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Abstract

In this thesis, we have studied two different cases in which cosmological and astro-
physical observables can be used to constrain extensions of the Standard Model. The
first one was centered on the bubble wall dynamics at a First-Order Electroweak Phase
Transition. The main achievements of this thesis regarding this topic have been the
following: first, we developed a very efficient numerical method with which we could
find, for the first time, the full solution of the linearized Boltzmann equation in the
context of the mentioned cosmological transition. Second, we extended our method
by including the equations describing the evolution of the background plasma and the
bubble wall. By doing so we were able to find the value of the bubble wall velocity for
a benchmark model. Third, we confirmed that the out-of-equilibrium perturbations
have an important impact on the value of the bubble wall speed, so they need to be
included in the analysis. The other case studied in this thesis involved the QCD axion,
the particle proposed to solve the strong CP problem. In particular, we computed the
luminosity resulting from the resonant conversion from axions to photons inside a su-
perradiant cloud around a Black Hole. Regarding this project, the main achievements
are the following ones: first, the method we used to compute the luminosity is ana-
lytical, is mathematically very transparent and allows to have clear quantitative and
qualitative control over the assumptions. Second, we find that for Primordial Black
Holes and axion masses around 107° My, 10~7 eV respectively the resulting signal is
so intense that it could be detected by the LOFAR telescope. Third, the mentioned
values of PBH masses for which such detection could be possible match the mass range
that has been used to explain some ultra-short microlensing events observed by OGLE.
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Introduction



1 Cosmological and astrophysical phenomenology
of BSM models

The Standard Model of Elementary Particles (SM) has been extremely successful in
explaining the smallest scales of Nature accessible to human observation, and its predic-
tions are among the most accurate in the history of science. However, it is well known
that it is not complete since it does not provide satisfying answers to several questions,
like the unexpected preservation of the CP symmetry by the strong interaction (known
as the Strong CP Problem) or the particle content of Dark Matter.

Many of these problems are addressed by adding new particles and/or new inter-
actions to the Standard Model; these modifications are known as Beyond Standard
Model (BSM) extensions. The efforts of physicists over the last decades to explain the
open questions in the SM have led to a large population of BSM models, including
supersymmetry [4], right-handed neutrinos [5], new Higgs sectors [6,7], etc.

These BSM models need to be tested experimentally, and since most of them predict
the existence of new particles, much hope was pinned on finding such new particles
in collider experiments, with LHC at the forefront. However, despite the remarkable
success of the discovery of the Higgs particle, no new scale of Physics has yet been
found.

New experiments, like the Future Circular Collider [8], will continue the journey
of colliders climbing to higher energies. However, Cosmology and Astrophysics can
complement this search for new Physics. Many processes in the early and late Uni-
verse strongly depend on the BSM extension, and they are governed by extremely high
energies at scales that are inaccessible for collider experiments. In addition, detect-
ing hypothetical light and weakly coupled particles, like the axion or (possibly) Dark
Matter, is especially challenging for colliders,

For this reason, the Particle Physics community has turned its attention to cosmo-
logical and astrophysical systems, trying to find new ways to probe models of microscale
Physics. The recent discoveries of gravitational waves (as single events and as a stochas-
tic signal) have been particularly exciting, as they represent a new way to look into the
Universe, different from electromagnetic radiation. The prospect of combining future
gravitational wave experiments, such as LISA [9,10] or the Einstein Telescope [11],
with new telescopes like the Square-Kilometer-Array [12] or CMB S4 [13], is particu-
larly motivating, as they could finally open the door to the discovery of new Physics.

In this thesis, two different cases of cosmological and astrophysical phenomenology
of BSM models have been studied. The first one is related to cosmological phase
transitions. The evolution of the Universe after the Big Bang is determined by the
particle content in the primordial plasma; if the SM model is modified, then the history
of our Universe also changes. In particular, different BSM extensions, like the scalar
singlet extension [6] or the two-Higgs doublet model [7], modify the nature of the
cosmological electroweak phase transition: while according to the SM it is a continuous
process where thermal equilibrium is not broken, many of these BSM extensions predict



a first-order phase transition [9], the phenomenology of which is very rich and could
be used to constrain the corresponding BSM models.

Among the observational consequences of a First-Order Electroweak Phase Transi-
tion (FOEWPIT), probably the most relevant ones are the production of gravitational
waves and the possibility of explaining the matter-antimatter asymmetry. First-order
phase transitions take place through the nucleation of bubbles and their consequent ex-
pansion; the collision of such bubbles and their interaction with the primordial plasma
lead to the production of gravitational waves, which would be measured today as a
background signal [10]. On the other hand, the expansion of the bubble wall drives the
plasma out of thermal equilibrium; if the particular BSM extension also provides suffi-
cient violation of baryon number, C and CP, then the three Sakharov conditions would
be fulfilled, and such a model would predict a certain amount of matter-antimatter
asymmetry [14].

As we will see later, the most important parameter controlling this phenomenology
is the bubble wall velocity. Intuitively, it can be expected that the gravitational wave
production will be greater at higher bubble velocities, while a greater amount of matter-
antimatter asymmetry will be produced if the bubble wall is slower and the transition
therefore lasts longer. Then, in order to control the cosmological implications of a BSM
model that predicts a FOEWPHT, it is necessary to have a reliable prediction of the
bubble wall velocity.

Computing the bubble wall velocity was the main goal of the first part of the
thesis. Such velocity is determined by the interaction between the bubble wall and the
plasma. This interaction produces a friction force against the bubble wall, and part of
such friction comes from out-of-equilibrium Physics. To find such out-of-equilibrium
friction one needs to solve a Boltzmann equation, which is especially challenging in
this context. In our work, we built a new efficient method to solve this equation
and we proved that previous approaches, which relied on several restrictive simplifying
assumptions, were not capturing correctly the out-of-equilibrium Physics. We used this
method to couple the Boltzmann equation with the rest of the equations governing the
transition to find the bubble wall velocity, and we checked that the out-of-equilibrium
physics has a relevant impact on the prediction of the bubble wall velocity, and thus on
the observational consequences of the model. This research, which will be introduced
in deep detail in section 2, was developed in [1, 2], included in this thesis, but also
in [15-17].

The other BSM phenomenology case studied in this thesis is related to the axion,
or QCD axion', a field that is added to the Standard Model to solve the Strong CP
Problem by dynamically relaxing the 6 parameter in the QCD lagrangian, responsible
for the breaking of the CP symmetry.

Although the axion was originally proposed for this purpose [18], nowadays the
interest in this hypothetical particle goes beyond the Strong CP Problem. For example,

'In this thesis, axion is synonymous with QCD axion. If axion-like particles are discussed they will
be explicitly mentioned.



thanks to the misalignment mechanism it is possible to generate a relic population of
non-relativistic axions, turning this particle into a very well-motivated candidate for
light cold dark matter [19].

Several experiments, like XENON [20] or the Axion Dark Matter Experiment [21],
have been putting a lot of effort into trying to discover the axion, but there is no positive
detection for the moment. Again, as we said before, these efforts can be complemented
with other cosmological and astrophysical searches. In this thesis, we have studied
the possibility of detecting with Earth-based telescopes the flux of photons resulting
from the axion-photon conversion in a superradiant cloud around a rotating Black
Hole. Inspired by the formalism used in the literature to study the resonant conversion
around neutron stars [22-28], we developed a new method to compute the luminosity
of the mentioned system. Using such a method we obtained an analytical expression
of the luminosity, and we found out that, for Primordial Black Holes (PBHs) and an
axion with masses around 107> M, 10~7 eV respectively, the luminosity through axion-
photon conversion is high enough for it to be detected with the LOFAR radiotelescope.
In addition, this same range of PBH mass is the one used to explain some microlensing
events measured by the OGLE experiment [29]. We will give an extended introduction
about this work, published in [3], in section 3.

At the end of the present Part I of this document, we conclude with the main
achievements of the work done in this thesis and we outline some possible future lines
of research. In Part II we include the articles [1-3], which constitute the main body of
this thesis.

Throughout this document we use natural units fixing ¢ = h = kg = ¢y = 1, and
we choose (+ — ——) as the signature for the Minkowski metric.

2 Bubble wall dynamics during a First-Order Elec-
troweak Phase Transition

Among the two cases of BSM phenomenology studied in this thesis, we start with the
FOEWPIT. In particular, we have focused on the computation of the velocity of the
bubble wall, a parameter that plays a key role in the observational consequences of
such a process. We were able to compute this velocity thanks to our development
of a new method to find the full solution of the Boltzmann equation, which we also
used to evaluate the effect of out-of-equilibrium physics on the value of the bubble wall
velocity. This work of research was published in [1,2]. A continuation of this work was
published in [17], which is not included in this thesis but will be summarized in section
5.

The goal of this section is to give an explanatory introduction and to motivate
the work done in this thesis, providing the required context together with a (non-
exhaustive) revision of related literature. In 2.1 we give a brief introduction to sponta-
neous electroweak symmetry breaking. In 2.2 we explain the electroweak phase tran-



sition, which is the cosmological context in which such symmetry breaking took place.
We explain the phenomenological interest in the case of a FOEWPHT in section 2.3,
focusing on gravitational wave production and Baryogenesis. In section 2.4 we explain
the formalism we use to deal with the relevant ingredients for studying the dynamics
of the transition: the bubble wall profile, the out-of-equilibrium perturbations, and the
background plasma in local equilibrium.

2.1 Electroweak symmetry breaking

The spontaneous breaking of symmetries is one of the most important aspects of the
Standard Model of Elementry Particles. This phenomenon is based on the idea that,
even if a theory respects a given symmetry, some states described by that theory do not
need to respect such symmetry. Yoichiro Nambu introduced spontaneous symmetry
breaking in the realm of Particle Physics; inspired by his knowledge of Condensed
Matter Physics, Nambu explained how the spontaneous breaking of a chiral symmetry
leads to a spectrum of massive composite bosons [30]. This same idea is used in the
Standard Model to explain why the mass of the hadrons is much bigger than the sum
of the mass of the quarks.

The Higgs Mechanism is another crucial application of spontaneous symmetry
breaking in the Standard Model of Elementary Particles. In the famous 1964 PRL
symmetry breaking papers [31-33], three different research groups used the idea intro-
duced by Nambu some years before, but in this case in the context of gauge theories.
They discovered that gauge bosons, which in principle need to be massless to respect
the gauge symmetry itself, can acquire a mass if the theory contains a particle that
takes a non-zero vacuum expectation value, i.e. a particle whose vacuum state spon-
taneously breaks a gauge symmetry?.

In the SM, the Higgs mechanism is used to explain the origin of the mass of the
W=, Z bosons, which correspond to the gauge bosons of the weak interaction, whose
symmetry group is SU(2). The Higgs mechanism is needed also to explain the origin
of the mass of the fermions in the SM since their bare mass terms also break the SU(2)
symmetry. In this context, the symmetry breaking required by the Higgs Mechanism
corresponds to the Electroweak symmetry breaking (EWSB), which has been central
in this thesis and on which we will focus from now during in this section.

Ignoring the QCD sector, the SM can be written as a gauge theory with SU(2) x
U(1) as a gauge group. This is the so-called electroweak unification, and the corre-
sponding Lagrangian is

S | . —
L= = Wi, W = 2B B 4 i D + ibpDn + (Dbl = Vo(h) + Ly, (1)

2This statement is not completely correct from a formal point of view; Elitzur’s theorem states
that gauge symmetries can never be spontaneously broken [34]. However, the Higgs mechanism can
be deduced in a completely gauge-invariant way in the so-called FMS framework [35].
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where we called 1, the fermions that behave as doublets under the SU(2) group,
or left-handed fermions, and g the fermions that behave as singlets under SU(2),
or right-handed fermions. WZV, B, are the gauge tensor fields corresponding to the
SU(2) and the U(1) gauge groups, respectively. The covariant derivative associated
with these gauge groups is D,,. Finally, h is the Higgs boson, which acts as a doublet
under SU(2) and has charge 1/2 under U(1) transformations, and is responsible for
the EWSB. We also included a potential term Vy(h) for the Higgs field. Finally, Ly
stands for the interactions between the fermions and the Higgs boson.

Let us now rewrite the Higgs field in the following way [36]:

We added the matrix U(z) to write the most general two-component spinor, but it
can be removed from the Lagragian by a gauge transformation [36]. H(x) is defined
as a real scalar field fulfilling (H(z)) = 0, so by construction (hy(x)) = v, (h(z)) =
(0,v//2). Of course, the value of the vacuum expectation value v will depend on the
potential Vy(h). With this parametrization, we can rewrite the lagrangian 1 in terms
of v and H(z) instead of h(z). This of course mixes the components of the left-handed
doublets with the right-handed singlets, in such a way that several quadratic terms
appear. In the same way, due to the interaction of the Higgs field with the gauge
bosons through the covariant derivative, there appear also quadratic terms mixing
different gauge bosons. All these terms can be written like

Lonss = Y —(yx0) XX + > —(yav)*A,A" . (3)
X A

The fermions X and the bosons A in 3 are defined as a particular recombination
of the fermions and bosons in 1, and yx 4 are constants which depend on the coupling
constants of 1. This is how the Higgs mechanism generates masses for fermions and
bosons: if v # 0, then we can redefine our fields in terms of the mass states in 3, where
mx A= Yx AV.

Notice that the Higgs mechanism is able to generate mass terms for the particle
without explicitly breaking the gauge symmetry; when we rewrite the Lagrangian using
2, shuffling the gauge bosons and the components of the fermions doublets and singlets,
we are not removing the gauge symmetry, we are just hiding it. This is why it is more
enlightening to use the expression hidden symmetry rather than spontaneously broken
symmetry.

It is also important to notice that the description in terms of the mass states is
always valid, even if v = 0; in this thesis, the presence of the bubble implies that
the value of v will change in time and/or space from zero to a non-zero value, which
will imply a position/time-dependent mass for the particles: outside the bubble, the
particles will be massless, and they will be massive inside. This will be explained in
more detail in the following sections.
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2.2 Cosmological Electroweak phase transition

Electroweak symmetry breaking, as well as other symmetry-breaking processes, are
crucial for Cosmology. As we said, the vacuum expectation value of the Higgs field,
responsible for the mass terms of all the SM fundamental fields, depends on the po-
tential Vy(h) in 1. However, to be completely precise we should take into account the
interaction of the Higgs boson with the rest of the particles in the model. If we con-
sider a system where the average number of interactions among the particles is very
low (which we can call a system with zero temperature), then the Higgs vev will be
determined by V4 (h) (ignoring radiative corrections), but what if that is not the case?
What if the average number of interactions per unit of time between the particles and
the Higgs is not that small and so the temperature is different from zero?

Cosmology gives a perfect context where these questions are relevant. We know
that in the Early Universe the rate of interactions between particles was very high.
This fact can be modeled through temperature, and so we say that the particles in the
Early Universe lived in a thermal bath with a temperature determined by the expansion
history. Is it possible that at some point the temperature of the Early Universe was
so high that the vev of the Higgs was zero and so the particles were massless, i.e. a
temperature where the EW symmetry was restored? If that was the case, then at some
point, as the Universe was cooling down, the temperature was low enough such that the
vev of the Higgs changed from zero to a non-zero value, giving mass to the elementary
particles.

We can anticipate that the answer to the question raised in the previous paragraph
is yes, and it yields the so-called Cosmological Electroweak Phase Transition, which
has been the subject of study in this thesis. To be able to study this physics properly,
to know which is the temperature in which such transition happens and what are its
properties, it is useful to use the machinery of Thermal Field Theory.

With the tools of Thermal Field Theory one can compute the thermal correction
Vr(T, h) to the potential Vj(h), so the total potential is® V (T, h) = Vy(h) + Vo(T, h).
The shape of this potential will be crucial for the nature of the phase transition. We
will now depict the computation of Vi (7T, h); more details can be found in [37,38].

From now on we will consider that the primordial plasma hosting the phase transi-
tion is weakly coupled. This means that we will treat the collisions among particles in
the plasma perturbatively. This is justified in the case of the electroweak phase tran-
sition. However, the formalism explained in this thesis cannot be applied to FOPhT
within a strongly coupled plasma, which is the case of the QCD phase transition. In
that case, holography is a more suitable tool to find the friction against the bubble
wall and its velocity [39].

Let us consider a free bosonic or fermionic field of mass m in a thermal bath of

3The thermal correction is not the only relevant modification to the zero-temperature potential;
one-loop corrections, for example, have an important quantitative impact on the Higgs potential [37].
This correction has been taken into account in the works included in this thesis, but we ignore them
in this introduction for the sake of simplicity.
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temperature T'. The goal is to compute the thermodynamic free energy density of such
fields, as it represents the exchange of energy between the field and the thermal bath.
Since the mass of these particles depends on the value of the Higgs field ho, this energy
exchange with the thermal bath represents also the energy that the Higgs field h can
extract from the thermal bath, i.e. Vp (T, h).

Fermionic and bosonic fields can be decomposed in a sum of infinite harmonic
oscillators; for instance, for the boson field 1,

7 k1 ki | pt —ikZ
d](t,il?) :/WQ_E’]C <(l]‘€‘€ +bE€ > y (4)

where E? = \E |> +m?. The analogous expression for the fermion field is similar, but in
that case it is necessary to introduce the Dirac spinors. Since we are considering free
fields, the corresponding equations of motions do not couple different k modes. Then,
the free energy density of such free fields is the sum of the free energy of all possible
modes, normalized with the volume of the phase space. Each mode is a decoupled
harmonic oscillator, whose free energy is [38]

E
Fo = 17’“ + TIn(1 F e PFr) (5)

where = 1/T. The upper sign corresponds to the bosonic case, and the lower sign
to the fermionic one. Then, the free energy arising from a fermionic or bosonic field is
(assuming some regularization of the divergent ground state energy Ej /2 [37])

d3k
fB’F = ZET/ Whl(l + €_BE’“) =

T T4
=+ [ dx z?1n (1 Fe V x2+(m/T)2> = —2J37F<m) ) (6)
2w 27 T

The dimensionless functions Jp r are called thermal bosonic/fermionic functions. It
is important to note that 6 corresponds to the free energy of each degree of freedom;
for example, a Dirac field has four degrees of freedom, so the contribution to the total
free energy by a single Dirac field is 4 fz. If we recall now that the masses of the fields
in the thermal bath depend on the vev of the Higgs field, we can find the thermal
correction Vr to the tree-level potential V4 (h):

V(T ) = Vo(h) + V(T2 h) = Vo(h) + o (Z JB(y;h) Y JF(y;h)) G

F dof

where the sum is over the bosonic and fermionic degrees of freedom and m; = y;hs is
the field-dependent mass of each particle.

Now that we have the potential including the thermal correction we can start to
address the questions that we raised before. The first one is if the electroweak symmetry
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is restored at high temperatures. For high temperatures, we can expand the thermal
functions J around zero; it happens that such expansion does not include linear terms,
so the potential will behave like

h 3
V(T,h) ~ Vo(h) + CT* + DT?*h* + T*O ((T) ) (8)
for some constants C, D. For arbitrarily high temperatures, the tree-level potential
Vo(h) is arbitrarily negligible. The potential then behaves quadratically in h, which
implies that its minimum is at A = 0 (assuming D is positive). Then, as we anticipated
before, we can be sure that at some temperature the Higgs vev is h = 0 and then the
EW symmetry is restored.

The next issue we need to address is when, or at what temperature, does this change,
since it is crucial in order to determine how the transition took place. A necessary
condition (although not sufficient) for this to happen is that at some temperature T,
a new minimum appears whose energy is equal to V(7,,0). This means that 7, is the
solution of the system

ahV(Tm hO) =0 (9)
V(Te, ho) = V(T,,0) .

The temperature T, is called the critical temperature. As the Universe cools down,
T < T,, the true vacuum of the Higgs will not be A = 0, but the other value of h
fulfilling 0,V (T, ho) = 0, V(T hy) < V(T,,0) (note that the position of the new true
vacuum depends on the temperature, and changes its value as the Universe temperature
drops). Although we have not imposed it, the second condition in 9 enforces that the
solution of the system (or at least one of them) will be an absolute minimum, and not
a local maximum®.

The critical temperature 7T, is not necessarily the temperature at which the tran-
sition occurs. This question is directly related to the type of phase transition taking
place, and we shall address it now.

Phase transitions can be classified into two types: first-order phase transitions or
continuous phase transitions. The main difference between both is related to the latent
heat [40]: in a continuous phase transition, the change of state happens continuously
so no latent heat is released. The previous stable state is unstable below T, so at every
point in space the field rolls down to the new vacuum. Instead, in a first-order phase
transition the previous state is metastable; both phases can coexist during some period
of time, although the new one is energetically favored. Some parts of the Universe
transition to the new favored state in the form of bubbles, as we shall discuss later.
The difference in potential energy between the stable and the metastable state AV
(the latent heat) is released as kinetic energy that yields the expansion of the bubbles,

4We are assuming that the potential V (T, h) is a differentiable function.
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until the whole Universe is covered in the new stable phase. This is the type of phase
transition studied in detail in this thesis.

As we said, both types of phase transitions are distinguished in the possibility
of coexistence of both states, which is directly related to the difference between the
previous stable state being unstable or metastable for temperatures below T,. In terms
of the potential, the minimum before the transition at A = 0 is metastable for T' < T,
if 92V (T,,0) > 0, and is unstable if 9?2V (T.,0) < 0. This implies that, if the transition
is first-order, at T' = T, when the new minimum appears, there is a potential barrier
separating both the previous and the new minimum.

We can conclude that continuous phase transitions happen at 7' = 7T since the
previous minimum becomes unstable and the field rolls down to the new minimum.
However, what about first-order transitions? If at T" = T, there is a potential barrier
separating two minima, the field needs to overcome such barrier by quantum tunneling
or by thermal fluctuations. The transition between the degenerate minima should then
be suppressed (we can foresee that such suppression should depend on the height of
the potential barrier and the potential difference between the 2 minima). At which
temperature and how will the transition happen in that case?

This issue was addressed by Coleman [41,42] and later applied to the specific case
of the Cosmological EW Phase transition by Linde [43]. Let us assume we have a Higgs
field permeating the space, sitting in the metastable state h = 0. We will use a path
integral formalism; the partition function is

Z5 = / DrDhe P = N / Dhe PEI (10)

H is the Hamiltonian for the field h, including the thermal potential. In the second
equality we have integrated out the canonical momentum variable, so

Blh] = /d%; (% (Vh)? + V(T h)) (11)

The probability per unit of time and volume I'/V for the field to transition to a
h = hg is computed using a saddle point approximation, which means that one needs to
find field configurations corresponding to minima and maxima of the functional E[h]. It
can be seen that the field configurations minimizing E[h] are spherically symmetric [38].
This is why we talk about bubbles when dealing with first-order phase transitions: the
transition will happen through the nucleation of spherical bubbles of the new stable
state or true vacuum, in terms used by Coleman.

However, not every bubble nucleation process will lead to the phase transition;
if the nucleated bubbles are too small, they will shrink due to the surface tension
and disappear. We can check this by computing the energy difference between the
bubble configuration and the constant h = 0 configuration. If we assume that the
transition will happen shortly after 7., so the height of the potential barrier will be
much bigger than the potential difference AV = V(7,0) — V(T,hy). In that case,

15



the field configuration needs to change rapidly from A = 0 inside the bubble to h =
0 outside; this is called the thin wall limit. In this limit, the difference in energy
E[h] — E[h = 0] between a bubble configuration of radius R and the constant h = 0
can be simplified to [44,45].

4
E[h] — E[h = 0] = 4r0R? — %AVR‘g . (12)

In 12 the first term can be understood as the work done by the surface tension o
(which value depends mainly on the height of the potential barrier), while the second
one is the work done by the inner pressure of the bubble, which energy comes from the
energy released after transitioning to the true vacuum, i.e. AV.

The energy in 12 has a maximum at R, = 20/AV. If the radius of the nucleated
bubble is smaller than R, the bubble will minimize its energy shrinking until disap-
pearing, while if the nucleated bubble has a radius bigger than R. the bubble will
expand; a bubble with the critical radius R, is called a critical bubble.

The energy associated to a critical bubble configuration is

47 16703
= 2 _ — 3 — T T 5
E.= (47mR S AVE ) ‘R:RC AV (13)

The probability of nucleation of a critical bubble per unit time and volume is [37]

r
R A 14
y (14)

The transition will take place once the probability of nucleating a critical bubble
is high enough. A reasonable choice is to set as the nucleation temperature T, the

temperature at which the probability of nucleating a bubble in a Hubble volume H 3
(H stands for the Hubble constant) within a Hubble time H~! is one, i.e. at T =T,

(T = 55 (15)

T=T,

We can summarize the discussion of the previous paragraphs in the following way:
there exists a critical temperature T, at which a new degenerate minimum different from
h = 0 appears for the Higgs potential. If at such temperature there is no potential
barrier between the two minima, the phase transition will be a continuous one, taking
place at T' = T,. If otherwise there is a potential barrier, then the Universe will enter
a metastable state until the nucleation temperature 7,,, at which bubbles of the new
stable nucleate across the Universe.

What happens then for the Standard Model? If we assume we know the Higgs po-
tential at every temperature, then we can compute 7, and also the sign of 97V (T, 0),
to tell which type of phase transition takes place. This allows to draw a phase diagram
in terms of the measured Higgs mass and the critical temperature, which is displayed
in Fig. 2. The values of the Standard Model lie beyond the critical point, so according
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Figure 2: Phase diagram for the Electroweak phase transition in terms of the measured
Higgs mass, according to the Standard Model. If the Higgs mass is above 80 GeV then
such transition is continuous; this is the case since the Higgs mass is around 125 GeV.
Figure taken from [38].

to such theory the cosmological EW phase transition was a continuous one. However,
there are still many reasons to study the possibility of a first-order EW phase transi-
tion. In the next section we will motivate such a study, giving some details on some
phenomenological consequences.

2.3 Why is a First-Order Electroweak Phase Transition inter-
esting?

As mentioned in the introduction, there are many reasons to believe that the Standard
Model is an incomplete description of Nature. Some of the most relevant unexplained
observations, like the presence of Dark Matter, the matter-antimatter asymmetry in the
Universe or the CP symmetry conservation by the strong interaction are often solved
by extending the Standard Model, including new interaction terms or new particles.
Some of the most popular extensions of the Standard Model, which are proposed to
solve such issues, include a new scalar singlet coupled to the Higgs field [6] or a new
Higgs doublet (the Two-Higgs-doublet model or "2HDM”) [7].

These BSM modifications would have a relevant impact on the thermal history
of our Universe, altering the predictions made by the Standard Model; if the Higgs
sector is modified, the nature of the cosmological EW phase transition could change
dramatically. Indeed, according to many of these extensions, a first-order EW phase
transition took place in the Early Universe. A review of many BSM models predicting
such a transition can be found in [9].

Probing such models can be challenging for collider experiments. For instance, in
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some of these models the new particles have sizable coupling to the SM Higgs field, but
interact only indirectly with the rest of the particles. It is then important to look for
alternative ways of exploring such models, such as the imprints of their cosmological
history on the present Universe. This sets a motivating and exciting prospect for the
future of Physics, where collider and cosmological experiments can complement each
other in the mission of finding new phenomena.

In the rest of this section we shall briefly discuss two of the most relevant phe-
nomenological consequences of such models, in the context of Cosmology; the pro-
duction of a gravitational wave background and the generation of matter-antimatter
asymmetry, a.k.a. Baryogenesis.

2.3.1 Gravitational wave background

A first-order phase transition takes place through the nucleation of bubbles of the true
vacuum, and the difference in energy turns into kinetic energy for the bubble wall,
which expands through the primordial plasma until they collide with each other and
the true vacuum state covers the whole space. During such expansion, the bubble wall
interacts with the plasma, depositing part of its energy in the form of heat and bulk
kinetic energy, which takes the form of sound waves traveling across the plasma.

Although the bubble expansion is a spherically symmetric process, their collisions
and the plasma motion are very energetic and highly non-spherical. This will lead to the
production of gravitational waves. Since the Hubble patches were causally disconnected
back then, such gravitational waves would be measured today as a gravitational wave
background, or a stochastic gravitational wave spectrum®. This means that BSM
models predicting first-order phase transitions could be probed using Gravitational
Wave detectors, either by already-built ones like LIGO, Virgo, or KAGRA or future
ones like LISA or the Einstein Telescope.

In the context of a first-order phase transition there are three main contributions
to the production of gravitational waves: the collision of bubble walls, the collision of
sound waves, and the turbulent motion of the plasma produced by the motion of the
bubble front. In this way we can write

Qaw = Qi + Q8w + Q8w (16)
where each term stands for the energy contribution in the form of GW from each of
the sources respectively.

It is challenging to do a general analysis of each of the contributions in 16; most

of the studies on this issue are based on involved simulations of the transitions (e.g.
[46-48]). However, the shape of the GW spectrum produced is thought to depend on

5The author of this thesis once assisted to a talk given by Daniel G. Figueroa, one of the most
relevant figures in this field, and strongly agreed with him when he discouraged using the expression
stochastic gravitational wave background or SGWB since the terms stochastic and background are
redundant.
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only a few parameters of the transition, namely the transition strength « (related to
the latent heat released in the transition AV'), the duration of the transition 37!, the
nucleation temperature T,, and the bubble wall velocity v,,. [10,38,49]. If the transition
entered a runaway regime and the bubble wall accelerated to velocities very close to
the speed of light, most of the energy would be concentrated at the bubble front and
16 would then be dominated by QR%;. However, for most of the typical values of the
transition parameters the bubble wall is expected to achieve a constant velocity below
c. In this case, an important part of the available energy is transferred to the plasma.
This produces energetic sound waves traveling across the plasma, the collision of which
has been found to produce GW well after the end of the phase transition when all the
bubbles have collided. This means that, for the typical region of the parameter space,
iy is the dominant term in 16 [10].

As mentioned before, the GW power spectrum is expected to depend only on «, £,
T, and v,. This means that the position and the amplitude of the peak frequency in
the power spectrum will depend on such values; however, there is something special
about the parameter v,,: it does not only affect the position and the amplitude of the
peak, but it also affects the shape of the power spectrum (see Fig. 3). Therefore the
bubble wall velocity would be the best determined parameter if a GW background was
detected. This means that to efficiently test BSM models, it is crucial to have control
over the prediction of v,, made by such models.

In the particular case of the EW phase transition, the frequency peak is expected
to be around 10~ — 1073 Hz. This frequency range is of interest for LISA, a future
space-based GW interferometer, which will operate in the frequency range 10~% — 1
Hz starting next decade. LISA will be able to test, through the (possible) detection of
GW of cosmological origin, new models of microscale Physics.

2.3.2 Baryogenesis

It is an observational fact that the Universe contains much more matter than anti-
matter. No anti-baryonic structures are found in the Universe, and even the only few
detections of antiparticles coming from space can be explained by a Universe filled only
with matter [51]. It is natural to assume that the initial conditions of our Universe
included an equal amount of matter and antimatter, so we expect that at some point
during the history of the Universe a large asymmetry was produced, leading to current
observations. Such a process is called Baryogenesis (since normally the solution to the
problem focuses on the production of baryons over anti-baryons), and a FOEWPhT
provides a suitable cosmological context where it can take place.

In 1967, Andrei D. Sakharov® established the conditions required for Baryogenesis,
famously known as Sakharov conditions [52]. In this section we shall explain what are
these conditions, and why a FOEWPhOT is a well-motivated candidate.

61t is always worth mentioning that Sakharov was awarded the Nobel Peace Prize for his Human
Rights activism, reminding us that even if we study the smallest and largest scales of Nature, there
are some scales in the middle that may also be relevant.
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Figure 3: Gravitational wave power spectra predicted in [50], varying the values of
the four relevant parameters: the strength of the phase transition «, the nucleation
temperature 7},, the bubble wall velocity v,, and the Hubble-scaled bubble spacing 7.
(which is determined by v,, and the duration of the transition 37!). One can see that
while varying the parameters changes the position and the height of the peak frequency;,
in particular changing the bubble wall velocity also affects the shape of the spectrum.
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The three Sakharov conditions are the following ones:

e B-nonconserving interactions: if we need to generate an asymmetric popula-
tion of baryons and anti-baryons, we need interactions that do not conserve the
baryonic number B. The Standard Model provides such interaction: since the
gauge group of the electroweak interaction is non-abelian (it includes an SU(2)
group), we know that the topological structure of the vacuum is non-trivial, and
there are many possible vacua. Each different vacuum is labeled by a different
value of the number B + L while conserving B — L, where L is the leptonic
number: going from one vacuum to a neighbor one changes 3 baryons for 3 an-
tileptons (or 3 antibaryons for 3 leptons) [53]. Then, field configurations that
interpolate between vacua allow changes in the B 4+ L number. If the mechanism
from changing between vacua is quantum tunneling, such solutions are called
instantons. However, thermal fluctuations also allow to overcome the energy dif-
ference between the vacua; these solutions that connect different vacua without
tunneling through the barrier are called sphalerons.

e C and CP violation: In addition to the B violation, we also need the C
symmetry not to be conserved. Otherwise we would exchange as many particles
for antiparticles as antiparticles for particles. In the same sense, we need CP
violation to avoid that the change from left-handed particles to right-handed
antiparticles is the same as the change from right-handed antiparticles to left-
handed particles. It is known that the Standard Model does not provide enough
C and CP violation to generate the required matter-antimatter asymmetry, so
some BSM extension is required in order to have Baryogenesis [10].

e Departure from thermal equilibrium: If the Universe was constantly in
thermal equilibrium, the rate of any process generating a net gain in B would be,
by definition of equilibrium, the same as the rate of the opposite process. If the
Universe started being matter-antimatter symmetric, thermal equilibrium would
wash out any generated asymmetry.

A first-order EW phase transition provides a scenario where the third condition is
fulfilled, since the bubble expansion drives the primordial plasma out of equilibrium.
The BSM extension required to have a first-order transition can also be responsible
for generating the required C and CP violation [14]. We need then to discuss the
first condition, the B-nonconserving interactions. At the scale of the EW transition,
barrier penetration is highly suppressed, so the instanton solution is not useful [37].
However, since the temperature is high, sphalerons are very efficient, so B-violating
interactions are very common. We can do a rough guess stating that the sphaleron
rate [y, should behave like Ty, ~ e Eoon/T | where Fyyy, is the energy of the sphaleron
solution, which we can expect to depend on the height of the energy barrier between
different vacua, which in turn will grow with the Higgs vev hg [53]. Therefore inside
the bubbles, where hy # 0, the sphaleron rate will be rapidly suppressed. Then, as
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Figure 4: Summary of the Baryogenesis process during a first-order EW phase transi-
tions. (¢) stands for the Higgs vev. Drawing taken from [14].

sphalerons generate matter-antimatter asymmetry, part of that asymmetry will leak
inside the bubble, where it will stay conserved since sphalerons are frozen. Fig. 4
displays a summary of this process.

The bubble wall velocity plays a crucial role in this process. If v, is too small, there
will be not enough departure from equilibrium to have Baryogenesis. If it is too big,
there will not be enough time to generate the required amount of asymmetry. If one
wants to use a BSM model predicting a FOEWPhT to explain the observed matter-
antimatter asymmetry in our Universe, then one needs to have a reliable prediction of
the value of the bubble wall velocity, as was the case for the GW power spectrum.

We conclude that to control the phenomenology of a BSM first-order phase transi-
tion, knowing the bubble wall velocity is critical. The computation of the bubble wall
velocity v, is especially challenging since it depends on the out-of-equilibrium Physics
during the transition. One of the main goals of this thesis has been the development
of a method to obtain reliable prediction of v, as well as evaluating the impact of the
aforementioned out-of-equilibrium effects. In the next section we will discuss how to
deal with the bubble wall dynamics to find v,,.

2.4 Bubble wall dynamics

In this section we study the dynamics of the bubble wall, with a particular focus on find-
ing its velocity. We will discuss what mechanisms are relevant for such a computation
and introduce the formalism used in this thesis. We will also discuss the methodology
that was in use before the start of this thesis, to motivate the work developed in [1,2],
included in this document.

The general picture is as follows: during the Early Universe, at very high temper-
atures T' > T,., the EW symmetry was not broken. At T = T,, another minimum in
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the Higgs potential becomes degenerate with the symmetry-preserving one, and both
minima are separated by a potential barrier (since we assume that the transition was
first order). The Universe enters a metastable state until 7' = T,,, the moment when
the energy difference between the minima is high enough so bubbles of the true vacuum
state are nucleated. Such energy difference forces the bubble to expand. The bubble
wall travels across the primordial plasma, driving it out of equilibrium and accumu-
lating energy in front of it, which in turn acts as a source of friction for the expansion
of the bubble wall. This changes the temperature and velocity of the plasma which is
being pushed by the bubble, creating sound waves, also known as shock waves. The
friction force against the bubble wall will compensate for the expansion driving force,
bringing the bubble wall to a steady state of constant velocity.

With this picture in mind, we can divide our system into three different compo-
nents. First, there is the bubble wall profile, which can be modeled as a scalar field
representing the value of the Higgs vev at each position. This means that it is a map-
ping between the symmetry-preserving value of the Higgs vev in front of the bubble
wall and the symmetry-breaking one behind it The bubble wall profile will be governed
by a Klein-Gordon-like equation. The other components are related to the primordial
plasma, which can be split in two: the part of the plasma which is in equilibrium, and
the part which is out of it. Both components will be described by statistical distribu-
tion functions; the equilibrium part will be described by the energy and momentum
conservation equations, and the out-of-equilibrium part will follow a Boltzmann Equa-
tion.

The three equations described above are not independent, and to fully solve the
system one needs to solve the three of them simultaneously, as we did in [2]. In the
next sections we will describe in more detail each of the components, and how each
equation can be solved assuming the solutions of the others are known. We will focus
especially on the Boltzmann equation which has received most of the effort done in
this thesis and which was the main subject in [1].

From now on we will treat the bubble wall as a flat object, which is known as
the planar limit. This limit implicitly assumes that the width of the bubble is much
smaller than its radius, which is a safe assumption since we are considering the bubbles
to be at least as big as the critical ones [45]. We will consider such a planar object
to move in the z direction, which implies that the only relevant spatial variable for
all the magnitudes involved in the problem is z, and they will be axially symmetric.
For example, the dependence of the magnitudes on the momentum p will only appear
through the dependence on the projection in the z direction, p., and the perpendicular
component p .

Let us set now some notation. We will treat the bubble wall profile as a scalar
classical field ¢(z) (note the difference between ¢ and h; ¢ represents the vev of the
field h, in such a way that the Higgs particles are perturbations of the field h around
the background ¢). Each particle degree of freedom in the plasma will be described
with a statistical distribution function f = f, + df, where f, represents the equilib-
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rium distribution function and ¢ f is the deviation from equilibrium. the subindex v
represents the velocity of the plasma, which will depend on the reference frame. We
will consider two possible frames: the wall frame, where the bubble wall velocity is zero
and the plasma is moving towards it, and the plasma frame, where the plasma velocity
is zero and the bubble wall is traveling across it. Unfortunately, there might be some
inconsistency between this notation and the one in some of the works included in this
thesis.

2.4.1 Scalar field Equation

The bubble wall is modeled as a scalar field ¢(z) and so it follows a Klein-Gordon
equation with the Higgs potential V (T, ¢). Ignoring the Higgs perturbation over this
vev,

O¢+ 0,V (T, ¢) =0 . (17)
Let us split the Higgs potential into Vj and V7, and use 7:
O¢ + 0. V(¢)+Za(m2)/ p Lf( z2)=0 (18)
o Vo : z i (271')3 2Ep v DL Pz - )
We have used that the equilibrium distribution functions are
1
e 1

fo= (19)

where p* and u* = (1,0, 0,v) are the 4-momenta and the 4-velocity of the plasma,
respectively. In 18 the sum is over all the degrees of freedom in the plasma. However,
we know that there is a part of the plasma that is out of equilibrium, so we need to
add the corresponding term in 18. Joining again Vj and V7,

dp 1
ok ﬁ(;fi(pbpz,z) =0, (20)
p

06+ 0,V(T.0) + Y 0u(m?) [

Let us now write eq. 20 in the wall frame. In such a frame nothing depends on
time, and 0, is the only relevant derivative. Multiplying in addition by 0,¢ both sides
of the equation, we get

dp 1
(277 2E,

~0.0(2)026(2) + .00V (T, 6) + 3 0.(m?) / 5fipropez) = 0. (21)

The last term in the right-hand side of 21, sourced by the out-of-equilibrium part
of the system, is called the friction term F(z). It is one of the factors responsible for
slowing down the bubble wall to a steady state, but as we will see next, it is not the
only one. If we integrate 21 in z, we get
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AV — / dz OpV (T, )0.T + / d=F(2) = 0 . (22)

Recall that AV is the potential energy difference between the true and the false
vacuum. In equation 22 we can explicitly see that two quantities can compensate for
the expanding energy AV the friction term F(z) and another one coming from the
temperature profile across the bubble wall, which means that one can have steady-
state solutions even if the plasma is completely in local equilibrium. The impact of
out-of-equilibrium Physics is not obvious; evaluating its impact on the computation of
the bubble wall velocity has been another goal of this thesis.

The standard way of solving this scalar field equation is assuming a specific shape
of the bubble wall profile, which is called the tanh ansatz:

o(2) = % (1 + tanh (%)) . (23)

The sign of the + sign depends on the direction in which the wall is moving; far
away in front of the bubble wall the value of the vev needs to be 0, and behind needs to
be hg. The magnitude L represents the width of the wall in its own frame. As will be
explained in more detail in [2], to find the values of v,, and L the scalar field equation
we impose that the total pressure on the bubble wall is zero, so the wall velocity is
constant, and that the gradient of such pressure is also zero, so the width of the wall
does not change.

The validity of the tanh ansatz has been evaluated in [54], which concludes that in
most cases this ansatz is a very good approximation.

2.4.2 Boltzmann Equation

The out-of-equilibrium distribution functions f, + df are governed by a relativistic
Boltzmann equation, which is the most challenging part of the process. As we will
see next, it is an integro-differential equation, including the nine-dimensional integral
collision operator.

The Boltzmann equation is deduced from the idea that the change in the particle
number after an infinitesimal amount of time should be determined by the rate of
interactions or collisions among the particles [38]. This means that after a change like

Orh In
x“—>x”—|——dT:x“—|—p—dT
or m

op*
bt g 24
Pt o dT (24)

then the change in the number of particles is given by
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This rate should be given by a collision operator C[f], which for 2 <+ 2 processes is
defined as’

1 Bkd3p' d3k'
Clf] = |76t kE—p —E)P; 26
] Z AN, E, / 2B, 2B, MO Pk —p = k)P (26)
where the sum is performed over all the collision processes with squared amplitude
|M;|?, N, is the number of degrees of freedom of the particle with momentum p, E, =
VP2 4 p% + m?, and P, is the population factor, which includes the Bose enhancement

and the Fermi blocking:

Pi = fp)f(R) (L £ f(P)(L £ f(K) = flp)f(R)AL £ fP)LEfK) . (27)

The subindex ¢ means that for each collision process with amplitude |M;|? the
distribution functions f will depend on the bosonic or fermionic nature of the particles
involved.

In this thesis and most of the literature only 2 <» 2 processes are considered in
the collision operator. The main argument to do so is that among all the processes
between particles in the Standard Model they are the most efficient at thermalizing the
particles in the plasma, bringing them back to equilibrium. However, another reason
why this practice is common is for the sake of simplicity. As we mentioned before the
collision operator is the main bump in the road to solve the dynamics of the bubble
wall, and it needs a deep dedicated analysis. Besides the 2 <+ 2, it is known that 1 <+ 2
processes (which would inject and extract kinetic energy from the plasma) should have
an important effect on the results [55,56], so including them in the analysis would be
a relevant continuation of the work done here.

With this definition of C[f], the Boltzmann equation reads

i v
(0, + 0,0 0) f = ~CIf (28)
p
Eq. 28 is written in a Lorentz-invariant way, but we will deal with it in the wall
frame, where quantities depend only on the position in the z axis, and not on time. In

this frame,

<p_za _0.(m?)

vo.- %o, ) r=—cu. (29

"The definition of the collision operator is not unique, and different notations can be found in the
literature.
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Now let us take into account that, as we said before, the distribution f has an
equilibrium and an out-of-equilibrium part, f = f, + df. If we assume that the df is
a small perturbation around equilibrium, we can linearize the population factor in 27:

_6fp) SR | SFW)  SF(K)
L) Ak A AW

Recall that in this expression the functions f, and Jf are different, depending
on which of the 4 particles involved in the process they describe. The function f’
is the derivative with respect to the argument of the exponential in the equilibrium
distribution. To find 30 one needs to use the conservation of energy and momenta,
imposed by the Dirac delta in 26. Note that if the particles are in equilibrium, i.e.
0f = 0 for every particle, the collision operator vanishes; this operator is responsible
for bringing the fluid back to equilibrium, so if that is already the case then C[f]
vanishes.

We can see then that the 0 f, which is the quantity we want to find by solving
the Boltzmann equation, appears in the kinetic term of the left-hand side of 29 (term
also known as Liouville operator) and inside the collision operator. This is the main
reason why solving the Boltzmann equation constitutes a challenge; even if one wants
to implement purely numerical methods, the collision operator is an integral with nine
dimensions, which cannot be computed by brute force.

In the seminal works [40,57] the authors developed a method to simplify the Boltz-
mann equation. They assumed a specific ansatz for the dependence on the momentum
of the perturbation § f known as fluid approximation: f is assumed to behave like

+ (30)

1

. o Ep ﬁz
B T-X 11 X = p(z) + 707(2) + 7-0v(2) , (31)

f= T, T,

where E = v(E — vyp.), p. = 7(p» — vuE) are the energy and the momentum in the
plasma reference frame. Linearizing on the perturbation X, we get
: of
f=fomfiX=f+0f = —% =X (32)
Another common assumption when using the fluid approximation or its variations
is to neglect the term proportional to J,, in the Boltzmann equation. The reason to
do so is that that term is proportional to the external force d,(m?); such a term is also
the source of 4 f, which then can be expected to be of order O(m?/T?) and which we
are assuming to be small. Then, the term proportional to d,, is order O(m*/T?), even
smaller [40]. The Boltzmann eq. simplifies to

A E, - o 0(m?)
B, (@u(z) + 7 0:07(2) + Tnazav<z)) tel = —Fvuggr - (39
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Take into account that the functions u(z), d7(z) and dv(z) factor out in the collision
integral since they do not depend on the momentum variables. This is one of the most
important advantages of the fluid approximation.

Using the fluid approximation for solving the Boltzmann Eq. means finding the
functions p(z), 67(2) and dv(z). To do so, the Boltzmann eq. is integrated with three
different moments, namely 1, E and p,. This means that the following operators are
applied on both sides of the Boltzmann eq.:

[a5 Josm [ (34)

This turns the Boltzmann eq. 33 into 3 linear differential equations which depend
only on z, and not on the momenta:

7 7
Ao, (ot | +T (o7 | =5, (35)
ov ov

where A is a matrix with coefficients coming from the Liouville term, I' is also a
matrix which coefficients some from the collision operator, and S is a vector sourced
by the external force proportional to 9,(m?). The coefficients in A and S can be
computed analytically without much effort [58]. In [40] the coefficients of " were
approximated analytically for a given set of processes. However, they can also be
computed numerically [58].

There are some features that we implicitly assumed when writing 35. Each particle
in the plasma would have corresponding functions pu(z), 07(z) and dv(z), so there
should be a system like 35 for the out-of-equilibrium part of each particle. Beyond
this, the out-of-equilibrium parts of different particles appear in the equations of the
rest through the interactions involving them (see 30), so in principle the system of
equations of the particles in the plasma should be coupled to one another. However,
the situation is simplified for two reasons: first, not every particle of the plasma is
considered to be out-of-equilibrium because some particles interact much more with
the bubble wall than others (the more the mass, the more the interaction). For example,
in [59,60] they considered that only the top (most massive particle in the SM) is driven
out-of-equilibrium, while in [40, 58] they also included the W and Z bosons; the rest
of the particles are in local equilibrium. In addition, even if more than one particle is
driven out of equilibrium, they are not considered to interact with each other, so the
systems 35 of each of them are decoupled.

Equation 35 can be solved analytically using Green’s functions. Once the solution
is found, we can compute the friction term F'(z), which is crucial for finding the bubble
wall velocity.

The solution obtained by this method presents two important features, which are
related. One of them is that the total out-of-equilibrium friction (the integral of F'(z)
across the bubble wall) presents a peak at the speed of sound v,, = ¢, = 1/4/3 (see blue
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line in Fig. 5). Second, for supersonic bubble walls (i.e. bubble walls with v,, > ¢s)
the out-of-equilibrium perturbation d f is highly suppressed in front of the bubble wall,
which implies that Baryogenesis is not efficient. The interpretation given to this fact
is that, as the bubble front accelerates to velocities close to ¢, its distance from the
shockwave decreases. This increases the friction against the bubble wall, as the nearby
shockwave also perturbs the plasma. Once v, overcomes c,, the traveling bubble wall
finds instead an unperturbed plasma, so a sudden decay of ¢ f in front of the bubble
should be expected.

However, this method opens up several questions. To begin with, the physical
interpretation is not completely satisfactory. The sound speed is ¢, in the plasma
frame; the speed of sound in front of the bubble wall, where the plasma is being
pushed, is greater. There is another velocity somewhat bigger than c;, called Jouguet
velocity, at which the bubble wall does overcome the shockwave. Exactly at v, = ¢
there should be no critical change in the behavior since the shockwave is still in front
of the bubble wall, so there is no reason to expect either a peak in the friction or a
suppression of the perturbation.

It is reasonable then to think that the features mentioned above are sourced by
mathematical artifacts. The fluid approximation ansatz is based on a given shape of
the perturbation ¢ f; such a shape might not be describing the perturbation correctly.
Already in [40] it was argued that the fluid approximation is a truncation in a momen-
tum expansion of ¢ f, and that higher orders might be required. Besides this, there
is an obvious arbitrariness in the choice of weights with which the Boltzmann equa-
tion is integrated. In Fig. 5 we show the integrated friction, also known as pressure,
as a function of the velocity of the bubble wall for different choices of the mentioned
weights. We can see that the result strongly depends on such a choice, changing the
value of v,, where the peak is or even removing such a peak.

These issues were pointed out in [61], where the authors argued that the friction
should behave continuously, with no special behavior at v, = c¢,. A solution was
proposed later in [58]; in this work, the author suggested that the problem lies in
the velocity perturbation dv, and they argued that the fluid approximation should
be modified so the ansatz on df does not assume any specific dependence on the
momentum p,. Instead, the authors assumed a factorization ansatz for the integrals
of the perturbation. They also changed the set of weights with which the Boltzmann
equation is integrated, choosing 1, E and p,/E instead. Using this new method,
which they called new formalism (in contrast with the previous old formalism), they
recomputed the perturbation 6f and the corresponding friction. They found that
indeed the peak at v, = c¢g or sonic boom [62] disappears, and instead the out-of-
equilibrium friction was a monotonously increasing function, with no special behavior
at any velocity.

However, [58] does not completely solve the questions raised before. The assump-
tions on the shape of §f are indeed relaxed, but they are instead substituted by a
factorization ansatz on its behavior under the integral sign. In any case, [58] does con-
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Figure 5: Integral of the friction as a function of the velocity of the bubble wall using
different choices of a third weight, together with 1, E, using the method proposed
in [40] (labeled as old formalism in [58]). In this plot, ho/T,, = 1.5, LT, = 5, and
the top quark and the W/Z bosons are the only particles in the plasma driven out-of-
equilibrium.

firm that the results significantly change when the fluid approximation is modified. We
conclude then that the fluid approximation is not reliable and that using a weighted
method to solve the Boltzmann Eq. suffers from some arbitrariness.

In [59] these issues were also addressed, but in a different way. In that work the
authors modified the fluid approximation by extending it, adding more functions mul-
tiplying higher powers of E and p,. They find an equation like 35, but where the
matrices and vectors have higher dimension, so it can be solved exactly in the same
way.

In Fig. 6 the resulting friction is shown, for different orders in the expansion of the
fluid approximation. Order 1 corresponds to the old formalism explained first in this
section. One can see that increasing the order of the expansion yields the appearance
of new peaks in the friction. In addition, the height of these peaks decreases as the
order increases; both features confirm the non-physical nature of the sonic boom in the
out-of-equilibrium friction. Beyond this, the authors also proved that when the fluid
approximation is extended, the out-of-equilibrium perturbation in front of the bubble
wall is not suppressed anymore for supersonic walls. Fig. 6 suggests that the friction
would converge to a given result if arbitrary orders are included.

The results from the works mentioned in this section strongly indicate that there
is a need for an improvement of the methodology for solving the Boltzmann equation,
which should relax the assumptions made on the shape of §f as well as avoid the
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Figure 6: Integral of the friction as a function of the velocity of the bubble wall using
the extended fluid approximation proposed in [59]. In this plot, ho/T,, = 1.5, LT,, =5,
and the top quark is the only particle in the plasma driven out-of-equilibrium.

weighted method. This was the main motivation for [1], included in this thesis, where
we developed a method to solve the Boltzmann equation in which the only assumption
made on d f is that it is small compared to the equilibrium distribution.

2.4.3 Background fluid

The remaining ingredient is the background fluid in thermal equilibrium. It is consti-
tuted by all the degrees of freedom in the plasma, also the ones that are considered to
be massless because their mass is much smaller than 7;,, so they do not interact directly
with the bubble wall. However, since there is a scalar field profile traveling through
the plasma, the conservation of energy and momentum implies that the temperature
and the velocity of such plasma cannot be constant, so the background fluid is not in
global but in local equilibrium. The goal then of this section is to find such profiles for
the plasma temperature and velocity.

In [40] this was achieved by assuming that the deviation from the asymptotic values
are small, so v = v,, + dvpg With dvpg /v, < 1 and T' = T,,(1 + d7,e) with 07, < 1, in
such a way that the distribution functions of the particles in the plasma can be written
like

1 . _E D
foa = Wy Xpg = ﬁéTbg(z) + T&vbg(z) . (36)

This modeling modifies the shape of the out-of-equilibrium distribution of the parti-
cles that do interact with the wall, so the fluid approximation explained in the previous
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section is modified:

=5 = X Xog = )+ 2O+ 0m2) + B0l + () . (3T)

Note that ju,e = 0 since we assume the background plasma is in local equilibrium.
One can then write a new matrix system analogous to 35, including now the background
plasma temperature and velocity profiles, and the system can be solved similarly [40].

Including the background plasma with this formalism turns the bump in the friction
at v, = ¢s discussed in the previous section into a singularity, as was noted already
in [40] and further discussed in [61] and [58]. However, in the previous section we saw
that the special behavior of the friction at the speed of sound was an artifact of the
fluid approximation and the specific choice of weights, so this divergence could also be
non-physical.

This issue was solved in [62]. In that work, the authors found that the divergence
of the friction is a consequence of linearizing the Boltzmann equation in terms of the
temperature and velocity deviations 07, and dvp,. Including all the non-linearities in
the treatment of the hydrodynamics of the plasma, they found that when v,, ~ ¢

1 2c
5Ubg ~ Cg + ﬂ (Cs + 062 + ?> s (38)

where « is the strength of the phase transition and is then related with d7,,. Lin-
earizing in 07pg corresponds to linearized in «, which cannot be done in 38 since the
square root is a non-analytical function around o = 0.

However, the authors of [62] pointed out that, even if the divergence is not physical,
a discontinuity in the friction should be expected at the Jouguet velocity, since it is
the velocity at which the bubble wall overcomes the shockwave, so the friction should
suddenly decrease. However, to properly capture this behavior one needs to include all
the non-linearities when modeling the equilibrium plasma hydrodynamics.

A suitable formalism for this goal was settled in [63] and applied to the computation
of the bubble wall velocity in [60], and is also the formalism used in our work. In the
rest of this section we will provide the main ideas; more details can be found in [2],
added later in this document.

The starting point to find the profiles of the temperature and velocity that charac-
terize the background plasma, which is the goal of this section, is the conservation of
energy and momentum. Each of the ingredients of the system contribute to the total
stress-energy tensor:

=T + T+ Tour » (39)

where the first term is the contribution from the bubble wall:
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the second one is the contribution from the plasma in local equilibrium:

Ty = wugyug, + 0" Vi(T, ¢) (41)

where ugl is the 4-velocity of the plasma and the enthalpy is defined as w =
—ToV(T,¢)/0T = —=TOVy(T,¢)/OT. Finally, the third contribution to stress-energy

tensor comes from the out-of-equilibrium species in the plasma

Towt = Z / Bl P (42)

In the wall reference frame, all these quantities will depend only on z, and not on
time. Then, conservation of T#* implies that the quantities 7% and 733 are conserved
along the z axis. This leads to the following equations for the temperature and velocity
profiles

—w+ /ATP — T8 + o
219 T, |

Up:

(43)

)=0,

out

1 1 1
5(@@)2 —V-gw+ 5\/4(T30 —To)? +w? — (T = T,

where the dependence on the temperature is implicitly encoded in V' and w. As-
suming that we know the out-of-equilibrium distributions (and thus their contribution
to T") and also the bubble wall profiles, the only thing required to determine v,(z)
and T'(z) are the boundary conditions, which will fix the values of 7% and T3*. Such
boundary conditions® vy = v(do00), Ty = T(+o0) are determined by the hydrody-
namic regime, which in turn depends on the value of the bubble wall velocity. There
are three possible regimes:

e Deflagrations: if the bubble wall velocity is smaller than the speed of sound,
Uy < Cs, then the shockwave, which travels (at least) at the speed of sound is in
front of the bubble wall. This means that the plasma behind the wall is at rest so
in the wall frame v_ = v,,. Because of the presence of the shockwave T # T},; the
nucleation temperature is the one of the plasma that the shockwave encounters
when traveling through it, so Tjh = T,. Energy-momentum conservation fixes
only one possible value for T that yields T’ jh =T,.

81n these expressions, when we write 00 we mean arbitrarily in front or behind the bubble wall,
but before the shockwave. This means that implicitly we are assuming there is enough distance
between the bubble wall and the shockwave. This is why we cannot use our treatment exactly at the
Jouguet velocity, since in that case the wall and the shockwave coincide.
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e Hybrid walls: as we explained before, the velocity of the shockwave in front
of the bubble wall is somewhat larger than cg, since the plasma itself is being
pushed by the wall. This means that a wall can travel faster than ¢, and still
have a shockwave in front. However, in this case the traveling bubble wall also
develops a rarefaction wave behind it. This is called the hybrid regime, and the
boundary conditions are found in a very similar way to the deflagration one, with
the only difference being that in this case v_ = ¢, [63].

e Detonations: the hybrid regime is not possible for any velocity greater than c;.
There is a value of v, in which no shockwave can travel faster than the bubble
wall; such velocity is called the Jouguet velocity v;. If v,, > v, the bubble enters
the detonation regime: the bubble wall encounters an unperturbed plasma, so
in this regime Ty = T,,, vy = v,. In this case there is also a rarefaction wave
behind the bubble front.

Once the boundary conditions are known, the plasma temperature and velocity
profiles can be found using 43.

During the last sections we have described each of the components of the phys-
ical system during a cosmological phase transition that are relevant for the bubble
wall dynamics, which is crucial for having qualitative and quantitative control on the
phenomenology of such phenomena. We have explained how each of them can be char-
acterized, what is the Physics governing them, and how the corresponding equations
might be solved.

We have discussed in special detail the Boltzmann equation. This equation needs to
be solved to find the out-of-equilibrium perturbations of the plasma, which is a source
of friction onto the bubble wall and so plays a pivotal role in finding the bubble wall
velocity. The Boltzmann equation represents the most challenging part of the whole
process, and for this reason, the equation was simplified by using the fluid approxima-
tion and the weighted method. We proved that these techniques are not reliable since
the result strongly depends on the choice of weights and introduces mathematical ar-
tifacts that are not physical, indicating that the fluid approximation does not capture
correctly the behaviour of the perturbations. This makes it clear that it is necessary to
find a new way of solving the Boltzmann equation that relaxes the assumptions made
on Jf. This was the motivation for our first work [1], where we developed a numerical
method that only relies on the linearization of the out-of-equilibrium perturbations. We
were able to do so because we found an efficient way to compute the collision operator,
which allowed us to solve the Boltzmann equation through an iterative method.

Once we had a reliable and efficient method for solving the Boltzmann equation, the
next natural step was to couple it with the scalar field equation and the hydrodynamic
equations to be able to find the value of the bubble wall velocity. This was done in [2]
by solving the three equations using again an iterative method. This was possible
thanks to an improvement in the computation of the collision integral developed in [1]
which reduced the time necessary to solve the Boltzmann equation by some orders of
magnitude. Both works can be found later in this document.
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3 Axion-photon conversion around rotating Black
Holes

Besides the cosmological Electroweak first-order phase transition, the other BSM phe-
nomenology case studied in this thesis involves the axion. In particular, we studied
the conversion of axion to photons in the superradiant cloud around a rotating Black
Hole, considering the presence of an external magnetic field sourced by the accretion
of matter by the Black Hole. We developed a detailed mathematical methodology
to solve the axion-photon mixing in such context and we discussed the observational
implications. The results of this work was published in [3], included in this thesis.

This section has the same spirit as section 2. In 3.1 we introduce the QCD axion
and the basic properties that are used in this thesis, namely its mass and its coupling
to photons. In 3.2 we explain how the axion-photon interaction in different astro-
physical contexts has been used to constrain the axion properties, with special focus
on the resonant conversion due to the presence of an external magnetic field. The
mathematical methodology to solve such conversion is treated in detail. In 3.3 the su-
perradiance mechanism is explained; such mechanism generates the axion superradiant
cloud around rotating Black Holes, which is the system in which we have studied the
axion-photon conversion during this thesis.

3.1 Basics of the QCD axion

The well-known Strong CP Problem is an unsolved enigma in the Standard Model of
Particle Physics. From an observational point of view, this question can be phrased as:
why is the electric dipole moment of the neutron so small? According to the Standard
Model, the neutron is a bound state of one up quark and two down quarks, joined
together by the gluon field. If we forget for a moment about the quantum field nature
of these particles, we can compute the electric dipole moment d using the classical
formula,

g = Z 4T (44)

where the sum is over the three quarks, ¢; are their charge and 7; their position. Using
that the radius of the neutron is around 10~"° m, we can give a rough estimate of the
electric dipole moment: |d| ~ 1071%/1 — cos @ e m, where e is the electron charge and
0 is the angle formed by the segments joining the up quark with each of the two down
quarks [64]. This estimation can be compared with the experimental measurement,
which is

|:1l>|obS <107* e cm . (45)

Such comparison yields an extraordinarily small value for the angle between the
quarks: —1071% < § < 10713, i.e. the quarks are arranged in a line. For some reason,
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the strong interaction behaves in such a way that the quarks inside the neutron are
always aligned. Why?

This fine-tuning enigma is the Strong CP Problem, and the axion solution can be
already depicted using this classical simple picture: the axion solution states that there
is another interaction, acting on gluons, that forces the neutron to have such an aligned
internal structure.

Although the description above is enough to understand the basics of the Strong
CP Problem and the axion solution, we know that quarks are not localized classical
particles and 44 is not valid when studying the behavior of quarks inside a neutron.
To have a more reliable picture we need to introduce the quantum field description of
the strong interaction: Quantum Chromodynamics.

If we present the problem in terms of symmetries, as is common in field theories, the
existence of a non-zero electric dipole moment for the neutron breaks CP symmetry. A
simple way to see this is through T violation (given that CPT is a good symmetry of
nature): neutron is a spin-1/2 particle, which means that it has an intrinsic magnetic
dipole moment. Under T symmetry, the electric dipole moment is invariant since it
is sourced just by the spatial distribution of charges inside the neutron. However, the
magnetic dipole moment is related to the dynamics of such distribution of charges,
which means that it changes sign under T symmetry. Then it is only possible to have
neutrons with a non-zero electric dipole moment if the theory describing the interaction
between the quarks can break the T symmetry or, equivalently, the CP one.

The QCD Lagrangian in the Standard Model allows for a CP-breaking term [19]:

ACQCD,Q = #Tr (G,WG“V> s (46)
where G, is the gluon field strength tensor, G w18 its dual, and the trace is taken over
the SU(3) index.

When constructing the lagrangian of a theory, one should consider every possible
term that respects the assumed symmetries of such theory. It would be possible to
assume that C'P is a good symmetry of Nature, and so the term in 46. However, we
know that this is not the case, since the complex phase of the CKM matrix breaks CP
in weak interactions. Therefore there is no reason for not including the f-term in the
QCD lagrangian.

The angular constant 6 can take any value from 0 to 27 and is the sum of two
different contributions arising from uncorrelated parts of the Standard Model:

0 = 0 + arg (det(M,My)) (47)

where 6 is sourced by the non-trivial topological structure of the QCD vacuum and M,,,
M, are the quark mass matrices [64]. This CP-breaking term is responsible for gener-
ating a non-zero electric dipole moment for the neutron. Using again the measurement
in 45, the physical parameter 6 can be constrained to be |0] < 107!°. This means that
the two terms in 47, which come from independent sectors of the Standard Model,
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cancel each other with extraordinary precision. This is why, in the language of QCD,
the question why is the electric dipole moment of the neutron so small? translates to
why does QCD preserve CP symmetry?

The main ingredient for the axion solution’ to the Strong CP Problem lies in the
Vaffa-Witten theorem, which guarantees that the energy contribution from the term
in 46 is minimized for the CP-preserving value of 6. i.e. §# = 0 [65]. Therefore if the
parameter # was able to change dynamically, the Vaffa-Witten theorem would ensure
that it would relax to the CP-preserving value. This is exactly how the axion solution
works: we postulate the existence of a spin-0 particle a, which we call the axion.
This axion is assumed to respect a shift symmetry, which implies that in most of the
couplings to the rest of the fields the axion will appear through derivatives d,a, except
for the topological terms like the one in 46: the coupling between the axions and the
gluons will be

Lo (fﬁ + 6) Tr (éWGW> , (48)
where f, is an energy scale playing the role of an axion decay constant. We have
also included in 48 the CP breaking term of QCD in 46. Since the Vaffa-Witten
theorem guarantees that the energy contribution is minimized in CP-preserving value,
the dynamics of a will drive the vacuum expectation value of the field to (a) = —0f,,
thus solving the Strong CP Problem.

This idea was first proposed by Robert Peccei and Helen Quinn in 1977 [18]. In
their solution, inspired by the Higgs mechanism, the axion arises as the Goldstone
boson of a spontaneous symmetry breaking. Since then, different QCD axion models
have been proposed [66,67]. We will not discuss the details of these models, although
as we shall comment on later some parameters of the axion field are sensitive to such
UV completions.

We are now in a position to derive the basic properties of the axion that will be
used in this thesis. Here we will briefly sketch the reasoning behind such derivation;
for more details, see [19,64,66,68]. The first property we shall discuss is the axion
mass, which will arise from the potential term for the axion. At zero temperature, this
potential will be determined by the interaction between axions and hadrons. We can
obtain a good approximation of the axion potential using the lowest order of the chiral
lagrangian with two quarks including the axion field.

The summary of this computation is the following: we start with the QCD la-
grangian before the chiral symmetry breaking, including the quarks mass matrix M,
(which is a source of explicit breaking of the chiral symmetry) and the axion term in
48. Through a chiral transformation, this axion-gluon term can be removed from the
lagrangian and added as a phase to M,. Then, when writing the chiral lagrangian
after the symmetry breaking, there will be terms coupling the pion matrix U with M,

9The axion is not the only solution for the Strong CP Problem. For a review of other possible
solutions, see [64].

37



which includes the axion field. Expanding such terms one can find the axion potential,
which should depend on the mass of the quarks and the pions. Following these steps,
we get [66]:

Via) = —mfrfz\/l - (Mn&sm? ( ¢ ) , (49)

My, + md)2 2fa

where f, ~ 92 MeV is the pion decay constant, m, = 135 MeV is the pion mass and
m, ~ 2 MeV and myg =~ 5 MeV are the up and down quark masses. To obtain 49
we have redefined the axion field to absorb in a the constant 6 term in 48. We can
confirm that the minimum of the potential in 49 happens at a = 0, as expected from
the Vaffa-Witten theorem since a = 0 is the CP-preserving value of the axion field.
The mass term for the axion can then be found to be:

B — Vmumg 1 102 GeV
me =/ V"(0) = mﬂfﬂm T 5.7 ueV(T) : (50)
This relation between the axion mass m, and its decay constant f, is strongly
connected with the axion field being coupled with topological QCD term 48 and solving
so the Strong CP Problem. However, many BSM scenarios include scalar particles with
a shift symmetry which are not coupled to gluons [69]. For such particles, the mass m,
and the decay constant f, are uncorrelated (or at least not correlated in the same way
as for the QCD axion) and they receive the name of azion-like particles (ALPs). ALPs
have received a lot of attention in the past years for their rich phenomenology [19], but
in this thesis we will only consider the QCD axion, although many of our results can
be easily extended to the parameter space of ALPs.
The interaction between axions and pions described by the chiral lagrangian yields
a non-zero anomalous coupling to photons [66]. The structure of such coupling needs
to be similar to the one in 48 due to the shift symmetry governing the axion,

Lo %aFWFW , (51)

and the coupling constant can be found at low energies using again the chiral lagrangian
with two quarks [66]:

Gor = g _apum (24mg +my _ QBM
W o fo \3mg+m, ) 2nf,

where agy is the electromagnetic fine-structure constant. Note that g,, and m, are
related through f,. The second term after the equal sign in 52 is the one present in the
chiral lagrangian and the first one is a model-dependent coupling which depends on the
UV completion of the theory, namely on the possible coupling to BSM electromagneti-
cally charged particles. QCD axion models differ in the way the so-called Peccei-Quinn
symmetry, which gives rise to the axion when broken, is implemented in the UV [19].
The coupling gg7 also depends on such symmetry breaking and this difference among

(52)
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models has been encoded in the quantity c,. For example, for the KSVZ axion, where
a scalar coupled to a doublet of heavy quarks is responsible for the symmetry breaking,
¢, = —1.92. For the DFSZ, where the scalar is coupled to two Higgs doublets'’; ¢,
is instead not fixed [70]. To avoid model dependence, in our work we have used the
conservative value ¢, = 1, although some models consider larger values of ¢, [71].

Of course, couplings with the rest of the particles in the Standard Model follow
from considerations similar to those discussed above. However, as was mentioned in
the introduction, in our work we have focused on the interaction between axions and
photons. Such interaction leads to a variety of interesting astrophysical and cosmolog-
ical phenomena which could be the key to the potential discovery of the axion.

The coupling between axion and photons modifies Maxwell’s laws of Electromag-
netism, mixing the dynamics of the electromagnetic and the axion fields. The new set
of mixed equations of motion is called Axion Electrodynamics and will be discussed in
the next section, together with its phenomenology.

3.2 Axion-photon mixing across the Universe

In this section we will study the mixing between axions and photons, and also how this
interaction affects various astrophysical and cosmological observables through which
the axion might be found, or otherwise constrained.

The effective lagrangian we will use to study such interaction is the following one:

1 1 1
Loy = 5(3;@)2 - §m302 - Z<
where j* is a possible four-current arising from the medium. In this thesis, we have
focused on the study of the classical field dynamics of interacting axions and pho-
tons. Such dynamics are governed by the modified Maxwell’s equations, which are the
starting point of our work and will be discussed later.

However, before going on, let us briefly discuss how Solar Physics provides one
of the most robust constraints on the axion-photon coupling''. The interacting term
51, present in 53, leads to the production of axions through a Primakoff effect, which
can be summarized as the resonant conversion from photons to axions due to the
presence of an external electric field provided by the ionized medium inside the Sun
(see Fig. 7). This means that the Sun, and the stars in general, would also be a
source of axion scalar radiation, using up their energy to emit such radiation. Such
a process would reduce the lifetime of the stars; since the Sun is still up there in our
sky, the axion-photon coupling cannot exceed a certain value. This constrains the
coupling between axions and photons to fulfill g,, < 23 x 1071 GeV~" [72]. This idea
can be taken one step further; for the Sun to be emitting axions while also emitting

Flu)?+ j A, — %aFwﬁ‘“’ , (53)

10Tn both of these models the axion represents the complex phase of the introduced scalar fields.

" One of the most important experiments for axion-like particles is the CERN Azion Solar Telescope
(CAST), which provides similar constraints to the ones mentioned in this paragraph. However, we
avoid discussing it in this thesis since it barely covers the QCD axion parameter space.
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Figure 7: Scheme of the Primakoff effect: the production of photons from axions, or of
axions from photons, is enhanced since one of the photons in the interaction vertex is
provided by an intense external magnetic or electric field. Figure adapted from [74].

electromagnetic radiation through standard nuclear fusion, the temperature inside the
star would need to be higher compared to the case where the photon-axion conversion
does not take place. This higher temperature would imply higher neutrino fluxes,
which would contradict the current measurements if again g,, was too big. With this
idea, the coupling can be constrained to fulfill g,, < 6 x 1071 GeV ™!, which slightly
improves the constraint related to the Sun lifetime discussed before [72,73]. Since g,
and m, are related through the decay constant f,, the constraints explained in this
paragraph translate to a bound for the axion mass, which needs to fulfill'* m, < 1 eV.

A similar constraint for the mass of the axion can be found studying a different
context: if we add the axion to the Standard Model, then the interactions within the
cosmological thermal bath would produce a remnant population of axions. Since the
axion is a very light particle this thermal population would be relativistic and then
would be part of the so-called hot dark matter, unlike for the misalignment mechanism
which produces a non-relativistic axion population. Hot dark matter is constrained to
be a small part of the total dark matter, so thermal axions should not be overproduced
in the Early Universe. This constrains the axion mass to fulfill m, < 0.2 eV, or
equivalently g,, < 4 x 1071 GeV™! [72,75]. In addition, this thermal production of
axions in the Early Universe would have an impact on the evolution of the effective
number of relativistic degrees of freedom, opening up the possibility of detecting the
axion by observing the CMB [76].

Beyond the QCD axion, Solar Physics has proven to be very useful in constraining
also axion-like particles in general. For instance, if ALPs with masses in the range
keV-MeV existed, they would be produced in the interior of the Sun, but due to their
high mass they would behave non-relativistically and would then be trapped by the
gravitational potential of the Sun, accumulating over cosmic times. These ALPs would
then decay into photons, leaving an imprint on the X-ray emission by the Sun [77].

12The exact value of this axion mass constraint depends on the specific QCD axion model, as
explained below equation 52.
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One of the most important advantages of the constraints explained in the previous
paragraph is that no initial amount of axions is required as an initial condition; the
axions are produced through the interaction with photons in the lagrangian in 53.
However, assuming an initial amount of axions can be very useful, and is especially
convenient for constraining axion dark matter. As mentioned in the introduction, the
axion (and ALPs in general) is a well-motivated candidate for dark matter since, thanks
to the misalignment mechanism, it is possible to produce a non-relativistic population
of axions in the Early Universe. The interaction between axion dark matter and light
has been studied to a great extent in the literature; we shall discuss it later since it has
been one of the main inspirations for our work.

Axion Electrodynamics

However, for that purpose we need first to understand how the axion-photon coupling
modifies Maxwell’s equations. From the Lagrangian in 53, the new Maxwell’s equations
are:

(—02a+ V2a = m2a — go, B - E

V-B=
hB+VxE=0 (54)
ﬁ~ﬁ+ga7§~§a:p

— — —

|V x B —-0,F :j—i— gm(g@ta— E x 6@)

The equations are written in terms of the electric vector field E, the magnetic
vector field B , the charge density p = j° and the current density j Note that the first
equation in 54 is the modified Klein-Gordon equation for the axion.

The modified Maxwell’s equations have a direct impact on the polarization of
traveling electromagnetic waves. From 54 it can be proved that the combination
E+(gaya/2)B, B—(gaya/2)E satisfy free wave equations at linear order in the coupling
Ga~ [78]. This means that if an electromagnetic wave is traveling through a non-constant
axion profile then its polarization axes would be rotated by an angle 5 = gq(ar—ao)/2,
where ag and a; are the values of the axion field at the final and initial spacetime po-
sition of the light wave, respectively. This idea has been used to explain, using ALPs,
the birefringence angle measured in the CMB [79-81], for instance.

However, we can take a different perspective. As we mentioned before, the inter-
action of axions and photons can be enhanced in the presence of an external magnetic
field, the so-called Primakoff effect (see Fig. 7). We know that the Universe is filled with
magnetic fields, like the ones present in the interstellar and intergalactic medium [82] or
the one sourced by highly magnetized neutron stars or magnetars [83]. If, for instance,
an axion condensate like a dark matter clump encountered such an intense external
magnetic field, a significant amount of axions could be converted into photons through
the Primakoff effect.
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In the seminal work [84] the authors developed a formalism to deal with such a sit-
uation. Let us begin with the simplest case: considering an external constant magnetic
field By that dominates over the magnetic field of the traveling electromagnetic wave
and a vacuum medium with p = j = 0, one can find from 54 the wave equation for the
axion and the photon in the Lorenz Gauge:

(0} — VA A" = —g,,Bida (55)
(02 = V2 +m2)a = go, By - A

where A® and Bj are the components of the electromagnetic vector potential and the
external magnetic field respectively. From 55 we can see than only the component of A
parallel to By interacts with the axion; the rest of the components remain decoupled.
Let us now consider plane waves for a and A, propagating along the y axis so only
spatial derivatives with respect to y are different from 0, and éo to lie entirely in the
z axis, go = Bpé,. With these assumptions the system 55 simplifies to

(07 —07)Az =0
(07 = 02)A. = —gar BoOra (56)
(07 — 85 +m2)a = goy BoOi A, |

This system was studied in [85], where it was solved exactly: for an initial state

formed only by an axion wave travelling to the right'®, such that at A,(t,y) = 0,
A, (t=0,y=0) =0 and a(t =0,y = 0) = ap, one can find that

|E(t7 y)|2 _ 4(“)29373(21

lagl2 mi + dw?g2

7 sin? <%(k+ . k_)> (57)

where w is the energy of the incoming axion wave, and

1
ky = \/wz b (mz + \/mi + 4w292738> . (58)

The quantity in eq. 57 is called the conversion probability p,-,,, a concept ubiqui-
tous in the literature. p,_,, = |A|2/|ao|? is interpreted as the probability of one axion
from the initial state converting into a photon at some point in spacetime. Similarly,
Pasa = |al?/|ao|? is called the survival probability.

The concept of the conversion probability is very useful since important observ-
ables, like the radiated power by a source, depend on |ff|2 If we assume, or have some
information about some initial abundance of axions, then |A|? = Pa—s~]ao|?. However,
the concept of the conversion probability can be confusing and can yield some misun-
derstanding when the total number of particles is not conserved, as we shall discuss
later on.

13In [85] the authors considered an incoming photon wave, but the solution for the case we are
discussing is completely analogous.
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Resonant axion-photon conversion

Let us now consider a more complex situation. We know that the intergalactic and
interstellar media host ionized gas or plasma [86,87]; the traveling electromagnetic
waves interact with such a plasma, and this interaction can be modeled as an effective
mass for the photon w,, which will depend on the environment properties. In this way,
egs. H6 become [88]

(07 — 92 +m2)a = gayBodiA. | (59)
where we have considered again the situation of plane waves traveling in the y direction
in the presence of an external magnetic field By located along the z axis. We ignore
the equation for A, since it is decoupled from the system, as discussed before. If the
plasma mass w, is constant, this system can be again solved analytically; for the same
situation considered above (initial state consisting in an axion wave of frequency w and
amplitude aq travelling to the right), eqs. 57 and 58 become [89]

{(af — 02+ W) A, = —go, Bodha

At y)[? du’g? B2 L, (
— S11
|ao|? (m2 — w2)? + 4w?g2 B}

Y
(ki — k) (60)

where w is the energy of the incoming axion wave, and

1
ki = \/w2 =5 (mg +wi+ \/(w]% —m2)? + 4ngng§) ) (61)

The most relevant consequence of this result is that if m, ~ w, then the conversion
probability can be as high as 1, i.e. at some points in space the whole amount of axions
are converted into photons. This situation is called resonant axion-photon conversion
and it has been one of the main ideas in the past years to overcome the smallness of
the coupling g,y in order to find relevant observational consequences of the existence
of the axion and its coupling to light.

However, the presence of this resonance for constant plasma mass requires a re-
markable tuning of the parameters. For this resonance to have an effect, so that the
conversion probability approaches 1, we need w, to be close enough to m, such that
(M2 —w?)? < 4wyl B> <= m]—2wge,Bo < w) <K mj;+2wgay Bo. If we are working
with non-relativistic axions, which is justified if we are considering axions to be part
of the cold dark matter in our Universe, then w ~ m,. Additionaly, the typical values
of the interstellar magnetic field is of order uG [86]. Using also the relation between
Jay and m, through eqs. 50 and 52 (with ¢, ~ 1), then in order to have a resonant
conversion the photon plasma mass w, needs to fulfill
m2(1—107%%) S w2 Sm2(1+107%°) . (62)

a

We conclude that the plasma mass needs to be extremely fine-tuned for the reso-
nance to take place.
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However, the resonance idea can still be useful if we consider non-constant plasma
densities. If the photon mass w, changes over some region of space (or time) then it
would be covering a range of axion masses, so the fine-tuning problem is alleviated.

A very natural and well-motivated case for considering axion-photon conversion in
such a situation is a neutron star. First, because they have very strong magnetic fields,
of order around 10'* G, with which the axion-photon would be considerably enhanced,
and second because the magnetic field profile around the neutron star induces a non-
constant plasma density, which yields a non-constant plasma mass. This system has
been of deep interest in the community [22-28], and in the next paragraphs we shall
discuss their methodology to find the axion-photon conversion'*.

An important drawback of including non-constant plasma mass profiles is that the
system of equations 59 cannot be solved exactly anymore. Instead, the main method
to solve such system is using the WKB approximation, commonly used in Quantum
Mechanics; the solution of for the photon is assumed to be of the form (we drop the z
subindex for A, from here on) A(y,t) = Ag(y)e'X® =41 such that |92A40] < |A¢(8,x)?|
(the amplitudes changes much slower than the oscillating phase), and similarly for the

axion. Plugging this into 59, we can find an approximate solution of the system!’,
which fulfills [25]:

2

2.2
Aly.)I* _ w0ay bt/ V()" g

/ '_Bly)
|aol? o)l | Jo 1k, ())]
where k, = \/w? —m2, k, = /w? —w,(y)? and B(y) accounts for the magnetic field

profile around the neutron star. Here the resonance effect we discussed for the constant
w, case appears through the stationary phase approximation; the integral in 63 is
dominated by the region around the point where the oscillating phase is constant'®,
ie. when k, = kK, <= m, = w,. Using the aforementioned stationary phase
approximation, being yo the conversion point (k,(yo) = k), 63 reduces to [25]

: (63)

’A(ya t)|2 — (B(yo)wga'yL)Q
|aol? 2ka| ks (y)]

The quantity L is defined as L = /7 /|k! (yo)| and can be understood as the width

of the conversion region [24]. The result in 64 or similar versions are commonly used
in the literature.

However, this methodology opens up several questions. One of the doubts that
could be raised is if the WKB approximation is valid along all the region where the

(64)

4In such papers, the angle between the traveling direction and the magnetic field is not fixed to be
/2, as we have done in our discussion, but is left as a free parameter. However, we will keep it fixed
to /2 for the sake of simplicity.

15 Assuming, again, a initial state formed only by axions with an amplitude ay and frequency w

16This point will always be included in the integral domain since we are interested in the solution
of the system far away from the source, where the plasma density decays.
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system of equations 59 is being solved. We can split the space in two regions: In the
first, closer to the star, k2 < 0; in the other, further away, k2 > 0. In the first region
the conversion of axions to photons is expected to be exponentially suppressed since
wp > w there. In the other region, we expect the solution to rapidly oscillate around
some non-zero value, related with the quantity in 64. This requires that around the
point where £, = 0 the WKB approximation breaks down; there is some region around
such point where the amplitude of the photon field rapidly changes. This can be even
more problematic if such region includes the resonant point where k, = k,, since then
most of the conversion from axions to photons would happen in a region where the
WKB approximation could break down, which is likely to happen if k, ~ 0. This is the
case for cold axion dark matter, but also for the axions in the superradiant cloud which
is the physical case we have considered in our thesis as we will describe in section 3.3.

There is another question that can be raised, this time related with the physical
interpretation of the probability. If the parameters in 59 are constant and we con-
sider waves traveling only in one direction, the total number of particles is conserved
and the quantity |A|* + |a|? is constant along the traveling direction. Since the initial
state is formed only by axions, then the quantities |A|?/|ao|?, |al?/|ao|? can be inter-
preted as probabilities as we discussed before, p,,, and p,_,, respectively, such that
Pa—s~y + Dasa = 1. However, if some parameter in 59, like w,, is not constant, then
9, (JA]* + |al?) # 0. This issue has yielded some discussion in the literature about the
interpretation of the conversion probability, and several modifications of the definition
of ps—s can be found in different works [22,25,28,90].

Relativistic approximation

A practice that is commonly found in the literature is the simplification of the system
59 assuming relativistic behaviour!” of the axions and photon fields [22,24,91]. This
could solve the first problem we mentioned above. To do so, 97 — 02 is rewritten as
(O + 0,)(0, — 0,). Naively, we can assume that 0, ~ w, and 0, ~ k, where w and k
are the frequency (energy) and the wavenumber (momentum) of the traveling waves
(particles). Therefore the operator 07 — d; can be simplified to 2w(w —10,) [88]. Using
this, 59 can be simplified:

. 1 w? —Gay Bow A 0
(0= i0,)1 - (_gm o m2 )} <a> (o) : (65)

where we assumed that A(t,y) = A(y)e™", a(t,y) = a(y)e™" for some A(y), a(y). The
system 65 can be solved also using a WKB approximation:

2 2
|A<y7 t)P . Qﬂ

L B e E M3y~ ) g
‘a0‘2 1 ; B(y)BQw y' P dy

(66)

17A more involved version of the procedure described here was done in [24] to account for non-
relativistic behaviour.
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The stationary phase approximation can be used again to further simplify this
expression:

Ay, ) (Byo)gey)* w 7 (B(%0)gay L)’

w
jaol2 2 malw(yo)l 2 ka

(67)

Recall that L = /7/|k/(yo)|, where yo is the conversion point: w,(yo) = M.

The expressions in 64 and 67 differ in a factor w/|k, (y)|, which is consistent with the
assumption of relativistic behaviour, i.e. £, ~ w.

The Schrodinger-like system of equations in 65 does conserve the quantity |A]? +
la|*> even if the quantities in the mixing matrix on the left-hand side of 65 are not
constant. This is because 65 is a system of first-order differential equations and the
aforementioned mixing matrix is symmetric. Therefore, in principle, the probability
interpretation can be recovered in such case. However, the conservation of |A|? + |al?
is indeed an artifact of the reduction of the original system, which is second-order, to
a first-order one; 66 and 67 lack the term 1/|k,(y)| in 63 and 64, which breaks the
conservation of |A|* + |a|?. This is why such modulating term is sometimes introduced
by hand in the literature [22].

The study of these questions led us to take a different perspective. One of the goals
of this thesis was to develop a methodology to solve the axion-photon conversion avoid-
ing the problematics explained above, having more qualitative and quantitative control
of the assumptions and on the region of the parameter space where such assumptions
are valid.

The goal was not only to solve the system with a new perspective, but also to apply
it to a different physical system: the superradiant azxion cloud. The superradiance
mechanism allows a light scalar field, like the axion, to amplify itself through the
extraction of angular momentum of a Black Hole , i.e. the axion field is able to convert
angular momentum into axion particle number. The basics about superradiance will
be depicted in the following section.

3.3 Axion superradiance

In 1971 Penrose and Floyd described a mechanism through which a particle could
increase its total energy at the expense of angular momentum of a rotating Black
Hole: the Penrose process [92]. Such effect is possible thanks to the existence of
the ergosphere, a region outside the event horizon where every lightlike world line
is rotating according to an observer at infinity. To summarize, particles inside the
ergoregion might have negative energy according to an observer at infinity. Then, it is
possible for a particle to split in two inside the ergoregion. One of the particles would
have negative energy and would fall into the Black Hole, which would lose rotational
energy. The other one has more energy than the original one and can escape, gaining
the energy lost by the Black Hole.
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A natural question one could ask now is if a field, instead of a particle, can also
take advantage of such a process. A natural way to answer such question for the axion
(and, in general, for any scalar field) is to study the Klein-Gordon equation around a
rotating Black Hole [93]:

O+ n)att.n) = (0T 0) + ol 0. (69

In 68, g"” is the Kerr metric describing the curved spacetime around a Black Hole.
For small o = GMgpm,, where G is the gravitational constant and Mgy is the Black

Hole mass, equation 68 can be perturbatively solved by decomposing a(t, ) in spherical
harmonics Y},,,

a(t,7) =Y el Ry (r) Vi (0, ¢) (69)
nlm

where 6 and ¢ represent the polar and azimuthal angle respectively, and n, [, m are
the usual labels for the energy and angular momentum levels. The solution for the
radial functions R,;(r) happen to be very similar to the analogous functions in the
solutions of the Schrédinger equation for an hydrogen atom [93]. The main difference
is that in the rotating Black Hole case we are dealing with wy;m, = Wnim g + “Whim, 1, 1.€.
the frequencies have a non-zero imaginary part. Such imaginary part fulfills

Whim,1 < am — 2a(l + V1 —a?) , (70)

where 0 < @ < 1 is the adimensional Black Hole spin parameter, a = J/(GM2y), and

J is the angular momentum of the Black Hole. This means that all the modes n, [, m
that fulfill

a« 5 (71)

are proportional to e*»=1¢ which means that they are exponentially amplified.

Equation 71 is known as the superradiant condition, and it is the answer to the
question we raised at the beginning of this section: given a rotating Black Hole, a
small perturbation of a field which mass is small enough is able to steal the rotational
energy of the Black Hole to amplify itself, forming a condensate state around the
Black Hole called the superradiant cloud. It is possible to give a clear interpretation
to the superradiant condition; if we take am to be order 1, we can rewrite 71 as
m;! > 2GMgy. Then, a scalar field can build a superradiant cloud around a rotating
Black Hole if its Compton wavelength is bigger than the Schwarzschild radius of the
Back Hole.

Note that it is crucial that the field is massive. The Penrose process can also take
place for massless fields like the electromagnetic radiation. However, in such a case the
stolen energy escapes the Black Hole. The presence of the mass acts as mirror, bounding

the stolen energy to the Black Hole and thus building the superradiant instability.
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This mechanism has been used to constrain the mass of the axions [94,95]. If we
observe some Black Hole with a certain angular momentum, we know there is a certain
range of masses forbidden for the axions; the axions with such masses would be able
to steal part of the rotational energy we are measuring in a timescale smaller than the
age of the Universe. The mentioned forbidden region is 1072 eV < m, < 1077 eV and
1071 eV < m, < 107! eV. This constraint is specially relevant since it is reasonably
model-independent.

As we have mentioned before, in this thesis we have studied the axion-photon con-
version in the superradiant cloud. This idea presents several advantages with respect
to the neutron star case. First, unlike in the studies involving neutron stars and other
astrophysical environments, it is not needed to assume an initial state of axions, which
is normally linked with the assumption of the axion being part of the dark matter
in our Universe; in our case, the axion initial state is dynamically generated by the
superradiance mechanism, so we just need to assume its existence. Second, Black
Holes accrete ionized matter from the interstellar medium around them, which will
provide the required non-constant plasma profile mentioned in the previous section.
This accreting matter generates a magnetic field around Black Holes that will trigger
the conversion. This magnetic field will be many orders of magnitude smaller than
the neutron star one, but this can be compensated with the huge number of axions
populating the cloud; we will roll the dice many more times.

The results of this thesis regarding the axion-photon conversion, including the de-
velopement of the new mathematical approach to solve the axion-photon mixing and
the observational consequences when considering Black Holes were published in [3],
included in this document.

4 Results and discussion

In this section we summarize the work done in [1-3], which are included in the next
part of this thesis.

4.1 Paper 1: Bubble wall dynamics at the electroweak phase
transition

The main goal of this work was to develop a new method to solve the Boltzmann
equation in the context of an Electroweak phase transition avoiding the use of the fluid
approximation, which as argued before does not capture properly the behaviour of the
out-of-equilibrium perturbation.

To do so we rewrite the Liouville kinematic operator of the Boltzmann equation as
a derivative along flow paths, which are defined as the trajectories of free particles in
the (z,p,) plane in the presence of a bubble wall, which modifies the value of the mass
of the particles. Doing so we do not neglect the term proportional to 9, ¢ f, which is
normally neglected when using the fluid approximation and the weighted method.
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The main obstacle when solving the Boltzmann equation is the collision operator,
which is a nine-dimensional integral that depends on the out-of-equilibrium perturba-
tion. We used a new treatment that simplifies the computation of this operator by
identifying the part of the integral that is independent of the perturbation and there-
fore only needs to be computed once. We called these functions kernels, which depend
only on the choice of collisions in the plasma. In this work and the following one we
only consider 2 <+ 2 processes.

Using these techniques, we are then able for the first time to find the full solution
of the linearized Boltzmann equation by an iterative method, which is feasible because
of the efficient method for computing the collision integral. By choosing an educated
initial step for the iteration, convergence is achieved within a few steps.

We compare our results with the ones obtained using the previous ones relying
on the fluid approximation and its modifications, and we find quantitative and qual-
itative differences. For this comparison, we assumed that the top quark is the only
species interacting directly with the bubble wall, and we neglected the presence of the
background plasma in local equilibrium.

We observe that the extension of the fluid approximation approaches our results
when increasing the order of the expansion of the fluid approximation proposed in [59].
We find bigger differences with the new formalism proposed in [58], although we agree
on the disappearance of any special behavior of the solution when the bubble wall
velocity is at the speed of sound if the background plasma is not considered.

4.2 Paper 2: Collision Integrals for Cosmological Phase Tran-
sitions

As a natural extension of the previous one, in this work we couple the Boltzmann
equation with the scalar field equation (describing the expansion of the bubble wall)
and the energy-momentum conservation equations (governing the hydrodynamics of
the background plasma) to find the value of the bubble wall velocity.

We also improved the methodology developed in the previous work to deal with
the collision operator by identifying such collision terms depending on the out-of-
equilibrium perturbation as the action of a hermitian operator. Using the spectral
theorem such an operator can be decomposed into its eigenvalues and eigenvectors,
which makes its evaluation even more efficient.

This improvement speeds up our method for solving the Boltzmann equation.
Therefore we can solve the coupled system of the three equations with an iterative
method. Given a BSM model predicting a FOEWPhT we can find the bubble wall
velocity including the out-of-equilibrium perturbations in the plasma.

We applied this method to find the bubble wall velocity using the scalar singlet
extension of the SM as a benchmark model, for two different values of the model
parameters. Like in [1], we considered the top quark to be the only particle interacting
directly with the bubble wall. We compared the results with the case in which the
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out-of-equilibrium perturbations are ignored. At both benchmark points of the model,
we found that out-of-equilibrium Physics has an important quantitative impact on the
bubble wall velocity, reducing its value by up to 30%. Among all the parameters,
the most sensitive one to the inclusion of the out-of-equilibrium friction is the bubble
wall velocity, which is precisely the most relevant one for the phenomenology of the
transition.

We also could confirm that there is a discontinuity in the friction against the bubble
wall at the Jouguet velocity when the background plasma is taken into account. This
corresponds to the velocity where the bubble wall and the shockwave in front of it
are arbitrarily close. However, our results cannot be completely trusted close to this
velocity, since a more delicate treatment of the hydrodynamics is required.

4.3 Paper 3: Lighten up Primordial Black Holes in the Galaxy
with the QCD axion: Signals at the LOFAR Telescope

In this work we compute the luminosity resulting from the conversion to photons of
the axions hosted by a superradiant instability around a Black Hole. We take into
account the accretion of non-relativistic ionized matter into the Black Hole using the
Bondi model of accretion, which is spherically symmetric. Such accretion provides the
effective photon plasma mass, necessary to have a resonant conversion from axions to
photons.

To find the luminosity we use the method of variation of parameters, highlighting
the breaking of the WKB approximation around the conversion point, where the axion
mass and the photon plasma mass are equal. We neglect the backreaction of the
luminosity on the axion cloud, which acts as an external source. In addition to the
developed method we provide the specific region of the parameter space where its
assumptions hold. We find similar expressions for the luminosity as those found in
previous literature.

Using this result we conclude that to have relevant luminosities the conversion point
needs to be close to regions of the cloud with high density of axions. This, together
with the constraints imposed by the superradiance process, requires the Black Hole to
have subsolar masses, which led us to consider a population of Primordial Black Holes
as part of dark matter, consistent with current bounds.

The corresponding range of axion masses lies in the radio band, so we make an anal-
ysis of the detectability of the emitted signal using LOFAR, the telescope already in
operation with the highest sensitivity for frequencies just above the ionosphere screen-
ing bound of 10 MHz. We find that for a region of the parameter space, corresponding
to PBH and axion with masses in the range 107° — 107 M, and 4 x 1078 — 4 x 107"
eV, respectively, the radiation emitted through axion-photon conversion by the closest
PBH can be measured by the LOFAR telescope. This range of PBH masses coin-
cidently matches the one that would explain the ultra-short-timescale microlensing
events measured by the OGLE experiment.
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In addition, we find that, even if the luminosity of the system is high enough to be
detected with radio telescopes, the axion-photon conversion is not efficient enough to
spoil the building of the superradiant cloud, or to use up the energy in the cloud so
fast that it would be hardly detectable. These comparisons justify our neglect of the
backreaction on the cloud. We also determine a conservative constraint to ensure that
the magnetic field of the produced electromagnetic wave is not higher than the external
one, which would lead to a snowball effect and would also break the assumptions of
our analysis.

5 Conclusions

We finish the first part of this thesis by commenting on the main conclusions of the
research carried out and some possible lines of future research.

One of the topics studied in this thesis is the dynamics of the bubble wall during
a FOEWPOT, with the specific goal of finding the bubble wall velocity. Constant
velocities are achieved thanks to the action of a friction force against the bubble wall.
This friction is partially sourced by the out-of-equilibrium plasma and it represents the
most challenging obstacle in studying the dynamics of the wall. Then, one goal of this
project was to evaluate the impact of such out-of-equilibrium physics on the results.

First, we took a step forward in the methodology for finding the out-of-equilibrium
perturbations by solving, for the first time, the full solution of the linearized Boltzmann
equation. We proved that previous approaches were based on unrealistic assumptions
and that a more general method, such as ours, was needed.

We used these results to solve the Boltzmann equation to find the bubble wall
velocity, adding to the analysis the scalar field equation describing the bubble wall and
the plasma hydrodynamics. We developed in this way a method to find the bubble wall
velocity for any given model. We checked that indeed out-of-equilibrium effects have
an important quantitative impact on the computation of the bubble wall velocity, so it
is necessary to include them to have reliable predictions. We also confirmed that there
is a discontinuity in the friction at the Jouguet velocity if and only if the background
plasma is included in the system.

The work done in [17], by the same authors of [1,2] and not included in this
thesis, is a continuation of the research explained here. In that work we improved the
method to solve the Boltzmann equation in two ways. First, we added all the non-
linear terms involving the perturbation, which in our formalism can be done in a very
natural way. Second, we exploited the fact that the hermitian operator representing
the collision operator introduced in [2] is rotationally invariant, which means that it
block-diagonalizes in a spherical harmonics basis and so further improves the efficiency
of the method.

We recomputed the value of the bubble wall velocity with these modifications and
also included in the analysis the W/Z bosons as out-of-equilibrium species in addition
to the top quark, for the same benchmark points as in [2]. In both cases the impact on
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the wall velocity of the non-linear terms in the out-of-equilibrium perturbations was
negligible, suggesting that the linearized Boltzmann equation is a good approximation.
On the other hand, adding the out-of-equilibrium W /Z bosons reduces the bubble
speed by ~ 10 —30%. The most important contribution to the friction by these bosons
comes from the soft modes. This constitutes the most important source of theoretical
uncertainty in our results, since collective phenomena in the plasma (which are not
captured by the Boltzmann equation) dominate the behaviour of soft bosons.

Improving the description of the boson soft modes in our method is an interesting
future prospect of our work, as our results suggest that they could have an important
impact on the value of the bubble wall velocity. Besides this, a very natural continua-
tion of our analysis is to scan regions of the parameter space of different BSM models,
instead of doing it for specific benchmark points. This would allow us to find which of
these regions could be probed by future gravitational wave interferometers, or which
regions could explain the amount of matter-antimatter observed in our Universe.

The goal of the second part of this thesis was to compute the electromagnetic
signal from a QCD axion superradiant cloud around a rotating Black Hole through
the axion-photon resonant conversion. This resonant conversion was possible thanks
to the accretion of ionized plasma towards the Black Hole, which produces an external
magnetic field and a profile for the effective mass of the photon.

To find the luminosity of this system, we built a new method that avoids some of
the problems associated with the formalism used to study similar systems, such as the
transformation of axion-dark matter clouds around neutron stars. Our formalism gives
an analytical expression of the luminosity, and provides information about the region
of parameter space in which its assumptions are valid.

Using this method, we found that within our galaxy only PBHs with subsolar masses
can have relevant luminosities. For PBH with masses in the range 107° — 107% M, and
axion with masses of 4 x 1078 — 4 x 1077 eV, the luminosity emitted by the system
could be detected by the LOFAR telescope. This range of PBH masses is the same as
that used to explain some microlensing events measured by the OGLE experiment.

The work done regarding this topic motivates different future lines of research. For
instance, in our work we considered only the light coming from one single PBH, the
closest one. However, we could extend our analysis considering the stochastic signal
produced by cosmological populations of PBHs.

There are also several ways in which the modeling of the astrophysical environment
around the Black Hole could be improved. In our analysis, we restricted the parameter
space to regions where the plasma electrons behave non-relativistically around the con-
version point, so it would be interesting to go beyond this case and include relativistic
effects. Besides this, the Bondi model we used in our work assumes a spherically sym-
metric process of accretion. It would be important to improve this by using models
that account for the angular momentum of the Black Hole.

We also restricted our work to avoid the case where the axion-photon conversion
produces large magnetic fields, which would lead to a snowball effect. Our treatment
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would not be valid if such instability takes place, but the luminosities in this case could
be much larger than those we predicted.
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1 Introduction

First order phase transitions (PhTs) in the early Universe proceed through the nucleation
of bubbles of a stable phase within a metastable background. Afterwards bubbles expand
in the hot plasma and coalesce, filling the whole space. This sequence of processes is charac-
terised by a huge amount of energy stored in the gradients of the scalar field controlling the
transition, in sound waves and turbulence in the plasma, all of them sourcing a stochastic
background of gravitational waves.

The recent observation of gravitational waves has renewed a vivid interest in the study
of the dynamics of such transitions. Indeed, the sensitivity regions of future experiments,
such as the European interferometer LISA [1, 2], the Japanese project DECIGO [3, 4] and
the Chinese Taiji [5, 6] and TianQin [7] proposals, will probe a range of the expected peak
frequencies of PhTs at the electroweak (EW) scale. These interferometers will provide us
with a new tool that can support collider experiments in the quest for the physics beyond
the Standard Model (BSM), in particular for theories potentially affecting the dynamics of
the EW symmetry breaking.

Furthermore, a stochastic gravitational wave background is not the only cosmological
relic left after the completion of a PhT. A matter-antimatter asymmetry, dark matter
remnants, primordial black holes, magnetic fields and other topological defects can also be
produced. A quantitative determination of these quantities obviously requires an accurate



modelling of the PhT dynamics. This is controlled, among few other parameters, by the
propagation velocity of the bubble wall.

In the steady state regime, the speed of the wall is a result of the balance of the internal
pressure, due to the potential difference between the two phases, and the external friction
exerted by the plasma particles impinging on the wall. In fact, the motion of a bubble drives
the plasma out of equilibrium inducing a backreaction that slows down its propagation.
Despite its relevance and the huge amount of literature on the topic, see for instance [8—40]
for an incomplete list, this is one of the parameters on which we have less theoretical control.

The first computation of the bubble speed in the SM can be found in the seminal
work of Moore and Prokopec [8, 9] where the authors explicitly determined the friction
induced by the plasma on the wall from a microphysics calculation, namely by evaluating
all the relevant interactions between the plasma particles and the bubble. This requires the
determination of the deviations from the equilibrium distributions of the different species
in the plasma through the solution of the corresponding Boltzmann equations.

Other phenomenological approaches have also been explored which rely, instead, on a
parameterization of the friction in terms of a viscosity parameter [32-40)].

The formalism introduced in refs. [8, 9], that we will denote as the “old formalism”,
necessarily requires the use of an ansatz for the distribution functions. This is needed to
parametrize their momentum dependence and, then, to compute the local collision integral
of the Boltzmann equation. In ref. [9] the fluid approximation was employed assuming
that the deviation from the equilibrium distributions is entirely described by only three
perturbations for each species in the plasma: the chemical potential, the temperature and
the velocity fluctuations. The perturbations are then extracted by taking moments of the
Boltzmann equation with suitable weights. In practice, the integro-differential Boltzmann
equation is converted into a much simpler system of ordinary differential equations. By con-
struction, the fluid approximation is equivalent to a first order expansion in the momenta
of the deviation from the equilibrium distribution functions.

A peculiar feature of the fluid approximation is that the Liouville operator of the Boltz-
mann equation develops a zero eigenvalue at the speed of sound ¢, and, for larger velocities,
all the perturbations trail the source term. This implies that any non-equilibrium dynamics
is suppressed in front of the bubble wall [12] with significant consequences especially for
non-local EW baryogenesis which would result to be extremely inefficient for bubble walls
faster than cs.

This has been the common lore for many years. But recently in refs. [15, 16] it has
been argued that the singularity is only an artifact of the first order truncation in momenta
and of the particular set of weights chosen to extract the perturbations. Indeed, different
choices of weights can shift the position of the singularity, suggesting that the speed of sound
should not be a critical value for the particle diffusion as described by the fluid equations.
In ref. [16] this problem was overcome by introducing a “new formalism”, as dubbed by the
authors, which relies on a different parameterization of the non-equilibrium distributions
(specifically for the velocity perturbation), different weights and a factorization ansatz [41].
As a result, the new formalism wipes off the discontinuity at the speed of sound while still
providing, for small velocities, quantitatively similar results to the fluid approximation.



The same issue has also been recently revisited in ref. [30] for the computation of
the baryon asymmetry and in ref. [31] for the computation of the friction on the bubble
wall, two problems that share many similarities. In these works the fluid approximation
has been generalized by including higher orders in the small momenta expansion and the
absence of the singularity for the perturbations of the heavy species has been corroborated.
Besides the issue of the singularity, large differences in the friction arise, with respect to
the old formalism, when higher orders are included. This confirms that the use of the fluid
approximation, other than being not fully justified, is not particularly reliable, neither
qualitatively nor quantitatively. A major consequence is that EW-baryogenesis is indeed
achievable for supersonic bubbles opening up the parameter space of many BSM models,
in which the observed baryon asymmetry can be reproduced while enhancing, at the same
time, the strength of the stochastic gravitational wave background.

Even though the absence of the singularity for the heavy massive species could already
be inferred in ref. [9], the speed of sound in the plasma still played a peculiar role in
the old formalism as it provides a peak in the integrated friction for v ~ ¢,.! The same
peak (possibly accompanied by others, one for each vanishing eigenvalue of the Liouville
operator) remains even if higher orders in the momenta expansion are included. As we will
clarify with our analysis, such behavior is absent from the actual solution, confirming that

the speed of sound is not a critical threshold of the friction for massive species.?

The approaches discussed above are clearly affected by ambiguities. First of all, they
all rely on an ansatz for the shape of non-equilibrium distribution functions which, both
in the new and old formalisms (extended or not), is unavoidable in order to compute the
collision integrals. Moreover, the choice of the basis and of the weights is not unique and
different ansatzes have important qualitative and quantitative impacts on the resulting
distribution functions. As such, a full solution of the Boltzmann equation that does not
impose any specific momentum dependence is necessary to provide reliable quantitative
predictions for both the non-equilibrium distribution functions and the friction exerted on
the bubble wall, and to clarify the issue of the presence of a singularity. In fact, by feeding
these new results into the equation of motion of the Higgs field, one will be able to carry
out a precise computation of the wall speed and of the actual profile of the domain wall
(DW). This is a necessary step towards a quantitative and reliable method to asses the
potential of a given BSM extension to yield interesting predictions for the relics mentioned
above. This is the goal of the present work.

In this paper we will present, for the first time, a fully quantitative solution of the
Boltzmann equation. Since the absence of an ansatz prevents the direct computation of
the collision integral, in order to extract the solution we will adopt an iterative method. In

LThis is true for a wide range of parameters of the model, in particular if the wall thickness is not too
large and the interaction strength among the plasma particles is not too strong. If these conditions are not
valid, a smooth behavior can be present, as found in ref. [31].

*For all the massless background species, as pointed out in ref. [9] and confirmed in ref. [31] through
hydrodynamic considerations [31, 33, 42—-44], a discontinuity of the temperature and fluid velocity at the
bubble front for bubble velocities close to the speed of sound could be present. This discontinuity turns
into a singularity of the background perturbations at ¢, in the linearized Boltzmann equation.



particular, as it will be detailed below, the collision integral can be split into two parts, one
proportional to the solution itself and another effectively treated as a source term. At each
iteration, the latter is evaluated using the solution obtained at the previous step. With
a clever choice of the starting solution, convergence can be reached within a very small
number of steps.

For the purpose of presenting the methodology and to quantitatively asses the dif-
ferences among the aforementioned formalisms, we will consider the EWPhT and we will
focus on the study of top quark species, the one with the strongest coupling, among the SM
particles, to the Higgs profile and, as such, the one that provides the largest contribution
to the friction. We leave for a future work the inclusion of the electroweak gauge bosons
and of the background species.

The paper is organized as follows: in section 2 we describe our method while in section 3
we present and discuss the numerical results. In section 4 we give our conclusions and
discuss future directions. All the technicalities related to the computation of the collision
integrals are discussed in appendix A.

2 The Boltzmann equation

As discussed in the Introduction, our goal is to determine the solution of the Botzmann
equation for the distribution function of the plasma in the presence of an expanding bubble
of true vacuum. Once the bubble reaches a radius much larger than the thickness of its
wall, to a good approximation we can adopt the planar limit, considering a flat DW with
a velocity parallel to its normal vector.

Assuming that (for long enough time) a steady state is reached, it is convenient to
write the Boltzmann equation in the wall frame (i.e. the frame in which the DW is at rest)
in which the solutions are stationary. Orienting the z axis along the velocity of the DW,
the equation for the distribution function f of a particle species in the plasma is

I ) SN
£l = (Eaz - 2E8pz> f ==cll, (2.)

where m(z) is the mass of the particle, which in general depends on the position z, and
(m?) = dm?/dz. The term C appearing in the right hand side of the equation is the
collision integral, describing local microscopic interactions among the plasma particles,
while £ is the Liouville operator.

The collision term ensures that far from the DW, where the forces acting on the
system basically vanish, each particle species approaches local thermal equilibrium. In the
presence of a background fluid with a large number of degrees of freedom (in our case given
by gluons and light quarks, which are not much affected by the Higgs phase transition),
we can assume that the local thermal equilibrium is described by the standard Fermi or

Bose-Einstein distributions for a fluid moving with velocity v along the z axis,?

_ 1
fo= eBV(E-vpz) 4+ 1

namely

(2.2)

with 8 =1/T and v = 1/V1 — v2.

3This corresponds to choose the DW to move with velocity —v along the z direction in the plasma frame.




Deviations with respect to the local equilibrium distribution are present mostly close to
the DW and are expected to vanish for z — +oo. For small perturbations, the distribution
function can be written as f = f, +Jf and the Boltzmann equation can be linearized in J f:

m(2)2) . m(z2)2Y m(z2)2Y
(5o o, Yo veon =" o p= ™ g e

where we defined
ePr(E—vp:)

[
fo=- (eﬁ'Y(E_Upz) +1)2 ’ (24)

and C[d f] denotes the collision integral linearized in ¢ f. Notice that the only source term in
the linearized Boltzmann equation comes from the Liouville operator £ applied to the local
equilibrium distribution. The collision integral, on the contrary, vanishes when computed
on fy, C[f,] = 0. Sizable values for the source term are therefore present only close to the
DW, where the non-trivial Higgs profile generates a non-negligible z dependence in m(z).
Away from the DW, the Higgs profile is instead almost constant, thus giving (m?) ~ 0
and suppressing the source term. This behavior is in agreement with the naive expectation
that deviations from local thermal equilibrium are only present close to the DW and should
decrease to zero away from it.

2.1 Flow paths and the Liouville operator

As a first step towards finding a solution of the Boltzmann equation, we need to rewrite the
Liouville differential operator in a simpler form.* It is straightforward to check that, along
the paths on which both the transverse momentum® p, and the quantity p? + m?(z) are
constant, the differential operator simply reduces to a total derivative with respect to z:

20,V
L= <%az - (mm(;))apz> - %%. (2.5)

The physical interpretation of the paths is quite intuitive. They correspond to the
trajectories of the particles in the (p,,p., z) phase space in the collisionless limit. In this
limit the energy of the particles and their momentum parallel to the DW are conserved
(due to time invariance and translation invariance along the DW), therefore the trajectories
of the particles are given by

E = \/pzL + p2 + m?(z) = const

= p?+m(2)? = const. (2.6)

p1 = const

The condition p? +m?(z) = const gives rise to different classes of flow paths. Since the
mass of the particle species receives a contribution from the Higgs VEV, we expect it to
smoothly increase going from the symmetric phase outside the bubble to the symmetry-
broken one inside it. In particular, if we are interested in particles whose mass comes

4The strategy we use to rewrite the Boltzmann equation is the well-known “method of characteristics”
for first-order partial differential equations.
5That is the component of the momentum parallel to the DW.
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Figure 1. Left panel: paths with fixed energy and transverse momentum in the z — p, phase space
for the choice m(z) ox 1+ tanh(z/L). The red, green and purple colors denote sets of contours with
different behavior. The arrows show the flow of a particle within the phase space. Right panel:
schematic representation of the behavior of the particles across the DW.

entirely from EW symmetry breaking (as it happens for the top quark and for the W and
Z bosons), we can assume that m(z) — 0 for z — —oo, while it approaches a constant
value m(z) — mg > 0 for z — +oo. In this case three types of flow paths are present:

i) for p,(—o0) > myg the path goes from z = —oco to z = +00 and has always p, > 0,

ii) for —mo < p.(—o00) < my the path goes from z = —oo to the point z in which
p2(Z) = 0 (i.e. the point that solves the equation m(z) = p,(—oc)) and then goes
back to z = —o0,

iii) for p,(—o0) < —myg the path goes from z = +00 to z = —oo and has always p, < 0.

The three classes of curves are shown schematically in figure 1 for the choice m(z)
1+tanh(z/L), with L denoting the wall thickness. The paths of type i, ii and iii correspond
to the red, green and purple curves respectively.’

Exploiting the flow paths we can straightforwardly solve any differential equation of
the form

£lof) - Qo7 =", (27

where Q and S are generic functions of F, p, and z, and the factors 1/E and p,/E have
been chosen for convenience. Rewriting the above equation along the flow paths we find

(ii)afzs, (2.8)

whose general solution is

5f =

z

e WES dz/} Ve (2.9)

Blpwpt +m()) + [

z

5We stress that the approximation, typically used in the literature, in which the (m?)’/(2E)d,,df term
is neglected in the Boltzmann equation could lead to an inaccurate result in our approach. Neglecting that
term, in fact, modifies the flow paths making all of them straight lines with fixed p.. This completely
changes the shape of the curves in the region |p.| < mo, thus potentially giving a very different solution of
the equation.



where W is given by
W(z) = j[ L (2.10)
Pz

and all the integrals are evaluated along the flow paths. Notice that the lower integration
boundary in the definition of W can be freely chosen (for each flow path) without affecting
the result in eq. (2.9).

The function B(py,p? + m(2)?), which is constant along the flow paths, is arbitrary
and can be fixed by enforcing the required boundary conditions. Let us focus separately
on the three classes of flow paths.

i) The first type of paths describes particles that travel in the positive z direction, and
eventually enter into the bubble. It is natural to choose the boundary conditions in
such way that J f vanishes at z — —oo, that is well before the particle hits the DW.
This can be enforced by choosing

of = {/z eWSdz/] V) (2.11)

—0o0

ii) The second type of paths describes particles that initially travel in the positive z di-
rection, hit the DW and are reflected. It is natural to choose the boundary conditions
similarly to what we did for the previous type of paths. Therefore we have

of = [/z e_WSdz’] V) | (2.12)

—oo4

where the up arrow in the lower integration boundary indicates that the integration
is performed starting from z — —oo in the half path with p, > 0.

iii) The third type of paths describes particles that travel in the negative z direction, and
eventually exit from the bubble. We can choose the boundary conditions in such way
that & f vanishes at z — +o00, that is well before the particles exit from the bubble.
This can be obtained by choosing

5f = —

+o00
/ e Vs dz’} Vi) | (2.13)

The consistency of all these solutions requires @ < 0. We verified numerically that this
condition is satisfied for the equations we are considering.

The form of the solution clearly shows the role of the term (Q/E)df in driving the
system towards the local thermal equilibrium, i.e. in decreasing the value of §f. In fact,
due to the exponential factors, the impact of the source term S is exponentially suppressed
with the distance. The decay length is of order ¢ ~ p,/Q and, as expected, decreases for
larger values of the collision term.



2.2 Finding a solution for the Boltzmann equation

Although the full Boltzmann equation is not of the form of eq. (2.7), we can use the latter
to implement an approximation by steps. The basic idea is to split the collision integral
C[6f] in two pieces: a term analogous to (Q/FE)df in eq. (2.7), and a second term that is
included in the source term S and is used to correct the solution through iterations.

Let us now analyze in details the collision integral. For simplicity we consider the
collision term for the 2 — 2 processes of a single particle species, but the general case can
be treated in an analogous way. The collision integral is given by

dk d*p’ &K’
AN =Y 155 | Gopamar e, M@ E -1 KPS 21

with

Pl = fp)f(R)A £ f(p) A+ f(K) = F)FE)Q £ f(p)) (A £ f(K)), (2.15)

where the sum is performed over all the relevant scattering processes, whose squared scat-
tering amplitude is |M;|?. In the above formula N, is the number of degrees of freedom
of the incoming particle with momentum p, k is the momentum of the second incoming
particle, while p’ and k' are the momenta of the outgoing particles. The =+ signs are + for
bosons and — for fermions.

From the above expression we can easily derive the collision integral for the linearized
Boltzmann equation. As a consequence of the conservation of the total 4-momentum in the
collision processes we have that for the local equilibrium distribution C[f,] = 0. Moreover
the linear terms in d f can be expressed as

Fof
£

where the —(+) sign in the sum applies to incoming (outgoing) particles.

P = folp) folk) X £ fu(0) X £ fu(K) D (2.16)

The C[§f] collision integral can therefore be split in two parts. One of them depends
only on ¢ f(p) and is given by

—fo(p ) Z d*kd®p'd°k’
f{,(p) 4N E,) (2m)52E,2E,2E)y

M6 (p+k—p' —k') fo (k) (1 £u () (1 £, (K)).

(2.17)
This expression is clearly analogous to the term (Q/E)df in eq. (2.7). The second part of
the collision integral includes the terms in which 6 f depends on k, p’ or ¥’ and thus appears
under the integral sign. We collectively denote these terms by (Jf). The numerical deter-
mination of the various contributions to the collision integral can be drastically simplified
through a clever choice of integration variables. The explicit procedure is explained in
appendix A.

In order to numerically solve the Boltzmann equation, a possible strategy is to formally
rewrite it as eq. (2.7) by including (Jf) in the source term S. The solution can then be
found by iteration, inserting into the equation the value of (4f) obtained by using the
solution at the previous step.



3 Numerical analysis

In this section we apply the iterative method explained above to numerically solve the
Boltzmann equation. For simplicity we focus on a single species in the plasma, the top
quark, which is the state with largest coupling to the Higgs and is thus expected to provide
one of the most relevant effects controlling the DW dynamics. The analysis of the top quark
distribution should be sufficient to provide a robust assessment of the plasma dynamics and
to obtain an indication of how much the weighted method used in the literature to solve
the Boltzmann equation is qualitatively and quantitatively accurate. We leave for future
work the inclusion of the contributions from the W and Z bosons, which are expected to
be roughly of the same size as the top quark ones.

The iterative approach explained in the previous section could be straightforwardly ap-
plied to determine the solution of the Boltzmann equation. However, in order to improve
the convergence of the iterative steps, a slight modified procedure proves more convenient.
Since the separation of the collision integral into a contribution to (Q/E)df and a contri-
bution to S is to a large extent arbitrary, we can devise a splitting that helps in reducing
as much as possible the source term.

3.1 Annihilation only

Focusing on the top quark case, it can be shown that the main contribution to the collision
integral comes from the annihilation process tt — gg, whereas the scattering of tops on
gluons and light quarks gives smaller contributions. In our numerical analysis we will
therefore consider at first only the contribution from annihilation, including scattering
effects afterwards.

In the annihilation case, the linear terms in the perturbation § f appear in the following
combination (see eq. (2.16))

o) 3709 51)

P = 1) ful)1+ £+ 120 (=508 - S

where fJ denotes the equilibrium distribution for the background gluons (which is approx-
imately unperturbed since the number of degrees of freedom in the background species is
large). In the above formula the 6 f(p) and Jf(k) terms play an analogous role, but their
effects become distinct in the collision integral since an integration over k is performed.
It is nevertheless evident that the impact of the d f(k) term in the Boltzmann equation is
not particularly suppressed, as can be understood averaging the equation by integration
over p, in which case the §f(p) and §f(k) become exactly equal. This line of reasoning
suggests that treating the ¢ f(k) contribution as source term, while including the §f(p)
term in (Q/p,)0f might lead to slow convergence. To overcome this difficulty we will use
a slightly modified procedure. We rewrite P as

SF(p) +(<5f(p) 5f(k)>] ’ (3.2)

P = £ (B + L)+ F20) |25 B+ (SHE - S



and we interpret the first contribution as (Q/p.)d f, while the second one (the one in round
parentheses) is treated as a source. In this way the contribution to the source is partially
canceled and faster convergence is achieved.”

To determine the numerical solution of the Boltzmann equation we used a dedicated
C++ code, validating the results with Mathematica [45]. The solution was computed on
a three-dimensional grid in the variables z, p, and p, restricted to the intervals z/L €
[-7,7],8 p. /T € ]0,15], and p,/T € [—15,+15]. The solution was computed on a grid with
50 x 300 x 100 points, which was further refined in the region p, /T < 1 and [p.| ~ my,
where the solution showed a fast-varying behavior. Convergence of the solution (at the
~ 0.1% level) was achieved within three iterative steps for all values of the wall velocity.
We modeled the bubble wall assuming that the Higgs profile has the following functional
dependence on z [46]:

o(z) = %[1 + tanh(z/L)], (3.3)

where L = 5/T is the thickness of the bubble wall and ¢y = 150 GeV is the Higgs VEV in
the broken phase. We fixed the phase transition temperature to 1" = 100 GeV. This choice
of parameters, as we will see, determines the presence of friction peaks in the old formalism
solution. It is thus well suited for differentiating the various formalisms and highlights the
differences among them.

An important quantity that can be derived from the numerical solution is the friction
acting on the domain wall, which corresponds to the expression [9]

dm? dp
F(:) = TN [ Gryigpd ) (3.4)
where N denotes the number of degrees of freedom (N = 12 for the top/antitop quark
system). In the left panel of figure 2 we show the friction integrated over z as a function
of the wall velocity (solid black line). The total friction shows a smooth behavior with a
(nearly) linear growth as a function of the wall velocity.

In the same plot we compare our result with the ones obtained with the weighted
methods. In particular the green lines correspond to the total friction computed in the
old formalism (OF) of ref. [9], taking also into account higher-order terms in the fluid
approximation [30]. The old formalism results at order 1, 2 and 3 are given by the dotted,
dashed and solid lines respectively. The solid red line, instead, is obtained using the new
formalism (NF) of ref. [16].

Our result for small and intermediate velocities, v < 0.5 is in fair numerical agreement
with the old formalism ones, which show a minor dependence on the order used for the
computation. At higher velocities, instead, the old formalism develops some peaks related
to the speed of sound in the plasma and to any other zero eigenvalue of the Liouville
operator. The number of peaks and their shape crucially depend on the approximation

"We also checked that, in the weighted approach to the solution of the Boltzmann equation, doubling
the contribution of  f(p) and neglecting d f(k) gives a fair approximation of the exact result.

8The vanishing boundary conditions on the solution were imposed at the boundaries of the considered
region. We verified that this choice does not introduce a significant distortion of the solution.

~10 -
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Figure 2. Friction acting on the bubble wall as a function of the velocity. In the left plot only
the top annihilation channel has been taken into account, while in the right one both annihilation
and scattering are considered. The black solid line corresponds to the solution of the full Boltz-
mann equation (F'S, our result), the dotted, dashed and solid green lines are obtained with the old
formalism (OF) at order 1, 2 and 3 respectively [9, 30], while the red line corresponds to the new
formalism (NF) [16].

order, denoting an intrinsic instability of the old formalism method.? Our results for the full
solution of the Boltzmann equation show that the peaks are an artifact of the old formalism
approach and that no strong effect is present in the top contributions for velocities close
to the sound speed one.

On the other hand, the new formalism correctly predicts a smooth behavior for the
total friction for all domain wall velocities. A roughly linear dependence on v is obtained up
to v ~ 0.8, while for larger values a faster growth is found, in contrast with the behavior of
the full solution (FS) result. The quantitative agreement with the full solution is good only
for very low velocities, v < 0.1, while order 50% differences can be seen for higher velocities.

For a more refined comparison of the results we show in figure 3 the behavior of the
friction F(z) as a function of the position. The plots clearly show that the overall shape
of the friction is very similar in all approaches, the main difference being the height of the
peak. This property is not unexpected, since the size of the perturbation é f is controlled
by the source term in the Boltzmann equation, whose z dependence is given by dm?/dz.
One can easily check that the shape of all the curves in the plots roughly agree with the
function d¢?(z)/dz.

A more detailed comparison of  f as a function of z, p| and p, shows drastic differences
among all the approaches. Although the overall size of § f is comparable in all formalisms
(being controlled by the source term), the various solutions significantly differ even at the
qualitative level in most of the kinematic regions. We conclude from this comparison that
the fluid approximation is not reliable if we include in the Boltzmann equation only the
top annihilation channel. We will see in the following that, introducing the top scattering
processes, a better agreement is found.

9Notice that the total friction shows a continuous behavior across the sound speed thresholds, whereas
in ref. [9] a divergence was found. This difference was expected, since the discontinuity found in ref. [9] is
induced by the background contributions, which are not included in our analysis.
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Figure 3. Friction as a function of the position z when only top annihilation processes are taken
into account. The plots correspond to the wall velocities v = 0.2,0.4,0.6,0.8.

3.2 Full solution

We now consider the Boltzmann equation for the top quark distribution, including in
the collision term also the main top scattering processes, namely the ones onto gluons
tg — tg and onto light quarks tq — tq. We found convenient to include these additional
contributions treating them as source terms in the iterative steps.

To determine the numerical solution we used a grid analogous to the one described in
the annihilation-only case. The convergence of the iterative procedure is somewhat slower
when top scattering processes are taken into account. For v < 0.6 we used the solution of
the annihilation-only case as starting ansatz and we performed six iterative steps to reach
a good convergence. For higher velocities the annihilation-only solution is not a convenient
choice for the first iterative step, thus we started from the full solution determined for a
lower value of v. Also in this case six iterations were sufficient to achieve convergence.

We found that the scattering processes significantly modify the solution of the Boltz-
mann equation, especially for large values of the domain wall velocity (v 2 0.5). The
impact on the total friction acting on the domain wall is shown in the right panel of fig-
ure 2. Analogously to the annihilation-only case, an almost linear dependence on the wall
velocity is present for small and intermediate v values, but a flattening is present at higher
velocities. Quantitatively, the scattering processes induce only minor corrections to the
total friction for v < 0.6, while a decrease of order 25% is found for v ~ 0.8.
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Figure 4. Friction as a function of the position z when top annihilation and scattering processes
are taken into account. The plots correspond to the wall velocities v = 0.2,0.4,0.6,0.8.

The impact of the scattering processes on the solution obtained through the weighted
methods is, on the contrary, much more pronounced. The old formalism approach (green
lines in figure 2) including only the lowest-order perturbations predicts a strong peak for
v =~ 0.55. The peak however gets substantially reduced once higher-order perturbations are
included in the expansion, with a milder additional peak forming for v ~ 0.75. We expect
that including additional higher-order perturbations could smoothen the curve, giving a
qualitative behavior similar to the one we get with the full solution, with a linear behavior
for v < 0.6. At the quantitative level, however, the old formalism solution differs from the
one we found by order 10 — 25%.

The result obtained through the new formalism (red line in figure 2) is also substantially
modified by the scattering contributions. In particular the increase in the friction for
v 2 0.8 is removed and a maximum followed by a mild decrease is now found for v 2 0.6.
The new formalism prediction is now in good quantitative agreement with our result for
v < 0.2, while differences up to order 50% are found for larger velocities.

The friction as a function of the position z for some benchmark wall velocities is shown
in figure 4. Analogously to what we found for the total friction, the results we obtain
with our method are only mildly modified by the scattering contributions. In particular
the shape of the friction remains almost unchanged with only minor modifications in the
overall normalization. Similar considerations apply for the shape of the z dependence of
the friction in the old and new formalism. In this case, however, significant changes in the
overall normalization are found, as expected from the above discussion on the total friction.

~ 13—



0/ T) 07 (~p:/T)

F(p

Figure 5. Perturbation §f for v = 0.2 and p;, = 0. The plots on the first (second) row show the
even (odd) part of §f as a function of p, for z/L = —1,0,1,2. The third row shows plots of §f as
a function of z for p,/T = —1,-0.1,0.1, 1.

Finally we show in figure 5 the perturbation §f for the benchmark velocity v = 0.2.
The results for different velocities are qualitatively analogous, the main difference being an
overall rescaling with a limited change in shape. The plots show the full solution of the
Boltzmann equation we got in our analysis, along with the results obtained applying the old
and new weighted approaches. Notice that the new formalism does not fully determine the
velocity perturbation, whose impact can only be computed averaging over the momentum
through a factorization ansatz [41]. To plot the solution in the new formalism we chose to
identify the distribution perturbation with

z

5F = —f1 (=) + By(E — vps)or] + fvfu, (3.5)

following eq. (B5) of ref. [16]. This identification tends to produce a divergent behavior for
small p., which however has no impact on the determination of the friction since it is odd
in p,.

In the first (second) row of the figure we show the dependence of the even (odd) part
of §f on the momentum along the z axis, p,. The plots are obtained fixing p; = 0, but
similar results are found for p; /T < 2 (for larger p, the solution is significantly suppressed
and its impact on the domain wall dynamics is subleading). The plots in the first row show
that, at the qualitative level, the old and new formalisms fairly reproduce the overall shape
of the even part of the solution, although a somewhat different behavior is found for small
vz (Ip2/T| < 0.5). This difference is most probably due to the fact that in the weighted
approach the

m(z 2\/
_ )y ;E) ) 8,.0f (3.6)
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term is neglected. This term, although subleading in most of the kinematic space, dom-
inates close to p, = 0, where the (p,/FE)d, term vanishes. In spite of the fair qualitative
agreement, large quantitative differences are present between the full solution and the ones
obtained with the weighted approaches.

The agreement of the various formalisms in the determination of the odd part of §f
proves quite poor. In particular, marked differences are found for z < 0, in which case
the high-p, behavior of the solution is not captured by the old formalism, even including
higher-order corrections. A mildly better agreement is found for z/L 2 1. The new for-
malism tends to reproduce the correct shape for p,/T 2 1, but presents large differences
for small p,. It must be noticed that the odd part of § f does not contribute to the fric-
tion, thus the large differences found among the various solutions do not show up in the
determination of F'(z).

On the third row of figure 5 we show J§f as a function of z for p;, = 0 and for
the benchmark values p,/T = —1,—0.1,0.1,1. The old formalism reproduces the overall
qualitative behavior of the solution. Higher-order terms tend to improve the agreement,
although failing to fully reproduce the full solution, especially at the quantitative level.
The new formalism is in qualitative agreement with the full solution for |p./T'| 2 1, while
completely fails to reproduce the correct shape for small p,.

4 Conclusions and outlook

In this paper we presented for the first time the fully quantitative solution of the Boltz-
mann equation that describes particle diffusion in the presence of a moving domain wall.
Contrary to the existing approaches, we did not rely on any ansatz nor we imposed any
momentum dependence on the non-equlibrium distribution functions. This clearly repre-
sents a necessary step towards a reliable understanding of the bubble wall dynamics. Using
the friction obtained with the numerical method developed in this work, one can solve the
equation of motion of the Higgs profile (or of any other scalar field driving a first order
PhT) and extract the velocity of the domain wall as well as the features of its shape, such
as the wall thickness. These parameters crucially impact on the prospects of any BSM
theory to predict interesting cosmological signals, such as a gravitational wave background
and the amount of matter-antimatter asymmetry.

We critically compared our results with the ones obtained using the formalisms de-
veloped so far in the literature, namely the fluid approximation originally developed in
ref. [9], its extended version [30, 31] (we dubbed both approaches ‘old formalism’, following
ref. [16]), and the “new formalism” [16].

To establish our approach, we focused on a slightly simplified set-up in which only
the top quark contribution to the DW dynamics is taken into account. Other species can
however be included in a straightforward way. We computed numerically the distribution
function for the top species and we obtained the friction F' that the plasma exerts on the
DW. The latter quantity is shown in figure 4 as a function of the position z for the three
different setups, namely: the old formalism (OF), the new one (NF) and our full solution
(FS). The spatial dependence of the friction is quite similar in the three cases because

~15 —



the overall shape is mainly determined by the source term in the Boltzmann equation,
namely dm?(z)/dz. There is however a significant disagreement at the quantitative level,
as can be seen in the right panel of figure 2, where the integrated friction is plotted as
a function of the DW speed v. For small velocities v < 0.2 a good agreement between
the new formalism prediction and the full solution is found, while the old formalism (both
original and extended) shows minor differences, of order 10%. The agreement significantly
worsens at larger velocities. In this case the new formalism predicts a significantly smaller
total friction, reaching a maximum much earlier than the full solution. The old formalism,
on the other hand shows a different qualitative behavior, with a series of peaks related to
the zero eigenvalues of the Liouville operator. These features, which strongly depend on
the order at which one fluid approximation is truncated, do not seem physical and are not
present in the full solution, which shows a completely smooth shape (linear behavior for
v < 0.7 and a flattening for larger velocities).

In figure 5 we also compare the distribution perturbation ¢ f for the various approaches.
Although in some kinematic regions a qualitative agreement can be seen, the differences
among all approaches are quite strong. In particular the new formalism shows large dif-
ferences in the odd part (with respect to p.) of the perturbation. This difference does not
show up in the friction result, since only the even part contributes to F'(z).

We add that, as an intermediate step in our procedure, we considered the set-up in
which only the annihilation channel for the top quarks is included in the collision integral,
excluding the scattering processes. The friction for the full solution proves remarkably
similar to the one in the complete set-up (see the left panel of figure 2), apart from the
fact that the maximum is reached for larger DW velocities. The old and new formalisms,
on the other hand, show drastically different behavior. In particular the old formalism
predicts sharp peaks connected to the sound speed. The inclusion of higher orders in the
fluid approximation does not seem to achieve convergence in a reliable way.

As we mentioned, for the purpose of presenting the methodology and setting up the
stage for a determination of the velocity of the bubble wall, in the present paper we
only considered the top quark contribution to the DW dynamics. The inclusion of the
electroweak gauge bosons and of the background species is clearly important to obtain
quantitatively reliable predictions. We leave the investigation of this aspect for future work.

We also exploited another minor simplification in the computation of the collision
integrals, ignoring the space dependence of the collisional kernels (see appendix A), which
appears through the top mass in the integrated equilibrium distribution functions. This
approximation is also used in the old and new formalisms, and is expected to induce only
minor corrections to the results. Within our approach the full space dependence could be
taken into account, at the cost of increasing the computation time.
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A Evaluation of the collision integrals

A.1 The term proportional to df(p)

We focus, at first, on the term of the collisional integral proportional to § f(p), which, for
a single matrix element, reads

(M6 (p+k—p —k') fo (k) (L fo (p")) (1 fo (K)).
(A.1)

To evaluate the integral it is convenient to change variables through a boost, going to the

Ti61= =20 0) [u(p) / ( dPkd®p'd°K’

ANLEy, fi(p) ) (2m)°2E 2Ey2E)

plasma frame, in which the Boltzmann distribution is the standard equilibrium one f,. We
denote by a bar the momenta in the plasma frame, namely

po="(Ep—uvp:), p:=7p:—vEy,), pL=pi, (A.2)

and analogously for k, p’ and k’. We thus get (notice that the integration measure d*p/ E,
is invariant under boost)

_ ~3f(p(D))  fo(p)
i) =
j[ f] 4Np’y(Eﬁ+Uﬁz) fé(ﬁ)
d?’l_{ dgl_)’ d31_</
X /(277)52El_€ 2Ey 2E},

(A.3)

M6 (D + k=5 — k) fo(k)(L £ fo(p)) (L = fo(k)).

In order to evaluate the integrals, we follow the approach of ref. [9], including only
leading log contributions. In this approximation we can also neglect the masses of the par-
ticles involved in the scattering. This approximation significantly simplifies the numerical
evaluation, since it removes any explicit dependence on the z coordinate in the integrals.
Closer inspection of the integral appearing in eq. (A.3) shows that it is invariant under
rotation of the three-momentum components of p, thus it is just a function of Ep.lo

The evaluation of the integral can be simplified by exploiting the delta function and the
symmetries of the integrand. In this way one can perform analytically five of the nine inte-
grals. An efficient parametrization for performing the integration is presented in ref. [47].

In the leading log approximation, only t-channel and u-channel scattering amplitudes
are relevant (see table 1). So we can focus on these two types of contributions and neglect
s-channel processes (and interference terms).

10Rotation invariance is an immediate consequence of the fact that the Boltzmann distribution fu depends
only on the energy of the particle, while | M|? is a function of the kinematic invariants (i.e. the Mandelstam
variables).
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Table 1. Amplitudes for the scattering processes relevant for the top quark in the leading log
approximation. In the tq — tq process we summed over all massless quarks and antiquarks.

t-channel parametrization. We start by considering amplitudes coming from t-channel
diagrams. The integration over d°k’ can be easily performed exploiting the §-function.
The remaining integrals can be handled through a change of variables. As in ref. [47], we
introduce the three-momentum q = p’ — p = k — k/. Rotational invariance allows us to
trivially integrate on the orientation of q. Fixing q to be along a 2’ axis, we can express
the orientation of the p and k momenta in terms of the polar angles 0p¢ and 0y, and the
azimuthal angle ¢ between the p-q and the k-q plane.

The remaining delta function can be handled by introducing an additional variable
w linked to the ¢t Mandelstam variable as t = w? — ¢, where ¢ = |q|. In this way the
integrations on the angles QEq and 0p, can be performed analytically and one is left with
the final expression for the integral on the second line of eq. (A.3):

+oo  wi2Ep oo 27
1 i ) )
,C:8(277)4Ep_£ o / dqﬁ/w dEkO/d¢|M|2f0(k)(1ifo(p))(lifo(k)). (A4)

As alternative parametrization, which can help in the numerical integration and in
studying the behavior of the integral, one can define

Y+ =q+w, (A.5)
in terms of which
400 wH2E5 400 ) +o0 2Ep 00
/dw / dq / db;,  — i/dx_i'_/dx_ / dE; . (A.6)
—Ejp || e 0 0 X+/2

The x4 parametrization can be also useful to leave as last integration the one on Ex:

| e 2E; 0 L 2E; 2E;
5 / dx+ / dx_ / dE; — §/dE12 / dx + / dx— . (A7)
0 0 x4 /2 0 0 0

This choice of integration order clearly shows the symmetric role of E; and Er in the
collisional integral.
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The expressions for the s and u Mandelstam variables as a function of w, ¢ and Ej, are

given by
5= _;f{[(nger)(zEk_quﬂ —cos¢\/(4Ep(Ep+w)+t)(4Ek(Ek—w)+t)}, (A.8)
t = w?—¢*, (A.9)
u = —t—s, (A.10)

while the relative angles between the three-momenta are given in ref. [47] (see appendix
A2, egs. (A21a)-(A21e)), among which

w t
q 2Epq’

w t
cos Opy = E—i— 55
P

€

cos Oy = (A.11)
u-channel parametrization. Analogous formulae can be found for the u-channel
parametrization, by exchanging p’ and k’ in the t-channel parametrization. In this way
the integral becomes

+o0 w+2Ep +00 27
1 i . )
IC:S(%V‘Epé_ e |/| dqﬁ/w dEEO/d¢!M|2fo(k)(1ifo(p))(lifo(k)), (A.12)

withq=k' —p =k — p’ and

The expressions for the s and v Mandelstam variables are given by

5= —222{ [(zEﬁw)(zEk—quﬂ—cosqs\/(4E5(Eﬁ+w)+u)(4Ek(Ek—w)+u)}, (A.14)

u = w—¢% (A.15)

t = —u—s, (A.16)
while

cos by, = % + 2;;(] , cos Oy = % - 2Euk,q . (A.17)

Structure of the contribution. From the above formulae we can easily infer the global
structure of the collisional term proportional to §f(p). The quantity (we consider the ¢-
channel parametrization for definiteness)

+o00 w+2E5 400 o
1 B y y
K:8(2‘7r>4Ep£_ e |/| dqﬁ/w dETcO/d‘NM’sz(k)(lifo(p))(lifo(k)), (A.18)

only depends on Ej, as we already anticipated. Therefore we get

1 0f(e®) folp)

j[éﬁ = _4Np *y(Ep +Uﬁz) fé(ﬁ)

K[E;). (A.19)
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We can now go back to the wall frame, obtaining

1 0f(p) fu(p),C 1 6f(p)

TN = 135 iy K —op] = g O

(1 e m2)) Ky (p —vp2)].

(A.20)
Notice that the massless-limit approximation introduced a small ‘mismatch’ in this expres-
sion, since we chose f,(p) in the prefactors to have the full mass dependence (from the def-
inition of E,). In the approach to the solution via the use of weights, instead, f, is treated
in the massless limit for all the factors in the collisional integrals. This problem could be
solved by also considering the massive form for all the f, factors inside the collisional in-
tegral. This however is computationally more demanding, since it introduces an explicit z
dependence in the integrand, so that the kernel should be evaluated also as a function of z.!!

The numerical analysis shows a behavior

K(Ep) ~ log Ej + const (A.21)

which, as expected, has a logarithmic divergence for mass and thermal mass going to zero.
We can thus infer the rough behavior (at least for small v)

log E,, 4 const

TU01) ~ 85 r) 2 (a.22)

A.2 The terms (0 f)

The second ingredient we need in order to compute the collision integrals is the determi-
nation of the terms (Jf) in which the perturbation appears under the integral sign. The
generic structure of the term that depends on df(k) is

_ 31 13/ 131
(510 = T oy B M (k=) R LA ) (A ()
(A.23)

and analogous expressions are valid for the 0 f(p) and ¢ f(k’) contributions.

The above integral can in principle be evaluated using the same manipulations we
described in section A.1. However, the integrand, due to the d f(k) factor, is not rotationally
invariant, and an additional integration over the direction of k with respect to the z axis
remains. The final result is (also in this section we treat all the particles as massless)

(6 0) = ~ g oy T2, (A21)

where Z, written as a function of the p momentum in the plasma frame, reads

B +00 w+2E5 400 27 2m _ 6f(l_€)
T= [ o [ da o am [ a0 [ dodMP R G0 ) G
(A.25)

"' Notice that a full treatment would also need a redefinition of the matrix element |M|? and of the
integration boundaries.
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in which ¢; denotes the angle between the vector k and the plane where p and Z, the
direction along which the wall moves, lie. The integral Z depends on the three variables
p1, p. and z, and requires five numerical integrations. Therefore its evaluation on a fine
grid, as required in our numerical approach, is quite cumbersome.

An alternative procedure to manipulate the integral can be used to reduce the number
of numerical integrations. This can be done by performing the integration over p’ and k’
in eq. (A.23) and leaving the integral over k as a last step. In this way the expression for
(0f(k)) can be brought to the form

3
65060 = =3 | 55,1009 g (225
where
31/ 13
k1= s [ IR MPQ G £ LI 0+ h—p — k). (A27)

(271')5 2Ep/ 2Ek’

Since Ky is a Lorentz scalar, it will be a function of the only Lorentz scalars that can be
obtained from the four vectors p#, k# and the plasma velocity u*, namely, u*p,, u*k, and
p"ky,. These quantities are related, respectively, to the energies E; and Ej, of the incoming
particles in the plasma reference frame and to the angle 9]3,; between the momenta p and
k. Putting everything together we find

fv(p) d3k 7. 6f(kl7’7(lgz + UEE)> Z) )

(0f (k) = TIN,E, E’Q(Ep,Eg,@ﬁ;;) Jfo(k) /7))

(A.28)

which can be rewritten as

6 (kv (ke +vEy) 2)
(—f3(R))
(A.29)

The collision integral for the scattering processes includes an additional set contribu-

(5F(k))=— 4N E : / EydE; / deost 1 (B B Oy) | " dor fo(R)

tions in which 0f(p) or df(k') appears. In analogy to the previous case, for the §f(p)
terms, we can first perform the integrals over k and k', obtaining the following expression

_ 3./ /
510) = TN [ SpKal By ) O N G (a30)

which can also be rewritten as

(0f(") = 4NE 2/ Ey dEy / d cos O Ko (Ej, By, Op)

o L, Sf (0, (P, + vER), 2)
X ; doy (1 %+ fo(p')) = —11@)) . :

(A.31)

The contributions from 0 f (k") can be treated in an analogous way.
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A.2.1 Evaluation of the IC; kernel

The evaluation of the kernel Iy can be performed as in ref. [48]. As a first step we boost
in the plasma reference frame, and we perform the integration over k’ exploiting the Dirac
delta:

1 d*p 1
(2m)5 ) 2Ey 2By

Ky = IMP(L = fo(u!p),) (L fo(uky,))6(Ep + By — By — Ey) . (A.32)
Notice that in the above expression we expressed the energies E,; and Ejs in the Lorentz-
invariant form u“pil and u“k;, As we will see, this is useful to keep track of the changes of
reference frame.

As a second step, we boost again in the center of mass frame, where the Dirac delta
can be written as

1 1
(B + By — Ey — Bi) = (/5 — 2B,) = 36 (2\/5 _ Ep/> , (A.33)

with s = (p-+k)? the usual Mandelstam variable. The integration over p’ can be performed
by rewriting d°p’ = Eg, dE,y dcosf dp, where § is the angle between p’ and p in the center-

of-mass (COM) frame of the scattering process:

s [ deoss [ asMP(E St = folu ). (A.34)

As a last step we need to compute u“p;L and u“k;t in the COM frame. We conveniently
choose the orientation of the COM frame axes such that «¥ = 0 leading to

S VE

ul'pl, = u’ - sin @ cos ¢ — 5 oS 0 (A.35)
We then introduce the four-vectors P* and Q* defined as
P =pt + K QY =pt — k. (A.36)

In the COM frame we find that

0 Q

We can get a further simplification by choosing the frame such that Q lies along the z axis.
Since, in the massless case, |P| = |Q| = /s, the vectors P*/\/s and Q*//s coincide with
the versors along the first and fourth Minkowski directions.
The u" and u* components can be easily computed in terms of the momenta of the
particles in the plasma frame :
uwP, B+ Ej, (Ep — Ex)

W0 = _Lr uz:_U“Qu:_ D
7 7 75 7 . (A.38)
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The u* component can be determined from the condition u*u, = 1:

1
u” = yJuf —ui—1= T/g\/(EﬁJrE;;)?—(Ep—E;;)Q—S
1 1
A [AE;E; — s = ﬁ\/QEﬁE,;(l +cosO) -

Putting everything together we find that u“pL is given by

Vs Vs

ul'p), = uog - u$7 sin @ cos ¢ — uz7 cos 6
Es+E; 1 E-— E-
= % - 5\/2EﬁE]_€(1 + cos 67) sin 6 cos ¢ + (ka)COSQ

1

Similarly we find

1
u'k), = = (E]g(l —cosf) + Ez(1+ cosf) + \/QEpE;C(l + cos 0;) sin 6 cos gf)) .

2

Finally, the Mandelstam variables are given by
S
t= —5(1—C089) s =2E5E3(1 — cos ) .

A.2.2 Evaluation of the Ko kernel
We now discuss the evaluation of the Ko kernel:

1 d3k 3k’
(271')5 QEk 2Ek’

Ko = M2 fouky) (1 + fo(ulk))6 (p+k —p' — k)

Also in this case we follow ref. [48]. We introduce the four-vectors

Kt = kM + k'
PH = pH + p/u
QM = kM — B
Q* = pH — p/u
Recalling that
m = d*kd*K 9(E})0(Ey)o(k*)6(k?),

we can use as integration variables K and @’ finding

AL Lok d*Q 0(Ko)0(K?)6(K* 4+ Q%5 (K"Q))
OFL2E, 4 0 we

Since 0*(p + k — p' — k') = §*(Q + Q'), we can integrate over Q' obtaining

Ko = s | 0 KOS + QI QM fo(u ) (1 + foful,)

~93 -

=3 (Eﬁ(l +cosf) + Ej(1 — cos ) — \/QEﬁE,;(l + cos 0;) sin 6 cos qb) .

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)



In the massless case
Q*=-P>=t, (A.48)

hence

S(K?+ Q%) =8(K?+1). (A.49)
Using the identity
K

dPKOKOS(K?+1) = ———
(K7)o( ) Wi

: (A.50)

we can rewrite [Co as

1 K
8(2m)° ) VKZ -t
We can now rewrite this formula in the COM frame, in which P* = (1/—t,0,0,0) and

Q* = (0,0,0,y/—t). Introducing polar coordinates for K, with polar angles 6 and ¢, one
gets

Ky = S(KPQu) M fo(utky) (1 + fo(u'K),)) . (A.51)

§(K"Q,,) = 0(JK|v/—tcos ) = ! _té(cos 0), (A.52)

K|Vt

which allows to trivially perform the integration over cosf, leading to

1 K| d[K|d¢
(2m)5 ) VK2 —t\/—t

As a last step, we need to determine the expressions for the u* components. Focusing

Ko =3 M2 fo(ulk,) (1 £ fo(utk,)). (A.53)

on utk, we find

u'k, = %(K”—FQL) = %(KN—Q;L) = % (uO\/K2 —t— u$|K|COS¢+uZ\/jt) . (A.54)

Where we chose the orientation of the COM frame in such way that u¥ = 0. In an analogous
way we find

uuk;; = %L(Ku—QL) = %(K;A-Qu) = % (uO\/K2 —t—u”|K|cos ¢ — uZ\/jt) . (A.55)

Exploiting the fact that P*/\/—t and Q" //—t coincide with the versors in the time and z
directions, we can write

o u'P, Ej+Ey

u = =
V—t v—=t
. wQ, By Ey (A.56)
U = — = = — i

Finally, from u#u, = 1, one gets

o — \/(Ep+Ez§’)2 BBy 1

— 24 —



In order to make the numerical evaluation of the kernel more stable, we used the

following coordinate change |K| = /—ttan6, and then we defined 1/cos = x. The
expression for Ko becomes

_ 1 co 2w ) p .
fo= 8(27r)5/1 | drdd IMPfo(u k) (1 £ fo(u'k) (A.58)
with
uky = % <(EP + Ey)z — M\/QEﬁEﬁ(l + cos O ) cos ¢ + (Ep — Ep,)> 7
1
Ve =5 <(Ep +Ep)e - m\/2EﬁEﬁ(1 + cos Opp ) cos ¢ — (Ep — Ep/>> ,
2—t (A.59)
s = ?(LE +1),
t
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1 Introduction

First order phase transitions (PhTs) in the early Universe can lead to striking cosmologi-
cal signatures including, for example, a stochastic background of gravitational waves or a
significant departure from equilibrium required by scenarios of electroweak (EW) baryo-
genesis to generate the observed matter-antimatter asymmetry. Future gravitational wave
interferometers, such as LISA [1, 2], DECIGO [3, 4], Taiji [5, 6] and TianQuin [7], have the
potential to detect the aforementioned background and thus to shed light on the nature
of the EWPIT, providing a new boost in the quest for the physics beyond the Standard
Model (BSM).

In order to accurately describe the power spectrum of the gravitational waves and to
reconstruct from that the properties of the early Universe at the time of the transition, we
need a precise description of the bubble dynamics. Indeed, during a first-order PhT, bub-
bles of the stable phase nucleate and expand through space interacting with the surrounding
plasma. One of the most relevant parameters describing this dynamics is the speed of the
domain wall (DW) in the steady state regime. This affects both the magnitude and the
shape of the gravitational wave spectrum and, most probably, it will be the parameter
determined with the best accuracy by the future generation of interferometers [8].

The first computation of the bubble speed dates back to refs. [9-14]. In those works
the friction exerted on the DW by the particles of the plasma was computed from their
out-of-equilibrium distribution functions, which are obtained, in turn, as solutions to the
corresponding Boltzmann equations. These results were fed to the equation of motion of
the DW which was then used to extract the bubble speed and the bubble width.



The challenging part of the computation resides in the Boltzmann equation and, in
particular, in the collision integral that describes the interactions among the particles in
the plasma. This term represents the bottleneck of these kind of computations since it
makes the Boltzmann equation a complicated integro-differential problem. The strategy
exploited in ref. [14] to address this issue was based on the fluid approximation which
corresponds to a first order momentum expansion of the out-of-equilibrium distributions.
Within this approach, these are parametrized by three space-dependent perturbations: the
chemical potential, the temperature and the velocity fluctuations. By taking moments of
the Boltzmann equation with suitably chosen weight factors, the fluid approximation allows
one to turn the integro-differential equation into a simpler system of ordinary differential
equations.

Since this formalism strongly relies on the choice of the weight basis and on a spe-
cific ansatz for the momentum dependence of the distribution functions, it is intrinsically
affected by some degree of arbitrariness. Moreover, a first order truncation may not be
sufficient to capture all the relevant features of the out-of-equilibrium distributions. In-
deed, subsequent works [15-17] have shown that the fluid approximation is not particularly
reliable, neither quantitatively nor qualitatively.

With the successes of precision cosmology and the new opportunities offered by the
gravitational wave interferometry, the necessity of a solid description of the bubble dynam-
ics in a first order PhT is more than pressing. In this respect, a huge effort has been done
recently to conceive more reliable approximation methods and to develop a deeper theo-
retical understanding. Several attempts have been carried out to ameliorate the existing
results. For instance, the fluid approximation has been extended in refs. [16, 18] with the
inclusion of higher orders in the small momentum expansion; a less constrained momentum
dependence has been exploited in refs. [15, 19] by using a factorization ansatz. In ref. [20]
an improved and faster algorithm has been proposed which exploits a decomposition of the
out-of-equilibrium distributions on a basis of Chebyshev polynomials.

For the sake of completeness, we also mention that other approaches, based on phe-
nomenological modelling of the friction through a viscosity parameter, have also been
explored [21-29].

In refs. [17, 30, 31] we made a step forward in the development of an accurate method
to determine the out-of-equilibrium distributions without imposing any specific momentum
dependence. We presented, for the first time, a fully quantitative solution to the Boltzmann
equation designed to compute the collision integrals through an iterative algorithm without
the use of any ansatz. This methodology can be applied to evaluate the friction on the
bubble wall and the terminal speed of the latter, but it can be used also to describe the non-
equilibrium properties of the distribution functions that are relevant for the determination
of the matter-antimatter asymmetry in models of baryogenesis. The algorithm discussed
in ref. [17] allows one to compute the deviations from equilibrium of the particles in the
plasma, as function of their momenta, induced by the presence of a travelling DW. The
system is mainly characterized by the bubble speed v,,, the wall width L., and the non-zero
vacuum expectation value v of the scalar driving the PhT. These parameters are taken as
input of the iterative procedure.



While the proposed algorithm for the solution of the Boltzmann equation can reach
convergence within a small number of steps, it can quickly become computationally expen-
sive when it is embedded in the full algorithm that scans over the space of v, L,, and v.
This algorithm is used to identify the values of the parameters that simultaneously solve
the Boltzmann equation and the equation of motion of the DW. The procedure would be
even more time-demanding if one explores the parameter space of new physics models in
the search for optimal points providing observable signals of gravitational waves as well as,
for instance, the correct amount of the baryon asymmetry.

Analogously to previous works, the bottleneck of our iterative algorithm is the com-
putation of the collision integral. Although some algebraic manipulations were used to
reduce the dimensionality of the integral, the large number of integrations, together with
the singular behavior of the integration kernels, strongly limited the computational speed,
even on a cluster. In the present work we significantly improve on our previous results
by providing a more efficient method for the computation of the collision integral. We
exploit a spectral decomposition of the collision operator in terms of its eigenfunctions,
effectively reducing a complex and time-consuming nine-dimensional integration in a much
faster matrix multiplication. Moreover, the eigenfunctions are computed only once and can
be reused during all the scanning procedure of an entire model.

For the purpose of presenting our new methodology, we consider the case of a first
order EWPhT driven by two scalar fields. This scenario can be realized by enlarging the
SM particle spectrum with a singlet scalar field coupled to the SM sector only through a
quartic portal interaction. For the computation of the friction we focus on the contribution
of the top quark species which has the largest coupling, among all the SM particles, to the
Higgs field. All the other particles are assumed to be in local equilibrium and considered
as background. The inclusion of the out-of-equilibrium distributions of other species in the
computation of the friction, such as the massive EW gauge bosons, is straightforward and
it will be addressed in a future work.

The paper is organized as follows. In section 2 we review the Boltzmann equation and
we introduce the necessary notation while in section 3 we present the new spectral decom-
position method. In section 4 we discuss the hydrodynamic equations for the temperature
and velocity profiles and in section 5 we discuss the numerical results. The conclusions are
drawn in section 6. Appendix A summarizes some technical details on the solutions to the
hydrodynamic equations.

2 The Boltzmann equation

Our main goal is to compute the terminal velocity of the DW that surrounds the true-
vacuum bubbles. This parameter is the result of a balance of the internal pressure, propor-
tional to the potential energy difference between the two vacua, and the friction provided
by particles in the plasma impinging on the DW. Usually, for the computation of the ter-
minal velocity the relevant configurations are those in which the radius of the wall is much
larger than its thickness. In such a case, as we will do in the following, we can adopt the



planar limit, orient the z-axis along the propagating direction of the DW and assume that
a steady state is reached.

The friction acting on the bubble wall is determined by the deviations of the distribu-
tion function from equilibrium, § f, and in the steady state and planar limit it is given by

NZ' dm? d3p
P& =35 | Gyt (2.1)

where the sum runs over all the particle species in the plasma, m; is the mass of the i-th
particle, N; its degrees of freedom and ¢ f; the corresponding perturbation.

The perturbations around equilibrium are computed by solving the Boltzmann equa-
tion for the distribution function of the plasma in the presence of an expanding bubble of
true vacuum. It is convenient to write the Boltzmann equation in the wall reference frame,
where the solution is stationary. The equation for the distribution function f of a particle
species in the plasma is

m2(z))
I (’;faz - <2§3”6) f=—clyl, (22)

where £ is the Liouville operator, C is the collision operator, m(z) is the mass of the
particle and its derivative is performed along the z direction. As we mentioned before, in
this work we consider the top quark to be the only species out-of-equilibrium, since it is the
one with the strongest interaction with the Higgs field. We assume that the light degrees
of freedom of the plasma, namely all the SM degrees of freedom but the top, are in local
equilibrium and we treat them as background fluids described by the standard Fermi-Dirac
or Bose-Einstein distributions.
For a perfect fluid, in the wall reference frame the distribution function is

- 1
fo= o @E— @ 11

(2.3)

where 3 = T~1, 7, is the Lorentz gamma factor, and v,(z) is the velocity profile of the
plasma measured in the wall reference frame. In local equilibrium, macroscopic quantities
in general depend on the position z.

Since we consider small perturbations around equilibrium, we can linearize the Boltz-
mann equation in Jf, namely f = f, +0f. As we showed in ref. [17] the linearized
Boltzmann equation can be cast in the general form

clof) - 2or =5+ o), (2.4)

where the source term S originates from the action of the Liouville operator on f,, while
the bracket (6 f) and Q arise from the linearized collision operator.

By considering 2 <> 2 scattering processes, the collision operator takes the following
form

Pkd3p' d3k’
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with the sum performed over all the relevant processes with amplitude M; and the popu-
lation factor is given by

PL = fp)f(R) A £ f()(L £+ f(K) = f()f(E)A £ f(p) (L + f(K)). (2.6)

In eq. (2.5), N, represents the degrees of freedom of the incoming particle with momentum
p, k is the momentum of the second incoming particle, while p’ and &’ are the momenta of
the particles in the final state. The + sign is for bosons, while the — sign is for fermions.
After the linearization in §f the collision operator is given by

_ . va d3kd3 'd3K’ ‘ ) -
Clfl= _Eﬁé (p) —(0f) = 4N E | Gry2E.2E, 25, (M6 (p+k —p' — K)PLf],
(2.7)

with
75[]0] = fo(p) fo(k)(L £ fu(p")(1 £ fu(k Z f, ) (2.8)

where the F in the sum is for incoming and outgoing particles, respectively. As done in
ref. [17], we can distinguish two contributions coming from the linearized collision operator:
the first one, which depends only on ¢ f(p) so that the perturbation factorizes out of the
integral, is described by the term Q/Edf in eq. (2.4); the second one, denoted by the
bracket (§f), includes the contributions where § f appears under the integral sign.

3 Spectral decomposition of the collision operator

The most computationally cumbersome term in the Boltzmann equation is the bracket
(6f), which corresponds to a nine dimensional integral involving the unknown Jf. One
possible strategy to deal with this term is to perform, first, all the integrations that do not
involve the unknown perturbation J f, as explained in ref. [32]. The main advantage of this
method is that such integrals depend only on the processes under consideration and have
to be computed only once.

Applying such procedure and assuming the particles to be massless inside the collision
integral, the bracket term takes the following form [17]

3
(51) = f}f)(/dkﬂ (BN Ka(5(E)IB], S, )

= (1 Fol BV D) KB B AR Oye) | o
(3.1)

where barred momenta are computed in the local plasma reference frame, fo denotes the
standard (Fermi-Dirac or Bose-Einstein) distribution functions, and 6, is the relative angle
in the local plasma reference frame between the particles with momentum p and k. The
momenta k), and k,, defined in the wall reference frame, can be expressed as functions of the
local plasma momenta through a boost along the z-axis, namely k, = ,(2)(Ej + vp(2)k.),
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Table 1. Amplitudes for the scattering processes relevant for the top quark in the leading log
approximation [17]. In the tqg — tg process we summed over all massless quarks and antiquarks.

ki = k. The functions K, and K, are the annihilation and scattering kernels (we refer to
ref. [17] for the details)
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where the matrix elements are reported in table 1.

For a planar wall, the perturbation ¢ f depends only on the components of the momen-
tum, k, and k|, parallel and perpendicular to the propagating direction of the DW. As a
consequence, eq. (3.1) can be further simplified exploiting the fact that the perturbation
§f is invariant under rotations around the z axis. Using spherical coordinates {|k|, 0z, ¢7.},
where 07 is the polar angle between k and the z direction computed in the local plasma ref-
erence frame, it is possible to perform the integration over the azimuthal angle ¢z because
df does not depend on it. By also using the property

(£ fo(p)) = €’ fo(p) (3.3)
we obtain
(6f) = fgf)/kdkdcos@kfg(ﬁ(z)k)ﬁ(ﬂ(z)p,cosHP,ﬁ(z)k,cosék)Wé)

where K is the result of the integration of the kernels over the azimuthal angle.

Since the z dependence in the kernel comes only from the temperature profile, i.e. from
the 5(z) factors, we can obtain a position independent expression through the local change
of variables

B(z)k — k Bzp—p. (3.5)
In this way, the z dependence inside the integral is encapsulated only in the perturbation
df and we finally arrive to

B AULC) 1 (1 /(). k=/(2). )
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where we introduced the notation Dk = fo(|k|)|k|d|k|d cos 67, and 16-7,; = K(|p|, cos 05, |k|,
cos 0r).

The (§f) term can be reinterpreted as the action of a Hermitian operator on the
perturbation. For this purpose we define the operator

Olg] = /Dl_c K 5 (K], cos ) (3.7)

Due to particle exchange symmetry, the kernel function K is symmetric under the exchange

p < k, namely IC o =K;_. Asa consequence, the operator O is Hermitian with respect

k,p
to the scalar product

9) = [ Dk f(Kl,co365) (1Kl cos ) (3.8)

This conclusion is clearly also valid for other choices of the scalar product. The one we
use, as we will see in the following, is motivated by the fact that it significantly simplifies
the evaluation of the collision integral.

Thanks to its Hermiticity, the operator O can be diagonalized with an orthonormal
basis of eigenfunctions

O[wl] = /ID]% E@]‘C ¢l(|1_<’aCOS 9[}) =N ¢z(|1_<|aCOS 9];;)7 (39)

and the kernel K can be rewritten as [33]

pk: = Z)\l Yi(|p], cos 0;) ¥ (k| cos ) . (3.10)

Using this decomposition we can drastically simplify the computation of the bracket
(0f). Indeed, once the eigenvectors are determined, the remaining two integrals involved
in the computation become trivial due to the orthogonality property. The final expression
for the bracket is then

(61) = f”p/ﬂ sz ) u(|p|, cos B5), (3.11)

where ¢;(z) is the projection of the perturbation on the eigenstate basis, namely

0f(k1/B(2), k:/B(2), 2)
oK)

As we will see in the next section, the main advantage of this decomposition method is

_ /Dl;m/}l(|l_<|,cos,9,;) (3.12)

the huge improvement in the timing performances in the computation of the bracket term.

3.1 Numerical implementation

To implement numerically the spectral decomposition of the kernel, we need to choose a
suitable basis of functions on which the perturbations can be expanded. A simple choice,
which we use for our numerical analysis, is to discretize the {|p|, cos 65} space on a regular



finite lattice. The functional space is then obtained from the discretized version through a
suitable interpolation.

Using a rectangular lattice with M and N points in the |p| and coséj; directions
respectively, the operator O is represented by an (MN) x (MN) Hermitian matrix U,
which can be diagonalized to obtain the spectral decomposition. We computed the matrix
elements of U on an orthonormal basis of functions {ep,,} that vanish everywhere on the
grid but on the point (|p|m,cosfp, ).

Some subtleties must be taken into account in the discretization process. The measure
we adopted for the scalar product, Dk, contains a factor |l_<], which vanishes for \f{] =
0. This means that if a zeroth-order (i.e. a piecewise constant) approximation of the
basis functions and of the integration measure is used, the elements e, corresponding to
|P|m = 0 become singular. This is not a significant problem, since also the kernel IAC'N*C
vanishes for |p| = 0 or |k| = 0. Therefore the singular basis functions can be neglected in
the spectral decomposition of the kernel and in the computation of the collision integral.

One of the non-trivial features of the kernel, which is hard to reproduce, is the
presence of a peak located at |p| = |k| and cosf; = cos 07, whose height diverges for
cos Bl = cos 0 = £1. Such a peak originates from the forward scattering of the incoming
particles. We regularized such behaviour by setting an upper cut on the value of the kernel
in cos 9@,;. = +1. We checked that this approximation improves the numerical stability of
the computation and has a negligible impact on the final result.

In our implementation we used a linearly-increasing spacing (i.e. a quadratic distri-
bution) for the points along the |p| direction and a uniform spacing for the points along
cos 0. The non-uniform spacing in the momentum direction is motivated by the fact that
it allows us to obtain a finer spacing at small momentum, where the kernel structure shows
more complex features. This choice also helps in obtaining a more uniform reconstruction
of the peak structure, whose width scales as |p].

For our numerical analysis we chose a grid with M = 100 (with the restriction |p|/T" <
20) and N = 51 points, and we excluded the points with |p| = 0. In this way the U
matrix has dimension 5100. We show in figure 1 the relative size of the kernel eigenvalues
in decreasing absolute value. The plot shows that, after a relatively fast decrease, the
size of the eigenvalues tends to decrease slowly, so that a large fraction of them has a size
> 1074 Ag|. As a consequence, in order to reconstruct the kernel with an overall accuracy
of order 1 — 2%, almost all eigenvectors must be taken into account. Including in the sum
only the largest 4000 eigenvalues, the typical reconstruction error is 2 — 5%, while with
3000 eigenvalues it grows to 5 — 10%.

We mention that significantly larger relative reconstruction errors are present in regions
where the kernel is highly suppressed (such as for configurations in which p is small while
k is large, or vice versa), or, especially for large momenta, around the peak. These regions,
however have a limited impact on the computation of the collision integral, as confirmed
by the numerical analysis reported in section 5.

By adopting the basis of eigenfunctions {¢;} to decompose the perturbation, the com-
putational time of the brackets is highly reduced. Compared to the timing performance of
the method presented in ref. [17] the decomposition method outlined in this section is two
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Figure 1. Relative size of the eigenvalues of the kernel matrix & with M = 100 and N = 51. A
large fraction of them (the first ~ 3500 eigenvalues) has a size > 1074 \|.

orders of magnitude faster. Such numerical improvement allows one to solve the Boltzmann
equation in less than one hour on a desktop computer.

We finally mention a possible improvement of the decomposition method. Due to ro-
tational invariance of the kernel, the operator O is diagonal in the basis of the Legendre
polynomials Pj(cosf5). Using such basis, one could, in principle, reduce the number of
eigenvectors needed to get a good reconstruction of the kernel and, at the same time, in-
crease the numerical stability. Although in the present work we used the basis {1}, we
numerically check these eigenfunctions are indeed proportional to the Legendre polynomi-

als.!

4 Hydrodynamic equations for the background

In this section we focus on the characterization of the plasma that interacts with the DW.
As we stated before, we consider the plasma to be a mixture of two different fluids: the top
quark fluid, and the massless background, which contains all the species with negligible
couplings to the DW. The out-of-equilibrium deviations of the latter are suppressed by the
large number of degrees of freedom and can be neglected in a first approximation. In ref. [17]
we regarded the background as a thermal bath with temperature and velocity that do not
depend on the position. In the present work we relax this approximation and we consider
the massless species to be only in local equilibrium. In such a case, the background plasma
is described by equilibrium distribution functions with position-dependent temperature
and velocity.

The simplest approach to determine the temperature and velocity profiles for the
plasma relies on a linearization procedure but it has the major drawback to break down for
vy = Cs, where ¢, is the speed of sound in the plasma [14, 18]. To fully take into account the
non-linearities and thus to avoid the singularity at ¢, one can exploit a set of hydrodynamic
equations [20] that are obtained from the conservation of the energy-momentum tensor of
the system. We will briefly summarize this approach in the following.

!Small numerical discrepancies for [ > 5 are present in the regions where cos 05,5 = £1. These are clearly
due to the cut that we introduced to regularize the corresponding regions.



The energy-momentum tensor can be conveniently split into three components: the
one due to the scalar fields ¢; participating in the PhT (Tq’f ”), the local-equilibrium con-
tributions of all the species in the plasma (Té‘l”), and the out-of-equilibrium deviations of
the massive species (T’ ), namely

out *

T =T+ T0 + Thy . (4.1)

In the reference frame of the DW, the conservation of the energy-momentum tensor leads
to the following equations

M =w(gi, T)vpvp + Tow = c1,

T33 _ 1 .62 — ) T3 (4'2)
= 2( . bi) Vi(gi, T) + w’Yprp +Lont = €25

where V (¢;,T) is the finite-temperature effective potential, while w(¢;, T) is the enthalpy

defined as 8V(¢ 7)
wior, 1) = 70T,

The two constants c¢; and ¢z can be determined from the boundary values of v, and T far
in front or far behind the DW.
Equations (4.2) can be recast in the following form

(4.3)

w(¢i,T)+\/4 (e1 — T5%)? +w2
2(c1 Tci?t) (4.4)
(02607~ V(60 T) — Lu(6:, T ¢4 (01— T30 + (@0 T2 — (e — T3) =0,

Up:

and their solutions yield the velocity and temperature profiles. These equations can be
straightforwardly solved with a simple root-finding numerical algorithm.

Finally, the boundary values of the temperature, the plasma velocity and the field
VEVs far in front and far behind the DW, which we denote with a 4+ and — subscript
respectively, can be determined as described in ref. [22]. The fields VEVs can be easily
found by minimizing the potential, namely,

oV (pix,T4)
telon

while the computation of T4 and vp+, that depend on the DW velocity v,,, is much more

—0, (4.5)

involved and is briefly outlined in the appendix (we refer to refs. [20, 22] for further details).

5 Numerical analysis

To validate the method described in section 3 we compared it with the one we developed
in our previous work [17]. In particular we compared the relevant quantities that enter in
the computation of the DW terminal speed, namely the out-of-equilibrium corrections to
and the friction F'(z).

We choose as a benchmark scenario the Zj-symmetric singlet extension of the SM.

the stress-energy tensor T50, T3 |

This choice is motivated by the fact that the presence of a new scalar field s affects the
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thermal history of the Universe and can give rise to a first-order EWPhT. The extra scalar,
singlet under the SM gauge group, also allows for a two-step PhT, in which case the EW
symmetry breaking is preceded by a Zs-symmetry breaking in the extra sector (see for
instance refs. [34, 35] and references therein).
The tree-level potential of the model is
Viree(h, s) = % <h2 — 08)2 + % (52 — w§)2 + )\ZS h%s? (5.1)
where vg is the Higgs VEV at the EW minimum, Ay is the Higgs self coupling while Ag, wq

and Aps describe the singlet self-coupling, its VEV when the EW symmetry is exact and
the portal coupling with the Higgs, respectively. The parameter wy can be traded for the
physical mass of the singlet using the relation

1
m? = —Awi + §Ahsvg. (5.2)

The finite-temperature effective potential of the model takes into account, besides the
tree-level term, the one-loop corrections at zero temperature V;, the counterterms that
regularize the UV divergences Vor (we adopted the MS renormalization scheme) and the
thermal corrections Vr (see ref. [36] for the details):

V(h,s,T) = Viree(h,s) + Vi(h,s) + Vor(h,s) + Vr(h,s,T). (5.3)

Once the model parameters are chosen, the temperature and velocity profiles of the back-
ground plasma are computed by using the conservation laws of the stress-energy tensor.
In addition, by solving the coupled system of the Boltzmann equation and the equations
of motion of the scalar fields, one can determine the terminal speed of the DW.

In figure 2 we plot F(2), T33(z), T3Y

= (z) as functions of the ratio z/Ly, for two

benchmark points reported in table 2 and characterized by v, = 0.388, Ly T, = 9.69,
h_ /T, = 1.16 for the benchmark BP1 and by v, = 0.473, L, T,, = 5.15, h_/T,, = 2.25 for
BP2. As we will see in the following section, such values correspond to the terminal ones
obtained for a scalar potential with parameters mgs = 103.8 GeV, A\ = 0.72 and A\ = 1
for BP1 and ms; = 80.0 GeV, A\ps = 0.76 and A; = 1 for BP2. The plots clearly show that
the new method correctly reproduces the friction and the out-of-equilibrium corrections
to the stress-energy tensor in the whole range of z. Although at the qualitative level an
excellent agreement is found, some small quantitative differences are present. In particular,
differences of order 1% are present in the region corresponding to the peak (z ~ 1), while
order 10% discrepancies can be present in the tails, both inside and outside the bubble.
The impact of the tails in the determination of the total friction and of the DW dynamics
is however very limited, since their contribution is highly suppressed, as can be seen from
the first panel in the two rows of figure 2.2

2For some choices of the model parameters, the convergence of the solution in the region p. < 0 and
z < 0 may present some numerical instabilities due to our approximation of the kernel. In this region,
however, the perturbations are highly suppressed and give only a marginal contribution to the friction.
Moreover possible numerical instability only appear after a number of iterative steps much larger than the
ones needed to reach convergence in the relevant part of the perturbations, so they can be easily kept under
control in the determination of the DW velocity.
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Figure 2. Comparison of the friction (left panel), 759 (central panel) and T3 (right panel) as

out out
functions of z/Ljy, computed using the procedure presented in ref. [17] (red solid line) and the

decomposition method (black solid line), for the benchmark point BP1 (upper row) and BP2 (lower
row). The parameters defining the two benchmarks are reported in table 2.

These results thus indicate that the proposed method is robust and can be safely used
to reliably study the DW dynamics.

5.1 Solution to the scalar field equations of motion

The DW terminal speed is the result of a balance between the internal pressure of the
wall and the friction. To determine it, one has to solve the equation of motion of the two
scalar fields together with the Boltzmann equation that determines the out-of-equilibrium
perturbations and, through eq. (2.1), the friction.

In the wall reference frame the equations of motion of the Higgs and scalar singlet

fields are
T
By = —0%h + ‘W(g’hs’) + ()N =0,
(5.4)
ESE_aSS_,_M:Q
Os

The solution to the above system of equations yields the exact profiles of the Higgs and
singlet fields. For most applications, however, it is not necessary to solve for the exact field
profiles. A good approximate solution is given by a tanh ansatz, namely

h(z) = % <1 + tanh <Lzh>)
s(z) = % (1 — tanh (li + 55>)

where Lj, and L are the wall thicknesses of the Higgs and the scalar singlet, respectively,

(5.5)

while the parameter d; describes the displacement between the Higgs and the singlet field
walls. The values of the VEVs of the Higgs field inside the DW, h_, and the singlet in
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front of the DW, s, are computed by minimizing the finite-temperature effective potential,

namely
8V(h_,0,T_) 8V(0,S+,T+)

oh Js

Clearly, it is possible to consider more general field profiles, but the ansatz in eq. (5.5) is

=0, =0. (5.6)

sufficient to reproduce the relevant features of the DW dynamics [20, 35].

The standard strategy to determine v,,, Ly, Ls and s is to compute momenta of Ej,
and E; and then seek for the roots of the corresponding equations. A convenient choice of
the momenta is [20, 35]

ﬂ:/@&ﬁ:m <n=/wEﬂmm—nwzm
(5.7)
Psz/dzEss’:0, Gsz/dzE5(23/3+—1)s’:O.

These equations have a clear physical interpretation. P}, , correspond to the total pressures
on the two walls. Thus the sum P}, + P; is the total pressure that acts on the system. Both
pressures must vanish in the steady state regime, otherwise the walls would accelerate. As
confirmed by the numerical analysis, we expect the combination P, + Ps to mostly depend
on v, and being less sensitive to the remaining parameters. The difference of pressures
Py, — Py, instead, depends mainly on the displacement d,. Finally G}, s take into account
the presence of pressure gradients which may stretch or compress the walls. Thus the
requirement G, s = 0 fixes the widths of the two walls.

In order to close the system of equations (5.7), one should include the Boltzmann equa-
tion for the out-of-equilibrium distributions. However, the perturbations that determine
the friction depend on the unknown parameters v,, and Lj. To address this problem one
can employ the iterative procedure outlined below:

1. Solve eq. (5.7) without the perturbations, namely at equilibrium, and compute the
four parameters vy, Ly, Ls and ;.

2. Use the four parameters to determine the out-of-equilibrium perturbations by solving
the Boltzmann equation.

3. Insert the perturbations in eq. (5.4) and recompute the parameters from eq. (5.7).

4. Iterate the procedure from point 2 until the convergence of the four parameters is
reached.

To numerically solve eq. (5.7) we implemented the Newton algorithm, while to solve
the Boltzmann equation we followed the iterative procedure described in ref. [17] with the
bracket term (0f) computed following the strategy explained in section 3. We report in
table 2 our results for two benchmark points. In the table we show the values of the four
parameters with and without the contributions of the out-of-equilibrium perturbations.
The bubble speed is the parameter more strongly affected by the out-of-equilibrium con-
tributions, followed by the width of the Higgs wall. For the first benchmark model with
ms = 103.8 GeV, a difference of ~ 30% and of ~ 20% is present for the speed v,, and the
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ms (GeV) | Mns | As || Th (GeV) | T (GeV) | T (GeV) | T_ (GeV)

BP1 103.8 072 | 1 129.9 132.5 130.3 129.9
BP2 80.0 0.76 | 1 95.5 102.8 97.5 95.5
Vw 65 Lth LsTn

BP1 | 0.39 (0.57) | 0.79 (0.75) | 9.7 (8.1) | 7.7 (6.7)
BP2 | 0.47 (0.61) | 0.81 (0.81) | 5.2 (4.7) | 4.3 (4.1)

Table 2. Critical and nucleation temperatures, temperatures in front and behind the DW and
terminal values of the parameters v,,, ds, L, Lg for two benchmark points. The numbers in
parentheses correspond to the results obtained neglecting the out-of-equilibrium perturbations.

wall width Lj, respectively, with respect to the same values computed in local equilib-
rium. The width Ly and the displacement d, show, instead, a difference of ~ 15% and a
milder one of ~ 5% respectively. The four parameters in the second benchmark model with
ms = 80 GeV still present important differences with respect to the only-equilibrium case,
but the impact of the out-of-equilibrium contributions is less severe. As for the previous
benchmark model, the perturbations mostly impact on the speed on which they induce
a change of ~ 20%. The offset s, instead, is almost unaffected by the inclusion of the
out-of-equilibrium corrections.

To understand why the out-of-equilibrium perturbations have a different impact on
the two benchmark models, it is useful to study the total pressure acting on the system.
This will also clarify why the terminal speed v,, is the parameter more strongly affected by
the out-of-equilibrium corrections. Using eq. (5.7) the total pressure acting on the system
can be expressed as

Py + P, = AV + /dz Q;w(T) + /sz(z) —0 (5.8)

where AV is the potential energy difference between the true and false vacuum. The size
of this difference increases with the amount of supercooling in the PhT. For small super-
cooling, the friction is comparable to the potential difference and the out-of-equilibrium
corrections have an important impact on the DW dynamics. As we notice from table 2, the
model where the out-of-equilibrium corrections have a bigger impact indeed corresponds
to the one with less supercooling.

We plot on the left panel of figure 3 the total pressure as a function of the wall speed,
with (black line) and without (red line) the inclusion of the out-of-equilibrium distributions.
In both curves we can observe the presence of a peak corresponding to the Jouguet velocity.
The peak originates from hydrodynamic effects that heat up the plasma, thus generating
a pressure barrier that slows down the DW motion in models with small supercooling [37].
This effect is described in eq. (5.8) by the term proportional to the enthalpy and its impact
grows with the difference Ty — T_, so that it tends to be larger for hybrid walls.

At small velocities, instead, the pressure at equilibrium becomes constant. In this case
the temperature difference across the wall becomes negligible and the value of the total
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Figure 3. Total pressure as a function of the bubble speed, temperature and velocity profiles as
functions of z/Ly, for the two benchmark models reported in table 2 (BP1 on the upper row, BP2 on
the lower row). The red solid lines are obtained by neglecting the out-of-equilibrium perturbations,
while the black solid lines correspond to the complete computation. The peak in the pressure is
located at the Jouguet velocity.

pressure settles to the potential energy difference between the false and true vacua at the
nucleation temperature.

The out-of-equilibrium perturbations provide a correction that grows linearly with
the velocity. This behaviour is consistent with the one found in ref. [17], where a linear
dependence of the total friction was observed. From the above discussion we conclude that
the perturbations have an important impact on the wall terminal speed and, therefore,
an accurate modeling of the out-of-equilibrium perturbations is necessary to get a proper
description of the PhT dynamics.

In the central and right panel of figure 3 we plot the temperature and velocity profiles,
respectively, for the terminal values of v,,, Ly, Ls, 05 of the two benchmark models reported
in table 2. The plots clearly show that the out-of-equilibrium perturbations impact on the
shape of the profiles, mostly in the region close to the DW. Among all the three terms in
eq. (5.8), the modified shapes of the profiles have the largest effect on the term involving
the temperature derivative.

We now give an estimation of the impact of the temperature and velocity profiles on
the Boltzmann equation. They contribute to the source term through their derivatives
and, thus, we expect their effect to be proportional to the relative difference between the
temperature and velocity across the DW. This expectation is confirmed by our numer-
ical analysis. We computed the integral of the friction for three benchmark velocities
(vy = 0.4,0.6,0.9) and we compared with the result obtained by considering a constant
temperature and plasma velocity across the system. Our analysis showed that corrections
of few % are present for v,, = 0.4 and v,, = 0.9, while we found larger corrections (~ 10%)
for vy, = 0.6. Such result agrees with the expected behavior since the largest correction is
found for velocities close to the Jouguet velocity, where the differences between the temper-
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ature and plasma velocity across the wall are larger. From these results we can conclude
that, despite the profiles have to be included to compute the equilibrium part of the total
pressure acting on the system, they may be typically neglected in the computation of the
out-of-equilibrium friction.

Finally we comment on the comparison of our results with the previous literature. We
found a fair agreement with the results given in ref. [35], in which the DW terminal speed
for a similar potential is computed by solving the Boltzmann equation within the fluid
approximation. This approach, as we showed in ref. [17], tends to overestimate the value
of the friction for subsonic walls by ~ 10% — 20%. The results reported in table 2 show
differences with respect to the values in ref. [35] that are compatible up to these effects.

On the other hand, we found much larger differences with respect to the results in
ref. [20], in which the out-of-equilibrium perturbations are found to provide only a small
correction to the DW terminal velocity. To investigate the source of discrepancy, we ex-
plicitly implemented the procedure proposed in ref. [20], decomposing the perturbations in
terms of Chebyschev polynomials. With this approach we recovered the results obtained
with our method up to ~ 20% differences, which are most probably due to the different
size of the grids used to discretize the perturbations. Other sources of differences could be
the choice of the scalar potential (and of its renormalization procedure) and of the model
parameters, which could lead to a different amount of supercooling.

6 Conclusions

In this work we developed a new algorithm for the computation of the collision integrals in
the Boltzmann equations that determine the distribution functions of plasma species in the
presence of a travelling DW. This physical setup is relevant for a quantitative description
of first-order Ph'Ts in the early Universe and, in particular, for the computation of cosmic
relics, such as the stochastic background of gravitational waves and the matter-antimatter
asymmetry.

The method presented here exploits a spectral decomposition of the collision integral,
reinterpreting it as a suitable Hermitian integral operator. This new approach significantly
improves the computational efficiency of our previous algorithm [17] by effectively reducing
a nine-dimensional integration into a much faster matrix multiplication. On top of that,
since the eigenfunctions need to be computed only once, they can be reused in all the
scanning procedure of the parameter space of an entire model.

To validate our new spectral method we compared it with the approach we developed
in our previous work [17]. We found excellent agreement for the value of the friction and for
the determination of the out-of-equilibrium perturbations in the plasma. Small deviations,
of order 1% in the most relevant regions (see figure 2), could be systematically reduced
by increasing the number of points in the grid used for the discretization of the collision
operator.

We further complemented our analysis by including the contribution of the background
species obtained by solving the hydrodynamic equations for their temperature and velocity
profiles. Contrary to most of the previous approaches, following ref. [20], we did not
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linearize in the former quantities, thus avoiding any singular behavior at the speed of
sound.

As an explicit application of our formalism, we applied it to the study of a first-order
EWPAT in the Zs-symmetric singlet extension of the SM. We inspected two benchmark
points, calculating the relevant features of the wall dynamics, namely the wall speed, its
width and the displacement between the two field profiles. In order to assess the impact
of the out-of-equilibrium distributions we also reevaluated the same parameters without
the friction. The main results are shown in figure 3 and in table 2, and clearly highlight
the crucial impact of the out-of-equilibrium dynamics, which introduces large corrections,
mainly to the speed of the bubble wall.

For the purpose of presenting the new computational strategy, we considered a sim-
plified setup with the top quark being the only species out-of-equilibrium. Clearly, the
inclusion of EW gauge bosons, or any other massive state, is straightforward once the
kernels for the corresponding processes are computed. We leave this aspect for a future
work.

On the technical level, a possible improvement in the kernel reconstruction could be
obtained by the use of a suitable decomposition basis. As we mentioned in the main text,
due to the rotational invariance of the collision operator, a natural choice is given by the
Legendre polynomials in the angular variable. Such choice could be useful to reduce the
number of eigenmodes needed to obtain good accuracy and to improve numercal stability. A
full decomposition of the Boltzmann equation on such basis could also be worth exploring.

Finally, we remark that the decomposition method of the collision integrals presented
in this work increases the feasibility of a scan of the parameter space of an entire model
that otherwise would be extremely challenging due to the amount of required computational
resources. As we mentioned before, the huge timing performance that we achieved allows
to fully solve the Boltzmann equation efficiently and reliably. We plan to analyze some of
the most relevant BSM scenarios providing signals of gravitational waves from cosmological
first-order PhT in a following work.
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A Boundary conditions for the hydrodynamic equations

In this appendix we briefly review the computation of the boundary values of the plasma
velocity vp+ and temperature T (see refs. [20, 22] for more details).
The conservation of the energy-momentum tensor across the DW implies,

1—(1—3ay)r Upr 3+ (1 —3ay)r

= = Al
Kk 3-3(1+ay)r vp— 1+ 31+ ay)r’ (A1)
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where v,4 and v,_ are computed in the wall reference frame and

€4 —€_ a+Tj‘;
= = A2
Q4 CL+T$ ’ r a_Tf ) ( )
with
3 oV Ty 0V
o B e (B a3
T2 0T e Lor bi=0F =T+

By using eq. (A.1) we can express two of the four boundary conditions as functions of
the remaining two. The latter depend on the qualitative properties of the plasma which
are, in turn, determined by the DW velocity v,,. It is possible to identify three different
regimes, depending on the value of v,,, for the temperature and plasma velocity profiles,
each one characterized by different boundary conditions: deflagration (v, < ¢, ) where a
shock wave precedes the DW, detonations (v, > vj) where a rarefaction wave trails the
DW and hybrid (¢; < v, < vy), where both a shock and a rarefaction wave are present.
The speed of sound inside the wall ¢, can be computed from the definition of ¢y, namely,

ov/oT

2

= A4
“ = Tervior? (A-4)
while v identifies the model-dependent Jouguet velocity, at which |v,—| = ¢; holds.

In the case of detonations, the wall hits an unperturbed plasma in front of it and
one can trivially identify T, = T;, and |vp4| = vy, (in the wall frame), thus immediately
determining, with the use of eq. (A.1), the four boundary conditions.

The determination of the boundary conditions in the deflagration and hybrid cases is
much more involved and requires to evolve the temperature and velocity profiles between
the DW and the shock wave. Assuming a spherical bubble and a thin wall, from the
conservation of the energy-momentum tensor we find, in the reference frame of the bubble
center,

. (Y 2
228 w1 - u(©)0 (“(5’ ()

0eT(€) = T(€)y(vp(€))* (€, vp(€))Devp(€),

where ¢ is the velocity of a given wave profile, v,(§) is the plasma velocity in the frame

- 1) e vp(€) (A5)

of the bubble center, while p(§,v,(€)) is the Lorentz-transformed plasma velocity (in the
reference frame of the wave profile)

(&, vp(§)) = f__gz)p(é)).

In the deflagration case the shock wave hits an unperturbed plasma in front of it,
TfW = T}, and the plasma is at rest behind the DW, v, = v,,, with TfW being the
temperature in front of the shock wave. Thus the two boundary conditions are specified

(A.6)

at different points in the plasma and the determination of 7% and v, is non-trivial. For
this purpose, we adopted a shooting method which is sketched below:

~ 18 —



5.

. We make an ansatz for 7_ we determine 7'y and v, using eq. (A.1);

. We use them as initial conditions to integrate eq. (A.5), provided v,y is boosted in

the reference frame of the bubble center (v(§ = vy) = p(Vw, Vp+));

. We stop integration just behind the shock wave at £gw, which is given by the condition

EWVesw = cf =1/V3;

. The outcome of the solution of eq. (A.5), namely the velocity and temperature of

the plasma behind the shock wave 'USEV , TSV are used to compute UEJVFV, T_EW by

exploiting again eq. (A.1);

The procedure is iterated adjusting 7_ until the condition TEW =T, is reached.

To determine the boundary conditions for hybrid solutions we can adopt the same strategy,

with the only difference that entropy conservation enforces v,— = c; .
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In this work, we study the luminosity that results from the conversion of QCD axion particles into
photons in the magnetic field of the plasma accreting onto black holes (BHs). For the luminosities to
be large two conditions need to be met: i) there are large numbers of axions in the PBH surroundings
as a result of the so-called superradiant instability; ii) there exists a point inside the accreting region
where the plasma and axion masses are similar and there is resonant axion-photon conversion. For
BHs accreting from the interstellar medium in our galaxy, the above conditions require the black
hole to have subsolar masses and we are therefore led to consider a population of primordial black
holes (PBHs). In the conservative window, where we stay within the non-relativistic behavior of the
plasma and neglect the possibility of non-linear enhancement via magnetic stimulation, the typical
frequencies of the emitted photons lie on the low-radio band. We thus study the prospects for
detection using the LOFAR telescope, assuming the PBH abundance to be close to the maximal
allowed by observations. We find that for PBH and QCD axion with masses in the range 1075 —
107* Mg and 4 x 1078 and 4 x 1077 eV, respectively, the flux density emitted by the closest PBH,
assuming it accretes from the warm ionized medium, can be detected at the LOFAR telescope.
Coincidently, the PBH mass range coincides with the range that would explain the microlensing
events found in OGLE. This might further motivate a dedicated search of these signals in the

LOFAR data and other radio telescopes.

I. INTRODUCTION

Compact astrophysical objects such as core-collapse
supernovae or neutron stars can be efficient QCD axion
factories and therefore they provide important input in
the quest to detect the QCD axion. Indeed, SN1987A
explosion still provides the strongest upper bounds on
the QCD axion mass [1, 2] and neutron stars have also
been shown to provide interesting input in this direction
[3]. But compact objects can also be efficient QCD axion
converters, rather than factories, when they host large
magnetic fields, such as those present in magnetars or
white dwarfs. The presence of a plasma mass allows for
a resonant conversion of non-relativistic axions into ra-
dio photons, and recent studies have already been able
to place constraints using radio telescope data [4-13].

What about black holes (BHs)? What is peculiar
about the BH case, when compared to the other com-
pact objects, is that the QCD axion can be dynamically
generated in very large numbers, in a cloud surrounding
the BH, if the so-called superradiant condition is satis-
fied [14, 15]. The cloud can be very massive and store
up to ~ 10% of the black hole mass [16, 17], and this
purely gravitational phenomenon has already been used
to exclude the QCD axion for the lightest masses [18-21].

However, this might not be the only way to probe the
QCD axion with BHs. In contrast with other axion-
like particles, the QCD axion necessarily couples pho-

* rzferreira@uc.pt

t agil@ifae.es

tons with a strength that is mostly fixed by the axion
mass. Therefore, if some mechanism is able to convert
even a small percentage of the axions in the superradiant
cloud into photons in the black hole surroundings, this
can open new observational probes. In that sense, one
possibility that has been considered is that the axions in
the cloud decay to two photons, and stimulation effects
can then result in fast radio bursts [22, 23]. The possi-
bility of axion-photon conversion on the magnetic fields
surrounding the cloud has also been discussed in previous
literature [24, 25].

In this work, we will explore how the the accretion of
plasma and magnetic field from the interstellar medium
(ISM) onto the black hole can affect this picture and
argue that the situation becomes closer to the resonant
conversion that happens, for example, in magnetars. Ax-
ions can decay to two photons as long as the axion mass
m, is larger than twice the plasma mass w,. However,
the presence of the magnetic field opens up a new chan-
nel, axion-to-photon conversion, that is typically more
efficient than the decay to two photons and is, in fact,
the only process kinematically allowed when w, > m,/2.
Moreover, the plasma density and the magnetic field in-
crease towards the BH horizon at a pace that depends
on the accretion flow. Then, as long as the plasma mass
of the medium is smaller than the QCD axion mass out-
side the accreting region, there can be a critical radius
inside the accreting region where the QCD axion and the
plasma mass are close to each other thus allowing reso-
nant conversion between the two. If the critical radius
happens to be close to the position of the superradiant
cloud, where the axion densities are higher, it is then



likely that many QCD axions will convert into photons.
The ISM magnetic fields are much weaker than those
observed in magnetars, but that can be largely compen-
sated by the enormous number of axions in the cloud
thus boosting the luminosity of the process. Moreover,
contrarily to the case of neutron stars or white dwarfs,
here the axions that convert into photons are dynam-
ically generated by the superradiant instability, so the
mechanism does not rely on the assumption of an initial
axion profile.

However, when restricting to BHs in our galaxy, im-
posing that the critical radius occurs close to the super-
radiant cloud typically requires the BHs to have subsolar
masses and we are therefore led to assume a population
of primordial black holes (PBHs). We will then show
that in the most conservative region, where we neglect
the possibility of non-linear enhancement via magnetic
stimulation and where the electrons are non-relativistic
at the conversion point, the photons emitted from the
resonance are on the low-radio band and can readily be
searched for with the LOFAR radio telescope [26]. Co-
incidently, the region probed by LOFAR corresponds to
PBH with masses in the range where there have been
recent hints from microlensing events [27].

The manuscript is organized as follows. In section II
we provide a brief summary of the superradiant phenom-
ena and give the basic properties of the cloud and of the
QCD axion. Section IIT A describes the typical properties
of the interstellar medium in our galaxy in terms of elec-
tron density, temperature and magnetic fields. Section
ITI B concerns the Bondi accretion onto black holes and
the associated accreting profiles. The main mechanism of
this work, the resonant conversion, is described in section
IV. In section V, we discuss the observational prospects
for detection with LOFAR. Finally in section VI we con-
clude and give some outlook for the future. Most of the
technical details are left for the appendices. In appendix
A we give the typical values of the properties of the inter-
stellar medium that we use in this work. In appendix B
and C we explain how we use the method of variation of
parameters to find a solution for the equation of motion
of the photon around the superradiant cloud, and find,
in appendix D, a simplified expression for the luminosity
of the system. Finally, in appendix E we discuss the phe-
nomena of magnetic stimulation and discuss the region
of parameters where we expect that to happen.

II. SUPERRADIANCE AND THE QCD AXION

Via the superradiant instability, it is possible to con-
vert a significant part of the BH spin into dense QCD
axions clouds [25]. The axions in these clouds are in
quasi-bound states similar to the hydrogen atom, labeled
by n, I, and m and with energies wyi, =~ m,(1—a?/2n?),
where

a=GMm, (1)

is the gravitational coupling, analogous of the fine-
structure constant, and m, is the QCD axion mass. For
the superradiant phenomena to be possible, the condi-
tion M — wpim > 0 has to be satisfied, where € is the
BH angular velocity. This condition enforces the restric-
tion @ < am/2 where |a| < 1 is the dimensionless spin
parameter of the BH.

Among the different superradiant states, the 2p state
with nlm = 211, is the fastest growing one with rate [28]

af(a — 4a)

51 M, - (2)

To1n =~

We will focus on the axions that populate this state as

these exist in larger numbers than those in other states.
The axion field in this level a has a profile given by

a(t,7) = 1/ QJTX [ R (Y () + he]  (3)

where N is the number of axions in the cloud, Y11(0, ¢)
is the [ = m = 1, spherical harmonic and

1/2
1 T
w0 (zigg) e

is the radial bound state solution of the 211 level with
ag = 1/(maa) = GM/a? the gravitational Bohr radius
of the system, so that the average distance from the BH
is

—r/(2a0) (4)

S r3R3, dr
0= “+———— =Dbayg. 5
el J r2R%, dr a0 5)

Regarding the spin, each axion in the 2p state has m =
1 and so the angular momentum in the cloud is equal to
the total number of axions J., = N. Therefore, once
most of the BH angular momentum Jgg = aGM3y is
drained to the cloud J. ~ Jgg, the cloud would get a
mass

Mcl = Nma = dOéMBH . (6)

In the following sections, we will restrict to situations
where the cloud had time to grow substantially until the
present time. Therefore, we require the superradiance
rate to be faster than the age of the universe which,
jointly with the superradiant condition o < a/2, sets
the following upper and lower bounds on the QCD axion

o1
mass
5.3 % 1074 ( My \*° . M
20 (Ee) < M <goera( 22 ). (8)
al/? M 1079 eV M

L In terms of the axion decay constant f,, the range is

4 1018 M 8/9 . 1016 M
9~>< 0 Zfa/GeV285X~O @
(1_1/9 M@ a M@



Current observational bounds restrict the QCD axion
mass to lie roughly in the interval 1071 —~10"1 eV [29]. In
particular, the absence of a superradiance cloud around
the observed rotating stellar mass black holes is what sets
the lower bound [20]. We are therefore led to consider
QCD axion clouds that form around primordial black
holes (PBH) that we will assume to exist with a fraction
fpau of the total dark matter abundance. Moreover, we
will be interested in the coupling between the QCD axion
and the photon which has the form

Lo %aFMF‘“’ (9)

where F is the electromagnetic field strength tensor, F
is its dual and g, is the axion-photon coupling constant
which, in the QCD axion case, is directly related to its
mass via the relation

Gy =2 x 1070, (2

-1
Toosay) GV (10)

where ¢, is a model-dependent parameter of order one
[29]. In this work, we will use the conservative value of
cy = 1.

III. ACCRETION FROM THE INTERSTELLAR
MEDIUM

The PBH hosting the QCD axion cloud does not live
in isolation. In this section, we discuss the properties of
the astrophysical environment surrounding the system.
We will focus on PBHs that accrete from the interstellar
medium (ISM) in our galaxy and so start by discussing
a few relevant properties of the ISM that play a major
role in the axion-photon conversion: the photon plasma
mass wp, the magnetic field B and the sound speed c,
(that we summarize in Table A1). We then proceed with
a discussion of the accreting dynamics onto the PBH and
the resulting profiles.

A. Interstellar medium

Starting from the photon plasma mass, in the non-
degenerate and non-relativistic limit, it is given by

1/2
4T oM Ne /
wp = | ———
Me

1.2 x 10*11(

Ne 1/2
Fias) (D)
where m, is the electron mass, agy is the electromag-
netic coupling constant and n. is the electron density
that we normalized to the typical value in the warm
ionized medium. The electron density is related to the
medium density ns, by the ionization fraction x.. The
plasma mass can go down by one order of magnitude
in the more rarified hot ionized medium but it can also

105 L w,/(107eV)
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FIG. 1. Profiles for the plasma density, magnetic field and
medium density in the hot ionized and warm neutral media.

be larger in denser components of the ISM. In Table A1l
we show typical values of these quantities. For the con-
version to take place, the frequency of the axions in the
cloud w, = w211 =~ M, needs to be larger than the photon
plasma mass,

We > W . (12)

The accretion of the plasma onto the black hole will fur-
ther increase its local density and thus place stronger
constraints on the possible axion masses that can be con-
verted into photons, as we will study in detail in the
following sections. Smaller ISM densities allow a wider
range of axions to convert into photons; for that reason,
and because of the large filling factors that ensure that
there are many PBH in such environments [30], we will
mostly focus on the warm and hot ionized components
of our galaxy. 2

Another important property for the axion-photon con-
version is the magnetic field. In the ISM their typical
strength is of order uG in the hot ionized bubble and the
warm neutral medium [32-34] but larger values, of order
10 G, have also been found in regions of Hydrogen gas
and clouds [30]. The accretion onto the PBH will further
increase the local value of the magnetic field towards the
PBH and therefore the conversion can take place at val-
ues larger than the puG, as we will discuss next.

The last relevant property is the sound speed of the
medium c; that can take values from 0.6 km/sec in dense
environments such as molecular clouds, to 100 km/sec in
hot ionized medium (c.f. Table Al). The sound speed
will affect the accreting properties of the PBH and there-
fore the conversion. Following [35], we will take the PBH

2 In the extragalactic space, one expects smaller densities, that
can go down to 10~ 7cm™3 [31], and would allow the conversion
of lighter QCD axion. However, here we focus on the conver-
sion within our galaxy and leave the extragalactic case for future
work.



to have a speed v, relative to the medium that is smaller
or comparable to cs.

B. Accretion onto the BH

We will assume that the PBH follows a simple model
of spherical Bondi accretion [35-37] *

M = \ M, (13)

where A = 107* — 1072 is an efficiency parameter [37]
and M, is the Bondi accretion rate given by [38, 39]

My = gﬂvrg Noo Mp, (14)
where v = \/v2, + ¢2,
2GM
= T2 (15)

is the Bondi radius that limits the accreting region, n. is
the medium density, m,, is the proton mass and g ~ O(1)
is a coefficient that depends on the equation of state of
the medium [39, 40].

This accretion is rather inefficient and so the accreting
time scales are very large. For example, for medium den-
sities and velocities typical of the hot ionized medium,
the accreting time 7,.. = M /M is larger than the age of
the universe for PBHs with (sub-)solar masses. There-
fore, we can safely neglect the change in mass and spin
of the PBH due to accretion. Similarly, the luminosity
of the accreting flow is also very low. For sub-Eddington
accretion rates as those described above the luminosity is
L = nM where 1 ~ M /Leqq and Ledq is the Eddington
luminosity [37, 41], thus making these objects quite faint.

For a constant accretion rate with equipartition of
kinetic and gravitational energies, the plasma velocity
evolves as v ~ [,1/GMgpu/r, where (3, is an order one
coefficient that depends on the fluid being accreted, and
the density profile can be obtained from Eq. 14 to be
[39]

3/2

n(r) = 4gv Noo (%) , r<ry. (16)
For r 2 7, the density saturates to the medium density
Neo. As a consequence, the photon plasma mass in Eq.
11 will also acquire a radial profile, since n.(r) = z.n(r).
We show the profiles for the density and the photon mass
in Fig. 1. The presence of a radial dependent plasma
mass has the important consequence of allowing for the
presence of a critical radius 7. such that

Wp (rcrit) = Mg, (17)

3 The assumption of Bondi accretion is justified for low-luminosity
BHs accreting from low-density regions, as the ones considered
in this work.

i.e. where the photons in the plasma and the QCD ax-
ion have the same mass and so can resonantly convert
into each other. As explained in the next section, the
conversion to photons of the axion in the cloud will be
dominated by the dynamics around this radius (and not
at the radius of the cloud). In terms of the model pa-
rameters, the critical radius is given by

9 2/3
w,
Terit = (ﬁg) T (18)

where we have used Eqs. 11, 15 and 16, and defined
Wp.oo = wWp(r — 00). We will be interested in situations
where the plasma frequency of the ISM is lower than the
QCD axion mass, Wy, < Mg, and therefore the critical
radius will always be inside the accreting region.

Accretion will also enhance the magnetic field towards
the PBH. Magnetic flux conservation requires the mag-
netic field to grow as B o r~2 towards the black hole [42].
However, the magnetic field pressure cannot exceed the
pressure of the accreting matter * and so the magnetic
field profile will tend towards equipartition of magnetic,
kinetic and gravitational energies [45-48]

B2 GM
5 "~ BB Tmpn(r) (19)

and thus grow more slowly, as 7~%/% (see Fig. 1). The
parameter Sp is the ratio between the gas pressure and
the magnetic pressure that we take to be of order one as
in [48]. Then, for example, for the benchmark properties
of the hot ionized medium the typical strength of the
magnetic field expected from equipartition is

Bsp v
By \ 100 km/sec

% (10—220111—3)1/2 (%)5/4“(} (20)

consistently with the values discussed in Section ITI A
outside the accretion region. The direction of the mag-
netic field is however harder to determine and can take
different topologies [49]. In section IV we make some as-
sumptions on the directionality and briefly discuss the
dependence of the results on those assumptions.

Finally, let us discuss the evolution of the plasma tem-
perature towards the black hole. The expression we used
for the plasma frequency in Eq. 11 is valid as long as the
electrons are non-relativistic and non-degenerate. How-
ever, in hot accretion flows electrons are expected to be

B =07

4 If the magnetic field pressure is larger than that given by the
equipartition of energy the accretion might enter a magnetically
dominated state [43, 44]. In this work, we will however only
consider situations where the magnetic field strength is fixed by
equipartition.



relativistic close to the black hole [50, 51]. We can es-
timate the radius at which electrons become relativis-
tic by assuming that far enough from the black hole the
equipartition of energy determines the electron tempera-

ture to be [48]
1037,
~0.9m5< o ) (21)
T

At radius r < rpq = 103r,, electrons become relativistic
and the expression for the plasma density in Eq. 11 is
no longer adequate. ® As we will see in the next section,
imposing that the axion-photon conversion occurs in a
regime where the electrons are non-relativistic provides
strong constraints on the parameter space.

GMm,,
r

T

IV. AXION-PHOTON CONVERSION IN THE
BLACK HOLE VICINITY

Now that we have characterized the environment sur-
rounding the black hole, we can explore its interactions
with the axions in the cloud.

The axion-photon coupling in Eq. 10 allows axions
to decay to two photons with energies w, = m,/2 at a
rate I' = g2 m3/(647) and has been studied in the su-
perradiance context [22, 23, 53-56]. However, axions can
also be converted into photons in the accreting magnetic
field. The conversion probability per unit length typi-
cally scales as dp/dL gg,szL where L is a length scale
during which the conversion takes place and it is typi-
cally related to the magnetic field coherence length or the
width of the resonance band [57]. For the typical values
of the ISM magnetic field, B ~ uG ~ 1078eV? > m2,
the conversion process, if available, will likely dominate
over the decay to two photons even if L ~ 1/m,. Fur-
thermore, in the region where the plasma frequency is
larger than m,/2 but below m, the decay to photons is
kinematically forbidden and the conversion is the only
process allowed.

A. Toy model: Photon equation in a spherically
symmetric potential

We proceed with the explicit computation of the pho-
ton luminosity from the conversion of the axions in the
cloud.

The dynamics of photons in an accreting plasma
around a rotating black hole has been the subject of sev-
eral recent studies [58-62]. In particular, there has been
an interesting discussion about the possible development
of photon superradiance in the presence of a plasma mass.

5 The value of ¢ obtained agrees with more dedicated studies of
hot accretion flows [51, 52].

We disregard here this possibility, which has been argued
to be unlikely for realistic astrophysical accretions [60],
but rather focus on the photon free-state solutions that
will be created from the presence of an axion and mag-
netic field profiles. We follow the approach of [60] and
take the Klein-Gordon equation

[0+ w2(r)] A(t,7) = S(t,7) (22)

as a toy model for the propagation in the accreting re-
gion of the component of the photon field that is parallel
to the magnetic field A, which is the one that interacts
with the axion [57]. We also added a source term S(¢,7)
that contains the information about the magnetic field
and axion cloud profiles. We will assume for simplicity
that at the conversion point, the magnetic field is per-
pendicular to the line of sight and neglect ray-bending
effects. On the other hand, we leave the angle between
the BH rotation axis and the line of sight free.

As discussed before, one of the constraints we need to
impose is that re;¢ > 1037, to ensure the non-relativistic
behavior of the electrons in the plasma. This means that
in the region of the parameter space fulfilling this con-
dition, the conversion point will be far from the PBH
horizon and therefore we can safely take the weak field
limit of Eq. (22) [20, 28]

07 — V2 +wy(r)? (1 - % +K>] A(t,7)

= GaryOva(t, ) B(r) (23)

where V is the gradient operator in spherical coordinates.
The terms in K includes corrections to the Newtonian
potential that are suppressed by « in the non-relativistic
limit (see Appendix B of [20]). We will neglect K in the
remainder of this section.

The magnetic field has a stationary profile, therefore,
energy conservation imposes that only the mode of A
with frequency w, = ws11 ~ m, will be excited. More-
over, following Sec. 111 B, we consider that the B field has
a radial profile B(r, 6, ¢) ~ B(r) so that the decomposi-
tion of the source term in terms of spherical harmonics
only has non-vanishing coefficients for [ = m = 1 and the
created photon inherits the same angular dependence.

After decomposing the photon and the scalar field,
X = {A,a}, as X(t,7) = X (F)e”met 4 X*(7)ei™at we
then find

[—ma = V2 +wy(r)*] A(F) = £(7) (24)

where we have defined f(7) = —imggay-a(7)B(r).

In Appendices B and C we solve in detail the differen-
tial equation 24 and summarize here the main findings.
After decomposing the solution in spherical harmonics
and applying the method of variation of parameters, the
behavior of the solution for A at r — co can be written
as

ei@(koor)
A(F) — Yll(f)iki’r‘/fll(r/)F(T/)r/dT/ (25)



where 6 is a phase such that 0,6(r — oc0) = ke with

hoo = b

f11(r) the projection of f(7) over the spherical harmonic
Y11(7), and F(r) the homogeneous solution of Eq. 24
that we find, using WKB methods, to be given by Eq.
C12. The factor of ks dividing in Eq. 25 arises from the
modulation of the outgoing wave due to the non-constant
plasma mass [4]. This factor would have been missed if
we had reduced Eq. 24 to a first-order differential equa-
tion.

The time-averaged luminosity in the radial direction
is related to the Poynting vector E x B of the outgoing
wave, where E is the electric field, and at infinity it is
given by

ix) = ()

Therefore, the average photon luminosity per unit solid
angle simplifies to

m2 — w2 . the photon momentum at infinity,

(0, A(t,7)0, A(t, 7))
= 2Re(ima A(7)* 0, A(F)) . (26)

<;”;> — Sk | AP (27)

where we have used the fact that the plasma frequency
asymptotes to a small constant value at the Bondi radius,
Using Eq. 25 we then find

dpP N
(f) = MO Tt
2

/B(T/)Rgl(T/)F(T/)T/d’I"/ . (28)

X

where N is the total number of axions in the cloud given
in Eq. 6.

In appendix C we compute the remaining integral. We
find that if perit = Mg Terie > 1, most of the support of the
integration comes from a region around the critical point,
7~ Terit With width AL ~ pir/ii, where the homogeneous
solution behaves like an Airy function. For r < 7t
the photon mass is bigger than the axion energy and
the conversion is kinematically blocked whereas for r >
rerit the homogeneous solution oscillates quickly and the
integral is also strongly suppressed.

Furthermore, if the condition 4p§r/i:: /13 = 20paric| 2 1
is verified, both the magnetic field and the radial wave
function are approximately constant around the conver-
sion window thus allowing to simplify the expression for
the luminosity to:

P o Mg rgri
<d§2> (’F) = 7n0rit Tgt(L Gar~y Bcrit)2
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X
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where n = 7i/a} = N|Ra1(rei)Y11(7)|? is the number
density of axions at the critical radius, Bt is the value
of the magnetic field at the critical radius and we have
normalized quantities to typical values in the hot ion-

ized medium. We have also defined L = /7 /wy,(rerit) =

AT perit/3 which is sometimes called the width of the
conversion region although in this context we find a
smaller conversion width of AL o L?/3. We also veri-
fied numerically that the analytical approximation gives
a good estimation of the total luminosity.

B. Results

Figure 2 shows the luminosity emitted from the axion-
photon conversion, using Eq. 29, for different values of
the QCD axion and PBH masses and for two different me-
dia in which the PBH accretes: the hot ionized medium
and warm ionized medium.

When restricting to parameters below the gray band,
we find luminosities as high as 107 W for PBHs with
masses around 1072Mg and QCD axion masses around
1072 eV when the accretion happens in the hot ionized
medium. For and accretion in the warm ionized medium,
we find instead 1012 W for PBH masses around 10~° M,
and QCD axion masses around 10~7 eV. The gray band
is the region where the electrons in the accreting plasma
are relativistic at the conversion radius (c.f. Eq. 21) and
therefore the expression for the plasma mass in Eq. 11
is no longer valid. We do not expect a dramatic change
when entering the relativistic limit, given that the plasma
mass does not change significantly, but it would require
a dedicated computation that goes beyond the scope of
this paper.

In Fig. 2, the most luminous region lies around the
cyan line which corresponds to the cases where the con-
version radius coincides with the average position of the
cloud 7t = r and requires

12 3/2
) (100 km/s) o2 (30)

v

Ma ( Noo
10-7 eV~ \10-3 cm—3

We have also restricted the parameter space by the
constraints in Egs. 8 and Eq. 12 that ensure, respec-
tively, that superradiance happens and within the life-
time of the universe, and that the emitted photons can
escape the accreting region and propagate throughout
the medium. To have an analytical solution we also had
to require that pcit > 1. Note that all these constraints
are independent of the axion-photon coupling.

As we move to larger a, we expect other effects to be-
come important. Namely, as QCD axion mass increases

= M 8 22 both the cloud and the critical radius become closer to
8 x 109 a Nerit BH ( Mg ) 3
N 10—2Mg 10-9 eV

)4 W, (29)

the PBH and gravitational corrections to Eq. 23 will
start becoming important. On the other hand, around
the cyan line, as we increase a at some point the mag-
netic field generated from the conversion becomes larger



Hot ionized medium

T T T . .
Ne = 1073 cm3
v = 100 km/s Log[P], Watts
a=1 ]
12.5
) 10.0
7.5
5.0
25
0.
-4 -3 -2 -1 0 1 2

Log[M/M,]

Warm ionized medium

T

3

Ne, =0.2cm™
v =10 km/s
a=1

Log[P], Watts

10

Logim, / (107° eV)]

Log[Mgn/M,]

FIG. 2. Luminosity from the resonant conversion to photons of QCD axions in a superradiant cloud for typical values of the
hot ionized medium (left plot) and warm ionized medium (right plot) and for a spin parameter a close to one. The cyan line
corresponds to when reit = 7. Inside the gray region, the electrons in the plasma become relativistic at the critical radius.

We have also fixed ¢y =1 in Eq. 10.

than the original one from accretion and the system is ex-
pected to enter a magnetically stimulated regime that we
discuss in Appendix E. However, for the media considered
in this work, the gravitational effects and the stimulated
regime are only relevant inside the gray region and we
therefore neglect them in the rest of the analysis.

Finally, to the right of the dotted white line, 4p§r/§/|3—
2aperit] < 1, the magnetic field and the axion profile
start varying significantly around the resonant point and
Eq. 29 is no longer valid. In this regime, we calculated
numerically the luminosity using Eq. 28 and verified that
the luminosity is still much suppressed compared to the
region around the cyan line.

V. DETECTION PROSPECTS AT RADIO
TELESCOPES

In this section, we study the prospects of detecting
the signals studied in the previous section with the radio
telescope.

The frequency v of the photons emitted from the con-
version is related to the mass of the non-relativistic ax-
ions in the cloud:

Mg

1/:—20.24( Ma

_ Mo\ MHz. 1
o 10-9 eV) z (31)

However, the requirement that the electrons in the
plasma are non-relativistic at the conversion radius (see
Eq. 21) requires, for the hot ionized medium, that
me < 1079 eV and so a maximal photon frequency

of approximately 0.2 MHz which is hard to measure
with Earth-based telescopes because of the ionosphere

screening at 10 MHz, although space-based radio tele-
scopes might allow to go beyond this boundary [63, 64].
Nonetheless, for the warm ionized media the bound is
weaker, Vmax < 100 MHz, thus leaving open the possibil-
ity of detection with radio telescopes. In particular, at
these low-radio frequencies the radio telescope LOFAR is
the one with the best sensitivities and we therefore pro-
ceed with a dedicated study of detectability with LOFAR
(26, 65].

The relevant quantity for radio observations is the flux
density that is related to the luminosity emitted per solid
angle computed in Sec. IV by

1 dP
T d2Av dQ
where d is the distance to the source, and Av is the
typical width of the signal which is related to the vari-
ance in the effective velocity of the axions in the cloud
Av/v ~ (v4) = a/2 [22] since the relative velocity be-
tween the BH and the medium is much smaller than «/2.
Regarding the typical distance to the closest PBH (d),
from Fig. 2, we concluded that photon emission is mostly
efficient for PBH with subsolar masses, between 1076 —
107! Mgy depending on the medium. In this range of
masses, the PBH cannot account for all the dark matter
but can still account for a fraction fpgy = 1 — 10% of
the total [66]. By fixing fppu we can then estimate the
typical distance to the closest PBH to be

(32)

1 M 1/3
d = /3 ( - ) (33)
JpBH PDM

NpBH

01 \/3 Mex >1/3
0.33 [ —— _ i 34
<fPBH) <1O5M® y o B
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FIG. 3. Parameter space (QCD axion mass vs PBH mass) where the emitted photons lie in the frequency band of LOFAR and
i) satisfy the superradiant constraints as in Fig. 2 (Blue region) and ii) can be detected at LOFAR with 8 hours of observation
time (Red region). We fixed the PBH fraction to fpgu = 0.1, with spin parameter @ = 0.1 and close to 1 and assumed the
closest PBH to be accreting from the warm ionized medium with densities of no, = 0.2 and 0.5 cm™2 and a relative velocity
of v = 10 km/s. The angle between the BH rotation axis and the line of sight was fixed to m/2. The dot-doshed line is the
corresponding border for /8. Inside the gray region, the electrons are relativistic at the conversion point. We also fixed ¢, =1

in Eq. 10.

where nppy is the number density of PBH. We fixed
the dark matter density to the local value ppy = 0.36
GeV/cm?® [67] and assumed the PBHs to be roughly uni-
formly distributed within this region. It is then likely
that the closest PBH is within our Local Bubble which is
characterized by low densities and large ionization frac-
tions [68]. Then, using the previous equation and the
luminosity calculated in Eq. 29 we find that, for some
benchmark values of the parameters, the flux density S
in Janksys that is expected from the axion-photon con-
version is

- 2/3 4
i 100 km/sec
— 954 % 10 & Nerit fPBH
S 54 x 10 a< N 01 ”

( Noo )4/3 Mgy \ ' ( mq )13/3 J
X —_— .
10— cm—3 M., 10-9 eV Y

(35)

Let us now compare this value with the sensitivity reach
of LOFAR that is currently formed by an array of 52
stations spread across northern Europe. FEach station
has low and high-band antennas; the low-band ones are
sensitive to frequencies in the range 10 — 90 MHz that we
are interested in. The minimum energy flux that a given
station can detect is given by the radiometer equation by

26, 65]

2kB Tsys

— (36)
AcaVAVAL

Sstation =

where kp is the Boltzmann constant, Ty is the noise
temperature of the system, Aqg is the effective area,

and At the observation time. For LOFAR, we take
the fiducial values Tyys = 60(\/(1 m))?® Kelvin, and
Acg = 48)%/3, where )\ is the wavelength of the signal
[26]. In the case of an array of N = 52 stations, the
sensitivity is

2k 5 Ty
Ae\/2N(N — 1)AvAt

(37)

Sarray =

which in terms of our model parameters corresponds to

Mg\ (1072 eV >® /8 n\ /2
Sarray - 23<MBH> ( My ) Kt mJy . (38)

We then perform a sensitivity analysis where we look
for the parameter space where the flux density emitted
by the axion-photon conversion in Eq. 35 is larger than
the sensitivity levels of LOFAR in Eq. 38, with typical
observation time of 8 hours.

The results are shown in Fig. 3. The red region is the
range of PBH and QCD axion masses where the signal
can in principle be detected at LOFAR with a dedicated
analysis. In the innermost part of the red region, the flux
density is rather large and the signal can be detected with
high significance. In each plot, the red region is enclosed
by the blue band which corresponds to the range of pa-
rameters where the emitted photons lie in the frequency
band of the LOFAR low-band array while satisfying the
superradiant constraints as in Fig. 2. Inside the gray
region, the electrons in the plasma are relativistic at the
conversion point and so outside the range of validity of
the expressions we used.




In the analysis, we fixed the velocity parameter to v =
10 kmm/s and the PBH fraction to fpgg = 0.1. We have
also chosen an angle between the line of sight and the
rotation axis of the BH of 7w/2 but showed the results for
another representative value of 7/8 (dot-dashed curve).
We then considered two different values of the medium
density, neo = 0.5 cm™> and 0.2 cm™3, typical of the
warm ionized medium, and two different values of the
initial PBH spin, @ = 0.1 and close to 1. Note that by
decreasing a the superradiant condition o < a/2 becomes
stronger and therefore the allowed parameter space is
smaller. In particular, for @ = 0.01 the parameter space
is too narrow and there is no detectable region.

The red region in Fig. 3 corresponds to PBH masses
around 107 — 107* M. Coincidently, this range of
PBH masses is within the range that can explain the
ultra-short-timescale microlensing events measured by
the OGLE experiment (see Fig. 8 of [27]).

VI. DISCUSSION AND OUTLOOK

The main outcome of this work was to show that the
QCD axion can illuminate the vicinity of PBH with sub-
solar masses and that if the latter amounts to 1 — 10%
of the total dark matter abundance the resulting signals
could be detected at radio telescopes such as LOFAR.

The mechanism relied on two main ingredients, super-
radiance and the accretion onto the PBH. On one hand,
the superradiant instability dynamically creates a dense
cloud of axions around the PBH and therefore our results
do not assume an initial QCD axion profile. On the other
hand, the accretion of the interstellar medium ensures the
presence of a critical radius, where the QCD axion mass
and the effective plasma mass are equal, and therefore
where the resonant conversion can occur. As explained
in section III, we used a model of Bondi accretion and
assumed that the plasma behaves non-relativistically in
the relevant region for the axion-photon conversion. This
condition is fulfilled far away from the Schwarzschild ra-
dius, which allowed us to also neglect gravitational cor-
rections.

To compute the luminosity that results from the con-
version, we considered in section IV a Klein-Gordon-like
equation for the component of the photon field parallel
to the external magnetic field, which is the one that in-
teracts with the QCD axion. For simplicity, we assumed
this magnetic field to be perpendicular to the line of sight
in the relevant region for the conversion, and neglected
ray-bending effects. We also neglected self-interactions
and backreaction in the QCD axion cloud. The former is
justified by the fact that we restricted to subsolar PBHs
with masses such that self-interactions are only relevant
above the QCD axion line [20]; the latter because of
the restriction to non-relativistic plasmas at the conver-
sion point that enforces that the interesting magnetically
stimulated regime that we discuss in Appendix E, where
the produced magnetic fields are larger than the original

ones, does not happen.

In solving the photon equation for finding the lumi-
nosity of the system we solved the second-order photon
equation instead of reducing it to a first-order one, which
is common practice in the literature. We found that, un-
der two simplifying assumptions that hold in the most ef-
ficient part of the allowed parameter space, i.e. when the
critical point and the most populated part of the super-
radiant cloud are not far from each other, most photons
are produced around the critical radius. These simplifica-
tions, also allowed us to arrive at an analytical expression
for the luminosity in Eq. 29 that is similar to that in the
axion-photon conversion literature.

The resulting luminosity of the process was shown in
Fig. 2 for different interstellar media. In the conservative
region of the parameter space, we found luminosities as
high as 102 W for an accretion from the warm ionized
medium. These high luminosities confirmed our hypoth-
esis: even if the magnetic field in the ISM is very weak
when compared with the magnetic fields around neutron
stars or magnetars, this is highly compensated by the
huge amount of QCD axions generated by superradiance.

Finally, in section V we studied the possibility of di-
rectly detecting the emitted electromagnetic signals with
existing radio telescopes. We considered the low band
antenna of the LOFAR telescope, which is the one with
the best sensitivity in the conservative region of our
parameter space, and found that PBHs and QCD ax-
ions in the mass range between 107° — 10~* My and
4 x 1077 — 4 x 1078, respectively, could potentially be
detected (see Fig 3). Interestingly, this region coincides
with the range of PBH masses used in [27] to explain
some microlensing events observed by the OGLE exper-
iment. This is a clear motivation to look for further evi-
dence in the LOFAR data.

This work has left a few interesting avenues that we
believe will be interesting to pursue in more detail in the
future. We focused on the possibility of directly detect-
ing the light coming from the closest PBH but it would
be interesting to study the stochastic signal that would
be produced by the cosmological PBH population. It
would also be interesting to extend the results to accre-
tion models that account for angular momentum as the
advection-dominated accretion flow [51], and to explore
the possibility of large magnetic fields via the Blandford
instability [43]. On the other hand, although we have
restricted to cases where the plasma is non-relativistic
around the conversion radius, we do not expect signifi-
cant changes in the plasma mass in the relativistic case
and therefore the prospects that we find in this work
likely extend to the relativistic region. Moreover, this
would allow signals at larger frequencies that could be
probed at other radio telescopes. Finally, the methods
we developed are directly extensible to axion-like parti-
cles (ALPs), which opens up the parameter space since
the mass and the coupling are not correlated.
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Appendix A: Components of the interstellar medium

Table 1: Components of the interstellar medium and reference values for some of their properties.
Adapted from [30, 32, 42, 69].

Temperature Density Sound speed | Ionized fraction
Component _3
(K) (em™") (km/sec) Te
Molecular clouds 10 — 50 102 — 108 0.6 1077 —-107¢
Co'ld neutral 100 30 10 10-3
medium (CNM)
Al
Warm neutral 5000 0.2 0.5 10 0.1 (AD)
medium (WNM)
Warm ionized 10 02-0.5 10 1
medium (WIM)
Hot ionized 109 1073 — 102 100 1
medium (HIM)

Appendix B: Method of variation of parameters

In this appendix, we provide the details that allowed us to arrive at the asymptotic solution for the field A(t,7) in
Eq. 25 using the method of variation of parameters. Starting from Eq. 24

(=ma = V2 +wp(r) A(F) = £(7), (B1)
and after decomposing the source f(7) and A(7) in spherical harmonics, we arrive at:

I(1+1)
’I“2

O (rAim(r)) + |mg — wp(r) — (rAim (r)) = =7 fim (r) (B2)

where A, (r), fim(r) are respectively the projections of the field and the source over the harmonics.

Since wp o is a non-zero constant, the homogeneous solutions of Eq. (B2) are Fj(r), Gi(r) ¢ such that F(r —
00) = co8(0;(koor)) and Gy(r — 00) — sin(b;(keor)), with k2, = m?2 —w? , where 9,6, — koo when r — oo. For
convenience, in the following, we choose F; and H;(r) = Fj(r) + iG)(r) as the pair of independent solutions. Then,
the particular solution of B1 can be written as

) ) [ i)
L W) A W, )

Alm (T) = Fl (r)

F(r") dr’ (B3)

6 Eq. (B2) does not depend on the angular number m, so for each mode the homogeneous solutions depend only on 1.
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where W(F;, H)) = Fi(r)H|(r) — F/(r)H;(r) is the Wronskian operator. The constant limits of integration are
arbitrary; here they have been chosen to fix initial conditions. For r — oo, we fixed the solution to behave like
Hy(r)/r =€) /r and for r ~ 0 as Fy(r)/r. The choice of F; rather than G is related to the fact that, as can be
seen in the next appendix, lim,_,q Fj(r) = 0; this is a sensible initial condition since in our setup the plasma mass is
very large at small radii and the conversion into photons becomes kinematically forbidden.

In general, the Wronskian for two solutions ¢, ¢2 of a second order differential homogeneous equation without
first-order term ¢f 5(r) 4+ p(r)d12(r) = 0, like Eq. (B2), is constant. Using this together with the fact that the
Wronskian is a multilinear operator, we can find its value to be:

W (F, Hy) = iW(F;,G;) — iW(cos 0)(keoT), sin 0 (koot)) = koo - (B4)

In the end, we are interested in the luminosity at infinity, so we substitute the asymptotic expressions in Eq. (B3)
and find

eiel(koo'r)
App(r > 0) = ———

/000 r fim (P E (7" dr' . (B5)

koot

The asymptotic expression for the photon field is A(7) = ;.. Yim(#)Apun. In our case, the source only has non-
vanishing contributions for [ = m = 1, so the asymptotic expression further simplifies to

eial (kooT)

A(r) — Yu(f)W

/000 7 fon (P F (r") dr’ (B6)

with radial derivative 9, A(7) = ik, A(7), where we used that 9,.0;(kr) — k and neglected terms proportional to 1/r2.

Appendix C: Solution of the homogeneous equation

In appendix B we derived the general formula for the luminosity in terms of a convolution of the homogenous
solution of the differential equation with the source term. Now we proceed with the derivation of the homogeneous
solution Fj(r) of Eq. B2. We start by rewriting the differential equation in terms of the adimensional parameter
p = mgr as

5 (F(p)) + k(p)*F(p) =0 (C1)

where l;:(p)2 =1— (perit/ p)3/ % is the effective momentum in units of m,, we neglected the small angular momentum
contribution (and for that reason we drop the subindex 1) and defined peris = Marerit-

We can now use the WKB method to find the solution of the equation of motion for both large p > p.is and small
p < Peris- In the intermediate region, p ~ perit, where the WKB approximation does not hold, we will instead Taylor
expand the effective momentum & and look for exact solutions that we then match to the WKB regimes for large and
small p.

a. P> Perie: When p > perip the general WKB solution is given by

1 P

o= [ (e

k(o' )dp' — 7r/4] + ag sin { k(p)dp' — w/4D , P> Perit- (C2)

Perit Perit

The lower limit of integration and the 7/4 phase are taken for convenience. In app. B we required F(p) — cos(6(kr))

as 7 — 00, so we need to set az = 0 and a; = Vkoo.”
b. |p— perit] € L? /(2m): The WKB approximation breaks down around the resonant point p = perit. To find a
solution in this regime we Taylor expand k(p) around perit to first order,

B ~ 20— o) (©3)

7 Actually, F is an exact solution of C1 for p > p; where p;, is the value of p at the Bondi radius where the momentum approaches a
constant, k — koo /Mg .
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where L = Mg /W/w;,(pcrit) = /4T perit/3 is the width of the critical region in units of m, (the derivative is taken

with respect to r). We then obtain the differential equation:

2

2 _
OF(F(p)) + 33 (0 — pest) Fp) = 0 (c4)
whose solutions are Airy functions
.\ —1/3 o\ —1/3
| [P / e | [ LR / 79
F(p) = b1 AiryAi o (Perit — p) | + b2 AiryBi o (Pexit — P) | lo — perit| < L7/(2m)  (C5)

and by, by are integration constants.
To find these constants we match the solutions for F' in the overlapping region of validity of both branches which

. s 1/3 ~
is when L?/(27) > p — perit > <L2/(27T)> . Namely, the Taylor expansion of k(p)? in C2 yields

o\ 1/4
- [ L? - 2v2m
Floh~ ke <27T) (p = pese) /% cos [ i = ) - w/4] , (c6)
which we then match to the asymptotic expansion of Eq. C5 for p > perit
)" 21/2 2/2r
_ T . m
F(p) =~V (27r) (P = Perit) 14 (bl cos |:3Z/(pcrit - P)3/2 - 7T/4] — by sin |:3I~/(pcrit - 0)3/2 - 7T/4]

(C7)

to find by = 0 and by = /7keo (L2/(27))/6.
c. p<perit: Finally, we look at the region where p < peit. The general WKB solution is

Flp) = (e B [ [ 110 | 42 B0 |- [" N ]) o< (cs)

k(o)
The integration limits were chosen for convenience, and ¢y, co are integration constants that we again fix by matching

- _ 1/3
Egs. C5 and C8 in the common region of validity, i.e. L?/(27) > peit — p > (LQ/(QW)) . Namely, we match the

- 1/3
expansion of Eq. C5 for pei — p > (Lg/(27r))

= ~ 1/4
Vkeo [ L? _ —2V/2m
F(p < pcrit) - () (pcrit - P) 1/4EXP

= (pcrit - p)3/2‘| ’ (Cg)

2 2m 3L

where we used the values of by, bs found before, with the Taylor expansion of Eq. C8 close to the critical radius,
7. 27 1/2
|k(p)| ~ (ﬁ(ﬂcrit - P)) )

.\ 1/4
L? —2V27 .
F(p < perit) ~ ¢1 <2> (Perie — p) " /*C T Exp | ——5— (perit — p)m] : (C10)
T 3L
where ¢y was fixed to zero and
Perit 2ﬁF(7/6)
C=Exp |- k(p)|dp'| = Exp | — " perit | C11
Xp[ /0 (p)lp] Xp{ /3 e (C11)

and find ¢ = C/ 12300/2. Note that lim, ,oF(p) = 0, consistently to what we imposed in Appendix B. ®

8 The WKB approximation breaks down when p ~ 0. In that limit, the exact solution, which can be found exactly using k2 ~ (perit /;))3/27
is a Bessel function that also fulfills the requirements of F},.
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We can now put all the solutions together to find the complete solution for F(p)

C ];oo /p PN /:|
- ~7EX k d b < CI‘i
2\/‘k(p)‘ p[o |k(p")|dp P < Perit

F(p) = 7T]:/'oo(27T)71/6111/3AiryAi ((277)1/3[~’72/3(pcrit - p)) ’ |p - pcrit| < EZ/(27T) (012)
];Ioo L / /
——— CoS k(p")dp' — /4 sy P> Perit
k(P) Pcrit

Appendix D: Analytical computation of the luminosity

In this appendix, we derive a simplified formula for the photon luminosity that results from the axion to photon
conversion and elaborate under which conditions the formula applies. From Eqs. 25 and 27, the expression for the
luminosity emitted per solid angle is

P 2 , sl
(G) =M g | [ B RaOF6 e (D1)

For p < perit (recall that p = m,r) the homogenous solution F(r) is exponentially suppressed if peit > 1, so we can
neglect this contribution to the integral. Similarly, the region p > peir can be neglected due to the highly oscillatory
behavior of F(r). Therefore, the main contribution to the luminosity comes from the region |p — peris| < L2/ (27),
i.e. from the region around the resonance mg >~ wp(Terit)- 9

However, we can further simplify the integral by noting, as we will do next, that in the cases of interest most of
its support is in an even smaller window of size proportional to L2/3 which is parametrically smaller than the typical
scale of variability of g(p) = B(p)Ra1(p)p around peie which is

4 .
<1 < |p— ponit| < ——boit (D2)

‘ G (Perit) (P — Perit)
|3 - 2apcrit| '

Q(Pcrit)

To verify that, we will approximate g(p) ~ const. and then check by inspection under what conditions the remaining
integral has most of its support in a region smaller than Eq. D2. Following these steps, we find that

/pf F(p')dp' = %ﬁi 1o eans + 1 (- 2(CA )3/ (D3)

0 2 2/m(cAg)3/4 NECONEE 4 3\

where ¢ = (3p2,/2)"/3, Ao = (1 — po/peit), Af = (pf/peric — 1). Whenever cAg, Ay > 1 or, correspondingly, when
1/3

the integration window is |ps — po| > polii = (3L2/(4))/3, the integral becomes insensitive to the integration limits

and simplifies to

crit

Py koo =
[ Feas =[FL (D4)
Po 2

Therefore, the support of the integral is inside the region in Eq. D2 where the function g(p) is approximately constant,
if

4pcrit 1/3
‘ 3 — 22; it Z Cr/it . (D5)
Cri

If this condition, together with pet > 1, is fulfilled, then we can further simplify Eq. D1 and find
2

L a Bcri 2
/F(r’)dr’ ~ My Nerit rftit% (D6)

dP 2 m?
<dQ>:|Y11(7”)|2 T Gy Blra N R (reie) sy

9 Numerically we verified that for pcrit > 5 and o within the range of interest, the region around the resonance dominates over the others.
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where he have defined ne.it = N Roq (7“Cm)2 and used Eq. D4. Interestingly, this last term is reminiscent of the standard
expression for the axion-photon conversion probability [57]. This might not be surprising as we have concluded that the
magnetic field and the axion cloud are approximately constant in the conversion region and therefore the conversion
becomes closer to the more standard processes studied in the literature.

Note that the fact that the luminosity at infinity does not depend on the momentum at infinity can be counter-
intuitive. However, one should take into account that the energy released at conversion is fixed: the evolution in the
plasma mass afterward does not change the flux. Taking the particle perspective, a change in the photon mass can be
understood as a change in the number of photons. Conservation of energy implies that the energy flux is the same.

Appendix E: Magnetic stimulation and cloud quenching

The photons converted from the axion cloud will themselves generate an electric and magnetic field. When this

new induced magnetic field Bj,q becomes comparable
(| Bina(r)|?) ~ B*(r) (E1)

with the background interstellar magnetic field B that generated the axion-to-photon conversion in the first place (the
brackets denote a time-average) the system is expected to enter a magnetically stimulated stage where the conversion
rate could grow very fast, in a snowball effect, analogously to other stimulation effects that have been studied in the
literature (e.g. [22, 23, 55]) even though here the process is initially linear, one axion converts to one photon.

To understand the region of parameters where this might happen we estimate the induced magnetic field as

aasﬁcrit k(r)?
2 k2

(Bualr)F) = 20 ()] ~ (g0 B L) (82

where we have used the fact that the conversion is highly dominated by the dynamics around the critical radius, and
therefore the field A(t, 7) will behave like Eq. 25 shortly after that point, and assumed Eq. 29 to be satisfied.

The maximum value of the previous expression takes place at the maximum of k(z)2/2? is, with = p/perit, and
turns out to be >~ 0.2, at p ~ 1.45p.,3t. Then, to be sure that the stimulated resonance does not occur, we impose

<Bg§|2>]

0.2mg (garyL)? -

max |: 9 crit|9:ﬂ./2 <1 (E3)
where we chose an angle of /2 since |Y7;|? is maximized in that direction. Note that if the radius at which the ratio
is maximized lies outside the relevant interval for conversion, the axion-photon conversion might not be affected by
the magnitude of | Binq|?. For this reason, Eq. E3 is not an exact characterization of the magnetic stimulation, but
rather a conservative bound to ensure that such stimulation does not occur.

Although this regime might be the one leading to the largest observable signatures, as it might lead to an explosion of
the cloud into photons, to have a robust understanding of what happens beyond the threshold of magnetic stimulation
we would need to backreact the effect of the cloud on the dynamics of the accretion. Moreover, this constraint is
weaker than that coming from imposing the electrons to be non-relativistic at the conversion radius. Therefore, we

conservatively discard it in the main text.
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