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Monsieur Jean-Loup Puget Président de jury
Monsieur Gabriel Chardin Directeur de thèse
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2.2.2 Masses négatives et Relativité Générale . . . . . . . . . . . . . . . . . . . 53
2.2.3 Trous noirs de Kerr-Newman . . . . . . . . . . . . . . . . . . . . . . . . . 54
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2.4.1 Modèle symétrique d’Omnès . . . . . . . . . . . . . . . . . . . . . . . . . 63
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Introduction

La cosmologie est un domaine de la Physique dont l’objet d’étude est notre Univers. Elle
s’intéresse à son histoire, à son devenir, à ses constituants et à sa modélisation. Cette discipline est
certainement différente des autres domaines de la science en ce qu’elle repose quasi-exclusivement
sur une approche observationnelle et non expérimentale. Nous ne pouvons pas, en effet, appuyer
sur un bouton et initier la formation d’un autre Univers afin de voir si nos théories sont confirmées
par cette expérience. La construction du modèle cosmologique sur lequel une grande partie de
la communauté s’accorde aujourd’hui s’est donc faite progressivement au fur et à mesure que
l’amélioration des techniques instrumentales et observationnelles permettaient, d’une part, de
discriminer certaines représentations théoriques et, d’autre part, de confirmer les prédictions
d’un modèle qui à ce jour représente la meilleure description que nous ayons.

Ce modèle, le modèle de Concordance, satisfait à la plupart des contraintes observationnelles,
mais nécessite l’introduction de paramètres libres ou de composantes dont la présence ne se
justifie pas naturellement. Ainsi, dans cette description, notre Univers est dominé par une forme
mystérieuse d’énergie, l’Énergie Noire, qui représenterait à elle seule près de 75% du contenu
énergétique de notre Univers. De cette Énergie Noire, nous ne savons que peu de choses, si ce
n’est qu’elle serait responsable, depuis une époque récente, d’une accélération de l’expansion de
notre Univers.

L’autre composante majoritaire dans le Modèle Standard est la Matière Noire, matière in-
teragissant faiblement avec la matière baryonique normale et qui semble requise pour expliquer
certaines observations à l’échelle des galaxies ou des amas de galaxies. Cette composante, qui
représente quelque 20% du contenu total de l’Univers, peut avoir plusieurs origines dont la plus
probable se trouve dans les extensions supersymétriques du Modèle Standard de la Physique
de Particules. Notons enfin que dans cette répartition, la matière baryonique qui compose les
étoiles ne représente au final que moins de 5% de l’Univers.

Face à cette composition pour le moins surprenante, il semble légitime d’étudier des cos-
mologies alternatives dont le but est évidemment d’arriver à un accord raisonnable avec les
observations mais qui n’auraient pas besoin d’introduire dans la théorie de nouvelles compo-
santes dont la justification théorique fait parfois défaut.

L’objet de cette thèse est l’étude d’une telle cosmologie. Nous considérons ainsi l’univers
de Dirac-Milne, un univers dans lequel matière et antimatière sont présentes dans des quan-
tités égales en considérant de plus que l’antimatière possède une masse gravitationnelle active
négative. L’expansion dans cet univers, ainsi globalement indifférent à la gravité, est linéaire,
et ce tout au long de son évolution. Cette expansion linéaire propose une alternative et une
interpolation aux différentes phases de décélération puis d’accélération que subit l’univers du
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Modèle Standard.
Les hypothèses sous-jacentes à ce modèle de Dirac-Milne ne sont pas des hypothèses tradi-

tionnellement considérées comme étant vérifiées, aussi faudra-t-il décrire les motivations qui nous
poussent à les supposer comme valides. Deux approches sont alors envisageables : une approche
théorique qui consisterait à justifier de manière rigoureuse ces hypothèses et une approche ob-
servationnelle qui consiste à étudier les conséquences que ces hypothèses peuvent impliquer sur
la cosmologie. C’est cette deuxième approche qui sera traitée dans cette thèse.

Le premier chapitre de ce manuscrit parlera des principes généraux de la cosmologie moderne
basée sur la Relativité Générale et le principe cosmologique, dont la prise en compte mène aux
univers décrits par une métrique de Friedmann-Robertson-Walker. Je parlerai également du
modèle de Concordance. Il m’a en effet semblé nécessaire de présenter la situation actuelle de la
cosmologie. Cela pour au moins deux raisons. La première est que l’univers de Dirac-Milne tel que
nous l’entendons est également un univers basé sur le principe cosmologique et sur la Relativité
Générale. Il obéit ainsi aux même lois que les univers de Friedmann. La deuxième raison est que
l’univers de Dirac-Milne se comporte par certains aspects de manière radicalement différente du
Modèle Standard et il peut être utile de rappeler ce comportement standard afin de mieux saisir
les différences qu’introduit notre univers de Dirac-Milne.

Le deuxième chapitre présente les motivations pour l’étude de l’univers de Dirac-Milne. Il
s’agira d’expliquer pourquoi la représentation actuelle du modèle de Concordance, même si elle
fournit un accord remarquable avec les observations, n’est pas entièrement satisfaisante. Nous
tenterons dans ce chapitre de donner un sens à la notion de masse négative et d’étudier le
lien que cette notion peut avoir avec l’antimatière. Le chapitre 2 présentera également quelques
propriétés élémentaires de l’univers de Dirac-Milne.

L’étude cosmologique de l’univers de Dirac-Milne commencera à proprement parler au cha-
pitre 3, qui présentera les modifications qu’apportent une évolution linéaire du facteur d’échelle
à l’histoire thermique de l’univers. Nous verrons que l’univers de Dirac-Milne évolue beaucoup
plus lentement que l’univers du modèle standard, et nous étudierons tout particulièrement les
processus de thermalisation qui se déroulent avant la recombinaison.

La nucléosynthèse primordiale, qui constitue un test cosmologique fondamental, fera l’objet
du chapitre 4. Nous verrons qu’une production primordiale d’hélium-4 et de litihum-7 à des ni-
veaux compatibles avec les observations est possible et conduit à une densité baryonique jusqu’à
15 fois plus importante que celle prédite par la nucléosynthèse standard. Cette première phase
de nucléosynthèse n’est en revanche pas capable de produire du deutérium, ni de l’hélium-3. Ces
éléments pourront toutefois être synthétisés dans une seconde phase de nucléosynthèse, princi-
palement par photodésintégration des noyaux d’hélium-4 par les photons de haute énergie pro-
venant des annihilations entre nucléons et antinucléons. Ce mécanisme de production permettra
de poser des contraintes sur la taille que doivent avoir les domaines de matière et d’antimatière
au moment où la production par photodésintégration est possible.

Le chapitre 5 s’intéresse aux supernovæ de type Ia. L’étude des variations de la distance de
luminosité en fonction du redshift de ces supernovæ fournit, dans la représentation du modèle
de Concordance, la preuve d’une accélération récente de l’expansion de l’Univers. Nous verrons
alors comment l’univers de Dirac-Milne, qui ne présente ni accélération ni décélération de son
expansion, s’accommode de ces mesures de distance. Nous mettrons en avant le rùle prédominant
de possibles erreurs systématiques qui, sous certaines conditions, permettent de dire que l’univers
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de Dirac-Milne, sans accélération, est compatible avec les supernovæ de type Ia.
Enfin, dans le dernier chapitre, nous présenterons quelques réflexions sur les autres tests cos-

mologiques que sont, par exemple, les anisotropies de température du fond diffus cosmologique,
ou les oscillations baryoniques acoustiques. Nous finirons par une conclusion qui résumera les
principaux points de cet travail et mettra en évidence des directions pour des études ultérieures.

te
l-0

04
42

94
8,

 v
er

si
on

 1
 - 

24
 D

ec
 2

00
9



12 TABLE DES MATIÈRES
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Chapitre 1

Quelques éléments généraux de

cosmologie

1.1 Fondements de la cosmologie moderne . . . . . . . . . . . . . . . . . . 13

1.2 Dynamique de l’Univers . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Le modèle standard du Big-Bang chaud . . . . . . . . . . . . . . . . . 25

1.4 Les grandes étapes du scénario . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Nucléosynthèse primordiale . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Le modèle de Concordance . . . . . . . . . . . . . . . . . . . . . . . . . 39

Dans ce chapitre introductif, je vais présenter les principes généraux qui sont à la base
de la cosmologie moderne et du modèle de Concordance. Je présenterai également les grandes
lignes de ce modèle, qui serviront dans la suite comme points de comparaison avec l’univers de
Dirac-Milne, objet de cette thèse.

Le but de ce chapitre n’est sûrement pas de faire une revue complète de la cosmologie ou du
modèle standard. On trouvera des revues très détailées sur le sujet dans [Frieman et al. 2008]
ou dans les ouvrages de références en cosmologie [Kolb & Turner 1990, Peebles 1993, Peacock
1999, Rich 2001].

1.1 Fondements de la cosmologie moderne

1.1.1 Le principe cosmologique

La cosmologie moderne est basée sur le principe Copernicien qui consiste en l’hypothèse que
notre Univers est homogène et isotrope. Homogénéité signifie invariance par translation : un
observateur verra la même chose en tout point de l’Univers. Isotropie signifie invariance par
rotation : le même observateur situé a un point donné, verra la même chose quelle que soit la
direction dans laquelle il regarde.

13
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14 Quelques éléments généraux de cosmologie

Figure 1.1 – Exemple de distribution de galaxies observées par SDSS. La Terre est au centre
et chaque point correspond à une galaxie. Les couleurs rouges indiquent les galaxies les plus
anciennes. Le cercle extérieur indique une distance de deux milliards d’années-lumière, soit
environ 600 Mpc. On distingue très nettement la structuration des galaxies en vides et filaments.
Source : M. Blanton et SDSS (site web SDSS).

Ce principe, qui prend le nom de principe cosmologique de nos jours, est bien sûr une hy-
pothèse forte qui, à l’époque actuelle, ne se voit vérifié qu’aux très grandes échelles de l’Univers.
Accepter le principe cosmologique permet de simplifier énormément le problème qu’est la descrip-
tion quantitative, et non plus seulement qualitative, de notre Univers. De manière immédiate,
ce principe semble pourtant fortement contredit par les observations. En effet, il est difficile
de prétendre que le système solaire est homogène ! De même les observations réalisées par les
grands relevés de galaxies mettent en évidence une répartition structurée avec des accumulations
de matière le long de filaments, à l’intersection desquels se trouvent des amas de galaxies, mais
également des zones vides. La figure (1.1) présente un exemple de cette distribution de matière
observée par le Sloan Digital Sky Survey 1. L’homogénéité dans la répartition de la matière com-
mence à apparâıtre quand on considère des échelles de l’ordre de la centaine de Mpc, justifiant
ainsi le principe cosmologique à grande échelle. Si l’Univers n’apparâıt aujourd’hui homogène
et isotrope qu’à très grande échelle, l’observation du fond diffus cosmologique (CMB), rayon-
nement millimétrique correspondant au rayonnement présent dans l’Univers lorsque celui-ci de-
vient transparent, confirme largement le principe cosmologique (à cette époque en tout cas). Ce
rayonnement nous apparâıt en effet comme presque parfaitement homogène avec de minuscules
fluctuations de température de l’ordre de quelques 10−5 (voir figure (1.2)).

Le principe cosmologique est ainsi la première pierre de notre cosmologie moderne. Même
s’il ne constitue qu’une approximation valable à très grande échelle, sa prise en compte permet

1. www.sdss.org
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1.1 Fondements de la cosmologie moderne 15

Figure 1.2 – Fluctuations de température du CMB mesurées par le satellite WMAP. Ces
fluctuations sont de l’ordre d’un pour cent-mille, confortant de ce fait l’utilisation du principe
cosmologique. Figure tirée de [Hinshaw et al. 2009]. Source : WMAP Science Team.

d’arriver à une expression simple de la métrique, objet fondamental de la cosmologie, dont
l’évolution est régie par la théorie de la relativité générale.

1.1.2 Relativité Générale

La théorie de la Relativité Générale présentée par Einstein en 1916 marque une avancée
considérable pour la compréhension de notre Univers. Elle fait le lien entre la théorie de la rela-
tivité restreinte et la gravitation Newtonienne. La relativité générale est une théorie géométrique
de la gravitation. Elle permet de relier la forme et la géométrie de l’Univers à son contenu. L’Uni-
vers est considéré comme un espace-temps à quatre dimensions – une dimension temporelle et
trois dimensions spatiales – auquel s’applique un tenseur métrique qui permet de calculer des
distances. Ainsi, l’intervalle entre deux événements infiniment proches séparés par dxµ s’écrit :

ds2 = gµνdx
µdxν , (1.1)

où les indices µ et ν courent de 0 à 3, x0 étant la coordonnée de type temps, les trois autres étant
les coordonnées spatiales. Dans cette expression, gµν est le tenseur métrique et possède 10 com-
posantes indépendantes. Le tenseur métrique – la métrique – est l’objet de toutes les attentions,
car il décrit la géométrie de l’espace-temps. L’idée géniale d’Einstein dans la Relativité Générale
est de relier cette métrique (ainsi que ses dérivées premières et secondes) au contenu de l’espace-
temps. La matière va courber l’espace-temps et les objets dans cet espace-temps déformé vont
suivre des trajectoires appelées géodésiques. L’équation du mouvement en Relativité Générale
s’appelle ainsi équation des géodésiques et s’écrit :

d2xα

dλ2
= Γαµν

dxµ

dλ

dxν

dλ
, (1.2)
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16 Quelques éléments généraux de cosmologie

où Γαµν est un symbole de Christoffel dont la définition est

Γαµν =
1
2
gασ

(
∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
. (1.3)

La courbure de l’espace-temps est décrite à l’aide du tenseur de Riemann dont l’expression est

Rαβµν =
∂Γαβν
∂xµ

−
∂Γαβµ
∂xν

+ ΓασµΓσβν − ΓασνΓσβµ. (1.4)

Ce tenseur permet, à son tour de définir le tenseur de Ricci Rµν , contraction du tenseur de
Riemann, et le scalaire de Ricci R qui sont respectivement définis par les deux contractions
successives :

Rµν = Rσµσν , R = Rµµ. (1.5)

Le tenseur permettant de relier les différents tenseurs définis ci-dessus, c’est-à-dire le tenseur
reliant la géométrie de l’espace-temps au contenu physique de l’Univers, est le tenseur d’Einstein
Gµν dont l’expression est

Gµν = Rµν −
1
2
Rgµν . (1.6)

Le contenu en énergie de l’Univers est décrit par le tenseur-énergie impulsion Tµν . Au final,
l’équation qui relie ces deux tenseurs, l’équation d’Einstein, s’écrit

Gµν = 8πG Tµν . (1.7)

Le facteur de proportionnalité 8πG est déterminé en considérant que dans l’approximation
Newtonienne, valable dans le cas de champs faibles, l’équation d’Einstein doit se simplifier en
l’équation de Poisson (∆φ = 4πGρ), qui relie le potentiel gravitationnel à la densité.

Il est important de noter que l’on peut rajouter un terme Λgµν au membre de gauche de
l’équation d’Einstein, introduisant ainsi la constante cosmologique. Cette constante a initiale-
ment été introduite par Einstein qui ne se satisfaisait pas de l’univers non-statique que semblait
indiquer sa théorie. Ce terme supplémentaire avait pour effet de compenser les effets de la gravita-
tion et, ainsi de rendre l’Univers statique (mais malheureusement instable), ce qui correspondait
davantage à sa conception de l’Univers. La découverte en 1929 de l’expansion de l’Univers a
écarté pour un temps cette constante cosmologique jusqu’à ce qu’en 1998 les observations de
supernovæ tendent à montrer que l’expansion accélère. La constante cosmologique semble être
l’explication la plus simple à cette observation. L’équation d’Einstein se réécrit alors :

Rµν −
1
2
Rgµν − Λgµν = 8πG Tµν . (1.8)

1.2 Dynamique de l’Univers

L’équation d’Einstein dérivée précédemment relie donc la géométrie de l’Univers, à travers
la métrique, au contenu physique de celui-ci. On peut ainsi la considérer de deux façons. Soit on
connâıt parfaitement la métrique et la résolution de l’équation d’Einstein permet de déterminer
le contenu de l’Univers, soit on connait le contenu et l’on résout l’équation pour déterminer la
métrique. Dans les faits, l’approche utilisée se rapproche de la deuxième possibilité : on fait des

te
l-0

04
42

94
8,

 v
er

si
on

 1
 - 

24
 D

ec
 2

00
9



1.2 Dynamique de l’Univers 17

hypothèses sur le contenu de l’Univers. On en déduit la métrique et l’on vérifie a posteriori si
les hypothèses sont valides. L’équation d’Einstein fait intervenir 10 équations indépendantes,
équations non-linéaires de second ordre. Autant dire que sa résolution directe est ardue. Il est
donc nécessaire de faire quelques hypothèses et d’imposer des conditions à la métrique afin de
simplifier un peu les choses. La métrique devra ainsi décrire un univers en expansion, car d’une
part une solution statique est instable et d’autre part car l’expansion a été mise en évidence par
l’observation. Deuxièmement, on impose le principe cosmologique, c’est à dire que la métrique
doit décrire un espace 2 homogène et isotrope.

1.2.1 Un Univers en expansion

En 1929, Edwin Hubble [Hubble 1929], à l’aide d’observations réalisées à l’observatoire du
Mont Wilson, met en évidence une relation linéaire entre la vitesse radiale – c’est à dire la vitesse
d’éloignement – et la distance de “nébuleuses extra-galactiques”. Il avance alors la possibilité
que ce phénomène soit la preuve de l’expansion de l’Univers, comme prédit dans les modèles
cosmologiques de l’époque.

En hommage à Hubble, la constante de proportionalité, notée H0, entre la vitesse radiale v
des galaxies et leur distance d est appellé constante de Hubble 3. La loi de Hubble s’écrit donc

v = H0d. (1.9)

Cette constante est une grandeur fondamentale pour la cosmologie, car elle détermine le taux
d’expansion et par là-même l’âge de l’Univers. Elle fut mesurée par Hubble comme valant H0 =
500 km/s/Mpc, mais sa valeur aujourd’hui se stabilise autour de H0 = 72 ± 8 km/s/Mpc
[Freedman et al. 2001]. Une telle différence s’explique notamment par l’augmentation des échelles
de distance sur lesquelles les mesures sont effectuées aujourd’hui (voir fig (1.3)) et par la meilleure
qualité des instruments de mesures. Au cours de la seconde moitié du XXème siècle, sa mesure
précise fut ainsi un enjeu majeur de l’astrophysique et a donné lieu à des débats passionnés entre
les partisans d’une valeur haute, proche de H0 = 100 km/s/Mpc et ceux d’une valeur basse,
autour de H0 = 50 km/s/Mpc.

Le télescope spatial Hubble, dont l’une des missions principales a été de mesurer précisément
la constante de Hubble semble avoir mis fin au débat avec une valeur intermédiaire obtenue en
2001, H0 = 72± 8 km/s/Mpc [Freedman et al. 2001].

Les mesures des anisotropies de température du CMB permettent également de déterminer
la constante de Hubble, mais cette détermination repose sur des hypothèses liées au modèle
cosmologique sous-jacent. Pour indication, la valeur déduite des derniers résultats du satellite
WMAP donnent, dans le cadre d’un univers ΛCDM, H0 = 70.1±1.3 km/s/Mpc [Komatsu et al.
2009].

2. et non espace-temps. L’application du principe cosmologique à l’espace-temps a conduit aux modèles d’uni-

vers stationnaires avec création continue de matière pour rendre compte du phénomène d’expansion. Ces modèles

ont été réfutés car incapables d’expliquer le CMB sans contorsions peu naturelles.

3. Il semblerait toutefois que ce soit Lemâıtre qui effectue le premier une mesure de la constante de Hubble

[Lemâıtre 1927].
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18 Quelques éléments généraux de cosmologie

ASTRONOMY: E. HUBBLE

corrected for solar motion. The result, 745 km./sec. for a distance of
1.4 X 106 parsecs, falls between the two previous solutions and indicates
a value for K of 530 as against the proposed value, 500 km./sec.

Secondly, the scatter of the individual nebulae can be examined by
assuming the relation between distances and velocities as previously
determined. Distances can then be calculated from the velocities cor-
rected for solar motion, and absolute magnitudes can be derived from the
apparent magnitudes. The results are given in table 2 and may be
compared with the distribution of absolute magnitudes among the nebulae
in table 1, whose distances are derived from other criteria. N. G. C. 404

o~~~~~~~~~~~~~~~~

0.

S0OKM

0

DISTANCE
0 IDPARSEC S 2 ,10 PARSECS

FIGURE 1

Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against
distances estimated from involved stars and mean luminosities of
nebulae in a cluster. The black discs and full line represent the
solution for solar motion using the nebulae individually; the circles
and broken line represent the solution combining the nebulae into
groups; the cross represents the mean velocity corresponding to
the mean distance of 22 nebulae whose distances could not be esti-
mated individually.

can be excluded, since the observed velocity is so small that the peculiar
motion must be large in comparison with the distance effect. The object
is not necessarily an exception, however, since a distance can be assigned
for which the peculiar motion and the absolute magnitude are both within
the range previously determined. The two mean magnitudes, - 15.3
and - 15.5, the ranges, 4.9 and 5.0 mag., and the frequency distributions
are closely similar for these two entirely independent sets of data; and
even the slight difference in mean magnitudes can be attributed to the
selected, very bright, nebulae in the Virgo Cluster. This entirely unforced
agreement supports the validity of the velocity-distance relation in a very

PRoc. N. A. S.172

Figure 1.3 – Gauche : figure tirée de l’article original de Hubble [Hubble 1929] mettant en
évidence la loi de Hubble et l’augmentation linéaire de la vitesse radiale des galaxies en fonction
de leur distance. Droite : la même mesure, beaucoup plus précise et sur une échelle de distance
200 fois plus grande, effectuée en 2001 par l’équipe du télescope spatial Hubble [Freedman et al.
2001].

1.2.2 Métrique Friedmann-Robertson-Walker

La prise en compte de l’expansion de l’Univers et la contrainte du principe cosmologique
permet de déterminer facilement la forme générale de la métrique de l’espace-temps. L’élément
de ligne (1.1) peut se décomposer :

ds2 = g00dt
2 + 2g0idtdx

i − σijdxidxj , (1.10)

où σij est la métrique des sections spatiales. L’hypothèse d’isotropie implique la nullité des
composantes g0i, et l’on peut choisir la composante g00 = 1. L’élément de ligne s’écrit donc

ds2 = dt2 − σijdxidxj

= dt2 − dl2. (1.11)

dl2 est ainsi l’intervalle séparant deux événements se déroulant au même temps t. On peut
considérer cette partie spatiale comme celle d’une 3-sphère plongée dans un espace euclidien de
dimension 4. Ainsi dl est la distance habituelle entre deux points voisins :

dl2 = dx2 + dy2 + dz2 + dw2. (1.12)

Cette 3-sphère est l’ensemble des points situés à une distance R de l’origine :

R2 = x2 + y2 + z2 + w2 (1.13)

ce qui permet d’exprimer w comme w2 = R2 − r2, où r2 = x2 + y2 + z2. Au final, avec les
changements de variables adéquats, on arrive à l’expression suivante pour la métrique de l’espace-
temps (voir [Peebles 1993] pour plus de détails) :

ds2 = dt2 − a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (1.14)
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1.2 Dynamique de l’Univers 19

Cette métrique est appelée métrique de Friedmann-Robertson-Walker. Dans cette expression,
k est le paramètre de courbure des sections spatiales de la métrique. Ainsi k = 0 correspond à
un espace plat tandis que k = 1 ou k = −1 correspondent respectivement à un espace fermé ou
ouvert. a(t) est une fonction du temps, l’hypothèse d’homogénéité assure qu’elle ne dépend pas
de l’espace, appelée facteur d’échelle ou d’expansion et qui caractérise l’expansion globale de
l’Univers. Un des enjeux de la cosmologie est de déterminer l’évolution temporelle de ce facteur
d’échelle.

Il existe une autre forme pour cette métrique, obtenue en faisant le changement de variable
radiale suivant :

dχ =
dr√

1− kr2
. (1.15)

Avec cette nouvelle variable radiale, la métrique s’écrit :

ds2 = dt2 − a(t)2
[
dχ2 + Sk(χ)2

(
dθ2 + sin2 θdφ2

)]
, (1.16)

où Sk est une fonction qui dépend de la courbure spatiale :

Sk(χ) =


sinχ si k = 1
χ si k = 0

sinhχ si k = −1
. (1.17)

1.2.3 Distances

Distance propre et distance comobile

Définir des distances dans un univers en expansion n’est pas chose aisée car celles-ci changent
avec le temps. Un moyen consiste à définir les distances comme temps de vol de photons. La
vitesse de la lumière étant finie et constante, on peut facilement convertir ce temps de vol en
distance.

Plus précisément, considérons une suite d’observateurs séparés par des distances infinitésima-
les sur une ligne d’univers reliant un point A à un point B. Ces observateurs sont munis d’horloges
synchronisées. Au temps t, chacun de ces observateurs envoie un photon à l’observateur suivant
qui va donc recevoir le photon de son prédécesseur à un temps t + dti. Si les observateurs sont
suffisamment proches, la distance ne varie pas entre les observateurs le temps de la mesure du fait
de l’expansion. Ainsi une définition de la distance entre le point A et le point B à l’instant t peut
être donnée par la somme des dti. Cette distance est la distance propre entre deux événements :

dpr =
∫
dti. (1.18)

Chaque photon suit une géodésique radiale (dφ = dθ = 0) caractérisée par ds2 = 0 dans la
métrique FRW (eq. 1.14). Ainsi il vient

dpr =
∫
a(t)

dr√
1− kr2

(1.19)

= a(t)
∫

dr√
1− kr2

(1.20)
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20 Quelques éléments généraux de cosmologie

La distance propre entre deux événements va donc dépendre du temps. Par contre la distance
comobile définie par

dcom =
dpr

a(t)
=
∫

dr√
1− kr2

(1.21)

reste constante au cours du temps (en l’absence de mouvement propre et d’évolution locale).
L’expansion a donc tendance à étendre ou à contracter les distances. Si la distance propre est
mesurée à un temps t0, on aura :

dpr(t0) = dcoma(t0) = dcoma(t1)
a(t0)
a(t1)

=
a(t0)
a(t1)

dpr(t1). (1.22)

La vitesse radiale d’un observateur par rapport à un autre peut être définie par :

v =
d

dt
dpr = ȧdcom = Hdpr. (1.23)

Cette expression traduit la loi de Hubble, conséquence directe de l’expansion de l’Univers. Il est
à noter que cette vitesse peut être, pour dpr assez grand, supérieure à c. Cela n’est en rien un
problème puisque cette vitesse ne traduit pas un échange d’information entre deux objets.

Horizon

La vitesse de la lumière étant finie, il est légitime de supposer qu’il puisse exister des régions
dans l’Univers dont la lumière ne nous est pas encore parvenue. Aucune information provenant
de ces régions n’est alors disponible. Formellement, considérons une émission de photons à un
temps t = t0. Nous recevons ces photons à un temps t. La distance propre à l’horizon est alors
la distance parcourue par ces photons, déterminée à l’aide de la métrique :

dh(t) = a(t)
∫ t

t0

dt′

a(t′)
. (1.24)

Si cette intégrale converge lorsque t0 −→ 0, alors il existe un horizon “particule”, c’est à dire
que les zones de l’univers situées à une distance plus grande que dh sont encore inaccessibles à
l’observation. L’existence d’un horizon au temps t dépend fortement du comportement du facteur
d’expansion à l’instant initial et donc du modèle cosmologique sous-jacent. Si l’on suppose que
a(t) évolue comme a(t) ∝ tα, alors pour α < 1, l’intégrale définie ci-dessus converge. Nous
verrons que ceci n’est pas sans poser problème dans le cadre de la cosmologie standard.

Redshift

Dans la pratique, on ne raisonne pratiquement jamais en terme de distance propre, notam-
ment parce que celle-ci n’est pas accessible à l’observation. Aussi, pour quantifier l’éloignement
d’un objet dans le ciel (une galaxie par exemple), on utilise le décalage spectral vers le rouge (le
terme anglais, redshift, sera utilisé par la suite) des raies lumineuses causé par l’expansion.

Considérons un observateur situé à la coordonnée ro à un temps to. Un émetteur situé en
r = re émet une onde lumineuse de longueur d’onde λe au temps te, qui est reçue par l’observateur
en to comme une onde lumineuse de longueur d’onde λo. On a bien sûr, te < to. Par hypothèse,
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1.2 Dynamique de l’Univers 21

observateur et émetteur sont situés à une distance comobile fixe qui peut être reliée au temps
de vol du photon. Celui-ci satisfait ds2 = 0, ce qui implique∫ to

te

dt

a(t)
=
∫ re

ro

dr√
1− kr2

. (1.25)

La crête suivante de l’onde est envoyé au temps te + δte et reçue au temps to + δto. Comme la
distance comobile ne varie pas, on a∫ to

te

dt

a(t)
=
∫ re

ro

dr√
1− kr2

=
∫ to+δto

te+δte

dt

a(t)
(1.26)

qui, par réarrangement des bornes d’intégration équivaut à :∫ to+δto

to

dt

a(t)
=
∫ te+δte

te

dt

a(t)
. (1.27)

Pour des variations suffisamment petite de δt, a(t) peut être considéré comme constant sur
l’intervalle d’intégration et il vient alors :

δto
a(to)

=
δte
a(te)

. (1.28)

L’intervalle entre l’émission des deux crêtes étant égal à la longueur de l’onde lumineuse, on a

λo
λe

=
a(to)
a(te)

. (1.29)

Cette dernière égalité donne la définition du redshift :

1 + z =
ao
ae
. (1.30)

Distance angulaire

Nous avons défini la distance propre. Il reste à définir la distance angulaire et la distance de
luminosité, distances d’un intérêt capital car dépendantes du modèle cosmologique sous-jacent.
Considérons deux objets situés à une même coordonnée r1 et séparés par une longueur ∆S à
un temps t1. Leur séparation angulaire ∆Θ est déterminée par la partie spatiale de la métrique
dans laquelle on prend dr = 0, car les objets sont situés à la même coordonnée radiale, ce qui
donne ∆S = a(t1)r1∆Θ. Au temps t1, les deux objets envoient des photons qui sont détectés
en r0 au temps t0. Ces photons suivent des géodésiques radiales si bien qu’ils sont observés sous
l’angle initial

∆Θ =
∆S

a(t1)r1
. (1.31)

La distance angulaire est alors définie par

dA =
∆S
∆Θ

= a(t1)r1. (1.32)
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22 Quelques éléments généraux de cosmologie

Distance de luminosité

Considérons une source lumineuse de luminosité L située à une coordonnée radiale r1. Pen-
dant un temps ∆t1 centré en t1, cette source va émettre N photons, chacun d’énergie moyenne
E1 si bien que L = NE1/∆t1. À un temps t0, ces photons sont répartis sur une sphère de rayon
a0r1 et de surface 4πa(t0)2r2

1. Du fait de l’expansion, les photons perdent de l’énergie qui devient
égale à E0 = E1a(t1)/a(t0). Ces photons mettent un temps ∆t0 = ∆t1a(t0)/a(t1) à traverser la
sphère. Le flux d’énergie est donc

φ =
NE0

4πa(t0)2r2
1∆t0

=
NE1∆t1

4πa(t0)2r2
1(1 + z)2

=
L

4πd2
L

, (1.33)

ce qui définit la distance de luminosité de la source comme :

dL = a(t0)r1(1 + z). (1.34)

La distance angulaire et la distance de luminosité sont reliées par la relation :

dL = dA(1 + z)2. (1.35)

1.2.4 Équations de Friedmann

Nous avons jusqu’à présent travaillé sur la métrique. Celle-ci fait intervenir deux paramètres,
le facteur d’expansion et la courbure spatiale, qu’il faut maintenant essayer de déterminer. Ici
intervient donc le membre de droite de l’équation d’Einstein, qui caractérise le contenu physique
de l’Univers, modélisé par le tenseur énergie-impulsion Tµν . Une hypothèse classique et générale
consiste à considérer que l’Univers est rempli d’un fluide parfait caractérisé par une densité ρ et
une pression p. Le tenseur énergie-impulsion s’écrit alors

Tµν = Diag(ρ,−p,−p,−p). (1.36)

En injectant cette expression, ainsi que celle de la métrique FRW (éq. (1.14)) dans l’équation
d’Einstein (éq. (1.8)), on obtient les deux équations suivantes, dites de Friedmann :

ȧ2

a2
=

8πG
3

ρ− k

a2
+

Λ
3
, (1.37)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ
3
. (1.38)

On définit le taux d’expansion H comme

H =
ȧ

a
. (1.39)

Ce taux est ainsi directement relié au contenu énergétique de l’Univers. La première équation
de Friedmann fait naturellement apparâıtre la densité critique ρc de l’Univers. Si l’on considère
un espace plat (k = 0) sans constante cosmologique (Λ = 0), l’équation (1.37) se ré-écrit :

ρ =
3H2

8πG
≡ ρc. (1.40)
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1.2 Dynamique de l’Univers 23

En posant

Ω =
ρ

ρc
, Ωk = − k

a2H2
, ΩΛ =

Λ
3H2

, (1.41)

la première équation de Friedmann se ré-écrit :

1 = Ω + Ωk + ΩΛ. (1.42)

En prenant la dérivée de (1.37) et en la combinant avec (1.38), on obtient l’équation de conser-
vation :

ρ̇+ 3H(p+ ρ) = 0 (1.43)

La dernière équation nécessaire pour résoudre ce système est la relation entre la pression et
la densité, appelée équation d’état. Dans le cas d’un fluide parfait, cette relation s’écrit

p = ωρ, (1.44)

où ω est le paramètre d’état du fluide considéré. On distingue trois principaux constituants dans
l’univers, chacun avec une équation d’état différente.

Univers dominé par la radiation

On regroupe sous le vocable de radiation toutes les espèces qui sont relativistes. Aujourd’hui
seuls les photons et les trois familles de neutrinos sont dans ce cas, mais dans l’Univers pri-
mordial, de nombreuses autres espèces étaient relativistes et ajoutaient ainsi leur contribution
à la composante radiative de l’Univers. L’équation d’état générale de la radiation est p = ρ/3,
si bien que le paramètre ω vaut ωR = 1

3 . En injectant cette équation d’état dans l’équation de
conservation (1.43), on obtient la dépendance suivante :

ρR ∝
1
a4
. (1.45)

En injectant cette relation dans la première équation de Friedmann (1.37), on obtient la loi
d’évolution de l’expansion pour un univers dominé par la radiation :

a(t) ∝ t1/2. (1.46)

Univers dominé par la matière

On entend généralement par cette expression un univers dominé par des particules non-
relativistes. Dans cette catégorie, on range classiquement les deux principales composantes que
sont la matière dite baryonique (nucléons et électrons non-relativistes) et la matière noire non
baryonique. Cette contribution a une pression nulle et ainsi ωM = 0. La densité d’énergie évolue
donc comme

ρM ∝
1
a3
. (1.47)

On en déduit que pour un univers dominé par de la matière non-relativiste, le facteur d’expansion
évolue comme

a(t) ∝ t2/3. (1.48)
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24 Quelques éléments généraux de cosmologie

Univers dominé par l’Énergie Noire

Dans la cosmologie moderne, on considère également un troisième type de fluide, appelé
Énergie Noire, responsable de l’accélération récente de l’expansion de l’Univers. L’exemple le plus
simple d’Énergie Noire est une pure constante cosmologique. Cette composante a une équation
d’état particulière p = −ρ (ωΛ = −1) et fait intervenir une pression négative. La densité d’énergie
de cette composante est constante :

ρΛ = cste. (1.49)

Un univers dominé par une constante cosmologique possède une expansion qui évolue comme

a(t) ∝ eHt. (1.50)

Équation de Friedmann

En explicitant les contributions des différentes composantes, on établit la traditionnelle
équation de Friedmann, qui régit l’évolution du facteur d’échelle en fonction du temps et des
paramètres cosmologiques à un temps de référence donné que l’on prend généralement comme
aujourd’hui :

H2 ≡
(
ȧ

a

)2

= H2
0

(
ΩR0â

−4 + ΩM0â
−3 + Ωk0â

−2 + ΩΛ0

)
, (1.51)

avec â = a/a0, a0 étant la valeur actuelle de a. Les indices 0 dans les Ωi indiquent la valeur
actuelle de ces paramètres. Exprimée en fonction du redshift, cette équation s’écrit :

H2 = H2
0

(
ΩR0(1 + z)4 + ΩM0(1 + z)3 + Ωk0(1 + z)2 + ΩΛ0

)
(1.52)

Un des enjeux de la cosmologie moderne est de mesurer le plus précisément possible ces
paramètres cosmologiques.

1.2.5 L’âge de l’Univers

En intégrant l’équation de Friedman (1.52), on peut exprimer l’âge de l’univers à un redshift
z en fonction des paramètres cosmologiques. Il vient :

t(z) =
1
H0

∫ +∞

z

dz′

(1 + z′)
√

ΩR(1 + z′)4 + ΩM (1 + z′)3 + Ωk(1 + z′)2 + ΩΛ

. (1.53)

L’âge qu’a l’Univers aujourd’hui est obtenu pour z = 0 et dépend de la cosmologie considérée.
Pour un univers critique sans constante cosmologique (ΩM = 1,ΩΛ = 0), l’âge de l’univers est
tU ≈ 2/3H−1

0 . Pour un univers avec une constante cosmologique tel que ΩM = 0.3,ΩΛ = 0.7,
l’âge est tU ≈ H−1

0 . En prenant un peu d’avance sur la suite de ce manuscrit, on peut d’ores et
déjà déterminer l’âge de l’univers dans le cadre d’un univers de Dirac-Milne qui correspond au
jeu de paramètres suivant ΩR = ΩM = ΩΛ = 0,Ωk = 1. Il s’agit là d’un résultat connu (voir par
exemple [Rich 2001]) et l’âge de l’univers dans ce cas est simplement tU = H−1

0 . L’égalité est ici
stricte. Avec la valeur standard de H0 = 70 km s−1 Mpc−1, on obtient tU ≈ 14× 109 ans.
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1.3 Le modèle standard du Big-Bang chaud 25

L’âge de l’Univers peut être donc déterminé dans le cadre d’un modèle cosmologique mais
comme toute prédiction, il doit être confronté à des observations indépendantes du modèle
cosmologique choisi pour le calculer. Ainsi, une possibilité pour mesurer l’âge de l’Univers est
de déterminer l’âge des étoiles à l’intérieur des amas globulaires de notre galaxie. Ces amas
d’étoiles sont parmi les plus vieux objets de l’Univers et la mesure de leur âge permet de mettre
une borne inférieure à l’âge de l’Univers. Les mesures les plus récentes [Chaboyer et al. 1998]
indiquent un âge estimé à 11.5± 1.3× 109 ans.

Historiquement, ces mesures d’âge ont constitué un premier élément sérieux conduisant à
remettre en question l’univers Einstein-de Sitter du fait qu’un univers plat, dominé par la
matière (ΩM = 1), avec une constante de Hubble de l’ordre de 70 km/s/Mpc a un âge d’environ
9 × 109 ans, justement inférieur à l’âge de ces vieux amas globulaires. Pour réconcilier l’âge
déduit des observations et l’âge prédit, une solution consiste à adopter une valeur faible de la
constante de Hubble. Une autre solution consiste à introduire dans les équations d’Einstein une
constante cosmologique qui a pour effet d’augmenter l’âge de l’Univers. Si cette solution pouvait
apparâıtre comme ad hoc il y a vingt ans, la découverte en 1998 de l’accélération de l’expan-
sion de l’Univers 4 a redonné un intérêt croissant pour cette constante cosmologique. Ainsi, une
constante cosmologique telle que ΩΛ ∼ 0.7 conduit à un âge de l’Univers de l’ordre de H−1

0 , soit
environ 14× 109 ans, en accord avec les contraintes déduites des observations.

1.3 Le modèle standard du Big-Bang chaud

Jusqu’à présent, j’ai détaillé des propriétés concernant essentiellement la géométrie et la
dynamique de l’Univers. Il est maintenant temps de remplir cet Univers ! Le modèle standard
de la Physique des Particules qui décrit les interactions forte, faible et électromagnétique et les
particules qui sont soumises à ces forces trouve naturellement sa place dans le modèle cosmo-
logique du Big-Bang chaud. La description habituelle d’un Univers dont les constituants sont
en équilibre thermodynamique assuré par les interactions fondamentales fait intervenir, lorsque
cet équilibre n’est plus assuré, la notion de découplage. Quand les interactions ne sont plus
assez rapides par rapport à l’expansion de l’Univers, les espèces se découplent de l’évolution du
reste de l’Univers. Pour décrire dans les grandes lignes cette évolution, il est nécessaire de faire
quelques rappels concernant la thermodynamique à l’équilibre dans un univers en expansion.

1.3.1 Éléments de thermodynamique

Notre Univers baigne aujourd’hui dans une radiation constitué de photons à 2.75 K et d’un
fond de trois familles de neutrinos à 1.96 K 5. Dans la jeunesse de l’Univers, cette température
était beaucoup plus élevée et d’autres espèces étaient en équilibre avec les photons.

De manière générale, la densité particulaire n, la densité d’énergie ρ et la pression p d’un gaz
de particules avec g degrés de liberté internes dépend de la fonction de distribution dans l’espace
des phases f(p) qui, pour des espèces en équilibre cinétique, prend la forme d’une distribution
de type Bose-Einstein ou Fermi-Dirac :

4. Ce point sera naturellement débattu dans le cadre de l’univers de Dirac-Milne

5. Ce point sera expliqué dans la suite
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26 Quelques éléments généraux de cosmologie

f±(p) =
{

exp
(
E(p)− µ

T

)
± 1
}−1

, (1.54)

avec E2 = p2 +m2, µ le potentiel chimique et le signe ±1 vaut 1 pour les fermions et −1 pour
les bosons. Ainsi les densités et pression pour ces particules s’expriment :

n =
g

2π2

∫ ∞
0

p2f±(p)dp, (1.55)

ρ =
g

2π2

∫ ∞
0

E(p)p2f±(p)dp, (1.56)

p =
g

2π2

∫ ∞
0

p2

3E(p)
p2f±(p)dp, (1.57)

Dans la limite relativiste (T � m), les potentiels chimiques sont a priori toujours négligeables
par rapport à la température et il vient :

n = g
ζ(3)
π2

T 3, ρ = g
π2

30
T 4, p =

ρ

3
, (1.58)

pour des bosons et

n = g
3
4
ζ(3)
π2

T 3, ρ = g
7
8
π2

30
T 4, p =

ρ

3
, (1.59)

pour des fermions. À titre d’exemple, la densité particulaire et la densité d’énergie du gaz de
photons (gγ = 2) s’expriment

nγ =
2
π2
T 3, ργ =

π2

15
T 4. (1.60)

Dans le cas non-relativiste (T � m), densité, densité d’énergie et pression sont les mêmes
pour les bosons et les fermions :

n = g

(
mT

2π

)3/2

e−(m−µ)/T , (1.61)

ρ = mn, (1.62)

p = nT � ρ. (1.63)

La densité d’énergie de la composante radiative totale s’obtient en sommant les densités
d’énergies des populations relativistes présentes dans l’Univers. Elle s’écrit

ρR(T ) = g∗(T )
π2

30
T 4, (1.64)

où g∗ est le nombre de degrés de liberté relativistes, dont l’expression est

g∗(T ) =
∑

bosons

gi

(
Ti
T

)4

+
7
8

∑
fermions

gi

(
Ti
T

)4

, (1.65)

où l’on suppose que chacune des espèces i possède une température Ti. La somme se fait sur
toutes les particules présentes dans l’Univers, quelle que soit leur température. Par exemple,
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1.3 Le modèle standard du Big-Bang chaud 27

à une température de 1 MeV, les espèces relativistes en équilibre thermique sont les photons
(gγ = 2), les électrons et les positrons thermiques (ge+ = ge− = 2) et les trois familles de
neutrinos et d’antineutrinos (gν = 1). Toutes ces espèces ont la même température et g∗ = 10.75.
À l’aide de l’équation de Friedmann on obtient facilement la relation entre l’âge de l’Univers et
la température durant l’époque radiative

t = 2.4g−1/2
∗

(
MeV
T

)2

s. (1.66)

Entropie

Les premier et second principes de la thermodynamique appliqués à un volume comobile
d’univers V = a3 nous donnent (voir [Kolb & Turner 1990]) :

dS = d

[
(p+ ρ)a3

T

]
= 0, (1.67)

ce qui signifie que dans un univers en expansion, l’entropie est conservée. On peut également
définir la densité d’entropie

s =
p+ ρ

T
. (1.68)

Cette densité d’entropie est dominée par les espèces relativistes et prend donc la forme suivante :

s = gs∗
2π2

45
T 3, (1.69)

avec

gs∗ =
∑

bosons

gi

(
Ti
T

)3

+
7
8

∑
fermions

gi

(
Ti
T

)3

. (1.70)

On notera la différence entre g∗ et gs∗ dans les exposants des températures. La conservation
de l’entropie S = sa3 implique alors la relation entre le facteur d’échelle et la température :

gs∗a
3T 3 = cste. (1.71)

Ou de manière équivalente :
T ∝ g−1/3

s∗ a−1. (1.72)

Équilibre et découplage

Une notion importante pour bien saisir l’évolution des différentes populations de particules
est la notion de découplage des interactions. Je ferai abondamment appel à cette notion par la
suite. Considérons une population de particules soumises à des interactions, caractérisées par
une section efficace σ. Si ces interactions sont assez rapides, ces particules vont être en équilibre
avec le reste de l’Univers. Ces particules sont caractérisées par une densité n et une vitesse
relative v. On peut ainsi définir le taux de réaction Γ comme

Γ = n < σv >, (1.73)

où < σv > représente la moyenne thermique du produit σv. L’inverse de ce taux de réaction est
le temps moyen entre deux collisions. Sous l’effet de l’expansion, la densité n va décrôıtre et il
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28 Quelques éléments généraux de cosmologie

peut arriver un moment où le temps de réaction va devenir plus grand que le temps de Hubble
H−1, de l’ordre de l’âge de l’Univers (à un facteur de l’ordre de l’unité près). Ainsi l’espèce va
se découpler des autres particules au moment où son taux de réaction devient plus petit que le
taux d’expansion de l’Univers ou, de manière équivalente, lorsque le temps de réaction devient
plus grand que le temps d’expansion :

Γ < H ou τ =
1
Γ
> τexp =

1
H
. (1.74)

Cette règle simpliste donne de bons ordres de grandeurs mais ne constitue évidemment pas
une démonstration rigoureuse. Si des estimations plus précises sont requises, on lui préférera
largement la résolution de l’équation de Boltzmann qui permet de prendre en compte l’évolution
de la fonction de distribution dans l’espace des phases f(p,x).

1.4 Les grandes étapes du scénario

Notre description actuelle de la Physique ne nous permet d’appréhender l’Univers qu’au
mieux 10−43 s après le Big-Bang, grandeur qui correspond au temps de Planck tP =

√
~G/c5.

En deçà de cette limite, une théorique quantique de la gravitation, qui à l’heure actuelle n’existe
pas encore, est nécessaire pour décrire la physique. On pense que pendant cette époque, les
quatre forces fondamentales sont unifiées en une seule et même interaction.

Au fur et à mesure que l’Univers s’étend et se refroidit, il subit des brisures de symétries qui
correspondent aux découplages de certaines interactions. Les échelles de ces ruptures de symétrie
sont données par les masses des bosons vecteurs de ces interactions. Ainsi, toutes les interactions
fondamentales sauf la gravité sont unifiées (théorie de grande unification ou GUT) jusqu’à des
températures de l’ordre de 1016 GeV, soit 10−35 s après le Big-Bang.

Dans le cadre des théories cosmologiques actuelles, on suppose que l’Univers passe alors par
une période d’expansion accélérée appelée inflation. Ce mécanisme d’inflation a été proposé au
début des années 1980 [Guth 1981] comme solution aux différents problèmes posés par le modèle
standard de la cosmologie d’alors (voir section 1.6.1).

À une température d’environ 300 GeV, interactions faible et électromagnétique se découplent.
Le mécanisme de Higgs donne leur masse aux particules telles que les bosons de jauge W±, Z et
les fermions du Modèle Standard.

Vers une température de l’ordre de 150 MeV, l’Univers s’est refroidi au point où les quarks
ne parviennent plus à rester indépendants et se confinent dans les hadrons. L’Univers passe alors
de l’état de plasma de quark à l’état de plasma de hadrons. Les nucléons (protons et neutrons)
se forment a cette époque appelée transition Quark-Gluon-Plasma (QGP). Cette transition est
relativement mal connue, en particulier en ce qui concerne l’ordre de cette transition. Une tran-
sition de premier ordre a dans un temps été considérée [Witten 1984], mais il semble aujourd’hui
que cette piste soit écartée au profit d’une transition continue (cross-over). Ce domaine fait
l’objet de beaucoup d’études tant théoriques, avec en particulier les calculs de QCD sur réseau,
qu’expérimentales avec des expériences dédiées au QGP telles RHIC 6 à Brookhaven, ou bientôt
au LHC avec ALICE 7.

6. www.bnl.gov/rhic

7. http ://aliceinfo.cern.ch/Collaboration/
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1.4 Les grandes étapes du scénario 29

Les interactions faibles se découplent finalement à une température d’environ 1 MeV, soit
une seconde après le Big-Bang. L’Univers est alors constitué de leptons (électrons et neutrinos
et leurs antiparticules), de photons et d’une infime contamination de baryons de l’ordre de η =
nB/nγ ∼ 10−9. C’est ce milliardième de matière qui compose aujourd’hui la matière baryonique
environnante. Peu après le découplage des interactions faibles, vers 80 keV, la température
devient suffisamment basse pour permettre la formation des éléments légers, la nucléosynthèse
primordiale, pilier du modèle du Big-Bang sur laquelle je vais revenir plus en détail dans la
section suivante. Le découplage des interaction faibles à 1 MeV implique le découplage des
neutrinos qui évoluent à partir ce moment là indépendamment des autres populations. Lorsque la
température devient plus faible que la masse de l’électron, les paires thermiques e+e− s’annihilent
et transfèrent leurs entropie aux photons. Les neutrinos, découplés auparavant, ne profitent
par de ce gain d’entropie. Avant l’annihilation des paires, les espèces en équilibre thermique
avec les photons sont les photons (g = 2) et les paires e+e− (g=4), ce qui donne une valeur
g∗ = 11/2, tandis qu’après l’annihilation, seuls les photons sont en équilibre et g∗ = 2. L’entropie
étant conservée, cela implique que la température des photons décrôıt moins lentement que a−1

pendant la perte des paires e+e−, alors que les neutrinos, insensible à cette annihilation, voient
leur température évoluer normalement en a−1. Cela implique qu’aujourd’hui la température du
fond de neutrinos est plus faible que celle des photons et l’on a la relation :

Tγ
Tν

=
(

11
4

)1/3

= 1.4. (1.75)

On retrouve ainsi la température de 1.95 K annoncée plus haut.
Après la nucléosynthèse, l’Univers est un plasma ionisé constitué de protons, de noyaux

d’hélium et de traces de quelques autres éléments, ainsi bien sûr que d’électrons qui assurent la
neutralité électrique du système, le tout baigné dans un bain de photons. Les neutrinos s’étant
découplés des autres espèces avant la nucléosynthèse, n’interagissent pratiquement plus avec les
autres particules.

Nous avons vu que la densité d’énergie radiative évolue comme ρr ∝ a−4 et que la den-
sité d’énergie de la matière évolue comme ρM ∝ a−3. Ainsi, il va exister une valeur du fac-
teur d’expansion pour laquelle les deux composantes seront égales. On parle d’égalité matière-
rayonnement. Après cette transition, l’expansion qui évoluait comme a ∝ t1/2 entre dans le
régime dominé par la matière et évolue comme a ∝ t2/3. La valeur du redshift de transition zeq

est déterminée en égalisant les deux densités d’énergie :

ΩR(1 + zeq)4 = ΩM (1 + zeq)3. (1.76)

Pour l’univers ΛCDM, il vient donc zeq = ΩM/ΩR ≈ 3500 (voir [Spergel et al. 2003] par exemple).
Vers 3000 K (z ∼ 1100), la température devient suffisamment basse pour permettre la

formation d’atomes d’hydrogène neutre, les photons n’ayant plus assez d’énergie pour les pho-
todésintégrer. Du fait de cette recombinaison (on devrait d’ailleurs dire combinaison), la densité
d’électrons libres chute considérablement, permettant ainsi aux photons de se propager en ligne
droite. C’est l’émission du fond diffus cosmologique (CMB en anglais).

Une fois l’Univers devenu neutre, la gravitation domine les autres forces et amplifie les
toutes petites (de l’ordre de 10−5) fluctuations de densité que l’on suppose résulter de l’inflation,
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30 Quelques éléments généraux de cosmologie

conduisant ainsi à la formation des structures. Selon le modèle actuel pour les formation des
structures (modèle hiérarchique), celles-ci se forment d’abord à petite échelle puis grossissent
par attraction gravitationnelle jusqu’à former des amas de galaxies.

1.5 Nucléosynthèse primordiale

La nucléosynthèse primordiale (ou BBN en anglais, pour Big-Bang Nucleosynthesis, acro-
nyme utilisé dans la suite), est la période dans l’histoire thermique de l’Univers qui voit la forma-
tion des éléments légers, essentiellement de l’hélium-4, mais également des traces de deutérium,
d’hélium-3 et de lithium-7. Ce mécanisme avait été prédit à la fin des années 40 par Gamow et
ses collaborateurs [Gamow 1946, Alpher et al. 1948].

La BBN est considérée comme un des trois piliers du modèle du Big-Bang chaud (avec
l’expansion et le rayonnement fossile à 2.7 K) en raison de l’accord tendu mais néanmoins assez
remarquable entre ses prédictions et les observations des éléments légers qui sont faites sur plus
de neuf ordres de grandeur.

L’importance de la BBN réside dans le fait qu’elle a lieu à une époque de l’Univers qui est
autrement inaccessible aux observations. En effet, elle se déroule à des températures de l’ordre
de la centaine de keV, alors que la plus ancienne lumière que nous pouvons observer est le CMB
émis à une température, comparativement beaucoup plus faible, de seulement 0.3 eV. Si l’on
raisonne en échelle temporelle, la nucléosynthèse commence pour un univers ΛCDM peu après
la première minute de l’Univers et dure environ 25 minutes.

La nucléosynthèse primordiale a longtemps été la seule et unique manière de déterminer
précisément la quantité de baryons dans l’Univers. En effet, ce mécanisme de création des
éléments légers ne dépend essentiellement que d’un seul paramètre, le rapport baryon/photon
η ou, de manière équivalente, de la densité de baryons réduite à la densité critique Ωb (voir
fig. 1.4). Ainsi la confrontation des prédictions de la BBN aux abondances primordiales déduites
des observations permettait de déduire cette densité baryonique.

La situation a quelque peu changé avec l’avènement des expériences satellitaires de mesures
des anisotropies de température du CMB telles que la sonde WMAP. Ces expériences très précises
permettent de déterminer la densité baryonique avec une bien meilleure précision et ce, de
manière indépendante de la BBN. Ainsi, si l’on se satisfait évidemment du bon accord des deux
prédictions, la BBN n’est plus tellement utilisée comme outil de mesure de la densité baryonique,
mais comme outil permettant de contraindre des scénarios de physique des particules ou de
cosmologie au delà du modèle standard. Ces divers scénarios peuvent avoir une influence sur
différents aspects du mécanisme de la BBN, et l’on s’attend ainsi à voir des déviations de
l’un à l’autre dans les abondances finales. À titre d’exemple, on peut citer les études sur les
désintégrations de particules reliques [Cyburt et al. 2003]. On peut alors contraindre la durée
de vie et la masse de ces particules. Des études ont également été menées sur d’éventuelles
variations dans les constantes fondamentales de la physique [Coc et al. 2007]. Par ailleurs en
prenant comme acquis la valeur de la densité baryonique déterminée par le CMB, on peut utiliser
la BBN comme moyen d’affiner les modèles d’évolution stellaire, connaissant de ce fait la valeur
des abondances primordiales avant la formation des étoiles [Vangioni-Flam et al. 2003].

Je vais dans un premier temps présenter le mécanisme de la nucléosynthèse primordiale puis
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1.5 Nucléosynthèse primordiale 31

je discuterai les différentes observations en passant en revue le statut observationnel de chaque
isotope.

1.5.1 Mécanisme et prédictions

Figure 1.4 – Abondances primordiales prédites par le scénario standard de nucléosynthèse.
Les abondances en deutérium, hélium-3 et lithium-7 sont en fraction de nombre par rapport à
l’hydrogène, tandis que Yp représente la fraction de masse de l’hélium-4. L’épaisseur des bandes
indiquent les incertitudes sur les taux de réactions nucléaires. Figure tirée de [Steigman 2007].

Dans le modèle standard, l’époque de la nucléosynthèse primordiale commence lorsque l’Uni-
vers s’est refroidi à une température d’environ 1 MeV, les interactions faibles assurant l’équilibre
thermodynamique entre protons et neutrons se découplant vers cette température. La quantité
déterminante pour la nucléosynthèse standard est le rapport de la densité neutronique sur la den-
sité protonique. Ce paramètre, noté n/p est déterminé par la différence de masse Q = 1.293 MeV
entre le neutron et le proton par la relation :

n

p
= e−Q/T , (1.77)

expression valable lorsque les interactions faibles assurent l’équilibre entre les deux populations.
Au moment du découplage ce rapport est fixé par la température et vaut n/p = 1/6. Après
le découplage, il évolue du fait de la désintégration des neutrons libres dont la durée de vie
moyenne est de l’ordre du quart d’heure (τn = 885.7 s [Amsler et al. 2008]).
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32 Quelques éléments généraux de cosmologie

La première étape de la nucléosynthèse est la formation de deutérium par la réaction p(n, γ)D.
Le deutérium étant très fragile (son énergie de liaison est BD = 2.23 MeV), il sera très majo-
ritairement photodésintégré par le rayonnement. Il faut attendre une température d’environ
100 keV pour que le deutérium survive à sa photodésintégration. La période propice pour la
nucléosynthèse est donc très réduite car elle ne peut commencer trop tôt, le deutérium étant
systématiquement détruit et ne peut pas non plus commencer trop tard car il n’y aurait plus
de neutrons disponibles pour produire du deutérium, étape indispensable pour la fabrication
de l’hélium-4. Nous verrons que dans l’univers de Dirac-Milne le mécanisme de production est
radicalement différent (voir chapitre 4).

Alain Coc: An Introduction to Primordial Nucleosynthesis 15
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Fig. 10. Evolution of the abundances as a function of time at WMAP (ΛCDM) baryonic

density.

There is no lack of phenomena to modify the surface abundance of lithium: nu-
clear burning, rotational induced mixing, atomic diffusion, turbulent mixing, mass
loss,.... However, the flatness of the plateau over three decades in metallicity and
the relatively small dispersion of data represent a real challenge to stellar modeling.

In the nuclear sector, large systematic errors on the 12 main nuclear cross
sections are excluded. Since the CMB results point toward the high η region, a
peculiar attention should be paid to 7Be nucleosynthesis. However, there is no
indication that a more efficient 7Be nuclear destruction mechanism be at work.

One also notes that between the BBN epoch and the birth of the now observed
halo stars, ≈1 Gyr have passed. Primordial abundances could have been altered

Figure 1.5 – Évolution des abondances primordiale en fonction du temps dans le cadre de la
nucléosynthèse standard. La densité baryonique est celle déterminée par WMAP, η ≈ 6×10−10.
Figure tirée de [Coc 2008].

Dès que le deutérium peut survivre (vers 100 keV), s’amorce un réseau de réactions nucléaires
qui conduisent à la production d’hélium-4. À 100 keV, le rapport n/p vaut environ 1/7 et en
considérant que tous les neutrons disponibles au moment où la nucléosynthèse commence vont
être intégrés dans des noyaux d’hélium-4, l’abondance en fraction de masse d’hélium-4 s’exprime
par la relation approchée :

Yp =
2(n/p)

1 + (n/p)
≈ 0.24. (1.78)

D’autres éléments légers de masse égale ou inférieure à l’hélium-4 sont également synthétisés
au cours de cette nucléosynthèse. Ainsi, de l’hélium-3 et du deutérium qui n’ont pas eu le
temps d’intégrer des noyaux d’hélium-4 subsistent et sont prédits à des niveaux 104 à 105 plus
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1.5 Nucléosynthèse primordiale 33

faibles que l’hélium-4. L’absence d’élément stable de masse A = 5 ou A = 8 limite également la
production d’éléments plus lourds. Ainsi du lithium-7 est produit dans des quantités très faibles,
de l’ordre de 7Li/H ∼ 10−10. Cet élément est soit produit directement, soit par l’intermédiaire
du béryllium-7, suivant la valeur de la densité baryonique.

La résolution précise de la nucléosynthèse primordiale nécessite la résolution numérique d’un
système d’équations différentielles non-linéaires du premier ordre. Je reviendrai plus en détail
sur cette procédure dans le chapitre consacré à la nucléosynthèse primordiale dans l’univers de
Dirac-Milne. La figure (1.5) présente l’évolution des abondances des éléments légers en fonction
de la température.

Il faut noter que la BBN n’a qu’un seul paramètre ajustable : la densité baryonique. Les
premières considérations sur la nucléosynthèse primordiale avaient ainsi pour objectif de contrain-
dre cette densité baryonique en cherchant l’accord entre prédictions et observations. La situa-
tion a changé avec les mesures des anisotropies de températures du CMB qui permettent de
déterminer la densité baryonique avec une précision meilleure encore que celle apportée par le
nucléosynthèse. Il convient toutefois de noter que cette détermination, aussi concordante soit-elle
avec la densité baryonique déterminée par la seule BBN, repose sur des hypothèses fortes sur
le scénario de formation des anisotropies de températures. En prenant la valeur déterminée par
WMAP 1 [Spergel et al. 2003],

ηCMB = (6.14± 0.25)× 10−10, (1.79)

[Cyburt 2004] trouvent les abondance finales suivantes :

Yp = 0.2485± 0.0005, (1.80)

D/H = (2.55+0.21
0.20 )× 10−5, (1.81)

3He/H = (10.12+0.67
−0.66)× 10−6, (1.82)

7Li/H = (4.26+0.91
−0.86)× 10−10. (1.83)

Les valeurs finales des abondances des éléments légers peut varier légèrement selon les groupes
et les taux de réactions utilisés.

1.5.2 Observations

Les prédictions théoriques du scénario de nucléosynthèse primordiale doivent être confrontées
à des observations afin de valider ce mécanisme. Il est bien sûr impossible d’accéder directement
aux abondances primordiales, celles-ci étant produites bien avant la recombinaison et donc in-
accessibles aux observations. On est donc réduit à chercher les éléments légers dans des sites
astrophysiques les moins évolués chimiquement. En effet, l’évolution stellaire qui a lieu dans
l’Univers bien après l’époque de la nucléosynthèse primordiale a pour effet de modifier les abon-
dances initiales des différents éléments si bien que les abondances mesurées aujourd’hui doivent
être corrigées ou extrapolées afin d’en déduire les abondances primordiales. Chaque élément a
sa spécificité, mais globalement, on cherche à observer dans des régions à faible métallicité 8

8. On appelle métallicité l’abondance en métaux. Un métal étant un élement plus lourds que l’hélium, dans le

langage astrophysicien.
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34 Quelques éléments généraux de cosmologie

car ces régions sont considérées comme étant les moins affectées par l’évolution stellaire et par
conséquent, les valeurs mesurées dans ces régions sont les plus proches possibles des valeurs
primordiales.

Hélium-4

L’hélium-4 est le deuxième élément le plus abondant dans l’Univers après l’hydrogène et
représente pour près de 25% de la masse baryonique totale. L’histoire thermique de cet élément
est relativement simple : il est continuellement produit dans les étoiles par combustion de l’hy-
drogène. Étant très stable, il est peu détruit pas d’autres processus, si bien que les abondances
que l’on peut mesurer aujourd’hui ne sont que des bornes supérieures à son abondance primor-
diale. On peut toutefois corréler sa production avec celle d’éléments plus lourds tels que l’azote
ou l’oxygène, qui sont synthétisés en même temps que la fraction d’hélium-4 augmente. Ainsi en
extrapolant la valeur de Y pour des valeurs nulles du rapport N/H ou O/H, on peut en déduire
la valeur primordiale de Y , Yp. Le meilleur site astrophysique pour les mesures de l’abondance
en hélium-4 sont les régions ionisées (régions HII) des galaxies bleues compactes. Ainsi [Izotov
et al. 2007] ont déterminé la fraction de masse d’hélium primordial en analysant 93 spectres
issus de 86 régions HII. Le calcul précis de Yp est soumis à de nombreuses sources d’incertitudes
systématiques dont la principale vient du choix de l’émissivité des lignes d’He I (voir fig. (1.6)).
[Izotov et al. 2007] concluent en proposant deux valeurs pour Yp suivant le choix des émissivités
de l’hélium, Yp = 0.2472± 0.0012 en utilisant [Benjamin et al. 2002] et Yp = 0.2516± 0.0011 en
utilisant [Porter et al. 2005].

D’autres groupes [Olive & Skillman 2004, Peimbert et al. 2007], utilisant d’autres analyses
aboutissent à des valeurs assez semblables mais avec des erreurs plus larges : Yp = 0.249 ±
0.009 [Olive & Skillman 2004], Yp = 0.2474 ± 0.0028 [Peimbert et al. 2007]. Devant toutes ses
déterminations, le plus sûr est d’adopter une valeur conservatrice [Olive & Skillman 2004] :

0.232 ≤ Yp ≤ 0.258 (1.84)

Dans la suite, je prendrai Yp = 0.24 comme valeur “standard” de l’abondance primordiale
d’hélium lorsque des ordres de grandeur seront nécessaires.

Deuterium

L’histoire stellaire du deutérium est extrêmement simple. Étant très fragile, cet isotope de
l’hydrogène ne peut qu’être détruit lors des processus de formation stellaire. De même, tout
noyau de deutérium produit au coeur d’une étoile est systématiquement brûlé en hélium-3.
Ainsi l’abondance en deutérium est une fonction décroissante du temps et toute mesure de
deuterium ne donne qu’une borne inférieure à l’abondance primordiale [Epstein et al. 1976].
De plus, l’abondance primordiale de deutérium présente une dépendance marquée vis-à-vis de la
densité baryonique (voir fig (1.4)), ce qui rend sa détermination précise extrêmement importante
pour la cosmologie.

Les premières mesures de deutérium ont été réalisées dans le milieu interstellaire de la galaxie
[Linsky et al. 2006] et dans le système solaire [Encrenaz et al. 1996, Geiss & Gloeckler 1998]. Ces
mesures sont plus basses que l’abondance primordiale du fait de la destruction du deutérium
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1.5 Nucléosynthèse primordiale 35

not all systematic effects were considered. By contrast, the pre-
sent study has twomajor advantages: (1) it is based on the largest
sample of H ii regions ever assembled for the determination of Yp,
and (2) all important known systematic effects are taken into ac-
count using a Monte Carlo approach.

4.1. He i Emissivities

First we consider the difference in the primordial He mass
fraction Yp caused by using two different sets of He i line emis-
sivities. We adopt the basic set of parameters from x 3.4, except
for (1) the range of Te(He

+) variations, which we adopt here to
be (0.9Y1.0)Te(O iii), the same as that used by Izotov & Thuan
(2004), and (2) the oxygen and nitrogen abundances, which are
calculated with the electron temperature set to Te(He

+). There are
two differences between the procedures of Izotov&Thuan (2004)
and the ones used here. (1) The average yþ is calculated using only
three He i emission lines, while the computation of !2 takes into
account all five lines. Izotov & Thuan (2004) included all five
lines for the calculation of both yþ and !2. (2) Izotov & Thuan
(2004) adopted EWabs(H8þ k3889) ¼ 3:0 8 instead of the rela-
tion EWabs(k3889) ¼ EWabs(k4471) adopted here. However, we
will show later in this section that the variations of EWabs(k3889)
have little effect on the derived Yp.

In Figures 2a and 2b we show the linear regressions Y-O/H
and Y-N/H for the HeBCD sample, where the values of Y are cal-

culated with the Benjamin et al. (2002) He i emissivities. From
these regressions we derive Yp ¼ 0:2440# 0:0013 and 0:2464#
0:0010. If EWabs(H8þ k3889) is set to 3.08 instead of adopting
the relation EWabs(k3889) ¼ EWabs(k4471), then Yp ¼ 0:2440#
0:0013 and 0:2464#0:0010, respectively, for theY-O/H andY-N/H
regressions. These values are in agreement with the values of
Yp ¼ 0:2421# 0:0020 and 0:2446# 0:0016 obtained by Izotov
& Thuan (2004) for their sample of seven H ii regions. Note that
the value of Yp derived from the Y-N/H regression is always slightly
greater than the one derived from the Y-O/H regression. This is be-
cause the N/O abundance ratio tends to increase with increasing
oxygen abundance (e.g., Izotov&Thuan 1999; Izotov et al. 2006).

Figures 2c and 2d show the linear regressionsY-O/H and Y-N/H
when the Porter et al. (2005) He i emissivities are used. We obtain
Yp ¼ 0:2482# 0:0012 and 0:2507# 0:0009 from these regres-
sions. It is seen that the use of the new emissivities increases Yp by
$1.7%. In the analysis of the other systematic effects, we will
consider mainly helium abundances obtained with the Porter
et al. (2005) emissivities, with only occasional mention of helium
abundances obtained with the Benjamin et al. (2002) emissivities
for comparison.

4.2. Reddening

Izotov et al. (1994, 1997) and Izotov & Thuan (1998a,
2004) have used the Whitford (1958) reddening curve with

Fig. 2.—Linear regressions of the heliummass fraction Yvs. oxygen and nitrogen abundances for H ii regions in the HeBCD sample. TheHe i emissivities in (a) and (b)
are from Benjamin et al. (1999, 2002), and those in (c) and (d ) are from Porter et al. (2005). In all panels, Y was derived by minimizing !2 and adopting EWabs(k4471) ¼
0:48 , EWabs(k3889) ¼EWabs(k4471), EWabs(k5876) ¼ 0:3EWabs(k4471), and EWabs(k6678) ¼ EWabs(k7065) ¼ 0:1EWabs(k4471). The electron temperature Te(He

+)
is varied in the range (0.90Y1.00)Te(O iii). The oxygen and nitrogen abundances are calculated by setting the electron temperature equal to Te(O iii).

PRIMORDIAL ABUNDANCE OF 4He 21No. 1, 2007

Figure 1.6 – Fraction de masse d’hélium-4 mesurée dans régions HII de galaxies bleues com-
pactes. Cette abondance présente une corrélation nette avec la métallicité, qui permet ainsi
d’extrapoler la valeur primordiale. Les courbes de gauche et de droite diffèrent par le choix de
la modélisation de l’émissivité des lignes d’He I. Cette figure est tirée de [Izotov et al. 2007]

dans les étoiles. On trouvera une revue consacrée à ces premières mesures dans [Lemoine et al.
1999].

Afin de se rapprocher au mieux de la valeur primordiale, on cherche à observer le deutérium
dans des sites les plus anciens possibles et supposés n’avoir que peu évolué chimiquement. Les
meilleures observations sont effectuées dans des nuages riches en hydrogène à haut redshift – donc
très anciens –, situés sur la ligne de visée de quasars [Adams 1976]. On mesure ainsi le spectre
d’absorption de ces nuages et le rapport des densités de colonne en H et en D ainsi mesurées donne
l’abondance relative D/H. Ces nuages étant à haut redshift (z ∼ 2.5), l’abondance mesurée est
considérée comme représentative de l’abondance primordiale, ce qui est confirmé par la mesure
conjointe de la métallicité du nuage.

Cette mesure est en réalité extrêmement difficile à effectuer et à ce jour seulement sept
mesures fiables ont été effectuées (voir fig. 1.7). Les conditions à réunir pour pouvoir observer
de tels systèmes sont résumées dans [Pettini et al. 2008] :

– la densité de colonne d’hydrogène neutre doit être comprise entre :

17 ≤ log[N(HI)/cm−2] ≤ 21, (1.85)
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36 Quelques éléments généraux de cosmologie

– la metallicité [M/H] du système soit être la plus faible possible, signifiant une faible astra-
tion du deutérium et donc une abondance proche de la valeur primordiale,

– le point le plus important est la nécessité d’avoir un système avec une faible dispersion des
vitesses internes, permettant de résoudre le faible décalage isotopique de 81.6 km.s−1.

Figure 1.7 – Mesures de l’abondance de deutérium dans des nuages d’absorption situés sur des
lignes de visée de quasars distants. Les points bleus représentent les mesures effectuées au sol.
La ligne horizontale continue représente la moyenne logarithmique des mesures. Figure tirée de
[Pettini et al. 2008].

La figure (1.7) présente les abondances en deutérium mesurées en fonction de la densité de
colonne en hydrogène. On remarque une grande dispersion dans les données, remarquable à ce
qu’elle est plus grande que les erreurs statistiques des mesures. De ce fait [Pettini et al. 2008]
préconisent de prendre la moyenne des logarithmes des abondances mesurées et adoptent ainsi
comme valeur primordiale :

< log(D/H)p >= −4.55± 0.03. (1.86)

La valeur de la densité baryonique qui permet d’obtenir cette valeur est alors

Ωbh
2 = 0.0213± 0.001, (1.87)

soit une valeur du rapport baryons sur photons η = 5.834 ± 0.274 × 10−10, en accord avec la
détermination de η par [Spergel et al. 2003].
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1.5 Nucléosynthèse primordiale 37

Hélium 3

L’hélium-3 est mesuré en émission dans les région ionisées H II de la galaxie. [Bania et al.
2002] ont mesuré une valeur 3He/H = 1.1 ± 0.2 × 10−5. Toutefois, il est difficile de remonter
de cette mesure à la densité baryonique car rien n’indique que cette valeur mesurée soit la
valeur primordiale [Vangioni-Flam et al. 2003]. En effet, l’histoire stellaire de l’hélium-3 est plus
complexe que celle du deutérium ou de l’hélium-4 car il peut être détruit comme produit dans
les étoiles. Pour cette raison, l’hélium-3 est rarement utilisé comme contrainte cosmologique.

Lithium 7

Le lithium-7 est observé à la surface de vieilles étoiles à faible métallicité du halo galactique.
Les premières mesures datent de 1982 [Spite & Spite 1982] et font apparâıtre un plateau dans
l’abondance du lithium-7 en fonction de la métallicité. L’existence de ce plateau tend à indiquer
une origine primordiale du lithium-7, car même s’il est facilement détruit dans les étoiles, des
considérations théoriques prédisent une abondance croissante en lithium-7 au cours du temps.
Des mesures plus récentes [Ryan et al. 1999] ont montré une légère dépendance vis-à-vis de
l’abondance en fer qui conduisent à la valeur suivante pour l’abondance primordiale de lithium-
7 [Ryan et al. 2000] :

(7Li/H)p = 1.23+0.68
−0.32 × 10−10 (1.88)

Figure 1.8 – Abondance en lithium-7, mesurée dans les étoiles du halo galactique. L’abondance
est [Li]=12+ log(Li/H). En abscisse, la métallicité est en échelle logarithmique par rapport à
la métallicité solaire. Les point bleus viennent de [Asplund et al. 2006], et les point rouges de
[Ryan et al. 1999; 2000]. Figure tirée de [Steigman 2007].
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38 Quelques éléments généraux de cosmologie

Récemment [Asplund et al. 2006] ont obtenu une nouvelle mesure à l’aide de 24 spectres
d’étoiles à faible métallicité du halo. Cette valeur, comprise entre 1.1 et 1.5 × 10−10 est plus
basse que celle obtenue par [Ryan et al. 2000], mais sont toutefois compatibles (voir fig. 1.8).

Si observations et prédictions cöıncident bien pour le deutérium, l’hélium-3 et l’hélium-
4, il n’est en pas du tout de même pour le lithium-7. En effet, les prédictions venant de la
nucléosynthèse en faisant l’hypothèse d’une densité baryonique déterminée par l’observation
des anisotropies de température du CMB [Spergel et al. 2003] indiquent un rapport 7Li/H =
4.15+0.49

−0.45 × 10−10 [Coc et al. 2004], soit un facteur 3 plus élevé que la valeur déduite des obser-
vations (7Li/H)p = 1.23+0.68

−0.32 × 10−10 [Ryan et al. 2000].
Ce problème du lithium-7 a encore “empiré” récemment [Cyburt et al. 2008] selon une

récente nouvelle analyse du taux de la réaction 3He(α, γ)7Be, principale réaction responsable de
la production de lithium-7. De plus, les résultats de la dernière campagne du satellite WMAP
[Komatsu et al. 2009] indiquent une densité baryonique plus élevée que précédemment η =
6.23 ± 0.17 × 10−10, ce qui implique une production plus importante de lithium-7. Avec ces
nouveaux éléments, [Cyburt et al. 2008] avancent la valeur

7Li/H = (5.24+0.71
−0.67)× 10−10. (1.89)

Le rapport entre valeur prédite et valeur observée représente maintenant un facteur 4.3. Plusieurs
possiblilités ont été avancées pour résoudre cette apparente contradiction.

Il a été remarqué que l’augmentation d’un facteur 100 du taux de la réaction 7Be(d,p)24He,
qui détruit du beryllium-7, pourrait réconcilier prédictions et observations. De nouvelles mesures
ont été réalisées [Angulo et al. 2005], qui concluent que la section efficace de cette réaction est
au contraire 10 fois plus petite que d’après les anciennes mesures. Ces auteurs invoquent alors
une solution astrophysique au problème.

Des modèles astrophysiques d’évolution stellaire ont été avancés [Richard et al. 2005, Korn
et al. 2006] pour expliquer un facteur 2 ou 3 (et peut-être plus ?) entre prédictions et observa-
tions. L’idée derrière ces modèles est que le lithium primordial a été intégré au coeur des étoiles
par différents mécanismes suivant les modèles conduisant ainsi à une diminution importante de
l’abondance de lithium en surface. Ces modèles constituent effectivement une voie possible d’ex-
plication mais doivent aboutir à une destruction de lithium-7 indépendante (ou très faiblement
dépendante) de la métallicité et donc de l’âge des étoiles afin de reproduire le plateau de Spite.

Une autre possibilité, qui enthousiasme beaucoup plus les cosmologues, est que cette différence
entre prédictions et observations est le signe de l’existence d’une nouvelle physique au-delà du
Modèle Standard de la physique des particules. En effet, les désintégrations de particules re-
liques, prédites par exemple dans le cadre des extensions supersymétriques, et qui pourraient se
produire durant l’époque de la BBN pourraient modifier le scénario classique et ainsi conduire
à une valeur primordiale plus faible et compatible avec le plateau de Spite.

Lithium-6

Le lithium-6 n’est produit par la nucléosynthèse standard qu’à des niveaux de l’ordre de
6Li/H ≈ 10−15 − 10−14. Cette production est inférieure à celle du lithium-7 d’au moins quatre
ordre de grandeur. Récemment, l’observation d’un plateau de lithium-6 dans des étoiles de faible
métallicité du halo galactique a été annoncée [Asplund et al. 2006]. Ces auteurs avancent un
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1.6 Le modèle de Concordance 39

rapport 6Li/7Li ∼ 0.05. Cette valeur est sensiblement plus importante que la valeur prédite par
la nucléosynthèse standard. Des mécanismes de production de lithium-6 existent, notamment par
spallation de CNO par des rayons cosmiques ou par des réactions de fusion α+α→6 Li+..., mais
ne sont pas à même d’engendrer un plateau en fonction de la métallicité dans l’abondance en
lithium-6. L’hypothèse d’un plateau de lithium-6 semble donc indiquer une origine pré-galactique
pour cet isotope très fragile. Une possible solution à ces taux élevés de lithium-6 serait de
considérer des désintégrations de particules lourdes durant la période radiative de l’Univers
[Jedamzik 2000, Kusakabe et al. 2006]. Notons toutefois que l’annonce d’une observation d’un
plateau de lithium-6 est fortement remise en question [Cayrel et al. 2007; 2008], le lithium-6
étant très difficile à detecter pouvant facilement être confondu avec du lithium-7.

1.5.3 La nucléosynthèse primordiale : pilier du modèle standard ?

La nucléosynthèse primordiale fait indéniablement partie du modèle standard de la cosmolo-
gie. L’idée principale est que les éléments légers, surtout l’hélium-4, ont été synthétisés dans les
tous premiers instants de l’Univers par un mécanisme thermique et très probablement homogène.
Le succès du modèle du Big-Bang repose largement sur ce mécanisme et sur le raisonnable, voire
le bon, accord entre les prédictions théoriques et les observations astrophysiques. Ce succès doit
toutefois être pondéré par les quelques tensions qui subsistent encore. En particulier le problème
de lithium-7, sans doute beaucoup plus sérieux que celui du lithium-6, pose des questions. Soit
il s’agit d’un problème purement astrophysique, auquel cas les efforts théoriques et numériques
sur la modélisation stellaire finiront sans doute par apporter une réponse convaincante, soit il
s’agit d’un problème plus profond, lié à la modélisation présente que l’on fait de notre Univers,
dont l’un des aspects au moins serait incorrect.

1.6 Le modèle de Concordance

Le modèle décrit jusqu’ici représente ce qu’au milieu des années 1970, on pouvait appeler le
Modèle Standard de la cosmologie. Depuis lors, la vision que nous avons de notre Univers s’est
considérablement enrichie grâce aux progrès constants réalisés tant du point de vue théorique
qu’observationnel. Aujourd’hui, ce qu’on appelle Modèle Standard de la cosmologie, est une
représentation toujours basée sur le modèle du Big-Bang, mais auquel de nouveaux ingrédients
ont été rajoutés successivement, soit pour résoudre des problèmes fondamentaux dans la théorie,
soit pour rendre compte de certaines observations, inexplicables autrement. À l’heure actuelle,
le Modèle Standard de la cosmologie, qui porte plusieurs noms (modèle ΛCDM, modèle de
concordance, ...), semble en très bon accord avec un nombre important de tests observationnels
qui indiquent que notre Univers est aujourd’hui dominé par environ 70% d’Énergie Noire, 25% de
Matière Noire non baryonique, les baryons représentant le complément. Un ingrédient essentiel
du Modèle Standard est le mécanisme de l’inflation qui suppose que l’Univers est passé dans
sa prime jeunesse par une phase d’expansion accélérée. Inflation, Matière Noire, Énergie Noire,
telles sont les trois principales composantes du modèle de concordance, que je vais maintenant
brièvement présenter. On trouvera des revues sur le modèle de concordance plus détaillées par
exemple dans [Frieman et al. 2008].
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40 Quelques éléments généraux de cosmologie

1.6.1 Inflation

Cette théorie date du début des années 1980 [Guth 1981], et a été introduit pour résoudre
deux problèmes fondamentaux du modèle du Big-Bang que sont le problème de l’horizon et le
problème de la platitude. De nombreuses modifications et améliorations ont été apportées depuis
[Linde 1983], mais l’idée derrière les modèles inflationnaires reste toujours la même : introduire
à une époque très précoce de l’histoire de l’Univers une phase durant laquelle l’expansion de
l’Univers crôıt de façon accélérée.

Les problèmes d’une cosmologie sans inflation

• Problème de l’horizon

Dans un univers dominé par la radiation, puis par de la matière, l’intégrale définissant
l’horizon (éq. (1.24)) converge, impliquant de ce fait l’existence d’un horizon. Cela signifie que
deux régions distinctes séparées par une distance plus grande que cet horizon n’ont jamais été
en contact causal l’une avec l’autre et doivent avoir évolué de manière indépendante, sauf à
supposer des conditions initiales particulières. En particulier, il n’y aucune raison pour que ces
régions aient la même température. La quasi-parfaite homogénéité du CMB, pour des régions
quelconques à 180◦ l’une de l’autre pose alors un problème car elle signifie que des zones a priori
non reliées causalement ont la même température, ce qui ne se justifie pas naturellement. En
effet, l’horizon au moment du découplage, noté ddec est :

ddec =
c

H0

√
ΩM

1
1 + zdec

(
2√

1 + zdec
− 1√

1 + zeq

)
, (1.90)

où zdec est le redshift de découplage et zeq le redshift d’égalité entre les composantes radiatives
et de matière. L’angle sous lequel on observe aujourd’hui cet horizon est déterminé à l’aide de
la distance angulaire, calculée au redshift de découplage dA(zdec) :

θ =
ddec

dA(zdec)
. (1.91)

Pour un espace plat, comme semble le suggérer les données observationnelles, la distance angu-
laire s’exprime :

dA(zdec) =
2c

H0

√
ΩM

1
1 + zdec

(
1− 1√

1 + zdec

)
, (1.92)

ce qui donne au final une échelle angulaire de l’ordre de 1◦. Le fait d’observer que l’intégralité
du ciel, et non seulement des zones de 1◦, soit à la même température constitue ce qu’on appelle
le problème de l’horizon.

• Problème de la platitude

Le problème de la platitude intervient quand on considère l’équation de Friedmann que l’on
peut écrire de la façon suivante :

|1− Ωtot| = |
k

a2H2
|. (1.93)
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1.6 Le modèle de Concordance 41

Dans une évolution standard du facteur d’échelle (a ∝ t1/2 dans l’époque de radiation ou a ∝ t2/3

dans l’époque de matière), a2H2 = ȧ2 va décrôıtre et donc le terme |1−Ωtot| va augmenter. Or,
les observations semblent indiquer que nous vivons dans un espace plat et qu’ainsi aujourd’hui
Ωtot est très proche de 1. Ainsi pour avoir un univers plat aujourd’hui, environ 15 milliards
d’années après le Big-Bang, il faut qu’au temps de Planck (tp ∼ 5× 10−44 sec)

|Ωtot(tp)− 1| ∼ 10−60. (1.94)

De telles conditions initiales ne sont absolument pas naturelles. Il n’y a aucune raison pour
une telle quantité de fine-tuning dans la valeur de la densité au temps de Planck. Le problème
de la platitude se pose alors en ces termes : pourquoi notre Univers nous apparâıt-il comme
spatialement plat et si proche d’un univers critique ?

L’inflation comme solution

Le problème de l’horizon peut être résolu si l’Univers subit, dans ses tous premiers instants
une phase d’expansion accélérée caractérisée par

ä > 0. (1.95)

Dans ce cas, le rayon comobile de Hubble (aH)−1 va décrôıtre avec le temps. Les régions causa-
lement liées sont situées à l’intérieur du rayon de Hubble. Ainsi, du fait de cette décroissance,
des régions causalement liées avant l’inflation se retrouvent, à la sortie de l’inflation, séparées
par des distances supérieures à l’horizon. Elles peuvent donc avoir la même température, tout
en semblant n’ayant jamais avoir été en contact causal.

Le problème de la platitude est également résolu. En effet si (aH)−1 décrôıt pendant l’infla-
tion, alors d’après l’équation (1.93) Ωtot se rapproche de 1. L’inflation a ainsi pour effet d’aplatir
l’Univers.

Si l’on considère la deuxième équation de Friedmann (éq. (1.38)) (sans la constante cosmo-
logique) la condition (1.95) est réalisée si l’on dispose d’une équation d’état telle que

ρ+ 3p < 0. (1.96)

On notera qu’une constante cosmologique d’équation d’état p = −ρ satisfait à cette condition,
mais la solution pour l’inflation ne peut être une constante cosmologique car sinon l’Univers
resterait éternellement dans un état d’inflation et nous ne serions pas là pour en discuter ! Il est
donc nécessaire que la phase d’inflation ait une fin et que l’on retrouve l’évolution standard du
facteur d’échelle a(t) ∝ t1/2 propre à la période dominée par la radiation.

Des champs scalaires motivés par la physique des particules satisfont en principe cette
contrainte. Les scénarios inflationaires font ainsi intervenir un champ scalaire φ, appelé inflaton,
dont l’évolution est régie par son potentiel V (φ). Les fluctuations de ce champ scalaire pendant
la phase d’inflation sont à l’origine des fluctuations de densité d’énergie dans l’univers primor-
dial [Guth & Pi 1982]. Ces fluctuations sont à l’origine des structures à grande échelle que l’on
observe dans les grands relevés de galaxies (voir fig. (1.1)). L’inflation résout ainsi le problème
des conditions initiales pour la formation des structures en fournissant les germes de ces struc-
tures qui vont pouvoir se développer par instabilité gravitationnelle à mesure de l’évolution de
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42 Quelques éléments généraux de cosmologie

l’univers. On notera toutefois que même dans le cas de champs scalaires la sortie de l’inflation
– le réchauffage – n’est pas encore expliquée de manière convaincante et naturelle. On trouvera
bien plus de détails sur les différents modèles inflationnaires dans des ouvrages classiques tels
que [Lyth & Riotto 1999, Linde 2005].

1.6.2 Matière Noire

La matière noire non baryonique est un élément central du modèle de concordance. Sa
présence est déduite notamment à partir des mesures de masses dans les amas et elle semble
nécessaire pour la formation des structures à grande échelle de l’Univers. Sa nature reste toutefois
mystérieuse puisqu’aucune particule du modèle Standard de la physique des particules n’a les
caractéristiques requises. Par contre on peut trouver un candidat assez naturel du côté des
extensions supersymétriques du modèle standard. En effet, un découplage de ces particules avec
des sections efficaces de l’ordre des sections efficaces typiques des interactions faibles et des
masses de particules de l’ordre de 100 Gev − 1 TeV donne une abondance relative à la densité
critique du bon ordre de grandeur (WIMP miracle).

Évidences observationnelles en faveur de la Matière Noire

La problématique de la Matière Noire est très ancienne. Elle remonte aux années 30, lorsque
F. Zwicky [Zwicky 1933; 1937] effectue des mesures de vitesses de dispersion dans l’amas de
Coma et s’aperçoit que la masse dynamique nécessaire pour rendre compte de ces vitesses est
largement plus grande que la masse lumineuse. L’hypothèse de matière non relativiste non visible
est alors avancée. De nos jours, de nombreuses observations semblent confirmer cette hypothèse,
et ce à différentes échelles, de la galaxie aux échelles cosmologiques.

Figure 1.9 – Exemple typique de courbe de rotation de galaxie. Figure tirée de [Begeman et al.
1991].
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1.6 Le modèle de Concordance 43

L’indication la plus convaincante qu’il existe de la Matière Noire dans les galaxies provient
de l’étude de la vitesse de rotation des étoiles dans les galaxies ([Rubin & Ford 1970] et voir
fig. (1.9)). Il est régulièrement observé que la vitesse des étoiles reste pratiquement constante
en fonction de la distance au centre galactique. On parle ainsi de courbes de rotation plates.
Ce comportement plat n’est pas prédit par la mécanique newtonienne pour laquelle la vitesse
devrait se comporter comme

v(r) =

√
GM(r)

r
, (1.97)

M(r) = 4π
∫
ρ(r)r2dr étant la masse contenue dans une sphère de rayon r, que l’on attendrait

quasiment constante au delà du disque lumineux. Ainsi, la vitesse devrait décrôıtre comme
v(r) ∝ 1/r à grande distance. Le fait que les courbes de rotation soient plates semble indiquer
la présence d’un halo de matière non lumineuse telle que M(r) ∝ r. Ce halo est ainsi prédit si
le profil de densité ρ évolue comme ρ ∝ 1/r2. L’observation de ces courbes de rotation plate est
ainsi un argument fort en faveur de l’existence de Matière Noire.

La première mention à la Matière Noire fut faite par Zwicky dès 1933, qui utilisait l’appel-
lation “masse manquante”. Ses résultats sont aujourd’hui largement confirmés par les mesures
de masse dans les amas de galaxies. Il existe différentes techniques permettant de déterminer
la masse totale d’un amas de galaxies, comme par exemple l’application du théorème du viriel
qui relie température du gaz à la vitesse de dispersion des galaxies, la mesure de la température
du gaz X présent entre les galaxies ou encore les effets de lentille gravitationnelle faible (weak
lensing). Toutes ces mesures concordent sur la masse totale des amas de galaxies qui conduisent
à un rapport de la densité de matière sur la densité critique de l’ordre de ΩM = 0.2− 0.3 (voir
par exemple [Allen et al. 2008]). Les amas de galaxies étant les plus gros objets gravitation-
nellement liés, on considère que la quantité de matière au sein des amas, ainsi que le rapport
masse baryonique/masse totale, est bien représentatif de ces mêmes grandeurs prises au niveau
cosmologique.

Les mesures de masses dans les amas de galaxies impliquent par ailleurs fortement l’existence
de Matière Noire non-baryonique. En effet, dans le cadre du Modèle Standard, la nucléosynthèse
primordiale impose la quantité de baryons totale, ce que permet de déterminer que les baryons
ne représentent qu’environ 4% de la masse totale de l’Univers. La masse contenue dans les
amas étant jugée comme représentative de la masse de matière (baryonique ou non) totale et
représentant de l’ordre de 20 à 30% de la masse de l’Univers, il s’ensuit qu’il existe nécessairement
une importante composante non baryonique pour la matière.

La nécessité de matière noire apparâıt également au niveau cosmologique au moins selon
deux aspects : le CMB et les structures à grandes échelles. Selon le paradigme standard du
CMB, peu après l’égalité entre matière et rayonnement, les baryons se mettent à osciller dans
les puits de potentiels créés par la matière noire, générant ainsi les pics acoustiques que l’on
observe dans le spectre des anisotropies de température du CMB. Par ailleurs, l’univers étant
quasi-homogène au moment du découplage, il est difficile d’arriver à former des structures telles
qu’on les observe aujourd’hui sans présence de Matière Noire.
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44 Quelques éléments généraux de cosmologie

Nature de la Matière Noire

Dans le cadre du Modèle Standard, il existe nécessairement au moins deux composantes à
la matière noire : une matière noire non baryonique nécessaire car les déterminations de ΩM

donnent toutes ΩM > ΩB, mais également une composante baryonique, car tous les baryons
prédits par la nucléosynthèse primordiale ne sont pas observés. On trouve un bon inventaire des
baryons dans l’Univers [Fukugita et al. 1998, Fukugita 2004], dans lequel il ressort qu’environ
35 % des baryons prédits par la nucléosynthèse standard ne sont pas observés. L’hypothèse
selon laquelle des objets compacts (MACHOS) de masse comprise entre 10−7 et 10 masses
solaires [Paczynski 1986] pourraient contribuer significativement à cette masse baryonique cachée
a été fortement contrainte par l’expérience EROS-2 [Tisserand et al. 2007]. Citons également
l’éventuelle possibilité de cacher ces baryons dans des nuages de gaz froid moléculaire dans la
galaxie [Pfenniger & Combes 1994].

En ce qui concerne la matière-noire non baryonique, les candidats sont multiples : partenaires
supersymétriques de particules connues, particules de Kaluza-Klein dans des espaces-temps à 5
dimensions, axions, trous noirs primordiaux, ... De nombreuses revues (voir par exemple [Ber-
tone et al. 2005]) exposent en détail ces différents candidats. D’importants efforts expérimentaux
ont été et sont menés pour tenter de mettre en évidence de manière directe ces candidats su-
persymétriques en mesurant le recul nucléaire qui a lieu lors d’une interaction avec la matière
dans un détecteur. Compte tenu des sections efficaces extrêmement faibles (∼ 10−8 pb), ces
expériences nécessitent des matériaux ultra-purs et très bien isolés des différentes sources natu-
relles de bruit (muons cosmiques, radioactivité naturelle, ...). Pour ces raisons, ces expériences
ont souvent lieu en site souterrain (Edelweiss, CDMS, ...).

MOND

Pour finir ce bref tour d’horizon sur la matière noire, il convient également de mentionner
les études qui visent à expliquer les observations à l’échelle galactique sans justement recourir à
de la matière noire non baryonique. Il s’agit alors d’invoquer une modification de la gravitation
newtonienne (MOdified Newtonian Dynamics) [Milgrom 1983, Sanders & McGaugh 2002] sur
ces échelles galactiques. Cette modification empirique permet d’obtenir des courbes de rotations
plates pour les galaxies spirales.

1.6.3 Énergie Noire et accélération de l’expansion

La découverte en 1998 [Riess et al. 1998, Perlmutter et al. 1999](voir également le chapitre 5)
que notre Univers n’est pas correctement décrit par un univers Einstein-de Sitter en décélération
mais qu’au contraire l’expansion semble être dans une phase accélérée, a amené la communauté
à considérer une nouvelle composante dans le bilan énergétique de l’Univers. Sa nature actuelle
n’est pas déterminée et de ce fait plusieurs scénarios sont envisagés pour expliquer cette appa-
rente accélération de l’expansion. On appelle cette composante Énergie Noire.

Le scénario le plus simple d’Énergie Noire est la constante cosmologique Λ. Rappelons qu’Ein-
stein avait introduit ce terme répulsif dans ses équations afin de compenser l’effondrement gravi-
tationnel de la matière et ainsi obtenir un univers statique. Mathématiquement, cette constante
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1.6 Le modèle de Concordance 45

cosmologique agit comme une énergie du vide avec une équation d’état :

pvide = −ρvide. (1.98)

L’énergie du vide, ou la constante cosmologique, est ainsi le scénario la plus simple d’Énergie
Noire en ceci qu’il fait intervenir une densité d’énergie constante. Nous verrons au début du cha-
pitre suivant quels problèmes soulèvent l’introduction de cette énergie du vide dans la cosmologie.
D’autres scénarios plus sophistiqués à base de champs scalaires sont également considérés. Ces
modèles introduisent des paramètres d’état qui peuvent varier en fonction de l’époque, dans le
but d’expliquer la raison pour laquelle l’Énergie Noire devient prépondérante seulement à une
époque proche de l’époque actuelle (voir section 2.1.1).

Devant le mystère qui entoure l’accélération de l’Univers, d’autres approches sont également
tentées. Parmi ces approches on peut citer des modifications de la Relativité Générale [Carroll
et al. 2004] ou l’introduction de dimensions supplémentaires [Deffayet et al. 2002]. Une autre piste
consiste à n’invoquer ni Énergie Noire, ni modifications de la physique, mais à remettre en cause
l’application du principe cosmologique, en particulier l’hypothèse d’homogénéité [Kolb et al.
2006]. Gardons toutefois à l’esprit qu’aucune de ces différentes approches ne semble résoudre de
manière convaincante les problèmes liés à l’Énergie Noire et pour l’instant aucun consensus ne
s’est fait autour d’un scénario précis. Par contre, la communauté semble s’accorder sur la réalité
d’une accélération récente de l’expansion, dont l’explication la plus simple, et compatible avec
les tests cosmologiques, reste celle de la constante cosmologique.

1.6.4 Concordance des tests cosmologiques

Dans ce chapitre, j’ai présenté les différents aspects de la cosmologie moderne. Avant de
commencer l’étude de l’univers de Dirac-Milne, il convient de résumer la situation actuelle.
La communauté dispose d’un modèle qui, dans sa version la plus simple, fait intervenir de la
matière baryonique pour environ 4%, de la Matière Noire non-baryonique et non-collisionnelle
pour environ 21% et une Énergie Noire pour environ 75% de la densité critique de l’Univers.
Exprimée en pourcentage de la densité critique, la somme de ces contribution vaut 100%, ce
qui semble impliquer que l’espace dans lequel nous évoluons est plat. L’Univers du modèle de
Concordance est passé par une phase d’inflation, qui a eu pour effet d’assurer cette platitude et
de générer les fluctuations de densité qui ont conduit aux structures gravitationnelles telles que
nous les connaissons aujourd’hui.

Même si ce modèle nécessite l’introduction de plusieurs paramètres, il présente l’avantage
important de rendre compte de bon nombre d’observations astrophysiques ou cosmologiques,
telles que les anisotropies de température du CMB, la nucléosynthèse primordiale, l’étude des
amas de galaxies ou encore les mesures de distances des supernovæ de type Ia. Le modèle de
Concordance peut être résumé par quelques paramètres cosmologiques, que sont Ωb,Ωm,ΩΛ,
définis à la section (1.2.4), comme le rapport des densités d’énergie des différents constituants
à la densité critique. Notons qu’outre ces trois paramètres, d’autres paramètres sont également
présents dans la théorie, comme ns, l’indice du spectre de puissance des fluctuations résultantes
de l’inflation, σ8, la variance des fluctuations de matière sur des échelles de 8 h−1 Mpc, ou encore
τ , la profondeur optique à la réionisation. Tous ces paramètres sont ajustés sur les observations.
En particulier, les deux paramètres ΩM et ΩΛ peuvent être déterminés à partir des observations
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Figure 1.10 – Résumé des contraintes imposées par trois tests cosmologiques sur les densités
de matière et d’Énergie Noire. On remarque très nettement la concordance de ces trois tests
cosmologiques vers le point (ΩM ,ΩΛ) ∼ (0.3, 0.7) . Figure tirée de [Knop et al. 2003].
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1.6 Le modèle de Concordance 47

des SNe Ia, du CMB, ou des mesures de température du gaz dans les amas de galaxies. La
figure (1.10) présente les contraintes sur les deux paramètres qu’imposent ces trois ensembles
d’observations. Cette figure illustre parfaitement la raison pour laquelle le modèle cosmologique
aujourd’hui privilégié s’appelle le modèle de Concordance.
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Chapitre 2

Motivations pour un scénario

alternatif

2.1 Le modèle de Concordance et ses limites . . . . . . . . . . . . . . . . 48

2.2 Antimatière et antigravité . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 L’univers de Milne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Un univers symétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Conclusions sur les motivations et hypothèses . . . . . . . . . . . . . 66

Le chapitre précédent a présenté les bases de la cosmologie moderne et a brièvement décrit
le modèle couramment considéré comme la meilleure description de notre Univers. Ce modèle,
appelé, parmi d’autre noms, “Modèle de Concordance” fait état d’un Univers dominé à plus
de 95% par deux composantes énergétiques “mystérieuses” qui n’ont, pour le moment, pas
encore été détectées de manière directe. L’origine de ces deux composantes est en réalité très
ancienne, puisque la problématique de la Matière Noire avait été soulevée dès les années 1930,
et que la constante cosmologique, qui constitue le scénario le plus simple d’Énergie Noire, était
introduite par Einstein dans ses équations pour contrer l’effet attractif de la gravitation et tenter
de construire un Univers statique.

Nous avons également vu dans le chapitre précédent la raison pour laquelle ce modèle stan-
dard s’appelle modèle de Concordance. En effet, ce modèle fait intervenir plusieurs paramètres
cosmologiques dont les valeurs sont contraintes et déterminées par différents données observa-
tionnelles. Un point remarquable en faveur de ce modèle est que ces tests cosmologiques, qui sont
pour la plupart largement indépendants les uns des autres et qui font intervenir des domaines
différents de la Physique, semblent indiquer un même ensemble de valeurs pour les paramètres
cosmologiques. C’est assurément là un grand succès de ce modèle, mais quelques points méritent
toutefois d’être soulevés. En particulier, cette description ne renseigne en rien sur la nature
exacte de l’Énergie Noire et de la Matière Noire, et pose des questions théoriques fondamentales
auxquelles elle n’apporte pas de réponse.

À l’heure où l’enthousiasme initial qui suivit la mise en évidence en 1998 d’une possible
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50 Motivations pour un scénario alternatif

accélération de l’expansion de l’Univers commence à retomber [White 2007, Sarkar 2008, Mar-
tinez & Trimble 2009], il semble légitime de tenter d’autres approches au vaste problème de la
description qualitative et quantitative de notre Univers. Ainsi, dans ce chapitre, je présenterai
les diverses motivations qui nous ont conduit à considérer l’univers de Dirac-Milne, un univers
dans lequel la symétrie entre matière et antimatière est restaurée, et qui fait de plus l’hypothèse
que l’antimatière possède une masse gravitationnelle active négative.

Dans un premier temps, je rappellerai les problèmes soulevés par le modèle de Concordance,
puis exposerai quelques idées qui sont associées à la notion de masse négative. Pour finir, je
détaillerai les hypothèses que nous seront amenés à faire pour mener à bien l’étude de cet
univers alternatif.

2.1 Le modèle de Concordance et ses limites

Disons-le tout de suite, mon propos n’est pas de critiquer le modèle de Concordance. Ce
modèle est une description de la réalité qui concorde bien avec la quasi-totalité des tests cosmo-
logiques et données observationnelles dont on dispose. Cette description pèche plus par sa nature
que par un éventuel désaccord observationnel. En effet, gardons à l’esprit que ce modèle prédit
deux composantes qui représentent à elles deux plus de 95% du contenu de notre Univers. Cela
signifie, que ce modèle qui explique parfaitement bien toutes les observations cosmologiques,
nécessite d’introduire dans la théorie des ingrédients ultra-majoritaires dont on ne sait finale-
ment pas grand chose. C’est à mon sens une première motivation pour étudier un autre modèle
ou une autre description. Par ailleurs, l’Énergie Noire, dont la proportion est estimée à envi-
ron 70% du total énergétique pose des problèmes théoriques importants que je vais brièvement
décrire maintenant.

2.1.1 Énergie Noire et énergie du vide

Le problème de la constante cosmologique s’est posé bien avant les mesures de distances de
supernovæ lointaines en 1998. On trouve dans [Weinberg 1989] une revue très complète sur cette
problématique. Nous avons vu dans le chapitre 1 que le terme d’Énergie Noire est caractérisé
par une équation d’état

pDE = ωρDE, (2.1)

où ω, le paramètre d’état, vaut ω = −1 dans le cas d’une constante cosmologique, cas le plus
simple d’Énergie Noire. Contentons-nous de considérer ce cas. Cette composante a alors une
équation d’état :

pDE = −ρDE, (2.2)

caractéristique d’une énergie du vide.

Problème de la constante cosmologique

En théorie des champs, le vide a une énergie qui s’exprime comme la somme des énergies de
tous les oscillateurs harmoniques d’un champ quelconque de masse m dans leur état fondamental.
Cette somme diverge et il est nécessaire d’imposer une coupure Ec � m que l’on considère
habituellement au niveau de l’échelle de Planck Ep ∼ 1019 GeV, limite à laquelle on s’attend à
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2.1 Le modèle de Concordance et ses limites 51

voir la gravité quantique rentrer en jeu. Cette densité d’énergie du vide s’écrit alors [Weinberg
1989] :

ρvide =
∫ Ep

0

4πk2dk

2(2π)3

√
(k2 +m2) ≈

E4
p

16π2
. (2.3)

Cette énergie du vide a une valeur de l’ordre de ρvide ∼ 1073 GeV4, largement plus grande que
la valeur de l’énergie de vide qui semble intervenir en cosmologie. Cette densité d’énergie ρDE

est “mesurée” de l’ordre de la densité critique de l’univers, ρc ∼ 10−47 GeV4, soit une différence
de quelques 120 ordres de grandeurs. Le problème est ici double. Le premier est celui de la
compensation de l’énergie du vide : si le vide à une telle énergie ρvide, pourquoi l’Univers ne
s’est-il pas effondré de suite sur lui-même en un temps de Planck ? Il y a donc un mécanisme,
inconnu aujourd’hui, à l’œuvre pour compenser cette densité d’énergie gigantesque. Le deuxième
problème est celui de la constante cosmologique : le mécanisme de compensation doit être tel
qu’il ne compense pas exactement l’énergie du vide ρvide, mais laisse une petite contribution de
cette énergie dans le bilan global du contenu énergétique de l’Univers. Cette petite contribution
représente la densité d’énergie détectée aujourd’hui, mais le mécanisme d’ajustement doit être
précis à quelque 120 ordres de grandeur, ce qui n’est absolument pas naturel.

Problème de la cöıncidence

Un autre point que soulève le modèle de Concordance et particulièrement l’Énergie Noire est
le problème dit de la cöıncidence. L’univers dans le cadre du modèle standard et essentiellement
composé de trois constituants : radiation, matière et Énergie Noire. Les contributions de chacune
de ces composantes évoluent dans le temps (paramétré par le facteur d’expansion), comme le
représente la figure (2.1). Dans les temps primordiaux de l’Univers, la radiation domine, puis la
matière et enfin aujourd’hui, l’Énergie Noire. La raison de ces dominations successives s’explique
par les dépendances différentes des densités d’énergie de chaque contribution vis-à-vis du facteur
d’expansion. En effet, nous avons vu que la densité d’énergie de la radiation évoluait en a−4, la
matière en a−3 et l’Énergie Noire en a0 c’est à dire qu’elle reste constante.

Notons également que la figure (2.1) pourrait être complétée dans sa partie gauche en rajou-
tant une première phase de domination par la radiation, puis par l’inflation, avant de redevenir
dominé par la radiation puis par la matière et enfin par l’Énergie Noire.

Cette succession de phases de domination par l’une ou l’autre des contributions est là encore
peu naturelle. Cela n’est certes pas un argument quantitatif, mais cela laisse supposer que peut-
être cette description standard manque de cohérence [Arkani-Hamed et al. 2000].

Le problème de la cöıncidence s’exprime alors de la façon suivante. Puisque notre Univers,
dans cette représentation, est à chaque époque dominé par une des composantes, pourquoi
vivons-nous maintenant à une époque particulière qui voit la transition entre la période dominée
par la matière et la période dominée par l’Énergie Noire [Turner 2001] ? De manière équivalente,
y a-t-il une raison profonde au fait que maintenant ces deux contributions soient du même ordre
de grandeur ? La figure (2.1) est représentée dans le cas d’une pure constante cosmologique,
c’est à dire que la densité d’énergie associée est constante au cours de l’évolution de l’Univers.
Il existe des scénarios dynamiques tel que la quintessence [Wetterich 1995] qui considèrent une
Énergie Noire dont la densité d’énergie varie au cours du temps.
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52 Motivations pour un scénario alternatif

Figure 2.1 – Contribution relative de la radiation (bleu), de la matière (vert) et de l’Énergie
Noire (rouge) à la densité d’énergie totale de l’Univers. Le problème de la cöıncidence apparâıt
lorsque l’on remarque que les courbes verte et rouge se croisent pour a = a0, c’est à dire à
l’époque actuelle.

Les deux problèmes liés à l’introduction d’une Énergie Noire dans la théorie cosmologique,
à eux seuls justifient la démarche qui consiste à considérer un modèle alternatif à ce modèle de
Concordance.

2.2 Antimatière et antigravité

L’Énergie Noire, qui fait désormais partie du modèle standard de la cosmologie, intervient
dans les équations d’Einstein comme un terme gravitationnel répulsif. La première version de
la constante cosmologique, introduite par Einstein, avait justement pour objectif de compenser
l’attraction gravitationnelle de la matière. Aujourd’hui cette constante cosmologique fait plus
que compenser cette attraction puisqu’elle induit une accélération de l’expansion. Elle agit dans
les équations de la Relativité Générale comme un terme de pression négative au travers de son
équation d’état p = −ρ. Le terme gravitationnel source est ainsi

ρ+ 3p < 0. (2.4)
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2.2 Antimatière et antigravité 53

Il est couramment expliqué que cette Énergie Noire agit comme une gravité répulsive et le terme
“antigravité cosmologique” est parfois également utilisé pour parler des effets de l’Énergie Noire
[Krauss 1999].

Si l’on parle de gravité répulsive et d’antigravité, l’idée de masses négatives vient alors
naturellement à l’esprit. C’est donc dans cette direction que s’oriente le travail présenté dans cette
thèse. L’Univers de Dirac-Milne est un univers comportant des masses négatives. La notion de
masse négative n’a pas nécessairement bonne presse, aussi faudra-t-il préciser ce que l’on entend
par là. Dans cette partie, j’exposerai les raisons pour lesquelles il est légitime de considérer que
peut-être l’antimatière présente une masse gravitationnelle active négative, agissant de ce fait
comme un terme source répulsif. Notons dès à présent qu’aucune mesure directe de la masse
gravitationnelle de l’antimatière n’a, à ce jour, été effectuée.

2.2.1 Masses négatives et gravitation newtonienne

Considérons dans un premier temps la gravitation newtonienne. On distingue alors trois
masses pour un même objet : la masse inertielle et les deux masses gravitationnelles, actives
et passives. La masse inertielle, mi, est celle qui multiplie l’accélération dans l’expression du
principe fondamental de la dynamique F = mia. C’est elle qui exprime la résistance à une mise
en mouvement ou à un changement de direction. La masse gravitationnelle active, ma, est la
masse qui génère un champ de pesanteur tandis que la masse gravitationnelle passive, mp, est
celle qui réagit au champ de pesanteur. Pour résumer, si une pomme tombe c’est à cause de la
masse active de la Terre, et de la masse passive et inertielle de la pomme.

Considérons maintenant deux particules notées 1 et 2 chacune avec des masses mi
1, mp

1, ma
1,

mi
2, mp

2 et ma
2. On pose u, un vecteur unitaire dirigé de la particule 1 vers la particule 2. À partir

de la loi fondamentale de la dynamique, F = mia, on déduit les expressions des accélérations
des deux particules :

a1 =
Gmp

1m
a
2

mi
1d

2
u et a2 = −Gm

p
2m

a
1

mi
2d

2
u. (2.5)

On s’intéresse maintenant au comportement de ces deux particules, supposées initialement au re-
pos (vitesse initiale nulle), soumises à l’interaction gravitationnelle. On ne pose pas de contraintes
a priori sur le signe des différentes masses considérées ici. Il y a donc sept cas (23 − 1) possibles
qui sont résumés dans le tableau (2.1). Pour chaque possibilité, on considère le comportement
d’une particule de masse positive “normale” (ses trois masses sont positives et égales) avec une
particule de masse négative dont le signe de chacune des trois masses dépend du cas considéré.
Les colonnes étiquetées a1 et a2 représentent les directions que vont prendre chaque particule.
Les deux particules vont donc s’attirer ou se repousser suivant les cas. La colonne QM indiquent
si la quantité de mouvement totale, définie comme p = mi

1v1 +mi
2v2 est conservée ou non, c’est

à dire, si elle reste nulle, les particules étant initialement au repos. La colonne “3ème loi” indique
si la troisième loi de Newton, qui stipule que les forces réciproques exercées par chaque particule
sur l’autre sont égales en valeur absolue et opposées. Cette loi impose la relation suivante sur
les masses gravitationnelles :

mp
1m

a
2 = mp

2m
a
1. (2.6)

Que peut-on dire de ce tableau ? On trouve des raisonnements similaires dans [Bonnor 1989,
Kowitt 1996]. Remarquons déjà que les cas 2,4,5 et 6 violent la conservation de la quantité de
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54 Motivations pour un scénario alternatif

a1 a2 QM 3ème loi
Cas 1 mi < 0,mp < 0,ma < 0

+− ←− ←− oui oui
−− ←− −→ oui oui

Cas 2 mi < 0,mp < 0,ma > 0
+− −→ ←− non non
−− −→ ←− oui oui

Cas 3 mi < 0,mp > 0,ma > 0
+− −→ −→ oui oui
−− ←− −→ oui oui

Cas 4 mi < 0,mp > 0,ma < 0
+− ←− −→ non non
−− −→ ←− oui oui

Cas 5 mi > 0,mp > 0,ma < 0
+− ←− ←− non non
−− ←− −→ oui oui

Cas 6 mi > 0,mp < 0,ma > 0
+− −→ −→ non non
−− ←− −→ oui oui

Cas 7 mi > 0,mp < 0,ma < 0
+− ←− −→ oui oui
−− −→ ←− oui oui

Table 2.1 – Étude du comportement d’un système constitué d’une masse positive et d’une
masse négative (+−) ou de deux masses négatives (−−) pour différentes combinaisons des trois
masses considérées. La colonne QM indique la conservation de la quantité de mouvement et la
colonne “3 ème loi” le respect de la troisième loi de Newton.

mouvement. Cette conservation est une chose qu’a priori, nous ne sommes pas prêts à aban-
donner, puisqu’elle est liée à l’invariance de la théorie par translation. Un autre principe dont il
faut se demander si l’on est prêt à l’abandonner est le Principe d’Équivalence. À la base de la
théorie de la Relativité Générale, il s’exprime dans la théorie newtonienne comme l’égalité entre
les masses inertielle et gravitationnelle passive :

mi = mp. (2.7)

Le cas 1 est celui dans lequel les trois masses sont négatives. C’est le cas décrit par [Bondi
1957], sur lequel je reviendrai par la suite. Le cas 3 satisfait à la conservation de la quantité de
mouvement et à la 3 ème loi de Newton, mais viole le Principe d’Équivalence. Il fait également
intervenir une masse inertielle négative ce qui parait pour le moins comme une hypothèse hau-
tement non-conventionelle. En effet, considérer un objet de masse inertielle négative revient à
supposer que cet objet revient vers nous quand on le pousse ou qu’il libère de l’énergie lorsqu’on
l’accélère. Le cas 7 correspond au cas anti-coulombien : les masses de même signe s’attirent et
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2.2 Antimatière et antigravité 55

les masses de signe opposé se repoussent. Ce cas conserve la quantité de mouvement et satisfait
la 3 ème de Newton. Il viole par contre le Principe d’Équivalence. Il est toutefois considéré dans
[Blanchet 2007], dans lequel l’auteur considère des dipôles gravitationnels constitués d’une masse
positive normale et d’une masse négative qui correspond au cas 7 du tableau (2.1).

Un cas intéressant n’apparâıt toutefois pas dans cette description newtonienne. Il s’agit du
cas où une masse positive et une masse négative se repoussent et où deux masses négatives se
repoussent également. On note qu’il n’existe pas de combinaison parmi les trois masses dans la
théorie de classique qui permette d’obtenir un tel comportement.

2.2.2 Masses négatives et Relativité Générale

Masses de Bondi

Une des premières discussions sur la notion de masse négative en Relativité Générale date
des années cinquante [Bondi 1957]. La notion de masse n’est pas toujours très bien définie
dans la théorie relativiste et en particulier, la distinction entre les différentes masses évoquées
précédemment n’a pas lieu, car le Principe d’Équivalence, à la base même de la théorie, indique
que tous les corps, indépendamment de leur masse, tombent de la même manière. La masse
intervient alors comme un paramètre, et rien n’indique a priori quel doit être son signe. Ainsi il
est tout à fait légitime, a priori, de considérer des masses négatives en Relativité Générale. Les
trois masses de la théorie newtonienne étant une seule et même masse en Relativité Générale,
une masse négative va se comporter comme décrit dans le cas 1 du tableau (2.1).

Une masse positive, créant un puits de potentiel, va attirer vers elle toutes les autres masses,
indépendamment de leur signe. Une masse négative va faire l’inverse, c’est à dire qu’elle va
repousser toutes les autres masses, indépendamment de leur signe. Le cas étrange est celui
d’une masse négative et d’une masse positive de même valeur absolue. La masse positive va
attirer la masse négative, la masse négative va repousser la masse positive, et toutes deux vont
se déplacer naturellement du côté de la masse positive avec une accélération et une distance
relative constantes en première approximation. C’est ce qui est appelé solution runaway.

Cette solution est une solution exacte de la Relativité Générale [Bondi 1957]. Pour autant,
ce n’est pas vers ce modèle que l’on s’oriente pour l’introduction de masses négatives à un
niveau cosmologique. En effet, cette hypothèse est fortement contrainte dans l’hypothèse retenue
ici selon laquelle les particules d’antimatière sont les particules de masse négative. En effet,
dans l’hypothèse où la matière (de masse positive) et l’antimatière (de masse négative) sont
séparées dans des domaines disjoints au moment de la recombinaison, dès que l’univers devient
transparent et que la gravité commence à former des structures gravitationnellement liées, les
masses positives vont s’effondrer sur place. Cet effondrement est en tout point similaire à ceux qui
se déroulent dans le scénario standard de formation des structures à ceci près que le système est
dès le début de l’effondrement dans un régime non-linéaire. Mais le point important est que, dès
que les domaines de masses positives commencent à s’effondrer dans les puits de potentiel qu’elles
engengrent, les masses négatives vont, elles aussi s’effondrer dans ces puits de potentiel générés
par les masses positives. Les deux populations vont ainsi se superposer avec les annihilations
que l’on imagine. Si l’on veut considérer un univers symétrique dans lequel l’antimatière possède
une masse négative, il est donc nécessaire de donner un autre sens au terme “masse négative”.
Par ailleurs, une particule d’antimatière qui se comporterait comme une masse de Bondi aurait
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56 Motivations pour un scénario alternatif

une masse inertielle négative, ce qui semble contraire à l’expérience.

2.2.3 Trous noirs de Kerr-Newman

Une motivation forte pour considérer que l’antimatière puisse posséder une masse négative
vient de la relativité générale et de la métrique de Kerr-Newman [Kerr 1963, Newman et al.
1965]. Cette solution décrit la métrique de l’espace-temps déformé par un trou noir chargé en
rotation. La forme de la métrique est ainsi caractérisée par seulement trois paramètres : la
charge, la masse et le moment angulaire [Carter 1966]. Une étude extensive des propriétés de
cette classe de solutions a été menée par Carter [Carter 1966; 1968], à la fin des années 60.

Exprimée en coordonnées d’Eddington-Finkelstein avancées, cette métrique prend la forme
suivante :

ds2 = ρ2dθ2 − 2a sin2 θdrdϕ+ 2drdu+

ρ−2
[
(r2 + a2)2 −∆a2 sin2 θ

]
sin2 θdϕ2 − 2aρ−2(2mr − e2) sin2 θdϕdu−[

1− ρ−2(2mr − e2)
]
du2, (2.8)

tandis que le tenseur du champ électromagnétique s’écrit :

F = 2eρ−4(r2 − a2 cos2 θ)dr ∧ [du− a2 sin2 θdϕ]− 4eρ−4ar cos θ sin θdθ ∧ [adu− dϕ]. (2.9)

Dans ces expressions, m est la masse, e la charge électrique et a le moment angulaire spécifique.
Les quantités ρ et ∆ sont définies par

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2mr + a2 + e2. (2.10)

Comme cela a été mis en évidence par Carter [Carter 1968], et repris par d’autres auteurs [López
1984, Chardin & Rax 1992, Chardin 1997, Arcos & Pereira 2004, Burinskii 2008], si l’on confère
à cette solution les caractéristiques d’un électron : m ∼ 10−22,ma = 1

2 , e
2 ∼ 1

137 , on trouve
naturellement le rapport gyromagnétique g = 2 de l’électron. De même la taille caractéristique
de cette solution donnée par l’échelle du moment angulaire a ∼ 10−11 cm [Carter 1968, López
1984] est du même ordre que le rayon Compton de l’électron.

Avec les valeurs précédentes pour e,m et a, la relation

a2 + e2 > m2 (2.11)

est vérifiée, on parle alors de solution de Kerr rapide, la singularité est nue et prend une forme
annulaire qu’il est en réalité très difficile d’atteindre puisque l’ensemble des géodésiques per-
mettant de l’atteindre est de mesure nulle. Cette solution de Kerr-Newman décrit, dans son
extension maximale, deux espaces asymptotiquement plats, reliés entre eux par la singularité.
Ce qui est intéressant et nous motive dans notre hypothèse d’antimatière de masse négative, sont
les propriétés de symétrie de la métrique et du tenseur électromagnétique qui laissent invariants
ces deux quantités sous la transformation

(m, e, r)↔ (−m,−e− r). (2.12)
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2.2 Antimatière et antigravité 57

Cette symétrie signifie qu’à grande distance de l’anneau, si l’on voit initialement un électron de
masse me et de charge −e, on va voir, lorsque l’on passe dans le deuxième espace, une solution
de masse −me et de charge +e [Carter 1968]. Il est alors tentant de faire l’analogie avec un
positron [Chardin 1997; 2002].

L’existence de cette solution de Kerr-Newman qui donne une description de particules
élémentaires en Relativité Générale et la symétrie exhibée de cette solution, laisse présager
qu’il y a peut-être un lien entre antimatière et antigravité. Ainsi, cette notion nous donne une
motivation forte pour considérer de l’antimatière de masse négative. Mais quel sens donner à
cette masse négative ? Nous avons vu que la solution de Bondi ne semble pas pouvoir décrire de
l’antimatière de masse négative car dans ce cas elle aurait une masse inertielle négative, ce qui
semble hors de propos sans une réinterprétation ultérieure.

Dans le cadre d’une étude cosmologique, nous voulons absolument conserver le Principe
d’Équivalence, qui semble une condition nécessaire pour pouvoir décrire l’Univers en respectant
la Relativité Générale. Il se trouve que, d’une certaine manière, la notion de masse négative
existe déjà dans la théorie cosmologique standard.

2.2.4 Modèle de masse ngative

Vous venons de voir que la notion de masse négative n’est pas simple à définir, notamment
car on ne connait pas à l’heure actuelle d’exemple concret d’objets (de matière ou d’antimatière)
qui présenterait un comportement gravitationnel inhabituel que l’on pourrait alors attribuer à
une certaine notion de masse négative. Néanmoins, il existe des exemples issus de la physique
de l’état condensé qui peuvent donner des pistes de réflexions.

Bulle électron et hélium superfluide

Si l’on introduit un électron dans un milieu d’hélium superfluide, il va se former une “bulle-
électron”, c’est à dire une zone dans laquelle l’électron chasse les électrons des atomes d’hélium
autour de lui. La taille typique de cette bulle est de l’ordre de 18 Å [Poitrenaud & Williams
1972, Classen et al. 1996]. Cette bulle ne contient que l’électron et peut donc être considérée de
masse nulle par rapport au milieu d’hélium.

On peut démontrer que cette bulle électron, considérée comme ayant une masse nulle, re-
monte avec une accélération égale à−2g. Le raisonnement suivant provient largement de [Landau
& Lifshitz 1959]. Considérons un objet sphérique de masse M0, de densité ρ0 et de rayon R,
plongé dans un fluide incompressible de masse volumique ρ. On s’intéresse à l’écoulement po-
tentiel du fluide autour de ce corps et l’on va dans un premier temps déterminer la force de
résistance à l’écoulement qu’applique le fluide sur le corps en mouvement. Le fluide est donc
supposé au repos et c’est le corps qui se meut par rapport au fluide. Cette hypothèse implique
qu’à l’infini la vitesse du fluide est nulle. L’hypothèse d’écoulement potentiel implique l’existence
d’un potentiel ϕ tel que

v = ∇ϕ. (2.13)

L’écoulement est décrit par l’équation de Laplace ∆ϕ = 0. Dans un premier temps, on va
déterminer la forme du potentiel ϕ. Les solutions de l’équation de Laplace sont de la forme 1/r
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58 Motivations pour un scénario alternatif

et des gradients successifs ∇(1/r) par rapport aux coordonnées. Ainsi ϕ est de la forme

ϕ = −a
r

+ A∇1
r

+ · · · , (2.14)

où a,A sont des constantes indépendantes des coordonnées. La constante a doit être nulle. En
effet, le potentiel ϕ implique une vitesse

v = −∇a
r

=
ar
r3
.

Le flux de fluide à travers une sphère de rayon R est ρ(aR2)(4πR2) = 4πρa. Or le flux d’un
fluide incompressible à travers une surface fermée est nul, et donc a = 0. Le potentiel est donc

ϕ = A∇1
r

= −An
r2

, (2.15)

les termes d’ordre supérieur étant négligés. La vitesse s’exprime par v = ∇ϕ :

v = (A∇)∇1
r

=
3(An)n−A

r3
, (2.16)

où n est le vecteur unitaire de r. La constante A peut être déterminée en égalisant les com-
posantes normales des vitesses v du fluide et u de l’objet à la surface r = R de celui-ci. Il
vient

A =
uR3

2
. (2.17)

L’énergie cinétique totale du fluide et égale à

E =
ρ

2

∫
v2dV, (2.18)

l’intégrale étant étendue à tout l’espace en dehors de l’objet. Après calculs [Landau & Lifshitz
1959], on trouve

E =
ρ

2
(4πAu− V0u

2) =
ρu2

2
(2πR3 − V0). (2.19)

L’énergie E et l’impulsion totale du fluide P sont reliées par la relation dE = udP. Il s’ensuit
que l’impulsion du fluide s’écrit

P = ρu(2πR3 − V0) =
2π
3
R3ρu. (2.20)

La force exercée par le fluide sur le corps s’exprime alors ”

F = −dP
dt
. (2.21)

Le corps est ainsi soumis à cette force, mais également à son propre poids et à la poussée
d’Archimède. Le principe fondamental de la dynamique s’écrit alors :

M0
du
dt

= M0g −
4π
3
R3ρg − 2π

3
R3ρ

du
dt
. (2.22)

Dans le cas particulier d’une bulle-électron de masse nulle dans un bain d’hélium superfluide,
cette équation conduit à

du
dt

= −2g. (2.23)
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2.3 L’univers de Milne 59

Il n’y a évidemment pas de mystère à ce qu’une bulle plongée dans un fluide remonte.
Néanmoins, en l’absence de frottements visqueux, elle ne remonte pas avec une accélération vers
le haut égale à g comme on pourrait s’y attendre, mais avec 2g.

Le point important est que cette bulle peut être considérée comme une masse négative dans
le sens où elle a une densité inférieure au fond moyen que constitue le bain d’hélium dans lequel
elle est plongée. Si l’on considère cette bulle comme une quasi-particule, alors cette particule
“antigravite” et respecte le principe d’équivalence. On dispose ainsi d’un exemple simple et
totalement classique de “particule” de masse négative.

Analogie avec les semi-conducteurs

On peut également considérer l’analogie avec les semi-conducteurs. Dans un semi-conducteur,
un trou créé par le déplacement d’un électron peut également être vu comme une masse négative.
Le trou peut être représenté classiquement comme la place laissée vacante par l’électron qui se
déplace dans la bande de conduction. Ce trou a une charge positive, tout comme un positron.
Ces trous ont une masse inertielle positive, mais un trou étant en réalité un vide dans un milieu,
on peut parler de la masse de ce trou comme de la masse qu’il manque pour qu’il soit occupé.
En ce sens, le trou a une masse négative car inférieure à la masse du milieu ambiant.

De la même manière que sous l’effet d’un champ électrique extérieur, les électrons vont dans
un sens tandis que les trous vont dans l’autre sens et se séparent effectivement, sous l’action
d’un champ de gravitation.

Discussion

Le lien entre antimatière n’a évidemment pas été démontré formellement et cet aspect fera
partie des points à traiter lors d’une étude ultérieure. Dans l’approche qui est la nôtre dans
cette thèse, il convient de supposer un tel comportement pour l’antimatière et d’étudier les
conséquences cosmologiques d’une telle hypothèse. Néanmoins, cette démarche est motivée les so-
lutions de Kerr-Newman, qui font apparâıtre de manière explicite cette dualité matière/antima-
tière dans la symétrie de la solution. Notons également que, si les particules peuvent effectivement
être décrites par ces solutions, il n’y a pas de possibilité de fabriquer “gratuitement” des masses
négatives. Chaque particule possède son antiparticule dans le second espace décrit par la solu-
tion de Kerr-Newman. La deuxième motivation qui nous gagne est l’existence dans la théorie
cosmologique actuelle de l’Énergie Noire, composante mal déterminée mais dont on sait qu’elle
agit comme une gravité répulsive.

Dans cette section, j’ai tenté d’expliquer la raison de la première moitié du nom (Dirac) que
l’on a donné au modèle. Il est maintenant temps de parler de la seconde (Milne).

2.3 L’univers de Milne

À partir des années 1930, Edward Arthur Milne (1896-1950), physicien anglais, s’intéresse à
la cosmologie alors naissante et critique fortement la vision basée sur la relativité générale. À
cette époque, les seules observations que l’on peut qualifier de cosmologiques étaient les mesures
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60 Motivations pour un scénario alternatif

de vitesses radiales des galaxies, conduisant à la loi de Hubble, relation linéaire entre la vitesse
radiale et la distance. Ces observations s’intégraient alors parfaitement bien dans les modèles
cosmologiques de Friedmann-Lemâıtre dans lesquels des objets situés à des coordonnées fixes
– on dirait aujourd’hui comobiles – s’éloignent les uns des autres sous l’effet de l’expansion de
l’espace à travers l’expression d’une métrique.

Selon Milne, il était tout à fait possible de rendre compte de ces vitesses radiales en ne
considérant que deux postulats initiaux : la constance de la vitesse de la lumière et une version
étendue du principe de relativité d’Einstein selon laquelle la vision qu’un observateur a de
l’Univers doit être la même quel que soit l’observateur [Milne 1933]. Ce principe n’est d’ailleurs
rien d’autre que le principe cosmologique sur lequel est construit la théorie actuelle. Fort de
ces deux postulats de départ, Milne décrit un univers dans lequel la loi de Hubble découle
naturellement, sans introduction de gravité, ni de métrique de l’espace-temps, ni de courbure,
différenciant la relativité générale de la relativité restreinte.

2.3.1 La loi de Hubble expliquée cinématiquement

Donnons brièvement le raisonnement de Milne dont le détail est donné dans [Milne 1933].
Considérons pour cela une collection infinie de particules non-collisionnelles et sans interactions
gravitationnelles. Il s’agit de simples particules test situées à un temps t = 0 dans une sphère
de rayon R0.

Ces particules ont ainsi une vitesse, et la seule contrainte que l’on impose à ces vitesses est
qu’elles suivent une distribution continue entre 0 et c, contenant la vitesse nulle. Les contraintes
imposées par les deux postulats initiaux permettent à Milne de déterminer les fonctions de
distribution de vitesse des particules. Dans cet univers minkowskien, les particules possédant
une vitesse élevée vont dépasser celles avec une vitesse plus faible et former ainsi des couches
sphériques avec des vitesses de plus en plus élevées en fonction de la distance. La vitesse moyenne
des particules situées à une distance r de l’origine à un temps t est alors approximativement égale
à r/t, et l’on retrouve ainsi la loi du Hubble qui s’interprète non plus comme une expansion de
l’espace, mais comme une simple conséquence cinématique d’une distribution initiale de vitesse.

Le principe de relativité entre observateurs que Milne place au centre de sa cosmologie
permet de déterminer la forme de la fonction de distribution des vitesses. Il impose que deux
observateurs A et B en mouvement uniforme l’un par rapport à l’autre doivent compter le
même nombre de particules avec telle ou telle vitesse, mais également que la forme fonctionnelle
de cette distribution doit être la même. Basant son propos sur la relativité restreinte et les
transformations de Lorentz, il arrive à l’expression suivante pour la distribution des vitesses :

f(u, v, w) =
Adudvdw

c3
(

1−
(
u2+v2+w2

c2

))2 , (2.24)

où A est une constante.

2.3.2 Lien avec la cosmologie moderne

Quel est le lien entre cette vision d’un univers uniquement basée sur la physique Newtonienne
et la relativité restreinte et la théorie relativiste qui est à la base de notre cosmologie moderne ?
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2.3 L’univers de Milne 61

Milne considérait en réalité l’espace-temps de Minkowski, celui de la relativité restreinte qui
décrit un espace-temps plat. La métrique de cet espace temps prend la forme habituelle

ds2 = dt2 − dr2 − r2dΩ2 (2.25)

Restant dans la vision de Milne, on considère des observateurs assimilés aux particules qui sont
éjectées à partir de l’origine r = 0 au temps t = 0 avec une vitesse constante plus petite que c.
Ainsi les observateurs vus à une distance r au temps t ont une vitesse v = r/t, comme expliqué
ci-dessus. On définit alors un temps cosmologique τ , qui est le même pour tous les observateurs
et relié à chaque temps particulier par la relation de dilatation des temps :

τ = t/γ = t

√
1− r2

c2t2
. (2.26)

De même on change la coordonnée radiale en définissant ρ telle que :
v

c
= tanh ρ (2.27)

On peut alors exprimer la variable r en fonction du temps cosmologique τ et de ρ :

r = sinh ρτc. (2.28)

La métrique de Minkowski se réécrit alors :

ds2 = dτ2 − τ2dρ2 − τ2 sinh2 ρ dΩ2. (2.29)

Cette expression est rigoureusement identique à l’expression de la métrique Friedmann-Robertson-
Walker (1.16) avec a(t) = t et k = −1.

On passe ainsi de l’espace-temps plat de la relativité restreinte à un espace-temps (toujours
plat) exprimé en “coordonnées cosmologiques”. Cette transformation met en évidence la nature
hyperbolique (ouverte) des hypersurfaces à temps cosmologique constant de l’espace-temps de
Minkowski.

L’espace-temps que l’on considère dans ce travail, n’est donc en réalité que l’espace-temps
de Minkowski, un espace temps plat dans lequel on a effectué un changement de variables
définissant ainsi un temps cosmologique universel, identique pour des observateurs comobiles.
Exprimé dans ces coordonnées, cet espace-temps est un espace de Friedmann, qui décrit alors
un univers possédant des sections spatiales hyperboliques en expansion.

2.3.3 Espace-temps plat et espace courbe

Pour se convaincre que l’espace-temps de Milne, sous-jacent à l’univers de Dirac-Milne est
bien un espace temps-plat avec des sections spatiales hyperboliques, on peut calculer le tenseur
de Riemann de l’espace-temps de dimension 4 et des sections spatiales de dimension 3. L’univers
de Dirac-Milne est donc muni d’une métrique FRW telle que le paramètre de courbure spatiale
est négatif (k = −1) et le facteur d’échelle linéaire en temps, a(t) ∝ t. Cette métrique prend
donc la forme suivante :

ds2 = dt2 − t2
[
dr2

1 + r2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (2.30)
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62 Motivations pour un scénario alternatif

Notons 4Rαβµν le tenseur de Riemann de l’espace-temps de dimension 4 et 3Rαβµν celui
des sections spatiales 1. Pour plus de généralité, on considérera la métrique FRW sous sa forme
générale en gardant la notation k et a.

Courbure de l’espace-temps

L’expression du tenseur de Riemann est donnée au chapitre 1 (éq. 1.4) et nous indiquons
justes les composantes indépendantes non nulles qui sont données par :

4R1
010 = − ä

a
, 4R2

020 = − ä
a
, 4R3

030 = − ä
a

(2.31)

4R0
101 =

aä

c2(1− kr2)
, 4R2

121 =
k + ȧ2

1− kr2
, 4R3

131 =
k + ȧ2

1− kr2
(2.32)

4R0
202 =

r2aä

c2
, 4R1

212 = r2
(
k + ȧ2

)
, 4R3

232 = r2
(
k + ȧ2

)
(2.33)

4R0
303 =

aär2 sin2 θ

c2
, 4R1

313 =
(
k + ȧ2

)
r2 sin2 θ, 4R2

323 =
(
k + ȧ2

)
r2 sin2 θ. (2.34)

Ces composantes font soit intervenir la dérivée seconde du facteur d’échelle ä, soit le terme
ȧ2 + k. Ces deux termes s’annulent dans le cadre de l’univers Dirac-Milne où a(t) = t et k =
−1. On est donc en présence d’un tenseur de Riemann identiquement nul, confirmant ainsi la
platitude de l’espace-temps de l’univers de Dirac-Milne.

Courbure des sections spatiales

Si l’espace-temp est plat, ce n’est pas le cas des sections spatiales. La partie spatiale de la
métrique Friedman-Robertson-Walker, notons la hij , est définie par

dσ2 = hijdx
idxj = −

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
. (2.35)

Les composantes indépendantes du tenseur de Riemann 3Rαβµν de la métrique spatiale sont

R2
121 =

k

1− kr2
, R3

131 =
k

1− kr2

R1
212 = kr2, R3

232 = kr2

R1
313 = kr2 sin2 θ, R2

323 = kr2 sin2 θ.

Il est clair que dans le cas de l’univers de Dirac-Milne, avec k = −1, ces composantes ne sont
pas nulles.

On a donc vérifié que l’univers de Dirac-Milne est constitué d’un espace-temps plat, mais
de sections spatiales ouvertes. Des abus de langage entre les termes univers, espace, et espace-
temps, font que des confusions surgissent parfois lorsque l’on mentionne un espace-temps plat
et des sections spatiales hyperboliques.

1. même sur un espace de dimension 3, le tenseur de Riemann est un tenseur d’ordre 4, d’où les 4 indices.
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2.3 L’univers de Milne 63

2.3.4 Espace-temps plat et univers vide

Dans l’esprit de la communauté, l’Univers de Milne fait parfois référence à un univers vide
sans gravité, et est de ce fait plus considéré comme une curiosité historique que comme une
éventuelle solution cosmologique. Il est vrai que, tel qu’il était présenté par Milne, il n’avait
guère d’attrait comparé aux diverses possibilités des univers Friedmann-Robertson-Walker, mais
nous venons de voir qu’il fait en réalité partie de ces modèles et est à ce titre tout aussi digne
d’intérêt. Reste la question de son contenu. Par construction cet univers est vide (au moins à
grande distance). Les équations d’Einstein nous le confirment. De manière näıve, on pourrait
dire que si l’espace-temps est plat, c’est qu’il n’est pas déformé par de l’énergie et que donc il
n’y a pas de matière et qu’ainsi l’univers de Dirac-Milne est vide. Si l’on explicite les équations
d’Einstein, cela est bien sûr confirmé. En effet, la composante temps-temps et les composantes
espace-espace du tenseur d’Einstein sont :

G0
0 = 3

ȧ2 + k

a2
Gii = −k + 2äa+ ȧ2

a2
, (2.36)

ce qui conduit à l’équivalence

Tµν = 0⇐⇒ a(t) = t et k = −1. (2.37)

Or, dans la théorie cosmologique habituelle, Tµν n’est pas nul, il prend la forme du tenseur
d’un fluide parfait muni d’une équation d’état p = ωρ. De plus on constate aisément que nous
existons, qu’il y a des planètes, des étoiles et des galaxies et il semblerait que l’on puisse diffi-
cilement prétendre que l’Univers est vide. Il est ainsi nécessaire de préciser ce que l’on entend
par univers vide.

La présence de masses négatives agissant comme un terme gravitationnel répulsif dans les
mêmes quantités que des masses positives agissant comme un terme attractif fait qu’à grande
échelle cet univers apparâıt comme vide. Le modèle standard considère habituellement trois prin-
cipaux constituants dans l’univers : matière, radiation et Énergie Noire. Pour pouvoir considérer
un univers vide et donc avoir une évolution linéaire du facteur d’échelle, nous sommes amenés à
faire certaines hypothèses que je vais détailler maintenant pour chaque composante.

Matière non relativiste

Il s’agit là de la composante habituellement dénommée matière, celle qui est considérée
comme de la poussière sans pression, caractérisée par son paramètre d’état ω = 0. Ainsi, le
tenseur énergie-impulsion attribué à cette composante s’écrit TMat

µν = Diag(ρ, 0, 0, 0). Cette
composante se divise dans la théorie standard en deux parties : la matière baryonique, et la
matière non baryonique, quelle que soit sa nature exacte, dont nous avons parlé au chapitre 1.

Dans l’univers de Dirac-Milne, les contraintes posées par la fabrication de l’hélium-4 lors de
la nucléosynthèse primordiale indiquent qu’il n’est pas nécessaire d’introduire une composante de
matière noire non baryonique (voir chapitre 4). La seule composante de matière non relativiste
est donc la matière baryonique (et anti-baryonique). Nous allons voir dans la suite que l’on
impose à ces deux composantes d’être séparées dans des domaines, ce qui fait qu’à des échelles
largement plus grandes que ces domaines, la masse totale peut être prise comme nulle. Ainsi,
globalement, à grande échelle, cet univers apparâıt comme gravitationnellement vide. De ce fait,
son expansion n’est pas décélérée par un terme de matière.
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64 Motivations pour un scénario alternatif

Énergie Noire

Une des motivations principales de ce travail est justement de se départir de l’hypothèse
d’une Énergie Noire. Ainsi il n’y a pas lieu de considérer de terme faisant intervenir une pression
négative comme une énergie du vide ou d’autres modèles plus sophistiqués.

Rayonnement

La question de la contribution de la composante radiative est plus problématique. Dans le
modèle standard, pour des températures suffisamment élevées, la contribution de la composante
radiative qui évolue en T 4 domine la composante de matière qui évolue en T 3. La transition
entre les deux régimes se fait à ce que l’on définit comme l’égalité matière-rayonnement. Dans ce
cadre de l’univers de Dirac-Milne, si la contribution de la matière est nulle, alors la contribution
du rayonnement a priori non nulle, devrait dominer, et l’on devrait se trouver dans un régime
d’évolution en a(t) = t1/2.

Afin de garder une évolution du facteur d’échelle en a(t) ∝ t, il est nécessaire de trouver un
mécanisme qui annule la contribution du rayonnement. En effet, l’intérêt du modèle de Dirac-
Milne réside précisément dans cette évolution linéaire du facteur d’expansion.

Le fait de considérer des particules d’antimatière de masse négative peut fournir un début
de justification sur ce point important. Le Modèle Standard attribue aux photons une densité
d’énergie égale à celle d’une distribution de Bose-Einstein à une température T , avec un potentiel
chimique nul. Le formalisme développé par Hoyle & Narlikar [Hoyle & Narlikar 1995, Narlikar
2003] à partir de l’action de Fokker permet d’exprimer la théorie de la Relativité Générale non
plus en terme de champs, mais en terme de porteurs de masse. Cette théorie est le pendant
gravitationnel de la théorie de Wheeler & Feynman [Wheeler & Feynman 1945, Wheeler &
Feynman 1949] qui décrit l’électromagnétisme sans champ mais uniquement en terme de porteurs
de charge.

Dans ce formalisme, l’énergie que l’on attribue au rayonnement pourrait être nulle si la somme
des énergies des porteurs est nulle, ce qui est le cas dans l’univers de Dirac-Milne qui considère
autant de masses positives que de masses négatives. Le fait que la théorie de la gravitation en
terme d’action à distance 2 d’Hoyle & Narlikar soit équivalente à la Relativité Générale à été
remarqué par Hawking [Hawking 1965], à la condition d’inclure en quantité égale des masses
négatives. Dans cette optique, on peut considérer que la contribution du rayonnement globale
est nulle. Pour autant, la densité d’énergie des photons au sein d’un même domaine n’est pas
nulle et garde sa valeur classique en T 4.

Là encore, la justification précise du fait que la contribution globale du rayonnement ne joue
pas sur la dynamique de l’expansion reste à faire. Néanmoins, avoir a(t) ∝ t est une condi-
tion nécessaire pour que l’univers de Dirac-Milne apporte quelque chose de fondamentalement
différent par rapport au modèle standard. En effet, même si l’on considère que pendant la
phase dite dominée par la matière dans le modèle standard, l’univers de Dirac-Milne a bien une
évolution linéaire, mais qu’il retrouve l’évolution a(t) ∝ t1/2 pendant la phase dite radiative, cela
réintroduit les problèmes connus du modèle standard, à savoir le problème de l’horizon. Dans
la suite de ce travail, on supposera donc que l’évolution du facteur d’expansion reste linéaire en

2. Action at a distance, en anglais
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2.4 Un univers symétrique 65

fonction du temps, et ce quelle que soit l’époque considérée.

2.3.5 Univers de Dirac-Milne et problème de l’horizon

Un des attraits majeurs de l’univers de Dirac-Milne est l’évolution linéaire de son facteur
d’échelle qui résout naturellement le problème de l’horizon. Rappelons que ce problème se pose
dans le modèle du Big-Bang car on observe une homogénéité de température de l’Univers sur
les échelles qui n’ont en principe jamais été en contact causal les unes avec les autres et que
donc, sauf à invoquer des conditions initiales peu naturelles, ces régions n’ont aucune raison de
se trouver à la même température (voir section 1.6.1). Formellement, ce problème se quantifie en
exprimant la taille de l’horizon, c’est à dire la distance maximale que peut parcourir un photon
en un temps de Hubble. Cette distance s’écrit (voir section 1.2.3) :

dh(t) = a(t)
∫ t

t0

dt′

a(t′)
, (2.38)

où l’on fait tendre t0 vers l’instant initial t0 = 0. Le comportement du facteur d’échelle au
voisinage de l’origine conditionne alors le comportement de cette intégrale qui se trouve converger
dans le cadre du Modèle Standard.

En revanche, le comportement du facteur d’échelle dans l’univers de Dirac-Milne que l’on
considère ici (a(t) ∝ t) est telle que cette intégrale diverge pour t0 → 0. Cela signifie que l’horizon
est rejeté à l’infini dans ce modèle et qu’ainsi toutes les régions de l’univers aujourd’hui ont été
en contact causal à un moment dans l’univers primordial. Cette évolution linéaire fait que le
problème de l’horizon ne se pose pas dans l’univers de Dirac-Milne, et de ce fait, la motivation
pour un scénario d’inflation disparâıt largement.

Notons également que le problème de la platitude ne se pose pas non plus, puisque l’univers de
Dirac-Milne est, par construction, un univers vide (espace-temp plat) avec des sections spatiales
ouvertes. Il n’y a donc pas de nécessité d’invoquer un mécanisme qui aplatirait grandement
l’espace puis que justement on considère un espace hyperbolique. Il n’y a donc pas de mécanisme
d’inflation dans l’univers de Dirac-Milne. C’est là une motivation supplémentaire pour l’étude
cosmologique de ce modèle qui ainsi ne considère ni Énergie Noire, ni inflation et ni Matière
Noire. La raison de ce dernier point sera expliquée dans le chapitre 4.

2.4 Un univers symétrique

2.4.1 Modèle symétrique d’Omnès

Dans les années 1970, une activité importante a eu lieu sur le sujet des univers symétriques
matière-antimatière, autour du modèle d’Omnès [Omnès 1972]. Ce modèle constitue sans doute
la tentative de construction de modèle cosmologique la plus aboutie à ce jour. La motivation de
cette réflexion était de trouver une explication pour la valeur de la densité de matière baryonique
dans l’Univers [Omnès 1971b, Aly et al. 1974]. Ce modèle reposait sur une séparation entre
matière et antimatière basée sur un mécanisme faisant intervenir les interactions fortes entre
nucléons et antinucléons lors d’une transition de phase estimée à l’époque à une température
Tc ∼ 350 MeV [Aldrovandi & Caser 1972, Cisneros 1973]. Cette séparation initiale s’effectue par
diffusion des nucléons – essentiellement par les neutrons, plus mobiles – ce qui conduisait à une
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66 Motivations pour un scénario alternatif

taille initiale de domaines très petite, du fait des échelles de temps très courtes à ces température
élevées. [Aly 1974] trouve une taille d’émulsion maximale de l’ordre de 7× 10−4 cm à T = Tc.

Ce mécanisme de séparation conduit à la formation d’une émulsion, c’est à dire deux réseaux
disjoints imbriqués l’un dans l’autre. Cette émulsion est tout à fait comparable avec ce qui ce
passe en théorie de la percolation, lorsque l’on remplit un réseau initialement vide avec deux
sortes de particules. Si l’on note p, la fraction de particule d’une espèce et q le complémentaire,
alors pour p = q = 1

2 , l’émulsion percole, c’est à dire que la probabilité de pouvoir aller à l’infini
en restant dans un domaine d’une même espèce est de l’ordre de l’unité.

Une fois cette émulsion constituée, un mécanisme de croissance par coalescence [Omnès
1971a] a été mis en évidence. Ce mécanisme repose sur l’analogie qui est faite entre les discon-
tinuités de pression à la surface courbe de l’émulsion matière-antimatière et celles qui ont lieu
à la surface de contact entre deux fluides non miscibles. Par des effets de tension de surface,
l’émulsion va crôıtre et ainsi faire diminuer sa surface de contact. Le mécanisme de coalescence
a par la suite été fortement critiqué dans [Ramani & Puget 1976] et il n’est pas très clair si ce
mécanisme de croissance peut être efficace ou non.

Le modèle d’Omnès a été étudié sous de nombreux aspects tels que l’étude de la séparation
initiale et croissance de l’émulsion [Omnès 1969; 1971b, Aly et al. 1974, Aly 1974], les questions
des modifications apportées au mécanisme standard de nucléosynthèse primordiale [Combes
et al. 1975, Aly 1978a] (voir également le chapitre 4), l’étude du taux d’annihilation [Aly 1978b]
ou encore la détermination des contraintes sur les distorsions du spectre de corps noir du CMB
causées par les annihilations matière/antimatière [Ramani & Puget 1976, Jones & Steigman
1978] (voir aussi la section 3.4). Il semble que ce soit les contraintes de causalité qui aient eu
raison de ce modèle. En effet la taille initiale de l’émulsion de l’ordre de 10−4 cm à la température
critique de 350 MeV qui pouvait crôıtre jusqu’à une taille de l’ordre de 104 cm à une température
de 1 MeV [Aly et al. 1974], est bien trop petite pour permettre la constitution de domaines qui
auraient aujourd’hui une taille raisonnable, leur permettant de survivre à l’annihilation. Par
ailleurs, [Cohen et al. 1998] ont montré qu’afin de respecter les contraintes sur le fond diffus
gamma, la taille des domaines de matière et d’antimatière doit être de l’ordre du Gpc, c’est à
dire proche de la taille de l’Univers observable. Il semble que ce dernier résultat ait mis un terme
définitif à l’étude de cosmologies symétriques.

Si ces résultats ne semblent pas réjouissants pour l’étude du l’univers de Dirac-Milne, les
hypothèses sont néanmoins ici différentes. Nous verrons en effet au chapitre suivant que la dy-
namique de l’univers de Dirac-Milne est radicalement changée par rapport au Modèle Standard.
De plus l’hypothèse d’une répulsion entre matière et antimatière relâche considérablement les
contraintes d’annihilation après la recombinaison. Même si les hypothèses du modèle de Dirac-
Milne sont très différentes de celles habituellement considérées, le problème de départ, à savoir
l’existence et l’efficacité d’un mécanisme de séparation entre matière et antimatière, reste entier.

2.4.2 Séparation matière-antimatière

Le problème de la séparation matière-antimatière et de l’émergence d’une émulsion est un
problème crucial dans toute étude d’un univers symétrique. On pourrait même dire que c’est un
pré-requis. Cette problématique de la création de domaines distincts de matière et d’antimatière
dans l’univers de Dirac-Milne se rapproche de celle, dans le cadre de Modèle Standard, de la
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2.4 Un univers symétrique 67

création de l’asymétrie constatée entre matière et antimatière.
Dans le cadre du Modèle Standard, la question qui se pose est de savoir comment, à partir

d’un état initial tel que le nombre baryonique total est nul, on évolue vers l’état asymétrique
habituellement considéré aujourd’hui dans lequel l’antimatière a quasiment disparu. À la fin des
années soixante, Sakharov a énoncé trois conditions nécessaires à tout mécanisme de baryogénèse
[Sakharov 1967]. Ces trois conditions sont les suivantes :

– Les interactions sont différentes pour les particules et les antiparticules. Autrement dit, il
existe une violation des symétries C et CP.

– Il existe des processus qui violent la conservation du nombre baryonique.
– L’équilibre thermique doit être rompu dans l’Univers primordial.
De nombreux scénarios de baryogénèse existent (voir [Dolgov 1997] pour une revue), mais

il semble qu’aucun n’apporte de réponse convaincante au problème qui consiste à déterminer la
densité baryonique de l’Univers de manière prédictive et non par des observations comme c’est
actuellement le cas.

Certains de ces scénarios de baryogénèse pourraient toutefois conduire à la création de do-
maines séparés de matière et d’antimatière [Dolgov & Silk 1993, Khlopov et al. 2000, Dolgov
2001, Kirilova 2003, Dolgov et al. 2009], notamment par des fluctuations spatiales de l’amplitude
et de la phase de la violation de CP, mais cela reste malgré tout très spéculatif. En particulier, ces
mécanismes sont généralement basés sur des scénarios de baryogénèse spontanée et se déroulent
en même temps ou peu après l’inflation. Aussi, dans l’univers de Dirac-Milne qui ne considère pas
d’époque inflationnaire, la question se pose de savoir si ces mécanismes invoqués précédemment
peuvent encore être considérés.

Découplage thermique matière-antimatière

De manière largement indépendante des éventuels mécanismes de séparation et de génération
d’une émulsion matière–antimatière, on peut déterminer la température à laquelle cette distri-
bution baryonique “apparâıt” après la disparition des paires thermiques nucléons-antinucléons.

À haute température (T ≥ 100 MeV) l’équilibre chimique entre les nucléons et antinucléons
et les photons est assuré par les interactions fortes et électromagnétiques. Ces réactions peuvent
être représentées symboliquement par la réaction suivante [Steigman 1976] :

N + N̄ ↔ γ + γ. (2.39)

Aux températures de quelques centaines de MeV, les nucléons (essentiellement neutrons et pro-
tons) sont modérément relativistes et leur densité s’exprime par

nN =
8

(2π)3/2
T 3z3/2e−z, (2.40)

où z = MN
T . Le potentiel chimique des photons étant nul et l’expression de la densité de photons

étant donnée par nγ ≈ 2ζ(3)T 3/π2, le rapport du nombre de baryons sur le nombre de photons
η s’exprime alors :

η =
4π2

(2π)3/2 ζ(3)
z3/2e−z. (2.41)
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68 Motivations pour un scénario alternatif

Ainsi, au fur et à mesure que l’Univers s’étend et que la température décrôıt, ce rapport
d’équilibre tend vers 0. Dans le cadre du Modèle Standard, cela signifie l’apparition de l’asymétrie
matière-antimatière correspondant à un potentiel chimique non-nul, initialement généré par
un mécanisme de baryogénèse, ou dans le cadre de l’univers de Dirac-Milne, l’apparition de
l’émulsion constituée auparavant.

Dans un univers était, la densité baryonique finale est égale à la densité résiduelle des paires
thermiques nucléons-antinucléons lorsque la réaction (2.39) se découple du fait de l’expansion.
Cette densité se calcule en déterminant la température de découplage, lorsque le taux d’expansion
de l’univers devient plus grand que le taux de la réaction (2.39) donné par [Steigman 1973] :

< σv >∼ 10−15 cm3s−1. (2.42)

La température de découplage Tdec est alors :

Tdec ≈ 14 MeV, (2.43)

et la valeur du paramètre η correspondante est :

ηdec ≈ 1.9× 10−27. (2.44)

Pour mémoire, les valeurs de la température de découplage et la densité résiduelle dans le
cadre d’une évolution standard du facteur d’échelle sont [Steigman 1973] :

T standard
dec ≈ 20 MeV ηstandard

dec ≈ 2× 10−18. (2.45)

D’une certaine manière, le problème de la symétrie (ou de l’asymétrie) matière/antimatière
est aggravé dans le modèle de Dirac-Milne par rapport à un univers standard du fait du faible
taux d’expansion qui conduit à un découplage plus tardif (14 MeV en place de 20 MeV). On peut
déterminer la température pour laquelle le paramètre η, déterminé par l’équation (2.41) possède
la valeur actuelle qui est quant à elle déterminée par la nucléosynthèse primordiale, par exemple.
Nous verrons dans le chapitre 4 que cette valeur dans le cadre de l’univers de Dirac-Milne est
η ∼ 8× 10−9. Ainsi la température pour laquelle η atteint cette valeur est :

Tstop ≈ 39 MeV. (2.46)

Cette valeur est plus élevée que celle obtenue dans le cas standard (T standard
stop ≈ 35 MeV [Steigman

1973]), car l’univers de Dirac-Milne possède une plus grande densité baryonique (η ∼ 8 × 10−9

pour Dirac-Milne contre η ∼ 6× 10−10 pour un modèle standard).
La température de 39 MeV représente la température à partir de laquelle la densité baryo-

nique prend sa valeur définitive. À partir de cette température, les annihilations résiduelles ne
devront pas être trop importantes afin de ne pas annihiler davantage de baryons. Nous ver-
rons au chapitre 4 par quels mécanismes procèdent ces annihilations et cette condition posera
des contraintes sur la taille caractéristique de l’émulsion qui résulte d’un possible scénario de
séparation.
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2.5 Conclusions sur les motivations et hypothèses 69

2.5 Conclusions sur les motivations et hypothèses

Le Modèle Standard de la cosmologie est sans doute à l’heure actuelle la meilleure représenta-
tion que nous ayons de notre Univers. Ce modèle stipule que nous vivons dans un univers doté de
sections spatiales plates, et que le contenu en énergie est dominé par deux composantes encore
non-détectées directement. La plus importante de ces deux composantes est l’Énergie Noire, qui
représente environ 75% de notre Univers et qui est habituellement considérée comme étant res-
ponsable d’une accélération récente de l’expansion cosmique. L’autre composante est la matière
noire non-baryonique, qui représente environ 20% de l’Univers. Cette matière interagit faible-
ment avec la matière ordinaire, et de ce fait n’est pour l’instant détectable qu’indirectement, au
travers des effets gravitationnels qu’elle engendre. Dans cette représentation, la matière baryo-
nique représente moins de 5% de notre Univers. Il est indéniable que cette représentation cöıncide
de manière frappante avec un grand nombre d’observations tant au niveau astrophysique qu’au
niveau cosmologique. Pour aboutir à cet accord remarquable, il faut néanmoins supposer que
notre Univers a subi une période d’expansion accélérée durant ses tous premiers instants.

Cette représentation, aussi satisfaisante observationnellement soit-elle, est en elle même une
première motivation forte pour étudier un modèle cosmologique alternatif. Il faut en effet garder
à l’esprit que, dans le cadre de modèle de concordance, on ne connâıt que moins de 5% de
notre Univers. Par ailleurs, le mécanisme de l’inflation, même s’il est à l’origine des fluctuations
que l’on observe aujourd’hui n’est pas fermement justifié, et aucune validation directe de ce
mécanisme par l’observation n’a encore eu lieu.

L’univers de Dirac-Milne, considéré dans ce travail, est une tentative de modèle cosmologique
qui a pour but d’arriver à une autre représentation de l’Univers sans introduire de nouvelles
composantes ou de modifications de la Physique. Nous sommes toutefois amenés à faire un
certain nombre d’hypothèses préalables dont la justification rigoureuse dépasse largement le
cadre de ce travail. Il est néanmoins important de rappeler de manière claire quelles sont ces
hypothèses et les motivations qui nous ont conduit à les considérer.

L’émergence d’une Énergie Noire qui agit comme une gravité répulsive à l’échelle de l’Univers
nous conduit à considérer des particules de masse négative qui agiraient elles aussi comme un
terme source gravitationnel répulsif. Les symétries exhibées dans la solution de Kerr-Newman
suggèrent quant à elles une relation étroite entre masse négative et antimatière. Dans cette étude
on considérera donc que l’Univers est constitué de quantités égale de matière de masse positive
et d’antimatière de masse négative.

On suppose de plus que ces deux phases de matière et d’antimatière ont été séparées dès la
température ∼ 39 MeV dans une émulsion. Les mécanismes qui conduisent à la formation de
cette émulsion sont supposés exister. Cette émulsion est caractérisée par une taille typique qui
est ainsi un paramètre libre du modèle. L’étude des contraintes de nucléosynthèse primordiale
permettra de poser des limites sur cette taille caractéristique.

L’introduction de masses négatives en même quantité que les masses positives fait que notre
l’univers est vu à grande distance – sur des échelles plus grande que la taille de l’émulsion
– comme gravitationnellement vide. De ce fait, il n’est ni accéléré, ni décéléré, et le facteur
d’échelle qui décrit l’expansion générale évolue de manière linéaire. Si l’on conçoit aisément que
cela puisse être le cas si l’on introduit des masses négatives, il est nécessaire de supposer que cela
est également vrai dans les tous premiers instants de l’Univers, lorsque, dans le cas standard,
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70 Motivations pour un scénario alternatif

c’est la radiation qui domine et impose alors une décélération forte à l’Univers.
Ces hypothèses peuvent parfois parâıtre fortes mais on prend le parti de les considérer comme

acquises et l’on étudie alors les conséquences que ces hypothèses et modifications par rapport à
la théorie standard entrâınent sur la cosmologie.
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Chapitre 3

Histoire thermique de l’univers de

Dirac-Milne

3.1 Relation temps-température . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Découplage des interactions faibles . . . . . . . . . . . . . . . . . . . . 71
3.3 Egalité photons-baryons . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Distorsions du CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Recombinaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Le but principal de cette thèse est d’étudier la viabilité du modèle de Dirac-Milne vis-à-vis
des différents tests cosmologiques. Pour ce faire, je suis amené à considérer certaines hypothèses
qui ont été présentées dans le chapitre précédent. Il ressort de l’étude cosmologique de ce modèle
qu’une différence essentielle par rapport à une cosmologie standard (avec ou sans Énergie Noire),
est l’hypothèse de linéarité du facteur d’échelle tout au long de l’histoire thermique de l’Univers.
Ainsi avec une évolution très différente au cours des premiers instants de l’univers, cette histoire
est à ré-écrire 1 et c’est l’objet de ce chapitre. Comme nous allons le voir, l’évolution linéaire
du modèle de Dirac-Milne conduit à une évolution beaucoup plus lente de l’univers, ce qui a
pour conséquence de changer, parfois assez radicalement, les différents découplages qui jalonnent
l’histoire thermique de l’Univers.

3.1 Relation temps-température

L’équation de Friedmann (éq.(1.53)) s’écrit dans le modèle de Dirac-Milne (voir chapitre 1) :(
ȧ

a

)2

= H2
0

(a0

a

)2
. (3.1)

Cette équation permet de relier le redshift z (1 + z = a0/a) à l’âge de l’Univers t(z) :

t(z) =
1
H0

∫ ∞
z

dz′

(1 + z′)2
=

1
H0

1
1 + z

. (3.2)

1. Si l’on m’avait dit qu’un jour je ré-écrirais l’histoire de l’Univers...
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72 Histoire thermique de l’univers de Dirac-Milne

Exprimée en fonction de la température, cette relation devient :

t =
1
H0

T0

T
, (3.3)

où T0 dénote la température actuelle de l’Univers, mesurée par COBE à une température
T0 = 2.725 ± 0.001 K [Fixsen & Mather 2002]. Comme annoncé au chapitre 1, l’âge de l’uni-
vers de Dirac-Milne est exactement égal à H−1

0 ce qui conduit, avec la valeur standard de
H0 = 70 km/sec/Mpc, à un âge égal à environ 14 milliards d’années. Même si ce résultat est
connu [Rich 2001], il est néanmoins important de remarquer que dans la théorie standard H−1

0

représente l’échelle de temps caractéristique de l’Univers, alors que dans le modèle Dirac-Milne,
ce temps caractéristique est exactement l’âge de l’Univers.

L’introduction d’une constante cosmologique qui est l’interprétation habituelle des diagram-
mes de Hubble des supernovæ de type Ia, conduit à un âge de l’Univers du même ordre de
grandeur, très proche là aussi de H−1

0 . Cette cöıncidence a été remarquée [Kutschera & Dyrda
2007], mais cela n’explique en rien pourquoi dans un univers ΛCDM, avec les valeurs classiques
des paramètres cosmologiques, l’âge est proche de H−1

0 . Autant dans un univers Dirac-Milne
l’âge est exactement égal à H−1

0 , autant rien n’explique pourquoi ce serait le cas dans un univers
ΛCDM. Ce point se rapproche sans doute du problème de la cöıncidence, qui consiste à se
demander pourquoi les valeurs actuelles des densités d’Énergie Noire et de matière dans un
modèle ΛCDM sont du même ordre de grandeur.

Comparons maintenant l’âge à une température donnée pour le modèle Dirac-Milne et un
modèle ΛCDM standard, dans lequel l’âge est donné par l’équation (1.53). La figure (3.1)

Figure 3.1 – Gauche : Âge des univers Dirac-Milne (rouge) et ΛCDM en fonction de la
température. Droite : Rapport des âges de la figure de gauche. Aujourd’hui les deux univers
ont approximativement le même âge, mais au fur et à mesure que l’on remonte dans l’Univers
primordial, la différence entre les deux modèles explose, l’univers de Dirac-Milne étant beaucoup
âgé que l’univers ΛCDM à une température donnée.
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3.2 Découplage des interactions faibles 73

présente cette comparaison. On y remarque qu’à température égale, l’univers de Dirac-Milne
est beaucoup plus âgé, et ce d’autant plus que la température est grande. Donnons quelques
ordres de grandeur : pour l’époque de la nucléosynthèse, vers une température de 80 keV, l’uni-
vers de Dirac-Milne est âgé de 41 ans contre environ 200 secondes pour le modèle standard.
Cette différence de temps gigantesque aura bien sûr une influence sur la nucléosynthèse primor-
diale (voir chapitre 4). Nous verrons bientôt que le redshift d’émission du CMB ne change pas
fondamentalement, mais l’âge de l’Univers à ce moment clé est, quant à lui, largement modifié.
Si l’on prend z = 1100 comme valeur du redshift de découplage entre la matière et la radia-
tion, l’univers de Dirac-Milne est alors âgé de 12.7 millions d’années au lieu des traditionnels
380 000 ans du modèle de Concordance.

Il sera utile par la suite de donner la valeur du taux d’expansion de l’univers de Dirac-Milne.
Ce taux est égal à

τexp = H =
1
t

(3.4)

et une valeur numérique, donnée sous plusieurs formes, est

τexp = 9.66× 10−12h70

(
T

1 keV

)
s−1 = 2.27× 10−18(1 + z) s−1. (3.5)

3.2 Découplage des interactions faibles

Un exemple fondamental qui illustre les différences qu’apporte une évolution linéaire du
facteur d’échelle est le découplage des interactions faibles.

Pour des température supérieures au MeV, l’Univers est principalement composé de pho-
tons, de paires électrons-positrons et des trois familles de neutrinos, la matière baryonique ne
représentant en effet à cette époque qu’une fraction de l’ordre du milliardième de la quantité
totale de particules. Ces constituants sont en équilibre thermodynamique assuré par les interac-
tions faibles. Étant neutres, les neutrinos ne sont pas directement couplés aux photons mais les
réactions faibles du type e+e− ↔ νν̄, e+ν ↔ e+ν, ... assurent leur équilibre.

La section efficace de ces réactions est de l’ordre de σweak ∼ G2
FT

2 où GF est la constante
de couplage de Fermi. Le taux de réaction s’exprime alors

Γ ∼ n < σweakv >, (3.6)

où n représente la densité de leptons chargés, ici les électrons et positrons. Contrairement au cas
du modèle standard, où le découplage s’effectue vers une température de 1 MeV alors que les
électrons sont encore relativistes (voir par exemple [Weinberg 1972]), le découplage des interac-
tions faibles intervient, dans l’univers de Dirac-Milne, plus tardivement et de manière concomi-
tante à la perte thermique des paires e+e− [Lohiya et al. 1998]. La densité électronique s’exprime
alors :

ne± = 4
(
meT

2π

)3/2

e−
me
T . (3.7)

Le taux de réaction est à comparer au taux d’expansion de l’Univers H, dont l’expression est
donnée par l’équation (3.5). On cherche ici à calculer l’ordre de grandeur de la température de
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74 Histoire thermique de l’univers de Dirac-Milne

découplage. Ce découplage a lieu quand le rapport du taux de réaction sur le taux d’expansion
devient plus petit que l’unité. Ce rapport s’exprime :

Γ
H
∼ 4G2

F

T0

H0

(me

2π

)3/2
T 5/2e−

me
T . (3.8)

Ce rapport atteint l’unité pour une température de l’ordre de T ∼ 70 keV, justifiant ainsi
l’expression de la densité électronique (3.7) 2. Ce découplage plus tardif – 70 keV au lieu de 1
MeV – a en particulier comme conséquence de rendre possible une nucléosynthèse thermique
dans ce modèle à évolution linéaire du facteur d’échelle. Ce point sera détaillé dans le chapitre 4

3.2.1 Température des neutrinos

Le découplage tardif des interactions faibles dans l’univers de Dirac-Milne conduit à une
différence entre cet univers et le modèle standard en ce qui concerne la température du fond de
neutrinos. Nous venons de voir que les interactions faibles, et par là même le découplage des
neutrinos des autres particules, se produit vers une température de 70 keV, soit après l’anni-
hilation d’une très large fraction des paires électrons-positrons. Ainsi les neutrinos bénéficient
au même titre que les photons du transfert d’entropie des paires e+e− et sont réchauffés de la
même manière. La température des neutrinos est alors égale à celle des photons [Lohiya et al.
1998].

Ce point constitue donc une prédiction originale du modèle de Dirac-Milne et une éventuelle
mesure de la température du fond cosmique de neutrinos serait de la plus haute importance.
D’une part, si la température mésurée est compatible avec une température de 1.95 K, cela
apporterait une preuve supplémentaire de la pertinence du modèle du Big-Bang chaud et cela
imposerait une contrainte très forte sur l’univers de Dirac-Milne. Néanmoins, une telle mesure
est extrêmement dure à réaliser et il faudra probablement attendre plusieurs années avant qu’une
telle mesure ne soit effectuée [Ringwald 2009].

3.3 Egalité photons-baryons

Le facteur d’expansion de l’univers de Dirac-Milne évoluant de façon linéaire avec le temps,
il n’existe pas à proprement parler un moment dans l’histoire thermique de l’Univers qui voit
les densités d’énergie de la radiation et de la matière s’égaler et induire un changement dans
la loi d’évolution de l’expansion. On peut néanmoins déterminer les redshifts pour lesquels ces
deux contributions ont des densités d’énergie égales, à titre de comparaison. Plusieurs choses
changent par rapport au modèle standard. Dans l’univers Dirac-Milne il n’y a pas de matière
noire non-baryonique, mais il y a par contre un nombre plus élevé de baryons. Pour la radiation,
les trois familles de neutrinos sont à la même température que le fond de photons, ce qui va
conduire à une valeur plus grande de la densité d’énergie de cette composante. On peut ainsi
déterminer le redshift d’égalité entre la composante de matière (qui se réduit aux baryons) et
la densité d’énergie de la radiation (photons + neutrinos) ou, de manière plus pertinente, de

2. Par opposition à l’expression de la densité en T 3 lorsque T > me et que les paires sont alors relativistes.
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3.4 Distorsions du CMB 75

la densité d’énergie des photons seuls, les neutrinos ne jouant quasiment aucun rôle puisque de
toutes façons ils n’ont aucun effet sur l’expansion de l’Univers 3.

Le redshift d’égalité entre baryons et photons, zγb, et la température correspondante

Tγb = T0(1 + zγb), (3.9)

sont alors définis par

ρb = ργ ⇐⇒ η
2
π2
ζ(3)mpT

3
γb =

π2

15
T 4
γb (3.10)

Il vient

Tγb = 2.78
(

η

8× 10−9

)
eV, zγb = 11840

(
η

8× 10−9

)
. (3.11)

Bien que cette grandeur n’intervienne pas dans la cosmologie de Dirac-Milne, on peut
néanmoins présenter la température Trad−b et le redshift zrad−b d’égalité entre la composante
radiative (photons + neutrinos) et les baryons,

Trad−b = 0.74
(

η

8× 10−9

)
eV, zrad−b = 3155

(
η

8× 10−9

)
. (3.12)

3.4 Distorsions du CMB

Un autre exemple des modifications qu’apporte une évolution linéaire du facteur d’expansion
dans l’histoire thermique de l’Univers est le cas de la thermalisation d’éventuelles injections
d’énergie dans le CMB avant la recombinaison. Les mesures extrêmement précises effectuées par
l’instrument FIRAS, à bord du satellite COBE, ont permis de poser des contraintes fortes sur
d’éventuelles distorsions du spectre de corps noir du CMB.

Les contraintes posées par FIRAS sont : |µ| < 9 × 10−5 et |y| < 15 × 10−6 [Fixsen et al.
1996] pour, respectivement, les distorsions Bose-Einstein et Compton. Le paramètre de potentiel
chimique µ décrit les distorsions spectrales causées par une injection d’énergie à une époque où
les interactions entre photons et électrons permettent de redistribuer en fréquence des photons
non-thermiques, mais où le nombre total de photons reste fixé. Le paramètre y décrit les dis-
torsions spectrales causées essentiellement après la recombinaison par l’interaction des photons
du CMB avec des électrons d’une température différente (par exemple avec les électrons du gaz
chaud (T ∼ 10 keV) dans les amas de galaxies : c’est l’effet Sunyaev-Zeldovich [Zeldovich &
Sunyaev 1969]). Ce qui nous intéresse ici, ce sont les distorsions caractérisées par le paramètre
µ, paramètre qui n’est rien d’autre que le potentiel chimique qui entre dans l’expression de la
fonction de distribution de Bose-Einstein des photons à une époque antérieure à la recombinai-
son.

À l’époque de l’Univers primordial où les paires électrons-positrons sont encore présentes,
ce terme de potentiel chimique est nul, le nombre de photons n’étant pas conservé du fait des
nombreuses réactions e+e− ↔ γγ. Toutefois, après la disparition de ces paires thermiques, le
nombre de photons est approximativement conservé et toute éventuelle injection d’énergie dans
le milieu ne pourra pas forcément être thermalisée, résultant au final sur un spectre de Bose-
Einstein avec un potentiel chimique non-nul. En réalité, il existe des processus radiatifs qui ne

3. Ceci n’est bien sûr pas vrai dans le modèle standard.
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76 Histoire thermique de l’univers de Dirac-Milne

conservent pas le nombre de photons et qui permettent ainsi de ramener peu à peu ce spectre
de Bose-Einstein vers un spectre de corps noir.

L’existence de ces processus et la compréhension de leur mécanisme d’action a permis, dans
le cadre du modèle standard (voir par exemple [Sunyaev & Zeldovich 1970, Danese & de Zotti
1977, Hu & Silk 1993]), d’une part de comprendre pourquoi le CMB est un corps noir quasi-
parfait et d’autre part de contraindre les possibles scénarios d’injection d’énergie dans le plasma
baryons-électrons-photons de façon à respecter les contraintes imposées par FIRAS. Ces résultats
sur les contraintes d’injection d’énergie dans le CMB sont résumées par la figure 6 de [Fixsen
et al. 1996], dans laquelle il ressort qu’il est impossible d’injecter plus de ∼ 6× 10−5 de l’énergie
du CMB pour des redshifts inférieurs à z ∼ 4× 106 (T ∼ 1 keV).

Dans le cadre de l’univers de Dirac-Milne, on s’attend à ce que ces contraintes, et nous allons
voir que c’est effectivement le cas, soient plus souples du fait de l’évolution plus lente de cet
univers. De plus la densité baryonique plus importante que dans le modèle standard implique
une densité électronique plus importante et donc un couplage entre matière et radiation plus
durable.

Le but de cette section est de déterminer les contraintes sur les quantités d’énergie que
l’on peut injecter dans l’univers de Dirac-Milne en fonction du redshift. Ces contraintes sont
importantes car la présence de matière et d’antimatière dans des domaines séparés mais jointifs
va inévitablement conduire à des annihilations et à un dégagement d’énergie.

3.4.1 Les différents processus radiatifs

Les processus radiatifs qui peuvent permettre la thermalisation d’éventuelles injections d’éner-
gie dans le CMB sont la diffusion Compton élastique, la double diffusion Compton et le brem-
sstrahlung. Ces deux derniers processus ne conservent pas le nombre de photons et permettent
ainsi de manière effective la convergence du spectre distordu vers un spectre de corps noir. Je
vais présenter ces différents processus et procéder à une comparaison de leur différents temps
caractéristiques.

Dans la suite on notera par f(ν, t) la fonction de distribution des photons. On parlera
également de cette quantité comme le nombre d’occupation à une certaine fréquence ν.

Diffusion Compton

Le principal processus radiatif est la diffusion Compton γ + e ↔ γ + e qui assure un cou-
plage fort entre les populations de photons et d’électrons durant la majeure partie de l’histoire
thermique de l’Univers. Cette interaction conserve le nombre de photons et permet seulement de
redistribuer les photons en énergie (ou, de manière équivalente, en fréquence), mais ne permet
pas d’augmenter ou de diminuer le nombre d’occupation à telle ou telle fréquence de manière
indépendante des autres.

L’équation cinétique qui régit la diffusion Compton élastique a été dérivée historiquement
pour la première fois par Kompaneets [Kompaneets 1957] et s’écrit :

(
∂f

∂t

)
C

= neσT c

(
kTe
mec2

)
1
x2
e

∂

∂xe

[
x4
e

(
∂f

∂xe
+ f + f2

)]
+ xe

∂f

∂xe

∂

∂t

(
ln

Te
T0(1 + z)

)
, (3.13)
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3.4 Distorsions du CMB 77

où Te est la température des électrons, xe = hν/kTe, la fréquence réduite des photons, f(xe, t),
le nombre d’occupation des photons et σT la section efficace Thomson. Le dernier terme fait
intervenir T0, la température du fond de photons actuelle. Dans la pratique, pour le problème
qui nous intéresse ici, la diffusion Compton assure un couplage fort entre photons et électrons, si
bien que ces deux populations sont à la même température et ce terme est négligeable [Danese
& de Zotti 1977, Hu & Silk 1993].

On peut ré-écrire cette équation en faisant intervenir le temps caractéristique tC afin que
s’établisse un spectre en quasi-équilibre sous l’effet de la diffusion Compton :(

∂f

∂t

)
C

= t−1
C

1
x2
e

∂

∂xe

[
x4
e

(
∂f

∂xe
+ f + f2

)]
, (3.14)

avec

tC =
(
neσT c

(
kTe
mec2

))−1

(3.15)

tC = 3.45× 1012

(
T

Te

)(
1− Yp

2

)−1( η

8× 10−9

)−1(1 + z

104

)−4

s. (3.16)

Le temps caractéristique d’interaction entre un électron et le fond de photons est :

teγ =
3me

4σTεR
= 7.66× 103

(
1 + z

104

)−4

s. (3.17)

Ce temps teγ , beaucoup plus petit que tC traduit simplement le fait que la quantité de photons
est beaucoup plus importante que la quantité d’électrons ce qui implique que les électrons se
thermalisent beaucoup plus vite que les photons.

Comme la diffusion Compton conserve le nombre de photons, la solution de l’équation
cinétique (3.14) sera de la forme d’un spectre de Bose-Einstein :

fBE =
1

exe+µ − 1
, (3.18)

où µ est le potentiel chimique sans dimension. On vérifie aisément que (3.18) est bien solution de
(3.14). La diffusion Compton élastique va donc thermaliser les photons vers un spectre de Bose-
Einstein de température Te, mais avec un potentiel chimique non-nul. La température d’équilibre
des électrons est donnée par [Peyraud 1968, Zel’Dovich & Levich 1970]

Te =
1
4

∫
p4f(f + 1)dp∫

p3fdp
. (3.19)

Il est utile d’introduire la profondeur optique à la diffusion Compton définie par

y =
∫ t

th

dt

tC
, (3.20)

où th est l’époque où une injection d’énergie à lieu. La valeur aujourd’hui de cette profondeur
optique est :

y0 = y(t = 0) =
∫ zh

0

texp

tC

dz

1 + z
. (3.21)

te
l-0

04
42

94
8,

 v
er

si
on

 1
 - 

24
 D

ec
 2

00
9



78 Histoire thermique de l’univers de Dirac-Milne

C’est dans le passage d’une intégrale en temps à une intégrale en redshift que réside toute la
différence entre le modèle de Dirac-Milne et le modèle standard. En effet l’expression du temps
d’expansion texp n’est pas la même dans les deux modèles. Il vient alors :

y0 = 4.27× 10−12

(
1− Yp

2

)(
η

8× 10−9

)
(1 + z)3. (3.22)

Tant que l’univers est opaque pour la diffusion Compton, c’est-à-dire tant que y0 > 1, on dispose
d’assez de temps pour restaurer un spectre de Bose-Einstein. Cette thermalisation vers un spectre
de Bose-Einstein est ainsi possible pour z > za, avec za défini par :

za = 6164
(

1− Yp
2

)−1/3( η

8× 10−9

)−1/3

. (3.23)

Bremsstrahlung

Premier des deux processus qui ne conservent pas le nombre de photons, le bremsstrahlung
a été considéré dès les toutes premières ?études sur la thermalisation d’injection d’énergie dans
le CMB [Sunyaev & Zeldovich 1970]. Cette réaction fait intervenir un électron et un noyau et
permet de créer (ou absorber) un photon :

e+N ↔ e+N + γ (3.24)

Cette réaction est régie par l’équation cinétique suivante [Lightman 1981] :(
∂f

∂t

)
B

= QBneσT c
g(xe)
exe

1
x3
e

[1− (exe − 1)f ] , (3.25)

où xe = hν/kTe, et

QB =
4π

(2π)7/2

(
mec

2

kTe

)1/2

α
∑

niZ
2
i

(
hc

kTe

)3

. (3.26)

Pour un plasma constitué de protons et d’hélium on a
∑
niZ

2
i = nb. Le facteur de Gaunt g(xe)

s’écrit [Hu & Silk 1993] :

g(xe) =

{
ln(2.25/xe), xe ≤ 0.37,
π/
√

3, xe ≥ 0.37.
(3.27)

On peut là aussi faire apparâıtre un temps caractéristique tB pour le bremsstrahlung en ré-
écrivant (3.25) comme : (

∂f

∂t

)
B

= t−1
B

[
1

exe − 1
− f

]
, (3.28)

avec

tB = B0
exe

exe − 1
x3
e

g(xe)
, (3.29)

où

B0 = 4.7× 1014

(
η

8× 10−9

)−2(
1− Yp

2

)−1(Te
T

)7/2(1 + z

104

)−5/2

s. (3.30)

Comme l’indique l’équation (3.28), l’action du bremsstrahlung a pour effet de faire converger
le spectre des photons vers une distribution de corps noir (avec un potentiel chimique nul), en
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3.4 Distorsions du CMB 79

un temps caractéristique tB. Ce temps dépend de la fréquence du photon et l’on peut d’ores et
déjà remarquer que ce processus va surtout être efficace à basse fréquence.

De manière similaire à la diffusion Compton, on définit la profondeur optique au bremss-
trahlung :

yB =
∫ t

th

dt

tB
, (3.31)

L’équation (3.28) devient : (
∂n

∂yB

)
B

=
1

exe − 1
− n. (3.32)

La valeur de yB aujourd’hui est :

y0
B =

∫ 0

th

dt

tB
, (3.33)

=
∫ zh

0

texp

tB

dz

1 + z
, (3.34)

= 6.25× 10−2

(
η

8× 10−9

)2(
1− Yp

2

)
exe − 1
exe

g(xe)
x3
e

(
1 + z

104

)3/2

. (3.35)

Pour chaque valeur du redshift, c’est-à-dire à chaque instant dans l’histoire thermique de
l’Univers, on peut calculer la fréquence xe pour laquelle la profondeur optique est égale à 1. Cette
fréquence, xB, indique la fréquence au dessus de laquelle le bremsstralhung devient inefficace à
thermaliser le spectre. En notant xB, la fréquence pour laquelle yB(xB) = 1, il vient, pour
xe � 1 :

xB = 2.5× 10−1 g(xB)1/2

(
η

8× 10−9

)(
1− Yp

2

)1/2(1 + z

104

)3/4

. (3.36)

Double diffusion Compton ou Compton inélastique

Le dernier processus dont le rôle est à prendre en compte dans la thermalisation d’injection
d’énergie est la double diffusion Compton – ou diffusion Compton inélastique :

e+ γ ↔ e+ γ + γ. (3.37)

Comme le bremsstrahlung, ce processus ne conserve pas le nombre de photons et permet ainsi
d’assurer la transition entre un spectre de Bose-Einstein vers un spectre de corps noir.

L’équation cinétique régissant la population de photons sous l’effet de la double diffusion
Compton s’ecrit [Lightman 1981] :(

∂f

∂t

)
DC

= neσT c
4α
3π

(
Te
me

)2 1
x3
e

[1− (exe − 1)f ]
∫
dxex

4
e(1 + f)f. (3.38)

On peut mettre en évidence le temps caractéristique tDC pour cette réaction :(
∂f

∂t

)
DC

= t−1
DC

I(t)
IP

[
1

exe − 1
− f

]
, (3.39)
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80 Histoire thermique de l’univers de Dirac-Milne

où

tDC = 9.41× 1018

(
1− Yp

2

)−1( η

8× 10−9

)−1( T
Te

)2 x3
e

exe − 1

(
1 + z

104

)−5

s, (3.40)

et
I(t) =

∫
dxex

4
e(1 + f)f. (3.41)

Dans le cas où f représente la distribution de Planck, on a I(t) = IP = 4π4/15.
L’équation (3.38) n’est valable que pour xe < 1, car la double diffusion Compton ne peut

créer que des photons d’énergie inférieure à l’énergie moyenne des photons du spectre. Ainsi la
double diffusion Compton sera efficace et considérée essentiellement pour xe < 1.

La profondeur optique pour la double diffusion Compton s’exprime :

y0
DC =

∫ 0

th

dt

tDC
, (3.42)

=
∫ zh

0

texp

tDC

dz

1 + z
, (3.43)

= 1.17× 10−6

(
η

8× 10−9

)(
1− Yp

2

)
exe − 1
x3
e

(
1 + z

104

)4

. (3.44)

En notant xDC la fréquence pour laquelle y0
DC = 1, il vient (xDC � 1) :

xDC = 10−3

(
1− Yp

2

)1/2( η

8× 10−9

)1/2(1 + z

104

)2

. (3.45)

3.4.2 Comparaison des différents temps caractéristiques

Les trois processus décrits ci-dessus ont pour effet, soit de redistribuer en fréquence les
photons après une éventuelle injection d’énergie, soit de faire converger le spectre des photons à
partir d’un spectre Bose-Einstein vers un spectre de corps noir en faisait diminuer le potentiel
chimique sous l’effet de la création ou la disparition de photons. Ces trois processus ne sont pas
toujours efficaces en même temps ou dans les mêmes parties du spectre et l’on peut déterminer
leurs domaines d’efficacité maximale dans le plan (z, xe).

Comparaison des temps caractéristiques tB et tDC

Historiquement, les premières études sur ce sujet [Sunyaev & Zeldovich 1970, Illarionov &
Siuniaev 1975a;b, Danese & de Zotti 1977] ont uniquement considéré le bremsstrahlung et pas la
double diffusion Compton car dans un univers à densité baryonique élevée – proche de la densité
critique comme cela était considéré à l’époque – cette dernière est largement sous-efficace par
rapport au bremsstrahlung car la densité baryonique intervient au carré dans l’équation cinétique
du bremsstrahlung. Dans le cadre d’un univers standard, avec une densité baryonique faible,
indiquée par exemple par la BBN, la double diffusion Compton peut par contre dominer le
bremsstrahlung [Danese & de Zotti 1982, Burigana et al. 1991b;a, Hu & Silk 1993] et il devient
nécessaire de considérer les deux processus.
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3.4 Distorsions du CMB 81

On peut comparer la double diffusion Compton au bremsstrahlung en formant le rapport de
leurs temps caractéristiques. Il vient :

tB
tDC

= 5× 10−15

(
η

8× 10−9

)−1 exe

g(xe)
(1 + z)5/2. (3.46)

Rappelons que cette expression n’est valable que pour xe < 1, si bien que l’on a

tB
tDC
≈ 5× 10−15

(
η

8× 10−9

)−1 1
g(xe)

(1 + z)5/2. (3.47)

Le redshift pour lequel ce rapport vaut 1 est :

zB−DC = 5.26× 105

(
η

8× 10−9

)2/5

g(xe)2/5. (3.48)

Découplage des processus vis-à-vis de l’expansion

La détermination des différentes profondeurs optiques relatives à chaque processus, permet
de déterminer la fréquence (ou le redshift) en dessus de laquelle les processus non conservatifs du
nombre de photons deviennent moins rapides que l’expansion de l’Univers et de ce fait ne sont
plus aptes à thermaliser efficacement une injection d’énergie. Ces fréquences obtenues ci-dessus
sont notées xB et xDC. Afin de prendre en compte les deux processus dans la “même formule”
on introduit également la fréquence xexp, définie par :

xexp =
(
x2

B + x2
DC

)1/2
. (3.49)

Le domaine d’action de la diffusion Compton ne dépend pas de la fréquence et le redshift en
dessous duquel elle n’est plus efficace à thermaliser le spectre vers un spectre de Bose-Einstein
est le redshift za, pour lequel la profondeur optique est égale à 1.

Comparaison des processus non-conservatifs à la diffusion Compton

Les temps caractéristiques des processus qui ne conservent pas le nombre de photons dépendent
de la fréquence considérée, alors que le temps caractéristique de la diffusion Compton est une
constante (par rapport à la fréquence). Ainsi, il va exister une “fréquence de coupure”, xC−B,DC

en dessus de laquelle la diffusion Compton va dominer et en dessous de laquelle l’un des deux
autres processus va dominer. Ainsi, on calcule xC−B,DC telle que tB,DC = tC/4, le temps ca-
ractéristique d’échange d’énergie sous l’effet de la diffusion Compton étant tC/4 [Danese & de
Zotti 1977]. On a

xC−B = 4.3× 101 g(xCB)1/2

(
η

8× 10−9

)1/2

(1 + z)−3/4. (3.50)

et
xC−DC = 3.03× 10−6(1 + z)1/2. (3.51)

Dans la suite on notera
xC =

(
x2

C−B + x2
C−DC

)1/2
. (3.52)
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82 Histoire thermique de l’univers de Dirac-Milne

Figure 3.2 – Gauche : Différents redshifts et fréquences caractéristiques discutés dans le texte
dans le cadre de l’univers de Dirac-Milne avec une densité baryonique η = 8 × 10−9. zc est le
redshift limite pour l’action de la diffusion Compton. zB−DC est le redshift au dessus duquel la
double diffusion Compton domine le bremsstrahlung. xc représente la fréquence en dessous de
laquelle les processus non-conservatifs sont plus rapides que la diffusion Compton. xexp représente
la fréquence au dessus de laquelle les processus non-conservatifs deviennent inefficaces du fait
de l’expansion de l’Univers. Droite : La même figure, représentant les mêmes grandeurs, mais
dans le cadre d’un univers standard avec une densité baryonique η = 6× 10−10.

Ces différentes fréquences et redshifts caractéristiques sont représentés sur la figure (3.2), à
gauche dans le cadre de l’univers de Dirac-Milne avec η = 8 × 10−9 et à droite dans le cadre
du modèle standard, avec η = 6 × 10−10. La courbe orange, représentant xexp, c’est-à-dire
la fréquence au dessus de laquelle les processus non-conservatifs deviennent inefficaces du fait
de l’expansion de l’Univers, est très nettement décalée vers le haut dans le modèle de Dirac-
Milne, ce qui signifie que ces processus vont pouvoir être efficaces sur une gamme de fréquence
beaucoup plus élargie. De même, le redshift za en dessous duquel la diffusion Compton n’est
plus à même d’établir une distribution de Bose-Einstein est beaucoup plus faible dans l’univers
de Dirac-Milne. Nous verrons bientôt quel effet cela a sur les capacités de thermalisation de ces
processus.

3.4.3 Distribution de Bose-Einstein

L’action de la diffusion Compton est différente de celle des deux processus non-conservatifs
considérés ici. Parce qu’elle conserve le nombre total de photons et la quantité totale d’énergie ra-
diative, la diffusion Compton ne va pas pouvoir thermaliser complètement une injection d’énergie
mais, comme indiqué auparavant, va établir une distribution de Bose-Einstein, caractérisée par
un potentiel chimique non-nul µ [Sunyaev & Zeldovich 1970, Illarionov & Siuniaev 1975a]. Un
certain nombre de relations permettent de relier la densité de photons et la densité d’énergie
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3.4 Distorsions du CMB 83

d’une distribution de Bose-Einstein fBE à une distribution de Planck fP [Illarionov & Siuniaev
1975a].

Ainsi la densité de photons nγBE et la densité d’énergie εγBE s’écrivent :

nγBE =
1
π2

∫ ∞
0

fBEp
2dp = nγPφ(µ), (3.53)

εγBE =
1
π2

∫ ∞
0

fBEp
3dp = εγPψ(µ), (3.54)

où les fonctions φ et ψ sont définies par :

φ(µ) =
1
I2

∫ ∞
0

x2
edxe

exe+µ − 1
'

{
2
I2
e−µ, µ� 1,

1− 2 I1I2µ, µ� 1;
(3.55)

ψ(µ) =
1
I3

∫ ∞
0

x3
edxe

exe+µ − 1
'

{
6
I3
e−µ, µ� 1,

1− 3 I2I3µ, µ� 1.
(3.56)

Dans ces expressions, la quantité Im est définie par :

Im =
∫ ∞

0

xme dxe
exe − 1

= m!ζ(m+ 1), (3.57)

I1 =
π2

6
≈ 1.645 I2 = 2ζ(3) ≈ 2.404 I3 =

π4

15
≈ 6.494. (3.58)

On rappelle également les expressions pour une distribution de Planck :

εγP(T ) =
I3

π2
T 4, (3.59)

nγP(T ) =
I2

π2
T 3. (3.60)

Considérons une injection d’énergie bien localisée dans le temps, intervenant à un redshift
supérieur à celui de la transparence de l’univers de la diffusion Compton (z > za). Avant cette
injection d’énergie, les photons ont une température Ti. Après l’injection d’énergie, la diffu-
sion Compton, va établir un spectre d’équilibre, spectre de Bose-Einstein avec une température
Te. On peut relier la quantité d’énergie injectée et le nombre de photons injectés au potentiel
chimique qui caractérise la distribution de Bose-Einstein. Il vient

εγBE(Te) = εγP(Te)ψ(µ) =
I3

π2
T 4
e ψ(µ) = εγP(Ti)

(
1 +

δε

ε

)
=
I3

π2
T 4
i

(
1 +

δε

ε

)
, (3.61)

et

nγBE = nγP(Te)φ(µ) =
I2

π2
T 3
e φ(µ) = nγP(Ti)

(
1 +

δnγ
nγ

)
=
I2

π2
T 3
i

(
1 +

δnγ
nγ

)
. (3.62)

La résolution des deux équations ci-dessus donne, pour des potentiels chimiques petits (µ� 1)
[Hu & Silk 1993] :

µ =
(

3
δε

ε
− 4

δnγ
nγ

)(
8
I1

I2
− 9

I2

I3

)−1

, (3.63)
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84 Histoire thermique de l’univers de Dirac-Milne

µ =
1

2.143

(
3
δε

ε
− 4

δnγ
nγ

)
. (3.64)

Cette formule explicite le potentiel chimique initial formé après une injection d’énergie. Cette
expression est valable juste après l’établissement du spectre de Bose-Einstein par la diffusion
Compton, avant que les processus de création/absorption de photons deviennent efficaces. Ces
processus vont avoir pour effet de diminuer ce potentiel chimique dans la partie basse fréquence
du spectre et de faire converger le spectre vers un spectre de Planck dans cette partie pour les
fréquences inférieures à xC. Dans les cas qui vont nous concerner dans la suite, essentiellement
l’injection d’énergie due à l’annihilation entre matière et antimatière, le nombre de photons in-
jectés est négligeable, et seule importe alors la quantité d’énergie totale injectée. On remarque
également que cette relation ne fait pas cas de la manière dont l’énergie est injectée ; là encore
seule compte la quantité totale d’énergie injectée.

Tous ces éléments étant mis en place, on peut maintenant s’attaquer à l’évolution du potentiel
chimique µ créé au moment d’une injection d’énergie.

3.4.4 Évolution du potentiel chimique

Dans le cas de petites injections d’énergie, faibles devant l’énergie totale des photons du
CMB, conduisant à des petites distorsions du spectre de la radiation, on peut déterminer des
approximation analytiques permettant de déterminer l’évolution du potentiel chimique sous
l’effet des trois processus considérés : diffusion Compton, bremsstrahlung et double diffusion
Compton. L’équation cinétique régissant l’évolution de la distribution des photons du CMB
s’écrit : (

∂f

∂t

)
=
(
∂f

∂t

)
C

+
(
∂f

∂t

)
B

+
(
∂f

∂t

)
DC

. (3.65)

L’hypothèse classique [Sunyaev & Zeldovich 1970] consiste à dire qu’au moins un des trois
processus considérés dans l’équation (3.65) est suffisamment efficace pour assurer un équilibre
quasi-statique ∂f/∂t ≈ 0. On a ainsi l’équation suivante :

1
tc

1
x2
e

∂

∂xe

[
x4
e

(
∂f

∂xe
+ f + f2

)]
+
(

1
tB

+
1
tDC

I(t)
IP

)[
1

exe − 1
− f

]
= 0. (3.66)

On cherche des solutions de la forme :

f =
1

exe+µ′(xe) − 1
, (3.67)

avec µ′(xe) une fonction telle que

µ′(xe) = 0, xe � xC, (3.68)

µ′(xe) = µ, xe � xC. (3.69)

En effet, la diffusion Compton va établir une distribution de Bose-Einstein avec un potentiel
chimique µ non nul. Les processus non-conservatifs vont, quant à eux, faire décrôıtre ce potentiel
chimique vers un potentiel chimique nul pour les fréquences inférieures à xC. Ainsi pour xe > xC,
le potentiel chimique est une fonction constante de la fréquence, déterminée au moment de
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3.4 Distorsions du CMB 85

l’injection d’énergie par la relation (3.64). Toutefois, ce potentiel chimique va évoluer avec le
temps, après l’injection, permettant ainsi la thermalisation sur tout le spectre et non simplement
dans la zone d’efficacité des processus non-conservatifs.

En injectant (3.67) dans (3.66) il vient :

1
x2
e

∂

∂xe

[
x4
e

dµ′

dxe

exe+µ
′

(exe+µ′ − 1)2

]
−
(
tc
tB

+
tc
tDC

I(t)
IP

)
exe

exe − 1
eµ
′ − 1

exe+µ′ − 1
= 0. (3.70)

Pour des petits potentiels chimiques (µ, µ′ � 1), on a I(t) ≈ IP et en remarquant que

tc
tB

=
(

2
xC−B

xe

)2

,
tc
tDC

=
(

2
xC−DC

xe

)2

, (3.71)

il vient, pour xe � 1 :

1
x2
e

∂

∂xe

[
x4
e

dµ′

dxe

exe+µ
′

(exe+µ′ − 1)2

]
− 4x2

C

exe

x3
e

eµ
′ − 1

exe+µ′ − 1
= 0. (3.72)

On s’intéresse à la résolution de cette équation dans le cas de faibles potentiels chimiques
et l’on considère la région de fréquence telles que µ′ < xe < xc � 1, la dernière inégalité étant
toujours vérifiée (voir fig. (3.2)). La première inégalité vient du fait que pour ces domaines de
fréquences, le bremsstrahlung ou la double diffusion Compton domine sur la diffusion Compton
et l’on a alors µ′ ≈ 0. L’équation (3.72) se ré-écrit alors :

1
xe

∂

∂xe

[
x2
e

dµ′

dxe

]
− (2xC)2

x4
e

µ′ = 0. (3.73)

Cette équation a pour solution
µ′(xe) = c1e

−2xC/xe , (3.74)

et on prend la constante c1 = µ pour satisfaire les conditions aux limites (3.68) et (3.69).
On peut considérer le problème de la thermalisation de petites injections d’énergie (µ� 1)

de la façon suivante : à un certain redshift zh, cette injection d’énergie s’arrête et l’on cherche
alors à déterminer l’évolution du potentiel chimique qui va décrôıtre vers une valeur nulle tant
que les processus non-conservatifs sont encore efficaces. Dans le cas contraire, il est utile de
connâıtre la valeur de ce potentiel résiduel afin de la comparer avec la limite observationnelle de
FIRAS.

Pour des redshifts inférieurs à celui de l’arrêt de l’injection d’énergie zh, on peut relier la
variation dans la densité d’énergie de la population de photons suivant une loi de Bose-Einstein
à la dérivée temporelle du potentiel chimique liée à l’injection d’énergie en utilisant les relations
(3.53) et (3.54). Il vient :

1
εBE

dεBE

dt
=

4
Te

dTe
dt

+
1

ψ(µ)
dψ(µ)
dµ

dµ

dt
= 0 (3.75)

et
1

nγBE

dnγBE

dt
=

3
Te

dTe
dt

+
1

φ(µ)
dφ(µ)
dµ

dµ

dt
. (3.76)
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86 Histoire thermique de l’univers de Dirac-Milne

L’évolution du nombre total de photons se fait grâce aux processus non-conservatifs, si bien que
l’on a également :

1
nγBE

dnγBE

dt
=

1
nγBE

1
π2

∫
∂fBE

∂t
p2dp, (3.77)

=
1

I2φµ

∫ (
∂fBE

∂t

)
x2
edxe. (3.78)

En remplaçant le terme dans l’intégrale par l’équation (3.65), et en utilisant (3.75) et (3.76) pour
éliminer le terme en 1/Te, on obtient une équation différentielle temporelle qui régit l’évolution
du potentiel chimique µ :

dµ

dt
+

4
I2M(µ)

∫ (
∂fBE

∂t

)
x2
edxe = 0, (3.79)

avec

M(µ) = 3
φ(µ)
ψ(µ)

dψ

dµ
− 4

dφ

dµ
. (3.80)

En remplaçant la dérivée par sa valeur il vient :

dµ

dt
+

4
I2M(µ)

∫
x2
edxe

(
1
tB

+
1
tDC

ψ(µ)
)[

1
exe − 1

− f
]

= 0 (3.81)

Dans le cas de petites injections d’énergie (µ� 1), on peut utiliser la forme (3.74) et l’on a :

f(t, xe) =
1

exp
(
xe + µ(t)e−2xC/xe

)
− 1

, (3.82)

forme qui est valable dans le cas où µ(t) < xC, c’est-à-dire pour des potentiels chimiques qui
peuvent être réduits par l’action des processus non-conservatifs.

Approximation analytique

Avant de présenter les courbes résultant de l’intégration numérique des équations (3.81) et
(3.82), on peut considérer qu’un seul des deux processus est efficace ce qui permet de pousser
l’approximation analytique un petit peu plus loin. On s’intéresse toujours au cas où µ est petit,
µ� 1, et l’on considère la partie basse fréquence du spectre. Dans ce cas, en ne considérant que
le bremsstrahlung il vient :

dµ

dt
+

4
B0I22.143

∫
ln(2.25/xe)

x2
e

µ(t)e−2xCB/xedxe = 0, (3.83)

[Danese & de Zotti 1977] fournissent l’approximation :

2
∫

ln(2.25/xe)x−2
e µe−2xCB/xedxe '

µ

xCB
ln(0.63/xCB). (3.84)

Si bien que l’équation régissant l’évolution de µ se réduit à :

dµ

dt
+
µ

tµ
= 0, (3.85)
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3.4 Distorsions du CMB 87

avec
tµ =

B0

0.38
xCB

ln(0.63/xCB)
. (3.86)

En travaillant un peu cette expression, et en considérant g(xCB) = 5, on arrive à :

tµ = 3.19× 1026

(
η

8× 10−9

)−3/2(
1− Yp

2

)−1

(1 + z)−13/4 s. (3.87)

En intégrant par rapport au redshift et non plus par rapport au temps, il vient :

dµ

dz
+
dt

dz

µ

tµ
= 0. (3.88)

Au final, si le bremsstrahlung domine il vient :

µ(z) = µ(zh) exp

{
(1 + z)9/4 − (1 + zh)9/4

(1 + zµ)9/4

}
, (3.89)

avec

zµ = 1.24× 104

(
η

8× 10−9

)−2/3(
1− Yp

2

)−4/9

, (3.90)

et où µ(z) est le potentiel chimique à un redshift z < zh et où µ(zh) est le potentiel chimique au
moment de la fin de l’injection d’énergie. Si l’on considère la contrainte de FIRAS, |µ| < 9×10−5,
notons cette valeur µFIRAS, on peut déterminer le potentiel chimique maximal d’injection µ(zh) :

µ(zh) = µFIRAS exp
(

(zh/zµ)9/4
)
. (3.91)

Cette relation analytique est à comparer avec ses équivalentes dans le cadre du modèle
standard. [Hu & Silk 1993] donnent par exemple :

µ(zh) = µFIRAS exp
(

(zh/zstd
µ )5/4

)
, (3.92)

avec

zstd
µ = 6.1× 106

(
1− Yp

2

)−4/5(Ωbh
2

0.02

)−6/5

. (3.93)

La différence dans les redshifts caractéristiques entre le cas de l’univers de Dirac-Milne et
celui d’un univers standard est flagrante, la faible valeur du redshift zµ dans le cas Milne-Dirac
permettant de thermaliser des injections d’énergie jusqu’à des redshifts environ 100 fois plus
faibles que dans le cas standard.

Résolution numérique

On peut également résoudre les équations (3.81) et (3.82) numériquement avec une méthode
Runge-Kutta d’ordre 4 de manière classique. De manière à comparer avec la figure classique
[Fixsen et al. 1996, fig. 6], on peut relier le potentiel chimique d’injection µ(zh) à la quantité
d’énergie injectée en utilisant (3.64) :

µ = 1.4
∆U
U

, (3.94)
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88 Histoire thermique de l’univers de Dirac-Milne

Figure 3.3 – Limites posées par FIRAS [Fixsen et al. 1996] sur la fraction d’énergie qu’il est
possible d’injecter dans le CMB en fonction du redhift. La courbe bleue représente ces contraintes
dans le cadre standard avec une densité baryonique η = 6× 10−10. On a vérifié que cette courbe
est identique à celle traditionnellement utilisée pour présenter ces contraintes d’injection [Fixsen
et al. 1996, fig. 6]. La courbe rouge en trait plein est celle de l’univers de Dirac-Milne pour une
densité baryonique typique η = 8×10−9. À titre informatif, la courbe rouge en tirets correspond
à un univers de Dirac-Milne, mais avec une densité baryonique faible (η = 6 × 10−10), afin de
séparer l’action du taux d’évolution de celle de l’augmentation de la densité baryonique.
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3.5 Recombinaison 89

où ∆U/U représente la fraction d’énergie injectée. Les contraintes sur les quantités d’énergie
injectables dans le CMB en fonction du redshift sont présentées dans la figure (3.3). Ces courbes
confirment les résultats de l’approximation analytique à savoir que l’univers de Dirac-Milne,
de par sa densité baryonique élevée et son évolution plus lente est capable de thermaliser des
petites injections d’énergie jusqu’à des redshifts plus faibles que dans une évolution standard.
La courbe rouge en tirets représente la contrainte d’injection dans l’univers de Dirac-Milne pour
une densité baryonique faible, égale à celle habituellement considérée pour le modèle standard
(η = 6 × 10−10). Cela permet de faire ressortir les deux aspects qui permettent la thermalisa-
tion plus efficace dans l’univers de Dirac-Milne : la densité baryonique plus élevée et le temps
beaucoup plus important que passe l’univers de Dirac-Milne dans des époques où les processus
de thermalisation sont efficaces.

Nous verrons que cette possibilité de pouvoir thermaliser des injections d’énergie jusqu’à
des redshifts de l’ordre de quelques 104 est extrêmement important pour le mécanisme de
nucléosynthèse et en particulier pour la production de deutérium. Il est à noter que ces contraintes
de distorsions du CMB ont fortement défavorisé les modèles symétriques considérés jusqu’ici,
les annihilations matière-antimatière causant des distorsions qui devraient être visibles dans le
spectre du CMB [Jones & Steigman 1978].

3.5 Recombinaison

Le dernier exemple de modifications dans l’histoire thermique de l’Univers introduites par
l’évolution linéaire du facteur d’échelle est celui de la recombinaison. Les changements sont
toutefois, dans ce cas, moins spectaculaires que dans les exemples précédents, notamment car
les valeurs des taux d’expansion de l’univers de Dirac-Milne et de l’univers standard commencent
à devenir comparables, le rapport des âges à la recombinaison étant dans un facteur ∼ 35 entre
les deux modèles.

On appelle époque de la recombinaison le moment où l’Univers, se refroidissant, permet aux
électrons et protons de se combiner en atomes neutres. La densité d’électrons libres chutant
fortement, le libre parcours moyen des photons augmente considérablement jusqu’à devenir de
l’ordre de la distance de Hubble, c’est-à-dire qu’ils n’interagissent que très faiblement avec la
matière.

3.5.1 Approximation de Saha

L’approximation de Saha consiste à considérer que la recombinaison de l’hydrogène se fait
directement et simplement de l’état ionisé à l’état fondamental. C’est une approximation forte,
dont on analysera au paragraphe suivant les limites, mais elle permet d’avoir une bonne idée
des redshifts caractéristiques des différentes étapes de la recombinaison. On considère donc la
réaction de recombinaison

p+ e− ↔ H + γ. (3.95)

Avant que la recombinaison ne commence, les constituants sont en équilibre thermodynamique
et leurs densités s’expriment donc :

ni = gi

(
miT

2π

)3/2

exp
µi −mi

T
(3.96)
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90 Histoire thermique de l’univers de Dirac-Milne

L’équilibre chimique de la réaction (3.95) impose la relation suivante sur les potentiels chimiques :
µH = µe + µp, si bien que l’on obtient :

nH
nenp

=
gH
gegp

(
2π
meT

)3/2

exp
(
BH
T

)
, (3.97)

avec BH = 13.6 eV, l’énergie de liaison de l’atome d’hydrogène, gH = 4, ge = 2 et gp = 2.
On peut introduire la densité baryonique nB en notant que nB = np + nH et la fraction

d’ionisation Xe = np/nB, si bien que (3.97) devient :

1−Xe

X2
e

= η
4
√

2ζ(3)√
π

(
T

me

)3/2

exp
(
BH
T

)
. (3.98)

Cette équation décrit l’évolution de la fraction d’ionisation en fonction de la température et,
notons-le, ne fait en rien intervenir la dynamique de l’Univers, car décrivant une loi d’action de
masse dans une situation d’équilibre thermodynamique. Cette estimation est ainsi valable dans
le modèle standard, comme dans le modèle de Dirac-Milne. La seule variable de cette équation
est la densité baryonique qui intervient à travers η.

Figure 3.4 – Fraction d’ionisation dans le cadre supposé de validité de l’équation de Saha, pour
plusieurs valeur de η10 = 1010η. Le tracé de ces courbes ne fait aucunement référence au modèle
cosmologique sous-jacent.

La figure (3.4) représente la fraction d’ionisation Xe obtenue par l’approximation de Saha.
On peut d’ores et déjà remarquer que, du fait de la quantité de baryons plus importante, la
recombinaison se passe à un redshift (et dont à une température) légèrement plus grand dans
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3.5 Recombinaison 91

l’univers de Dirac-Milne que dans un univers standard avec une densité baryonique plus faible.
Pour fixer les idées, le redshift pour lequel la fraction d’ionisation atteint la valeur Xe = 0.5 est
z ∼ 1380 pour η = 6× 10−10 et z = 1470 pour η = 8× 10−10.

3.5.2 Un traitement plus détaillé

Le traitement à l’aide de l’équation de Saha ne permet pas d’aller beaucoup plus loin, no-
tamment parce qu’il ne dit rien de la fraction résiduelle d’électrons libres à la fin de la recombi-
naison. Ce raisonnement ne prend pas en compte la réalité du mécanisme de la recombinaison.
Les premières études sur ce sujet remontent à la fin des années soixante [Peebles 1968, Zeldo-
vich et al. 1969], avec des raffinements successifs [Jones & Wyse 1985, Krolik 1989]. La dernière
étude sur la recombinaison date de la fin des années 90, [Seager et al. 1999; 2000] étudiant la
recombinaison en prenant en compte plus de 300 niveaux atomiques de l’hydrogène conduisant
ainsi à une détermination de la fraction d’ionisation extrêmement précise, permettant notam-
ment un calcul au pour-cent des coefficients Cl des anisotropies du CMB. En ce qui concerne
cette étude de l’univers de Dirac-Milne, il n’est aucunement besoin à ce stade d’aller chercher
de telles précisions et la méthode décrite dans [Peebles 1993] est amplement suffisante.

L’approximation de Saha est mise en défaut car la recombinaison directe de l’état ionisé à
l’état fondamental est impossible. En effet, lors d’une telle recombinaison, un photon de 13.6 eV
est émis qui réioniserait à coup sûr des atomes voisins, ne changeant ainsi aucunement la fraction
d’ionisation.

La recombinaison est modélisée de la façon suivante. L’atome d’hydrogène est considéré
comme ayant deux niveaux, le niveau fondamental et le premier niveau excité. Tous les autres
niveaux sont intégrés dans le continu. La recombinaison vers l’état fondamental se fait alors de
deux manières possibles. Une double émission de photons de l’état 2S vers le fondamental ; ce
processus est relativement lent (son taux Λ = 8.23 s−1) . Le deuxième chemin se fait en deux
étapes : une transition du continu vers l’état excité suivi de la décroissance vers le fondamental,
accompagnée de l’émission d’un photon Lyα. Ce photon Lyα va pouvoir réioniser les atomes
dans l’état excité, ralentissant de fait la recombinaison. Ces photons Lyα vont également perdre
de l’énergie du fait de l’expansion, diminuant ainsi leur aptitude à retarder le processus.

L’équation régissant la fraction d’ionisation s’écrit alors [Peebles 1993]

− d

dt
Xe =

(
αenbX

2
e − βe(1−Xe)e−

hνα
kT

)
C, (3.99)

avec
C =

1 +KΛ(1−Xe)nb
1 +K(Λ + βe)(1−Xe)nb

. (3.100)

Explicitons ces différent termes : αe est le taux de recombinaison vers l’état excité, le deuxième
terme du membre de droite représente le taux d’ionisation à partir du niveau excité, et le
coefficient βe est relié au taux de recombinaison αe par

βe = αe
(2πmeT )3/2

(2π)3
e−B2/T , (3.101)

où B2 = 3.4 eV est l’énergie de liaison du niveau d’énergie n = 2. Le coefficient C représente la
réduction de la recombinaison causée par les photons Lyα. Dans cette expression K = λ3

α/(8πH),
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92 Histoire thermique de l’univers de Dirac-Milne

où λα = 1.216 × 10−5 cm est la longueur d’onde Lyα et H le taux d’expansion. Un paramètre
très important dans ce calcul est le coefficient de recombinaison αe. On trouve une expression
analytique de ce coefficient dans [Pequignot et al. 1991] :

αe = 10−13 atd

1 + ctd
cm3s−1, (3.102)

avec t = T/(104K), a = 4.309, b = −0.6166, c = 0.6703 et d = 0.5300.
Cette équation s’apparente énormément aux équations provenant de la nucléosynthèse pri-

mordiales, propres aux réseaux nucléaires, et met en jeu la différence entre un terme de pro-
duction et un terme de destruction. J’ai donc utilisé la méthode implicite décrite dans [Arnett
& Truran 1969], utilisée également dans le code de nucléosynthèse et détaillée dans la partie
correspondante.

Il existe un code public de recombinaison RECFAST [Seager et al. 1999; 2000] qui permet de
calculer la fraction d’ionisation de manière très précise. J’ai modifié ce code afin de prendre en
compte l’évolution linéaire du facteur d’échelle. Dans la pratique, la modification est minime :
il suffit juste de faire en sorte que le code demande en entrée non plus Ωb, mais η et de forcer
Ωk = 1 de façon à ce que l’évolution temporelle, liée à l’intégration de l’équation de Friedmann,
corresponde à l’évolution temporelle de l’univers de Dirac-Milne.

Les résultats sont présentés dans la figure (3.5). Les courbes correspondant à l’Univers de
Dirac-Milne pour la densité baryonique compatible avec les contraintes de nucléosynthèse dans
ce cadre (η = 8×10−9) sont les courbes rouges. On remarquera le bon accord entre la prédiction
faite avec l’équation (3.99) et le calcul fait avec RECFAST 4.

3.5.3 Surface de dernière diffusion

Le calcul précis de la fraction d’ionisation permet de déterminer le moment où les photons
parviennent à se propager en ligne droite sans être diffusés par les électrons. Le critère simple
pour déterminer ce moment est d’égaler libre parcours moyen des photons relatif à la diffusion
Thomson au taux d’expansion de l’Univers. On préfère utiliser la profondeur optique à la diffusion
Thomson, qui caractérise la transparence de l’Univers :

τ =
∫ t

0
neσTdt. (3.103)

Le calcul de cette intégrale fait intervenir la dynamique du modèle d’univers sous-jacent car
l’intégrale se fait sur le temps. Pour revenir à une intégrale en redshift, on utilise l’équation de
Friedmann. Il vient :

dz

dt
= −H0(1 + z)2. (3.104)

La profondeur optique s’écrit alors

τ =
∫ z

0
H−1

0 ηnγσTXe
dz′

(1 + z′)2
=

2ζ(3)
π2

H−1
0 ησTT

3
0

∫ z

0
Xe(1 + z′)dz′, (3.105)

en ayant posé ne = Xenb = Xeηnγ .

4. Ce qui est normal puisque RECFAST n’introduit que des raffinements par rapport au mécanisme décrit ici.
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3.5 Recombinaison 93

Figure 3.5 – Fraction d’ionisation. Les courbes en trait plein sont calculées à partir de l’équation
(3.99), les courbes en tiret sont obtenues à partir de RECFAST. Les courbes rouges représentent
la fraction d’ionisation pour un univers de Dirac-Milne avec η = 8 × 10−9, les courbes oranges
pour η = 10−9. Les courbes bleues représentent la fraction d’ionisation pour un univers ΛCDM
avec η = 6× 10−10.

L’Univers devient transparent lorsque τ < 1, ce qui arrive dans l’univers de Dirac-Milne pour
un redshift aux alentours de z ∼ 1040, peu dépendant de la densité baryonique (voir fig. 3.6).

De la même manière que pour le modèle standard, on peut former la fonction de visibilité,
qui caractérique la probabilité qu’un photon effectue sa dernière diffusion entre les redshifts z
et z + dz. On pose :

P (z) = e−τ
dτ

dz
. (3.106)

Les fonctions de visibilité pour l’univers de Dirac-Milne sont représentées sur la partie droite
de la figure (3.6). On approxime traditionnellement [Jones & Wyse 1985] ces fonctions par des
gaussiennes centrées sur le redshift du maximum et de variance définie par la largeur à mi-
hauteur. Ce redshift moyen zLSS

5 et cette variance définissent alors le redshift et l’épaisseur de
la surface de dernière diffusion. Les paramètres de ces gaussiennes sont donnés dans le tableau
(3.1). On remarque que la courbe bleue, qui correspond au modèle standard, est sensiblement la

5. LSS = Last Scattering Surface = surface de demière diffusion
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94 Histoire thermique de l’univers de Dirac-Milne

Figure 3.6 – Gauche : profondeur optique à la diffusion Thomson. L’Univers devient transpa-
rent quand τ ≈ 1. Droite : fonctions de visibilité. Le redshift au maximum indique le redshift
de la surface de dernière diffusion. Les courbes bleues sont tracées dans le cadre d’une modèle
ΛCDM avec η = 6 × 10−10, les courbes rouges dans ce cadre d’un univers de Dirac-Milne avec
η = 8× 10−9 et les courbes oranges avec η = 10−9.

même que celles de l’univers de Dirac-Milne malgré la différence entre l’évolution des fractions
d’ionisation respectives.

Modèle zLSS ∆z
Dirac-Milne, η = 8× 10−9 1036 58

Dirac-Milne, η = 10−9 1047 66
ΛCDM, η = 6× 10−10 1068 84

Table 3.1 – Redshift et épaisseur de la surface de dernière diffusion

Il est à noter que si les redshifts caractéristiques de la recombinaison sont du même ordre de
grandeur dans les deux modèles, il n’en est pas du tout de même pour les temps caractéristiques.
En effet, l’Univers de Dirac-Milne est beaucoup plus vieux à redshift égal qu’un univers ΛCDM.
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Nucléosynthèse
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4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Après la lecture du chapitre précédent, on peut raisonnablement se douter que la nucléosyn-
thèse primordiale ne va pas se passer dans l’univers de Dirac-Milne exactement de la même
manière que dans le cas standard. Premier constat : l’âge de l’univers de Dirac-Milne à 80 keV,
température typique de la nucléosynthèse, est d’environ 40 ans, soit environ 7 millions de fois
plus grand que les trois minutes habituellement considérées dans le cadre du modèle standard.
Les conditions sont donc pour le moins différentes !

Malgré cette différence gigantesque dans les temps caractéristiques, une production primor-
diale de l’hélium-4 est possible dans un univers à facteur d’échelle linéaire. Le mécanisme a été
mis en évidence à la fin des années 90 [Lohiya et al. 1998] et repose sur le découplage tardif des
interactions faibles vers 80 keV, température à laquelle la nucléosynthèse peut enfin commencer.
Ce point n’étant pas largement connu de la communauté, je le détaillerai dans une première sec-
tion. On comprendra alors pourquoi j’ai considéré jusqu’à présent une densité baryonique jusqu’à
15 fois plus importante que celle du modèle standard. Ce mécanisme thermique et homogène
produit également du lithium-7, et ce qui peut apparâıtre comme une heureuse cöıncidence, à
un niveau légèrement inférieur à la production de lithium-7 dans le cadre de la nucléosynthèse
standard. Le problème du lithium-7 n’est pas pour autant résolu mais cela assure néanmoins la
cohérence du modèle.

La deuxième partie du chapitre présente les différents mécanismes possibles de production
de deutérium et d’hélium-3. Ces deux isotopes sont en effet trop fragiles pour survivre à la
nucléosynthèse thermique, ce qui a d’ailleurs conduit [Kaplinghat et al. 2000] à conclure à la
non-viabilité des cosmologies linéaires. Nous montrerons dans cette partie que cette conclusion
ne tient plus en présence de domaines en contact de matière et d’antimatière. L’univers de Dirac-
Milne fournit ainsi un scénario original de production de deutérium et d’hélium-3 résultant des
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96 Nucléosynthèse

annihilations qui se déroulent à la frontière entre les domaines.

4.1 Nucléosynthèse homogène

4.1.1 Rappel du mécanisme standard

Nous avons décrit dans le chapitre 1 le mécanisme de la nucléosynthèse standard. Rappelons-
le brièvement. Vers une température d’environ 1 MeV, les interactions faibles, qui assurent
l’équilibre thermodynamique entre protons et neutrons, se découplent. Au moment de ce découplage,
le rapport de la densité de neutrons sur la densité de protons, n/p = e−Q/T , vaut environ 1/6.
Après le découplage la densité de neutrons décrôıt du fait de la durée de vie finie du neutron,
de l’ordre d’une quinzaine de minutes. La nucléosynthèse commence à proprement parler au
moment où le deutérium, produit par la réaction p+n↔ D+γ, survit à sa photodésintégration,
soit vers une température d’environ 80 keV. L’univers est alors âgé d’environ trois minutes et le
rapport n/p a décru de 1/6 à 1/7. De manière simplifiée, tous les neutrons encore disponibles
sont intégrés par le réseau des réactions nucléaires dans les noyaux d’hélium, conduisant à une
abondance finale en fraction de masse YP ∼ 0.24.

Voilà pour le cas standard. Dans le cadre du modèle de Dirac-Milne, l’Univers est âgé d’en-
viron 40 ans à une température de 80 keV, température à laquelle la nucléosynthèse peut com-
mencer. La comparaison de cette très longue échelle de temps à la durée de vie du neutron a
conduit une première étude [Kaplinghat et al. 1999] à conclure que tous les neutrons auraient
disparus avec un tel temps disponible, rendant la production primordiale d’hélium impossible.
Il a été démontré de manière concomitante à cette première étude [Lohiya et al. 1998] que cette
conclusion était erronée, du fait du découplage tardif des interactions faibles dans le cadre de
l’évolution linéaire du facteur d’échelle.

4.1.2 Découplage des interactions faibles et abondance des neutrons

Nous l’avons vu à la section (3.2), les interactions faibles se découplent, dans l’univers de
Dirac-Milne, à une température plus faible que dans le cas standard du fait de l’évolution plus
lente de l’Univers. Les populations de neutrons et de protons étant régies par ces interactions, il
est nécessaire de reconsidérer les taux de conversion de ces deux particules. Il y a six réactions
faibles qui assurent l’équilibre thermodynamique entre protons et neutrons [Alpher et al. 1953] :

p+ ν̄ ↔ n+ e+, p+ e− ↔ n+ ν, p+ e− + ν̄ ↔ n. (4.1)

Les taux de ces réactions sont exprimés dans [Weinberg 1972]. Ainsi les taux de conversion
p→ n et n→ p s’écrivent :

λp→n = A

∫ (
1− m2

e

(Q+ q)2

)1/2( (Q+ q)2

1 + e(Q+q)/kT

)(
q2

1 + e−q/kTν

)
dq, (4.2)

et

λn→p = A

∫ (
1− m2

e

(Q+ q)2

)1/2( (Q+ q)2

1 + e−(Q+q)/kT

)(
q2

1 + eq/kTν

)
dq, (4.3)
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4.1 Nucléosynthèse homogène 97

avec Q ≡ mn − mp = 1.293 MeV, la différence de masse entre neutron et proton et A une
constante de normalisation faisant intervenir les constantes de couplage axiaux et vectoriels. On
peut déterminer cette constante de telle manière que dans la limite T → 0, le taux de conversion
des neutrons en protons soit égal à l’inverse de la durée de vie des neutrons. Il vient alors
A = 1.98× 10−32 eV5 s−1.

Figure 4.1 – Comparaison des taux de conversion p → n (courbes pleines) et des taux de
conversion n→ p (courbes pointillées) par rapport aux taux d’expansion de l’univers de Dirac-
Milne (courbe rouge) et de l’univers standard (courbe bleue). Le croisement des taux d’expansion
avec le taux de conversion p → n indique le découplage des interactions faibles, vers 1 MeV
pour le modèle standard et 90 keV pour l’univers de Dirac-Milne, à la base du mécanisme de
nucléosynthèse. Le palier des courbes pointillées indique le taux de conversion n→ p du fait de
la désintégration libre du neutron.

La figure (4.1) représente les taux d’expansion des univers de Dirac-Milne (courbe rouge) et
standard (courbe bleue) ainsi que les taux de conversion des protons en neutrons (traits plein) et
des neutrons en protons (tirets). Ces taux de conversion ne sont pas rigoureusement identiques
dans les deux modèles du fait de la température des neutrinos qui reste égale à celles des photons
dans le modèle de Dirac-Milne alors que dans le cas standard elle est inférieure d’un facteur 1.4,
les photons étant “réchauffés” par l’annihilation des paires thermiques e+e−.

La température à laquelle le taux d’expansion devient supérieur au taux de conversion pro-
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98 Nucléosynthèse

ton → neutron, température qui marque le découplage des interactions faibles dans l’univers de
Dirac-Milne, se situe vers 90 keV. Cette température, obtenue de manière grossière en comparant
taux d’expansion et taux de réaction est comparable à celle de survie du deutérium, proche de
80 keV. Ce calcul, bien qu’approché, nous laisse néanmoins entendre que protons et neutrons
restent dans le rapport

n

p
= e−

Q
T (4.4)

jusqu’au début de la nucléosynthèse, et ce malgré l’échelle temporelle extraordinairement plus
longue que dans le cas standard.

4.1.3 Mécanisme de production

Ce découplage tardif des interactions faibles est extrêmement important pour la nucléosynthèse
dans l’univers de Dirac-Milne. Le mécanisme détaillé qui mène à la production d’hélium-4 est
en réalité subtil et a été mis en évidence pour la première fois dans [Lohiya et al. 1998, Sethi
et al. 1999]. Le principe repose sur l’équilibre cinétique de la réaction écrite symboliquement par
n ↔ p, qui assure le maintien du rapport n/p à sa valeur d’équilibre exp(−Q/T ). Le problème
ressemble fort à un problème de cinétique chimique : si l’un ou l’autre des deux réactifs (ici,
neutron ou proton) est rajouté ou retiré du milieu à un rythme suffisement faible pour ne pas
rompre l’équilibre, alors l’équilibre cinétique va se déplacer dans un sens ou dans un autre de
façon à ramener le rapport n/p à sa valeur d’équilibre. C’est simplement la loi d’action de masse
qui s’exprime ici. Dans le cas présent, des neutrons vont de temps en temps disparâıtre du mi-
lieu car ils sont capturés pour faire du deutérium puis de l’hélium. Après cette capture, il existe
un léger déficit de neutrons, mais la réaction beta inverse p → n permet une régénération des
neutrons et un retour du ratio n/p à sa valeur d’équilibre. Compte tenu de la différence de masse
entre neutron et proton, les neutrons sont évidemment défavorisés et sont présents en tout petit
nombre dans le milieu. Ce qui importe pour ce mécanisme, c’est que le taux auquel les neutrons
sont incorporés dans le réseau des réactions nucléaires soit faible comparé au taux de conversion
des protons en neutrons, afin de ne pas perturber de manière trop importante l’équilibre des
réactions faibles.

La figure (4.2) représente le taux d’expansion de l’Univers de Milne (en rouge), le taux de
conversion des protons en neutrons sous l’effet de la réaction beta inverse (en orange) et le taux
de production de l’hélium-4 (en violet plein). Cette figure illustre que le taux de précipitation
des neutrons vers l’hélium-4 est très faible et en particulier plus faible que le taux de conversion
protons-neutrons, justifiant ainsi le mécanisme décrit au dessus. On remarque un plateau dans
la production d’hélium-4 qui correspond à la production lente mais continue du deutérium puis
de l’hélium. On distingue particulièrement le moment où le taux d’expansion devient plus grand
que le taux de conversion p↔ n et la chute brutale de la production d’hélium-4 correspondante
car il n’y a alors pratiquement plus de neutrons dans le milieu. La courbe en pointillés représente
le même taux de production d’hélium-4, mais dans l’univers standard (avec η = 6× 10−10). On
remarque ainsi que le taux de production d’hélium-4 est beaucoup plus faible dans le modèle
Dirac-Milne, mais le mécanisme est efficace pendant un temps beaucoup plus long que dans le
cas standard. On comprend ainsi l’appellation simmering 1 utilisée par [Lohiya et al. 1998] pour

1. Mijotant ; un peu comme un pot-au-feu.
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4.1 Nucléosynthèse homogène 99

Figure 4.2 – Comparaison de différents taux caractéristiques dans l’univers de Dirac-Milne. En
rouge, le taux d’expansion, et en orange le taux de conversion des protons en neutrons. Tant
que ce taux est supérieur au taux d’expansion, la production d’hélium-4 est suffisamment faible
pour permettre le maintien de l’équilibre entre protons et neutrons. À titre comparatif, le taux
de production d’hélium-4 dans le cas standard est indiqué en pointillés.

décrire cette nucléosynthèse.
Parallèlement à cette production d’hélium-4, la prise en compte d’un réseau de réactions

nucléaires conduit, au même titre que dans la nucléosynthèse standard, à la production d’autres
éléments, à des quantités beaucoup plus réduites. La prédiction de ces abondances primordiales
passe par l’utilisation d’un code numérique de nucléosynthèse, utilisation que je vais maintenant
décrire.

4.1.4 Résolution numérique

La détermination exacte des abondances en éléments légers produites par ce mécanisme
nécessite l’utilisation de moyens numériques. En effet, il faut résoudre un système non linéaire
d’équations différentielles du premier ordre qui peut s’écrire sous la forme suivante :

dYi
dt

=
∑
r

f rklYkYl − f rijYiYj , i = 1, Nisot, r = 1, Nreac, (4.5)
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100 Nucléosynthèse

Nisot étant le nombre d’éléments considérés, Nreac le nombre de réactions faisant intervenir
l’élément i comme produit ou réactif, f rij le taux de la réaction i + j → k + l et f rkl celui de la
réaction inverse k + l→ i+ j. On peut réécrire ce système sous la forme compacte

dY

dt
= F (Y ), Y = (Yi)i=1,Nisot

. (4.6)

La résolution de cette équation est délicate, car le système étant la plupart du temps à l’équilibre,
la fonction F est différence de deux termes du même ordre de grandeur, ce qui implique des
difficultés numériques pour la résolution du système (4.6). Une bonne méthode de résolution
pour les réseaux de réactions nucléaires est la méthode implicite décrite dans [Arnett & Truran
1969] et [Coc 2007].

Si Yn dénote la valeur de Y au temps tn, on a, d’une part,

dY

dt
≈ Yn+1 − Yn

∆t
(4.7)

et, d’autre part,
F (Y ) ≈ F (Yn+1) = F (Yn) + (Yn+1 − Yn)F ′(Yn), (4.8)

où ∆t = tn+1 − Tn et le prime dénote une dérivation par rapport à Y . La valeur de Y au temps
tn+1 s’écrit alors

Yn+1 = Yn −
(
F ′(Yn)− 1

∆t

)−1

F (Yn). (4.9)

Cette méthode est implémentée dans le code original d’A. Coc 2 [Coc 2007], utilisé jusqu’alors
dans le cadre d’une évolution standard du facteur d’échelle.

Modification du code de BBN

J’ai donc utilisé ce code dédié à la nucléosynthèse primordiale standard et l’ai modifié pour
le rendre compatible avec la dynamique de l’univers de Dirac-Milne. La première modification
fut de le réécrire en FORTRAN 90 nettement plus agréable à manipuler que le FORTRAN 77.
J’ai ensuite modifié la routine calculant la relation temps-température de manière à ce qu’elle
suive la relation t = T0/(H0T ). Le code original ne comportait que 13 réactions nucléaires –
la nucléosynthèse standard n’en fait pas intervenir plus – nombre insuffisant dans le cas qui
m’intéresse [Lohiya et al. 1998]. La prise en compte des réactions intervient dans le code au
moment du calcul de la matrice F ′. Il s’agit d’une matrice 8×8 (Nisot = 8 dans le cas standard)
dont l’élément générique est :

F ′mn =
d

dYn

∑
rm

f rmkl YkYl − f
rm
ij YiYj , (4.10)

rm représentant l’ensemble des réactions faisant intervenir l’élément m comme réactif ou produit.
Cette matrice est codée “en dur” dans le code original, ce qui fait courir le risque de nombreuses
erreurs dans le cas d’ajout d’une réaction ! De plus dans le cas d’ajout de nouveau isotopes,

2. Ce code n’ayant pas fait l’objet de publication dédiée de la part de son auteur, je tiens à signaler que c’est

ce même code qui est utilisé dans [Coc et al. 2006; 2007; 2008]. Je remercie d’ailleurs son auteur pour m’avoir

autorisé à utiliser et à modifier son code.
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4.1 Nucléosynthèse homogène 101

la matrice change de taille et il faut alors la remplir à nouveau “à la main”. Le mécanisme
de nucléosynthèse dans l’univers de Dirac-Milne impose de considérer de nombreuses réactions
et de nombreux éléments supplémentaires. J’ai donc modifié de manière importante le code
de manière à pouvoir ajouter ou enlever une réaction ainsi qu’un nouvel élément au réseau de
réactions nucléaires de manière totalement transparente.

Nous l’avons vu, une des particularités de cette nucléosynthèse réside dans ses grandes
échelles de temps. Cela a posé un problème numérique car, de manière à rendre le code uti-
lisable en un temps raisonnable, les pas de temps sont eux aussi largement plus importants,
dans le rapport des temps de Hubble entre l’univers de Dirac-Milne et l’univers standard. Un
pas de temps plus important implique des erreurs numériques plus importantes. Je me suis donc
assuré de la conservation du nombre baryonique total au cours de l’évolution du code. Comme
on s’intéresse particulièrement à des éléments comme le lithium-7 dont l’abondance relative à
l’hydrogène est de l’ordre de 7Li/H ∼ 10−10, il faut a priori imposer au code une conservation
du nombre baryonique meilleure que ce ratio. Bien évidemment, cette meilleure conservation du
nombre baryonique impose un temps de calcul plus important !

4.1.5 Réactions mises en jeu

Le réseau nucléaire de la nucléosynthèse standard est limité à 13 principales réactions qui font
intervenir 7 éléments – H, D, T, 3He, 4He, 7Li, 7Be – plus les neutrons. L’échelle de temps de la
nucléosynthèse standard étant de l’ordre de la dizaine de minutes, il n’est pas du tout nécessaire
de considérer des réactions dont les temps de réactions sont beaucoup plus importants. Par
exemple, la désintégration du tritium (temps de demi-vie de l’ordre de 11 ans) en hélium-3 ne
présente aucun intérêt dans le cas standard.

La situation est tout à fait différente dans le cas de l’univers de Dirac-Milne où la nucléosynthè
se se déroule sur une échelle de temps de l’ordre de la dizaine d’années. Il est ainsi indispensable
de prendre en compte la désintégration du tritium sus-citée mais également toutes les autres
réactions nucléaires qui, même si elles ont des taux de réaction très faibles, deviennent non-
négligeables car elles ont lieu sur des périodes de temps des millions de fois plus longues que
dans le cas standard.

Une conséquence de la grande durée de cette nucléosynthèse est la production, à des niveaux
comparables, voire supérieurs à celui du 7Li, de métaux lourds (C, N, O et au delà). Toutes les
réactions nucléaires qui font intervenir ces éléments sont a priori à inclure dans le code.

J’ai ainsi ajouté au code initial toutes 3 les réactions nucléaires faisant intervenir les éléments
de masse 1 à 7 dont il existe des données sur les taux de réaction. J’ai également étendu le réseau
nucléaire jusqu’à l’aluminium-25, portant ainsi le nombre total d’isotopes considérés à 40 et le
nombres de réactions à 101 (en comptant les désintégrations β des isotopes instables). La liste
des réactions est présentée dans le tableau (4.1), ainsi que leur provenance.

Le résultat du calcul numérique est présenté sur la figure (4.3), qui représente l’évolution
des abondances relatives des éléments légers en fonction de la température. Cette figure est
évidemment à comparer à celle obtenue dans la nucléosynthèse primordiale standard (fig. (1.5)).
La production du lithium-7 est en réalité assurée par le béryllium-7, qui décrôıt par capture

3. L’exhaustivité de cette liste n’est néanmoins pas garantie.
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102 Nucléosynthèse

Réaction Réf.

n ↔ p 1,6
1H(p,νe+)2H 5

1H(n,γ)D 2
2H(p,γ)3He 3
2H(d,n)3He 3
2H(d,p)3H 3
2H(n,γ)3H 6

2H(d,γ)4He 5
2H(α, γ)6Li 5
3H(d,n)4He 3
3H(α, γ)7Li 3
3H(p,γ) 4He 4
3He(n,p)3H 3

3He(D,p)4He 3
3He(α,γ)7Be 3

3He(3He,2p)4He 5
3He(n,γ)4He 6
3He(3H,γ)6Li 10

3He(3H,D)4He 4
4He(αn,γ)9Be 5
4He(αα, γ)12C 5
4He(3H, n)6Li 4

6Li(p,γ)7Be 5
6Li(p,α)3He 5
6Li(α,γ)10B 4
7Li(α,n)10B 5
7Li(p,γ)8Be 5
7Li(p,α)4He 3
7Li(α,γ)11B 5
7Be(n,p)7Li 3

Réaction Réf.
7Be(α, γ)11C 5
7Be(p,γ)8B 5
9Be(p,α)6Li 5
9Be(p,d)8Be 5
9Be(α,n)12C 5
9Be(p,γ)10B 5
9Be(p,n)9B 5
10B(p,γ)11C 5
10B(p,α)7Be 5
11B(p,α)8Be 5
11B(p,γ)12C 5
11B(p,n)11C 5
11C(p,γ)12N 7
11C(n,γ)12C 8
12C(α,n)15O 4
12C(p,γ)13N 5
12C(α,γ)16O 5
13C(p,γ)14N 5
13C(α,n)16O 5
13C(p,n)13N 5
13N(p,γ)14O 5
14N(p,γ)15O 5
14N(p,n)14O 5
14N(p,α)11C 5
14N(α,γ)18F 5
14N(α,n)17F 5
15N(α, γ)19F 5
15N(p,α)12C 5
15N(p,γ)16O 5
15N(p,n)15O 5

Réaction Réf.
15N(α,n)18F 4
16O(p,γ)17F 5

16O(α,γ)20Ne 5
16O(p,α)13N 4
17O(p,α)14N 5
17O(p,γ)18F 5

17O(α,n)20Ne 5
18O(p,γ)19F 5
18O(p,α)15N 5

18O(α,γ)22Ne 5
18O(α,n)21Ne 5
18F(p,α)15O 9
19F(p,α)16O 5
19F(p,n)19Ne 5
19F(α,p)22Ne 4
19F(p,γ)20Ne 5
20Ne(p,α)17F 5

20Ne(p,γ)21Na 5
20Ne(α,γ)24Mg 5
21Ne(α,n)24Mg 5
21Ne(p,γ)22Na 5
22Ne(p,γ)23Na 5
22Ne(α,n)25Mg 5
22Na(n,p)22Ne 4
23Na(p,α)20Ne 5
23Na(p,γ)24Mg 5
24Mg(p,α)21Na 5
24Mg(p,γ)25Al 5

Table 4.1 – Liste des réactions nucléaires utilisées dans le code de nucléosynthèse primodiale
dans l’univers de Dirac-Milne. Les 14 désintégrations β ne sont pas reportées dans ce tableau.
Références : 1=[Dicus et al. 1982] ; 2 =[Chen & Savage 1999] ; 3=[Descouvemont et al. 2004] ;
4=[Caughlan & Fowler 1988] ; 5=[Angulo et al. 1999] ; 6=[Wagoner 1969] ; 7=[Tang et al. 2003] ;
8=[Rauscher et al. 1994], ; 9=[Coc et al. 2000] ; 10= [Fukugita & Kajino 1990]
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4.1 Nucléosynthèse homogène 103

Figure 4.3 – Abondances des éléments légers jusqu’au 7Be produits par nucléosynthèse ther-
mique dans l’univers de Dirac-Milne. Yp est l’abondance d’hélium-4 en fraction de masse. La
densité baryonique est prise telle que η = 8× 10−9.

électronique vers le lithium-7 lorsque l’univers se neutralise. Dans la suite, on désignera par
lithium-7, la somme du lithium-7 et du béryllium-7.

On remarque immédiatement que l’hélium-4 et le lithium-7 sont produits dans des propor-
tions qui semblent compatibles avec les observations, ou du moins comparables aux prédictions
de la nucléosynthèse standard. Il est également remarquable que l’hélium-3 et le deutérium
sont quasi-totalement détruits pendant cet épisode thermique. Cette destruction du deutérium,
considérée comme plus critique que celle de l’hélium-3, a amené [Kaplinghat et al. 2000] à
conclure à l’impossibilité du scénario de l’univers à évolution linéaire. Je montrerai dans la
deuxième partie du chapitre que la présence d’antimatière change la donne et permet de pro-
duire du deutérium de manière inhomogène.

Comme il a été indiqué précédemment, la longue période sur laquelle se déroule la nucléosyn-
thèse permet la production d’éléments lourds dans des quantités comparables – et même supé-
rieures – à celle du lithium-7. Cette production d’éléments lourds est une originalité du modèle
de Dirac-Milne, car dans la nucléosynthèse primordiale standard, aucun élément plus lourd que
le lithium-7 n’est produit dans des quantités comparables.

La figure (4.5) représente les abondances de certains éléments plus lourds que le lithium-7. Ne
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104 Nucléosynthèse

sont representés que les éléments dont les abondances ne sont pas ridiculeusement faibles, et par
souci de clarté, j’ai choisi de découper la figure en quatre. Sur chaque figure, j’ai également tracé
l’abondance de beryllium-7 (qui décrôıt après la recombinaison vers le lithium-7) afin d’établir
un point de comparaison. Ce qu’il ressort de cette figure, c’est que des quantités importantes
d’azote-14, de néon-21 et de magnésium-25 sont produites durant la nucléosynthèse de l’univers
de Dirac-Milne. Notons toutefois que le magnésium-25 est l’isotope stable le plus lourd inclus
dans le code, et qu’ainsi son abondance représente en quelque sorte la somme des abondances
des éléments plus lourds non considérés dans le code. La raison de cette production importante
de métaux est bien sûr le temps passé à des températures assez élevées pour permettre aux
réactions (p,γ) et (p,α) de produire des éléments lourds. Je n’ai pas jugé utile d’inclure dans
le code les réactions nucléaires permettant d’aller au delà du magnésium-25, car il n’y a pas
d’observation des abondances primordiales des éléments plus lourds que le lithium-7. Se pose
toutefois la question de savoir si de telles quantités d’azote-14 peuvent être mesurées et le cas
échéant comment s’assurer qu’il s’agit d’une mesure de l’abondance primordiale et non résultant
d’un enrichissement en métaux par des explosions d’étoiles.

4.1.6 Influence de la densité baryonique

Comme dans le scénario standard, l’abondance des différents éléments à la fin de la pro-
duction thermique et homogène de la nucléosynthèse ne dépend que d’un seul paramètre : la
densité baryonique. Cette densité est classiquement paramétrée par le rapport du nombre de
baryons sur le nombre de photons, noté η. Nous avons vu dans le chapitre 1 que la valeur de cette
grandeur dans le cadre du modèle standard était proche de 6 × 10−10, qu’elle soit déterminée
en comparant les prédictions de la nucléosynthèse standard aux observations ou à partir des
fluctuations de température du CMB. Dans l’univers de Dirac-Milne, on détermine également
la densité baryonique en comparant prédictions de la nucléosynthèse et observations. La com-
paraison s’effectue en premier lieu grâce à l’hélium-4 puisque par nucléosynthèse primordiale
on entend principalement formation d’hélium, les autres éléments n’étant que des cendres pro-
duites en proportion beaucoup plus faible . Ces cendres sont toutefois importantes puisqu’elles
permettent de confronter le scénario à ses prédictions que ce soit dans le cas standard ou dans
le cas de l’univers de Dirac-Milne.

La figure (4.4) présente les abondances en hélium-4 et en lithium-7 (en réalité le béryllium-7)
en fonction de la densité baryonique. Les bandes horizontales représentent les limites observa-
tionnelles discutées dans le chapitre 1. Cette figure confirme l’affirmation indiquée plus haut,
à savoir que le mécanisme de nucléosynthèse dans l’univers de Dirac-Milne permet effective-
ment la production d’hélium-4 et de lithium-7 à des niveaux comparables aux observations. La
dépendance des abondances de ces deux éléments vis-à-vis de la densité baryonique est forte.
La densité baryonique qui permet d’obtenir une abondance d’hélium-4 compatible avec les ob-
servations se situe entre

8.8× 10−9 < η < 9.6× 10−9. (4.11)

On remarque que si l’on se fie aux barres d’erreurs des contraintes observationnelles sur le
lithium-7, il n’y a pas de valeur de η qui donnerait une valeur compatible à la fois pour l’hélium-
4 et le lithium-7. Toutefois, la valeur minimale de η imposée par la contrainte sur l’hélium-4
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4.1 Nucléosynthèse homogène 105

Figure 4.4 – Variations des abondances finales d’hélium-4 (en fraction de masse, en haut) et
de lithium-7 (en nombre par rapport à l’hydrogène, en bas) en fonction de la densité baryonique
η10 = 1010η, où η est le rapport du nombre de baryons sur le nombre de photons au moment de
la nucléosynthèse. Les bandes horizontales représentent les contraintes observationnelles décrites
au chapitre 1. La densité baryonique nécessaire pour satisfaire la contrainte de l’hélium-4 est
environ 13 fois plus grande que celle obtenue dans le modèle standard.
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106 Nucléosynthèse

Figure 4.5 – Abondance des éléments plus lourds que l’hélium-4 produits par nucléosynthèse
thermique dans l’univers de Dirac-Milne. Pour faciliter les comparaisons, l’abondance en
béryllium-7 est reportée sur chaque figure. La densité baryonique est prise telle que η = 8×10−9.

te
l-0

04
42

94
8,

 v
er

si
on

 1
 - 

24
 D

ec
 2

00
9



4.2 Nucléosynthèse secondaire 107

fournit une abondance en lithium-7 de l’ordre de
7Li
H

= 3.45× 10−10. (4.12)

Cette valeur est certes plus grande que la valeur observationnelle considérée comme primor-
diale, mais elle est légèrement plus faible que la valeur prédite par la nucléosynthèse standard.
C’est évidemment une pure cöıncidence, mais le fait est que l’univers de Dirac-Milne produit du
lithium-7 à une valeur comparable aux observations si la densité baryonique est telle que l’abon-
dance d’hélium-4 est, quant à elle, compatible avec les mesures d’hélium. Ce point est assez
remarquable car, si cela n’avait pas été le cas, et que le lithium-7 avait été produit dans l’univers
de Dirac-Milne à toute autre valeur, il aurait été très difficile de trouver des scénarios permet-
tant de produire ou détruire dans des proportions arbitraires ce lithium-7. Notons également que
l’univers de Dirac-Milne ne résout pas le problème du lithium-7. En effet la valeur prédite est
toujours plus grande que la valeur déduite des observations, mais la différence entre prédiction
et observations est moindre que dans le cas standard. Ainsi, le fait d’obtenir du lithium-7 par le
scénario de nucléosynthèse décrit dans cette partie ne constitue bien évidemment pas une preuve
de la validité du modèle mais assure néanmoins sa cohérence sur ce point.

La figure (4.4) ne considère que ces deux éléments car il n’en a pas pas d’autres qui seraient
produits par cette nucléosynthèse thermique à des niveaux observés. En particulier, le deutérium
et hélium-3 sont produits à des niveaux infinitésimaux (respectivement ∼ 10−18 et ∼ 10−13),
largement inférieurs aux quelques 10−5 observés. Il convient maintenant d’étudier dans quelle
mesure la présence de domaines séparés de matière et d’antimatière peut conduire à une produc-
tion de ces deux éléments et ainsi changer cette conclusion. C’est l’objet des parties suivantes
du chapitre.

Avant de passer à cette partie, il convient de revenir sur la densité baryonique nécessaire pour
obtenir une nucléosynthèse de l’hélium-4 satisfaisante. Cette densité baryonique est environ 15
fois plus grande que celle habituellement considérée dans le modèle standard. Ce point avait été
initialement remarqué dans [Lohiya et al. 1998]. Cette densité baryonique 15 fois plus grande
que celle du modèle standard est une spécificité du modèle de Dirac-Milne. Elle signifie que
tous les raisonnements effectués dans le cadre du modèle standard qui reposent sur l’idée d’une
densité baryonique faible – en terme de densité critique, les baryons ne représentent que 4%
de l’Univers standard – sont à revoir dans le cadre du modèle de Dirac-Milne. En particulier
la nécessité d’avoir une composante non-baryonique disparâıt. Cette nécessité résultait du fait
que dynamiquement, les galaxies et les amas de galaxies, ont besoin de plus de masse que ne
le permet des 4% de baryons habituellement considérés. Il était donc nécessaire d’invoquer la
présence d’une composante massive, mais qui ne serait pas composée de matière baryonique.
Avec une densité baryonique 15 fois plus importante cette conclusion ne tient plus, et il sera
nécessaire de considérer les mesures de masses en ayant en tête que, dans l’univers de Dirac-
Milne, il y a 15 fois plus de baryons. Evidemment, ces baryons ne sont pas détectés autrement
que par des mesures dynamiques et ce point sera discuté dans le chapitre 6.

4.2 Nucléosynthèse secondaire

Nous venons de voir dans quelles conditions il est possible, dans un univers évoluant avec
un facteur d’échelle linéaire pendant l’époque de la nucléosynthèse primordiale, de produire de
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108 Nucléosynthèse

l’hélium-4 et du lithium-7 dans des proportions compatibles avec les observations. Nous avons
également vu qu’aucun deutérium primordial ne survit à cette longue nucléosynthèse, ce qui pose
une contrainte forte sur les cosmologies à évolution linéaire [Lohiya et al. 1998, Kaplinghat et al.
2000]. En effet, il est connu depuis la fin des années 70 [Epstein et al. 1976] que le deutérium
dans l’Univers est très probablement d’origine cosmologique. [Epstein et al. 1976] passent en
revue les différents mécanismes possibles de production de deutérium, étude qui a été remise à
jour récemment [Jedamzik 2002]. Les conclusions de ces deux études sont identiques : la pro-
duction de deutérium par d’autres mécanismes que la nucléosynthèse primordiale est fortement
défavorisée car, suivant le mécanisme invoqué, les abondances d’autres éléments sont également
modifiées dans des proportions qui les rendent incompatibles avec les observations. En particu-
lier, il très difficile de produire du deutérium sans une surproduction d’hélium-3. La question du
deutérium est ainsi une question très importante puisqu’à ce jour, aucun scénario autre que la
nucléosynthèse standard ne permet une production de cet élément. C’est d’ailleurs un point qui
renforce la cohérence du modèle standard et la confiance de la communauté dans ce scénario.

L’univers de Dirac-Milne, symétrique, constitué de domaines séparés de matière et d’an-
timatière offre néanmoins un nouveau scénario pour la production de deutérium postérieure à
l’épisode de nucléosynthèse thermique. Le mécanisme est basé sur les annihilations entre matière
et antimatière qui vont se produire dans les zones de contact entre les domaines. Ces annihi-
lations, et en particulier les réactions de nucléodisruption entre un antiproton et un noyau
d’hélium-4 peuvent produire du deutérium et de l’hélium-3. Ce mécanisme, a priori inhomogène
puisque se déroulant principalement près des frontières, se démarque ainsi de la première phase
thermique, homogène, qui voit la production de l’hélium-4 et du lithium-7.

Depuis les travaux des années 1970 sur le modèle d’univers symétrique d’Omnès [Omnès
1972], on sait que ce mécanisme peut produire du deutérium. Les premières études sur la
nucléosynthèse dans un univers symétrique [Combes et al. 1975, Aly 1978a] se déroulaient dans
le cadre d’une évolution standard du facteur d’échelle. La production de deutérium était alors
assurée par le mécanisme standard de nucléosynthèse thermique. Il s’agissait alors de déterminer
d’une part la taille minimale de l’émulsion pour que la production thermique d’hélium-4 ne soit
pas modifiée de façon trop importante par la diffusion des neutrons vers la zone de contact entre
matière et antimatière, et d’autre part, la taille minimale pour que la production secondaire de
deutérium causée par nucléodisruption des noyaux d’hélium-4 ne soit pas trop importante.

Le problème qui se pose dans le cadre de l’univers de Dirac-Milne se rapproche de celui
considéré dans [Combes et al. 1975] par les mécanismes auxquels il fait référence, mais le but
est tout autre. Il s’agit en effet d’étudier si une production de deutérium et d’hélium-3 est
possible dans cet univers. Une différence fondamentale avec les considérations l’époque est bien
évidemment l’évolution linéaire de l’expansion dans le modèle de Dirac-Milne, qui conduit à des
échelles temporelles beaucoup plus grandes que dans le cas standard.

En l’absence d’un scénario prédictif bien établi de formation de l’émulsion matière-antima-
tière, on considère un univers constitué de deux phases séparées (matière et antimatière) en
des domaines qui “percolent”, c’est-à-dire qu’en se situant dans un domaine, la probabilité de
pouvoir aller à l’infini en restant dans ce domaine est de l’ordre de l’unité. Il peux bien sûr exister
des domaines isolés, mais ceux-ci sont minoritaires. Il est par ailleurs connu qu’un tel système
constitué de deux phases percole effectivement lorsque ces deux phases sont en quantités égales.

Les domaines étant infinis, et leur géométrie exacte non déterminée, il est peu aisé de parler de
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4.2 Nucléosynthèse secondaire 109

leur taille. On peut néanmoins exprimer la taille caractéristique de l’émulsion 4 en considérant
un grand volume V d’univers, rempli de domaines de matière et d’antimatière. La taille ca-
ractéristique de l’émulsion est alors définie comme le rapport du volume V sur la “quantité” de
surface S entre les domaines comprise dans ce volume : L = V/S. Afin de différencier d’éventuels
effets physiques des effets de l’expansion sur l’évolution de cette longueur, on définit la taille
comobile du domaine à une température de référence, prise dans la suite égale à 1 keV :

L = L1keV

(
1 keV
T

)
. (4.13)

De la même manière que dans les différentes études sur la nucléosynthèse en présence d’an-
timatière [Combes et al. 1975, Kurki-Suonio & Sihvola 2000, Jedamzik & Rehm 2001], la pro-
duction des éléments légers par différents mécanismes liés aux annihilations matière-antimatière
va fortement dépendre de cette taille caractéristique. On se sert alors des contraintes observa-
tionnelles sur les éléments légers pour déterminer la taille des domaines.

Mécanismes de production secondaire de deutérium

Les annihilations entre matière et antimatière sont l’élément central du scénario de pro-
duction de deutérium dans le modèle de Dirac-Milne. Par ces annihilations, trois mécanismes
possibles se dégagent : la production directe de deutérium et d’hélium-3 par nucléodisruption
d’un noyau d’hélium-4, la photodésintégration de ces même noyaux par les photons résultant
des annihilations et enfin l’éventuelle capture d’un neutron secondaire par un proton.

Avant de passer à l’étude des ces trois mécanismes de production, il est nécessaire d’établir
l’expression du taux d’annihilation en fonction de la température et de la taille du domaine,
grandeur préalable à tout calcul d’abondance. C’est par diffusion que va se faire le transport des
particules et des antiparticules vers la zone de contact.

4.2.1 Diffusion

Petit rappel historique

Dans les années 80-90, une grosse activité a eu lieu autour de la nucléosynthèse inhomogène,
quand il a été remarqué qu’une transition de phase QCD de premier ordre permettait d’engen-
drer des fluctuations dans la densité baryonique [Witten 1984, Alcock et al. 1987, Applegate
et al. 1987]. Ces fluctuations peuvent avoir eu des effets important sur la nucléosynthèse es-
sentiellement à cause des fluctuations du rapport neutron/proton. Ces modèles ne sont plus
guère considérés aujourd’hui, notamment du fait que le scénario de fluctuations primordiales
iso-courbures dans lequel s’inscrivait ces considérations de nucléosynthèse inhomogène est for-
tement défavorisé au profit des fluctuations primordiales adiabatiques, qui semblent privilégiées
par les analyses des anisotropies de température du CMB.

À la fin des années 90, deux groupes ont mené des études sur des scénarios de nucléosynthèse
en présence de domaines d’antimatière [Kurki-Suonio & Sihvola 2000, Jedamzik & Rehm 2001].
Ces études considéraient de petits domaines d’antimatière plongés dans un bain global de

4. On parlera dans la suite de taille des domaines.
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110 Nucléosynthèse

matière. Il n’y avait aucune volonté de symétrie entre matière et antimatière dans ces études,
puisque ces poches étaient complètement annihilées bien avant la recombinaison.

Ces différentes études ont permis de dégager les principes de la diffusion et des mécanismes de
production d’éléments légers (plus légers que l’hélium-4) dans le cadre d’une évolution standard
de l’Univers standard.

Diffusion

Pour traiter le problème difficile qu’est le calcul du taux d’annihilation dans un univers
symétrique matière/antimatière, on peut recourir à une approche purement basée sur la diffusion.
Cette approximation suffit à dégager des ordres de grandeurs satisfaisants. Dans la mesure où
les mécanismes de génération de l’émulsion et la séparation entre matière et antimatière sont
mal connus, il n’est pas nécessaire de considérer des mécanismes certes plus complets mais qui
n’apporteraient rien de fondamentalement différent par rapport au simple traitement diffusif.

La diffusion des nucléons obéit à l’habituelle équation de diffusion [Applegate et al. 1987]

∂nk
∂t

= Dk∇2nk, (4.14)

où nk est la densité de l’espèce k et Dk, le coefficient de diffusion relatif à l’espèce k. Les
gradients de densités relatifs à chaque espèce k sont très importants car au niveau de la frontière
matière/antimatière, l’on passe d’une zone “pleine” à une zone “vide”.

Dès qu’un nucléon pénètre dans la zone d’antimatière – et dans le cas inverse également ;
dans la suite, sauf indication contraire, la symétrie matière-antimatière des phénomènes sera
implicitement supposée – il s’annihile immédiatement du fait des larges sections efficaces d’an-
nihilations par rapport aux sections efficaces de collisions élastiques. Ainsi, on considérera que
l’annihilation est purement un terme de surface, et la zone de mélange entre matière et anti-
matière sera considérée d’épaisseur négligeable par rapport aux autres longueurs mises en jeu
dans ce problème que sont la taille des domaines et la longueur de diffusion (voir plus loin).

Coefficients de diffusion

Le calcul des coefficients de diffusion des différentes espèces présentes dans le plasma pri-
mordial date des premières études sur la diffusion dans le cadre des modèles de nucléosynthèse
inhomogène [Applegate et al. 1987, Banerjee & Chitre 1991].

Neutrons

Les neutrons interagissent peu avec le plasma dans lequel ils évoluent du fait de leur neutra-
lité. Ils sont diffusés par les électrons et positrons et par les protons. Les neutrons interagissent
avec les électrons à travers leur moment magnétique. La section efficace de transport est [Ap-
plegate et al. 1987] :

σt
ne = 3π

(
ακ

me

)2

= 8× 10−31 cm2, (4.15)

où α = 1/137 est la constante de structure fine et κ = −1.91, le moment magnétique anormal du
neutron. Le coefficient de diffusion neutron-électron s’écrit alors [Applegate et al. 1987, Sihvola
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4.2 Nucléosynthèse secondaire 111

2001b] :

Dne =
3
8

(
πT

2me

)1/2 K2(z)
K2.5(z)

1
σt

nene
, (4.16)

où ne est la densité électronique , Ki est la fonction de Bessel modifiée de deuxième espèce
d’ordre i et z = me/T .

Les neutrons diffusent également sur les protons par collisions nucléaires. La section efficace
de diffusion neutron-proton s’écrit [Preston & Bhaduri 1975]

σnp = π(a2
s + 3a2

t ) as = −23.710± 0.03 fm, at = 5.432± 0.005 fm (4.17)

Il vient σnp = 20.4× 10−24 cm2. Le coefficient de diffusion s’exprime alors [Sihvola 2001b] :

Dnp =
3
8

(
πT

mp

)1/2 1
σnpnp

, (4.18)

Protons et ions

Les processus dominants pour les diffusions des protons et des ions sont les diffusions cou-
lombiennes sur les électrons et sur les autres ions. Les coefficients de diffusion sont décrits dans
[Sihvola 2001b] :

Die =
3

4π
K2(z)ez

z2 + 2z + 2
m2
e

(Zα)2Λne
, (4.19)

où Z est la charge de l’ion i et Λ, le logarithme Coulombien, pris égal à Λ = 5 [Applegate et al.
1987] pour les applications numériques.

De même, le coefficient ion-ion est

Dij =
3

4π

(
πT

2µij

)
T 2

(ZiZjα)2Λnj
(4.20)

Le coefficient total d’une espèce est alors défini par D−1
i =

∑
jD
−1
ij , si bien que le plus petit

coefficient de diffusion domine.
Ces coefficients de diffusion sont représentés sur la figure (4.6). On remarque immédiatement

que pour T ≥ 80 keV les neutrons sont beaucoup moins gênés par les diffusions que les protons.
De ce fait, jusqu’à 80 keV, la diffusion est assurée par les neutrons. Du fait que les interactions
faibles assurent l’équilibre entre protons et neutrons jusqu’à ces températures, il est nécessaire
de prendre en compte le fait que les neutrons ont une durée de vie courte (environ 15 minutes)
par rapport au temps de Hubble (tH ∼ 1011 s/TkeV, où TkeV est la température exprimée en
keV). Aussi, un nucléon ne diffuse efficacement que lorsqu’il est sous la forme d’un neutron.

Longueur de diffusion

La longueur moyenne parcourue par un nucléon soumis à la diffusion en un temps t est
√

6Dt
[Applegate et al. 1987] , si le coefficient de diffusion est constant. Ce n’est pas le cas ici, car
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112 Nucléosynthèse

Figure 4.6 – Coefficient de diffusion des différentes espèces présentes dans le plasma primordial.
Les coefficients de diffusion des neutrons n’ont de pertinence physique que pour une température
supérieure à 80 keV, température de découplage des interactions faibles dans l’Univers de Dirac-
Milne. La densité baryonique est η = 8× 10−9.

les coefficients de diffusion dépendent de la température à travers les densités. Dans ce cas, la
longueur de diffusion s’exprime [Applegate et al. 1987]

Ldiff =

√
6
∫
D0u(t)dt, (4.21)

où l’on a écrit D = D0u(t), avec D0 constant et u(t) une fonction qui prend en compte les
variations du coefficient de diffusion. Toutefois, les coefficients de diffusion étant des fonctions
décroissantes de la température – ou de manière équivalente des fonctions croissantes du temps
– on peut estimer l’expression (4.21) en réalisant l’intégration sur le dernier temps de Hubble.
Ainsi, la longueur de diffusion d’une espèce i à une température T s’écrira

Ldiff(T ) =
√

6D(T )tH(T ), (4.22)

où tH(T ) est le temps de Hubble à la température T , c’est à dire l’âge de l’Univers à cette
température.

Cette longueur de diffusion correspond à la distance moyenne que parcourt une particule
soumise à la diffusion pendant un temps de Hubble. On considère ainsi qu’environ la moitié des
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4.2 Nucléosynthèse secondaire 113

nucléons qui se situent à une distance inférieure à la longueur de diffusion de la zone de contact
entre matière et antimatière viendront s’annihiler durant le prochain temps de Hubble. Cette
longueur de diffusion est donc la grandeur fondamentale dans le problème qui nous intéresse.

Le calcul de cette longueur pour des températures supérieures à 80 keV nécessite de prendre
en compte l’évolution du rapport neutron sur proton. Ainsi on pondère les longueurs de diffusion
des neutrons et des protons par leurs abondances relatives :

 Ldiff =
e−Q/TLn + Lp

1 + e−Q/T
, (4.23)

où Ln et Lp sont les longueurs de diffusion des neutrons et des protons respectivement, définies
par (4.22).

À haute température, les protons se comportent comme des particules libres dans le plasma
primordial, car la densité élevée de paires e+e− assure un écrantage quasiment parfait des
charges libres. La situation change avec la baisse de la température et la disparition des paires
thermiques. Lorsque la longueur de Debye devient plus grande que l’espacement moyen entre
les ions, le champ électrique créé par le déplacement d’un ion va forcer la mise en mouvement
d’un électron afin de rétablir la neutralité du système. Les électrons sont ainsi trâınés en même
temps que les ions. Ces électrons vont quant à eux être freinés par le fond de photons et subir
une force (freinage Thomson) [Peebles 1993] :

F = −4
3
σTργve, (4.24)

où ργ est la densité d’énergie des photons, σT la section efficace Thomson et ve la vitesse de
l’électron dans le référentiel du photon. L’effet global de ce freinage est de modifier le coefficient
de diffusion des protons qui devient de ce fait égal au double du coefficient de diffusion des
électrons sur les photons [Jedamzik & Rehm 2001] :

Deff
p = 2De =

3T
2σTργ

. (4.25)

La longueur de Debye s’exprime par

λD =
(

T

4πα2ne

)1/2

, (4.26)

et l’espacement moyen entre les ions est donné par n−1/3
B . L’égalité entre ces deux longueurs se

produit à une température T ∼ 50 keV. À partir de cette température, la diffusion est donc
limitée par le freinage des électrons par les photons.

La longueur de diffusion peut maintenant être calculée pour toute température. La figure
(4.7) représente cette longueur en fonction de la température à partir de 40 MeV, ainsi que la
distance de Hubble, simplement définie par dH(t) = ct, où t est l’âge de l’univers à la température
considérée. Cette figure illustre les contraintes initiales posées sur la taille de l’émulsion. Le
mécanisme qui permet une séparation entre matière et antimatière doit être tel que la taille
comobile à 1 keV de l’émulsion soit plus grande que la longueur de diffusion, car dans le cas
contraire, matière et antimatière s’annihileraient presque totalement en un temps de Hubble.
Ainsi, à une température de 40 MeV, lorsque l’on commence à voir apparâıtre l’émulsion après
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114 Nucléosynthèse

disparition des paires thermiques nucléons-antinucléons (voir section 2.4.2), le mécanisme de
séparation doit avoir fait crôıtre l’émulsion, ou avoir générer des domaines, jusqu’à une taille au
moins égale à la longueur de diffusion à cette température, soit environ 105 cm (ou 4×109 cm en
grandeur comobile à 1keV). Notons que cette estimation est une borne inférieure qu’il faudrait
augmenter afin d’avoir une densité baryonique qui ne varie presque pas par rapport à la valeur
déduite par les contraintes de nucléosynthèse de l’hélium-4.

Figure 4.7 – Longueur de diffusion (en rouge) et distance de Hubble (en vert), pour l’univers
de Dirac-Milne. Les courbes les longueurs comobiles à 1 keV, tandis que les courbes pointillées
représentent les longueurs physiques.

La bosse, et la chute brutale dans la longueur de diffusion à haute température – vers 100
keV – correspondent à la disparition thermique des neutrons. Pour des températures inférieures
à 50 keV, l’expression de la longueur de diffusion est simple et s’écrit :

Ldiff(T ) = 7× 1011

(
1 keV
T

)2

cm. (4.27)

Taux d’annihilation et quantité de matière annihilée

Dans le cadre de cette approche diffusive, on peux facilement exprimer le taux d’annihilation,
c’est à dire, la quantité d’annihilation par unité de temps et de surface. En considérant que l’an-
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4.2 Nucléosynthèse secondaire 115

nihilation est immédiate dès qu’un nucléon arrive dans la zone de contact matière/antimatière,
ce taux s’exprime simplement comme la quantité de matière transportée par diffusion pendant
un temps de Hubble et ramenée ensuite par unité de temps. Ainsi la quantité de matière par
unité de surface apportée vers la zone d’annihilation sur un temps de Hubble est de l’ordre de :

Nann = n∞b Ldiff , (4.28)

où n∞b est la densité de baryons loin de la zone de contact, c’est à dire à une distance plus
grande que quelques longueurs de diffusion. En pratique, cette densité est naturellement la
densité baryonique nb. Le taux d’annihilation Ψ qui correspond à la quantité annihilée par unité
de temps et de surface est alors cette quantité de matière divisée par le temps de Hubble :

Ψ =
nbLdiff

tH
. (4.29)

Comme cela a été dit plus haut, une manière commode de définir la taille caractéristique
d’une émulsion est de considérer le rapport de la surface d’interface sur le volume. Plaçons nous à
un certain redshift z et considérons alors un grand volume arbitraire V (z) d’univers qui contient
une quantité de surface S(z) entre matière et antimatière. La taille caractéristique est donnée
par le rapport des deux grandeurs. De la même manière que l’on a définit la taille comobile de
l’émulsion à 1 keV (éq. (4.13)), on définit la surface comobile S1keV, et le volume comobile V1keV

comme

S(z) = S1kev

(
1 keV

T0(1 + z)

)2

, V (z) = V1keV

(
1 keV

T0(1 + z)

)3

. (4.30)

De la même manière que l’on a L = V/S, on a L1kev = V1kev/S1kev. La quantité de matière
annihilée par seconde s’écrit alors :

dN = ΨS = Ψ
V

L
=
nBV

tH

Ldiff

L
(4.31)

On peut également déterminer la perte relative de matière par unité de temps, dn, en divisant
par la quantité de matière contenue dans le volume V :

dn =
1
tH

Ldiff

L
=

1
tH

Ldiff

L1kev

(
T

1 keV

)
. (4.32)

La partie gauche de la figure (4.8) représente la perte de matière relative par seconde pour
trois valeurs 5 de la taille comobile à 1 keV des domaines. Dans la partie droite, toujours pour
les trois mêmes valeurs de taille des domaines, sont représentées en rouge les pertes relatives de
matière par temps de Hubble. Les courbes vertes représentent, quant à elles, la perte relative
intégrée depuis l’émergence supposée des domaines vers 40 MeV. On notera que les courbes
rouges sont simplement le produit des courbes bleues par le temps de Hubble à la température
considérée. On notera également qu’une fois dans le régime de diffusion limité par le freinage
Thomson, la perte de matière par seconde est constante pour des températures inférieures à
∼ 50 keV. Les courbes de la partie droite de la figure sont calculées dans le cas où la taille
comobile des domaines reste constante c’est à dire que l’émulsion n’évolue pas autrement que
par expansion.

5. Le pourquoi de ces valeurs sera expliqué dans la suite
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116 Nucléosynthèse

Figure 4.8 – Gauche : Perte relative de matière par seconde pour trois tailles plausibles
de l’émulsion Droite : Perte relative de matière intégrée depuis une température de 40 MeV
(courbes vertes) et perte relative pendant un temps de Hubble en fonction de la température
(courbes rouges). Ces courbes supposent une évolution de l’émulsion simplement due à l’expan-
sion.

4.2.2 Annihilation

L’ingrédient essentiel de la production de deutérium dans le cadre de l’univers de Dirac-Milne
est l’annihilation qui se passe à la frontière des domaines. Deux processus sont d’intérêt pour cette
étude : l’annihilation nucléons-antinucléon et l’annihilation antinucléon-noyaux. L’annihilation
nucléon-nucléon produit des pions, neutres et chargés, qui se désintègrent à leur tour en muons
puis électrons pour les pions chargés et en photons pour les pions neutres :

N + N̄ →



π− → µ− + ν̄µ
↪→ e− + ν̄e + νµ

π+ → µ+ + νµ
↪→ e+ + νe + ν̄µ

π0 → γγ

. (4.33)

Les pions neutres se désintégrant très rapidement (τ = 8.4× 10−17 s), ils ne peuvent réagir
avec aucune des espèces présentes sauf à l’intérieur d’un noyau d’hélium dans le cas d’une
nucléodisruption. Les pions chargés se désintègrent avec une durée de vie τ = 2.6× 10−8 s, mais
peuvent aussi se transformer en pions neutres par échange de charge

π+ + n→ p+ π0 π− + p→ n+ π0, (4.34)

ou par interactions faibles

π± + e± → νe/ν̄e + π0 π± + νe/ν̄e → e± + π0. (4.35)
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4.2 Nucléosynthèse secondaire 117

Ces processus sont négligeables par rapport aux désintégrations pour les températures inférieures
à quelques MeV [Rehm & Jedamzik 2001].

L’énergie libérée lors de l’annihilation de deux nucléons – typiquement 2 GeV – est transmise
pour moitié aux neutrinos. Les photons emportent un tiers de l’énergie libérée et les électrons
le reste soit un sixième. En moyenne, 5 pions sont produits lors d’une annihilation entre un
nucléon et un antinucléon. [Sihvola 2001a] a déterminé les spectres des électrons et des photons
d’annihilation. Les photons ont une énergie moyenne de 165 MeV et les électrons une énergie
moyenne de 91 MeV.

L’annihilation d’un antiproton sur un nucléon d’un noyau d’hélium-4 va faire éclater ce
noyau et conduire à la production d’éléments plus légers. Les seules données dont on dispose
proviennent de [Balestra et al. 1988] et permettent de déduire les probabilités de production
répertoriées dans le tableau (4.2)

Pp PD P3He P3H

0.28 0.13 0.21 0.43

Table 4.2 – Probabilité de production de noyaux légers lors d’une annihilation p̄4He. Les rap-
ports de branchement sont tirés de [Balestra et al. 1988].

Sections efficaces d’annihilation

Les seules données expérimentales dont on dispose concernant les réactions d’annihilation
p̄A viennent des expériences menées sur la machine LEAR (Low Energy Antiproton Ring) au
CERN dans les années 1980. Des mesures ont été effectuées pour des impulsions incidentes entre
200 et 600 MeV/c [Balestra et al. 1985], et ont montré un comportement de la section efficace
d’annihilation σann comme σ0A

i avec i ∼ 2/3. Cela suggère une image géométrique de la section
efficace d’annihilation qui augmente avec la masse du noyau cible. Toutefois, des mesures à
basse énergie, qui nous intéressent ici, indiquent un comportement différent et surprenant, où
les sections efficace d’annihilation σann(p̄D) et σann(p̄4He) sont plus faibles que σann(p̄p). Une
étude théorique [Carbonell & Protasov 1993, Carbonell et al. 1997, Protasov et al. 2000] basée
sur l’approximation de la longueur de diffusion explique ces valeurs (voir fig. (4.9)).

La section efficace théorique pour la réaction p̄A, où A représente un noyau de masse A et
de charge Z est :

σann =
8π2

1− e2πη

1
q2

Im(−asc/B)
|1 + iqw(η)asc|2

, (4.36)

avec η = −1/qB, le paramètre coulombien sans dimension, q = µv, µ étant la masse réduite du
système et v la vitesse relative des particules qui s’annihilent, B = 1/Zµα, le rayon de Bohr
du système, asc la longueur de diffusion Coulombienne et w, une fonction auxiliaire telle que
qBw(η)→ 2π quand q → 0. À basse énergie, cette section efficace se réécrit alors :

σann =
8π2Zα

µv2

Im(−asc)
|1 + i2πascZαµ|2

. (4.37)

Les données d’OBELIX [Zenoni 1999a;b] fournissent les longueurs de diffusion coulom-
biennes : =(asc) = −0.69 fm pour la réaction p̄p et =(asc) = −0.36 fm pour la réaction p̄4He.
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118 Nucléosynthèse

Figure 4.9 – Sections efficaces d’annihilation mesurée par l’expérience OBELIX au CERN à
basse énergie [Zenoni 1999a] : p̄p (triangles rouges), p̄D (ronds verts) et p̄4He (rectangles bleus).
Les courbes sont les prédictions théoriques effectuées dans le cadre de l’approximation de la
longueur de diffusion [Protasov et al. 2000]. La figure est tirée de [Duperray 2004]

Les sections efficaces s’expriment alors :

σp̄p = 2.25× 102

(
1 MeV
T

)
mb (4.38)

et

σp̄4He = 1.96× 102

(
1 MeV
T

)
mb. (4.39)

4.2.3 Thermalisation des produits d’annihilation

Les éléments légers qui sont produits par nucléodisruption des noyaux d’hélium-4 ont une
énergie cinétique de l’ordre du MeV pour les noyaux, jusqu’à des dizaines de MeV pour les
nucléons [Balestra et al. 1988]. Ces noyaux nouvellement créés vont se thermaliser par collisions
coulombiennes sur les électrons et les ions du plasma. Il est nécessaire de calculer précisément
la longueur parcourue par les fragments énergétiques durant cette thermalisation car s’ils sont
thermalisés sur une distance inférieure à la longueur de diffusion, ils seront re-transportés par
diffusion vers la zone de contact pour y être détruits. Ils ne contribueront donc pas au bilan
final.

te
l-0

04
42

94
8,

 v
er

si
on

 1
 - 

24
 D

ec
 2

00
9



4.2 Nucléosynthèse secondaire 119

La perte d’énergie par unité de distance s’écrit [Kurki-Suonio & Sihvola 2000] :

dE

dr
= 4πn(Zzα)2Λ

(
1 +

m

M

)M
m

1
E

[√
mE

πMT
exp

(
−mE
MT

)
− 1

2
erf

(√
mE

MT

)]
, (4.40)

où M,Z et E sont les masse, charge et énergie de la particule énergétique, T la température du
plasma et m, z et n les masse, charge et densité des particules dans le plasma. Cette équation a
deux cas limites, suivant que la vitesse des ions rapides est plus grande (mE/MT � 1) ou plus
faible (mE/MT � 1) que la vitesse thermique des particules du plasma. Dans le premier cas,
l’équation (4.40) se simplifie en

dE

dr
= −2πn(Zzα)2Λ

(
1 +

m

M

)M
m

1
E
, (4.41)

tandis que dans le second cas

dE

dr
= −8

√
π

3
n(Zzα)2Λ

(
1 +

m

M

) 1
T

√
mE

MT
. (4.42)

La longueur de thermalisation s’exprime alors [Rehm & Jedamzik 2001] :

Ltherm =
∫ Eth

E0

dr

dE
dE (4.43)

De même, on peut exprimer le temps mis par une particule chargée énergétique pour se ther-
maliser.

ttherm =
∫ Eth

E0

1
v

dr

dE
dE (4.44)

Les figures (4.10) représentent les longueurs (gauche) et temps de thermalisation (droite)
pour le deutérium, l’hélium-3 et le tritium.

Les neutrons, étant neutres, ne sont pas soumis aux collisions coulombiennes et sont unique-
ment ralentis par collisions nucléaires sur les protons, majoritaires. Le calcul de la longueur de
thermalisation ne peut pas se faire de la même manière que pour les particules chargées car les
collisions nucléaires auxquelles sont soumis les neutrons peuvent changer considérablement la
direction de ceux-ci. On peut toutefois estimer que les neutrons perdent une fraction importante
– de l’ordre de l’unité – de leur énergie dans une collision et considérer ainsi le libre parcours
moyen des neutrons relatif à la diffusion.

La section efficace de diffusion élastique est donnée dans les tables ENDF [Chadwick et al.
2006] qui compilent un grand nombre de sections efficaces de réactions faisant intervenir des neu-
trons. La section efficace de diffusion élastique de diffusion neutron-proton peut être approximée
par la formule suivante (voir figure (4.11)) :

σnp =

{
1 b
(

10 MeV
E

)0.55
E ≥ 10keV

19 b
(

10 keV
E

)0.01
E ≤ 10keV

. (4.45)

Le libre parcours moyen des neutrons s’écrit lnpm = (σnpnp)−1 et son expression est :

lnpm = 3.9× 109cm
(

E0

10 MeV

)0.55(1 keV
T

)3(8× 10−9

η

)
. (4.46)
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120 Nucléosynthèse

Figure 4.10 – Gauche : Longueurs de thermalisation des différentes particules produites par
nucléodisruption d’un noyau d’hélium-4. La courbe jaune représente la distance maximale de
thermalisation des neutrons, qui prend une valeur constante du fait de sa durée de vie finie.
Droite : Temps de thermalisation. De la même manière, ce temps est borné pour les neutrons
par leur durée de vie. Ces courbes sont tracées pour une énergie cinétique initiale E0 = 10 MeV.

La distance que peut parcourir un neutron avant désintégration pose une borne maximale sur
la distance de thermalisation des neutrons : si la densité baryonique décrôıt suffisamment, le libre
parcours moyen des neutrons peut devenir plus grand que cette distance limite. En considérant
que les neutrons produits par une annihilation ont une énergie cinétique E0 de l’ordre de la
dizaine de MeV [Balestra et al. 1988], la distance maximale que les neutrons peuvent parcourir
avant désintégration s’écrit :

lnmax =
√

2E0

mn
τn (4.47)

= 3.9× 1012 cm
(

E0

10 MeV

)1/2

.

Si la distance de thermalisation n’est pas calculable simplement, on peut par contre faci-
lement donner une bonne estimation du temps de thermalisation et de la distance maximale
de thermalisation que pourrait parcourir un neutron s’il était simplement freiné par les colli-
sions nucléaire mais sans jamais être défléchi par les collisions nucléaires. Cette distance, notée
Lnthermmax

, est bien sûr majorée par lnmax. D’après [Rehm & Jedamzik 2001], la perte d’énergie
par unité de longueur s’écrit pour les neutrons comme

dE

dr
= − ln fEσnpnp, (4.48)

où f est la perte d’énergie fractionnaire dans chaque collision, estimée à 80%. Le temps de
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4.2 Nucléosynthèse secondaire 121

Figure 4.11 – Section efficace totale σnp. En bleu, les données de ENDF. En vert et rouge les
approximations par loi de puissance.

thermalisation s’écrit

τntherm =
∫ Eth

E0

1
v

dr

dE
dE

= 80.8 s
(

E0

10 MeV

)0.05(1 keV
T

)3(8× 10−9

η

)
. (4.49)

La dépendance en énergie étant très faible, on peut déterminer la température Tntherm à partir
de laquelle les neutrons se désintègrent avant d’avoir réussi à se thermaliser entièrement. Il vient

Tntherm = 0.45 keV
(

8× 10−9

η

)1/3

. (4.50)

La distance maximale de thermalisation des neutrons s’écrit, après calculs :

Lnthermmax
= 3.2× 1011 cm

(
E0

10 MeV

)0.55(1 keV
T

)3(8× 10−9

η

)
. (4.51)

4.2.4 Production par capture radiative

La production de deutérium par capture d’un neutron par un proton a ceci de plaisant qu’elle
ne produit que du deutérium et aucun élément plus lourd, notamment du tritium ou de l’hélium-
3. Ce mécanisme de production se révèle toutefois inefficace, les neutrons se thermalisant dans
la zone de diffusion ou se désintégrant avant même de pouvoir se combiner avec un proton. En
réalité, on peut même conclure à l’inefficacité de tous les processus qui reposent sur les neutrons
produits par les annihilations.
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122 Nucléosynthèse

Pour pouvoir produire du deutérium qui contribuerait au bilan final, les neutrons doivent être
sortis de la zone qui sera annihilée dans le prochain temps de Hubble, définie par la longueur de
diffusion. Or nous venons de voir que la distance maximale de thermalisation des neutrons était
toujours inférieure à la longueur de diffusion si bien que les neutrons sont systématiquement
thermalisés dans la zone qui sera annihilée par la suite. Aucun neutron n’est ainsi capable
de sortir de cette zone. C’est un point différent des études précédentes qui considéraient une
évolution standard du facteur d’expansion et dans lesquelles la longueur de diffusion est plus
faible que dans le modèle de Dirac-Milne du fait d’un temps de Hubble plus faible à température
égale.

Les neutrons restent donc dans la zone de déplétion, mais peuvent néanmoins fabriquer du
deutérium par capture radiative avec un proton : p+n→ D+γ. En réalité, là aussi, le mécanisme
est contraint du fait de la courte durée de vie du neutron et de la baisse de la densité nucléaire
du fait de l’expansion. On peut ainsi comparer le temps moyen de capture à la durée de vie du
neutron.

La section efficace de capture, est donnée dans [Chen & Savage 1999] :

< σnpv >≈ 4.5× 10−20 cm3s−1. (4.52)

On a alors :

tnp = 8.8× 104 s
(

1 keV
T

)3(8× 10−9

η

)
, (4.53)

La température critique Tc en dessous de laquelle un neutron se désintègre avant d’avoir eu plus
de 50% de chance fusionner avec un proton est :

Tc = 4.6 keV. (4.54)

4.2.5 Production par photodésintégration

Les photons produits par les désintégrations des pions neutres résultant des annihilations
entre protons et antiprotons peuvent photodésintégrer les noyaux d’hélium-4. Le mécanisme a
été largement étudié et se trouve être bien plus général que la simple production de photons par
annihilation entre matière et antimatière. En effet, de nombreux scénarios pouvent générer des
photons non thermiques de haute énergie susceptibles de photodésintégrer des noyaux d’hélium-
4 : désintégrations de particules reliques [Ellis et al. 1992, Protheroe et al. 1995], défauts topolo-
giques [Sigl et al. 1995], ... Ces scénarios sont alors fortement contraints par les modifications des
abondances primordiales qui résultent de ces photodésintégrations [Kawasaki & Moroi 1995].

La photodésintégration est ainsi une source importante de deutérium, d’hélium-3 et de tri-
tium. L’on sait toutefois que ce mode de production produit environ dix fois plus d’hélium-3 et
de tritium que de deutérium [Protheroe et al. 1995, Sigl et al. 1995], du fait des sections effi-
caces de photodésintégration qui sont jusqu’à un facteur 10 fois plus grandes pour la production
d’éléments de masse 3 que pour le deutérium [Cyburt et al. 2003, Kusakabe et al. 2009] (voir
fig. (4.14)).
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4.2 Nucléosynthèse secondaire 123

Spectre des photons

Les réactions de photodésintégration ont un seuil d’environ 20 MeV, si bien que seuls des
photons suffisamment énergétiques peuvent contribuer efficacement à la production d’éléments
légers. La distribution en énergie des pions neutres produits par une annihilation pp̄ peuvent
être décrits par un spectre exponentiel [von Egidy 1987] :

dnπ0

dE
=

1
E0
e−(E−mπ0 )/E0 , E > mπ0 , (4.55)

où E0 ≈ 194 MeV. Le spectre des photons provenant de la désintégration de ces pions neutres
s’écrit alors [Sihvola 2001a] :

dnγ
dE

∣∣∣∣
ann

=
1
E0

∫ ∞
E+m2

π0/4E
e−(Eπ−mπ0 )/E0(E2

π −m2
π0)−1/2dEπ, (4.56)

Ces photons ont une énergie moyenne < Eγ >≈ 165 MeV.
Suivant l’époque où ces photons sont générés, ils vont principalement interagir avec les pho-

tons thermiques du CMB et créer des paires e+e− qui, à leur tour, vont interagir avec les photons
du CMB et initier ainsi des cascades électromagnétiques [Ellis et al. 1992, Protheroe et al. 1995].
Ces cascades s’arrêtent lorsque l’énergie des photons descend en dessous de l’énergie seuil de pro-
duction de paires Epaires = m2

e/Eγ , où Eγ est l’énergie d’un photon thermique. Du fait du grand
nombre de photons thermiques, l’énergie seuil de création de paires est Emax = m2

e/(22T ) [Ellis
et al. 1992]. L’autre processus dominant pour les photons dont l’énergie inférieure au seuil de
création de paires est la diffusion élastique photon-photon jusqu’à une énergie Ec = m2

e/(80T )
[Svensson & Zdziarski 1990]. La forme de ces cascades est très générale et ne dépend que très
peu du mécanisme d’injection d’énergie électromagnétique dans le milieu. Le spectre de photons
de cascade peut-être alors paramétrisé de façon raisonnable par [Ellis et al. 1992, Kurki-Suonio
& Sihvola 2000] :

dnγ
dE

∣∣∣∣
cas

=


A(E/Ec)−1.5, E < Ec
A(E/Ec)−5, Ec < E < Emax

0, E > Emax

. (4.57)

La constante A de normalisation s’écrit

A =
3E0E

−2
c

7−
(

Ec
Emax

)3 , (4.58)

où E0 est l’énergie totale injectée sous forme électromagnétique.
Cette expression pour le spectre des photons est correcte tant que la température est assez

élevée et donc l’énergie seuil Emax assez faible pour que la majorité des photons issus de l’annihi-
lation se situe bien au-dessus de Emax et conduisent effectivement à l’établissement du spectre de
cascade décrit par l’équation (4.57). Lorsque l’énergie seuil devient du même ordre de grandeur
que l’énergie moyenne des photons produits par les pions neutres (environ 165 MeV), soit vers
une température T ∼ 100 eV, la partie du spectre des photons inférieure à l’énergie seuil garde
sa forme initiale (éq. (4.56)) tandis que les photons de la partie haute, d’énergie supérieure à
Emax sont redistribués selon l’équation (4.57). La partie du spectre inférieure à l’énergie seuil
sera donc la somme du spectre initial de désintégration et du spectre de cascade initié par les
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124 Nucléosynthèse

Figure 4.12 – Spectres des photons résultant des annihilations pp̄ à différentes températures.
Les courbes bleues représentent les spectres de cascades à une température de 1 keV et 10 keV.
Pour une température de 1 eV, l’énergie seuil est largmement supérieure à l’énergie des photons
d’annihilation et le spectre des photons garde sa forme initiale. Pour des énergies intermédiaires,
la partie du spectre supérieure ?à l’énergie seuil est redistribuée selon le spectre de cascade.

photons d’énergie supérieure à l’énergie seuil. Ainsi, à basse température, le spectre des pho-
tons restera identique au spectre initial de désintégration et ne dépendra pas de la température
d’injection. L’expression générale de ce spectre est alors :

dnγ
dE

∣∣∣∣
tot

=
dnγ
dE

∣∣∣∣
ann

Θ(Emax − E) +
dnγ
dE

∣∣∣∣
cas

Θ(E − Emax), (4.59)

où Θ(x) est la fonction d’Heavyside, qui vaut 1 si x est positif, 0 sinon. Dans cette expression, la
constante E0, qui représente l’énergie injectée dans la cascade, est prise comme étant l’énergie
totale des photons d’annihilation dont l’énergie est supérieure à l’énergie seuil :

E0 =
∫ ∞
Emax

E
dnγ
dE

∣∣∣∣
ann

dE. (4.60)

La figure (4.12) représente les spectres des photons pour quelques température.
Ce spectre est ensuite normalisé de telle manière que la quantité totale d’énergie emportée

par les photons soit égale à l’énergie totale émise sous forme électromagnétique soit environ 1
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4.2 Nucléosynthèse secondaire 125

GeV par annihilation. Cette procédure constitue une approximation car en réalité, des électrons
sont également émis selon le processus (4.33). À basse température, tout comme c’était le cas
pour les photons, ces électrons, ne sont pas assez énergétiques pour initier des cascades, mais
vont interagir avec des photons thermiques par diffusion Compton inverse et ainsi générer des
photons non-thermiques éventuellement capables de photodissocier des noyaux d’hélium-4. Le
calcul détaillé du spectre total des photons est relativement complexe [Kawasaki & Moroi 1995]
et nécessite l’utilisation de codes numériques détaillés permettant de résoudre l’équation de
Boltzmann pour les photons. Toutefois, normaliser le spectre des photons calculé précédemment
à l’énergie électromagnétique totale dégagée par une annihilation permet une bonne approxima-
tion de la réalité. Tout au plus cette méthode surestime-t-elle les spectres des photons, car les
électrons sont en moyenne moins énergétiques que les photons [Kurki-Suonio & Sihvola 2000],
conduisant ainsi à des estimations de la production d’éléments légers par photodésintégration
légèrement sur-évaluées. Gardons également à l’esprit que ce qui nous intéresse dans ce travail
n’est pas le calcul au pourcent près des abondances produites mais une comparaison des différents
mécanismes possibles de production ainsi qu’une estimation simple de cette production.

Interactions des photons de haute énergie

Les possibilités d’interaction des photons de haute énergie sont multiples dans le plasma
primordial et en réalité la photodésintégration est loin d’être le processus dominant pour de tels
photons. On s’intéresse ici aux photons d’énergie supérieure à ∼ 20 MeV, énergie qui correspond
à l’énergie minimale requise pour dissocier des noyaux d’hélium-4. De tels photons peuvent tout
d’abord interagir avec des électrons par diffusion Compton, interaction situé dans le régime
Klein-Nishina et dont la section efficace s’écrit [Rybicki & Lightman 1979] :

σKN =
3
8
σThx

−1

(
ln 2x+

1
2

)
, (4.61)

avec σT la section efficace Thomson, x = Eγ/me et x� 1.
Les photons de haute énergie peuvent également créer des paires e+e− sur un noyau (pro-

cessus Bethe-Heitler) selon la réaction suivante :

γ +N → N + e+ + e− (4.62)

La section efficace de cette réaction est [Jedamzik 2006] :

σBH(Eγ , Z) =
3
8
α

π
σTh

(
28
9

ln
(

2Eγ
me

)
− 218

27

)
Z2. (4.63)

La figure (4.13) représente le libre parcours moyen de photons d’énergie 20 MeV (pointillés)
et 200 MeV (traits pleins) relatifs aux deux interactions décrites ci-dessus. Ces longueurs sont
comparées à la longueur de diffusion. On remarque que pour des températures inférieures à
T ∼ 100 eV, ces photons peuvent sortir de la zone de déplétion et ainsi produire des éléments
légers en dehors de cette zone. On s’attend ainsi à une production bien plus homogène que la
production par nucléodisruption.
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126 Nucléosynthèse

Figure 4.13 – Libre parcours moyen de photons d’énergie 20 MeV et 200 MeV relatif à la
création de paires sur noyaux et à la diffusion Compton sur les électrons du plasma primordial.
Ces distances sont comparées à la longueur de diffusion (courbe rouge) permettant ainsi de définir
l’époque où les photons pourront produire du deutérium en dehors de la zone de déplétion.

Sections efficaces de photodésintégration

Les sections efficaces de photodésintégration des noyaux d’hélium-4 sont compilées dans
[Cyburt et al. 2003, et références citées]. De récentes mesures [Kusakabe et al. 2009] ont permis
une nouvelle détermination des sections efficaces σ4He(γ,p)3H et σ4He(γ,n)3He. Ces sections efficaces,
ainsi que celles de la production de deutérium sont représentées dans la figure (4.14). Au vu de
cette figure, on remarque que la production d’hélium-3 et de tritium est largement favorisée par
rapport à celle du deutérium, car les sections efficaces correspondantes sont jusqu’à dix fois plus
importantes dans le cas des éléments de masse 3. Les seuils des réactions de photodésintégration
sont les suivants :

Q4He(γ,np)D = 26.07 MeV, Q4He(γ,p)3H = 19.81 MeV, Q4He(γ,n)3He = 20.58 MeV. (4.64)

Ces grandeurs seront par la suite notées QD, Q3H et Q3He. L’existence de ces seuils implique que
la production par photodésintégration sera bloquée tant que l’énergie seuil de création de paires
Emax sera plus petite que ces énergies seuil de photoproduction. Ainsi la photodésintégration ne
commencera qu’à partir d’une température T ∼ 0.5 keV (voir figure (4.15)).
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4.2 Nucléosynthèse secondaire 127

Figure 4.14 – Sections efficaces de photodésintégration des noyaux d’hélium-4. En rouge et
orange sont représentées les valeurs compilés par [Cyburt et al. 2003] et en bleu clair et foncé
sont représentés les ajustements aux mesures effectuées par [Kusakabe et al. 2009]. Ces ajuste-
ments sont valides jusqu’à des énergies de photons ∼ 100 MeV. En vert sont représentées les
sections efficaces de production de deutérium par photodésintégration. Seul le canal 4He(γ,np)D
contribue significativement, mais reste néanmoins environ 10 fois plus faible que la production
d’éléments de masse 3 au pic de section efficace.

Production de deuterium, hélium-3 et tritium par photodésintégration de l’hélium-4

Tous les éléments sont maintenant en place pour calculer la production de deutérium,
d’hélium-3 et de tritium en fonction de la température. Suivant [Protheroe et al. 1995, Je-
damzik 2000], le nombre de noyaux de deutérium produit par les photons d’énergie supérieure
à QD s’écrit, en utilisant (4.63) :

ND =
∫ Emax

QD

dEγ
dND

dEγ
(4.65)

=
∫ Emax

QD

dEγ
nασ4He(γ,np)D(Eγ) dnγ

dEγ

∣∣∣
tot

npσBH(Eγ , 1) + nασBH(Eγ , 2) + k(Eγ)neσKN (Eγ)
. (4.66)

Dans cette expression, k(Eγ) est la fraction moyenne d’énergie perdue par diffusion Compton
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128 Nucléosynthèse

[Protheroe et al. 1995] :

k(Eγ) ≈ 1− 4/3
ln(2Eγ/me) + 1/2

. (4.67)

Pour mémoire on a

np = (1− Yp)nB, nα =
Yp
4
nB, ne =

(
1− Yp

2

)
nB, (4.68)

si bien que (4.66) se simplifie en :

ND =
∫ Emax

QD

dEγ
(Yp/4)σ4He(γ,np)D(Eγ) dnγ

dEγ

∣∣∣
tot

(1− Yp)σBH(Eγ , 1) + (Yp/4)σBH(Eγ , 2) + k(Eγ)(1− Yp/2)σKN (Eγ)
. (4.69)

Figure 4.15 – Quantités de deutérium, d’hélium-3 et de tritium produites par pho-
todésintégration des noyaux d’hélium-4 (courbes pleines) et par nucléodisruption (courbes poin-
tillées).

Cette expression ne dépend pas de la densité baryonique. Les quantités d’hélium-3 et de tri-
tium produites par ce mécanisme s’expriment selon des formules similaires. La figure (4.15)
présente la production de deutérium, d’hélium-3 et de tritium pour la photodésintégration
des noyaux d’hélium-4. Cette production est la production pour une annihilation pp̄, dans la-
quelle la moitié de l’énergie libérée, soit environ 940 MeV, est convertie en photons selon la
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4.2 Nucléosynthèse secondaire 129

procédure décrite ci-dessus. Gardons ainsi à l’esprit que ces grandeurs de production sont des
bornes supérieures de ce qui est réellement produit. Toutefois, la proportion entre les rapport
de production d’hélium-3 (et du tritium) et du deutérium sera conservée. Le palier obtenu pour
T < 10 eV s’explique par la forme inchangée du spectre des photons d’annihilation qui sont tous
sous l’énergie seuil de création de paires Emax pour ces températures.

4.2.6 Production par nucléodisruption

Le dernier mécanisme de production d’éléments légers considéré dans ce travail est la pro-
duction par nucléodisruption. Ce mécanisme fait intervenir un antiproton qui vient s’annihiler
sur un nucléon d’un noyau d’hélium-4. La probabilité pour un antiproton de s’annihiler sur un
noyau d’hélium-4 plutôt que sur un antiproton s’écrit à l’aide des sections efficaces d’annihilation
(4.38) et (4.39) [Combes et al. 1975] :

P =
nα < σp̄αv >

nα < σp̄αv > +np < σp̄pv >
(4.70)

=
3.64(Yp/4)

3.64(Yp/4) + 5.4(1− Yp)
(4.71)

= 0.05. (4.72)

Cette proportion indique que seuls 5% des antiprotons qui viennent s’annihiler dans la zone de
matière s’annihilent sur des noyaux d’hélium et sont ainsi susceptibles de produire du deutérium.
En utilisant les valeurs du tableau (4.2), on peut déduire le nombre de noyaux de deutérium,
d’hélium-3 et de tritium produits par nucléodisruption par antiproton annihilé. Il vient

P ann
D = 6.57× 10−3, P ann

3He = 1.06× 10−2, P ann
3H = 2.17× 10−2. (4.73)

Ces valeurs ne dépendent pas du redshift de l’annihilation et sont directement à comparer avec
celle de la figure (4.15) qui présente la production par photodésintégration pour une annihilation,
c’est à dire l’annihilation d’un antiproton, quelle que soit la nature de sa cible.

On remarque que la production de deutérium par nucléodisruption est environ 6 fois supérieure
à la production par photodésintégration. En revanche, elle reste toujours inférieure à la produc-
tion d’hélium-3 et de tritium qui dominent systématiquement la production de deutérium, que
se soit par nucléodisruption ou par photodésintégration.

4.2.7 Production de lithium-6

Il a été remarqué [Jedamzik 2000] que ces mécanismes de production hors-équilibre peuvent
conduire à la formation significative de lithium-6. En effet, que ce soit par nucléodisruption ou
par photodésintégration, les noyaux d’hélium-3 et de tritium qui sont produits sont énergétiques
et susceptibles d’interagir avec des noyaux d’hélium-4 thermalisés selon les réactions suivantes :

3H +4 He→6 Li + n, 3He +4 He→6 Li + p. (4.74)

Ces réactions ont un seuil en énergie, E
3H→6
seuil = 8.38 MeV pour la première et E

3He→6
seuil = 7.05 MeV

pour la seconde. L’énergie d’un produit de la photodésintégration de l’hélium 4 par un photon
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130 Nucléosynthèse

Figure 4.16 – Quantité de lithium-6 produit par réactions non-thermiques à partir de l’hélium-3
et du tritium provenant de la photodésintégration des noyaux d’hélium-4 pour une annihilation.
Les courbes pointillées représentent la production de lithium-6 par les noyaux résultants de la
nucléodisruption.

d’énergie Eγ est :

E3H(3He) =
Eγ −Q3H(3He)

4
, (4.75)

où Q3H(3He) est l’énergie seuil de photoproduction de tritium (hélium-3) dont la valeur se trouve
à l’équation (4.64). Le cas de la production de lithium-6 à partir des produits de nucléodisruption
sera discuté après le cas considéré ici. Les sections efficaces de ces réactions sont exprimées sous
forme d’ajustements analytiques dans [Cyburt et al. 2003].

La quantité de lithium-6 produit par la réaction 3H +4 He→6 Li + n s’écrit alors [Jedamzik
2000] :

N6Li =
∫ Emax

QT+4E
3H→6
seuil

dEγ
dN3H

dEγ

∫ E3H(Eγ)

E
3H→6
seuil

dEnασ3H(α,n)6Li(E)
(
dr

dE

)
C

, (4.76)

où
(
dx
dE

)
C

est la perte d’énergie par interactions coulombiennes décrite par l’équation (4.40)

et dN3H
dEγ

est le terme de production de tritium par photodésintégration (voir éq. (4.66)). La
production de lithium-6 par la réaction 3He +4 He→6 Li + p s’exprime de manière similaire. Les
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4.2 Nucléosynthèse secondaire 131

résultats numériques de ces intégrations sont présentées dans la figure (4.16).
La production de lithium-6 à partir d’hélium-3 et de tritium provenant de la nucléodisruption

est plus difficile à estimer car on dispose de peu de données expérimentales sur le spectre d’énergie
des fragments d’annihilation. En utilisant les données de [Balestra et al. 1988], [Rehm & Jedamzik
2001] ont estimé les probabilités moyennes qu’un noyau d’hélium-3 ou de tritium provenant d’une
nucléodisruption produise du lithium-6 comme :

< P3He+4He→6Li+p >= 5× 10−7, < P3H+4He→6Li+n >= 2× 10−6. (4.77)

En considérant les rapports de branchement du tableau (4.2) et la probabilité pour un antiproton
de s’annihiler sur un noyau d’hélium (éq. (4.72)), on en déduit la proportion de lithium-6 créé
pour un antiproton annihilé, proportion qui ne dépend pas de l’époque. Il vient

P
3H
6Li = 4.8× 10−8, P

3He
6Li = 5.25× 10−9. (4.78)

Ces grandeurs sont également reportées sur la figure (4.16) en trait pointillés.

4.2.8 Résultats

Nous venons de déterminer les quantités de deutérium, d’hélium-3, de tritium et de lithium-6
produites pour une annihilation d’un antiproton. Afin de déterminer les abondances finales, il est
nécessaire de faire l’hypothèse qu’à un certain moment situé avant la recombinaison l’annihilation
entre matière et antimatière cesse pratiquement totalement. On a besoin de cet arrêt, car dans
le cas contraire, des annihilations continues jusqu’à l’époque de la recombinaison poseraient des
contraintes insurmontables au niveau des distorsions spectrales du fond diffus cosmologique.
Si un tel arrêt de l’annihilation peut parâıtre arbitraire dans un modèle symétrique classique,
l’hypothèse selon laquelle l’antimatière possède une masse active gravitationnelle négative fournit
un scénario cohérent pour un tel découplage gravitationnel. On considère donc en première
approximation que l’annihilation entre matière et antimatière s’arrête de manière quasi-totale
à un redshift zfin. Ce redshift de fin d’annihilation est dans notre cas un paramètre a priori
calculable, mais dans la pratique il sera déterminé en considérant les différentes contraintes de
production.

L’autre paramètre à déterminer est la taille caractéristique de l’émulsion. L’abondance des
éléments légers (deutérium et hélium-3) est directement reliée à cette taille. Les annihilations
se déroulant à la surface des domaines, la quantité de matière annihilée – et donc la quantité
d’éléments légers produits – est inversement proportionnelle à cette taille de domaines.

Le deutérium, par son caractère critique, et l’absence de distorsions spectrales sur le CMB au
niveau de quelques 10−5 vont nous servir à déterminer ces deux grandeurs. Afin de déterminer
la taille des domaines, on ne considère que le deutérium dans un premier temps et l’on discutera
ensuite la quantité d’hélium-3 produite et des contraintes que cela pose. On peut néanmoins déjà
remarquer au vu des courbes précédentes que dans le cas de la production par nucléodisruption
comme celui de la production par photodésintégration, l’hélium-3 sera majoritairement produit.
Parmi les mécanismes considérés ici, il n’en existe pas qui favorise le deutérium, ne serait-ce que
dans une région étroite de l’espace des paramètres.
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132 Nucléosynthèse

Différence entre les productions par photodésintégration et par nucléodisruption

Il existe une différence importante entre la production de deutérium par nucléodisruption
et par photodésintégration. Cette différence réside dans la zone où s’effectue cette production.
La production par nucléodisruption est une production “directe”, dans le sens où elle fait in-
tervenir un antiproton et un noyau d’hélium. Ainsi, ce mode de production est local et se
déroule exclusivement à la frontière entre les domaines. Les fragments chargés produits par ces
nucléodisruptions, émis avec un énergie de quelques MeV à quelques dizaines de MeV, vont
s’éloigner rapidement de la zone de contact, et se thermaliser par collisions coulombiennes sur
les distances calculées précédemment (voir fig. (4.10)). Ces distances de thermalisation sont tou-
jours plus courtes, de plusieurs ordres de grandeur, que la longueur de diffusion pour un temps
de Hubble. Comme indiqué précédemment, cela signifie qu’un fois thermalisés, ces fragments
chargés vont être ramenés vers la zone de contact et annihilés dans un temps nettement plus
court qu’un temps de Hubble, précisément dans le rapport des carrés de la longueur therma-
lisation sur la longueur de diffusion. Pour fixer les idées, si la longueur de thermalisation d’un
noyau de deutérium est 100 fois plus petite que la longueur de diffusion, alors ce deutérium
sera annihilé en un temps 1002 = 104 plus petit que le temps de Hubble. Ainsi la production
de deutérium (ou d’hélium-3) par nucléodisruption au moment où les annihilations s’arrêtent se
calcule-t-elle en intégrant le taux d’annihilation entre les bornes suivantes :

t∗ = tH(zfin)

[
1−

(
Ltherm

Ldiff

)2
]

et tH(zfin). (4.79)

A contrario, la production par photodésintégration se déroule à des distances très éloignées
de la zone de contact. La figure (4.13) présente le libre parcours moyen des photons énergétiques
provenant des annihilations et relatif aux deux interactions dominantes pour ces photons lorsque
l’énergie seuil est suffisamment grande pour qu’ils ne puissent plus créer de paires sur les photons
du CMB. Ces libres parcours moyens représentent la distance typique à laquelle la production
de deutérium par photodésintégration peut avoir lieu. On note qu’à partir du moment où la pro-
duction par photodésintégration est effective, c’est-à-dire une fois que l’énergie seuil de création
de paire Emax est supérieure aux ∼ 25 MeV requis pour casser un noyau d’hélium, la distance
moyenne d’interaction des photons est plus grande que la longueur de diffusion. Pour autant, le
deutérium produit n’est pas à l’abri d’une destruction ultérieure car la longueur de diffusion crôıt
plus vite que l’expansion. Ainsi à mesure que la température baisse, ce deutérium va pouvoir
parcourir par diffusion une distance de plus en plus grande et venir s’annihiler sur la frontière.

La question se pose alors : n’y-a-t’il pas de deutérium qui survit ? La réponse est malgré tout
positive. En effet, considérons la longueur de diffusion au moment du découplage gravitationnel,
où les annihilations s’arrêtent car les domaines se séparent. Notons cette grandeur Ldiff(zfin)
et notons Lzfin

diff(z) sa valeur comobile à un redshift z. On a la relation suivante entre ces deux
longueurs :

Lzfin
diff(z) = Ldiff(zfin)

(
1 + z

1 + zfin

)
. (4.80)

Notons que pour z > zfin, cette longueur comobile est plus grande que la longueur de diffusion
physique au même redshift. En remplaçant Ldiff(zfin) par sa valeur numérique (éq (4.27)), il
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4.2 Nucléosynthèse secondaire 133

vient :
Lzfin

diff(z) = 1.27× 1025 cm
1 + z

(1 + zfin)3
. (4.81)

Cette longueur comobile caractérise la zone dans laquelle tout élément produit finira annihilé
au plus tard à zfin. Ainsi, les éléments produits par photodésintégration survivront s’ils sont
synthétisés à une distance supérieure à cette longueur comobile. Le libre parcours moyen des pho-
tons de haute énergie caractérise de façon pertinente la distance à laquelle les éléments légers sont
produits par photodésintégration. Considérons un photon d’énergie moyenne< Eγ >= 165 MeV,
qui est l’énergie moyenne des photons produits par la désintégration des π0 [Kurki-Suonio &
Sihvola 2000]. Si la température est suffisamment basse pour qu’ils ne soient pas convertis en
paires e+e−, ces photons vont principalement interagir par diffusion Compton sur les électrons
du plasma. On détermine alors le redshift z∗ à partir duquel le libre parcours moyen des photons
d’énergie < Eγ > devient supérieur à la longueur comobile de diffusion Lzfin

diff(z), c’est à dire, le
redshift z∗ tel que :

1
ne(z∗)σKN (< Eγ >)

= Lzfin
diff(z∗). (4.82)

Le libre parcours moyen s’exprime en fonction du redhift z∗ comme :

1
ne(z∗)σKN (< Eγ >)

= 5.7× 1031 cm
(

1− Yp
2

)−1( η

8× 10−9

)−1( 1
1 + z∗

)3

. (4.83)

Il vient alors

1 + z∗ = 46(1 + zfin)3/4

(
1− Yp

2

)−1/4( η

8× 10−9

)−1/4

. (4.84)

Ce redshift détermine l’époque à partir de laquelle le deutérium produit par photodésintégration
survit jusqu’à l’arrêt de l’annihilation et contribue ainsi à l’abondance supposée primordiale de
deutérium. Pour connâıtre la quantité totale produite, il faut intégrer la production déterminée
à l’aide de la formule (4.69) entre le redshift z∗ défini ci dessus et le redshift zfin qui caractérise
l’arrêt de l’annihilation et donc l’arrêt de la production par photodésintégration.

Même si l’on ne s’attend pas à ce que la séparation des domaines et l’arrêt de l’annihilation
se fasse de manière prompte et brutale, on peut néanmois supposer que la période de transition
qui caractérise le découplage gravitationnel est courte devant le temps de Hubble à l’époque
considérée, et qu’il est ainsi légitime de considérer que, pour des redshifts inférieurs au redshift
zfin, il n’y plus d’annihilation ou que tout au plus ces annihilations résiduelles sont négligeables
devant celles ayant eu lieu juste avant zfin, tant du point de vue de la production d’éléments
léger que du point de vue des distorsions spectrales qu’elles pourraient causer sur le CMB.

Paramétrisation et calcul

Entre un temps t et t+ dt, la quantité de matière annihilée est égale à

dN = Ψ(t)S(t)dt. (4.85)

L’expression du changement de variable entre le temps t et le redshift z est :

dt

dz
= − 1

H0

1
(1 + z)2

, (4.86)
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134 Nucléosynthèse

si bien que dN , la quantité de matière annihilée entre z et z − dz s’écrit :

dN =
1
H0

Ψ(z)S(z)
dz

(1 + z)2
. (4.87)

En intégrant cette quantité multipliée par l’expression de la quantité de deutérium créée par
annihilation (éq. (4.69)) entre z∗ et zfin, on obtient la quantité de deutérium (en nombre de
noyaux) produite par photodésintégration ; notons la Nph

D . Cette quantité s’exprime :

Nph
D =

1
H0

∫ zfin

z∗

ND(z)Ψ(z)S(z)
dz

(1 + z)2
. (4.88)

Dans cette expression, on exprime la surface en fonction des volumes et longueurs comobiles
exprimés ci-dessus et l’on remplace le taux d’annihilation par sa valeur, connue explicitement
lorsqu’on se situe dans le régime du freinage Thomson. Il vient :

Nph
D = 7.6× 1032 cm−2

(
η

8× 10−9

)
V1kev

L1kev

∫ zfin

z∗

ND(z)
dz

(1 + z)2
. (4.89)

Enfin, on peut s’affranchir de la quantité V1keV en considérant la quantité totale de baryons
dans le volume V (zfin). Le rapport entre Nph

D et cette quantité totale de baryons est normalisée
au rapport D/H que l’on souhaite égal à D/H ∼ 3 × 10−5 afin de satisfaire la contrainte de
deutérium. En notant XD ce rapport 6, il vient :

XD =
3× 1018 cm

L1keV

∫ zfin

z∗

ND(z)
dz

(1 + z)2
. (4.90)

Il y a de même une expression similaire pour la quantité d’hélium-3 produite par photodésintégra
tion. Le calcul de ces intégrales se fait de manière numérique, l’expression de ND dépendant de
manière non-triviale du redshift (voir fig. (4.15)).

La deuxième contrainte à respecter impérativement porte sur les distorsions spectrales du
CMB. Le travail effectué dans le chapitre 3 va s’avérer grandement utile. Avant la recombinaison,
les distorsions spectrales liées à des injections d’énergie dans le fond de photons thermiques sont
caractérisées par l’introduction d’un paramètre de potentiel chimique µ relié à la quantité totale
d’énergie injectée et qui ne dépend pas du mécanisme précis d’injection :

µ = 1.4
∆U
U

, (4.91)

où ∆U représente la quantité d’énergie injectée sous forme électromagnétique et U la quantité
totale d’énergie radiative dans le milieu. Nous avons vu au chapitre 3 comment ce terme de
potentiel chimique caractérisant une distribution de Bose-Einstein peut être résorbé sous l’effet
de différents processus radiatifs.

Au cours de la période précédant le moment où s’arrête presque totalement l’annihilation,
au redshift zfin, une certaine quantité d’énergie ∆U(zfin) est injectée dans le milieu conduisant
à l’établissement d’un potentiel µfin. En fonction de la valeur de ce potentiel chimique et de la

6. La notation n’est pas classique, puisque la grandeur X désigne en général la quantité d’hydrogène. Y étant

réservé à l’hélium et les métaux plus lourds étant généralement désignés sous la variable Z
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4.2 Nucléosynthèse secondaire 135

Figure 4.17 – Abondances finales de deutérium (vert), hélium-3 (rouge) et lithium-6 (violet)
en fonction du redshift de fin d’annihilation zfin et de la taille comobile à 1 keV des domaines.
La zone à droite de la figure, délimité par la courbe noire est exclue à cause des contraintes sur
la distorsion du CMB.
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136 Nucléosynthèse

valeur du redshift d’arrêt des annihilations, les processus radiatifs encore actifs (essentiellement le
bremsstrahlung) vont devoir ramener ce potentiel chimique sous la valeur mesurée par FIRAS,
µFIRAS = 9 × 10−5 [Fixsen et al. 1996]. La quantité d’énergie injectée dans le système à zfin

s’exprime par un calcul similaire que précédemment, sauf que ce qui compte ici n’est pas la
quantité d’énergie injectée intégrée, mais simplement celle libérée à une période juste antérieure
à zfin et reliée à la quantité de matière annihilée sur le dernier temps de Hubble avant l’arrêt
des annihilations. En considérant toujours notre grand volume V , µfin s’exprime :

µfin = 1.4
∆U
U

(zfin) =
EannΨ(zfin)S(zfin)tH(zfin)

ργ(zfin)V (zfin)
, (4.92)

où Eann est l’énergie libérée sous forme électromagnétique par une annihilation soit Eann ∼
1 GeV. La résolution de l’équation différentielle régissant l’évolution de µzfin

permet de connâıtre
les contraintes que doivent respecter à la fois zfin et L1keV qui sont les deux paramètres libres
de notre problème. Exprimée en fonction de ces deux grandeurs, l’équation (4.92) se ré-écrit :

µzfin
= 5.26× 1022 cm

(
η

8× 10−9

)(
Eann

1 GeV

)
1

L1keV(1 + zfin)2
. (4.93)

La quantité de deutérium produite par nucléosdisruption qui survit à une annihilation
ultérieure s’écrit :

Nnuc
D =

∫ tH

t∗
P ann

D Ψ(t)S(t)dt, (4.94)

où t∗ est défini à l’équation (4.79). L’abondance en deutérium produit par nucléodisruption
s’écrit alors :

Xnuc
D (zfin) = 3× 1018 cm P ann

D

1
(1 + zfin)

1
L1keV

(
Ltherm(zfin)
Ldiff(zfin)

)2

. (4.95)

Avec cette expression et en considérant la figure (4.10) on se rend aisément compte que ce
mode de production va être marginal et totalement négligeable par rapport à la production
par photodésintégration. En effet, même si l’on considère une température de 1 eV, ce qui est
déjà une température trop tardive pour l’arrêt des annihilations (fig. (4.17)), la longueur de
diffusion est au mieux 10 fois plus grande que la longueur de thermalisation du deutérium,
soit un facteur 10−2 dans l’expression (4.95). On perd ici probablement la seule possibilité de
produire plus de deutérium que d’hélium-3. En effet, la longueur de thermalisation est 1.5 fois
plus faible pour le tritium et 6 fois plus faible pour l’hélium-3 que pour le deutérium du fait de
leurs masse et charge plus importantes. Ainsi, le deutérium aurait pu davantage survivre que les
éléments de masse 3, mais en réalité, même ce deutérium produit par nucléodisruption n’arrive
pas à contribuer de manière significative au bilan final. Notons aussi que cette inefficacité de
la production par nucléodisruption provient des grandes valeurs de la longueur de diffusion,
conséquence directe des échelles de temps plus importantes dans l’univers de Dirac-Milne que
dans un univers standard.

La figure (4.17) présente les résultats finaux de cette étude de production secondaire de
deutérium. Les contours verts représentent les valeurs de l’abondance finale en deutérium, les
contours rouges les abondances en hélium-3 (plus tritium) et les contours violets l’abondance
en lithium-6. La partie droite de la figure, délimitée par la courbe noire, est exclue par les
contraintes sur les distorsions du CMB.
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4.2 Nucléosynthèse secondaire 137

4.2.9 Discussion

Plusieurs points se dégagent de cette étude de la production secondaire d’éléments légers dans
le cadre de l’univers de Dirac-Milne. Trois mécanismes étaient envisagés pour la production de
deutérium : capture neutronique, nucléodisruption et photodésintégration. La production par
capture neutronique a rapidement été écarté du fait de la durée de vie finie des neutrons, bien
trop petite en regard des échelles de temps propres à l’univers de Dirac-Milne.

La production par nucléodisruption est, quant à elle, défavorisée du fait de la courte distance
de thermalisation des fragments chargés résultant des annihilations antinucléon-noyau. En effet,
ces fragments, résultats d’une annihilation p̄α, sont produits au niveau de la zone de contact
entre matière et antimatière et sont rapidement thermalisés par collisions coulombiennes sur des
distances largement inférieures à la longueur de diffusion (voir figure (4.10)).

La production par photodésintégration des noyaux d’hélium-4 semble donc être le seul
mécanisme qui puisse mener à la production significative de deutérium. Cette production n’est
possible qu’à partir d’une température d’environ 500 eV, lorsque l’énergie seuil Emax de création
de paires sur les photons thermiques devient supérieure à l’énergie minimale requise pour pho-
todésintégrer un noyau d’hélium-4. Nous avons donc déterminé la taille de l’émulsion qui permet
la production de deutérium au niveau observé de XD ∼ 3×10−5. Nous avons considéré pour cette
estimation que la taille de l’émulsion était fixée par le mécanisme de séparation initial et restait
approximativement constante (exprimée en grandeur comobile). La production de deutérium
s’arrête au redshift de fin d’annihilation. Cette fin d’annihilation est une condition nécessaire à
la viabilité du modèle. Dans le cas contraire, les annihilations résiduelles finiraient par laisser des
empreintes sur le spectre des photons du CMB, ce qui est fortement contraint par les mesures
effectuées par FIRAS et plus encore sur le fond diffus gamma.

Si l’on impose l’arrêt des annihilations le plus tard possible, aux alentours de zfin = 3×104, la
taille de domaines qui permet d’obtenir une abondance de deutérium de l’ordre de XD = 3×10−5

se situe vers

L1keV = 5× 1015 cm. (4.96)

Exprimée aujourd’hui, cette longueur correspond à une taille de domaines comobile de Ldom ∼
7 kpc. Cette taille peut parâıtre faible par rapport, par exemple, à la taille typique d’une galaxie
(100 kpc), mais il faut garder en mémoire que le scénario de formation des structures sera
énormément changé par rapport au scénario standard du fait de la présence de domaines de
masses positives et de masses négatives qui vont se repousser. Ainsi, il est sans doute prématuré
de dire, à ce stade de l’étude, que les contraintes de nucléosynthèse conduisent à une taille de
domaines trop petite. Par contre, cette estimation de taille peut servir de conditions initiales
pour l’étude de la formation des structures dans le cadre de l’univers de Dirac-Milne.

La taille déterminée par la production de deutérium au moment du découplage gravita-
tionnel est largement inférieure au libre parcours moyen des photons de haute énergie à cette
température (voir figure (4.13)), ce qui implique que la production de deutérium peut raisonna-
blement être considérée comme homogène. Il est remarquable qu’un mécanisme profondément
inhomogène comme l’annihilation matière/antimatière qui se déroule dans des zones très loca-
lisées puisse produire du deutérium de manière homogène, comme l’est la production thermique
du deutérium dans le cas standard, ou celle de l’hélium-4 dans l’univers de Dirac-Milne.
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138 Nucléosynthèse

Même si la production de deutérium à un niveau raisonnable est possible, le modèle de Dirac-
Milne se heurte toutefois à une contrainte qu’il semble difficile de contourner. La production de
deutérium par photodésintégration s’accompagne d’une production d’hélium-3 jusqu’à un facteur
10 plus importante. Il est vrai que l’histoire stellaire de l’hélium-3 est complexe, puisqu’il peut
être détruit, mais également produit dans les étoiles, si bien que la détermination observationnelle
de son abondance primordiale est difficile. Cela a par exemple conduit [Cyburt et al. 2003] à
ignorer les contraintes posées par cet élément, du fait de son histoire stellaire complexe. Ce
raisonnement me parâıt toutefois douteux car même si, en effet, il est difficile de remonter à
l’abondance primordiale en hélium-3 à partir des observations qui en sont faites, on peut toutefois
poser des contraintes sur l’évolution du rapport D/3He [Sigl et al. 1995]. Le raisonnement est le
suivant. Le deutérium étant très fragile, il ne peut qu’être détruit dans les étoiles et en aucun cas
produit. L’hélium-3 peut, quant à lui, être produit ou détruit, mais s’il est détruit, le deutérium
le sera au moins en proportions égales car il est plus fragile. Ainsi le rapport D/3He ne peut que
décrôıtre au cours du temps. Des observations locales, dans le milieu interstellaire, de deutérium à
un niveau à peine inférieur au niveau de production de la nucléosynthèse standard ((D/H)obs ∼
2 × 10−5) [Linsky et al. 2006], et les observations d’hélium-3 dans la galaxie impliquent un
rapport D/3He de l’ordre de 1 aujourd’hui. Suivant le raisonnement de [Sigl et al. 1995], comme
le rapport D/3He ne peut que décrôıtre, cela implique qu’au moment d’une production non
standard d’hélium-3 et de deutérium, ce rapport était toujours plus grand que sa valeur actuelle
(à z = 0). La production de deutérium par photodésintégration des noyaux d’hélium-4 dans
l’univers de Dirac-Milne fournit un rapport D/3He sensiblement plus petit que 1, ce qui semble
alors en contradiction avec le raisonnement exposé.

Enfin, le lithium-6, synthétisé à partir des noyaux énergétiques d’hélium-3 ou de tritium
selon le mécanisme décrit à la section (4.2.7), est produit à des niveaux élevés comparativement
à la production thermique de lithium-7 d’une part, et par rapport aux observations décrites dans
le chapitre 1 d’autre part. En effet, la production de deutérium à un niveau D/H ∼ 3 × 10−5

s’accompagne d’une production de lithium-6 à un niveau 6Li/H ∼ 10−9, soit une valeur plus
grande que celle du lithium-7. Même si l’annonce de l’observation d’un plateau de lithium-6
dans des vieilles étoiles du halo est sujette à caution, une abondance de lithium-6 supérieure à
celle du lithium-7 n’a pour l’instant jamais été observée dans des étoiles peu évoluées. Il semble
ainsi que le lithium-6 soit sur-produit par le mécanisme de photodésintégration dans l’univers
de Dirac-Milne.

4.3 Conclusion

Nous avons étudié dans cette partie la possibilité d’une nucléosynthèse primordiale dans
l’univers de Dirac-Milne. L’évolution linéaire du facteur d’expansion change radicalement le
scénario de la nucléosynthèse standard, puisque celle-ci se déroule, dans l’univers de Dirac-
Milne, sur une échelle quelque 107 fois plus longue que dans le modèle standard. Les interactions
faibles qui assurent l’équilibre thermodynamique entre protons et neutrons se découplent vers
une température de 90 keV (contre ∼ 1 MeV dans le cas standard). Ce découplage tardif permet
une production faible d’hélium-4, mais cette production se déroule pendant un temps très long.
La figure (4.2) résume à elle seule parfaitement bien ce mécanisme de nucléosynthèse thermique
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4.3 Conclusion 139

homogène dans l’Univers de Dirac-Milne.
La valeur de la densité baryonique, paramétrée par le rapport η du nombre de baryons sur

le nombre de photons, qui permet une abondance d’hélium-4 compatible avec les observations
se situe dans l’intervalle :

8.8× 10−9 < η < 9.6× 10−9. (4.97)

Cette production d’hélium-4 s’accompagne d’une production de lithium-7. Les abondances
comparées en lithium-7 et en hélium-4 sont présentées sur la figure (4.4). Si l’on impose une
densité baryonique compatible avec les observations en hélium-4, le lithium-7 est sensiblement
surproduit, dans des proportions toutefois légèrement moindres que dans le modèle standard.
L’univers de Dirac-Milne dispose lui-aussi d’un problème du lithium-7, mais celui est néanmoins
allégé par rapport à celui du modèle standard.

Si l’hélium-4 et le lithium-7 sont produits à des abondances compatibles avec les observations,
ce n’est pas le cas du deutérium et dans une moindre mesure de l’hélium-3 qui sont réduits dans
cette nucléosynthèse thermique très longue à des niveaux totalement indétectables. Ce résultat
avait mis un point d’arrêt aux premières études sur la nucléosynthèse dans un univers à évolution
linéaire [Sethi et al. 1999, Kaplinghat et al. 2000].

Une des spécificités du modèle de Dirac-Milne est la présence de domaines séparés de matière
et d’antimatière. Des annihilations de surface, contrôlées par la diffusion des nucléons et des an-
tinucléons, fournissent un mécanisme original de production secondaire de deutérium. Nous
avons montré, à l’aide d’une approximation analytique simplement basée sur un traitement dif-
fusif du transport de nucléons vers la zone d’annihilations, que ce mécanisme pouvait fabriquer
de manière efficace du deutérium. C’est principalement par photodésintégraiton des noyaux
d’hélium-4, initialement synthétisés lors de la première phase de nucléosynthèse thermique, que
se déroule cette phase secondaire de nucléosynthèse. Les photons générés lors d’une annihila-
tion nucléon-antinucléon initient des cascades électromagnétiques par créations de paires sur
les photons thermiques du CMB. Le spectre de ces cascades est générique [Ellis et al. 1992] et
présente une coupure à l’énergie seuil de création de paires. La production de deutérium par
photodésintégration commence donc lorsque cette énergie seuil devient supérieure à l’énergie
minimale requise pour photodésintégrer des noyaux d’hélium-4, soit vers une température de
500 eV.

Les annihilations injectent également de l’énergie dans le contenu radiatif de l’univers, et
peuvent ainsi générer des contraintes fortes sur d’éventuelles distorsions du spectre du CMB.
Ces injections d’énergie peuvent être thermalisées efficacement par des processus radiatifs qui
ne conservent pas le nombre de photons (essentiellement le bremsstrahlung (voir chapitre 3))
jusqu’à des redshifts relativement faibles comparés aux contraintes de thermalisation dans le
cadre du modèle standard. Toutefois, afin de respecter ces contraintes, les annihilations doivent
cesser à un certain redshift qui peut être contraint, en même temps que la taille des domaines,
par l’abondance finale en deutérium.

Au final, les calculs montrent (fig. (4.17)) qu’un arrêt des annihilations vers un redshift
zfin = 3 × 104 et une taille comobile à 1 keV des domaines de l’ordre de 5 × 1015 cm permet
d’obtenir, de façon homogène, du deutérium au niveau de 3 × 10−5 qui correspond aux me-
sures de deutérium dans des nuages d’hydrogène à haut redshift situés sur des lignes de visée
d’objets quasi-stellaires. Cette production de deutérium s’accompagne toutefois d’une surpro-
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140 Nucléosynthèse

duction d’hélium-3, qui elle, semble incompatible avec les observations, même si l’hélium-3 n’est
généralement pas considéré comme un bon baryomètre [Vangioni-Flam et al. 2003] du fait qu’il
peut être produit comme détruit par des processus astrophysiques postérieurs à la nucléosynthèse
primordiale. Cette surproduction d’hélium-3 s’accompagne également d’une surproduction de
lithium-6, synthétisés à l’aide de réactions non-thermiques (éq. 4.74).

En conclusion de cette partie sur la nucléosynthèse dans l’univers de Dirac-Milne, on peut
insister sur le fait que cet univers, avec son histoire thermique radicalement différente de celle
du modèle standard, parvient néanmoins à produire hélium-4, deutérium et lithium-7 dans des
proportions raisonnablement compatibles avec les observations. On note toutefois une probable
surproduction d’hélium-3. Par ailleurs, la production d’hélium-4 permet de poser des contraintes
sur la densité baryonique de cet univers, qui se trouve ainsi être environ 15 fois plus importante
que la densité baryonique du modèle standard. Ce point est important car il enlève de ce fait la
nécessité d’avoir recours à de la matière noire non-baryonique pour expliquer certains aspects
de la dynamique des galaxies et des amas de galaxies.
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Chapitre 5

Supernovæ de type Ia

5.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Les supernovæ du programme SNLS . . . . . . . . . . . . . . . . . . . 146

5.3 Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Conclusion de l’analyse des données SNLS . . . . . . . . . . . . . . . 159

L’étude des variations de la distance de luminosité des supernovæ de type Ia fait aujour-
d’hui partie des tests cosmologiques majeurs et fait l’objet d’efforts observationnels conséquents.
Depuis la découverte, en 1998, d’une gravité répulsive qui, selon le modèle ΛCDM, causerait
l’accélération de l’expansion de notre Univers, ce test cosmologique est considéré comme l’un
des plus à même de contraindre les différents scénarios d’Énergie Noire supposés causer cette
accélération. Le rapport de la Dark Energy Task Force [Albrecht et al. 2006] considère que l’étude
des supernovæ de type Ia est l’un des quatre tests cosmologiques – avec les oscillations baryo-
niques acoustiques, le weak lensing et l’étude des amas de galaxies – qui doivent être mis en avant
sur le plan expérimental et observationnel dans les prochaines années. Il est donc nécessaire de
confronter l’univers de Dirac-Milne à ce test cosmologique.

Avant de procéder à cette étude, il peut être utile de rappeler le contexte dans lequel se trou-
vait la cosmologie en 1998, date de la mise en évidence, par deux équipes indépendantes [Riess
et al. 1998, Perlmutter et al. 1999], que notre Univers n’est manifestement pas correctement
décrit par un modèle Einstein-de Sitter (EdS).

Dans les années 1980-90, le modèle de référence est alors le modèle Einstein-de Sitter, qui
décrit un univers dominé par la matière – quelque soit sa nature – muni de sections spatiales
plates. Cette platitude impose que la densité totale d’énergie dans l’univers est extrêmement
proche de la densité critique, ou de manière équivalente que le rapport de ces deux densités,
noté Ω est extrêmement proche de l’unité. Le fait d’avoir Ω ∼ 1 est soit le fait d’un extraordinaire
ajustement des conditions initiales aux tous premiers instants de l’Univers, ce qui parâıt peu na-
turel, ou alors une conséquence des scénarios d’inflation, introduits notamment pour s’affranchir
de cet ajustement ad hoc et pour résoudre de le problème de l’horizon.

Il y avait alors au moins deux problèmes qui se posaient. Le premier concerne la quantité de
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142 Supernovæ de type Ia

matière inventoriée dans l’Univers. On trouve un bon résumé des différentes mesures de masses
dans [Trimble 1987]. Il ressort qu’à cette époque – et c’est d’ailleurs toujours le cas – les mesures
de masses dans les amas de galaxies indiquent une densité de matière Ω = 0.2 ± 0.1, bien plus
faible que la densité requise pour avoir un espace plat.

Parallèlement à ce problème de masse, le problème de l’âge de l’univers commençait à se
faire de plus en plus aigu. Comme je l’ai indiqué dans les chapitres précédents, l’âge de l’Univers
dans le modèle Einstein-de Sitter est t0 = 2/3H−1

0 . Les différentes mesures de la constante de
Hubble H0, après avoir oscillé entre les valeurs de 50 et 100 km/s/Mpc, ont finit par se stabiliser
vers une valeur autour de H0 ∼ 70− 75km/s/Mpc au milieu des années 1990, notamment avec
les premiers résultats du Hubble Key Project mené sur le télescope spatial Hubble. Cette valeur
de H0 pose précisément le problème de l’âge de l’Univers car les mesures d’âge des plus vieilles
étoiles de la galaxies indiquent un âge supérieur à celui de l’univers Einstein-de Sitter [Chaboyer
et al. 1998].

Les tensions sur le modèle Einstein-de Sitter peuvent alors se résumer ainsi : l’inflation prédit
un espace plat et donc une densité d’énergie totale très proche de la densité critique. Or les me-
sures de masses dans les gros amas de galaxies, c’est à dire dans les plus grosses structures gra-
vitationnellement liées de l’Univers semblent indiquer une densité plus faible, incompatible avec
cette hypothèse de platitude [Trimble 1987]. Par ailleurs l’âge d’un univers tel que Ω = ΩM = 1
serait plus petit que l’âge de certains de ces constituants, et la solution consistant à adopter
une valeur faible de H0 pour augmenter l’âge semble très défavorisée par les observations. Face
à cette situation, une solution consiste à (ré-)introduire une énergie noire, ou énergie du vide
dont la forme la plus simple est celle d’une constante cosmologique telle que l’équation d’état de
cette énergie fait apparâıtre une pression négative pΛ = −ρΛ. La nature exacte de cette compo-
sante n’est pas connue, ni précisée, mais cette introduction semble résoudre d’un coup tous les
problèmes cités ci-dessus, même si par ailleurs elle en soulève d’autres toutes aussi fondamen-
tales. Ainsi considérer une énergie noire telle que sa densité d’énergie réduite ΩΛ est déterminée
pour que la densité totale ΩM + ΩΛ = 1, où ΩM prend la valeur déduite des observations, per-
met de satisfaire la condition Ω = 1 posée par l’inflation, respecte les contraintes posées par
l’observation des amas de galaxies et résout également le problème de l’âge de l’Univers.

La découverte, en 1998 du fait que les supernovæ de type Ia apparaissent moins lumineuses
qu’attendu dans le cadre d’un modèle EdS alors que ces mesures sont compatibles avec une
constante cosmologique telle que ΩM + ΩΛ = 1 a marqué le basculement de la communauté vers
le modèle aujourd’hui appelé modèle de concordance. De ce fait, aujourd’hui, l’univers Einstein-
de Sitter n’est quasiment plus considéré, tant les évidences observationelles semblent favoriser
le modèle ΛCDM.

Dix ans après cette découverte, les relevés de SNe Ia s’enchâınent et s’accumulent, qui
tendent à confirmer la présence d’une mystérieuse énergie noire. Considérant comme acquis que
le modèle Einstein-de Sitter est exclu, le but des relevés actuels ou à venir n’est plus seulement
de déterminer la valeur précise de la densité d’énergie noire ΩΛ, mais également de préciser la
valeur du paramètre d’état ω, reliant densité et pression, et même de contraindre une éventuelle
dépendance en redshift de ce paramètre.

Par son côté historique, il semble que les SNe Ia sont bien ancrées dans l’esprit de la com-
munauté comme étant le test cosmologique qui prouve que l’expansion de notre Univers est
accélérée. Qu’en est-il alors de l’univers de Dirac-Milne face à cette situation ? Remarquons
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5.1 Généralités 143

déjà que le modèle de Dirac-Milne n’est pas inconnu du domaine de la cosmologie avec les SNe
Ia puisque très souvent, en tout cas dans les premières publications sur le sujet ([Perlmutter
et al. 1997], par exemple), les observations sont comparées à un univers vide ΩM = 0,ΩΛ = 0,
qui n’est rien d’autre que notre univers de Dirac-Milne. Si l’univers vide est souvent utilisé
comme référence, c’est qu’il se situe à la frontière entre une expansion décélérée et une expan-
sion accélérée, que l’on attribue généralement, faute d’une description plus précise, à l’Énergie
Noire, quelles que soient sa forme et sa nature. Ainsi, la seule caractéristique nécessaire à l’étude
du modèle Dirac-Milne vis-à-vis des SNe Ia est l’évolution linéaire de son facteur d’échelle et
le fait que ses sections spatiales soient ouvertes. Il est amusant de remarquer que les premières
publications [Perlmutter et al. 1997, Garnavich et al. 1998] des équipes qui ont mis en évidence
l’accélération de l’expansion, avant les deux publications ultra-citées [Perlmutter et al. 1999,
Riess et al. 1998] sont largement compatibles avec un univers vide. L’augmentation de la statis-
tique (ces premières publications ne présentant tout au plus qu’une dizaine de supernovæ à haut
redshift) aura fait converger ces premiers résultats vers l’univers ΛCDM aujourd’hui considéré
comme référence.

De manière générale, en regardant les contours de probabilités sur les récentes publications
du sujet, l’univers vide (ΩM = 0,ΩΛ = 0) est toujours situé à plus de 3σ du meilleur ajustement
dans le plan (ΩM ,ΩΛ) (voir par exemple [Riess et al. 2004, Astier et al. 2006, Kowalski et al.
2008]), ce qui semble exclure l’univers Dirac-Milne de manière assez certaine.

Devant cette situation qui semble initialement peu réjouissante pour l’avenir du modèle
Dirac-Milne, il est nécessaire de revenir sur les analyses de ces échantillons de supernovæJ̇e
considérerai ainsi les données du programme SNLS [Astier et al. 2006] et je présenterai une
analyse personnelle de ces données après avoir rappelé quelques généralités sur les supernovæ et
sur l’utilisation des supernovæ de type Ia en cosmologie.

5.1 Généralités

Une explosion de supernova est la manifestation de la fin de vie violente d’une étoile. C’est
l’un des événements les plus énergétiques de l’Univers, la luminosité d’une supernova étant
comparable à celle de la galaxie qui l’accueille. Le terme supernova regroupe en réalité une
grande variété d’événements suivant la nature spectrale de l’étoile et son scénario d’explosion.
Ce sont des événements considérés comme rares, la fréquence typique d’occurrence variant entre
0.25 à 1.4 explosions par siècle et par galaxie en fonction des types de supernovæ et de galaxies
hôtes [Tammann et al. 1994].

5.1.1 Classification spectrale

Les caractéristiques du spectre de la supernova au moment de son maximum de lumière per-
mettent de dégager plusieurs grandes catégories. Une première classification en deux catégories
[Minkowski 1941] a été proposée, selon que le spectre possède ou non des raies d’hydrogène. Par
la suite, cette classification simple a été étendue [Filippenko 1997] pour inclure des critères de
forme sur les courbes de lumière, en plus d’autres caractéristiques spectrales, la simple dichoto-
mie proposée initialement ne suffisant plus à rendre compte de la variété des spectres observés.
La figure (5.1) présente de manière synthétique cette classification.
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144 Supernovæ de type Ia

Supernovæ de type I

Le spectre de ces supernovæ ne présente pas de raies d’hydrogène. Cette absence tend à
indiquer que le progéniteur de ces supernovæ a perdu son enveloppe d’hydrogène. On distingue
trois sous-classes de supernovæ de type I. Les supernovæ de type Ia – celles qui sont utilisées en
cosmologie – présentent des fortes raies d’absorption du silicium ionisé Si II vers une longueur
d’onde de 6150 Å. Les supernovæ de type Ib ne présentent pas, quant à elles, de raies du silicium
mais des raies de l’hélium. Les Ic n’ont ni raies du silicium, ni de l’hélium.

Supernovæ de type II

Ces supernovæ présentent des raies d’hydrogène et se divisent en plusieurs sous-classes. On
distingue ainsi les Sne II-l et Sne II-p suivant la forme de leur courbe de lumière (linéaire ou avec
un plateau) ; les SN II-n qui présentent des raies étroites et une décroissante lente de la courbe
de lumière et enfin les Sne II-b qui sont un type à part avec un spectre initial qui correspond à
un type II mais qui évolue par la suite vers un type Ib/c.2 Turatto

lig
ht curveIIb IIL
IIP

IIn

ejecta!CSM
interaction

core collapsethermonuclear

yes

yesno
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noSiII

HeI yes

hypernovae

strong
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Ib
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III H

Fig. 1. The current classification scheme of supernovae. Type Ia SNe are associated
with the thermonuclear explosion of accreting white dwarfs. Other SN types are as-
sociated with the core collapse of massive stars. Some type Ib/c and IIn SNe with
explosion energies E > 1052 erg are often called hypernovae.

Only in recent years have late time observations contributed to differentiating
various subtypes.

The first two main classes of SNe were identified [88] on the basis of the
presence or absence of hydrogen lines in their spectra: SNe of type I (SNI) did
not show H lines, while those with the obvious presence of H lines were called
type II (SNII). Type I SNe were also characterized by a deep absorption at 6150
Å which was not present in the spectra of some objects, therefore considered
peculiar [16,17]. In 1965, Zwicky [143] introduced a schema of five classes but
in recent years the scarcely populated types III, IV and V have been generally
included among type II SNe.

In the mid-1980s, evidence began to accumulate that the peculiar SNI formed
a class physically distinct from the others. The objects of the new class, charac-
terized by the presence of HeI [58,63], were called type Ib (SNIb), and “classical”
SNI were renamed as type Ia (SNIa). The new class further branched into another
variety, SNIc, based on the absence of He I lines. Whether these are physically
distinct types of objects has been long debated [62,135]. In several contexts they
are referred to as SNIb/c.

Figure 5.1 – Classification des supernovæ en fonction de la présence ou de l’absence de raies
de certains éléments dans leurs spectres et de la forme de leur courbe de lumière. Figure tirée
de [Turatto 2003].

5.1.2 Évolution stellaire et mécanisme de génération des supernovæ

Les étoiles passent la majeure partie de leur vie à brûler leur hydrogène en hélium. La durée
de cette phase varie en fonction de la masse de l’étoile, de quelques millions d’années pour
les plus lourdes à plusieurs centaines de milliards d’années pour les plus légères. Cette phase
de combustion est caractérisée par un équilibre entre la pression de radiation dégagée par les
réactions de fusion et l’effondrement gravitationnel.

Quand tout l’hydrogène du cœur est consumé, les réactions nucléaires s’arrêtent et l’étoile
commence à se contracter sous l’effet de son propre poids. L’énergie libérée par cet effondrement
permet toutefois la mise en combustion des couches d’hydrogène situées autour du cœur d’hélium.
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5.1 Généralités 145

La fusion de cette coquille dégage une pression de radiation qui repousse les couches extérieures
de l’endroit où se passent ces réactions et l’étoile apparâıt ainsi grande, brillante et froide : on
parle alors de géante rouge.

Quand le coeur d’hélium atteint une densité et une température suffisante, la combustion
de l’hélium en carbone s’amorce sans pour autant causer la dilatation du coeur : c’est le flash
de l’hélium. Tout dépend alors de la masse de l’étoile. Si elle dépasse une masse de l’ordre de
8M�, la combustion continue, l’étoile évolue en supergéante puis finit par exploser en supernova
gravitationnelle. Par contre, si la masse de l’étoile est inférieure à cette valeur limite d’environ
8M�, l’étoile s’éteint peu à peu et devient une naine blanche. Si toutefois cette étoile fait partie
d’un système binaire, ce qui est courant car environ une étoile sur deux est dans ce cas, elle
peut accréter de la matière de son compagnon et, éventuellement, aboutir à une supernova
thermonucléaire.

Supernovæ gravitationnelles

À partir du stade de géante rouge, une étoile de masse supérieure à 8M� continue son cycle
de combustion en augmentant continuellement sa température dans son cœur. L’hélium est ainsi
brûlé en carbone et en oxygène, à leur tour brûlés en néon, sodium, magnésium, et ce jusqu’au fer
et au nickel. Le fer et le nickel étant les éléments les plus liés, leur combustion est défavorisée et
l’étoile voit alors son cœur s’arrêter et commence ainsi à s’effondrer sous l’effet de la gravitation.

L’équilibre dans le cœur est alors assuré par la pression de dégénérescence des électrons.
La combustion continue toutefois dans les couches périphériques augmentant ainsi la masse
du coeur en fer. Quand la masse de celui-ci dépasse la masse de Chandrasekhar (∼ 1.4M�),
la pression des électrons ne permet plus de contre-balancer la gravité et le cœur s’effondre. La
densité devient telle que les protons capturent les électrons pour former des neutrons. On obtient
alors une étoile à neutrons. Les couches extérieures de l’étoile qui continuaient à s’effondrer sur
le cœur rebondissent, créant ainsi une explosion gigantesque, dont l’énergie est majoritairement
emportée sous forme de neutrinos.

Supernovæ thermonucléaires

Dans notre étude cosmologique, qui cherche à définir des standards de luminosité (i.e. des
chandelles standard), nous nous intéressons en premier lieu au devenir des géantes rouges de
faible masse. Ces étoiles sont ainsi constituées d’un cœur d’hélium en combustion qui produit
carbone et oxygène. Quand l’hélium du cœur est épuisé, les réactions continuent dans les couches
externes d’hélium. Une fois l’hélium complètement disparu, l’étoile subit une nouvelle phase de
contraction rapide, mais du fait de sa faible masse ne parvient pas à initier la combustion du
carbone et de l’oxygène. Elle s’effondre donc sous l’effet de la gravité et atteint l’équilibre assuré
par la pression de dégénérescence des électrons. Les couches extérieures rebondissent sur ce cœur
et sont éjectées. L’étoile atteint alors l’état de “naine blanche”, un cœur de carbone et d’oxygène
dont la masse est inférieure à la masse de Chandrasekhar.

L’histoire s’arrête là pour ces étoiles, sauf si elles font partie d’un système binaire où elles
se voient offrir une deuxième chance d’atteindre l’état de supernova. Dans le cas d’un système
binaire géante rouge/naine blanche par exemple, la naine blanche va accréter de la matière à
partir de son étoile compagnon. De ce fait elle augmente sa masse. Quand celle-ci dépasse le seuil
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146 Supernovæ de type Ia

critique de la masse de Chandrasekhar, la pression des électrons ne suffit plus pour compenser
la gravité, l’étoile s’effondre, l’énergie libérée permet la fusion du carbone ce qui conduit à
l’explosion pratiquement totale de l’étoile. Ce type de fin de vie cataclysmique constitue une
supernova de type Ia.

5.1.3 Les SNe Ia : des chandelles standard... isables

L’intérêt des supernovæ de type Ia réside dans le mécanisme qui leur donne naissance. L’ex-
plosion d’une naine blanche qui dépasse la masse de Chandrasekhar par accrétion progressive de
matière d’une étoile compagnon fournit un scénario a priori identique pour toutes ces explosions
et l’on s’attend alors à des caractéristiques similaires des courbes de lumière et des magnitudes
absolues de ces supernovæ. L’hypothèse de chandelle standard consiste justement à supposer que
ces explosions ont les mêmes caractéristiques, notamment la même magnitude absolue. Dans la
pratique, ce n’est évidemment pas tout à fait le cas, les SNe Ia présentant par exemple une dis-
persion naturelle de l’ordre de 0.5 magnitude (voir fig. (5.2, gauche)). Ces différences viennent
principalement du fait que ces objets sont des objets astrophysiques et qu’ainsi de nombreux
effets physiques peuvent intervenir, modifiant de fait les caractéristiques de la supernova. Par
exemple, la nature de l’étoile compagnon, la masse du progéniteur ou sa composition chimique
sont autant de paramètres qui peuvent causer des variations possiblement importantes d’une
SN Ia à une autre.

Même si la modélisation théorique des explosions de supernova de type Ia est mal comprise,
il existe toutefois certaines corrélations entre les différents observables d’une SN Ia sur lesquelles
il est possible de s’appuyer et ainsi de déterminer des lois empiriques permettant de réduire la
dispersion dans les courbes de lumière. Parmi ces corrélations, deux sont couramment exploitées :

– Relation largeur-luminosité. Cette relation indique que les supernovæ les plus brillantes
ont une décroissance de leur courbe de lumière plus lente [Phillips 1993]. Cette relation
est particulièrement visible sur la figure de gauche de la figure (5.2). Pour corriger cette
dispersion, on introduit un paramètre d’étirement temporel, ou stretch qui permet de re-
caler les courbes de lumière les unes sur les autres. La prise en compte de cette corrélation
permet de réduire considérablement la dispersion comme en témoigne le passage de la
figure de gauche à la figure de droite de la figure (5.2).

– Relation couleur-luminosité. Cette relation, mise en évidence par [Tripp 1998], relie la
couleur de la supernova à sa luminosité. Suivant les modèles, cette relation empirique
tente de rendre compte de l’absorption par les poussières dans la galaxie, la galaxie hôte
ou dans le milieu intergalactique. Pour utiliser cette corrélation, on introduit un paramètre
de couleur qui là encore permet de réduire la dispersion des courbes de lumière.

5.1.4 L’utilisation en cosmologie

Si l’on considère un objet de luminosité intrinsèque L situé à un redshift z, la relation entre
son flux et la distance de luminosité s’écrit :

f =
L

4πd2
L(z)

. (5.1)
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5.1 Généralités 147

Figure 5.2 – La figure de gauche montre les courbes de lumière des supernovæ observées par
le Cal·n-Tololo Supernovæ Search [Hamuy et al. 1993] dans la bande B. La figure de droite
représente les mêmes courbes de lumière corrigées à l’aide du paramètre d’étirement (“stretch
factor”). Cette correction permet de passer d’une dispersion de l’ordre de 50% de la luminosité
intrinsèque des SNe Ia à un peu moins de 20%.

C’est en considérant cette expression qu’on remarque l’intérêt de travailler avec des objets de
luminosité intrinsèque identique, c’est-à-dire des chandelles standards. Cette équation fait inter-
venir la distance de luminosité qui est une fonction analytique du redshift et du modèle cosmo-
logique sous-jacent que l’on cherche à déterminer à partir de la mesure de flux des différentes
supernovæ. La luminosité intrinsèque est a priori inconnue, mais si l’on travaille avec des chan-
delles standard, c’est une constante qui ne dépend pas de l’objet considéré. On peut la considérer
comme un paramètre libre et ainsi la déterminer en même temps que les paramètres cosmolo-
giques.

En astronomie, la brillance des objets est souvent exprimée en terme de magnitude. On
considère un objet de référence dont les grandeurs sont indicées par une ∗. En notant m la
magnitude apparente, il vient alors :

m−m∗ = −2.5 log10

f

f∗
= −2.5 log10

L

L∗

d2
L∗

d2
L

, (5.2)

où l’objet de référence a une luminosité absolue telle que si sa distance de luminosité est 10 pc,
alors sa magnitude m∗ = 0. On peut alors définir un module de distance µ tel que

µ ≡ m−M = 5 log10

dL
10 pc

, (5.3)

avec M, la magnitude absolue de l’objet initial.
Dans le cas particulier des observations de SNe Ia, la distance de luminosité est connue

analytiquement en fonction de la cosmologie et du redshift, et il s’agit donc de comparer les
magnitudes apparentes, m, déduites des mesures de flux aux magnitudes prédites dans le cadre
d’un modèle cosmologique.
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148 Supernovæ de type Ia

Distance de luminosité

La distance de luminosité d’un objet situé à un redshift z s’obtient à partir de l’expression
de la métrique FRW et de l’équation de Friedmann (voir chapitre 1) et s’écrit, de la manière la
plus générale possible :

dL =
c

H0
(1 + z)Sk

∫ z

0

dz′√
ΩR(1 + z′)4 + ΩM (1 + z′)3 + Ωk(1 + z′)2 + ΩΛ exp(3

∫ z′
0

ω(z′′)dz′′

1+z′′ )

 ,

(5.4)
où la fonction Sk, définie au chapitre 1 (éq. 1.17), caractérise la courbure des sections spatiales.
Dans cette expression, les différents termes Ωi, avec i = R,M, k,Λ, réfèrent aux valeurs actuelles
de ces paramètres. Le paramètre ω est le paramètre d’état de l’Énergie Noire reliant densité et
pression, qui, écrit sous cette forme, peut dépendre implicitement du redshift et du modèle
considéré.

Dans le cas d’un univers Dirac-Milne, caractérisé par Ωk = 1, les autres termes étant nuls,
cette expression se réduit à

dL =
c

H0
(1 + z) sinh [ln(1 + z)] . (5.5)

5.2 Les supernovæ du programme SNLS

5.2.1 Le programme SNLS

Le programme SNLS (SuperNovæ Legacy Survey) est un programme observationnel qui vise
à détecter et à obtenir les courbes de lumières de supernovæ à haut redshift. Cette détection
photométrique est accompagnée d’un programme d’observations spectroscopiques sur les grands
télescopes visant à déterminer la nature spectrale des candidats et à en déterminer très précisé-
ment le redshift. Le relevé photométrique est effectué sur le télescope CFHT Canadian France
Hawaii Telescope situé sur le Mauna Kea à plus de 4200 mètres d’altitude.

Un des atouts du SNLS est sa méthode de détection glissante des événements transitoires
comme les explosions de supernovæ : les champs profonds sont observés sur une période de 15
à 18 jours aux alentours de la nouvelle lune et le télescope est pointé tous les 3 ou 4 jours sur
un même champ. Cela fournit ainsi un bon échantillonnage temporel et permet la détection des
supernovæ dans la partie ascendante de leur courbe de lumière.

5.2.2 Échantillon

Les données publiées dans [Astier et al. 2006] correspondent aux supernovæ détectées et
spectrées durant la première année du programme. Ces données contiennent 115 supernovæ de
type Ia. Ces SNe constituent en fait deux groupes de données : un groupe de 44 supernovæ
à bas redshift (z < 0.15), mesurées en dehors du SNLS et un ensemble de 71 supernovæ qui
sont propres au SNLS. Ces supernovæ ont des redshift compris entre z = 0.2 et z = 1.01. La
distribution en redshift de ces supernovæ est présentée sur la figure (5.4).

Comme on l’a indiqué plus haut, l’échantillon de supernovæ proches ne provient pas du
SNLS. Il s’agit d’un ensemble de supernovæ collectées dans la littérature dont les origines sont
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5.2 Les supernovæ du programme SNLS 149

Figure 5.3 – Différence entre le module de distance µ calculé pour un univers
ΛCDM (ΩM = 0.26,ΩL = 0.74) et celui calculé pour un univers de Dirac-Milne (rouge) ou
Einstein-de Sitter (vert). Cette représentation illustre le fait que l’univers de Dirac-Milne est
beaucoup plus proche – au sens du module de distance – d’un univers ΛCDM que ne l’est le
modèle Einstein-de Sitter. En particulier, à grand redshift (0.7 < z < 1.5), la différence entre
les deux modèles décrôıt pour s’annuler à z = 1.5, contrairement au cas Einstein-de sitter qui
s’eloigne de plus en plus du modèle ΛCDM, pris ici comme référence. On remarque également
que la différence entre les modèles Dirac-Milne et ΛCDM est du même ordre de grandeur que
la dispersion naturelle des SNe Ia.

variées. Il ne s’agit donc pas d’un ensemble homogène d’observations qui auraient été collectées et
analysées par une seule expérience, mais d’un ensemble hétérogène de données, qui proviennent
d’expériences différentes et observées avec des instruments différents. Il est donc possible que
cette non-homogénéité des données soit une source d’erreurs systématiques.

5.2.3 Estimateur de distance

Nous avons vu précédemment que les supernovæ de type Ia présentent naturellement des va-
riabilités dans leurs courbes de lumière et dans leurs luminosités au maximum qu’il est nécessaire
de corriger ou de réduire afin de pouvoir les utiliser comme chandelles standard. Pour ce faire, on
a recours à un “ajusteur de courbe de lumière”, procédé qui permet de déterminer à partir des
courbes de lumières observées des paramètres propres à chaque supernova, qui vont permettre
de construire un estimateur de distance.

La méthode employée par [Astier et al. 2006] pour l’analyse des courbes de lumière repose
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150 Supernovæ de type Ia

Figure 5.4 – Distribution en redshift des supernovæ utilisées par le programme SNLS. Gauche :
supernovæ proches dont les mesures ont été effectuées en dehors du SNLS. Droite : supernovæ
lointaines, mesurées par le SNLS.

sur l’utilisation de l’ajusteur SALT (Spectral Adaptative Light curve Template) décrit dans [Guy
et al. 2005]. Cet ajusteur utilise en entrée les courbes de lumière mesurées, effectue toutes
les corrections nécessaires telles la K-correction 1 et retourne trois paramètres : la magnitude
apparente m∗B dans le référentiel de la supernova, un paramètre d’étirement, s et un paramètre
de couleur c.

Le paramètre m∗B est la magnitude apparente de la supernova dans son référentiel propre
au moment du maximum de lumière dans la bande B. Le facteur d’étirement (“stretch”) s
paramétrise la relation largeur-luminosité en recalant la courbe de lumière dans le référentiel
propre dans la bande B sur un patron (“ template”). Cette correction permet de réduire la
dispersion naturelle des magnitudes. Enfin, le paramètre de couleur c défini comme c = (B −
V )Bmax + 0.057, représente l’excès ou le déficit de couleur par rapport à une SN Ia standard,
définie de façon à ce que B − V = −0.057 au maximum de lumière dans la bande B. Cette
correction concerne non seulement l’extinction causée par la galaxie hôte, mais aussi un éventuel
rougissement causé par des poussières.

Au final, l’estimateur de distance utilisé par [Astier et al. 2006] et qui correspond à l’analyse
des courbes de lumière effectuée avec SALT s’écrit

µB = m∗B −M + α(s− 1)− βc. (5.6)

Dans cette expression, M est la magnitude absolue de la supernova, qui d’après l’hypothèse
de chandelle standard est la même pour toutes les supernovæ. Les paramètres α et β sont des

1. Les supernovæ étant toutes à des redshifts différents, il est nécessaire, pour pouvoir les comparer, d’expri-

mer leur magnitude dans leur propre référentiel photométrique. La K-correction consiste ainsi à ramener le flux

mesuré dans un filtre expérimental dans le système photométrique de la supernova. Cette correction nécessite la

connaissance précise d’un astre de référence ; dans le cas du SNLS il s’agit de l’étoile Vega.
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5.3 Analyse 151

paramètres dits de nuisance, au même titre que la magnitude absolue M , qui seront déterminés
lors de l’ajustement global des données et sur lesquels les résultats cosmologiques doivent être
marginalisés.

L’ajustement qui permet de déterminer les paramètres cosmologiques et les paramètres de
nuisance est réalisé en minimisant l’expression suivante :

χ2 =
∑ (µB − 5 log10(dL/10 pc))2

σ2(µB) + σ2
int

, (5.7)

dL étant la distance de luminosité (éq. 5.4), σint un paramètre de dispersion intrinsèque que je
discuterai dans la suite et σ(µB) les erreurs statistiques. Dans le terme σ(µB) sont prises en
compte les erreurs sur m∗B, c et s issues de SALT, ainsi que les incertitudes sur les paramètres
α et β. Enfin, σ(µB) prend en compte une incertitude sur les vitesses particulières de l’ordre
de 300 km/s. Notons toutefois que ce terme ne contient pas les erreurs systématiques qui sont,
dans l’analyse de [Astier et al. 2006], directement répercutées sur les valeurs des paramètres
cosmologiques.

Dispersion intrinsèque

Cette dispersion intrinsèque est introduite pour rendre compte du fait que, malgré les correc-
tions apportées grâce aux paramètres d’étirement temporel et de couleur, les SNe Ia présentent
encore une dispersion de l’ordre de 0.15 mag. Si l’introduction d’un tel paramètre de dispersion
peut apparâıtre naturelle pour des objets astrophysiques dont on ne connâıt pas tous les détails
de l’évolution, elle est néanmoins rajoutée “à la main” et ajustée de manière à ce que le χ2 par
degré de liberté de l’ajustement soit égal à 1.

Aussi, s’il peut être logique d’inclure cette dispersion intrinsèque, il devient alors difficile de
comparer et de discriminer les modèles. Évidemment dans le cas d’un modèle où la dispersion qui
permet de retrouver un χ2 réduit égal à 1 est deux fois plus importante que celle du modèle de
référence correspondant au plus faible χ2, on peut se poser de sérieuses questions sur la viabilité
de ce modèle. Mais quelle fiabilité et quel degré de prédiction peut-on accorder si la dispersion
obtenue n’est que légèrement supérieure à celle du meilleur ajustement ? Il n’y a aucune raison
a priori de préférer une dispersion de 0.13 mag à une dispersion de 0.14 mag, si ce n’est bien sûr
qu’elle est plus faible. Il n’y a en tout cas aucune raison physique pour cela, justement parce que
cette dispersion intrinsèque cache un grand nombre d’effets systématiques non mâıtrisés. S’il
peut être réconfortant d’obtenir une dispersion intrinsèque plus faible, il faut garder à l’esprit
que cette procédure ne correspond à rien de physique, ni n’est associée à une réelle dispersion
intrinsèque démontrée.

5.3 Analyse

5.3.1 Minimisateur de χ2

Pour effectuer les ajustements, j’ai utilisé une version d’hubblefit, le programme d’ajustement
utilisé par la collaboration SNLS, ultérieure à celle utilisée pour la publication des résultats de
la première année de prise de données [Astier et al. 2006]. D’après un membre de l’équipe [Guy
2007], la version que j’ai utilisée corrige un certain nombre d’insuffisances par rapport à celle
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152 Supernovæ de type Ia

qu’ils ont utilisé dans leur publication. J’ai évidemment vérifié que ce programme d’ajustement
fournissait néanmoins des résultats compatibles avec ceux que l’on trouve dans la publication
[Astier et al. 2006].

Ce qu’il faut garder à l’esprit, c’est que pour l’étude de l’univers de Dirac-Milne, je ne cherche
pas a priori à déterminer de paramètres cosmologiques avec une meilleur précision que les équipes
précédentes. Je cherche simplement à savoir si cet univers est compatible avec les données des
supernovæ de type Ia et à le comparer à un modèle ΛCDM “fiduciel”. Notons dès à présent que,
même si l’univers de Dirac-Milne ne comporte en principe aucun paramètre libre, il apparâıtra
tout de même trois paramètres dans l’expression du χ2.

5.3.2 Diagramme de Hubble

On appelle diagramme de Hubble la représentation du module de distance µ, défini par
la relation (5.6) en fonction du redshift. Traditionnellement, dans ces diagrammes, les points
correspondent aux données mesurées et les diverses courbes correspondent aux valeurs théoriques
dans le cadre de différents modèles. L’adéquation entre les points et les courbes donne alors une
indication sur la viabilité des modèles considérés.

Représenter sur une seule figure les diagramme de Hubble de plusieurs modèles cache en
réalité une imprécision qu’il convient de noter. En effet, si l’on considère attentivement la rela-
tion définissant le module de distance (éq. (5.6)), on s’aperçoit qu’interviennent les valeurs des
paramètres M , α et β, qui sont déterminées lors de l’ajustement aux données en même temps
que les paramètres cosmologiques. L’ajustement pour des modèles différents va donc donner des
valeurs différentes de ces paramètres et en particulier de la magnitude absolue M qui n’aura
alors pas la même valeur dans l’univers de Dirac-Milne ou un univers ΛCDM.

La figure de gauche de la figure (5.5) présente le diagramme de Hubble tel qu’il est habi-
tuellement présenté pour le modèle ΛCDM (ΩΛ = 0.74,ΩM = 0.26) (courbe bleue), le modèle
Dirac-Milne (courbe rouge) et le modèle Einstein-de Sitter (courbe verte). Les points noirs cor-
respondent aux valeurs du module de distance calculé avec les paramètres M , α et β déterminés
lors de l’ajustement pour un univers ΛCDM. Cette représentation est alors biaisée, car elle
cherche à comparer les prédictions théoriques de deux modèles aux mesures déterminées pour
un troisième modèle. Présenté de cette manière, l’univers Einstein-de Sitter apparâıt nettement
exclu. Notons déjà que la différence entre la courbe de l’univers ΛCDM et celle de l’univers
Dirac-Milne est beaucoup plus fine que celle entre le modèle ΛCDM et le modèle Einstein-de
Sitter.

La figure de droite représente la somme du module de distance et de la magnitude absolue
déterminée pour chaque modèle. De même les points de différentes couleurs illustrent le fait
que les paramètres α et β diffèrent selon les modèles. Avec cette représentation, certes moins
convaincante, même l’univers Einstein-de Sitter n’apparâıt pas comme immédiatement exclu. La
différence entre les modèles de Dirac-Milne et ΛCDM est quant à elle infime. Afin de pouvoir
différencier les différents modèles, il faudra nécessairement considérer les diagrammes des résidus.

5.3.3 L’univers Einstein-de Sitter

Même si cette thèse défend l’idée que l’accélération de l’expansion de l’Univers n’est pas
démontrée mais que cette expansion ne serait ni accélérée, ni décélérée, il peut être utile de
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5.3 Analyse 153

Figure 5.5 – Diagramme de Hubble pour trois modèles : ΛCDM (ΩΛ = 0.74,ΩM = 0.26)
(courbe bleue), Dirac-Milne (courbe rouge) et Einstein-de Sitter (courbe verte). Gauche : en
ordonnée est représenté le module de distance défini par la relation (5.6). Droite : en ordonnée
est représentée la somme du module de distance et de la magnitude absolue propre à chaque
ajustement. La différence entre les différents modèles est alors beaucoup plus fine. Même le
modèle Einstein-de Sitter apparâıt sur cette représentation comme non-trivialement exclu.

vérifier que l’univers Einstein de-Sitter est bien fortement défavorisé par les données. J’ai donc
réalisé un ajustement comparatif entre l’univers Einstein-de Sitter et un univers ΛCDM plat
(avec ΩM = 0.26). Les résultats sont présentés dans le tableau (5.1) et les résidus du diagramme
de Hubble sont présentés dans la figure (5.6).

On remarque que la dispersion intrinsèque, déterminée pour que le χ2 réduit vaille 1, est
deux fois plus importante pour un univers Einstein-de Sitter que pour le modèle ΛCDM, pris
ici comme référence. De plus sur le diagramme des résidus, il est aisé de remarquer visuellement
qu’il y a une pente en fonction du redshift et qu’ainsi les résidus ne sont pas du tout distribués
de manière uniforme de part et d’autre de la ligne centrale, ce qui est confirmé sur la partie
droite de la figure. Pour comparer statistiquement les modèles, on peut refaire l’ajustement en
fixant la dispersion intrinsèque du modèle EdS à la valeur obtenue pour le modèle ΛCDM. Les
résultats sont présentés dans la colonne de droite du tableau (5.1). Le χ2 total correspondant
au modèle Einstein-de Sitter est dramatiquement élevé. La probabilité d’avoir χ2 = 331.3 pour
112 degrés de liberté est nulle, rejetant ainsi statistiquement le modèle Einstein-de Sitter.

5.3.4 Analyse des SNe Ia à haut redshift

Le fait que les supernovæ de bas redshift proviennent de différentes sources, et non d’une
seule et même expérience laisse planer un doute sur la fiabilité de ce lot. Dans un premier temps,
il peut être utile de ne considérer que le lot des supernovæ SNLS. Aussi, j’ai réalisé différents
ajustements pour les modèles Dirac-Milne et ΛCDM. J’ai également considéré le modèle Einstein-
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154 Supernovæ de type Ia

ΛCDM plat Einstein de Sitter Einstein de Sitter

ΩM 0.260 (fixé) 1 1
M −19.32± 0.018 −18.98± 0.035 −19.03± 0.02
σint 0.128 0.257 0.128

χ2 total 111.95 111.95 311.3 (ddl=112)

Table 5.1 – Paramètres issus de l’ajustement sur les 115 SNe Ia de l’échantillon pour un
modèle ΛCDM plat et Einstein-de Sitter. La différence entre les deux ajustements pour le modèle
Einstein de Sitter réside dans le paramètre de dispersion intrinsèque. Dans la colonne du milieu,
cette dispersion est ajustée de façon à ce que le χ2 par degré de liberté vaille 1. Dans la colonne
de droite, la dispersion est fixée à la valeur obtenue pour le modèle ΛCDM plat afin de pourvoir
comparer les χ2.

de Sitter, qui même s’il est exclu, permet de vérifier la cohérence des conclusions. En effet, on
s’attend à ce que les différents ajustements à ce modèle soient toujours mauvais et il est ainsi
intéressant de comparer Dirac-Milne à ΛCDM en même temps que Einstein-de Sitter à ΛCDM.

J’ai réalisé deux séries d’ajustements, l’un en ajustant la dispersion intrinsèque telle que le
χ2 réduit vaille 1 et l’autre en la fixant à zéro. Les résultats sont présentés dans les tableaux
(5.2) et (5.3) et les résidus dans la figure (5.7).

Dirac-Milne ΛCDM Einstein-de Sitter

ΩM – 0.25± 0.08 1
M −19.18± 0.022 −19.33± 0.07 −18.87± 0.03
σint 0.1172 0.1173 0.155

χ2 total 68.01 67.01 67.97
χ2 réduit (ddl) 1.00 (68) 1.00 (67) 1.0 (68)

Table 5.2 – Paramètres issus de l’ajustement sur les 71 SNe Ia lointaines de l’échantillon.

Dirac-Milne ΛCDM Einstein-de Sitter

ΩM – 0.289± 0.033 1
M −19.24± 0.006 −19.36± 0.02 −19.04± 0.01
σint 0 0 0

χ2 total 553.64 558.6 724.38
χ2 réduit (ddl) 8.14(68) 8.33 (67) 10.65(68)

Table 5.3 – Paramètres issus de l’ajustement sur les 71 SNe Ia lointaines de l’échantillon.
σint = 0.

En regardant les χ2 dans le cas où la dispersion intrinsèque est fixée à 0, on se rend vite
compte de la raison pour laquelle on introduit ce paramètre ! Avec une dispersion intrinsèque
nulle, les χ2 explosent et tous les modèles seraient rejetés avec une probabilité pratiquement
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5.3 Analyse 155

Figure 5.6 – Gauche : Diagramme des résidus pour le modèle Einstein-de Sitter et ΛCDM plat.
Les barres d’erreurs dans le cas du modèle Einstein-de Sitter, qui sont la somme quadratique
des erreurs de mesure et du paramètres de dispersion intrinsèque, sont manifestement deux fois
plus importantes pour les SNe Ia qui contribuent fortement au poids statistique que pour le
modèle ΛCDM du fait du paramètre de dispersion intrinsèque deux fois plus grand. Droite :
distribution des écarts au modèle Einstein-de Sitter pour les SNe Ia de bas redshift (hachures
bleues) et de haut redshift (hachures jaunes).

égale à 1. Cela montre d’ailleurs à quel point l’hypothèse de chandelle standard, même avec les
corrections de couleur et de stretch, est forte et difficile à tester.

Le résultat quelque peu inattendu est le suivant : si l’on ne considère que les supernovæ à
haut redshift, le modèle Dirac-Milne est aussi bon que le modèle ΛCDM voire même légèrement
meilleur si l’on fixe la dispersion intrinsèque à 0. Il sont dans tous les cas indiscernables. On
vérifie par ailleurs que ce n’est pas le cas du modèle Einstein-de Sitter, qui là encore est fortement
défavorisé. Il semble ainsi que les modèles de Dirac-Milne et ΛCDM soient très proches et cela
confirme, si besoin était, la nécessité de disposer de mesures fiables de supernovæ de bas redshift
afin d’ancrer le diagramme de Hubble de façon absolue.

Un autre point qui ressort de cet ajustement sur les SNe Ia de haut redshift, est la valeur de
la magnitude absolue M qui se trouve être plus grande dans le cas de Dirac-Milne que dans le
modèle ΛCDM d’environ δM ∼ 0.13. Cela signifie que dans l’univers de Dirac-Milne, les super-
novæ de type Ia sont intrinsèquement moins lumineuses que dans un univers ΛCDM d’environ
11%. C’est là un point original de l’univers de Dirac-Milne qui permet de prédire la valeur de
la constante M des supernovæ car ce modèle ne possède pas de paramètres cosmologiques à
déterminer, autre que les deux paramètres de nuisance α et β, rendant ainsi la prédiction sur
M plus robuste.

Cette analyse partielle montre que si l’on ne considère que les 71 SNe Ia à haut redshift,
les deux modèles, Dirac-Milne et ΛCDM, sont en réalité très proches, contrairement au modèle
Einstein-de Sitter, comme on pouvait d’ailleurs s’y attendre en regardant la figure (5.3).

5.3.5 Échantillon complet

Les ajustements sur les 115 points que contient l’échantillon total pour les trois modèles
jusqu’ici considérés ont été réalisés, d’une part en fixant le paramètre de dispersion intrinsèque
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156 Supernovæ de type Ia

Figure 5.7 – Diagrammes des résidus pour l’ajustement sur les 71 SNe Ia de haut redshift.
Colonne de gauche : la dispersion intrinsèque est ajustée telle que le χ2 réduit soit égal à 1.
Colonne de droite : La dispersion intrinsèque est fixée à 0.
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5.3 Analyse 157

à 0 et d’autre part en l’ajustant selon la procédure habituelle. Les diagrammes des résidus
correspondants et les valeurs des résultats sont présentés dans la figure (5.8) et les tableaux
(5.4) et (5.5).

Dirac-Milne ΛCDM Einstein-de Sitter

ΩM – 0.250± 0.036 1
M −19.217± 0.020 −19.331± 0.029 −18.98± 0.035
σint 0.1432 0.1289 0.258

χ2 total (ddl) 112.05 (112) 110.96 (111) 111.95 (112)

Table 5.4 – Paramètres issus de l’ajustement sur les 115 SNe Ia de l’échantillon.

Dirac-Milne ΛCDM Einstein-de Sitter

ΩM – 0.258± 0.019 1
M −19.258± 0.006 −19.38± 0.011 −19.01± 0.008
σint 0 0 0

χ2 total 877.93 809.75 1507.83
χ2 réduit (ddl) 7.83 (112) 7.295 (111) 13.46 (112)

Table 5.5 – Paramètres issus de l’ajustement sur les 115 SNe Ia de l’échantillon en fixant
σint = 0.

Si l’on considère toutes les supernovæ alors, effectivement, le modèle ΛCDM fournit un
meilleur ajustement aux données dans la mesure où le paramètre de dispersion intrinsèque ajusté
tel que le χ2 par degré de liberté vaille 1, est plus faible dans le modèle ΛCDM que dans le modèle
Dirac-Milne, et à plus forte raison que dans le modèle Einstein-de Sitter, comme nous l’avions
déjà vu. La colonne de droite de la figure (5.8) montre les résidus sans la dispersion intrinsèque
et ainsi présente les erreurs statistiques de mesures. On remarque des zones de redshift bien
délimitées dans lesquelles les erreurs apparaissent plus faibles (0.2 < z < 0.4, notamment).

Considérons maintenant la figure (5.9). Cette figure représente le terme d’erreur σ(µB) (à
gauche) et la somme quadratique de ce terme et du terme de dispersion intrinsèque nécessaire
pour obtenir un χ2 réduit égal à un (à droite), pour le modèle Dirac-Milne (rouge) et ΛCDM
(bleu). Plusieurs aspects se dégagent de cette figure. Tout d’abord, une variation importante
de ces erreurs en fonction du redshift est manifeste ! Dans l’échantillon des supernovæ de haut
redshift, on distingue typiquement trois nuages de points correspondant à trois intervalles de
redshift : 0.2 < z < 0.4, 0.4 < z < 0.8 et 0.8 < z. L’augmentation des barres d’erreurs pour les
supernovæ de redshift > 0.8 est expliquée par [Astier et al. 2006] comme résultant de la mauvaise
efficacité quantiques des CCD de Megacam qui, de ce fait engendre des erreurs importantes sur
le paramètre de couleur, erreurs qui sont par la suite multipliées par le paramètre β qui rentre
dans l’expression du module de distance.

Pour les supernovæ à bas redshift, les erreurs sont également très dispersées, avec une chute
brutale qui se stabilise vers z ∼ 0.05− 0.1. Il est fort probable que cette répartition des erreurs
de mesures des SNe Ia à bas redshift résulte de l’utilisation d’un ensemble hétérogène de données
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158 Supernovæ de type Ia

Figure 5.8 – Diagrammes des résidus pour l’ajustement sur les 115 SNe Ia. Colonne de
gauche : la dispersion intrinsèque est ajustée pour que le χ2 réduit soit égal à 1. Colonne de
droite : la dispersion intrinsèque est fixée à 0.
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5.3 Analyse 159

provenant de différentes expériences.

Figure 5.9 – Erreurs en fonction du redshift. Gauche : la dispersion intrinsèque est nulle.
Droite La dispersion intrinsèque est laissé variable.

Un autre point interpelle quand on considère la colonne de droite de la figure (5.8). On
remarque très nettement la zone de redshift [0.2, 0.4] dans laquelle la dispersion des points est
très inférieure à celle des autres régions, ce qui est d’autant plus vrai si l’on rejette les deux
points qui sont à plus de 8 et 15 écarts standard de l’axe. Aussi, à titre de test, on effectue
l’ajustement sur les 115 SNe Ia sans ces deux points (donc sur 113 SNe Ia) puis on calcule le χ2

sur la zone [0.2, 0.4]. On trouve ainsi un χ2 d’une valeur de χ2 = 0.579 pour 10 degrés de liberté.
Autrement dit, l’ajustement sur cette partie est beaucoup trop bon ! La probabilité d’avoir un
tel χ2 avec 10 degrés de liberté est de l’ordre de 1.3× 10−5. Si l’on considère que l’on a cherché
pour trouver cette zone de faibles résidus, comme l’on dispose d’une centaine de points, on doit
multiplier cette probabilité d’un facteur de l’ordre de 100, mais l’on reste néanmoins avec une
probabilité extrêmement faible de l’ordre de 10−3 dans cette zone. Le question qui se pose alors
– à laquelle je ne donne d’ailleurs pas de réponse – est pourquoi cette zone a-t-elle une dispersion
si réduite (après avoir supprimé deux outliers) par rapport aux autres zones du diagramme ?
Il n’y a évidemment que 10 points dans cette zone, mais ce point est néanmoins important à
souligner. Cela signifie également que considérer une dispersion intrinsèque globale largement
plus grande que la dispersion naturelle des données dans des zones bien délimitées en redshift
dégrade des données bien mesurées et enlève du poids statistique à ces points.

En gardant en tête que les données sont probablement soumises à des erreurs systématiques,
il convient néanmoins de comparer Dirac-Milne à ΛCDM. Nous avons déjà vu que la dispersion
intrinsèque calculée pour Dirac-Milne est supérieure à celle calculée pour ΛCDM. Pour avoir
une comparaison, j’ai refait l’ajustement à un modèle ΛCDM général (donc sans la contrainte
ΩM + ΩΛ = 1) afin de pouvoir comparer les χ2 des deux modèles dans le plan (ΩM ,ΩΛ).
L’ajustement sur ΩM ,ΩΛ donne un paramètre de dispersion intrinsèque que j’utilise ensuite
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160 Supernovæ de type Ia

pour l’ajustement au modèle de Dirac-Milne. La différence de χ2 entre les deux modèles est
∆χ2 = 19.4 pour un ajustement sur deux paramètres, ce qui place la probabilité du modèle de
Dirac-Milne à 6.12× 10−5, à plus de 3.5 σ du meilleur fit.

Je reviens maintenant sur la valeur de la magnitude absolue M , déterminée par l’ajuste-
ment. Comme cela était le cas lorsque l’ajustement était réalisé uniquement sur les supernovæ
à haut redshift, elle est prédite dans le modèle de Dirac-Milne comme plus grande d’environ
δM ∼ 0.12 − 0.13 mag. Rappelons que le modèle de Dirac-Milne ne possède pas de paramètre
cosmologique ajustable si ce n’est cette magnitude absolue, ce qui donne un pouvoir prédictif
fort à l’univers de Dirac-Milne. On peut facilement comprendre la raison de cette prédiction en
prenant comme référence un univers avec une expansion accélérée comme c’est le cas d’un uni-
vers ΛCDM. On observe dans cet univers les SNe Ia avec une certaine luminosité. Si l’on se place
maintenant dans un univers sans accélération (Dirac-Milne), le seul moyen de voir les mêmes
SNe Ia avec la même luminosité, c’est qu’elles soient réellement moins lumineuses. Notons que ce
raisonnement tient également pour un univers décélérant (Einstein-de Sitter), mais cela ne suffit
pas à coller aux observations, car l’expression analytique de la distance de luminosité dans ce
cas a pour conséquence qu’un simple décalage de la magnitude absolue ne compense pas le biais
dans les résidus. La figure des résidus pour l’univers de Einstein-de Sitter (fig. (5.6)) montre de
manière frappante ce biais dépendant du redshift.

La démarche peut parâıtre arbitraire mais si l’on suppose qu’il existe des erreurs systématiques
sur les supernovæ de bas redshift qui induisent une différence dans la magnitude apparente, il
est alors possible que les modèles Dirac-Milne et ΛCDM soit rigoureusement aussi bons. De
manière, certes totalement empirique, on peut déterminer la variation de luminosité apparente
δmB qu’il faudrait imposer aux supernovæ de bas redshift 2 pour ramener l’univers de Dirac-
Milne à 1σ de ΛCDM. Il faut également noter qu’en faisant cette modification on va également
changer l’ajustement du ΛCDM plat et changer ainsi la prédiction sur ΩM .

Le croisement des χ2 a lieu pour δmB = 0.06 et la valeur de ΩM correspondante est
ΩM = 0.33± 0.022. Un tel décalage est-il envisageable ? [Kowalski et al. 2008] estiment les pos-
sibles sources d’erreurs systématiques dans les études cosmologiques avec des SNe Ia et concluent
à des erreurs systématiques de l’ordre de ∆M = 0.04 mag qui n’affecteraient qu’un des deux
lots de supernovæ. Il n’est ainsi pas déraisonnable de considérer que peut-être une mauvaise
détermination des supernovæ de bas redshift existe qui conduirait alors à un ajustement plus
favorable pour l’univers de Dirac-Milne que pour le modèle ΛCDM.

5.3.6 Incertitudes systématiques

Les erreurs systématiques sont maintenant la principale limitation à l’utilisation des su-
pernovæ de type Ia en cosmologie, la qualité et la quantité des échantillons disponibles et à
venir ayant considérablement réduit le budget des erreurs statistiques. [Kowalski et al. 2008]
donnent notamment des estimations de paramètres cosmologiques dans lesquelles les erreurs
systématiques dominent les erreurs statistiques. À l’heure où d’ambitieux projets expérimentaux

2. un décalage systématique indépendant du redshift serait intégré dans la valeur de la magnitude absolue et

ne changerait rien aux résultats des ajustements.
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5.4 Conclusion de l’analyse des données SNLS 161

se dessinent et se décident, la mâıtrise des erreurs systématiques apparâıt comme l’enjeu prin-
cipal pour la cosmologie avec les SNe Ia.

5.4 Conclusion de l’analyse des données SNLS

Concluons sur cette analyse des données issues de la première année du programme SNLS.
Si l’on considère les données telles qu’elles sont fournies par la collaboration, alors l’univers de
Dirac-Milne est défavorisé à plus de 3σ par rapport au meilleur ajustement que constitue un
modèle ΛCDM plat. Toutefois, on soupçonne que l’échantillon de supernovæ de bas redshift, qui
proviennent d’expériences différentes, est soumis à de possibles erreurs systématiques qui font
que leur utilisation doit être faite avec précaution.

Si l’on ne considère que les supernovæ de haut redshift, nous avons vu que les deux modèles
sont indiscernables avec même un léger avantage pour Dirac-Milne. Cela confirme d’une part
que les deux modèles sont très proches et d’autre part que les supernovæ de bas redshift sont
indispensables pour discriminer les deux modèles. Certes, en incluant l’échantillon bas redshift
utilisé par [Astier et al. 2006], Dirac-Milne est largement défavorisé par rapport au modèle ΛCDM
standard, mais nous avons vu qu’en décalant les données d’un seul des deux échantillons de
δmB = 0.06 mag, on ramène le modèle Dirac-Milne au même niveau que ΛCDM. Si la démarche
est arbitraire, nous avons également vu que le budget estimé actuel des erreurs systématiques,
de l’ordre de ∆M = 0.04, rend plausible une possible erreur sur la magnitude apparente des
SNe Ia de cet ordre de grandeur.

À travers cette étude, il ressort également que l’on arrive, dans le cadre de l’univers de
Dirac-Milne à une prédiction sur la valeur de la magnitude absolue des supernovæ de type Ia.
Cette grandeur détermine la position des données sur le diagramme de Hubble de façon absolue
indépendamment du redshift et elle est prédite dans le cadre de l’Univers de Dirac-Milne plus
grande d’environ δM = 0.12 − 0.13 mag que dans le cadre d’un modèle ΛCDM. L’obtention
d’échantillons à bas redshift, permettant une calibration absolue du diagramme de Hubble, et
plus important encore, émergeant d’une seule et même expérience et analyse, permettra de
confirmer ou d’infirmer cette prédiction.

La question de savoir si oui ou non l’univers de Dirac-Milne est défavorisé par le test cos-
mologique des supernovæ de type Ia se résume à la question de savoir quelle confiance on peut
avoir dans la fiabilité de l’échantillon à bas redshift. Considérant le budget estimé des erreurs
systématiques, il n’est, selon moi, pas possible d’apporter une réponse absolue et par là même
la conclusion que l’expansion de notre Univers est en accélération me semble prématurée.
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Chapitre 6

Autres tests cosmologiques

Les deux chapitres précédents étaient consacrés à l’étude de deux tests cosmologiques : la
nucléosynthèse primordiale et les supernovæ de type Ia. La cosmologie moderne dispose de
bien d’autres tests cosmologiques qui sont, pour la plupart. en bon accord avec le modèle de
Concordance. Il s’agit alors d’étudier l’adéquation de l’univers de Dirac-Milne avec ces mêmes
tests. Parmi ceux-ci, on trouve bien évidemment l’étude des anisotropies de température du
CMB, qui fait office de test majeur à l’heure actuelle. Ce chapitre est donc consacré à l’étude du
CMB et des autres tests, dont nous n’avons pas pu, malheureusement, mener des études aussi
détaillées que celles présentées dans les deux chapitres précédents.

6.1 CMB

Un des succès majeurs du modèle de Concordance est sans doute le bon accord entre les
mesures des anisotropies de température du CMB et la prédiction théorique qui en est faite
dans le cadre de ce modèle (figure (6.1). Il est ainsi nécessaire de confronter l’univers de Dirac-
Milne à ce test cosmologique majeur. Cette confrontation se trouve être beaucoup plus difficile à
effectuer que pour les tests étudiés précédemment, notamment car la description des anisotropies
dans le cadre du modèle standard repose sur des hypothèses et des mécanismes qui n’ont pas
cours dans l’univers de Dirac-Milne, au premier rang desquels on trouve l’inflation. L’inflation
est, dans le modèle standard, un ingrédient essentiel qui fournit les fluctuations dans les densités
d’énergie de la matière et de la radiation. Ainsi, sans inflation, le calcul des anisotropies de
température dans l’univers de Dirac-Milne sera nécessairement largement différent du calcul
dans le cas standard, dont on peut trouver une bonne description dans [Dodelson 2003].

6.1.1 Généralités

Dans la cosmologie standard, les grandes échelles angulaires, supérieures au degré, caractéri-
sées par des valeurs du multipôle l ≤ 200, représentent des échelles plus grandes que l’horizon
au moment du découplage. Les fluctuations de température sur ces échelles sont directement
liées aux fluctuations du potentiel gravitationnel générées par l’inflation. Étant plus grandes
que l’horizon, ces échelles n’ont pas pu évoluer sous l’action de mécanismes causaux depuis la
sortie de la phase inflationnaire. Les scénarios d’inflation prédisent généralement un spectre de
fluctuations invariant d’échelle, si bien que le spectre de puissance présente un comportement
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164 Autres tests cosmologiques

Figure 6.1 – Spectre de puissance des anisotropies de température observées dans le CMB.
Figure tirée de [Reichardt et al. 2009].

approximativement constant aux petites valeurs de l. Cette région est traditionnellement appelée
plateau Sachs-Wolfe [Sachs & Wolfe 1967].

Les plus petites échelles correspondent quant à elles à des échelles qui sont “à l’intérieur
de l’horizon” et sur lesquelles des mécanismes physiques causaux ont pu avoir lieu. Ce sont ces
mécanismes causaux qui donnent naissance à cette structure de pics et de creux dans le spectre de
puissance. Cette structure résulte de la compétition de deux effets qui s’opposent dans le plasma
primordial que l’on peut considérer comme un fluide relativiste. En effet, avant la recombinaison,
la diffusion Compton assure un couplage dit “couplage fort” entre photons et électrons. Selon le
Modèle Standard, l’inflation génère de légères inhomogénéités de densité, conduisant à des zones
sur-denses et des zones sous-denses. Les baryons présents dans les zones sur-denses vont avoir
tendance à s’effondrer dans les puits de potentiel. Se faisant, il vont augmenter la pression de
radiation qui va ainsi résister à l’effondrement et renverser le processus. Ce mécanisme génère
alors des ondes acoustiques qui vont se propager dans le fluide baryon-photons. Si l’on note
Θ0 = ∆T/T , les fluctuations de températures sur une échelle k, l’équation d’évolution de ces
ondes acoustiques peut s’écrire symboliquement sous la forme d’une équation d’un oscillateur
harmonique forcé 1 [Hu 1995] :

Θ̈0 + k2c2
sΘ0 ≈

F

1 +R
. (6.1)

Dans cette expression, cs désigne la vitesse du son dans le fluide baryon-photon :

cs =
1√

3(1 +R)
, (6.2)

1. L’indice k des fluctuations de température est en général sous-entendu, et non précisé dans les notations.
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6.1 CMB 165

où R = 3ρb
4ργ

permet de prendre en compte l’influence des baryons dans le milieu, influence qui
va grandissante au fur et à mesure que l’on se rapproche de l’égalité matière-rayonnement. k
est le nombre d’onde comobile de la fluctuation et la quantité F représente les forces gravita-
tionnelles causées par les différents potentiels qui interviennent dans la théorie. Les solutions de
cette équation font intervenir les quantités cos(krs) et sin(krs), suivant la nature des conditions
initiales. La quantité rs est l’horizon sonore :

rs =
∫ t

0
cs

dt′

a(t′)
. (6.3)

6.1.2 Position du premier pic

Bien que le traitement détaillé soit bien plus complexe, on peut avoir une bonne idée de
l’échelle du premier pic dans le spectre de puissance des anisotropies. Le premier pic correspond
à un mode k1 qui a juste eu le temps de faire une demi-oscillation depuis la sortie de l’inflation
jusqu’au découplage. Ainsi, suivant la nature des fluctuations initiales (adiabatiques ou iso-
courbures), l’échelle k1 du premier pic vérifie :

k1rs(z∗) =

{
π adiabatique,
π
2 isocourbure.

(6.4)

L’échelle k1 correspond à un multipôle l1

l1 = k1dA(z∗). (6.5)

La quantité dA(z∗) est la distance angulaire au redshift de découplage dont l’expression générale
est

dA(z) = H−1
0

1
1 + z

Sk

(∫ z

0

dz′√
ΩM (1 + z′)3 + Ωk(1 + z′)2 + ΩΛ

)
, (6.6)

où la fonction Sk, définie au chapitre 1 (éq. 1.17), caractérise la courbure des sections spatiales.
Dans le cas de fluctuations adiabatiques, la position approximative du premier pic acoustique
se situe à un multipôle

l1 = π
dA(z∗)
rs(z∗)

. (6.7)

Ce multipôle correspond alors à une échelle angulaire

θ1 ∼
π

l1
. (6.8)

Notons toutefois que cette échelle, donnée par l1, n’est pas la position réelle du premier pic, mais
l’échelle dite acoustique, lA. La position précise du premier pic dépend d’autres effets physiques
qui ont pour conséquence de ramener cette échelle acoustique vers des multipôles plus petits.

Dans le cadre d’un modèle ΛCDM plat tel que le redshift de découplage est pris à z∗ = 1100,
les paramètres (ΩM ,ΩΛ) = (0.26, 0.74) et la densité baryonique η = 6× 10−10, on obtient

lA ≈ 300. (6.9)

On remarque alors que ce multipôle ne correspond effectivement pas tout à fait à la position du
premier pic, qui se situe vers l = 220.
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166 Autres tests cosmologiques

6.1.3 Position du premier pic acoustique dans le cadre de l’univers de Dirac-

Milne

L’échelle angulaire du premier pic acoustique (éq. (6.7)) fait intervenir deux quantités, la
distance angulaire et l’horizon sonore, dont les origines sont différentes. La distance angulaire est
un terme purement géométrique et ainsi dépend largement de la courbure des sections spatiales.
Aussi, la position du premier pic à l’échelle angulaire du degré est classiquement interprétée
comme la preuve que l’espace dans lequel nous évoluons est plat.

Le calcul de la distance angulaire dans l’univers de Dirac-Milne à partir de l’équation (6.6)
est immédiat et donne

dA(z) = H−1
0

1
1 + z

sinh(ln(1 + z)). (6.10)

Le rapport des distances angulaires calculées pour le Modèle de Concordance et l’univers de
Dirac-Milne au même redshift donne le rapport des angles sous lesquels on verrait un même
objet. Si l’on reprend les paramètres utilisés auparavant pour le modèle de Concordance, il
vient :

dMilne
A (z)

dΛCDM
A (z)

z=1100
] 163. (6.11)

Ce rapport signifie qu’a priori, on devrait voir le premier pic acoustique dans le cadre de l’univers
de Dirac-Milne à un angle environ 160 plus petit que dans le cadre du modèle de Concordance.
Autrement dit, si cela était vrai, cela poserait une contrainte probablement insurmontable à
l’univers de Dirac-Milne. En réalité, cet argument est incomplet car l’expression de l’horizon
sonore change également de façon importante dans l’univers de Dirac-Milne.

L’horizon sonore s’exprime comme la distance maximale que peut parcourir une onde se
propageant à la vitesse du son jusqu’à la recombinaison. Rappelons son expression :

rs =
∫ t

0
cs

dt′

a(t′)
. (6.12)

Considérons dans un premier temps que les baryons ne modifient que faiblement la vitesse du
son, qui, dans un milieu constitué en première approximation d’un gaz de photons est égale
à cs = 1/

√
3. L’horizon sonore est alors, à un facteur constant près, égal à l’horizon. Dans le

cadre de l’univers de Dirac-Milne, cette expression pour l’horizon sonore n’a pas de sens, car
l’intégrale diverge près de sa borne inférieure. Il est ainsi nécessaire de déterminer à partir de
quel moment et jusqu’à quand, des ondes acoustiques peuvent se former et se propager dans
l’émulsion matière-antimatière. Une propagation d’ondes qui commencerait à partir du moment
où l’émulsion apparâıt, vers 40 MeV (voir section 2.4.2), semble naturelle. De même, il est
légitime de supposer que la propagation des ondes va s’arrêter au moment du découplage gravi-
tationnel qui voit la séparation entre les domaines de matière de masse positive et d’antimatière
de masse négative. Les contraintes de nucléosynthèse, déterminées au chapitre 4 indiquent une
température approximative de 7 eV. Le calcul de la position du pic acoustique dans l’univers
de Dirac-Milne peut donc se faire en calculant l’horizon sonore entre ces deux bornes. Il vient
alors :

lA = πH0

∫ zini

zfin
cs

dz
1+z

sinh(ln(1 + zdec))
, (6.13)
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6.1 CMB 167

où zini est le redshift qui correspond à la température d’apparition de l’émulsion à une température
d’environ 40 MeV, zfin, le redshift d’arrêt des annihilations et zdec, le redshift au découplage.
En prenant en compte l’influence des baryons dans l’expression de la vitesse du son, on trouve
après calculs :

lA ≈ 180, (6.14)

soit une échelle plus faible d’un facteur inférieur à 2 par rapport à l’échelle calculée de manière
similaire dans le cadre du modèle de Concordance. On est donc passé d’une échelle a priori plus
grande d’un facteur 160 à une échelle légèrement inférieure à moins d’un facteur 2 ! Compte
tenu des approximations et de la physique invoquée extrêmement différente, l’accord est plutôt
satisfaisant.

Ce calcul d’ordre de grandeur signifie que l’argument qui consisterait à dire que l’univers de
Dirac-Milne n’est pas compatible avec le CMB car cet univers présente des sections spatiales
ouvertes et non plates, ne tient pas a priori. En effet nous venons de voir que l’univers de Dirac-
Milne, avec l’évolution linéaire de son facteur d’expansion présente une divergence logarithmique
dans l’expression de l’horizon sonore. Ainsi, si l’on considère une génération d’ondes acoustiques
au moment où l’émulsion matière-antimatière apparâıt, soit vers 40 MeV, suivie d’une propa-
gation de ces ondes jusqu’au moment du découplage gravitationnel, vers 7 eV, alors l’échelle du
pic acoustique apparâıt naturellement aux alentours d’un multipôle l ∼ 180, ce qui correspond
à l’échelle du degré.

C’est là un résultat inattendu qui suggère d’aller bien plus loin dans l’étude du CMB dans
le cadre de l’univers de Dirac-Milne.

Précautions

Le résultat auquel nous venons d’aboutir est très encourageant pour l’étude de l’univers de
Dirac-Milne, mais il convient de bien considérer les hypothèses sous lesquelles il a été réalisé.
En effet, nous avons juste effectué le calcul de l’échelle acoustique que l’on voit au moment de
la recombinaison en utilisant de manière directe l’expression utilisée dans le cadre de modèle
standard. Outre le fait que cette expression suppose des conditions initiales de type adiabatique
et non iso-courbure, elle repose surtout sur une vision fondée sur le modèle de Concordance et
en particulier sur l’existence de l’inflation qui génère des fluctuations de densité. Ainsi, obtenir
un possible premier pic acoustique à l’échelle du degré est certes très important, mais le calcul
précis du spectre de puissance des anisotropies de température dans le cadre de l’univers de
Dirac-Milne nécessite de reconsidérer entièrement le calcul classique.

6.1.4 Scénario envisagé et difficultés à prévoir

Dans l’état actuel de cette étude sur l’univers de Dirac-Milne, il est nécessaire de pointer
les différences dans le calcul des anisotropies du CMB par rapport au modèle standard et les
difficultés envisagées. Une première différence réside dans les conditions initiales. Dans le modèle
standard, c’est l’inflation qui fournit les inhomogénéités initiales par fluctuations quantiques du
champ scalaire responsable de l’inflation. L’inflation génère ainsi des fluctuations à toutes les
échelles. La situation est fort différente dans l’univers de Dirac-Milne. En effet, on s’attend à ce
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168 Autres tests cosmologiques

que cet univers soit extrêmement homogène jusqu’à l’apparition de l’émulsion à une température
que l’on a estimé à 40 MeV.

Si l’échelle de l’horizon sonore se situe effectivement aux alentours du degré dans l’univers de
Dirac-Milne, on ne devrait a priori pas obtenir de plateau à faibles multipôles. En effet, l’horizon
sonore constitue en quelque sorte l’échelle maximale qu’il est possible d’exciter dans cet univers
et en l’absence de scénario qui pourraient générer des fluctuations sur des échelles plus grandes,
on voit mal comment il pourrait y avoir de la puissance à des échelles supérieures à cet horizon
sonore. On s’attend ainsi à une croissance du spectre en l et non un comportement constant
comme c’est le cas dans le modèle standard. Il n’est pas du tout certain qu’un tel comportement
croissant à bas multipole soit exclu. En particulier, la faible valeur du quadrupôle (voir le point
à l = 2 dans la figure (6.1) pourrait trouver une explication dans ce cadre.

Un autre point important qui jouera certainement un rôle dans la formation des anisotro-
pies de température est l’injection d’énergie par les annihilations entre matière et antimatière.
En particulier, se pourrait-il que le mécanisme principal de génération du son dans le plasma
primordial soit justement des oscillations causées par une pression d’annihilation qui resterait à
définir et à quantifier ?

On pourra regretter que l’étude du CMB dans l’univers de Dirac-Milne n’ai pas été davantage
abordée dans cette thèse. La tâche s’annonce ardue, et le mécanisme qui pourrait mener à
l’existence de la structure présentant plusieurs pics représentée sur la figure (6.1) que l’on connâıt
ne semble à l’heure actuelle par très clair. Rappelons néanmoins le résultat essentiel auquel nous
sommes arrivés : il n’y a pas d’objection de principe à ce que l’échelle acoustique, définie comme
l’horizon sonore entre le moment où l’émulsion est formée et le découplage gravitationnel soit
observée aujourd’hui sous un angle de l’ordre du degré.

6.2 Autres aspects

6.2.1 Oscillations baryoniques acoustiques BAO

Il existe au moins un test cosmologique dont on est sûr que l’interprétation ne peut pas être la
même dans le modèle de Concordance et dans l’univers de Dirac-Milne. Il s’agit des oscillations
baryoniques acoustiques. L’idée est simple. La recombinaison entre protons et électrons gèle la
propagation des ondes acoustiques dans le plasma, mais les inhomogénéités restent présentes dans
la distribution de matière. Les oscillations baryoniques acoustiques sont donc ces inhomogénéités
que l’on doit a priori, selon la théorie standard, retrouver dans le spectre de puissance de la
matière ou de manière équivalente dans la fonction de corrélation.

L’échelle prédominante de ces inhomogénéités correspond à l’horizon sonore, c’est à dire à
l’échelle caractéristique du CMB. Ainsi, on s’attend dans le Modèle Standard à observer un
pic dans la fonction de corrélation à une échelle de 100h−1 Mpc. Ce pic dans la fonction de
corrélation des galaxies rouges lumineuses du relevé SDSS à un redshift z = 0.35 a été annoncé
dans [Eisenstein et al. 2005].

Si le BAO correspond à l’échelle acoustique du CMB, elle est alors très largement plus
grande, dans le cadre de l’univers de Dirac-Milne, que l’échelle des 100 h−1 Mpc annoncée. En
effet, l’échelle acoustique obtenue dans le cadre de l’univers de Dirac-Milne qui correspond au
degré pour le CMB, c’est à dire à un redshift z ∼ 1000, est telle que cette échelle est vue sous
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6.2 Autres aspects 169

un angle d’un degré malgré la géométrie ouverte des sections spatiales. Cela signifie que cette
échelle acoustique est environ 160 plus grande dans l’univers de Dirac-Milne que dans le cas
standard. Le facteur géométrique à un redshift de z = 0.35 est de l’ordre de l’unité, si bien que
l’échelle acoustique dans l’univers de Dirac-Milne, se situe à une échelle largement plus grande
que celle annoncée par [Eisenstein et al. 2005]. Ainsi l’on n’attend rien de spécial dans la fonction
de corrélation à des échelles de l’ordre de 100 h−1 Mpc.

Le BAO constitue alors une différence importante avec le Modèle Standard. La découverte
du BAO dans les données du SDSS présente pour l’instant une faible signification statistique
(de l’ordre de 2.5σ), mais si elle venait à être confirmée de manière fiable par les prochains
programmes dédiées à cette mesure (SDSS III BOSS, par exemple) cela poserait une contrainte
supplémentaire importante sur l’univers de Dirac-Milne.

6.2.2 Baryons cachés et formation des structures

Une différence importante entre le Modèle Standard et l’univers de Dirac-Milne, réside dans
la valeur de la densité baryonique prédite par la nucléosynthèse primordiale. Cette densité ba-
ryonique, paramétrisée par le rapport η du nombre de baryons sur le nombre de photons, est
déterminée dans l’univers de Dirac-Milne de manière à ce que la prédiction théorique de l’abon-
dance primordiale en hélium-4 soit compatible avec les observations (voir chapitre 4). On trouve
alors une valeur typique :

η ∼ 9× 10−9. (6.15)

Rappelons que dans le cadre du Modèle Standard, cette densité baryonique est au niveau de
η = 6 × 10−10, environ 15 fois plus faible que celle de l’univers de Dirac-Milne. Cette densité
baryonique élevée permet de ne pas recourir à une composante massive non-baryonique pour
expliquer les mesures de masses dans les galaxies ou les amas de galaxies. Ne plus avoir recours à
de la Matière Noire non-baryonique est bien sûr intéressant pour cette cosmologie alternative qui
cherche justement à se départir au maximum de composantes supplémentaires non-observées,
mais cela pose a priori au moins deux problèmes auxquels une étude ultérieure devra apporter
des réponses.

Le premier point concerne l’absence de matière noire non-collisionnelle. Cet ingrédient est,
selon le Modèle Standard, indispensable à bien des égards pour la formation des structures et
des galaxies. Ainsi, il sera nécessaire de revisiter les scénarios de formation structures à grande
échelle. On peut tout de même noter que l’univers de Dirac-Milne ne va pas avoir de mal, a priori,
à former des structures, et ce même en l’absence de Matière Noire non-baryonique. En effet,
dès la recombinaison, on s’attend à des effondrements gravitationnels relativement importants
car le système masses positives-masses négatives est directement dans un régime non linéaire.
La situation est très différente du cas standard, dans lequel le contraste de densité après la
recombinaison est de l’ordre de 10−5. Dans l’univers de Dirac-Milne, ce contraste est “maximal”
puisque l’on dispose de domaines séparés entièrement constitués d’une part de masses positives
et d’autre part de masses négatives. La question se posera alors de savoir si ces structures
ressemblent ou non aux structures observées aujourd’hui.

La deuxième question concerne les baryons. S’ils sont 15 fois plus nombreux dans l’univers
de Dirac-Milne, comment expliquer qu’ils ne soient pas détectés ? En effet, les baryons présents
dans les étoiles ne représentent qu’une petite fraction de la matière baryonique totale. Dans la
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170 Autres tests cosmologiques

cosmologie Standard, la quantité de baryons détectée, que ce soit dans les étoiles ou dans le gaz
intra-amas, ne représente que 65% des baryons prédits par la nucléosynthèse primordiale et le
CMB [Fukugita 2004]. Cela revient à dire qu’environ 35% des baryons échappent à l’observation.
Cette proportion sera bien plus grande dans l’univers de Dirac-Milne, de l’ordre de 95%. Il semble
que l’univers de Dirac-Milne dispose lui aussi de sa part de mystère !
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Conclusion

L’objet de cette thèse est l’étude de l’univers de Dirac-Milne, un univers symétrique matière-
antimatière dans lequel l’antimatière est supposée posséder une masse gravitationnelle active
négative. Un univers ainsi constitué de quantités égales de masses positives et de masses négatives
est globalement indifférent à la gravitation à grande échelle et se comporte alors comme un
univers de Milne, avec un facteur d’expansion linéaire par rapport au temps. Cette étude est
motivée par la description du Modèle de Concordance de la Cosmologie qui fait intervenir trois
ingrédients (Énergie Noire, Matière Noire et inflation), dont la nature et la justification physiques
font parfois défaut. De plus, ces composantes n’ont toujours pas été mises en évidence de manière
directe, et représentent plus de 95% du contenu énergétique de l’Univers.

La démarche adoptée dans ce travail consistait à considérer comme valides les hypothèses
fondatrices du modèle, telles que l’attribution d’une masse gravitationnelle active négative pour
l’antimatière ou encore l’existence d’un mécanisme capable de séparer efficacement matière et
antimatière et ainsi de former une émulsion. Ces hypothèses étant ainsi formulées, il s’agissait
d’étudier la conformité du modèle avec les principaux tests cosmologiques.

Le point fondamental qui caractérise l’univers de Dirac-Milne est l’évolution linéaire du
facteur d’expansion. Cet univers présente quelques propriétés immédiates très intéressantes telles
que l’absence d’horizon – et donc la suppression du besoin d’un scénario inflationnaire – et la
valeur de l’âge de l’univers, strictement égale à H−1

0 .

Cette évolution linéaire conduit ensuite à une histoire thermique modifiée par rapport au
modèle de Concordance. À une température donnée, l’univers de Dirac-Milne est plus âgé que
l’univers standard et cela d’autant plus que la température est élevée. Le taux d’expansion
est également plus faible. Cette évolution très lente modifie considérablement les différents
découplages qui ont lieu au cours de l’univers primordial. À titre d’exemple, les interactions
faibles se découplent vers une température de 90 keV, au lieu d’environ 1 MeV dans le Modèle
Standard. De même, les processus radiatifs permettent, après la disparition des paires ther-
miques e+e−, la thermalisation de petites quantités d’énergie radiative dans le CMB jusqu’à des
époques bien plus tardives que dans le cadre d’une évolution standard.

La nucléosynthèse primordiale se déroule, dans l’univers de Dirac-Milne, en deux épisodes
bien distincts. La première phase est une phase thermique et homogène qui voit la production
d’hélium-4 et de lithium-7 à des niveaux comparables aux observations. Ce mécanisme est basé
sur le découplage tardif des interactions faibles qui assurent le maintien du rapport n/p à sa
valeur à l’équilibre. Ce découplage tardif assure alors une quantité minimale de neutrons dans le
milieu, nécessaires pour la fabrication de noyaux d’hélium-4. Les contraintes observationnelles
sur l’hélium-4 imposent alors une densité baryonique de l’ordre de η ∼ 9× 10−9, environ 15 fois
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172 Autres tests cosmologiques

plus importante que dans le cas standard. La deuxième phase voit la production de deutérium
et d’hélium-3, produits principalement par photodésintégration des noyaux d’hélium-4 par les
photons résultant des annihilations entre matière et antimatière. Ces annihilations se déroulent
à la surface des domaines de matière et d’antimatière. Ce mécanisme de production secondaire
permet de contraindre la taille de l’émulsion au moment où se passe cette production. Afin
d’obtenir une abondance en deutérium de l’ordre de D/H ∼ 3× 10−5, une taille de domaines de
l’ordre la dizaine de kpc comobiles aujourd’hui a été déterminée. Cette production secondaire
de deutérium s’accompagne néanmoins d’une suproduction d’hélium-3 qui semble inévitable.

Les supernovæ de type Ia représentent à l’heure actuelle, selon l’interprétation du Modèle de
Concordance, la meilleure preuve d’une accélération récente de l’expansion de notre Univers. En
étudiant les données publiées par le SNLS, nous avons montré que l’univers de Dirac-Milne, qui ne
présente ni accélération ni décélération, s’accommode relativement bien du test des supernovæ de
type Ia, à la condition d’invoquer une légère erreur systématique sur la magnitude apparente des
supernovæ proches d’au moins 5%. Par ailleurs l’univers de Dirac-Milne prédit une magnitude
absolue des supernovæ de type Ia supérieure de 0.13 mag – soit une luminosité plus faible
d’environ 11%– par rapport à celle prédite dans le modèle ΛCDM.

Enfin, nous avons montré que l’échelle acoustique dans le CMB apparâıt naturellement au
degré, ce qui constitue un résultat surprenant compte tenu de la géométrique ouverte de l’univers
de Dirac-Milne. Une étude plus détaillée sur le sujet du CMB dans l’univers de Dirac-Milne reste
toutefois à effectuer.

Cette première étude de la concordance de l’univers de Dirac-Milne a montré que cet univers
est raisonnablement concordant avec les tests de la nucléosynthèse primordiale et des supernovæ
de type Ia, et que l’échelle caractéristique du degré apparâıt naturellement dans le CMB. S’il est
bien évidemment trop tôt pour conclure que l’univers de Dirac-Milne présente une alternative
solide au modèle de Concordance, il est en revanche prématuré de prétendre que ce modèle
est en désaccord avec des faits observationnels bien établis. La prochaine étape pour des études
ultérieures sur ce modèle devrait porter à la fois sur la problématique du CMB et de la formation
des structures dans l’univers de Dirac-Milne. En effet ces deux points n’ont quasiment pas été
abordés dans cette thèse et sont naturellement de la plus haute importance.te
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Coc, A., Hernanz, M., José, J., & Thibaud, J.-P. 2000, Astron. & Astrophys., 357, 561

Coc, A., Nunes, N. J., Olive, K. A., Uzan, J.-P., & Vangioni, E. 2007, Phys. Rev. D, 76, 023511

Coc, A., Olive, K. A., Uzan, J.-P., & Vangioni, E. 2006, Phys. Rev. D, 73, 083525

Coc, A., Olive, K. A., Uzan, J.-P., & Vangioni, E. 2008, ArXiv e-prints :0811.1845

Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A., & Angulo, C. 2004, Astrophys.
J., 600, 544

Cohen, A. G., de Rujula, A., & Glashow, S. L. 1998, Astrophys. J., 495, 539

Combes, F., Fassi-Fehri, O., & Leroy, B. 1975, Astrop. & Sp. Sci., 37, 151

Cyburt, R. H. 2004, Phys. Rev. D, 70, 023505

Cyburt, R. H., Ellis, J., Fields, B. D., & Olive, K. A. 2003, Phys. Rev. D, 67, 103521

Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, Journal of Cosmology and Astro-Particle
Physics, 11, 12

Danese, L. & de Zotti, G. 1977, Nuovo Cimento Rivista Serie, 7, 277

Danese, L. & de Zotti, G. 1982, Astron. & Astrophys., 107, 39

Deffayet, C., Dvali, G., & Gabadadze, G. 2002, Phys. Rev. D, 65, 044023

Descouvemont, P., Adahchour, A., Angulo, C., Coc, A., & Vangioni-Flam, E. 2004, Atomic Data
and Nuclear Data Tables, 88, 203

Dicus, D. A., Kolb, E. W., Gleeson, A. M., et al. 1982, Phys. Rev. D, 26, 2694

Dodelson, S. 2003, Modern cosmology (Academic Press)

Dolgov, A. 2001, Nuclear Physics B Proceedings Supplements, 95, 42

Dolgov, A. & Silk, J. 1993, Phys. Rev. D, 47, 4244

Dolgov, A. D. 1997, arXiv :hep-ph/9707419

Dolgov, A. D., Kawasaki, M., & Kevlishvili, N. 2009, Nuclear Physics B, 807, 229

te
l-0

04
42

94
8,

 v
er

si
on

 1
 - 

24
 D

ec
 2

00
9



176 BIBLIOGRAPHIE

Duperray, R. 2004, PhD thesis, Université Joseph Fourier
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