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Abstract. Possible three-nucleon forces that may be considered in addition to a widely accepted two-pion
exchange three-nucleon force are studied to improve the fit to experimental data of proton-deuteron scatter-
ing. Calculations are performed with including effects of long-range Coulomb force by a recently developed
method to solve the Faddeev equation in coordinate space. Two different kinds of three-nucleon potentials: a
phenomenological potential and one due to the exchange of pion and sigma bosons, are presented and compared
with experimental data of elastic differential cross sections, a tensor analyzing power, and a nucleon-to-nucleon
polarization transfer coefficient.

1 Introduction

In a conventional picture that atomic nuclei are quantum
mechanical systems consisting of nucleons, interaction po-
tentials among the nucleons are basic ingredients to con-
struct the nuclear Hamiltonian. In the middle of 1990’s, a
number of realistic nucleon-nucleon potential (2NP) mod-
els that describe nucleon-nucleon (NN) experimental data
with a high accuracy (χ2/datum ∼ 1) were proposed. Ex-
aminations of these models for observables of few-nucleon
systems with accurate calculations showed that there exist
some discrepancies between calculations and experimen-
tal data. For example, calculations of the binding ener-
gies of three-nucleon (3N) bound states,3H and3He, are
smaller compared to empirical values, and calculated dif-
ferential cross section minima of nucleon-deuteron (Nd)
elastic scattering are too small compared to experimen-
tal data. A possible improvement of the nuclear Hamilto-
nian to get rid of these discrepancies is to introduce three-
nucleon forces (3NFs). A 3NF that is originated from the
exchange of two pions among three nucleons, the two-pion
exchange three-nucleon force (ππ-3NF), was considered as
a long-range component of 3NFs, and was found to suc-
cessfully solve the problems of the binding energy and the
differential cross sections. However, recent studies show
that discrepancies in some polarization observables, such
as the vector analyzing powerAy(θ) and the tensor ana-
lyzing powerT21(θ) in the elasticNd scattering, are not
explained by the introduction of theππ-3NF. (See Fig. 1
below for an example.) This demonstrates our little under-
standing on spin-dependence of 3NFs and a need to con-
sider additional mechanisms to introduce different spin-
dependent 3NFs from theππ-3NF.

In this paper, we present a possible improvement of the
nuclear Hamiltonian by considering two different 3NFs: a
purely phenomenological one and a theoretical one based
on the boson-exchange picture of the nuclear interaction.
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After giving some technical notes about our 3N calcula-
tions including long-range effects of the proton-proton (pp)
Coulomb interaction in Sec. 2, a phenomenological 3NF
that is made to reproduce low-energy 3N observables, is
introduced in Sec. 3, In Sec. 4, as a possible mechanism
to produce a 3NF similar to the phenomenological 3NF in
the preceding section, the exchange of a pion and a scalar-
isoscalar boson (σ) among three nucleons is introduced
and its effects on 3N scattering observables are discussed.
A summary is given in Sec. 5.

2 Three-nucleon calculations including
Coulomb force effects

It is currently the most practical way of extracting useful
information on 3NFs, especially on their spin-dependence,
to compare rigorous calculations of 3N observables us-
ing various 3NF models with precision experimental data.
Proton-deuteron (pd) scattering experiments have a tech-
nical advantage over neutron-deuteron ones because of the
availability of precise measurements with charged parti-
cles. On the other hand, due to a mathematical difficulty in
treating three-body systems with the long-range Coulomb
interaction, calculations of thepd scattering at energies
above the three-body breakup threshold are one of the most
challenging subjects in physics of few-body systems.

In the last decade, there have been some developments
in this problem by calculations based on the Kohn varia-
tional principle [1] and on momentum space Faddeev equa-
tions using the screening and renormalization method [2].
Calculations performed in this paper are based on different
approach from these: to solve Coulomb-modified Faddeev
equations [3] as an integral equation form in coordinate
space, which was successfully applied for the 3N bound
state (3He) [4] and thepd scattering problembelow [5]
andabove [6,7] the breakup threshold. In this approach,
an auxiliary potential Coulomb potential acting between a
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proton and the center of mass of the rest proton-neutron
pair, is introduced to cancel out the long-rangeness of the
pp Coulomb potential in the integral kernel. Although the
cancellation is not perfect due to the appearance of three-
body breakup components of the reaction, it turns out that
a satisfactory result is obtained by taking into account only
short-range parts of the Coulomb contribution by multi-
plying with a damping factor in the integral kernel. Some
details of this approach as well as its accuracy and conver-
gence are described in Ref. [7].

In our calculations below, partial wave states with the
total angular momentum of two-body sub-system up to 6
for bound states and up to 4 for scattering states, and par-
tial wave states with the 3N total angular momentum up to
19/2 are taken into account.

We use the Argonne V18 model (AV18) [8] as a stan-
dard 2NF, which gives 6.928 MeV (7.626 MeV) for the
3He (3H) binding energy in contrast with the empirical
value of 7.718 MeV (8.482 MeV). We use a new version
of the Brazil model (BR) [9] for theππ-3NF. In the Brazil
model, a cutoff massΛπ in the dipoleπNN form factor,
(see Eq. (6) below,) is a parameter to be determined. When
one wants to reproduce the empirical value of 3N bind-
ing energy in the combination of the AV18-2NF and the
BR-3NF, one needs to choose the cutoffmassΛπ to be 660
MeV (AV18 + BR660). This value is rather small compared
to ones often used in one-boson exchange models for 2NP
models, which are more than 1 GeV. Since calculations of
the 3N binding energy strongly depend on the value ofΛπ
used, the use of larger values forΛπ produces an overbind-
ing problem of the 3N system. For example, if we choose
a value of 800 MeV forΛπ (AV18 + BR800), we get 8.913
MeV for the 3He binding energy, which is larger than the
empirical value by about 1 MeV. This implies the existence
of additional 3NFs, which may produce repulsive effects in
the 3N bound states.

As an example of polarization observables, calculations
of the tensor analyzing powerT21(θ) are compared with ex-
perimental data [10] in Fig. 1. The effect of theππ-3NF,
which is designated by the difference between the solid
curve (AV18) and the dashed curve (AV18+BR660), is vis-
ible for a range of the scattering angles up to about 150◦.
While theππ-3NF works to improve a fit to the experimen-
tal data of theT21(θ) aroundθ = 120◦, it shifts the calcu-
lation away from the experimental data aroundθ = 90◦. In
Ref. [11], it is shown that this undesirable contribution of
theππ-3NF toT21(θ) occurs even at low energies below the
breakup threshold, and is due to a spin tensor component
in theππ-3NF.

3 Phenomenological 3NF

The successful and unsuccessful results of theππ-3NF to
reproduce 3N observables indicate that we need to con-
sider another kinds of 3NFs in addition to theππ-3NF. It
may be convenient to understand what kind of spin depen-
dence should be required to reproduce unsuccessful (po-
larization) observables. As a first step to study relations
between spin characteristics of 3NFs and 3N observables,
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Fig. 1. Tensor analyzing powerT21(θ) of the pd elastic scatter-
ing at Ep = 10.0 MeV (or equivalentlyEd = 20.0 MeV). The
solid (black) curve denotes the calculation with AV18, the dashed
(blue) curve that with AV18+ BR660, and the dotted (green) curve
that with AV18+ BR800+ V phe. Experimental data are taken from
Ref. [10].

we have introduced a phenomenological 3NP model [12],
which has a form that typical components in 2NF: cen-
tral, tensor, and spin-orbit components, are modified in the
presence of third nucleon. The explicit form of the 3NP is

V phe
=

∑
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where S T (i j) is the tensor operator acting between the
nucleon pair i j, P̂11 is the projection operator to the
spin and isospin triplet state of the pairi j, and ρ2

=

2
3

(

r2
12 + r2

23 + r2
31

)

with ri j = r j − ri. We take the range

parametersrG = 1.0 fm andα−1
ls = 1/1.5 fm.

The strength parameters,V0, VT , and Vls, are deter-
mined to reproduce the following observables in conjunc-
tion with the AV18+ BR800 potential: the3He binding
energy, the vector analyzing powerAy(θ) and the tensor
analyzing powerT21(θ) of the pd scattering atEp = 3.0
MeV. It is noted thatT21(θ) andAy(θ) depend almost indi-
vidually onVT andVls, respectively, at such a low energy.
Thus, after determining the parametersVT and Vls from
T21(θ) andAy(θ), respectively, we are able to determine the
parameterV0 to reproduce the3He binding energy. A phe-
nomenological 3NF with resulting parameters:V0 = 36
MeV, VT = −40 MeV, andVls = −16 MeV, will be de-
noted asV phe.

A result ofT21(θ) at Ep = 10.0 MeV with above set of
potentials (AV18+ BR800 + V phe) is shown by the dotted
curve in Fig. 1. The figure shows that theV phe is still suc-
cessful in reproducing the tensor analyzing powerT21(θ)
at a higher energy, although there is no a priori reason for
that. This success demonstrates that an improvement of a
tensor component in 3NF is a key to reproduce the tensor
analyzing powerT21(θ) at higher energies.
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However, a limitation due to the phenomenological
character ofV phe is also observed. As an example for such
cases, calculations of a nucleon-to-nucleon polarization
transfer coefficient Ky

′

y (θ) in 2H(−→p ,−→p )2H reaction as well
as experimental data [13] are shown in Fig. 2. In the figure,
while a deviation from the experimental data of the calcu-
lation with the AV18-2NF only (the solid curve) is reme-
died once by the introduction of theππ-3NF (the dashed
curve), the introduction of theV phe again worsens the fit to
the data.
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Fig. 2. Nucleon-to-nucleon polarization transfer coefficient
Ky
′

y (θ) of the pd elastic scattering atEp = 19.0 MeV. The solid
(black) curve denotes the calculation with AV18, the dashed
(blue) curve that with AV18+BR660, and the dotted (green) curve
that with AV18+ BR800+ V phe. Experimental data are taken from
Ref. [13].

4 Pion-sigma exchange three-nucleon
force

In the preceding section, we show that there is a possi-
ble 3NF that remedies the deficiency of theππ-3NF. Of
course, it is nothing but a phenomenological one and we
need to seek a physical 3NF that produces a tensor compo-
nent, which might be different from theππ-3NF and play
a similar role as theV phe. As a possible mechanism to pro-
duce such a 3NF, we consider a diagram shown in Fig. 3,
namely so calledπ-σ Born diagram [14] (πσ-3NF). In the
diagram, the vertical line at the intermediate state of the
middle nucleon (2) indicates the nucleon Born terms, from
which an on-mass-shell nucleon propagation is subtracted
to avoid a double counting of the iteration of the nucleon-
nucleon potential. This diagram is picked up because of a
conjecture that the coupling of a pion and a sigma boson
might cause a tensor interaction which has a different char-
acter caused from the coupling of two pions.

An explicit form of the potential for the diagram of Fig.
3 and its permutation with respect to (1↔ 2) is given as

V(r13, r23) = Vπσ0 (τ1 · τ2)

×

[

(σ1 · x̂12)(σ2 · x̂32)Y′π(x12)Y′σ(x32)

+(σ2 · x̂21)(σ1 · x̂31)Y
′

π(x21)Y
′

σ(x31)
]

, (2)

where

Vπσ0 = −
g2
π

4π

g2
σ

4π

m4
π
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N

, (3)

xi j = mπri j, (4)

Yb(x) =
1

2π2

∫

dq exp(−ıq · x)
Fb(q2)

q2 + (mb/mπ)2
, (5)

and ′ means the differential with respect toxi j.
We use the form factor of

Fb(q2) =

{

(Λb/mπ)2
− (mb/mπ)2

q2 + (Λb/mπ)2

}2

, (6)

and the mass ofσ beingmσ = 500 MeV.
When choosingΛπ = 800 MeV andΛσ = 1300 MeV,

we find that theπσ-3NF with Vπσ0 = −14.9 MeV in con-
junction with the AV18-2NF and the Brazilππ-3NF (AV18
+ BR800 + Vπσ) gives the3He binding energy close to the
empirical value. This value ofVπσ0 together withg2

π/4π =
14.4 givesg2

σ/4π = 9.0, which is consistent with the values
used in the Bonn 2NF models.

π

σ

1 2 3

Fig. 3. Born diagram of the pion-sigma exchange three-nucleon
force. The vertical solid lines denote nucleons.

In Fig. 4, experimental data [15–18] and calculations
for the differential cross sectionsσ(θ) of the pd elastic
scattering atEp = 10.0 MeV are plotted as a ratio to the
corresponding calculation with the AV18 potential. First,
we have to notice that there are some discrepancies among
the available experimental data. Also, the calculation with
AV18 + BR800 + Vπσ reveals a rather large deviation from
the AV18+ RB660 calculation. (It is noted that the calcula-
tion with AV18 + BR800 + V phe almost coincides with the
AV18 + RB660 calculation.) At forward angles, while the
AV18 + RB660 calculation is consistent with the Kyushu
data [18], the AV18+ BR800 + Vπσ calculation is rather
consistent with the Köln data [17]. On the other hand, at
back ward angles, both calculations seem to overestimate
the data by 5− 10%. Apparently, more precise measure-
ments of the differential cross sections will provide an an-
swer to the question whether such a large effect at forward
angles by theπσ-3NF is acceptable or not.
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In Fig. 5, results of the tensor analyzing powerT21(θ)
are shown. The effect of theπσ-3NF, similarly as theV phe,
brings the calculation ofT21(θ) atθ = 90◦ close to the data,
which is once shifted away from the experimental data by
the effect of theππ-3NF.
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Fig. 4. Ratio of differential cross section of thepd elastic scatter-
ing atEp = 10.0 MeV to calculation with the AV18 potential. The
solid curve denotes the calculation with AV18+ BR660, and the
dashed curve that with AV18+ BR800 + Vπσ. Experimental data
are taken from Ref. [15] (open squares), Ref. [16] (triangles), Ref.
[17] (circles), and Ref. [18] (solid squares).
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Fig. 5. Tensor analyzing powerT21(θ) of the pd elastic scatter-
ing at Ep = 10.0 MeV (or equivalentlyEd = 20.0 MeV). The
solid (black) curve denotes the calculation with AV18, the dashed
(blue) curve that with AV18+ BR680, and the dashed-dotted (red)
curve one with AV18+ BR800+ Vπσ. Experimental data are taken
from Ref. [10].

Finally, results of the nucleon-to-nucleon polarization
transfer coefficientKy

′

y (θ) in 2H(−→p ,−→p )2H reaction are plot-
ted in Fig. 6. In contrast to the effect of theV phe, the intro-
duction of theπσ-3NF gives a minor effect and the agree-
ment with the experimental data is still good as the AV18
calculation. This shows that theπσ-3NF gives a similar

tensor effect as theV phe for T21(θ), but gives different ten-
sor effect for Ky

′

y (θ), which is consistent with the present
experimental data.
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Fig. 6. Nucleon-to-nucleon polarization transfer coefficient
Ky
′

y (θ) of the pd elastic scattering atEp = 19.0 MeV. The solid
(black) curve denotes the calculation with AV18, the dashed
(blue) curve that with AV18+ BR680, and the dashed-dotted (red)
curve one with AV18+ BR800+ Vπσ. Experimental data are taken
from Ref. [13].

5 Summary

We have studied effects of two different 3NF models, phe-
nomenological model and meson-theoretical model, to im-
prove the fit to experimental data of thepd scattering ob-
servables that are not successfully explained by the intro-
duction of theππ-3NF. The phenomenological 3NF is com-
posed of (repulsive) central, tensor, and spin-orbit compo-
nents. As a physical origin of the tensor component in the
phenomenological 3NF, theπσ-3NF, which is originated
from the pion-sigma exchange mechanism, is studied. The
πσ-3NF may cancel a wrong behavior of the tensor com-
ponents in theππ-3NF, and as a result, works to explain
the tensor analyzing powerT21(θ). The introduction of the
πσ-3NF also successfully explains the nucleon-to-nucleon
polarization transfer coefficientKy

′

y (θ). On the other hand,
theπσ-3NF gives a large effect in theNd differential cross
section at forward angles, which requires more precise data
around 10 MeV.

The numerical calculations in the present paper are supported by
the Research Center for Computing and Multimedia Studies, Ho-
sei University.
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