¢, in Eq.
is much smaller than the part which is proportional to the drift length and it will
be ignored in the following. It should be noted that according to GARFIELD++
simulations, across all voltage settings considered in this study, the vast majority of
the avalanches have lengths greater than 100 pm, even in the case of 0% Ptr. For
a 100 pm long avalanche, the time variance of an avalanche electron that arrives on
the mesh, is more than 70 times larger than the contribution of the constant term
®.

For an avalanche of length L that is initiated by a photoelectron after drifting
a length D — L, the avalanche time T'(L) and the photoelectron time 7,(L) are
statistically uncorrelated. Consequently, the total time on the mesh T;,,(L) and its
variance V [T;,;(L)] are written as:

Ttot(L) = Tp(L) + T(L), (8'3)

VI[Tia(L)] =V [T,(L)] +V [T(L)], (8.4)
where V [TP(L)] can be calculated from Eq. .
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8. Modelling of the timing resolution

The term V [T (L)] will be evaluated by considering the evolution of the avalanche
between two planes, one on x — Ax and one on x, as presented in Sec. [6.3] and
illustrated in Fig. The average of the electron arrival times at a plane on x,
expressed by Eq. (7.5), is factorized as the sum of five terms (A, B, C, D and E), as

follows:

To (x,n(x)) =
1 n(x—Ax) An n(x—Ax) An An
= ® Z tk(x—Ax)+th(x—Ax)+ Z Atk+ZAtf+ij (8.5)
nx k=1 j=1 k=1 j=1 j=1
—_—,———— Y/ /T — e — —
A B c D E

As in Sec. [6.3] the model treats the times Az; (with k =1,2,3,...,n(x — Ax)) as
mutually uncorrelated variables as well as independent of the history of pre-existing
electrons. It should be recalled that the time Ar, taken by the newly produced
electrons to drift between the planes on x — Ax and on x, is the difference between
the two random variables: Ar; = Atf - pj, with j =1,2,...,An. The first variable

(At'J’.r ) has the same statistical properties as the times Aty of the pre-existing electrons.
The time-gains acquired by the new electrons, p;, are mutually uncorrelated and
are also uncorrelated with any of the Az; times.

As is done in Sec. [6.3] the model assigns a probability An/n(x—Ax) to each of the
pre-existing electrons at the plane on x — Ax to ionize and produce a new electron.
With these assumptions, the terms B and D of Eq. (8.5)) become:

An An n(x—Ax)
By = <Z o] (x - Ax)> =G5 Z 1 (x — Ax), (8.6)
J=1 An k=1
and
An P An n(x—Ax)
D, = <; Azj>An =G kZ{ Aty. (8.7)

By considering the relations mentioned previously between individual drift times
and time-gains, the covariances cov [A, B1] and cov [A, B1] have non-zero contribu-
tions to the total time spread. All other term combinations have covariances equal
to zero. Therefore, the variance of Ty (x,n(x — Ax)) = (Tp(x,n(x))),, is written:

VT (x,n(x — Ax))] = (VIA]+V[B]+V[C]+V[D]+V[E]+

1
n?(x)
+ 2cov [A, B1] +2cov [A,Dq]), (8.8)
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8. Modelling of the timing resolution

where
n(x—Ax)
VIAl= > (E[f(x-Ax)] - E? [1(x - Ax)])
k=1

O'If(x—Ax)
n(x—Ax) n(x—Ax)
+ D0 D, (Bl =A0n(x—A0] - E [te(x = AL E [1(x = A0, (8.9)
k=1 I=1,k#l

Ckl

or

n(x—Ax) n(x—Ax) n(x—Ax)
V[A] = Z o2 (x - Ax) + Z Z Chl- (8.10)
k=1 k=1 [=1,k#l

The variance of By is:

n(x—Ax) n(x—Ax)

2 [n(x—Ax)
V[Bl]:(n(%nmc)) ( Z O'Ig(x—Ax)+ Z Z Ckl), (8.11)

k=1 k=1 [=1,k#I
or ,
An
VIBi]=|——| -V [A], 12
1311 = (o) v (5.12)
The variance of C is:
n(x—Ax) n(x—Ax)
vicl= Y, (E[aw?] -E*[anl) = Y & (8.13)
k=1 k=1
3y
The variance of Dy is:
An 2=t 9 An 2
VID{]=|—— oy =———| V[C]. 8.14
D] (n(x—Ax)) kzz‘f k (n(x—Ax)) €] (8.14)
The variance of E is:
An ) An
VIEL =Y (E|(0)] - B2 [ps]) = D 2 (8.15)
j=1 j=1
d?
J

Similarly, the covariance terms can be written as:

cov [A, Bi] = n(%"m)v [A] (8.16)
cov [C,D1] = ﬁv [C] (8.17)

130



8. Modelling of the timing resolution

By substituting Eqs. through (8.17) in Eq. (8.8), the variance takes the
expression:

1 n(x—Ax) n(x—Ax) n(x—Ax)
V[T (x,n(x))] = 2 (= A Z o (x = Ax) + Z Z Cki
k=1 =1 =Tkl

n(x—Ax)

1 An )
n2(x—Ax) Z nz(x);dj. (8.18)

After taking into account the fact that all of Az will follow the same distribution
with variance 62 proportional to the drift distance Ax, i.e 62 — 0'3 - Ax, as well as
that the time-gains p;, with j =1,2,3,..., An, follow a distribution whose variance
is equal to w2, the last two terms of Eq. can be written as:

n(x—Ax) . Ax
n2(x — Ax) Z - n(x - Ax)’ (8.19)
and N
1 . 2 _ ﬂ 2
v ; 4= " (8.20)

Furthermore, the total avalanche time variance on the plane x — Ax is equal to:

1 n(xEAx) ) n(xEAx) n(x—Ax)
VIh (X—AX,H(X—AX))]=2—( o (x — Ax) + Ckl)
nf(x - Ax) | o k=1 I=Lizk
(8.21)
By substituting Eqgs.(8.19), (8.20)), (8.21]), as well as the approximation
n%(x) = n(x) - n(x — Ax), (8.22)
into Eq. (8.18]), one gets:
VT (en G~ VT (e~ Ao - AT = 2085 (] :
n - - Ax,n(x — - -
L%, 1* ¥ n(x — Ax) W n(x) n(x-Ax)
(8.23)

that expresses the increase in the variance of the avalanche time as the avalanche
grows from x —Ax to x, given that n(x —Ax) electrons arrived on the first plane while
An more electrons arrived on the second.

The variance of all avalanches evolving up to length x can be obtained by aver-
aged Eq. over all possible values of An and n(x — Ax). In particular:

VIT Con@)] = VIT (- Ax,n(x = AX)Dwan _
Ax

o 1 w? [ 1 1
-7 <I’Z(X A.X) >n An <I’Z(X) - n(x - Ax) >n,An . <824)
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Figure 8.2: The points represent the mean value of the inverse avalanche-electron
multiplicity for simulated avalanches of a certain length. The GARFIELD++ simu-
lation package has been used, assuming 50% Ptr, a drift voltage of 425 V and anode
voltage of 450 V. The solid curve represents graphically Eq. with the proper
values for the physical parameters, from Tab. Figure adapted from Ref. [16].

By assuming again that n(x) follow the Gamma distribution function, the mean
value of the inverse multiplicity, 1/n(x), is given by:

1 0+1
<n(x)>n: 2+9 exp [~acrs -], (8.25)

which is in perfect agreement with the results from GARFIELD-++ simulations,
visible in Fig. 8.2
By substituting Eq. (8.25)) into Eq. (8.24)), differential increase of the variance of

the avalanche transmission time is written as:

VI -VITi(x-Ax)])

Ax
0+1
= Ggwexp [—aeff -x] exp [aeff . Ax]
w26 +1
~ o P [~aerp-x] - (1-exp|acss-Ax]). (8.26)

The right hand side of Eq. (8.26)) can be expanded with respect to Ax, keeping only

up to first order terms and letting Ax go to zero. The differential equation then that

expresses the evolution of the variance of the avalanche transmission time is:
d[T(x)] 6+1

o - g &P [—aerp-x]- (og +w?aesy) - (8.27)
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By integrating up to an avalanche length of L, the variance of the avalanche trans-
mission time for length L is found:

0+1 1—exp|-a - L
0'3+w2aeff [ eff ]

260 ( ) aeff

Consequently, the variance of the total time on the mesh according to Eq. (8.4))
is written as:

VIT(L)] =

(8.28)

VI(Tiot(L)] =V I[T(L)] +V [T,(L)], (8:29)

or

o+1 (o0 +waesy) Loxp |~aery - L]
2 aeff

This expression is expected to describe the GARFIELD++ simulations for pho-

toelectrons that have drift lengths long enough in order to guarantee statistical

equilibrium (typically (D — L) > 10 pm).

The time spreads that the model predicts and are expressed by Eqs. ,
and , are presented in Fig. and shown to be in excellent agreement with
the simulation results. The same good agreement is found for all values of Ptr and
drift voltages considered in this work.

Even though the mean value of the time-gain parameter p has been evaluated
from GARFIELD++ simulations (see Fig. , there is no similar and straightfor-
ward way to estimate the value of its variance (w? = V [p]). As an alternative, the
double lines in Fig. represent the predictions of Egs. and forw =0
and w = p, that is either assuming that the time-gain per newly produced electron
is a constant or that it follows a very broad physical distribution that has an RMS
equal to 100% of its mean value. Clearly, even by imposing a 100% spread on p,
only a small change is induced to the model predictions.

As indicated in Fig. [8.3] signals that are produced by long avalanches achieve
good resolution because they are associated with photoelectrons that drift for short
distances, and therefore suffer small longitudinal diffusion. The model predicts
that the contribution of short avalanches to the timing resolution depends on their
length. However, as the avalanche length grows, the variance of the avalanche time
reaches a plateau. At the operational parameter settings considered in this study,
the vast majority of the GARFIELD++ simulated avalanches in the PICOSEC
pre-amplification region are too long to reveal the increase of the avalanche time
spread. In order to check the model prediction in detail, special GARFIELD+-+
simulations of shorter pre-amplification avalanches were performed. Two groups of
such simulation results are also shown, as bright green points in the same Figure.
This demonstrates the success of the model in predicting the avalanche time spread
at all avalanche lengths. Nevertheless, the predicted spread of the photoelectron time
seems to deviate from the GARFIELD++ points at very large avalanche lengths (or
equivalently short photoelectron drift paths), due to the inadequacy of Eq. to
describe the photoelectron longitudinal diffusion at the beginning of its drift path,
i.e. before it has reached statistical equilibrium through multiple scatterings with
the gas. As mentioned, this small deviation appears only in the region of very large
avalanche lengths, where the timing resolution is practically determined solely by
the avalanche time spread.

V[T (L)] = +(D-L)-op+®. (8.30)
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Figure 8.3: The points show results of GARFIELD++ simulations assuming 50%
Ptr, 425 V drift and 450 V anode voltages, versus the respective length of the
avalanche. The golden points depict the spread of the total time on the mesh.
The red and blue (plus bright green) points represent spreads of the primary pho-
toelectron time and of the avalanche time, respectively. The corresponding model
predictions, for the two w values discussed in the text, are presented as solid lines.
Figure adapted from Ref. [16].

8.2 Timing resolution versus electron multiplicity
on the mesh

The results of GARFIELD++ simulations have shown that the electron multiplicity
on the mesh determines the PICOSEC signal size (see Sec. [6.1and [7.1). In order to
get insight on the dependence of the timing resolution on the signal amplitude, the
effects of the photoelectron drift and the pre-amplification avalanche development
are written as functions of the electron multiplicity on the mesh. The effect of the
passage of avalanche electrons through the mesh on the timing resolution, which is
much weaker, is discussed in Sec. [8.3

The variance of the avalanche transmission time can be evaluated as a function
of the electron multiplicity on the mesh, Ny, by averaging Eq. over n(x) under
the condition that at x = L, the observed number of electrons reaching the mesh is
equal to n(L) = Ny. The conditional p.d.f., IT (n(x)|n(L) = Nr), that an avalanche
has n(x) electrons at a distance x from the point of first ionization, and Ny electrons
at a distance L (with L > x) is given by:

I (n(L) = Np|n(x)) - TT (n(x))
I (n(L) = Npr)

1 (n(x)|n(L) = Np) = (8.31)
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The term IT (n(x)) denotes the p.d.f. that an avalanche consists of n(x) at a plane
x. This p.d.f. is approximated by the Gamma distribution function (see Fig. [7.3),
i.e.
IT (n(x)) = P (n(x); g = 2e9/*,0) . (8.32)
The other term in the numerator of Eq. [8.31] II (n(L) = Np|n(x)), is the con-
ditional p.d.f. that an avalanche has Ny electrons at a plane on L, given that it
has n(x) electrons at a plane on x. By assuming that each of the n(x) electrons
will initiate an avalanche, independent of the other initiated avalanches, there will
be n(x) statistically identical and independent avalanches reaching the plane on L,
each with a length of L — x. In that case, IT (n(L) = Ny|n(x)) can be approximated
by the convolution of n(x) Gamma distributions. This results in the expression:

n(x) times

IT(n(L) = Nr|n(x)) = P1(n) @ P1(n) ® --- ® P1(n), (8.33)

or
IT (n(L) = N|n(x)) =

1 0+ 1)n(x)(9+l) N; n(x)(6+1)-1 X N;
gq(L-0)T (@) - (0+1) (q(L—X)) P [’ DT

where g(L — x) is the mean number of electrons of a single avalanche with length
L — x. The mean value of the above p.d.f. is equal to n(x) - g(L — x) while its
variance is equal to n(x) - qQéiIx). One drawback in expressing I1 (n(L) = Ny |n(x))
with Eq. is that n(x) should be treated as an integer number while Ny is a
real number. Alternatively, the Central Limit Theorem can invoked and a Gaussian

distribution can be used in the case that n(x) is a large number:
1 wp |10 gL =)~ N,
V27 - n(x) - o2(L - x) 2-n(x)-o*(L-x) |’
(8.35)
where o2(L — x) is the variance in the number of electrons of a single avalanche of
length L — x. The p.d.f. that is expressed by Eq. is strictly valid only in the
case that n(x) is an integer parameter. However, in order to simplify the numerical

calculations, n(x) is treated as if it is a continuous variable.
The normalizing term that appears in the denominator of Eq. (8.31]) is defined

(8.34)

IT (n(L) = Ni|n(x)) =

as:
I (n(L) = N) = » T (n(L) = Ny|n) - TT (n), (8.36)
or 0o "
I (n(L) = Np) = /0 I1 (n(L) = Nr|n(x)) - T1 (n(x)) dn(x). (8.37)

Having determined the functional form IT (n(x)|n(L) = Ny ), it is straightforward
to properly average Eq. (8.23)) by imposing the condition that the electron multi-
plicity at an avalanche length L is equal to Ny. By using the following definitions:

VO u(r)=n, = /0 VI[T1 (x,n(x))] - P (n(x)[n(L) = Nr) dn(x), (8.38)

135



8. Modelling of the timing resolution

(V(x = Ax))y(1)=n, =

/000 V [T} (x — Ax,n(x — Ax))] - P (n(x — Ax)|n(L) = Np) dn(x — Ax), (8.39)

1 |
< > = / —— - P(n(x)|n(L) = Np) dn(x), (8.40)
n(x) n(L)=Ny, o n(x)
along with Eq. (8.23)), the average increase of the avalanche transmission time vari-
ance between planes x — Ax and x, and under the condition that the electron multi-
plicity was equal to Ny at x = L, is expressed as:

VD ny=n, — V(x =A%)y (0)=n, =

bl )
0 n(x = AX) [ 1)=n, nO) [y, ) Lawy=n,

It should be noticed that the imposed condition, that n(L) = Ny, forces the aver-
ages, (1/n(x)),p)=n, and (V(x)),(r)=y, » to become functions also of Ny. Hereafter,
terms symbolized as (®(x)), )=y, have to be considered as functions of both x and
Ny. A recursive summation of Eq. , starting from x = L and stopping at x =0
in steps of Ax results in:

(8.41)

VO =N, = V(O ur)=n, =
L/Ax

2. ;> 2 < 1 > _<L>
0-0 AX; <l’l(L—le) n(L)=Np, v ( l’l(L) n(L)=N, l’l(O) w(L)=Ny . (842)

By taking the limit as Ax — 0, and using that:

V(O n(ry=n, =0, (8.43)
1 1

<m>n(L):NL 2 (8.44)
1 1

<”(L) >n(L)=NL TN (8.45)

then Eq. (8.42) is written as:

! 11
<V(L)>n(L):NL = O-g ) ‘/0 <n(x)> ()= dx —w? (N_L - 5) ’ (846>

expressing this way the variance of the avalanche time, when the electron multiplicity
on the mesh is equal to N and given that the length of the avalanche is equal to L.
The first term in Eq. is a double integral which can be easily evaluated with
numerical integration, for any L and Ny. It can be evaluated using Eq. with

the definition expressed by either Eq. (8.35)) or Eq. (8.37)), and setting appropriate
values to the relevant model parameters (o, 6, a.ry) from Tab. [C.§|
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8. Modelling of the timing resolution

To express the variance of the avalanche transmission time as a function of only
the electron multiplicity on the mesh, N, Eq. should be integrated considering
the contribution of any avalanche, of any length L, which produces N electrons
arriving on the mesh (N = Ny ). Each such contribution should be weighted by the
likelihood that such an avalanche is produced, which is given by the p.d.f. G(L|N)
defined by Eq. (7.21).

Considering a sample of avalanches with N electrons on the mesh, which com-
prises many (infinite) sets, each set consisting of avalanches with a certain length, L,
with a population proportional to G(L|N). The mean avalanche transmission time
in a set is T(N, L) and the respective variance is (V(L)), )=y, - In the hypothetical
case that all the above subsets had the same mean avalanche time, the time variance
of the whole sample would be given by the weighted sum of the respective variances
of the subsets. On the other hand, due to the fact that the mean avalanche time
varies among the sets, the variance of the avalanche time considering all avalanches
in the sample should be evaluated according to Eq. (see Sec. [D)). Therefore,
the variance of the avalanche time, V [T'(N)], when the number of electrons on the
mesh is N, is expressed as:

VIT(N)] = / V(L))ntyon - G (NIL) AL

X2 X2 2
+/ T2(N,L)-G(N|L)dL—[/ T(N,L)-G (NIL)dL| . (8.47)

X1 X1

Physically, the variance of the photoelectron time V [Tp(L)], depends only on the
drift length it takes, D — L, as expressed by Eq. . However, because the pho-
toelectron drift length is the residual of the avalanche length, which determines the
mean multiplicity of the avalanche electrons, the variance of the photoelectron time
depends indirectly on the electron multiplicity on the mesh, N.

By weighting Egs. and Eq. (8.1) with G(L|N), integrating over the length
of the avalanche and applying Eq. (D.6]), the variance of the photoelectron time
becomes:

VI[T,(V)] :/ 2V[T,,(L)] -G (N|L)dL

X1
2

+/X2 T>(L)-G (N|L)dL - [/m T,(L) -G (N|L)dL| . (8.48)

X1 X1

Finally, the variance of the total on the mesh can be expressed by applying

Eq. once more:

V [T (W)] = / VT (L)] + VE)wiyn] - GLINYL

X9 1 X9 2
+/ [T(N.L)+T;(L)] - G (N|L)dL - U [T(N,L)+T,(L)] -G (N|L)dL

X1 X1
(8.49)
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8. Modelling of the timing resolution

It is easy to see that the sum of Eq. (8.47) and Eq. (8.48) are not equal to
Eq. (8.49). This would be so only the photoelectron and avalanche contributions

to the total time, expressed as functions of the electron multiplicity on the mesh
would be uncorrelated. This correlation is visible also in the GARFIELD++ simu-
lations as illustrated in Fig. and it is due to the fact that the same number of
pre-amplification electrons arriving on the mesh can be produced by avalanches of
different lengths.

The predictions of Egs. (8.47)-(8.49) are in good agreement with the correspond-
ing GARFIELD++ simulation results, visible in Fig. [8.4] Furthermore, the model
reproduces successfully the related GARFIELD++ simulation results at all opera-
tional conditions considered in this study. For small values of electron multiplicity
on the mesh, the time spread predicted by our model is systematically smaller than
the related GARFIELD++ simulation results. This underestimation comes from
the inadequacy of the p.d.f’s that have been employed in this model to approximate
the avalanche statistical properties at its very beginning (7.e. at small avalanche
length and low electron multiplicity). This is discussed in Sec. @

8.3 Effects related to electrons traversing the mesh

The transport of the pre-amplification electrons through the mesh reduces their
multiplicity by a factor of four that is independent of the avalanche length and of
the electron multiplicity on the mesh (see Fig. and the related comments in
Sec.[7.1). This has been shown by GARFIELD++ simulations for all PICOSEC op-
eration conditions considered in this study. As expected the passage of the electrons
through the mesh adds a delay to the signal arrival time. Simulations show that the
added delay depends only on the applied drift voltage, is independent of the pre-
amplification avalanche length and of the electron multiplicity on the mesh. This is
illustrated in Fig. However, the spread of the total time after the mesh is found
to increase relative to the spread of the total time on the mesh, i.e. the process
of electrons traversing the mesh deteriorates the PICOSEC timing resolution. This
effect depends on the applied drift field, as well as on the avalanche characteristics,
illustrated in Figs. and Although the mesh transparency (= 25%) is found
to be independent to the considered drift voltages, this reduction of the number of
electrons influences the timing resolution in a way that depends on the drift voltage.
This fact signifies the importance of the correlation between the individual arrival
times of the pre-amplification electrons (on and after the mesh) in determining the
mesh effect on the timing resolution.

Consider a pre-amplification avalanche of length L with N electrons arriving on
the mesh, and let T;,, be the total transmission time on the mesh and let V [T;,] be
the variance of it. Then,

N
Tior (L, N) = T(L,N) 4 Ty (1) = 30 Y e+ Ty (L), (8.50)
k=1

where T), is the transmission time of the photoelectron that depends only on its drift
length (D — L) as in Eq. (7.23)). The times #, with k = 1,2,..., N, correspond to
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Figure 8.4: The points represent the transmission time spread as has been evaluated
using GARFIELD++ simulations, with 50% Penning Transfer Rate, 425 V drift
and 450 V anode voltage. The double lines present model predictions for w = 0
and w = p as discussed in Sec. 8.1} The top-left (blue), the top-right (red) and
the bottom (golden) plots show the avalanche time spread, the photoelectron time
spread and the spread of the total time on the mesh, respectively, as functions of the
number of pre-amplification electrons arriving on the mesh. Figure adapted from

Ref. [16].

the pre-amplification electrons’ arrival times on the mesh, starting from the time of
the first ionization. The avalanche transmission, and therefore the total time on the
mesh, is a function of both L and N, as expressed in Eq. .

The transmission time of the photoelectron is uncorrelated with every transmis-
sion time of the electrons in the avalanches. Consequently, the variance V [T, ] is

written as:
N

D)
_ t
N&a
According to Eq. (8.1]), the time variance of the photoelectron at the point of first
ionization can be replaced to write the variance as:

V[Tior(L,N)] =V +V [T,(L)]. (8.51)

N

V [Tios(L,N)] =V 5 2t +0,-(D-L)+®. (8.52)

k=1
As discussed in Sec. the arrival times (on the mesh) of the pre-amplification
electrons in the avalanche are heavily correlated. The first term in Eq. (8.52)) can
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Figure 8.5: The points represent GARFIELD++ simulation results, assuming 50%
Ptr, 450 V and 350 V drift and anode voltage, respectively. The time to pass through
the mesh (i.e. (At) is the difference between the total time after the mesh and the
total time on the mesh) is shown versus the respective avalanche length (left plot)
and the electron multiplicity on the mesh (right plot). The solid curves represent
fits by a constant function. Figure adapted from Ref. [16].

be written analytically as:

1 N N
22 Z Ci/, (8.53)

i=1 j=1,j#i

N
ka
=1

where O'g is defined in Sec. as the variance per unit length of a single electron
in the avalanche, while C;; expresses the covariance between the arrival times of the
i-th and j-th electrons.

The production of new electrons while traversing the mesh is ignored. If M is
the number of electrons entering the amplification region, then T, is the total arrival
time after passing the mesh (i.e. the average of the M arrival times on a plane just
after the mesh), which is written as:

M M
1 1
Tm(L,N) = M E tk+M E Atk+Tp(L), (854)
k=1 k=1

where Aty is the extra time that is required by the k-th electron to arrive at the
plane just after the mesh.

The passage of an electron through the mesh is determined by the position of
its impact point on the mesh. Therefore, if the same avalanche is shifted parallel to
its longitudinal axis, a different subset of the N arriving electrons will pass through
the mesh. This can be considered equivalent to giving the same probability, M /N,
to each of the N arriving electrons to pass through the mesh. Using this argument,

Eq. (8.54) becomes:

| E

T(L,N) =

Zli

N N
Z D At +Ty(L), (8.55)
k=1 N k=1
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8. Modelling of the timing resolution

or using Eq. (8.50)),

Tm(L,N) =T0,s(L,N) + (A1), (8.56)

where At is the mean time required by an electron to pass through the mesh. Equa-
tion predicts that the total arrival time after the mesh is equal to the total
arrival time on the mesh but delayed by a constant time, which is not dependent
on the characteristics of the avalanche, as is observed in the GARFIELD++ simu-
lations. Naturally, (Ar), which is the drift time of an electron traversing the mesh,
depends on the electric field around the mesh.

The terms % ZkM: 1 ks % ZkM: 1 Aty and T, in Eq. are uncorrelated with each
other. Consequently, the variance of the total time after the mesh is written:

M M
V [Tu(L,N)] = Z %ka +V [T,(L)]. (8.57)
k k=1

The first term in Eq. (8.57)) can be expressed analogously to Eq. (8.53):

1 M 1 M M
VI = — Cij, 8.58
M kzz; Ik + M2 ;j:%;# J ( )

where is the covariance Cj; is defined in Eq. (8.53).

Equation (8.58)) can be simplified by employing the argument that any of the
pre-ampliﬁcation electrons has the same probability to traverse the mesh. Moreover,
the J 1,j# Cij term in Eq. ( comprises in M (M — 1) C;; terms, while the
correspondlng term in Eq. (8.53) consmts of N(N-1) C;; terms. Using this, Eq. (8.58)
is rewritten:

M 2 N N
1 oL 1 M(M-1)
VI|I— | = + — Cii, 8.59
MZk:1 4 M " MZN(N-1) Zl 1121j¢i J (8.59)

which can be approximated as

M 2 N N
P Stewi e ew

k=1 i=1 j=1,j#i

Vv

The Aty times are mutually uncorrelated and therefore the second term of Eq. (8.57))
can be expressed as:
A
\% M ; Aty

where 62 is the variance of the time taken by an electron to pass through the mesh.

Equations (8.60) and (8.61]) can be substituted in Eq. (8.57). Then, the variance of

the total time after the mesh is written as:

(8.61)

o2 L 1 & &
VITu(LN)] = ==+ <5 .Z.c,-j+ﬁ+v[Tp(L)]. (8.62)
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Equation ({8.53) can be then used to eliminate the double sum of the covariances.
Consequently, the variance is now expressed as:

1 1) ¢
M - N) +—4+V [TIDI(L’ N)] . (863)

V [T,n(L,N)] :ag-L( m

The average ratio M /N corresponds to the transparency of the mesh, tr, which is
independent of the operating conditions for the cases studied in this work. Using
the mesh transparency, M can be eliminated to simplify Eq. (8.63) to:

2
V[T,n(L,N)] = % [ag L (% -~ 1) + f—r +V [Tr0i(L,N)] . (8.64)

The increase in the total time variance, V [T,,(L, N)] = V [T;0:(L, N)], is predicted
by Eq. to depend on the electron multiplicity N, on the electron transparency
of the mesh #r and on the length of the avalanche L. As before, Eq. can be
averaged over all possible N, following the procedure that is described in Sec. 8.1}
so that the variance of the total time after the mesh is expressed as a function of
the avalanche length as:

VITn(L)] =<V [Tn(L,N))y =

0+1 5 1 52
9 exp [—aeffL] . [0'0 - L (t_r - 1) + =
where the property of the Gamma distribution has been used:

Iy 6+1 60+1
N[ 6(N)Y 260
The last term in Eq. (8.65)), V [T;,¢(L)], is given by Eq. (8.30). The mesh contribu-

tion to the total time variance which determines the PICOSEC timing resolution is
given in terms of the avalanche length as:

+V [Tior(L)] . (8.65)

exp [—aepp- L] . (8.66)

AV(L) =V [Tn(L)] =V [Tior(L)] =
0+1
20

(8.67)

5 1 52
exp[—aeffL] oy - L ;—1 +—.
The variance of the total time after the mesh can also be written as a function
of the electron multiplicity on the mesh. By properly averaging Eq. (8.64) over all
possible avalanche lengths, it follows that:

VITu(N)] =V [Tu(L,N)])p =
2

1 1 0
N[a&-@(zv» (;—1)+; FV[Ti(N)]. (3.68)

The last term, V [T, (N)], is given by Eq. (8.49)), while the average avalanche length
(L(N)) is defined in Sec.[7.1] The contribution of the mesh to the PICOSEC timing
resolution as a function of the electron multiplicity N is then:

. (8.69)

2
AVN) =V [T (N)] =V [Tor(N)] = [cr& (LN (tl _ 1) o
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8. Modelling of the timing resolution

Equations (8.68]) and (8.69)) can be easily reformulated as functions of the number
of the electrons that pass through the mesh, M, by making use of the transformation
M =tr-N. It is recalled that the PICOSEC e-peak amplitude was found proportional
to M [26] (see also Fig. |6.4).

In the above description of the electron transport through the mesh, two sources
contribute to the increase of the time variance:

e An extra time spread due to the electron drift in the inhomogeneous electric

field around the mesh,

« and the statistical effect caused by the depletion of mutually-correlated avalanche

electrons.

The first contribution is expressed by the term proportional to 6% in Eq. or
equivalently in Eqgs. and . The time-spread § depends on the PICOSEC
operational conditions and it is treated as an input parameter in this model. Values
of 8, which are evaluated using GARFIELD++ simulations, assuming several drift
voltages, are compiled in Table A.8, where they are observed to exhibit a decreasing
functional dependence on the drift voltage. It is important though to note that the
terms proportional to 62 contributing to the increase of the time variance (e.g. in
Eqgs. , and ) are much weaker than the other terms, which are
related to statistical correlations.

Due to the correlation terms, the variance of the total-time after the mesh (e.g.
in Eq. ) is not proportional to the variance of the total time on the mesh. The
mesh adds to the variance a term which is almost proportional to L - exp [—ae f fL]
when expressed as a function of L (see Eq. ), or almost proportional to
(L(N)) /N (see Eq. (8.69)) when it is expressed as a function of N. As the drift
voltage increases, the electron multiplication factor, a.rs increases and both of the
above terms decrease for all L and N. Therefore, the influence of the mesh on the
timing resolution becomes weaker as the drift field increases, as is demonstrated by
the GARFIELD++ simulations.

The model agrees well with the GARFIELD++ simulations in describing the
quantitatively the effect of the mesh on the timing resolution, for all of the PICOSEC
operating conditions that have been considered in this work, as demonstrated in

Fig. and [8.7]
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Figure 8.6: The points represent GARFIELD-++ simulation results concerning the
spread of the total time on the mesh (golden points) and the spread of the total time
after the mesh (black points) versus the avalanche length. The solid lines represent
predictions based on Eq. (63). The double lines indicate the systematic uncertainty
due to the value of the w parameter, discussed in Sec. The voltage settings
considered in these comparisons are: 450 V at the anode and drift voltage of 325
V (left plot), 350 V (center plot), and 400 V (right plot). Figure adapted from
Ref. [16].
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Figure 8.7: The points represent GARFIELD++ simulation results. The left col-
umn plots show the spread of the total time on the mesh (golden points) and after the
mesh (black points) versus the electron multiplicity on the mesh. The right column
plots display the mesh contribution (i.e. the square root of the difference between
the variance of the total time after and on the mesh) versus the electron multiplicity
on the mesh. The solid lines represent predictions of Eqgs. and - The
double lines represent the systematic uncertainty due to the unknown value of the
w model-parameter. The voltage settings considered in these comparisons are 450
V at the anode and drift voltages of 325 V (top row), 350 V (middle row), and 400
V (bottom row). Figure adapted from Ref. [16].
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Chapter 9

Modelling the distributions of the
transmission time

A weak but systematic deviation of the model predictions from the GARFIELD++
results has been noticed at low electron multiplicities on the mesh. As shown
in Figs. and [8.4] the model predictions of the mean value and the spread of
avalanche time deviate from the GARFIELD++ points at avalanche electron mul-
tiplicities less than 300, for 50% Ptr, 425 V drift and 450 V anode voltages. As
mentioned already, such deviations result from the inadequacy of the employed
probability density functions to describe accurately the statistical properties of the
avalanche at its very beginning (small avalanche length, low electron multiplicity).
For example, the model predictions of both the mean value and the variance of
the avalanche time, 7.e. Egs. and , utilize the function G(L|N). This
conditional p.d.f., defined in Sec. by Eq. (7.21), expresses the distribution of
the length of an avalanche given that the avalanche electron multiplicity is equal to
N. Predictions of Eq. are compared to the respective distributions produced
by GARFIELD++, in Fig. [0.1] It is clear that Eq. approximates poorly the
GARFIELD++ distributions at low N, though succeeds in describing the detailed
simulation results for higher values of electron multiplicities. Consequently, the pre-
dictions of Egs. and suffer from the poor performance of G(L|N) to
describe the GARFIELD++ results at low electron multiplicities.

On the other hand, PICOSEC data are collected with non-zero experimental
amplitude thresholds for practical reasons. The data points shown in Fig. [6.3] in
comparison with the results based on simulated PICOSEC pulses, were collected [25]
with thresholds corresponding to e-peak charge greater than 3—4 pC, which translate
(for 425 V drift and 450 V anode voltages, and 50% Ptr) to 400 — 500 electron
multiplicity on the mesh. At this region of pre-amplification electron multiplicities,
the model predictions are in good agreement with the results of GARFIELD++
simulations, as shown in Figs. [7.5 and [8.4]

Up to this point, the model has been used to provide information on the mean
value and the variance (i.e. to evaluate the first and second moments) of trans-
mission time distributions. However, it can also be used for more general statis-
tical predictions, e.g. to predict the complete probability density functions of the
above time variables. For example, Fig. shows the distributions, produced by
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Figure 9.1: Distributions of the avalanche length, produced by GARFIELD++ sim-
ulations (assuming 50% Ptr, 425 V and 450 V drift and anode voltage, respectively)
in the case that the multiplicity of pre-amplification electrons is less than 120 (left
plot), between 400 and 440 (center plot) and 1230 and 1300 (right plot). The solid
lines represent the related predictions of the distribution function G(L|N) defined
by Eq. (7.21). Figure adapted from Ref. [16].

GARFIELD++ simulations (black points), of the photoelectron, the avalanche and
the total time (on and after the mesh), without selecting the avalanche length or
the electron multiplicity on the mesh. The apparent left-right asymmetry and the
long tails in these distributions are partially caused by the dependence of the mean
transmission times on the length of the avalanche (or equivalently, on the length of
the photoelectron drift path, before the first ionization). Nevertheless, the depen-
dence of the variances on the length of the avalanche also contributes to the apparent
asymmetry and the tails. In order to predict the functional form of the above asym-
metric distributions, the model is complemented with the extra assumption that the
related transmission times, corresponding to a certain avalanche length, follow an
Inverse Gaussian distribution (Wald) function, which is expressed as:

1/2 N2
fxu,2) = (L) exp [—Mx—ﬂ)] : (9.1)

2mx3 2u2x

where the parameter u is the mean value and the shape parameter A is related to the
variance of the distribution as V [x] = u?/A. Generally, the convolution of two Wald
distributions is not a Wald distribution. Consequently, even if the photoelectron
and avalanche transmission times are described by Wald distributions, it is not
necessary that the total times will be distributed according to the same functional
form. However, GARFIELD++ simulation results indicate, see also Fig. [6.5] that
the distributions of the total times, on and after the mesh, are well approximated
by Wald functions.

Hereafter, the model assumes that the statistical properties of the photoelectron
transmission time, T},, and the avalanche transmission time, 7', can be well described
by Wald distributions as follows. The photoelectron transmission time follows the

p.d.f.:

—Ap(L) (Tp - ﬂp(L))Q
23 (L) T,

1/2
(L
ACO) I . (9.2)
2nTy

F(Tp;up(L), 2,(L)) = (
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Figure 9.2: Transmission time distributions for all events at 350 V and 450 V
drift and anode voltage respectively and 50% Ptr: (top left) Total time on the
mesh, (top right) total time after the mesh, (bottom left) avalanche transmission
time and (bottom right) photoelectron transmission time. The points are results of
GARFIELD++ simulations while the red lines correspond to the respective model
predictions, as described in the text. Figure adapted from Ref. [16].

while the avalanche transmission time follows the p.d.f.:

1/2 _ _ 2

L T e s | IR CE)

where according to Eq. :
pp(L) = % +doyf, (9.4)

p
and according to Eq. ,
3

1) = — 2 (9.5)

(D-L)-0p+®@
Similarly for the parameters of the p.d.f. describing the avalanche transmission time,
u(L) = (T(L)), (9.6)
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where (T'(L)) is given by Eq. (7.16]). The shape parameter is defined by:

p*(L)

W=y

(9.7)

with V [T(L)] given by Eq. (8.28).
Using the p.d.f. to observe an avalanche length L, R(L; a), (defined in Eq. (7.20]))
for the distributions of T,, and T for any value of L can be written as:

Fy(T,) = / 1o (s (1), 4 (L)) - R(L; a)dL, (9.8)
F) = [ FTu.AL) - RELia)dL, (9.9)

The solid lines in the bottom plots of Fig. [9.2] correspond to the predictions ex-
pressed by the aforementioned p.d.f. of Egs. and . The model predictions
are in excellent agreement with the GARFIELD++ simulations. Similarly, it is as-
sumed that the total time distributions on and after the mesh (7, and T,,) for a
certain avalanche length L, can be approximated by Wald distributions:

1/2 2
Asor (L —Asor (L) (T — L
F Tior ttor (L), Auon (1) = (#) ex [ tor(L) (T = pror(L)) ] (9.10)
271'7;(” Qﬂlol(l‘) . Ttot
(DN (<A (L) (T = i (1))
f (Ton; ,um(L)a Am(L)) = 3 +€X 5 > (9'11>
21Ty 2uim (L) - Ty
where according to Egs. (7.16]) and (7.23):
Dy
Peor(L) = v Tdorr+ (T(L)), (9.12)
P
and according to Eq. (8.30)):
3
Mot (L)
Aot (L) = ————. 9.13
) = Y (D] (913)
Furthermore, according to Eq. (8.56)):
Hm (L) = fror + (AL) (9.14)
and
i (9.15)
An(L) = o :
VI[Tn(L)]

where V [T,,(L)] is defined in Eq. @ )
The predictions of Eqgs. (9.10) and (9.11]) are visible in the top plots of Fig.|9.2]
which are also in excellent agreement with the GARFIELD++ simulation results.
In addition it has been verified that the model can describe successfully the trans-
mission time distributions at all drift voltage settings considered in this study.
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An analysis of the slow beam losses on a bunch-by-bunch basis have revealed that
incoherent collective effects coming from beam-beam interactions and electron clouds
are the main sources of slow beam losses at the LHC. In particular, the introduction
of the beam-beam head-on interaction when the beams are put into collision causes a
sharp temporary increase in the slow beam losses which decays within the next hour.
Bunches at the tail of bunch trains seem to systematically suffer from a degraded
beam lifetime. This has been attributed to electron cloud effects in the insertion
regions around the interaction points 1 and 5. This is consistent with a significant
electron density in the Inner Triplet quadrupoles which is also greatly enhanced by
the presence of the two beams in the same vacuum chamber.

Tracking simulations have been used in order to predict the degradation from
such incoherent collective effects. Due to the recent advances in software devel-
opment of tracking simulation tools, GPUs could be utilized to gain a significant
boost in computation speed, where particles are being tracked in parallel across the
LHC lattice and including the relevant collective effects (beam-beam interactions or
electron cloud effects). A first attempt in using particle tracking simulations was to
reproduce the behaviour in the slow beam losses when the two beams are put into
collision. The study showed that, through the increase of computational power, ob-
servable quantities such as the slow beam loss rate and the emittance growth could
be simulated with particle tracking on realistic timescales, in the order of several
minutes, up to half an hour. Moreover, the behaviour of the slow beam losses due to
the introduction of the beam-beam head-on interaction was successfully reproduced
in the simulations. An important limitation in the quantitative prediction of the
slow beam losses was found to be the uncertainties in the population of the tails of
the beam profiles, for which there exists no accurate and systematic measurement.

A major step forward was made in the simulations of incoherent electron cloud
effects. Measurements of the slow beam losses as well as of emittance growth have
revealed that the magnitude of these effects are small enough to allow the usage
of the weak-strong approximation. Furthermore, the use of GPUs is found to be
the perfect computational environment to perform simulations because of their mas-
sively parallel architecture with a relatively large memory (when compared to the
available memory in a typical single-core CPU node of a computing cluster). The
relatively large memory is required due to the big memory footprint (in the order of
several GB) of the fieldmap describing an electron cloud interaction. The required
memory is so large because the dynamics of the electrons inside an electron cloud
distribution gives rise to complex time-dependent electromagnetic fields. An ana-
lytical approximation of these fields becomes increasingly difficult, especially in the
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presence of magnetic field gradients. Consequently, Particle-In-Cell simulations are
employed to find these time-dependent electromagnetic fields on a discrete grid.

The fact that the fields are known only on a discrete grid requires special care if
the beam dynamics are to be simulated in their presence. The Hamiltonian structure
of proton beam dynamics suggests that the use of symplectic maps can greatly
increase the accuracy in numerically solving the equations of motion for protons
travelling in the LHC lattice. For this purpose, a method was developed that employs
a tricubic interpolation scheme on the discrete points of the electron cloud fields, in
order to preserve the symplectic structure of the map describing the electron cloud
interaction. The method includes a refinement scheme that is able to effectively
suppress artifacts introduced during the interpolation stage.

Using the developed method, particle tracking simulations were performed for
protons at injection energy in the LHC lattice, under the influence of incoherent
electron cloud effects in the arcs. The results showed that non-linear beam dynamics
indicators like dynamic aperture and frequency map analysis can be significantly
impacted by the effect of the electron cloud. Moreover, a degradation was observed
in the beam lifetime though a quantitative prediction was once more limited by
the uncertainty in the tails of the beam profiles. On the other hand, simulations
showed an incoherent emittance growth of the same order of magnitude as the one
observed in previous measurements reported in the literature. This is the first time
that detailed simulations of incoherent electron cloud effects have been performed
in the presence of the non-linear model of the LHC lattice, for long and observable
timescales, and in the presence of multiple sources of electron clouds, i.e. electron
clouds forming in dipolar and in quadrupolar magnetic fields.

These studies are of increasing relevance due to the increased concern from elec-
tron clouds in the LHC. In each of the Long Shutdown maintenance, the secondary
emission yield of the vacuum chamber is being observed to undergo irreversible
degradation. A larger secondary emission yield results in stronger electron clouds
which can quickly result in a decrease of the dynamic aperture. Moreover, stronger
electron clouds require stronger lattice non-linearities (chromaticity and amplitude
detuning) in order to control coherent beam instabilities caused by the electron cloud
themselves. These stronger non-linearities can degrade even more the dynamic aper-
ture. During this study, electron clouds in the Inner Triplet quadrupoles have been
identified as the main source of significant degradation of the beam lifetime during
physics operation of the LHC. In the context of the High-Luminosity LHC upgrade,
the Inner Triplet quadrupoles are planned to be replaced. The beam screens of the
new inner triplet quadrupoles will to be coated with amorphous carbon in order to
limit the formation of electron clouds.

In the context of modelling the timing characteristics of the PICOSEC Mi-
cromegas detector, this work employs the comparison of experimental data with de-
tailed simulations, based on the GARFIELD++ software, and complemented with a
statistical description of the electronic signal formation, to identify the microscopic
quantities that determine the PICOSEC timing characteristics. Subsequently, a
stochastic model is developed that describes the properties of the above quanti-
ties, offering a phenomenological, microscopic interpretation of the observed timing
properties of the detector. The model is based on:
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1. The fact that an electron drifting in a gas under the influence of an homoge-
neous electric field achieves higher drift velocity when, in addition to elastic
scattering, undergoes inelastic interactions,

2. The assumption that a newly produced electron through ionization acquires a
certain time-gain relative to its parent and subsequently drifts with the same
velocity as the parent electron

The input parameters, compiled in Tab [C.8 are commonly used statistical vari-
ables, with the exception of the time-gain parameter p that has been introduced
here, and they have been evaluated by analyzing GARFIELD-++ simulation re-
sults. The quantitative predictions of the model have been compared extensively
with the related GARFIELD++ simulation results and found to be in excellent
agreement at all operating PICOSEC conditions considered in this study, demon-
strating the success of this stochastic interpretation. As demonstrated through this
work, the developed model is very successful in providing insights for the major
microscopic mechanisms, which determine the timing characteristics of the detec-
tor, and in explaining coherently the unexpected behavior of microscopic quantities,
which have already been observed in GARFIELD++ simulations. Due to the very
good agreement of the model predictions with GARFIELD++, the formulae devel-
oped here can be used as a tool for fast predictions, provided that the values of the
model input parameters, 7.e. the parameters shown in Tab. are known for the
considered operating conditions. This limits the application of the developed model
as a stand-alone tool. However, having available sets of input parameter values for
certain operational settings, it is possible to derive empirical parametrizations of the
input parameters, which can be used to provide input to the model for a broader
region of operational settings covered by the above parameterization.
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Appendix A

Symplecticity of maps based on
linear interpolation

Typically in PIC codes, the scalar potential ¢ is calculated on a regular grid and its
derivatives are approximated with central differences:

@@.j) — — A 1
K 0x 2Ax ’ (A1)
i) 0¢(i’j) _ ¢(i,j+1) _ (15(1',]'—1)
ey’ = —— =— , (A.2)
dy 2Ay

where Ax, Ay are the distances between the grid nodes and i, j are the indices of the
grid cells. The map of the interaction would then have the following form:

XX, (A.3)
px > px+Aex(x,y), (A.4)
Y=y, (A.5)
py > py+Aey(x,y), (A.6)

where A is a constant. The normalized fields e, (x,y), e, (x,y) are interpolated lin-
early and independently of each other in order to obtain their values at an arbitrary
point in the continuous space. In this case, the interpolating function is explicitly
written as:

. oy — (B oy — y(@D) o (x — xNY (v = D)
_ ) XX i)Y =Y (i) X =x*)(y = y)
ex,y(x, y) = Ayy + bx,y T + Cx,y A—y + dxy A_xAy , (A7>
where a)(f;’yj), b)(ci’yj), c)(cl;’yj), d)(cly]) are given by:
ayy = e, (A8)
b)) = el + el (A.9)
c)(fy]) = —e)(f;’yj) + e)(cl;’yjﬂ), (A.10)
d)(cfyf) _ 6,(61,){) _ e)(cl;,yj+1) _ e)(cl;;l’j) N ej(cl;;l,jﬂ), (A.ll)
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and x| y(&) are the x® and y) coordinates of the neighbouring grid node. The
Jacobian matrix J of the map in Egs. (A.3)-(A.6) is equal to:

1 0 0

0
Adce, 1 Adye, 0
0
1

J= : (A.12)

0 0 1
Adce, 0 Adye,

where we have used 0, = aa_x to ease notation. The map is symplectic if the following
condition is satisfied[14]:

JsJ' =8, (A.13)

where S is the antisymmetric matrix:

0 1 0 O
-1 0 0 O
S = 00 o0 1l (A.14)
0 0 -1 0
Combining Egs. (A.12)), (A.13) and (A.14]), the following matrix equation follows:
0 1 0 0 0 1 0 O
-1 0 0 A(dyex—deey)| |-1 0 0 0
0 0 0 1 [0 0 0 1f (A1)
0 A(deey—dyey) -1 0 0 0 -1 0

from where it can be observed that the symplectic condition of Eq. (A.13) is equiv-
alent to the following condition on the derivatives:

aey 0€x

Combining Egs. (A.7)) and (A.16]), the condition of symplecticity becomes:

(@.J) (@.J) @.7) (i.J)

b d . c d ;

y y _ (;))_ x4 ( _ <,>):O A7
+ . .

Ax  AxAy (y 4 Ay  AxAy e ( )

This equality must be true for any value of x, y, x®, y(/) which requires that

bﬁi,j) c)(ci,j)

I S Al

A Ay (A.18)
a7 =0, (A.19)
d%) =0, (A.20)

By substituting the coefficients of Eqgs. (A.9)), (A.10), (A.11]) and the fields of Egs. (A.1))
and (A.2), it can be noticed that the symplecticity condition holds in every point
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of the domain if the following relations hold for the discrete samples of the scalar
potential:

BT+ _ pi=1) _ (LD | g(+LJ=1) _ g(+1)) 4 g=1) 4 g(+17+1) _ gli=1j+1) —

(A.21)
_¢(i+1,j) + ¢(i—1,j) + ¢(i+2,j) _ ¢(i,j) + ¢(i+1,j+1) _ ¢(i—1,j+1) _ ¢(i+2,j+1) +¢(i,j+1) =0,
(A.22)
_¢(i,j+1) +¢(i,j—1) +¢(i,j+2) _ ¢(i,j) +¢(i+1,j+1) _ ¢(i+1,j—1) _ ¢(i+1,j+2) +¢(i+1,j) =0.
(A.23)

Such relations are not automatically satisfied for a potential obtained from the
discretized Poisson equation, which means that the map obtained with the scheme
that is defined in Egs. — is in general not symplectic.

To illustrate the implication of using such a non-symplectic map in tracking
simulations, we apply it to numerically solve the dynamical system described by the
following Hamiltonian:

2
H= p21 p; + 11702, (A.24)

This Hamiltonian has a non-linear potential that cannot be represented ex-
actly by polynomial interpolating functions and is completely integrable. In ad-
dition to the Hamiltonian, the system conserves the following quantities (integrals
of motion)[15]:

= (p1— p2)’ +4e1, (A.25)

PRl R T (\/_ ‘“’qu) (A.26)

P1— Pz—\/f_ pP1+p2

The numerical integration scheme is constructed by splitting the Hamiltonian into
its kinetic (Hg) and potential (¢) terms:

2

2

pi P
Hi(p1.p2) = 5 + 5 (A.27)
$(q1,q2) = e (A.28)

The system is then integrated by applying Hamilton’s equations to the two terms
of the Hamiltonian separately. The scheme is constructed by arranging the solutions
in the “drift-kick-drift” form:

At

q1 = g1+ P, (A.29)
At
92 7 g2+ = P2, (A.30)
0
pi—p1— At a—¢(CI1, q2) (A.31)
q1
0
p2 > p2 — A1 a—¢(Q1, q2) (A.32)
q2
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Figure A.1: Evolution of the error in the integrals of motion with time, using the
two interpolation schemes. The error is quoted as a relative absolute difference with
respect to the exact value of the integral of motion. The initial conditions used are
g1 =0.5, p1 =1, go =-0.5, ps =0 with a time-step At = 1075.

At

qi1 — q1 + 7p1, (A33)
At

92 = g2+ 5 P2, (A.34)

We compare the performance of two different interpolation schemes in computing
the derivatives of the potential in Eqgs. and . In particular we consider:
1) a linear interpolation scheme on the derivatives d¢/dq1, d¢/dqo and 2) a cubic
interpolation scheme on ¢, as described in Sec. [5.1.1] but in two dimensions. For
both interpolation schemes the parameters used were the same — a regular two-
dimensional interpolation grid of 201 x 201 nodes with a distance of 0.02 between
grid node in both dimensions. The error made on the integrals of motion with
respect to time for the different integrals of motion is plotted in Fig. [A.1] The red
lines correspond to the simulations using the linear interpolation while the blue lines
to when the cubic interpolation scheme is used.

It is clear that for the same grid spacing the performance of the linear inter-
polation scheme is worse. The linear interpolation scheme performs much worse
in conserving the integrals of motion, which are shown to grow with time. This
is expected as the map produced by this scheme is not symplectic. On the other
hand, the scheme based on the cubic interpolation performs much better, with no
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observable growth in the integrals of motion.
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Appendix B

Convergence studies of the
electron cloud non-linear beam
dynamics

B.1 Numerical convergence with MB-type e-clouds

In the discussion regarding the numerical implementation of the e-cloud interactions
and its inclusion in the lattice model of the LHC, it is clear that the final result will
depend on a number of technical parameters. Those are:

o The transverse and longitudinal distance between points in the grid used in
the e-cloud buildup simulation.

o The transverse and longitudinal distance between points in the auxiliary grid
used in the refinement of the scalar potential for the minimization of the
interpolation artifacts.

e The number of simulations used to average out the macroparticle noise.

e The number of interactions place on the lattice of the LHC.

The dynamic aperture was computed when individually scanning them in order
to ensure that the simulations are numerically converged. The configuration of
the simulation one with the reduced intensity, SEYax= 1.3 and only MB-type e-
clouds. The results are summarized in Fig. where the dynamic aperture is
plotted with respect to the longitudinal (a) and transverse (b) distance between grid
points used in the e-cloud buildup simulations, the longitudinal (c) and transverse
(d) distance between grid points used in the auxiliary grid for the refinement of the
scalar potential, (e) the number of half-cells in which the interactions were placed
on the LHC lattice, (f) the number of buildup simulations that were averaged for
the reduction of the macroparticle noise and (g) the number of interactions place
per half-cell. The dashed line in the figures represents the value used in the rest of
the simulations. When varying the number of interactions, their strength was scaled
in order to keep the sum of their strengths constant.
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Figure B.1: Convergence results showing the dynamic aperture as a function of the
numerical parameter for MB-type e-clouds at reduced intensity and SEY=1.3.
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B.2 Numerical convergence with MQ-type e-clouds

A similar convergence study is carried out with only MQ-type e-cloud interactions.
The same parameters are varied and the dynamic aperture is computed. In this
configuration the bunch intensity is set to nominal intensity and SEY .= 1.3.
In order to have a sizeable effect on the dynamic aperture, the strength of the
interaction was set to be 4 times larger. As in Sec.[B.I] the results are summarized
in Fig. [B.2] where the dynamic aperture is plotted with respect to the longitudinal
(a) and transverse (b) distance between grid points used in the e-cloud buildup
simulations, the longitudinal (c) and transverse (d) distance between grid points
used in the auxiliary grid for the refinement of the scalar potential, (e) the number
of interactions placed on the LHC lattice and (f) the number of buildup simulations
that were averaged for the reduction of the macroparticle noise. The dashed line in
the figures represents the value used in the rest of the simulations and when varying
the number of interactions, their strength was scaled in order to keep the sum of
their strengths constant.
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Figure B.2: Convergence results showing the dynamic aperture as a function of the
numerical parameter for MQ-type e-clouds at nominal intensity and SEY= 1.3.
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Appendix C
PICOSEC model parameter tables

See Tabs to[C.8l

Table C.1: The values of: the photoelectron drift velocity V,, the avalanche drift
velocity V, and the drift velocity V,,, of an avalanche-electron, for three different
values of Ptr and default high voltage settings.

Ptr 0% Ptr 50% Ptr 100%

Photoelectron drift velocity [um/ns] 156.8+0.4 150.5+0.8 142.2+1.0
Avalanche drift velocity [um/ns] 181.4+0.5 184.8+0.8 188.2+0.9
Avalanche-electron drift velocity [um/ns] 169.9+0.2 170.4+0.2 170.0+0.2

Table C.2: The first Townsend coeflicient, estimated from GARFIELD++ simula-
tions, for different Ptr values and the default drift voltage settings. Table adapted
from Ref. [16]

Ptr 0% Ptr 50% Ptr 100%
First Townsend coef. [ﬂm_l] 0.0520 = 0.0003 0.0695 = 0.0005 0.0893 = 0.0008

Table C.3: Mean values of the time-gain p and values of the constant term C (see
Eq. (7.13)), estimated for three Ptr values and the default drift voltage settings.
Table adapted from Ref. [16]

Ptr 0% Ptr 50% Ptr 100%

Mean time-gain, p [1073ns] 17.40+0.3 17.25+0.42 17.72+0.48
Time constant, C [1073ns]  53.50 £3.0  60.00 £4.00 68.00 + 5.00
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Table C.4: The exponential slopes and the constant terms that determine the num-
ber of electrons on and after the mesh, as estimated by GARFIELD++ simulations.
(top) The exponential slope a given as a function of the avalanche length (L) by the
expression q(L;acrr) = qo - e%srt | where the constant term (go) is set to gg = 2,
because the avalanche starts with two electrons. (bottom) The number of electrons
passing through the mesh, is also expressed exponentially as a function of L. The
passage through the mesh does not affect the exponential slope. However the con-
stant term is found to be ~ 0.5, which translates to ~ 25% mesh transparency. Table
adapted from Ref. [16]

Number of electrons on the mesh

Ptr 0% Ptr 50% Ptr 100%

Constant term 2 (fixed) 2 (fixed) 2 (fixed)
Multiplication coef., aorr [103um™] 32.47+0.01 39.12+0.01 45.30 £ 0.02

Number of electrons after the mesh

Ptr 0% Ptr 50% Ptr 100%
Constant term 0.53 +0.01 0.50 = 0.02 0.57 +0.02
Exponential slope, [1073um™!] 32.80+0.3 3940+0.2 45.00+0.2

Table C.5: Ratio of the RMS over the mean value of the number of electrons in any
given avalanche length. Notice that this ratio equals to (1 /(1+6)Y 2), where 6 is
the parameter of the Gamma distribution function. Table adapted from Ref. [16]

Ptr 0% Ptr 50% Ptr 100%

On the mesh 0.510 £0.005 0.464 +0.005 0.422 £ 0.005
After the mesh 0.530 +£0.010 0.475+0.005 0.430 +0.005

Table C.6: Diffusion properties of the avalanche electron. Table adapted from
Ref. [16]

Ptr 0% Ptr 50% Ptr 100%
Time variance per unit length [107° ns?/um] 11.65+0.05 11.75+0.05 11.67+0.05
Constant term [107° ns?] 16.55+1.50 16.78 £1.62 17.03 +0.80

Table C.7: Diffusion properties of a photoelectron before it initiates an avalanche.
Table adapted from Ref. [16]

Ptr 0% Ptr 50% Ptr 100%
Time variance per unit length [107° ns?/um] 13.27+0.3  13.80+0.3 13.30 + 0.6
Constant term [107° ns?] —4727+6.8 -56.22+6.8 —67.64+13.4
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Appendix D

Variance of a variable dependent
on another variable

Let y(L) be a measurement (random variable) of a physical variable Y, which de-
pends on another physical variable, L, as Y = f(L). Also, let the statistical proper-
ties of y depend on L such that

(L)) = /Q y-H(y. L)dy = f(L). (D.1)
and
(L)) - ((L))? = / [y — (/L) - H(y. L)dy = u(l), (D.2)

y

where Q,, describes the set of all possible values of y and H(y, L) is the p.d.f. describ-
ing the measurement process. Because the p.d.f. H(y, L) depends on the physical
variable L, the mean value and the variance will also depend on L. Moreover, let
the physical variable L be distributed according to g(L). In an experiment where
several measurements y of the physical variable Y are performed, but in which there
is no way to know the value of L, the mean and variance can be expressed in terms of
f(L), u(L) and g(L). The p.d.f. h(y) that describes the outcome of a measurement
y without knowing L is:

h(y) = /Q H(y.L) - g(L)dL, (D.3)

where Q; stands for the set of all possible values of L. The mean value of the
measurements y, for any possible L is:

o= [ y | yv-ron swatay= [ pwy-swa. o
The second moment of y can be written the same way as:
2\ _ 2 . _ 2 )
0h= | y ot Honn) - swtdy= [ [uw)+ O] gL 03)
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D. Variance of a variable dependent on another variable

where u(L) is given by Eq. (D.2)). Equations (D.4) and (D.5]) can be combined to

give the variance of y for any possible value of L:
VIyl = (%) -’ =

2
/ [u(L)+f2(L)]-g(L)dL—[ / f(L)-g(L)dL] -
QL QL

2
/ u(L)-g(L)dL+{ J fQ(L)-g(L)dL—[ / f(L)-g(L)dL] } (D.6)
Qp Q. Qr

where the first term expresses the proper averaging of the variances of y. The fact
that the mean value of y depends on L, introduces the second term. This term
expresses the variance of f(L), when L is distributed with a p.d.f. of g(L).
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