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It is known that effects of dissipation or measurement backreaction in postselected quan-
tum trajectories are described by a non-Hermitian Hamiltonian, but their consequences
in real-time dynamics of many-body systems are yet to be elucidated. Through a study of
a non-Hermitian Hubbard model, we reveal a novel dissipation-induced dynamical phase
transition in postselected quantum trajectories, where time controls the strength of post-
selection and becomes the intrinsic parameter inducing the phase transition. Our findings
are testable in ultracold atom experiments and may open a new avenue in the dissipative
engineering of quantum systems.
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1. Introduction

Understanding the dynamics of dissipative quantum many-body systems has been one of the
key topics in recent years. Among them, two non-unitary dynamics are found to serve a new
platform of physics: One is the conditional dynamics, which is obtained by post-selecting quan-
tum trajectories from the unconditional Lindbladian dynamics of open quantum systems. The
other is the monitored dynamics, which is a hybrid quantum system composed of the unitary
evolution and repeated projective measurements. Intriguing phenomena such as the entangle-
ment phase transition have been found so far [1-4], but many-body phenomena unique to them
are yet to be elucidated.

As aforementioned, theoretically, and also experimentally, the stochastically unraveling dy-
namics is investigated instead of directly handling the quantum master equation. In this pro-
cedure, one solves the time evolution of a wave function under some stochasticity instead of
that of a density matrix. If we employ the quantum trajectory method [5,6], the dynamics is
decomposed into two parts: One is the non-unitary evolution described by the Schrodinger
equation with an effective non-Hermitian Hamiltonian. The other is the quantum jump pro-
cess, which is a stochastic loss event. Although we can reconstruct the density matrix under the
Lindbladian dynamics by averaging the loss event, or equivalently, the many trial wave func-
tions, we restrict ourselves to following the single trial wave function that experiences no loss
event. The dynamics of the constrained wave function leads us to study the non-Hermitian
quantum mechanics (see, e.g., Ref. [7] for a review). However, genuine many-body physics is yet
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Fig. 1. Phase transition at finite time. An order parameter of spontancous symmetry breaking shows the
characteristic behavior of the continuous phase transition as a function of time.

to be elucidated [8-16], and in particular, it still lacks reliable methods for accurate large-scale
numerical simulations.

In this paper, we reveal a dissipation-induced dynamical phase transition in postselected
quantum trajectories. Using right- and left-eigenstates and eigenvalues of a non-Hermitian
Hamiltonian |R,), (L,|, and E,, the constrained wave function at time ¢ reads

(@) = cpe” RAEMIETR,), (1)

where ¢, = (L,|¥(0)). Thus, eigenstates with a negatively larger imaginary part are exponen-
tially eliminated by postselection as time evolves, and the long-time dynamics is governed by
eigenstates with negatively smaller imaginary parts, which results in the dramatic change of
e.g., magnetism by dissipation in the steady state [17]. Now a natural question arises: What
happens at finite time with a large number of degrees of freedom? Since exponential suppres-
sion by postselection plays the same role as that of temperature in equilibrium systems, we
expect a finite-time phase transition if an initial state is set away from the final steady state.
Here, time controls the strength of postselection, and is the intrinsic parameter inducing the
phase transition, as illustrated in Fig. 1.

To demonstrate that such a dynamic phase transition indeed occurs, we study the time evo-
lution of a non-Hermitian Hubbard model in which the coupling strength of the Hubbard
interaction is pure-imaginary. Such a non-Hermitian Hubbard model with complex coupling
strength can be realized, e.g., in dissipative ultracold atoms, and its dynamical properties are
intensively investigated [17-22]. We compute the time evolution of magnetic correlation func-
tions after a quantum quench, and show that the system initially set in a symmetry-unbroken
state suddenly turns into a symmetry-broken state during the time evolution. In contrast to the
dynamical quantum phase transition in Hermitian systems [23], an order parameter of sponta-
neous symmetry breaking exhibits non-analyticity at a critical time in the infinite volume limit
(see Fig. 1).

As a computational tool, we adopt a large-scale simulation of the fermionic quantum Monte
Carlo. Even though it is extremely challenging to compute the time evolution of a large quan-
tum system exactly, the simulation is ab initio, unbiased, and applicable even to a higher-
dimensional system. This enables us to study many-body phenomena with a large number of
degrees of freedom, and it plays an essential role in determining the existence of phase transi-
tions, and the critical properties such as the universality class.

2/10

€202 YdJe|\ GZ U0 Jasn AS3(Q UOJI0IYoUAg usuoipia|g seyosineq Aq 1986869/201£20/2/£20z/a10nle/de1d/woo dnosojwapeoe//:sdpy wolj papeojumoq



PTEP 2023, 023102 T. Hayata

2. Model and formulation

We consider two-component fermions on a three-dimensional cubic lattice r = (x, y, z). The
unitary evolution is described by the free Hamiltonian,

H=—w Z I:Ciacrffa + ClL_i_facra] s (2)

r,j,o

where CIT’ . and ¢, are the creation and annihilation operators of the 1- and |-component of
fermions at a site r, respectively. w is a hopping parameter between the nearest neighbor sites,
and j = %, J, £ is the unit lattice vector along the j direction. We consider the dissipative dynam-
ics in the presence of particle loss due to inelastic collisions. When the 4- and | -fermions occupy
a site simultaneously, they acquire the kinetic energy from inelastic collisions and quickly es-
cape from the system. Such a loss process is described by the quantum master equation in the
Lindblad form [6],

d 1 1
a0 _ —i(Hp — pH) + Z Ve (F,.prj — Tl — -prrr,.) , (3)

dt 2! 2

where p is the density matrix of the system. The first and second terms determine the unitary
and dissipative dynamics, respectively, where I, is the quantum jump operator and y, is the
strength of dissipation. In our case, ', removes the pair of fermions occupying the site r at rate
Yr» so that the quantum jump operator is given as I', = ¢,4¢, . Since the loss rate is independent
of the site, we take y, = 2y, where the factor of 2 is introduced for notational convenience.

We employ the quantum trajectory method [5]. Then, the dynamics is decomposed into the
non-unitary evolution and quantum jump process. By post-selecting the quantum trajectories,
we follow the time evolution of the wave function that experiences no particle loss, which can
be recovered from the non-Hermitian quantum mechanics described by

d
lal‘lj(f)) = Heer|W(2)), “4)
and the non-Hermitian Hamiltonian,
Hyp = —w Z [cIUcH_;J + ci+;gcm] — iy Z ciTci¢c,,¢c,,T. (5)
r,j,o r

These define our model investigated in this paper. As an initial condition, we consider the Néel
state, that is, the half-filled state with even (odd) sites being occupied by the 1- (| -) components.
Since (W(7)|W(7)) gives the persistent probability that no quantum jump process occurs, by tak-
ing the conditional probability into account, the expectation value of a physical observable O
under the conditional dynamics is given as

A (W(1)| 0¥ (1))
(0)() = FOIOW@)

(W) W)
We compute it based on the sign-free auxiliary-field quantum Monte Carlo detailed in Ap-
pendix A.

(6)

3. Numerical simulation
We compute the time evolution of the antiferromagnetic spin structure factor

2
SAF 1 Yyt
(i
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Fig. 2. Time evolution of the anti-ferromagnetic spin structure factor. The initial state is the N¢el state.
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Fig. 3. Time evolution of the ferromagnetic spin structure factor. The initial state is the Néel state.

and the ferromagnetic spin structure factor

2
[
r

where S, is the spin operator, given explicitly as
S, =(S,S.8)= %(C‘iTCW + chcm, _iCITCrL + l'CLC,,T, CIWM — CIﬁVU' 9)
The presence of magnetic long-range orders can be judged by the non-vanishing of those struc-
ture factors in the large volume limit, that is, those are order parameters of spontaneous sym-
metry breaking. We fixed the Trotter step with Az = 0.05/w. We have checked the convergence
of the numerical results by changing Az. We imposed periodic boundary conditions. We show
the results at y/w = 4.0 with V= L3 =43, 6%, 8%, 10, and 12% in Figs. 2 and 3. From Fig. 2,
we see that the antiferromagnetic correlation decays exponentially fast. This indicates that the
initial-state dependence is quickly lost after a very short time. The insensitivity of Sag/}V against
V implies that the antiferromagnetic order is not due to spontaneous symmetry breaking, but
just remnant of the initial Néel order. A more interesting thing happens in the ferromagnetic
spin structure factor in Fig. 3. We clearly see that the magnetic correlation suddenly changes
from paramagnetic to ferromagnetic at a certain time. The volume dependence suggests that this
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Fig. 4. Finite-size scaling analysis near the critical time with y/w = 4.0. We fitted the data with V' = L*
=6°83%,10%, and 123 by a + b/L (wt = 0.75) or a + b/L* (wt = 0.65 and 0.70).

change can be regarded as a phase transition in the infinite volume limit; the system initially
in a symmetry-unbroken state non-analytically falls into a symmetry-broken state at a phase
transition time. There is a sharp contrast with the conventional dynamical quantum phase tran-
sition [23], which is probed by the non-analyticity of the Loschmidt echo, that is, the overlap
between time-evolved and reference (usually initial) states. The dynamical phase transition here
is accompanied by spontaneous symmetry breaking and probed by the magnetic correlation
function. Amazingly, it is just like the equilibrium phase transition, and can be probed by the
experimental measurement used for the equilibrium magnetic phase transition.

To quantify the dynamical phase transition, we performed the finite-size scaling analysis near
the critical time as shown in Fig. 4 (The scale invariance emerges, and the phase transition time
is indeed a critical point as detailed below.) After the critical time, the spin structure factor
clearly shows the linear scaling and becomes non-zero in the infinite volume limit, while it
shows the trivial volume-law scaling and goes to zero before the critical time. By fitting the data
with V' = 6, 8%, 10°, and 123, and extrapolating them to V' — oo, we can estimate the critical
time ¢.; for y/w = 4.0, ¢, is in between wt = 0.70 and wt = 0.75 as seen in Fig. 4. Repeating
the analysis for various y, we draw the phase diagram of the dynamical phase transition in
Fig. 5. As seen in Fig. 5, ¢, becomes shorter at intermediate loss rate y/w ~ 5. This is natural,
because the hopping dynamics of free fermions dominates, and the system is expected to be
paramagnetic at a weak y, while the state remains as the initial state due to the quantum Zeno
effect at a strong y. We note that the absolute value of 7. may depend on the initial state,
as readily understood by choosing the state at 0 < ¢ < 7. as a new initial state. We expect,
however, that the existence of the phase transition and its critical property are universal as long
as the initial state is a superposition of different total spin sectors including the pramagnetic
and ferromagnetic states, and the contribution from the paramagnetic state is dominant in the
initial state. Next, we discuss the properties of the phase transition point in more detail. To
this end, we perform another finite-size scaling analysis for all y shown in Fig. 5. For the result
of y/w = 8.0, see Fig. 6. We employ the critical exponent n of the equilibrium classical XY
model (n = 0.038 [24]), which represnts the anomalous dimension of the spin operator (order
parameter). The rescaled spin structure factor shows scale invariance at the phase transition
time, which means that the phase transision point is actually a critical point. We note that n
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Fig. 5. Magnetic phase diagram obtained from the finite-size scaling analysis of the quantum Monte
Carlo data. The curve is just for an eye guide.
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Fig. 6. Finite-size scaling analysis at y/w = 8.0. The data crossing at one point indicates that scale invari-
ance emerges in the phase transition point.

is so small that we can check the consistency, but cannot determine 5 solely from the Monte
Carlo data.

4. Discussion

How can we understand the universality class of this dynamical phase transition? The system
has SU(2) symmetry because the Hamiltonian (5) commutes with the spin operator § = ), .S,
However, the initial Néel state explicitly breaks the SU(2) spin symmetry to SO(2)~U(1), and
remaining symmetry is further spontaneously broken during the time evolution. From the view-
point of the projector quantum Monte Carlo, the explicit symmetry breaking by a trial wave
function is negligible in the large projection-time limit, but is relevant at finite time. Therefore
the symmetry-breaking pattern of the dynamical phase transition is expected to be

u(l) - 2. (10)
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To relate this with the equilibrium classical XY universality, let us consider a unitary transfor-
mation ¢, — i**?¢,,, and obtain the non-Hermitian Hamiltonian H,.y, = iHy as
Hyew = —w Z [cjacwrja — chchm] +vy Z CiTC"TCLC"i' (11)
r,j,o X

_iHeff[ _Hne

The real-time evolution e +!The strong cou-
pling expansion of H,., follows the standard perturbation theory, and results in the ferro-
magnetic Heisenberg model Hg;, at second order (see Appendix B) [17]. Therefore, Eq. (6) is
reduced to (W(0)|e~Hswin O~ Hswin | (0)) / (W(0)|e~2Hsoin | U(0)). From this expression, we expect
that our dynamic universality class may be related to the equilibrium one although the expecta-
tion value is taken by a pure state, not the trace average. In equilibrium spontaneous symmetry
breaking, the finite-size scaling in the ordered state is linear for the U(1) symmetry, while it is
quadratic for the SU(2) symmetry [25]. Therefore, with the help of the strong coupling expan-
sion analysis, our finite-size scaling analysis shown in Fig. 4 implies that the dynamical phase
transition belongs to the XY universality class. The finite-size scaling analysis shown in Fig. 6
indeed supports this understanding. Interestingly, the universality class of our novel dynamical
phase transition depends on the symmetry of the initial state as well as that of the Hamiltonian,
which is in stark contrast to the universality class of equilibrium phase transitions. For exam-
ple, we chose the Néel state as an initial state, and then our results should be compared with
the Heisenberg model with the fixed S%, which has the same universality class as the classical
XY model. Instead, if we choose the SU(2) symmetric state as an initial state, the universality
class may be changed to the Heisenberg universality, which can be confirmed by the quantum
Monte Carlo simulation.

is mapped to the imaginary-time one e
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Appendix A. Quantum Monte Carlo

We here detail an application of the fermion quantum Monte Carlo to the real-time problem.
Using the total number of fermions N = Zm c,T,(7 ¢, We rescale the wave function as |W(z)) =
e TNt |W(¢)). Since N is conserved during time evolution, that is, it is a classical number fixed
by the initial condition, an expectation value of a physical operator given in Eq. (6) in the main
text does not change under the transformation. The time evolution of |¥(7)) obeys

d - - ..
iEI‘P(Z)) = (Heff + i% ;Clgcm) |W (1)) = Herr| W (1)), (Al)

where Hr is given by Eq. (5) in the main text. The transformation is essential for the sign-free
auxiliary-field quantum Monte Carlo. Below we always use the latter representation, and omit
the tilde index for notational simplicity.

By using the quantum Monte Carlo, we numerically solve the Schrodinger equation

d
IEI‘I’(ID = Hepe|W(1)), (A2)
with the non-Hermitian Hamiltonian
. .Y
Hep = _WUZU [clgcrﬂcg + ciﬁacm] — iy 2,: CITCLCNC,.¢ + 15 ; cIUc,,J. (A3)
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Using the second-order Suzuki-Trotter decomposition, we write the persistent probability as

(W)W (1)) = (W(O)]e it Mo |w(0)) = (w(O)] [ Jdf, [ Jehal w(O)). (A4)
where ’ n
U, = o IDIK)2 ,—iAtU e—iAtK/Z’ (A5)
=0 ) [elotujo +l, gm0 (A6)
U=iy Z [—CITC,,TCLCN + %(CITC,,T + CI¢CV¢)] , (A7)

and At = t/N, with N, being the number of the Suzuki-Trotter step. Each component of U can
be rewritten by introducing the auxiliary binary field s as

At)/2
oy 81 (een -y _

ol ssei ), (9
s==1

where cos (g) = e~ 7292, Therefore, the non-unitary evolution e~ is reformulated as the
unitary evolution under the space-time binary disorder. Now we have [26]

(WD) =N D e Brnrstn) ]_[ det[P!Boy, --- B1P,], (A9)
{s(n.r)}
where N = [eV20/2 /22N is the normalization factor with V being the total number of the
lattice sites. The V' x V matrix B, is given as

eI 2t g=IAK/2 () < N

B, =1 . .
n etAtk/ZeunezAtkﬂ (I’l - Nt),

(A10)
where k and u, are the matrix representationof K =} ., c,T.o kwcre and ) igs(n, r)(ciT Cep +
cj, G DED I s [tn)iwcre . We here used two facts: (I) The initial state is a direct product
state of each spin state |¥(0)) = [¥4+(0))®|¥,(0)). (II) Each spin state is expressed by a Slater
determinant with the V' x V/2 rectangular matrix P,:

V)2 V2 v

|, (0)) = 1‘[cT 0) =[1D_ clolPlr10), (A11)

where |0) is the Fock vacuum, and # runs for even (odd) sites for the 1- ({-) component.

We consider the particle-hole transformation only for the |-component: ¢, — ci 1~ Then,
occupied and unoccupied states are swapped for the |-component, so that [¥(0)) = [¥4+(0)),
and P, = P, (Note that we choose the Néel state as an initial state.) Also, the transfer matrix is
transformed as e~ ¢2-°"" B, — B* and thus the integrand of (W (¢)|¥(7)) is actually positive-
definite:

(W) =N Y )det [P;BZM : --BlPT]‘z. (A12)
s(nr)

The summation of the auxiliary fields can be evaluated on the basis of the importance sampling,
and the physical observable can be evaluated by ensemble average (with the help of the Wick
theorem) as is commonly done in the projector quantum Monte Carlo (see, e.g., Ref. [26]).
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Appendix B. Strong coupling expansion
The real-time evolution of the original model H.¢+ can be mapped to the imaginary-time one
of the non-Hermitian Hubbard model with the sign-asymmetric hopping
Hiow = =w ) [ehyerj = el 0 m]+y2c,¢c.¢c,¢c.¢ (B1)
rj.o
We here describe the strong coupling expansion of Hpey.

In the infinite coupling limit y — oo, hopping terms are negligible, so an effective Hilbert
space is the same as that of the Hermitian-Hubbard model, that is, the half-filling Hilbert space
with no double occupancy. Since hopping terms change the occupancy, there is no first-order
correction O(w/y). At the second order, the non-Hermitian Hamiltonian in Eq. (10) in the main
text is reduced to

1
Hyew = Ey + PK' —K'P, B2
new o+ EO — HO ( )
where Ey = 0, P is a projector to the states with no double occupancy, and
_WZ[ CroCrijo — € 1_,_]?061'0]’ (B3)
r,j,o
Hy=vy Z CITCVTCI¢CVL' (B4)
By taking care of the sign of hopping terms, we compute Eq. (B2), and obtain
2
_ v i i
Hnew = _7 ZI: 'T r+1TC " ich,, + CH- ¢CV¢C|T 471

r,j
oot t to
T G fu Gyt T 4 G Gy
—i—cTcTcT c—i—cT CCTCT
O e T T S 4 S e St

T A T T .
+ cricr‘k]l/cl‘—kji,c'd{ + Cr+j¢cl'¢cricr+1lli|

4w? 1
—- Y (5050 5): (B5)
Yo

We used CIT Crp + cI () = 1, which holds for the half-filling Hilbert space with no double occu-
pancy, and

x QX L YN f f S
2 (S,.‘S,}+f + 555%;) chencl s el s aus (B6)
z T T ¥ T T '
4SS, =2 (chC"TCrJroCt‘HT + CNCNCHNCVJFN) — €y Crp = €y Cr- (B7)

Therefore, within the second order O(w?/y?) of the strong coupling expansion, the real-time
problem of the original model H is reduced to the imaginary-time one of the ferromagnetic
Heisenberg model.
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