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Abstract

This thesis is about probing gravity on cosmological and astrophysical scales. It also
includes a discussion of an indirect probe of dark matter. It is a collection of projects
that are fairly independent. However, gravitational physics plays an important role
in each one of them.

In the first half of the thesis, we concentrate on cosmological scales. We provide a
kinematic prescription for constraining the accelerated expansion of space. Then, as
a more detailed investigation into the cause of this accelerated expansion, we provide
a scale-dependent framework for probing the dynamics of gravitational and matter
perturbations on linear, sub-horizon scales.

In the second half, we move to smaller, astrophysical scales. This half includes
two independent projects. First, we investigate the effects of relativistic dark matter
on the dark matter density profile and the self-annihilation flux from the Galactic
center. Second, we propose the existence of quasi-stationary, spiral density patterns

in accretion discs around black holes.
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Preface

Our understanding of gravitation has come a long way since the proverbial apple fell
close to Newton. From Newton’s force laws to a description of gravity in terms of
spacetime curvature, our understanding of gravity has repeatedly challenged our view
of the cosmos. We have moved on from pondering the perfect shapes of planetary
orbits to questions about the past, present and future dynamics of the entire universe.
That we have a theory, Einstein’s general relativity (GR), that allows us to sensibly

ask these questions is remarkable.

Within GR, spacetime becomes a malleable, swirling, fluttering entity with all
forms of energy democratically controlling and responding to its variations. Based
on the Principle of Equivalence, GR, with its geometric description of gravity is both
powerful and elegant. Yet, it is this very description that puts it at odds with what
we currently understand of the the rest of fundamental physics. The strong, weak
and electromagnetic interactions take place in the arena of spacetime. Gravity is
this arena itself. All known fundamental interactions find a description and a (likely)
unification in terms of quantum fields. Gravity, as yet, does not. With our current
understanding, besides gravity, none of the interactions care about the absolute energy
scales in the problem. This difference is leading us to another paradigm shift in our
view of the physical world.

Our understanding of gravity has led us to triumphant solutions of long-standing
problems in the weak-field limit (GM/Lc* ~ 107°, where M and L are the character-
istic mass and length scales and G is Newtons gravitational constant). The perihelion
shift of Mercury was one such solution. It has also led to some unnerving predictions,

such as the existence of black holes in the strong field limit. It has enabled us to weigh
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the universe without seeing it, leading us to infer the existence of large amounts of
dark matter on astrophysical and cosmological scales. Viewing our universe on the
grandest of scales, GR is providing us a glimpse into the nature of nothingness.

In the weak-field limit, GR has been tested against a wealth of observations on
solar system scales. However, it is more poorly constrained on astrophysical and cos-
mological scales. This thesis is about probing gravity on cosmological and astrophys-
ical scales. It also includes a discussion of a probe into the nature of dark matter. It
is a collection of projects which are fairly independent; however, gravitational physics
plays an important role in each one of them. The two chapters following the Introduc-
tion (Chapter 1) are about probing gravity on cosmological scales. Chapter 2 deals
with the background, homogeneous universe. It provides a kinematic prescription for
constraining the expansion history of the universe. Chapter 3 provides a framework
for probing the relationship between the cosmological metric and matter fluctuations.
In Chapters 4 and 5, we leave the realm of cosmology and move to more astrophysical
phenomenon. In Chapter 4, we investigate the effects of relativistic dark matter at
the Galactic center on the density profile of dark matter and the self-annihilation flux.
In Chapter 5, we propose the existence of quasi-stationary spiral density patterns in
accretion discs around black holes.

The bulk of the thesis (each chapter) is composed of already published (or ac-
cepted for publication) work. The published papers were written in collaboration
with various co-authors. None of the papers would have been possible without their
guidance, insight, effort and enthusiasm. In addition to these papers, I have added
a number of appendices at the end of each chapter. These are not yet published.
Some serve a pedagogical purpose, some provide a collection of results that might be
of future use, and some provide a concentrated effort in a particular direction that
would have otherwise taken us too far from the main body of the chapter. They do,

however, form an integral part of this thesis.
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Chapter 1
Introduction

This introduction is meant to provide context, motivation and a brief historical back-
ground for the chapters to follow. A more detailed introduction to the ideas relevant
for the chapters, including a survey of related works in the literature can be found
at the beginning of each chapter. Below, we provide a combined introduction for

Chapters 2 and 3 and individual ones for Chapters 4 and 5.

1.1 Probing gravity on cosmological scales

Modern cosmology began in 1915 with Einstein’s general theory of relativity [1].
Within general relativity, it became possible to address the questions of the dynamics
of the entire universe and its dependence on the universe’s constituents. From 1915 to
1929, Friedmann, Lemaitre, Einstein, de Sitter (amongst others) all played their part
in cosmological model building. The cosmological constant was introduced, discarded

and reintroduced.! Models that were static, collapsing, expanding, bouncing and

IEinstein introduced it for two reasons. First, based on Mach’s ideas, Einstein considered it
an unwanted characteristic that his field equations should admit a solution without matter. He
(erroneously) believed that his field equations with a cosmological constant would not admit a
solution without matter. The second reason was the desire to have a static universe (consistent
with observations at the time). After Einsteins initial introduction of the cosmological constant,
it was reintroduced for different reasons by other cosmologists. Lemaitre, investigated the effects
of the cosmological constant on the expansion history [2]. He even suggested its connections to
vacuum energy [3]. Eddington, strongly supported its inclusion on grounds that it represented a
necessary length scale for cosmology. Initial measurements of the contemporary rate of expansion



CHAPTER 1. INTRODUCTION

accelerating were proposed and investigated. With Hubble’s characterization of the
distance-redshift relation of receding nebulae in 1929 [5], an expanding universe came
to be accepted. Yet the detailed description of the expansion history would have to
wait more than six decades. Open, closed, and flat universes were all possible. Our
understanding of the various components that make up our universe was shaky at
best. As early as 1933, based on the large velocity dispersion in clusters, Fritz Zwicky
had pointed at the missing mass problem [6]. Assuming a universe that started in a
hot, dense and singular state (the big bang), big bang nucleosynthesis (BBN) was able
to correctly predict relative abundances of the light elements in our universe [7, §].
However, it was not until the cosmic microwave background (CMB) was measured
by Penzias and Wilson [9] that we gave up on the notion of a steady state universe
where matter was constantly regenerated. This was the status of cosmology before
the 1980s.

Today, we are in a rather different position. In the last two decades cosmology has
undergone a revolution. The journey from a speculative science to an observationally
driven field has been nothing short of spectacular. With the discovery of the cosmic
microwave background, a universe with a hot, dense and homogeneous past has come
to be accepted. We have not only measured an almost perfect black-body spectrum
of this radiation but have mapped out fluctuations in its temperature at the level of
one part in 105 [10, 26]. The contemporary expansion rate has been measured to a
few percent level accuracy [3].

Despite this incredible progress, the last two decades have also brought forth some
unexpected challenges. The uniformity of the cosmic microwave background has led
to questions about acausal correlations in the sky (the horizon problem). We need
a mechanism for explaining the almost scale-invariant fluctuations in the cosmic mi-
crowave background. Observations of the rotation curves of galaxies, the temperature
of the gas in galaxy clusters, the galaxy velocities in clusters and gravitational lensing
are forcing us to introduce a new, non-standard model component (dark matter) that

interacts with the rest of the universe mainly through its gravity. In addition, the

of the universe pointed towards a universe that was younger than the stars in it. The cosmological
constant also helped in alleviating this problem. A more detailed historical account can be found in
[4].
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observed amount of structure in our universe requires dark matter to aid gravitational
instability. Finally, there is the unexpected discovery (1998) that the expansion of

our universe is accelerating [2, 1].

From a theoretical perspective, the above challenges have been addressed with
varying levels of success. The inflationary paradigm [15] that arose in the 1980s out
of a desire to solve the monopole problem, ended up providing an explanation for the
horizon problem, explained spatial flatness and also provided a mechanism for gen-
erating (almost) scale invariant density fluctuations. Despite its success, connecting
the cause of inflation to the rest of particle physics has yet to be fully accomplished.
The requirement of a non-baryonic component is satisfied by WIMPs (weakly inter-
acting massive particles) arising naturally in super-symmetric (SUSY) extensions of
the standard model (see [16] for a review). One should keep in mind though, that we
have yet to detect any SUSY particles. Finally, cosmic acceleration can be explained
by once again introducing a cosmological constant into the Einstein field equations,

but its connection to particle physics is far from clear (see [18] for a review).

The inflationary paradigm for the very early universe and a contemporary uni-
verse dominated by dark matter and cosmological constant has become the standard
model of cosmology. It is consistent with all observational data. However, one should
also bear in mind that none of these components (inflaton, dark matter, and cosmo-
logical constant) has been probed by non-gravitational means. Given the profound
implications of this standard cosmological model, one should be cautious in claiming
it as a unique physical description of our universe. It is natural to consider whether

alternatives to the standard model could explain the observations equally well.

At the present, no alternatives provide a significant advantage over the standard
model (which we will refer to as ACDM from now on and concentrate on late times,
z < 1000). In particular, all attempts at removing dark matter from the standard
model have met with very limited success. Usually, additional clustering fields need
to be reintroduced, which essentially introduce dark matter. Thus, for the purpose
of this thesis, we will assume the existence of dark matter. For explaining cosmic

acceleration, a number of alternatives to the cosmological constant (for example,

3
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quintessence, extra dimensions, etc.) have been proposed. A few words of caution re-
garding these alternatives are in order. None of the models that try to explain cosmic
acceleration are “better” than the cosmological constant in the sense that they all
need a fine tuned parameter (a Hubble length scale) and usually introduce additional
complications. Nevertheless, in our view, the benefit of studying models beyond the
standard model is that they teach us a lot about why GR with a cosmological con-
stant is special. These models and their respective phenomenology allow us to gain
an insight into the solution space of theories (and their consequences) close to ACDM.
They help us understand the features that are specific to the standard cosmological
model, thus allowing us to concentrate our experiments and observational efforts to

look for departures from these features.

The difficulty of coming up with a good alternative to ACDM should not deter
us from testing this standard model of cosmology. To do this one can take two ap-
proaches. The first is to assume that ACDM with GR is correct and simply compare
the consequences with observations. However, this approach cannot tell us anything
about the uniqueness of ACDM as a physical model for our universe. To gain con-
fidence in ACDM, one must explore the solution space around this model. For this
purpose, a parameterized approach is beneficial. A parameterized approach (the Pa-
rameterized Post-Newtonian framework or PPN framework in short) was undertaken
to explore the solution space around GR on solar system scales over the last century.
The PPN framework began with Eddington in 1922 but was restricted to the vacuum
spacetime around a spherically symmetric central body. Its current version is mainly
due to Nordtvedt and Will (see [15, 19] for a more detailed history). The essential
idea is to start with Newtonian gravity and include relativistic effects in a system-
atic manner. The metric is constructed out of moments of stresses, densities, etc,
systematically arranged as an expansion in v/c and the gravitational potential ®/c2.
The relativistic contributions are preceded by coefficients that can be calculated for
any given theory. Within certain physical limitations on its applicability, the PPN
framework includes ten PPN coefficients which can be used to test GR and rule out

alternatives (see [15]).

A similar theoretical framework that will allow for a classification of the existing

4
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and upcoming models is required on cosmological scales. Such a framework should
allow us to zero in on the common and distinguishing features of different models.
It should also provide a common language for theorists to compare and contrast the
observational consequences of different models. On the observational front, it should
allow for a smarter choice of observational projects that are best suited to reveal
departures from the standard or are able to eliminate a large class of alternatives.
The provision of such a framework is the goal of the first part of this thesis. We leave
the detailed introduction to our framework and a review of the current literature on

this subject to the introduction provided at the beginning of Chapters 2 and 3.

1.2 Relativistic dark matter at the Galactic center

In 1933, based on the high velocity dispersion in galaxy clusters, Fritz Zwicky started
our quest for some unseen matter that made its presence felt through its gravitational
effects. Its existence on the scale of galaxies was first suggested by the high velocities
of stars and gas in the outskirts of the Andromeda galaxy (1939) [20]. Four decades
later, Rubin and Ford obtained similar results (with much improved observations)
for a number of galaxies [21]. On the theoretical front, in 1973, Ostriker and Peebles
argued that a halo of dark matter was necessary for the stability of disc galaxies
[22]. Although astronomers were convinced that the missing matter was present in
cosmologically significant amounts, whether it was baryonic matter, black holes or an
indication of physics beyond the standard model was unclear. The idea of cold dark
matter, as it is used in the modern cosmological context, can be credited R. Bond
(1983) [23].

It is difficult to overstate the importance of dark matter in our contemporary
view of the cosmos. It provides the missing matter that aids gravitational instability,
it explains the depth of the gravitational potential wells in galaxy clusters, and it
also explains the rotation curves of galaxies. Today, detailed observations of the
power spectrum of CMB fluctuations and the distribution of galaxies and gravitational
lensing measurements are all consistent with the cold dark matter paradigm. Merging

clusters (for example, the Bullet cluster [24]) with physically separated mass and
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light concentrations provide, arguably, the most striking blow to models without
dark matter. From a particle physics perspective, it provides strong evidence for
physics beyond the standard model. It could perhaps be the most striking evidence
for supersymmetry. Given its importance, it is imperative that we probe dark matter

though all possible means.

Probing dark matter through its gravitational interactions is now a mature field.
For the purposes of structure formation, galaxy clusters, lensing and galaxy rotation
curves, all that is required is that dark matter is reasonably massive, that it clumps
gravitationally and that it is otherwise weakly interacting. Consequently, it is difficult
to obtain detailed information about interaction cross sections, masses, etc. from
these observations (unless one goes to small enough scales where the free streaming
becomes important). However, when one starts looking at the total dark matter
abundance, its possible decay channels, its (non-gravitational) self-interaction and

interactions with baryons a more detailed picture emerges.

Experiments that probe the nature of dark matter particles beyond their grav-
itational interactions can be divided roughly into two classes: direct and indirect
detection experiments. Direct detection experiments like Cryogenic Dark Matter
Search (CDMS) [25] essentially measure the recoil energy from the interaction of the
incoming dark matter particle and the nucleus of a chosen target material. The mea-
sured recoil energy provides a strong constraint on the cross section and a weaker
one on the mass of the particle. The Large Hadron Collider (LHC) [26] will provide
a controlled way of probing the properties of dark matter. However, in the case of
the LHC, it will be difficult to be certain whether the new particles produced are the

dark matter candidates required by astrophysical observations.

The idea behind indirect detection is to look for the annihilation (or decay) prod-
ucts of dark matter. Since the rate of such annihilations is dependent on the number
density, it is best to look for regions where the density of dark matter particles is
expected to be high. Apart from the early universe, such high density regions are
expected to arise naturally in the centre of dark matter haloes, its clumpy substruc-
ture and in the vicinity of compact objects. The earliest ideas on indirect detection

of dark matter surfaced in the early 1980s. Since then, a number of experiments have
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turned their eyes towards the heavens in search of the ashes of dark matter particles.
At the time of this writing, the latest of such efforts, the Gamma-ray Large Area
Space Telescope (GLAST), is about to launch [1].

Most of the signal of dark matter annihilation is expected to come from our
Galactic center. There is strong evidence that gravitational dynamics in the sub-
parsec region at our galactic center is governed by a ~ 10® solar mass black hole [16].
It is plausible that the vicinity of the black hole contains a large density of dark matter
particles moving at sub-relativistic velocities. Could these sub-relativistic velocities
have an effect on the expected annihilation signal? In Chapter 5, we discuss a new
relativistic effect on the self annihilation cross section of dark matter particles, that
might be relevant for future indirect detection experiments. Although the presence
of a black hole plays an important role in our problem, this part of the thesis is not
about probing strong field gravity. This part is about the observational consequences
of dark matter particles moving at relativistic velocities near the black hole at our
Galactic center. We investigate how the annihilation cross section, density profile
and annihilation signal of dark matter near our Galactic center are influenced by the

presence of the central black hole.

1.3 Probing strong field gravity on astrophysical

scales

Compared to weak-field gravity, strong-field gravity is far less constrained by obser-
vations. Yet it is in this regime where the most dramatic departures from Newtonian
gravity occur. Apart from cosmology, the vicinities of black holes and neutron stars
are the only other laboratories for probing strong-field gravity. There are a number
of reasons for the dearth of constraints in this regime, the obvious one being that the
masses and length scales required are impossible to achieve in terrestrial laborato-
ries. Typically, probing the vicinities of black holes and neutron stars is difficult due
to the small sizes of these systems and/or their large distances from us. Moreover,

such regions are rarely devoid of matter, whose often complicated fluid dynamics and

7
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electromagnetic interactions makes the extraction of information about gravitational

aspects a tall order.

Currently, some of the best tests for gravity come from binary pulsars. By mea-
suring the advance in the periastron, time dilation and rate of change of the orbital
period, stringent constrains on gravity can be obtained [29]. Other tests include the
use of electromagnetic signatures from matter accreting in the vicinity of the com-
pact objects. In some cases, black hole horizons or the last stable orbit can leave
unique signatures in these observations (see for example [16]). A careful study of
the relativistic broadening of the iron lines from these regions also yields a (limited)
map of the distorted space-time close to the horizon (see for example [16]). Another
exciting and puzzling class of astrophysical objects that have a potential for probing
strong-field gravity is the so-called quasi-periodic oscillators (QPOs), particularly in
the high frequency (40-450 Hz) regime. When observed in X-rays, their time vari-
ability is quasi-periodic. Remarkably, in a number of black hole systems, the time
variability contains two characteristic frequencies with an almost constant ratio of 3:2

(see, for example, the review article [1]).

Our initial motivation for the work presented in Chapter 5 was providing a dynam-
ical mechanism to explain the remarkably stable ratio (3:2) of frequencies associated
with these QPOs. Our idea is similar to that of density waves, which was put forth
as an explanation of the spiral structure of galaxies. The crucial requirement for the
existence of these density waves is a non-Keplerian potential. Such potentials are
present in galaxies due to the disc-like distribution of matter whereas in the vicinity

of black-holes they arise due to the relativistic corrections to Newtonian gravity.

In our investigation, we find that a remarkably persistent (~ 50 orbital periods),
counter-rotating geometric pattern exists in thin cold accretion discs at a radius of
r ~ 10r, with a width of Ar ~ 4r, (r, = GM/c*). A single disc can support
more than one such pattern, each with its own characteristic frequency. Although
the excitation mechanism is unknown, once excited, these patterns can persist for a
long time. We do not provide any mechanism to convert these density patterns into
X-rays, but there is the tantalizing possibility of a connection of the frequencies of

the longest-lived patterns with those seen in QPOs.
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Given the likely complexity of the magneto-fluid dynamics and emission mech-
anism for X-rays, our work is far from providing a complete physical description.
Nevertheless, it provides a starting point, and perhaps a motivation, for more de-
tailed numerical investigations.

The mechanism we suggest depends crucially on the general relativistic corrections
to the orbital motion of the particles. If the central object is a black hole, the
frequency associated with this rotating pattern depends on the black hole spin and
mass. [t scales inversely with mass and increases with spin. Thus, in principle, these

patterns can be used to probe gravity in the strong field regime.
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Chapter 2

A kinematical approach to dark

energy studies
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Abstract We present and employ a new kinematical approach to cosmological ‘dark energy’ studies.
We construct models in terms of the dimensionless second and third derivatives of the scale factor
a(t) with respect to cosmic time ¢, namely the present-day value of the deceleration parameter gy and
the cosmic jerk parameter, j(¢). An elegant feature of this parameterization is that all ACDM mod-
els have j(t) = 1 (constant), which facilitates simple tests for departures from the ACDM paradigm.
Applying our model to the three best available sets of redshift-independent distance measurements,
from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statisti-
cal evidence for a late time transition from a decelerating to an accelerating phase. For a flat model
with constant jerk, j(t) = j, we measure ¢ = —0.81 £0.14 and j = 2.161‘8:%, results that are con-
sistent with ACDM at about the 1o confidence level. A standard ‘dynamical’ analysis of the same
data, employing the Friedmann equations and modeling the dark energy as a fluid with an equation
of state parameter, w (constant), gives O, = 0.30675032 and w = —1.157)1%, also consistent with

ACDM at about the 1o level. In comparison to dynamical analyses, the kinematical approach uses a

different model set and employs a minimum of prior information, being independent of any particular
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gravity theory. The results obtained with this new approach therefore provide important additional
information and we argue that both kinematical and dynamical techniques should be employed in
future dark energy studies, where possible. Our results provide further interesting support for the

concordance ACDM paradigm.

Note

In this paper, my main contribution was in the theoretical aspects of the kinematic
formalism (based on [1]). The appendices at the end of this chapter are new, and

were not included in the published paper.

2.1 Introduction

The field of cosmology has made unprecedented progress during the past decade.
This has largely been driven by new observations, including precise measurements
of the spectrum of cosmic microwave background (CMB) anisotropies([2, 3] and ref-
erences therein), the distance-redshift relation to type la supernovae [4, 5, 6, 7, 8],
the distance-redshift relation to X-ray galaxy clusters [9, 10, 11], measurements of
the mean matter density and amplitude of matter fluctuations from X-ray clusters
[12, 13, 14, 15, 16], measurements of the matter power spectrum from galaxy redshift
surveys [17, 18, 19], Lyman-a forest studies [20, 21, 22] and weak lensing surveys
23, 24, 25, 26], and measurements of the Integrated Sachs-Wolfe effect [27, 28].
These and other experiments have lead to the definition of the so-called concor-
dance ACDM cosmology. In this model, the Universe is geometrically flat with only
~4 per cent of the current mass-energy budget consisting of normal baryonic matter.
Approximately 23 per cent is cold dark matter, which interacts only weakly with nor-
mal baryonic matter but which clusters under the action of gravity. The remaining
~ 73 per cent consists of smoothly distributed quantum vacuum energy (the cos-
mological constant), which pushes the Universe apart. This combination of matter

and vacuum energy leads to the expectation that the Universe should undergo a late
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time transition from a decelerating to an accelerating phase of expansion. Late-time
acceleration of the Universe is now an observed fact [7, 10, 8]. A transition from a
decelerating phase to a late-time accelerating phase is required to explain both these

late-time acceleration measurements and the observed growth of structure.

Despite the observational success of the concordance ACDM model, significant
fine tuning problems exist. In particular, difficulties arise in adjusting the density of
the vacuum energy to be a non-zero but tiny number, when compared with the value
predicted by standard theoretical calculations, and with explaining why the current
matter and vacuum energy densities are so similar (the ‘cosmic coincidence’ problem).
For these reasons, amongst others, a large number of alternative cosmological models
have been proposed. These include models that introduce new energy components
to the Universe - so called ‘dark energy’ models e.g. scalar ‘quintessence’ fields [29,
30, 31, 32, 33], K-essence [34, 35, 36], tachyon fields [37, 38] and Chaplygin gas
models [39, 40]. Other possibilities include modified gravity theories, motivated by
e.g. the existence of extra dimensions [41, 42, 43, 44, 45] or other modifications of
General Relativity [46, 47, 48, 49, 50, 51, 52|, which can also lead to late-time cosmic
acceleration. The simplicity of the concordance ACDM model, however, makes it
highly attractive. A central goal of modern observational cosmology is to test whether

this model continues to provide an adequate description of rapidly improving data.

Most current analyses of cosmological data assume General Relativity and employ
the mean matter density of the Universe, €1, and the dark energy equation of state
w as model parameters. Such analyses are often referred to as ‘dynamical studies’,
employing as they do the Friedmann equations. Other dynamical analyses employ
modified Friedmann equations for a particular gravity model. However, a purely
kinematical approach is also possible that does not assume any particular gravity
theory. Kinematical models provide important, complementary information when

seeking to understand the origin of the observed late-time accelerated expansion.

In a pioneering study, [7] measured a transition from a decelerating to accelerat-
ing phase using a simple linear parameterization of the deceleration parameter ¢(z),

where ¢(z) is the dimensionless second derivative of the scale factor, a(t), with respect
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to cosmic time. Recently, [53], [54] and [55] have employed a variety of other param-
eterizations, constructed in terms of ¢(z), to study this transition. However, since
the underlying physics of the transition are unknown, the choice of a particular pa-
rameterization for ¢(z) is quite arbitrary. [53] applied a principal component analysis
of q(z) to the supernovae data of [7] and found strong evidence for recent, changing
acceleration but weak evidence for a decelerated phase in the past (i.e. weak evidence
for a transition between the two phases). [55] employed a Bayesian analysis to the [7]

data and the more recent SNLS supernovae sample of [8], obtaining a similar result.

In this paper we develop an improved method for studying the kinematical history
of the Universe. Instead of using parameterizations constructed in terms of ¢(z), we
follow [1] and introduce the cosmic jerk, j(a), the dimensionless third derivative of
the scale factor with respect to cosmic time. (Here a is the cosmic scale factor,
with @ = 1/1 + 2z.) The use of the cosmic jerk formalism provides a more natural
parameter space for kinematical studies. Our results are presented in terms of current
deceleration parameter g and j(a), where the latter can be either constant or evolving.
We apply our method to the three best current kinematical data sets: the‘gold’
sample of type la supernovae (hereafter SNIa) measurements of [7], the SNIa data
from the first year of the Supernova Legacy Survey (SNLS) project [8], and the X-ray
galaxy cluster distance measurements of [56]. This latter data set is derived from
measurements of the baryonic mass fraction in the largest relaxed galaxy clusters,

which is assumed to be a standard quantity for such systems [10].

In General Relativity j(a) depends in a non-trivial way on both €, and w(a)
[1]. In general, there is no one-to-one mapping between models with constant j and
models with constant w. A powerful feature of the standard dynamical approach is
that all ACDM models have w = —1 which make it easy to search for departures
from ACDM. Likewise, the use of the jerk formalism imbues the kinematical analysis
with a similar important feature in that all ACDM models are represented by a single
value of 7 = 1. The use of the jerk formalism thus enables us to constrain and
explore departures from ACDM in the kinematical framework in an equally effective
manner. Moreover, by employing both the dynamical and kinematical approaches to

the analysis of a single data set, we explore a wider set of questions than with a single
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approach. We note that [57] and [58] also drew attention to the importance of the
jerk parameter for discriminating models of dark energy and/or modified gravity. [59]
and [60] also showed its relevance for probing the spatial curvature of the Universe.

Using the three kinematical data sets mentioned above, we find clear evidence
for a negative value of gy (current acceleration) and a positive cosmic jerk, assuming
7 constant. The concordance ACDM model provides a reasonable description of
the data, using both the new kinematical and standard dynamical approaches. We
also search for more complicated deviations from ACDM, allowing j(a) to evolve
as the Universe expands, in an analogous manner to dynamical studies which allow
from time-variation of the dark energy equation of state w(a). Our analysis employs
a Chebyshev polynomial expansion and a Markov Chain Monte Carlo approach to
explore parameter spaces. We find no evidence for a time-varying jerk.

This paper is structured as follows: in section 2.2 we describe our new kinematical
approach. In section 2.3 we describe the scheme adopted for polynomial expansions of
j(a). Section 2.4 includes details of the data analysis. The results from the application
of our method to the supernovae and X-ray cluster data are presented in section 2.5.
Finally, our main conclusions are summarized in section 2.7. Throughout this paper,

we assume that the Universe is geometrically flat.

2.2 The kinematical and dynamical frameworks for

late time cosmic acceleration

2.2.1 Previous work

The expansion rate of the Universe can be written in terms of the Hubble parameter,
H = a/a, where a is the scale factor and a is its first derivative with respect to time.
The current value of the Hubble parameter is the Hubble Constant, usually written
as Hy. Under the action of gravity, and for negligible vacuum energy, the expansion of
the Universe is expected to decelerate at late times. Contrary to this expectation, in
the late 1990s, type la supernovae experiments [4, 5] provided the first direct evidence

for a late time accelerated expansion of the Universe. In particular, the present value
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of the deceleration parameter, qg, measured from the supernova data was found to
be negative. In detail, the deceleration parameter ¢ is defined as the dimensionless

second derivative of the scale factor

and in terms of the scale factor,

dla) = - (aH) (2.2

where the ‘dots’ and ‘primes’ denote derivatives with respect to cosmic time and scale

factor, respectively.

The current ‘concordance’ cosmological model, ACDM, has been successful in
explaining the SNIa results and all other precision cosmology measurements to date.
Together with it’s theoretical simplicity, this makes the ACDM model very attractive.
However, as discussed in the introduction, the concordance model does face significant
theoretical challenges and a wide-range of other possible models also provide adequate

descriptions of the current data (see for an extensive review [61]).

An excellent way to distinguish between models is to obtain precise measurements
of the time evolution of the expansion of the Universe. Given such data, a number
of different analysis approaches are possible. In searching for time evolution in the
deceleration parameter, as measured by current SNIa data, [7] assumed a linear pa-

rameterization of ¢(z),

dg
=qy+ —2. 2.
q(2) = qo lzz (2.3)

These authors measured a change in sign of the deceleration parameter, from pos-
tive to negative approaching the present day, at a redshift z, = 0.46 £ 0.13. Using
this parameterization for ¢(z), the definition of the deceleration parameter given by
equation (2.1), and integrating over the redshift, we obtain that for this model the

evolution of the Hubble parameter is given in the form
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E(z) = H(2)/Hy = (1 + z)(Ha0=a)ed’=, (2.4)

where ¢’ = dq/dz.

However, since the origin of cosmic acceleration is unknown, it is important to
recognize that the choice of any particular parameterized expansion for ¢(z) is essen-
tially arbitrary. Indeed, when (or if) a transition between decelerated and accelerated
phases if inferred to occur can depend on the parameterization used. [55] showed that
using the linear parameterization described by equation (2.3) and fitting to the SNIa
data set of [8] a transition redshift z; ~ 2.0 is obtained which, uncomfortably, lies
beyond the range of the data used.

Transitions between phases of different cosmic acceleration are more naturally
described by models incorporating a cosmic ‘jerk’. The jerk parameter, j(a), is defined

as the dimensionless third derivative of the scale factor with respect to cosmic time

1]

0 =5 (%), (25)

and in terms of the scale factor

] (a2H2)1/
a) = ——=— 2.6
jla) =" (26)
where again the ‘dots’ and ‘primes’ denote derivatives with respect to cosmic time

and scale factor, respectively.

In such models, a transition from a decelerating phase at early times to an accel-
erating phase at late times occurs for all models with ¢y < 0 and a positive cosmic
jerk. Note that a Taylor expansion of the Hubble parameter around small redshifts
(62, 7] contains the present value of both the deceleration and jerk parameters, gy and
Jo- Such Taylor expansions are inappropriate for fitting high-redshift objects [1, 63],
such as those included in the data sets used here.

[1] describe how the jerk parameterization provides a convenient, alternative method
to describe models close to ACDM. In this parameterization, flat ACDM models have
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a constant jerk with j(a) = 1 (note that this neglects the effects of radiation over
the redshift range of interest, which is also usually the case when modeling within
the dynamic framework). Thus, any deviation from j = 1 measures a departure from
ACDM, just as deviations from w = —1 do in more standard dynamical analyses. Im-
portantly, in comparison to dynamical approaches, however, the kinematical approach
presented here both explores a different set of models and imposes fewer assumptions.
The dynamical approach has other strengths, however, and can be applied to a wider
range of data (e.g. CMB and growth of structure studies), making the kinematical
and dynamical approaches highly complementary.

It is interesting to note that, in principle, any particular dynamical parameter
space will have its own physical limits. For instance, within the dynamical (Q,, w)
plane, models with w < —1, known as ‘phantom’ dark energy models, violate the dom-
inant energy condition [64, 65] and present serious problems relating to the treatment
of dark energy perturbations [66, 67, 68, 69] when w(z) crosses the boundary w = —1.
Current data allow models with w < —1 {70, 7, 10, 8, 3, 71] and models in which w(z)
crosses the boundary w = —1 [72, 73, 22, 74, 75, 76]. However, another dynamical
parameter space, coming e.g. from a different gravity theory, might not pathologically
suffer from such boundaries around the models allowed for current data.

Since the (qo, 7) plane (see below) is purely kinematical, i.e. no particular gravity
theory is assumed, we are not forced to interpret 7 = 1, or any locus in this plane, as
a barrier. Note, however, that caution is required in extending the results from the
kinematical analysis beyond the range of the observed data (for details see [77]). For
example, inappropriately extending a jerk model to very high redshifts could imply
an unphysical Hubble parameter at early times, i.e., these models do not have a Big

Bang in the past.

2.2.2 A new kinematical framework

For our kinematical analysis, we first calculate H(a) given j(a;C) where C = (¢o, ¢4, ..., ¢N)
is the selected vector of parameters used to describe the evolution of j(a) (see below).

Following [1] we rewrite the defining equation for the jerk parameter (2.6) in a more
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convenient form

a*V"(a) —2j(a)V(a) =0 (2.7)
where ' denotes derivative with respect to a and V' (a) is defined as

a’H?

0

(2.8)

We specify the two constants of integration required by (2.7) in terms of the present

Hubble parameter Hy and the present deceleration parameter ¢q as follows

V(1) =—3 V(1) = q, (2.9)

where a(tg) = 1 at the present time t,. Here the first condition comes from H (1) = H,

and the second from

/

H
V(1) = _FE —1=qp. (2.10)

The Hubble parameter, H(a), obtained from equations (2.7), (2.8) and (2.9) is used to
calculate the angular diameter (d, ) and luminosity (dy,) distances for a flat Friedmann-
Robertson-Walker-Lemaitre (FRWL) metric

da(a) = a*dp(a) = —a / aQE—l(a)da’ (2.11)

where ¢ is the speed of light. These theoretical distances dp(a) and d(a) are then

used in the data analysis (see section 2.4).

Our framework provides a simple and intuitive approach for kinematical studies.
For models with go < 0 (> 0), the Universe is currently accelerating (decelerating).
Models with gy < 0 and j(a) = 1 (constant) are currently accelerating and have the
expansion evolving in a manner consistent with ACDM. Any significant departure

from 5 = 1 indicates that some other mechanism is responsible for the acceleration.
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2.2.3 Standard dynamical framework

For comparison purposes, we have also carried out a standard dynamical analysis of
the data in which we employ a dark energy model with a constant dark energy equa-
tion of state, w. From energy conservation of the dark energy fluid and the Friedmann

equation, we obtain the evolution of the Hubble parameter, H(z) = Hy E(z),

E(2) = [Qu(1 4 2)° + (1 — Q) (1 + 2)30+0]1/2, (2.12)

where (), is the mean matter density in units of the critical density. As with the
kinematical analysis, we assume flatness and neglect the effects of radiation density.

In this framework, models with a cosmological constant have w = —1 at all times.

2.3 Evolving jerk models

Our analysis allows for the possibility the cosmic jerk parameter, j(a) may evolve
with the scale factor. We have restricted our analysis to the range of a where we
have data, [amin = 0.36, amax = 1]. In searching for possible evolution, our approach
is to adopt ACDM as a base model and search for progressively more complicated
deviations from this. We begin by allowing a constant deviation Aj from ACDM
(j = 1). For this model, it is possible to solve the jerk equation (2.7) analytically.

Using the initial conditions listed in (2.9), we obtain
\/E p—uy o, ptu P
- _Vv- 2.1
V(a) 5 5 a’ + o a (2.13)
where p = (1/2)/(1 + 8j) and u = 2(qo + 1/4). Note that in the (go,j) plane for

, Qo +2¢¢ qo < —1/4
7 <

(2.14)

there is no Big Bang in the past * The models allowed by our combined data sets do

not cross this boundary.

! Allowed (qo,j) values are those for which the equation V(a) = 0 has no solution in the past
(a < 1) [77).
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For the next most complicated possible deviation from ACDM, we have j(a;C) =
GAPM L Aj(a; C). Here j2°PM =1 and j(a;C) is the cosmic jerk for the cosmology in
question. In order to meaningfully increase the number of parameters in the vector
C, we employ a framework constructed from Chebyshev polynomials. The Chebyshev
polynomials form a basis set of polynomials that can be used to approximate a given
function over the interval [—1,1]. We rescale this interval to locate our function
Aj(a;C) in the range of scale factor where we have data:

4o = 2= /2 (@min + ma) (2.15)
(1/2)(@max — @min)

where a is the scale factor in the range of interest and a. is Chebyshev variable. The

trigonometric expression for a Chebyshev polynomial of degree n is given by

Th(ac) = cos(narccos ac). (2.16)

These polynomials can also be calculated using the recurrent formula

Thi1(ac) = 2a.Ty(ae) — Th-1(ac), n>1, (2.17)

where Ty(a.) = 1 and, for example, the next three orders are Ti(a.) = ac, Ta(a.) =
2a.2—1, Tz(a.) = 4a.® — 3a., etc. Using a weighted combination of these components,
any arbitrary function can be approximately reconstructed. The underlying deviation

from ACDM can be expressed as

N

Nj(a;C) =Y~ eaTo(ac) (2.18)

n=0
where the weighting coefficients form our vector of parameters, C = (¢, ¢y, ..., cN).
Thus, using equation (2.18) we produce different parameterizations for increasing V.
With higher N’s we allow a more precise exploration of the [qo,j(a;C)] parameter
space. However, it is clear that this process will be limited by the ability of the
current data to distinguish between such models. In order to judge how many orders
of polynomials to include, we quantify the improvements to the fits obtained from the

inclusion of progressively higher orders in a variety of ways (see below). In general, we
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find that models with a degree of complexity beyond a constant jerk are not required
by current data.

We note that approches other than expanding Aj in Chebyshev polynomials are
possible, e.g. one could include the dimensionless fourth derivative of the scale factor
as a model parameter. However, since ACDM does not make any special prediction

for the value of this derivative, we prefer to use our general expansion in Aj here.

2.4 Data and analysis methods

2.4.1 Type la supernovae data

For the analysis of SNIa data, we use both the ‘gold” sample of [7] and the first year
SNLS sample of [8]. The former data set contains 157 ? SNIa, where a subset of 37
low-redshift objects are in common with the data of [8]. [8] contains 115 ® objects.
We use the measurements of [8] for objects in common between the studies. Thus,
combining both data sets we have 120 SNla from the [7] gold sample (157 minus the
37 low-redshift objects in common) and 115 SNIa from [8].

The two SNIa studies use different light-curve fitting methods. In order to com-
pare and combine the data, we fit the observed distance moduli pu°(z;) = m°™(2) —
M, where m is the apparent magnitude at maximum light after applying galac-
tic extinction, K-correction and light curve width-luminosity corrections, and M is
the absolute magnitude, with the theoretical predictions, ' (z) = m'(z) — M =
5logyo Dr(z;0) + po, where Dy, = Hydy, is the Hy-free luminosity distance, pg =
25 — blogioHy and mog = M + pg is a “nuisance parameter” which contains both the
absolute magnitude and Hj.

For the [qo, j(a;C)] parameter space, the luminosity distance dp(z;6) is directly
obtained integrating the solution of the differential equation (2.7) with the definition

(2.11) as presented in subsection 2.2.2. For models using linear parameterization

2[7] presented 16 new Hubble Space Telescope (HST) SNIa, combined with 170 previously re-
ported SNIa from ground-based data. They identified a widely used “high-confidence” subset, usually
referred to as the gold sample, which includes 14 HST SNIa.

371 SNLS objects, plus 44 previously reported nearby objects.
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of ¢(z) and/or dynamical models with ,, and w, we plug the equations (2.4) and
(2.12), respectively, into the equation describing the luminosity distance for a flat

FRWL metric, in units of megaparsecs

dr(2:0) = C“ﬂ*g ?) /0 ) E(CZ 7 (2.19)

1

where the speed of light, ¢, is in km s™ and the present Hubble parameter, Hy, in
km(s Mpc)™'. Here the vectors of parameters for each model are 8 = (qo,dq/dz)
and 0 = (Qy,, w) respectively. For the gold sample data of [7], we use the extinction-

°bs(2) and associated errors, o2. For the SNLS data of

corrected distance moduli, p
[8] we use the rest-frame-B-band magnitude at maximum light mj(z), the stretch
factor s; and the rest-frame color ¢; to obtain p°®(z;) = mj(z1) — M +a(s; — 1) — Ba.
These values were derived from the light curves by [8], who also provide best-fitting

values for « = 1.52 + 0.14 and § = 1.57 + 0.15.
For both SNIa data sets, we have

chi;Q, 0) —
Z[u( o)

P (2:: 0, M)
of

X2 (0; mo) = , (2.20)

SNIa

where the dispersion associated with each data point, 0 = o2 o2+ 02, Here
Hi,obs nt,1 V,1
2 2

o accounts for flux uncertainties, o, ;

i o accounts for intrinsic, systematic dispersion

in SNTa absolute magnitudes and o7 ; accounts for systematic scatter due to peculiar
velocities. The SNLS analysis includes an intrinsic dispersion of 0.13104 magnitudes*
and a peculiar velocity scatter of 300 km/s. The gold sample analysis includes 400
km /s peculiar velocity scatter, with an additional 2500 km /s added in quadrature for
high redshift SNIa.

We marginalise analytically over my

() = —2In /_OO exp <—%X2(9,m0)>dm0 (2.21)

o0

obtaining

“http://snls.in2p3.fr/conf/papers/cosmol /
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=1 (i) _Z 2.92
=t () +a-—, (222
where
[51ogo Dr(2;0) — m°™(z)]?
=Y 10 = : (2.23)
SNIa i

5logig Di(z;0) — m™(z) 1
b= —H > .oe=> —~ (2.24)

SNIa i SNIa 1

Note that the absolute value of x* = a — (b*/c). For the analysis in the standard
dynamic framework, our results agree with those of [7] and [8], and the comparison
work of [78].

2.4.2 X-ray cluster data

For the analysis of cluster X-ray gas mass fractions, we use the data of [56], which
contains 41 X-ray luminous, relaxed galaxy clusters, including 26 previously studied
[10]. [Some of the original 26 have since been revisited by the Chandra X-ray obser-
vatory leading to improved constraints (for details see [56]). The new X-ray data set
spans a redshift interval 0.06 < z < 1.07. Our analysis follows the method of [10],

fitting the apparent redshift evolution of the cluster gas fraction with the expression

fl(z) = F R (%), R(z)= [C&Ejﬂ | , (2.25)

where F = (b HZ®)/[(1 + 0.19v/h) Q] is the normalization of the fgs(2) curve,
da and dif(z2) are the angular diameter distances (d4 = dr/(1 + 2)?) to the clusters
for a given cosmology and for the reference ACDM cosmology (with Hy = 70 km(s
Mpc)~! and €, = 0.3) respectively, and Dy = Hydy is the Hy-free angular diameter
distance. For the kinematical approach we treat the normalization F as a single
‘nuisance’ parameter, which we marginalize over in the MCMC chains.

For the dynamical analysis of the same X-ray data, we follow [10] and employ

Gaussian priors on the present value of the Hubble parameter Hy = 72 £ 8 km(s
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Mpc)™! [79], the mean baryon density ,h? = 0.0214 4 0.0020 [80] and the X-ray
bias factor b = 0.824 4+ 0.089 [determined from the hydrodynamical simulations of
[81], including a 10 per cent allowance for systematic uncertainties]. The application
of these priors leads to an additional constraint on 2, from the normalization of the
feas(2) curve. Since the kinematical approach does not constrain €2,,, the kinematical
analysis does not involve these priors and draws information only from the shape of
the fgas(z) curve. The dynamical analysis, in constrast, extracts information from

both the shape and normalization.
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2.4.3 Markov Chain Monte Carlo analysis

For both the kinematical and dynamical analyses, we sample the posterior prob-
ability distributions for all parameter spaces using a Markov Chain Monte Carlo
(MCMC) technique. This provides a powerful tool for cosmological studies, allowing
the exploration of large multi-dimensional parameter spaces. In detail, we use the
Metropolis-Hastings algorithm implemented in the cosmMmoMc ® code of [82] for the
dynamic formalism, and a modified version of this code for the kinematic analysis.
Our analysis uses four MCMC chains for each combination of model and data. We
ensure convergence by applying the Gelman-Rubin criterion [83], where the conver-
gence is deemed acceptable if the ratio of the between-chain and mean-chain variances

satisfies R — 1 < 0.1. In general, our chains have R — 1 < 0.1.

2.4.4 Hypothesis testing in the kinematical analysis: how

many model parameters are required?

In the first case, we examined a kinematical model in which the deceleration parameter
¢o was included as the only interesting free parameter [see equation (2.4) with ¢’ = 0].
This is hereafter referred to as the model Q. As detailed in section 2.2, we next
introduced the jerk parameter, j, as an additional free parameter, allowing it to take
any constant value. We refer to this as model J, which has the interesting free
parameters, gy and j. Note that model 7 includes the set of possible ACDM models,
which all have constant j = 1.

We next explored a series of models that allow for progressively more complicated
deviations from ACDM. In each case, the improvement obtained with the introduction
of additional model parameters, has been gauged from the MCMC chains using a
variety of statistical tests. In the first case, we follow a frequentist approach and use
the F-test, for which

F = (2.26)

®http://cosmologist.info/cosmome/
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Figure 2.1: A summary of the results from the kinematical (left panels) and dynamical
(right panels) analyses. The top left panel shows the 68.3 and 95.4 per cent confidence
limits in the (qo,j) plane for the kinematical model with a constant jerk, j, obtained
using all three data sets: both SNIa data sets (Riess et al. 2004; Astier et al. 2005)
and the cluster f,,s data of Allen et al. (2006). The top right panel shows the results in
the (Qu,w) plane obtained using the same three data sets and assuming HST, BBNS
and b priors. (Note that the kinematical analysis does not use the HST, BBNS and
b priors). The dashed lines show the expectation for a cosmological constant model
in both formalisms (j = 1, w = —1, respectively). The bottom panels show the
confidence contours in the same planes for the individual data sets: the SNLS SNIa
data (orange contours), the Riess et al. (2004) ‘gold’ SNIa sample (blue contours)
and the cluster fg.s data (green contours). Here, the dashed lines again indicate the
cosmological constant model.
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where Ax? is the difference in the minimum y? between the two models, x? is the
reduced x? (x?/v, where v is number of degrees of freedom of the fit, dof) of the
final model, and Am is the difference in the number of free parameters in the two
models. Given Am and v, we calculate the probability that the new model would
give Ax? > F x% Am by random chance. This allows us to quantify the significance
of the model extension.

The Bayesian Information Criterion (BIC) provides a more stringent model se-
lection criterion and is an approximation to the Bayesian Evidence [84]. The BIC is
defined as

BIC = —2InL+kInN (2.27)

where L corresponds to the maximum likelihood obtained for a given model (thus,
—21In £ is the minimum x?), k is the number of free parameters in the model and N
is the number of data points. Values for ABIC < 2 between two models are typically
considered to represent weak evidence for an improvement in the fit. ABIC between
2 and 6 indicates ‘positive evidence’ for an improvement, and values greater than 6
signify ‘strong evidence’ for the model with the higher BIC [85, 86, 87, 88|.

Finally, we have compared the full posterior probability distributions for different
models, using the Bayes Factor to quantify the significance of any improvement in the
fit obtained. The Bayes Factor is defined as the ratio between the Bayesian evidences
of the two models [86]. If P(D|#, M) is the probability of the data D given a model

M, the Bayesian evidence is defined as the integral over the parameter space, 0

E(M) = P(D|M) = /dGP(D|9,M) P(6| M), (2.28)

where P(0|M) is the prior on the set parameters #, normalised to unity. We employ

top hat priors for all parameters and evaluate the integrals using the MCMC samples:

E(M) ~ NLM S P(D|6,) (2.29)

where A# is the volume in the parameter space selected to have probability 1 within
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Table 2.2: The marginalised median values and 68.3 per cent confidence intervals
obtained analysing all three data sets together. We show the results for the constant
j model (kinematical) and the constant w model (dynamical) and their corresponding
x? per degree of freedom.

Approach Model parameters x*/dof
Kinematical g = —0.814+0.14, j = 2.16705,  290.1/271
Dynamical ~ Q,, = 0.30670 01, w = —1.15301%  291.7/272

the top hat priors, N is the number of MCMC samples and 6, the sampled parameter
space. Note that S°N P(D|6,) is the expected probability of the data in the posterior
distribution [82]. The evidence of the model E(M) can be estimated trivially from
the MCMC samples as the mean likelihood of the samples divided by the volume of
the prior. It is clear, though, that this volume will depend on our selection of the top
hat priors. In order to be as objective as possible, within the Bayesian framework, we
use the same priors for parameters in common between the two models involved in a
comparison. For parameters not in common, we calculate their volumes subtracting
their maximum and minimum values in the MCMC samples.

The Bayes factor between two models My and M; is By = E(My)/E(M,). If
In By, is positive, My is ‘preferred’ over M;. If In By; is negative, M is preferred
over M. Following the scale of [85], if 0 < In By; < 1 only a “bare mention” of the
preference is considered warranted. If 1 < In By, < 2.5, the preference is regarded as
of “substantial” significance. If 2.5 < In By; < 5 the significance is considered to be

going from “strong” to “very strong”.

2.5 Results

2.5.1 Comparison of constant jerk and constant w models

We first examine the statistical improvement obtained in moving from the simplest

kinematical model Q = [go], in which ¢y is the only interesting free parameter, to
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model J = [qo, j(co)], where we include constant jerk j = 1+ ¢q (i.e. we allow j to
take values other than zero). The results obtained, using the three statistical tests
described in subsection 2.4.4 applied to each data set alone and for all three data
sets together are summarized in Table 2.1. We find that the ‘gold’ sample is the
only data set that, on it’s own, indicates a ‘substantial’ preference for model J over
model Q according to the Bayes factor test. Note that this is not only due to the
fact that the ‘gold’ sample extends to higher redshifts, thereby providing additional
constraining power, but also due to the fact that the ‘gold’ sample hints a small
tension in the ground-based ‘gold’ sample data to prefer j > 1 values . Combining
all three data sets, we obtain a ‘strong’ preference for model J over model Q, from
all three statistical tests. Table 2.1 shows the mean marginalised parameters for each
model and the 1o confidence levels. Combining all three data sets, we obtain tight
constraints on gy = —0.81 & 0.14 and j = 2.16705;. Our result represents the first
measurement of the jerk parameter from cosmological data .

Our dynamical analysis of the same three data sets gives w = —1.157015 and
Qm = 030675052 (see Table 2.2). Figure 2.1 shows the constraints for both the
kinematical (qo,7; top left panel) and dynamical (£2,,,w; top right panel) models,
using all three data sets combined. In both cases, the dashed lines indicates the
expected range of results for ACDM models (i.e. a cosmological constant). We find
that both the kinematical and dynamical analyses of the combined data are consistent
with the ACDM model at about the 1o level.

It is important to recognise that the results from the kinematical and dynamical
analyses constrain different sets of departures from ACDM. We are using two sim-
ple, but very different parameterizations based on different underlying assumptions.
The results presented in Figure 2.1 therefore provide interesting new support for the

ACDM model.

The lower panels of figure 2.1 show the constraints obtained for the three data sets

6An analysis of the ‘gold’ sample data in which the HST supernovae are excluded leads to even
stronger preference for j > 0: Ax?Q = 10.6. In this case, for model J we obtain ¢y = —1.17£0.28
and j = 4.957293.

"Note that Riess et al. (2004) measured jo > 0 at the 20 level, where j, comes from a Taylor
expansion of the Hubble parameter around small redshifts [62]. As noted in subsection 2.2.1 such
an expansion is not appropiate when high redshift data are included, as in the ‘gold’ sample.
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when analysed individually. It is important to note the consistent results from the
independent SNIa and X-ray cluster data sets. Note that in the dynamical analysis,
the X-ray data provide valuable additional constraints on €2,,, when employing the
Hy and Quh? priors. The overlap of all three data sets in both parameter spaces
highlights the robustness of the measurements. Comparing the upper and lower
panels of figure 2.1, we see how the combination of data sets significantly tightens the

constraints.

2.5.2 More complicated kinematical models

For the combined data set, we have also searched for more complicated departures
from ACDM by including extra model parameters, as described in Section 2.3. We find
no significant evidence for models more complicated than a constant jerk model. In
particular, we find a negligible Ax? between models with constant jerk J = [qo, 7(co)]
and the next most sophisticated model J; = [qo, j(a; co, ¢1)], and between the latter
model and the next one, Jo = [qo, j(a; co, c1, 2)].

It is, however, interesting to plot the differences between the constraints obtained
for each model. Figure 2.2 shows the current 1o and 20 constraints around the median
values of j(a) at different scale factors, a, over the range where we have data [0.36, 1].
The green, lighter contours show the constraints for the 7, model and the red, darker
contours for the J model. From this figure it is clear that current data provide the
best constraints around a ~ 0.77, i.e. z ~ 0.3, and that at higher and lower redshift
more data are required. For the low redshift range, the forthcoming SDSS IT SNIa
data will be helpful. For the high redshift range, new HST SNIa and further X-ray
cluster data should be available in the near future. In the longer term, SNIa data
from the Large Synaptic Survey Telescope (LSST) ® and the Supernovae Acceleration
Probe (SNAP) ?) and X-ray cluster data from Constellation-X !° should provide tight
constraints on both j(a) and w(a). Future galaxy redshift surveys covering a high

redshift range will also help to tighten these constraints, using the baryon oscillation

8http://www.lsst.org/lsst_home.shtml
9http://snap.lbl.gov/
Ohttp://constellation.gsfc.nasa.gov/
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experiment [19, 18].

2.5.3 Comparison of distance measurements

It is interesting to compare directly the distance curves for the kinematical (con-
stant j) and dynamical (constant w) models, as determined from the MCMC chains.
Fig 2.3 shows the 68.3 and 95.4 per cent confidence limits on the offset in distance, as
a function of scale factor, relative to a reference ACDM cosmology with €, = 0.27,
Qpr = 0.73. We see that the kinematical and dynamical results occupy very simi-
lar, though not identical, loci in the distance-scale factor plane. For the dynamical
analysis, the addition of the extra constraint on €2, from the normalization of the
feas curve tightens the constraints and pushes the results in a direction slightly more

consistent with the reference ACDM cosmology.

2.5.4 Comparison with Riess et al. (2004)

For comparison purposes, we also present the results obtained using the linear pa-
rameterization of ¢(z) described by equation (2.3) and used by [7]. Figure 2.4 shows
the constraints in the plane (qo, dq/dz) determined from each data set, and by com-
bining the three data sets (solid, orange contours). It is clear that the constraints
from the three independent data sets overlap and that by combining them we obtain

significantly tighter results than using the ‘gold’ sample alone.

2.6 The distance to the last-scattering surface

Finally, we note that there is one further pseudo-distance measurement available to
us - the distance to the last scattering surface from CMB data. Although this is not
a purely kinematical data point, for illustration purposes we show the constraints on
j(a) that can be achieved if one is willing to make extra assumptions and include this
measurement. The extra assumptions involved, though strong, are well-motivated.
In detail, in order to use the distance to last scattering, we assume that dark matter

behaves like standard cold dark matter at all redshifts, an assumption well tested
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i(a)

-10

Figure 2.2: The 68.3 and 95.4 per cent confidence variations about the median values
for j(a) as a function of the scale factor a, over the range where we have data [0.36,1].
Results are shown for the constant jerk model (model [J) (red, darker contours) and
J1 model (green, lighter contours). In both cases, the constraints for all three data
sets have been combined. The dashed line indicates the expectation, j = 1 (constant)
for a cosmological constant (ACDM) model.
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Figure 2.3: The 68.3 and 95.4 per cent confidence limits on the offset in distance as
a function of scale factor, relative to the reference ACDM cosmology, for both the
kinematical (constant j; green, shaded curves) and dynamical (constant w; dotted
and dashed curves) analyses. The dotted curves show the results for the dynamical
analysis in which the additional constraint on €, from the normalization of the fgas
curve is used. The dashed curve is for a dynamical analysis where this extra constraint
on the normalization is ignored. The same MCMC samples used to construct Fig 2.1
have been used.
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Figure 2.4: The 68.3 and 95.4 per cent confidence limits in the (qo,dq/dz) plane
obtained using the SNIa data from the first year of the SNLS (Astier et al. 2005),
the ‘gold’ sample of Riess et al. (2004) (dashed contours), the cluster f,,s data of
Allen et al. (2006) (green contours) and the combination of all three data sets (orange
contours).
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by e.g. galaxy cluster, weak lensing and galaxy redshift surveys at low redshifts and
CMB experiments at high-z. We also assume that pre-recombination physics can
be well described by a standard combination of cold dark matter, a photon-baryon
fluid and neutrinos, and that any early dark energy component has a negligible affect
on the dynamics. With these assumptions, one can construct the comoving angular
diameter distance to the last scattering surface from da = rs(agec)/0a, where 75(arec)
and #, are the comoving sound horizon at decoupling and the characteristic angular
scale of the acoustic peaks, respectively. For a geometrically flat Universe with a
negligible early dark energy component, we calculate the sound horizon at decoupling
as [89]

Adec Cs(a)
d 2.30
0 HO(QmCl -+ Qrad)1/2 “ ( )

where ¢s(a) = ¢/[1 + (3Qpa)/(4€2,)] is the sound speed in the photon-baryon fluid,

Ts (adec> ~

Qraa = £+, is the present radiation energy density, and €2, and (2, are the present
photon and neutrino energy densities, respectively. We use our X-ray galaxy cluster
data, assuming HST, BBNS and b priors, to determine €2, = 0.27 £ 0.04 (Allen et
al. 2006; note that this constraint mainly comes from low-redshift clusters). We also
use the COBE measurement of the CMB temperature 7y = 2.725 £+ 0.002K [90] and
a standard three neutrino species model with negligible masses to obtain €2.,4. For
these constraints, we obtain 75(2qe.) =~ 146 + 10Mpc.

From [91] we have the multipole of the first acoustic peak [; = 220.740.7. This is
related to [x by a shift ¢, [; = Ix(1 — ¢). Using the fitting formula of [92], the BBNS
prior for Q,h?, a scalar spectral index ng = 0.9540.02 [3] and assuming no early dark
energy, we find 85 = 0.6 £0.01 degrees. We then obtain a pseudo-model-independent
distance to decoupling, d(zge) =~ 13.8 + 1.1Gpc, where zg.. = 1088 [3].

Fig 2.5 shows the tightening of the constraints obtained using this “data-point-
prior” at high redshift !*. Note that figure 2.5 is plotted on the same scale as figure 2.2

1 Note that extending the analysis to the decoupling redshift zqe. = 1088 means that the radiation
density becomes non-negligible. Although, j can still be calculated as usual, 2¢PM will not equal 1
at these redshifts. However, the ACDM model can then be almost perfectly described as jA¢PM (g) =
14+2/(1+ (a/aeq)) (for details see [77]) where aeq is the mean marginalised scale factor at equality,

from WMAP data. We have explicitly verified that, within the 1o values of acq, systematic offsets
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and shows J (red, darker contours) and J; (green, lighter contours) models as before,
plus the J, model (blue contours). Note also that here the range of the data is
[@min = 0.0009, oy = 1]. Again, using equation (2.15) we rescale the Chebyshev
interval [—1, 1] to locate the functions Aj(a;C) in the range of scale factor spanned by
the data. The prior information at high redshift, from the distance to last scattering,
tightens the constraints significantly. Evidently, the constraints from the kinematic

analysis are sensitive to the data quality at high redshift.

2.7 Conclusions

We have developed a new kinematical approach to study the expansion of the history
of the Universe, building on the earlier work of [1]. Our technique uses the parameter
space defined by the current value of the cosmic deceleration parameter ¢, and the
jerk parameter j, where g and j are the dimensionless second and third derivatives of
the scale factor with respect to cosmic time. The use of this (qo, j) parameter space
provides a natural framework for kinematical studies. In particular, it provides a
simple prescription for searching for departures from ACDM, since the complete set
of ACDM models are characterized by j = 1 (constant).

We have applied our technique to the three best available sets of redshift-independent
distance measurements, from type Ia supernovae studies [7, 8] and measurements of
the X-ray gas mass fraction in X-ray luminous, dynamically relaxed galaxy clusters
[56]. Assuming geometric flatness, we measure go = —0.82 £ 0.14 and j = 2.161“8:%
(Figure 2.1). Note that this represents the first measurement of the cosmic jerk param-
eter, j. A more standard, dynamical analysis of the same data gives w = —1.15701%
and Q, = 0.306700;5, also assuming flatness and HST, BBNS and b priors (Fig-
ure 2.1). Both sets of results are consistent with the standard ACDM paradigm, at
about the 1o level.

In comparison to standard, dynamical approaches, our kinematical framework pro-

vides a different set of simple models and involves fewer assumptions. In particular,

due to the affects of radiation have a negligible effect on the derived distances.
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20 — — 20

i(a)

-10 — —10

Figure 2.5: 1o and 20 constraints on j(a) over the range (including the distance to
the last scattering surface) of the data [0.0009,1]. Note that this figure and figure 2.2
are plotted on the same scale for comparison purposes. This figure shows the same
models as figure 2.2 plus the [J5 model, and uses the CMB prior as described at the
text. The dotted line shows the median j(a) curve for the J; model.
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kinematical analyses such as that presented here do not assume a particular grav-
ity theory. The combination of the kinematical and dynamical approaches therefore
provides important, complementary information for investigating late time cosmic ac-
celeration. The fact that both the kinematical and dynamical results presented here
are consistent with ACDM provides important additional support for that model.
The fact that the two independent sets of distance measurements, from X-ray galaxy
clusters and supernovae, are individually consistent with ACDM, is reassuring (Fig-
ure 2.1).

We have searched for departures from ACDM using a new scheme based on the
introduction of Chebyshev polynomials. These orthonormal functions allow us to
expand any deviation from ACDM, Aj(a;C), as a linear combination of polynomials.
We use the coefficients of these polynomials, C, as fit parameters. The current data
provide no evidence for a dependence of j on a more complicated than a constant
value. However, higher order terms may be required to describe future data sets.
In that case, our scheme has the advantage that, over a finite interval and using
enough high order terms, it will provide an acceptable global approximation to the
true underlying shape. Note that this scheme is also applicable to dynamical studies
of the evolution of the dark energy equation of state, w(a). Note also that Chebyshev
polynomial expansions of the same order for w(a) and j(a) explore a different set of
models. For example, a constant j # 1 model corresponds to an evolving w(a) model

and vice versa.

We suggest that future studies should endeavour to use both kinematical and
dynamical approaches where possible, in order to extract the most information from
the data. The two approaches have different strengths, can be applied to with a
variety of data sets, and are highly complementary. The combination of techniques
may be especially helpful in distinguishing an origin for cosmic acceleration that lies
with dark energy (i.e. a new energy component to the Universe) from modifications

to General Relativity.
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2.A Analysis in the kinematic plane

Note: In the chapter and the associated paper, an unpublished paper, [77], was cited.
The parts of that paper relevant for this chapter are presented in this appendix.

In this chapter, we provided constraints on the present deceleration parameter g
and a constant j (along with other models) using kinematics measurements of the
expansion history. We did not discuss the behavior of the scale-factor a(t) corre-
sponding to different points in the gy — 7 plane. This appendix is intended to provide
a global picture of the behavior of models corresponding to different points in this
plane. Although we concentrate on ¢y — 7 models, the method used is quite general

and can be applied to the study of expansion history for more general cases as well.

Consider the following identity:

a?

2 V() =0

oz TV

where V(a) = —a?H?/2HZ with H(a) = a/a. V(a) is usually provided by the model
under consideration. For example in GR, using the Friedmann equation we get V' (a) =
—4nGa’p/3HE+k/3H +0* where p is the total energy density and k stands for spatial
curvature.

We rescale time as follows Hyt — t to obtain

a2

E“FV(CL):O

Considering a(t) as the trajectory of a particle with unit mass, V(a) and a?/2 play
the roles of potential energy and kinetic energy respectively of that particle. This
particle has zero total energy. The classical turning points in the motion of this
particle correspond to the zeroes of V(a). Let us assume that at the present time
to, a(to) = 1, a(to) > 0 and V(t5) < O (since the universe is expanding). If there
exists 0 < a; < 1 such that V(a;) = 0 then there exists a time ¢; in the past when
a(t) transitions from a decreasing function of time to an increasing function of time.

Similarly, if there exists 1 < a; such that V(a;) = 0 then there exists a time ¢; in
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the future when a(t) transitions from an increasing function of time to a decreasing
function of time. Finally if V(a;) = 0 has roots a!"** > 1 and 0 < a/™ < 1 then a(t)
oscillates between a7** and a*". Hence the problem of understanding this motion is
reduced to determining whether V' (a) = 0 has a solution in the the regions 0 < a < 1
and a > 1. In terms of cosmology, 0 < a; < 1 implies a bounce in the past, 1 < a;
implies a contracting phase in the future (big crunch) and if a; exist in both regions
then we have an oscillating universe (We ignore cases where V’(a;) = 0).

We now turn our attention to a specific form of V(a). Let us consider the case

where V' (a) is obtained by solving the jerk equation (see equation (2.7)):

a*V"(a) — 2V (a) =0

with the initial conditions V(1) = —1/2 and V'(1) = ¢qo. The solution, for j =

constant is given by

where
1 . 1
p:§\/1+8], UZQ(Q(H-Z)

The roots of V(a) = 0 are given by (excluding a = 0)

2p u+p
e (u—p>

We first delineate different regions in the gy — j plane based on the behavior of the

roots. The relevant regions are delineated based on the following curves (see Figure
2.6):

J = 243 + qo,
o1
J——§7

1
QO:_Z~

e Region I: j > 2¢2 + qo; p > |u|. No positive, real a;. This universe has a big
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Figure 2.6: Delineated regions in the gg — 7 plane. The constraints on gy — j lie safely
within the physically allowed region. Note that we only used data from the relatively
low redshift universe where the constant j models can provide a good description of
the expansion history.

bang singularity in the past.

e Region II: —1/8 < j < 2¢2+qo, g0 > —1/4; 0 < p < |u]; 1 < a;. If the
universe is currently expanding, then it continues expanding untill it reaches a;.
At this point it turns around and starts its collapse to a future singularity. This

universe has a big bang singularity in the past and a big crunch in the future.

e Region ITII: —1/8 < j <2¢2+qo, g0 < —1/4; |u| <p; 0 < a; < 1. V(a) =0
has a root a; < 1. If the universe is currently expanding, then it continues

expanding. This region has a bounce in the past.

e Region IV: j < —%. V(a) is oscillatory with roots a; > 1 and a; < 1.This

implies that a(t) is oscillatory.
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The panels in Figure 2.7 show how different forms of V(a) (corresponding to points
in go — j plane) yield very different behaviors for a(t). As mentioned before this
technique, which is often used in classical mechanics, provides a simple yet powerful

means of understanding the behavior of a(t) for very general scenarios.
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Figure 2.7: The above panel shows typical forms of V'(a) in regions I, II, III and IV
as discussed in the text. By thinking of V(a) as an effective potential, it is easy to

understand the qualitative behavior of a(t) in these models.
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2.B Cosmology with a constant ratio

measured

¥

M as
constant —» —E£2% — G(Fx, Tx,0,a)d*?(a)

Mtot ¢

cosmology

Figure 2.8: Distance measurements with clusters of galaxies

In this chapter we used fgs (defined below) measurements for constraining the
expansion history of the universe. In this short note, we describe how these measure-
ments serve as probes of cosmology. This is meant to be a pedagogical note, where
we ignore some details for the sake of simplicity. For a more in depth discussion,
especially of the actual observations, see [56] and references therein.

Definition: f,, is the fraction of X-ray emitting gas to the total mass in clusters:

Mgas
fgas - ]\4—t0t .
As we show in this appendix,
Mgas 3/2
A = GFx(9), Tx(0),0, a)d”"(a), (2.31)
tot

where the X-ray flux Flx, temperature T, angular size # and scaler-factor a are
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observables, G is a known function of these observables and d(a) is the co-moving
distance to the cluster.
Main idea: Assume fg,s is constant'?, measure G(Fx(6),Tx(0),0,a), infer d(a)
which will constrain the expansion history.!3

The rest of this appendix is devoted to providing a derivation for (2.31). We begin
by deriving an expression for M, in terms of the observables mentioned above and
cosmological distances. The main assumptions going into this part of the derivation
are those of hydrostatic equilibrium (dP/dr = GMp/r?) and the ideal gas law (P =
nkgT) for the X-ray emitting gas. With these assumptions we get an expression
relating the temperature, number density (nx) of the gas and the total mass within

a given radius.

dInnx(r) N dinTx(r)  p GyM(r)
dinr dinr  kgTx(r) r ’

(2.32)

where p is the average mass per baryon. Since we observe things in the sky as a
function of the angular size 6, rather than the physical size r, we re-express the above

equation in terms of the angular size to get

dlnnx(0) n dinTx(0) o GnMio(0)
dlnf dln®  kgTx(0) 6da(a)

(2.33)

where d4 is the angular diameter distance to the cluster. For the sake of simplicity,
we assume that nx oc Ty. Then, the LHS is (y+1)dInTx /d1In6. Tx can be measured
as a function of 6. So, we get

kg ,dTx(0)

Miot(0) = | (v + 1)G—MQQT da(a). (2.34)

with everything in the square brackets being a directly measurable quantity for each

cluster. Note that, instead of assuming the power law relation, one can also obtain

12Gee discussion at the end of this appendix.
13In this sense it is very similar to the way Type Ia supernovae are used to measure cosmological
distances with the following identifications: SN Luminosity — fgas , flux — G(Fx (0),Tx (0),6).
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nx from X-ray flux measurements and get temperature T'x from the spectrum.

Let us now turn to deriving an expression for Mg,s. As in the case of My, we
would like to derive an expression for Mg, in terms of the X-ray observables, angular
sizes and cosmological distances. The key point in this derivation is that the number
density of the gas can be obtained from the measured temperature and flux. The

mass of the X-ray emitting gas:
Mgas = gipuiix (r)V (r) = gipfix (0)(0da(a))’, (2.35)

where V(r) oc r® = (0d4)? is the volume enclosed within a physical radius 7 and nx
is the (volume averaged) number density of the X-ray emitting gas. The factor g, is
a geometric factor (which arises from the volume average). Since we cannot measure
nx directly, we will express it in terms of the X-ray observables and distances as

follows. The X-ray flux from a region with angular size 6 is

Lx(0)

O = e 0y

In the above expression dp(a) is the luminosity distance and Lx(6) is the X-ray

luminosity. Now, Lx oc i3 V. More explicitly, it is given by
Lx(0) = g2(Tx)x (0)(0da(a))’,

where g, contains a dimensionless gaunt factor and a temperature dependence which
depends upon the detailed microphysics. For this note, we will not specify its func-
tional form. Note as in ¢;, g» will also contain a geometric factor from volume

averaging. Re-arranging the above equation, we get

47TFX(9)d%(a)} 12

nx(t) = 2_1/2 X
©)=9 (T)[ Ods(a)

Using this expression for nx in (2.35), we get

Meas(0) = 9195 > (T )1 [4m(0) Fx (6)6°] % d.(a) 4 (a). (2.36)
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Using the expressions in (2.34) and (2.36) in (2.31) we get

Mgas(e) —-1/2

M (8) ~ 9192 (Tx) [(v+1)

Fos(6) = ] " )] "o,

Gu?  df a 0

where we used a~'d4(a) = adr(a) = d(a). Note that Fx(6) is the flux from the entire
region within 6. Also note that we get fys as a function of 0. f,.s is expected to
be constant across a population of clusters when measured at the same over-density
only (based on simulations). Now, a given over-density will correspond to a different
0 = Oa500 for each cluster (“2500” stands for an over-density of 2500 times the critical
density). This chosen over-density (and hence 9500) is measured by using the observed
temperature in the Virial relation. It is this angular size where fgas is measured. For

more details, see [56].

As promised, we have derived the function G(Fx(6),Tx(),6,a) up to the factors
g1 and go. The main assumptions were those of hydrostatic equilibrium, use of the
ideal gas law and spherical symmetry which can all be relaxed in a more detailed

study.

We end with a few statements about the main idea and some caveats. We assumed
that fes is constant across clusters. Although, seemingly obvious, this statement
requires some qualification. As a first approximation, since clusters are the largest
collapsed objects in our universe, the ratio reflects the average baryon to matter ratio
in our universe (after taking into account the fraction in stars). In reality, fgas is
expected to evolve slightly with redshift due to the loss of baryons from the clusters
which has to be modeled using simulations (or have extra parameters that need to be
marginalized over). Also, non-thermal pressure from turbulence, magnetic fields etc.
is expected to play a role in determining the total mass. Again, simulations likely
shed light on this in this aspect in the near future. The value of fg,s can be obtained
from local measurements (a =~ 1), which is independent of cosmology. However, it
is difficult to find a large enough sample of clusters at low enough redshifts. So the
calibration of f,,s includes some information about cosmology (mainly Hy and €2,,).
To ameliorate this problem, in practice, a ratio of the true distance and the distance

in a reference cosmology is used. It is also possible to use the constancy of f,.s rather
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than its numerical value for kinematic measurements.
Acknowledgements
I would like to thank Steve Allen, David Rapetti, Adam Mantz and Evan Million for

helpful discussions while writing this short note.

2.C Cosmokinematics

2.C.1 Introduction

In this appendix, we investigate the behavior of a class of dimensionless kinematic
variables which allows us to extract salient features of the expansion history. When
necessary, we will use the ACDM model as a concrete example, although most of
the discussion carries over to more general models. This appendix is independent of
the chapter, except that it provides additional motivation and background for using
kinematic variables.

It is perhaps worth asking, why one should consider a kinematic approach. As we
know, kinematic approaches have been fruitful in the past. Long before Newton came
up with his laws of motion, Galileo was able to determine empirical relations between
kinematic variables for describing the motion of objects at constant acceleration.
In cosmology, we too are perhaps at a similar stage. We can measure the expansion
history, but the law governing it is yet to be fully understood. A better understanding
of the kinematics will hopefully lead us to a deeper understanding of the dynamics
responsible for cosmic acceleration.

Consider an expanding, spatially flat, homogeneous and isotropic universe. In a

metric theory of gravity, such universe can be described by a FRW metric of the form
ds® = —dt* + a®(t)6;;dx'da? | (2.37)

where a(t) is the dimensionless “scale factor” normalized to be a(ty) = 1 at the present
time tg. The scale factor is related to the the redshift z through a = (1 + 2)~!. In
what follows we shall assume that a(t) is sufficiently smooth. Interesting features

regarding the behavior of the scale factor can be gleaned from a set of dimensionless
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functions w,(t) constructed out of the derivatives of the scale factor. For n = 1 we

explicitly define

1 alt
_ L ad) 9.
ui(t) Hoat)’ (2.38)
where H is the Hubble constant. For n > 2
_ aM(t)a" (1)
un(t) = O (2.39)
where “.” = d/dt and a™(t) = d"a(t)/dt". For example for n = 2,3 we have
a(t)a(t)
(2.40)
a (t)a*(t) _

where ¢(t) is the acceleration parameter and j(t) is the jerk parameter. Note that we
define ¢(t) as the acceleration parameter rather than the more conventional deceler-
ation parameter which differs from our definition by a minus sign. A more familiar
context where these dimensionless functions are introduced is in the Taylor expansion

of the Hubble parameter around the present time ¢g:

H(t) = Ho[l+ (1 + qo)Ho(t — to) + %(jo —3qo +2)HZ(t —to)* + .., (2.41)

where Hy, qo, Jo etc. refer to the values of the kinematic parameters evaluated at the

present time t.

2.C.2 Kinematic flows

A useful feature of the kinematic variables is that for any power law scale factor

aft) o 18 = () = B VB =2 (Fmn = 1) (2.42)

671—1
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for n > 2. For an exponetial scale factor, it is even simpler
a(t) x e’ = u,(t) =1 n>2. (2.43)

Differentiating equation [2.39] with respect to time and changing the independent
variable to “Ina” with ’ denoting d/dIna we obtain the following recursion relation
between these variables

U, = Upt1 + (n — 1 — ng)uy,. (2.44)

Writing this system explicitly, we have

H' =(¢-1)H,

¢ =j+(1-2q)q,

j'=s+(2 -39,

s'=c+ (3 —4q)s, (2.45)

When working with kinematic variables, the above identities often simplify expres-
sions considerably. One can think about the above equations as a dynamical system
with critical points

Upt1 = —(n — 1 — nq)u,. (2.46)

To analzse the stability of the finite critical points we consider the evolution of the a

small perturbation away from the critical point
du,, = dyy1 — Ou, — niq. (2.47)

The fixed point u,, = 1 with 2 < n < N is a stable fixed point if we truncate the
series at any N > 2 setting uy = 1. All the eigenvalues lie in the left half of the

complex plane and we get the trajectories spiraling into the fixed point. Note that
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so far we have not assumed anything about a(t). These identities are true for any
smooth function and have nothing to do with cosmology yet. However, to solve this
system, we need a closure relation which is where the law determining a(t) (or some
combination of kinematic variables) comes in. The physics is in the closure relations.
As we shall see simple algebraic closure relations between j and ¢ describe a very large
number of cosmological models. A similar system had been investigated in the context
of inflation with slow roll variables in place of kinematic variables (see for example
[93] and references therein). Also see [29] for a related approach in reconstructing the
quintessence potential at late times.

Having defined the kinematic variables and some of their properties we turn our
attention to their importance in cosmology. The kinematic variables discussed above
are quite useful in understanding salient features about the expansion rate and the
contents driving the expansion. Although we want to stay away from dynamics, it
helps to know how these variable are related to the behavior of the contents of our
universe. For example, in the standard cosmological model with GR, we can relate
the kinematic variables to the total pressure and density through the Friedmann

equations as follows:

G
i il
3 1Y
1 4nG
a=-5- (2.48)
4G -
J=tm gl

e H(a) : Sign tells us whether the universe is expanding or contracting. Its

magnitude tells us how much stuff there is in our universe.

e g(a): Sign tells us whether the universe is accelerating or decelerating. Its

magnitude tells us about the total pressure in our universe.

e j(a): Sign tells us whether the rate or acceleration is increasing or decreating.

j(a) # 1 implies a time evolving pressure.

During an era with non-relativistic matter (P,, = 0) and a cosmological constant

(Pyn = —pa) the effective pressure P = Py + P, = —A/87G = constant. Hence in
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Figure 2.9: In the ¢j plane the the expansion history of our universe is extremely
simple. In the standard model with radiation, cold dark matter and cosmological
constant j = —(1 4+ 4¢) when matter and radiation dominate the energy density
whereas when matter and the cosmological constant dominate we have j = 1.

a universe with cold dark matter and cosmological constant as the dominant energy

densities,
j=1 (2.49)

When radiation (P, = p,/3) and cold dark matter dominate the energy densities

we get
Jj=—(1+4q) (2.50)

The jerk starts out at 7 = 3 deep in the radiation era, approaches 7 = 1 as mat-
ter domination approaches. The expansion of our universe looks simplest in the gj
plane shown in the Figure 2.9. The points (¢,j) = (—1,3), (¢,j) = (—=1/2,1) and
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(¢,7) = (1,1) correspond to radiation, matter and cosmological constant domination
respectively. It is worth noting that the jerk parameter: j = 1 in any era when the
effective pressure in our universe is constant with time. If one considers a slightly
more general (but arbitrary) model for dark energy with P,, = wp,, with constant w,
then we get j = —3(1 + 3w) — 3¢(1 + w). Adding more components usually lead to

more complicated relations between the kinematic variables.

2.C.3 Step-kinematics

Let us take a more detailed view of the kinematic variables in a spatially flat universe
filled with radiation, cold-dark matter and a cosmological constant. For the standard

model, we have

ik -3 —4
ngl—Qm—Qr—i—Qma + Qa7 (2.51)
where €; = p;/p. are the contemporary Russian density parameters with p. being the
critical density. From the above equation we can solve for the scale factor a(Hot; €2;).
For the scale factor a(Hot; §2;) obtained from [2.51], we can construct u, (Hot; €2;). It is
instructive to plot these dimensionless kinematic parameters as a function of the scale
factor a rather than Hyt. Figure 2.10. shows ug(a), us(a) and uy(a) (ie. q(a), j(a)
and s(a)) as our universe evolves from a radiation dominated era to a cosmological
constant dominated era via a matter dominated era. Note the step like behavior in
the kinematic parameters. We shall concentrate on three features of these kinematic
steps: (i) The height (ii) location of transition (iii) rate of transition. We will restrict
our attention to two kinematic variable us = ¢ and uz = j. Let us first look at the
height of the steps. For a > 1, the expansion rate is dominated by the cosmological
constant. In this era the scale factor has an exponential dependence on time which

yields u,(a) = 1. As discussed before, for any era with a power law scale factor,

u,(a) = constant. Specifically, during matter domination we have

a(t) o 1% = up(a) = q(a) = —%, us(a) = j(a) = 1, (2.52)
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Figure 2.10: The evolution of kinematic variables as a function of scale factor a for
a spatially flat universe with radiation, matter and a cosmological constant. For
any era with a power law scale factor a(t) oc t°, the kinematic variables u,(t) =
a™(t)a"(t)/a"(t), (n > 2) are constants. During radiation domination a(t) oc ¢/
and we have [ug(a),us(a), us(a)] = [g(a),j(a),s(a)] = [—1,3,—15] whereas during
matter domination a(t) oc t2/3 which yields [us(a), us(a), us(a)] = [q(a), j(a), s(a)] =
[—1/2,1,—7/2]. For the de-Sitter era (a > 1) we have an exponential scale factor
which yields u,(a) = 1 for all n, all the kinematic variables asymptode to one. In the
above plot we have taken €, = 0.3,€, = 10~* which determine the location of the
transitions. At the radiation matter transition dg/dIna = 1/8 and dj/dIna = —1/2
while at the matter dark energy transition we have dg/dlna =9/8 and dj/dIna = 0
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while during radiation era
a(t) o tY% = uy(a) = qla) = —1, ug(a) = j(a) =3, (2.53)

The value of the scale factor where the transitions occur are determined by the €,
or the energy densities of the different components. At radiation matter equality the

transition rates are

dq 1 dj 1
dlnal,_, 8’ dlnal,_, bX (2.54)
whereas at matter-A equality
dq 9 dj
I =0. 2.
dnal,_, 8’ dlnal,_, 0 (2.55)

Possible applications

The step like behavior suggests many simple ways of constructing departures from the
standard model. Although we do not go into details here, a simple approach would be
to use parameters that control the height of the steps, the location of the transition
and the rate of the transition. Most dark energy models in the current literature can

be described (at least to a good approximation) by such a parameterization.

2.C.4 Reconstruction

Finally, we provide a taste of how kinematic variables can be related to relevant
features of an unknown component responsible for cosmic acceleration. For example,
if it is assumed that quintessence is responsible for cosmic acceleration, then we can

reconstruct it from the kinematic variables as follows

q.52 = —Pc (2 H2 (q - 1) + Qma_3) )

3 H?
)0 (2.56)
1H 1 _3
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Using the above expression, one can easily relate the kinematic variables and the

effective equation of state parameter:

22—V 1 (1+2q)
YT RV T 31— Quad(HyH)?

Similarly, it is also possible to reconstruct relevant “potentials” in modified gravity
models from the expansion history. In general, the problem is not that we can find
a model that fits a given expansion history, but the fact that we can find too many
(though none have a strong theoretical basis). One way of alleviating this problem is
to include information from the inhomogeneous universe. This is pursued in the next

chapter.
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Chapter 3

A framework for probing gravity

on cosmological scales
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Abstract The relationship between the metric and nonrelativistic matter distribution depends on
the theory of gravity and additional fields, hence providing a possible way of distinguishing compet-
ing theories. With the assumption that the geometry and kinematics of the homogeneous universe
have been measured to sufficient accuracy, we present a procedure for understanding and testing
the relationship between the cosmological matter distribution and metric perturbations (along with
their respective evolution) using the ratio of the physical size of the perturbation to the size of
the horizon as our small expansion parameter. We expand around Newtonian gravity on linear,
subhorizon scales with coefficient functions in front of the expansion parameter. Our framework
relies on an ansatz which ensures that (i) the Poisson equation is recovered on small scales (ii)
the metric variables (and any additional fields) are generated and supported by the nonrelativistic
matter overdensity. The scales for which our framework is intended are small enough so that cosmic
variance does not significantly limit the accuracy of the measurements and large enough to avoid
complications due to nonlinear effects and baryon cooling. From a theoretical perspective, the co-

efficient functions provide a general framework for contrasting the consequences of ACDM and its
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alternatives. We calculate the coefficient functions for general relativity (GR) with a cosmological
constant and dark matter, GR with dark matter and quintessence, scalar-tensor theories (STT),
f(R) gravity and braneworld (DGP) models. We identify a possibly unique signature of braneworld
models. For observers, constraining the coefficient functions provides a streamlined approach for
testing gravity in a scale dependent manner. We briefly discuss the observations best suited for an

application of our framework.
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3.1 Introduction

A successful model of the universe must include a background geometry, an inventory
of its contents, a kinematical description of its expansion and a dynamical explanation
of how its constituents interact, drive the expansion and develop structure. Recent
observations (for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 26, 11, 12, 13, 14] and references
therein) have led to a “Flat ACDM cosmology” (henceforth FACDM), dominated by
dark energy (cosmological constant A) and matter (predominately dark and initially
cold) and the observed expansion rate and growth of structure agree with the predic-
tions of this model at the ten percent level. Future observations should be capable
of testing this model at the one percent level. If they verify its predictions, they
will affirm a remarkable, simple description of the universe, implicit in the earliest
relativistic investigations of Einstein, Friedmann and Lemaitre, analogous to the affir-
mation of general relativity (GR) that took place twenty years ago (for example [15]).
If FACDM passes this test, then the challenge will be to account for this outcome in
terms of physical processes operating at earlier epochs; if it fails, then we shall either
have learned something important about gravitational physics or described a new,
dominant component of the universe. Many alternatives, with and without GR, to
FACDM have been proposed. At this stage, none of them stands out. There is there-
fore a need to provide a framework for describing future observations and theoretical
investigations in general terms which will facilitate a distinction between FACDM

and its alternatives. The provision of one such framework is the goal of this paper.

Further observational progress is anticipated over the coming decade. The anal-
ysis of Planck observations [16] of the microwave background, coupled with local
measurements of the contemporary Hubble parameter, Hy, should result in an ex-
tremely accurate description of the physical conditions and the statistical properties
of the density fluctuation spectrum at the epoch of recombination when the universe
had a scale factor a = (1 + 2)™! ~ 1073 relative to today. Combining the calcu-
lated physical sizes of the acoustic peaks in the background radiation spectrum with
the Hubble constant and the Copernican Principle leads to a measurement of spatial

curvature, which is already known to contribute to the kinematics at a level of less
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than a few percent [14]. We shall adopt a value of zero for illustration purposes.
Essentially kinematic measurements, for example, those involving Type la supernova
explosions, baryonic acoustic oscillations (BAO) and baryonic gas fractions in clusters
should provide a record of the comoving distance, d(a) = [ cdt/a, from which the
evolution of the Hubble parameter H(a) = dlna/dt and the acceleration parameter
q(a) = dIn(Ha)/dIna can be inferred’. For the rest of the paper we shall assume
that these evolutions have been measured to a sufficient accuracy. Note that we are
using a instead of the cosmic time t as the time coordinate as this relates directly
to the observable photon frequency shift. For recent constraints on the expansion

history, see for example [17] and references therein.

Given an understanding of the geometry and kinematics, the task is then to see
if the dynamical evolution of the universe is consistent with GR or mandates an
alternative theory. Now, GR provides a relationship between the spacetime geom-
etry on a cosmological scale measured by the Einstein tensor G[g,,] and the total
Energy-Momentum Tensor (EMT) of its contents T, Glg,,] = 87GT. The discovery
that G[g,] # 8rGT[“obs”] where T[“obs”| includes known forms of matter such
as electromagnetic radiation, baryons etc. has led to the addition of dark matter
and dark energy contributions to the EMT. Dark matter candidates include Weakly
Interacting Massive Particles and axions which would presumably behave gravita-
tionally like baryonic matter. However other possibilities exist which might behave
differently such as massive neutrinos (as a subdominant component). Dark energy
is most simply characterized as a temporaily and spatially constant vacuum energy
field with zero enthalpy (see [18] for a review). However, it could also have quite
different dynamical properties and might include contributions from additional scalar
[19], vector [20] or tensor fields with possible interactions between each other [21] and
with known forms of matter. Historically, the first representation of dark energy was
Einstein’s cosmological constant, which was seen as an augmentation to G, not T
(see for example [22]). This original proposal has also been generalized in many ways

so that G[g,.] +F[g,, ] = 8mGT[“obs”|, where F|g,,, ¢] depends on the metric and

'Our acceleration parameter differs from the conventional deceleration parameter by a minus
sign.
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more generally some additional gravitational fields, ¢. For example ¢ could be the
additional gravitational scalar field in Scalar-Tensor Theories (STT) (see for example

23, 24]). Nature could of course be unkind and we might have
Glg] + Flguw, ¢] = 8rGT[“obs”| + 8nGT|“dark”]. (3.1)

Considerable effort has been made in constructing models that fall into the above
mentioned categories and more recently in finding ways to distinguish between them
(for example see [25, 26, 27, 28, 29]).

Now, modifying the physics beyond GR with cold dark matter and A can have
three quite separate manifestations. Firstly it can lead to a change in expansion of
the universe, secondly, it can influence the growth of structure and the metric and
thirdly, it can confront local tests of the theory of gravity. The approach that we fol-
low is to assume that the theory is constrained by the first and third manifestations
and that it is the growth of structure that is providing the test. This oversimplifies
the data analysis but does lead to a transparent and simple approach. One impor-
tant consequence of adopting local gravitational tests is that photons and baryons, at
least, will follow geodesics and that the unperturbed photons will be subject to cos-
mological redshifting of their frequencies, v oc a~!. This simplifies the interpretation

of observational data.

Our procedure is to adopt a general form for the metric of a linearly perturbed ho-
mogeneous and isotropic universe which introduces two potentials ®(x, a) and ¥V(x, a)
(scalar metric perturbations in the Newtonian gauge), where x denotes the three spa-
tial coordinates. We also introduce an associated fractional density perturbation
dm(x,a) in nonrelativistic matter and relate it to the potentials. We assume that
there is a dominant nonbaryonic contribution to the clustering of nonrelativistic mat-
ter. In practice, it is easier to work with Fourier modes and this allows us to focus
attention on the range of length scales that are most relevant observationally: suffi-
ciently smaller than the horizon so that our expansion is valid and we can observe
enough independent volumes within our current horizon allowing for a high precision

measurement despite “cosmic variance”, and yet large enough that nonlinear effects
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and baryonic cooling are not a factor. Within this range of length scales, we adopt
the following ansatz regarding the relationship between linearized metric and density
perturbations, written as an expansion in powers of (aH /k), where k is the magnitude

of the comoving wavevector k

“gfm (%)2 5k, a) | Bola) + B (a) (%) + Ba(a) (%)2 +o
W(k,a) = —4”52?” (%)2 5. (k, @) [ 70(a) + 1 () (%) 4+ (a) (%)2 +o.

Sn(k, @) = 6i(K) [50(a) +61(a) <%) + 65(a) (%)2 +o.

d(k,a) =—

(3.2)
We have set the speed of light ¢ = 1. The background mass density p,, o< a™3. §,,;(k)
is determined from initial conditions which can in principle be taken close to the
surface of last scattering, a; ~ 1073, as long as the modes are sufficiently sub-horizon.
Note that often, we are only interested in the scale dependence of the growth of the
perturbations in the matter distribution and the metric at linear, subhorizon scales.
Such measurements require taking ratios of the matter distribution or the metric at
different redshifts, whereby, the initial conditions cancel out in the final expressions.
The coefficient functions {3, vn,0,} with n = 0,1,2 are arbitrary functions of the
scale factor. The leading terms in the expansion agree with Poisson’s equation on
small scales, while subsequent terms allow for a scale-dependent departure as we
move towards larger scales. This approach introduces a length-scale dependence to
the perturbations through an expansion in powers of (GM/d,)/? ~ dp/dy, where
M ~ pmdi’7 is the total mass enclosed within the physical size d,, and dy = 1/H is the
Hubble horizon. In Fourier space, with d, ~ a/k, we get (GM/d,)'/* ~ aH k.
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3.1. INTRODUCTION

The theories that we discuss below introduce different corrections (different co-
efficient functions {3,,vn,d,}) and these differences are measurable? . From an ob-
server’s perspective, constraining the coefficient functions with measurents of ®, &
and 6,, provides a streamlined approach to characterizing gravity on cosmological
scales in a scale dependent manner. On the other hand, from a theorist’s perspective,
substituting the ansatz into the field equations for a given theory allows for a (mostly
straightforward) calculation of the coefficient functions. The coefficient functions pro-
vide a means of comparing the consequences of different theories. We shall discuss

our assumptions, limitations and our ansatz in detail in the next section.

This is certainly not the first time that an attempt at constructing and applying
such a framework has been made. The Parametrized Post Newtonian formalism (see
[15] and references therein) has been a powerful framework for understanding and
constraining gravity on solar system (and other isolated system) scales. Our aim is
to construct a similar framework for cosmological scales. Recently a few attempts
have been made in this direction. However most of these are either concerned with
the expansion history alone, deal with specific aspects of departures from GR such
as effective gravitational constant on small scales [30], growth of perturbations on
small scales [31], the gravitational slip [32], or deal with superhorizon scales [33].
The authors in [34] take into account growth of structure, anisotropic stress and
the modification to the Poisson equation and parametrize departures from Einstein’s
gravity with a growth index and two functions of the scale factor which are relevant
for weak lensing surveys. However, they do not consider scale dependent departures.
Another popular phenomenological approach for characterizing the effects of the un-
known physics (additional fields, their interactions, or modified gravitational laws)
is to define an effective fluid energy momentum tensor for everything other than the
standard model matter, effectively move F in equation (3.1) to the right hand side
and define T.rp = —(87G) 'F[p, g,] + T[“dark”]. This effective energy momentum

2As we shall see at the end of Section 2 and in Section 3, the coefficients 32,7s,82 # 0 even
in GR with non-relativistic matter and represent “post-Newtonian” corrections. Also note that d,,
characterizes the fractional matter density perturbation in the Newtonian gauge, which is related to
the often used comoving density perturbation A,, through A, = §,, + 300, (5., — 3V)(aH/k)?. A
combination of the 00 and 0i Einstein equations yields (k/aH)?¥ = —(47Gp,,/H?)A,,.
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tensor is then parametrized in terms of the equation of state, sound speed, anisotropic
stress, etc. [35, 36]. This approach, however, seems to put an unnecessary restriction
of a fluid interpretation which might be misleading, especially when the effective dark
energy is due to modified gravity or extra dimensions. We are unaware of a systematic
approach undertaken where the framework includes a scale dependent departure in
the relationship between the matter distribution and the metric perturbations along
with their respective evolution on cosmological scales up to post-Newtonian order. 3

The rest of the paper is organized as follows. Section 2 discusses our assumptions
and the particular form of the ansatz in detail. In Section 3 we apply our framework
to GR, STT, quintessence, f(R) models [18] and DGP gravity [41]. In particular,
we calculate the coefficient functions in these theories and comment on our ansatz
in the context of these theories. Section 4 is devoted to how our framework might
be employed by observers. We briefly discuss the observations that could be used to
constrain the different coefficient functions. Section 5 presents a short summary and

future directions for extending the framework.

3.2 QOur ansatz and associated assumptions

With an eye towards observations in the next decade, we assume that the geometry
(spatial curvature) and kinematics (expansion history) of the universe have been
measured to a percent level accuracy. What remains to be understood and measured
accurately (at the few percent level) is the relationship between the metric fluctuations
and the nonrelativistic matter distribution along with their respective evolution on
linear, subhorizon scales. This relationship will depend on the theory of gravity or

the presence of yet unknown components, thus providing a test for distinguishing

3We note that during the final stages of preparation of this this paper we became aware of a scale
dependent framework for modified gravity that includes super and sub-horizon scales [37]. After
submission of this manuscript, the following were posted on arXiv.org which are relevant to this
work. [38] provide an analysis of the observational tests for modified gravity; [39] use evolution of
galaxy bias to constrain scale dependent departures from GR; whereas [40] build on [33] to include
sub-horizon scales; [37] extend [37] to include multiple fluids and curvature relevant for cosmic
microwave background calculations and constraints; whereas [32] discuss the effects of gravitational
slip on the CMB, growth of structure, and lensing observations.
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different theories. To explore this relationship in an (almost) model independent
way, we provide an ansatz, equation (3.2), relating the scalar metric perturbations (in
Newtonian gauge) and the nonrelativistic matter overdensity in Fourier space. In this
section we discuss the particular form of the ansatz and the underlying assumptions
in detail. We introduce our notation and conventions followed by some physical
arguments regarding our choice of the particular form of the ansatz. We end with a

discussion of the range of scales for which our ansatz is expected to be useful.

We focus on a perturbed FRW universe (spatially flat) with scalar metric fluctu-
ations in the Newtonian gauge [42]. In this gauge the metric takes the following form

(c=1)
ds* = —[1 +20(x, t)]dt* + a*(t)[1 — 2 (x, t)]dx - dx

Here the metric perturbations |®(x,t)|, |[¥(x,t)] < 1. We choose to work in the
Newtonian gauge because ®(x, ) is the generalization of the Newtonian gravitational
potential and the potentials ®(x,t) and ¥(x,t) are gauge invariant Bardeen variables
when we specialize to the Newtonian gauge. The energy density perturbation d,,(x,t)
is also gauge invariant, corresponding to the energy density perturbation on the zero
shear spatial hypersurface which is closest to Newtonian time slicing (see equation
(3.14) in [42]). In what follows, we use the scale factor a as the independent variable
instead of cosmic time ¢ with a(today) = 1. With this change of variables, the metric

takes the form
ds® = —[1 + 2®(x, a)|(aH) *da* + a*[1 — 2¥(x, a)]dx - dx

We shall work primarily in Fourier space and use the following convention: f(x,a) =
(2m)73 [ d®k f(k, a)e™ ™. To avoid unnecessary clutter we write the Fourier transform
of the metric perturbations ®(k,a)e’ > as ®. The same is true for ¥ and 4,,. The
background quantities depend on a. We shall often suppress this dependence; for

example by H we mean H(a).

We have assumed spatial flatness as expected on the basis of the simplest inter-
pretation of inflation. If the universe has measureable spatial curvature or large scale

deviations from the Robertson-Walker assumptions of homogeneity and isotropy, then
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the following development must be generalized at the expense of introducing param-
eters that need fitting. A purely geometrical demonstration of spatial flatness would
obviate some of this concern. Such a demonstration is possible, in principle, using two
screen gravitational lenses (Blandford 2008, in preparation), though it is not known
how practical it will be to implement this demonstration. If we choose to include
curvature as an additional parameter, then location of the first acoustic peak in the
CMB (and BAO scale) would likely provide the best constraints.

Our ansatz provides a relationship between ®, ¥ and d,, on linear (in ®, ¥ and
dm), subhorizon scales. We now turn to the discussion of some important features of
this ansatz. On scales that are much smaller than the size of the horizon, aH/k < 1,
the leading term has the form of a linearised Newtonian gravitational field equation.
For the purpose of this paper the Newtonian form of the field equation refers to
the the following relation between the time-time metric perturbation ®(x,a) and
the nonrelativistic matter density contrast d,,(x, a), V?*®(x, a) o d,,(x,a), which in
Fourier space becomes ® o< (aH/k)?d,,. Now, in the Newtonian gauge ®(x, a) plays
the role of the Newtonian potential once the background has been subtracted out.
The proportionality allows for a possible temporal variation in the effective Newton’s

constant which could depend on the cosmological background evolution.

From GR we know that this Newtonian relation starts breaking down as the
size of the perturbation becomes comparable to the size of the horizon. In general,
different theories of gravity will introduce different scale dependent departures from
this equation, changing the metric-matter relationship. Our claim is that for a large
class of theories, our ansatz, equation (3.2), captures the scale dependence of the
relationship between the nonrelativistic matter distribution and cosmological metric
perturbations. In particular, our ansatz faithfully reproduces the scale dependence of
the metric-matter relationship in the fiducial case of GR with cold dark matter and
a cosmological constant. In the presence of additional fields one might expect this
relationship to break down; however, this is usually not the case. Suppose that an
additional field enters the equations, for example as a source (quintessence), as a time
varying gravitational constant (Brans Dicke theory) or indirectly encapsulating the

effect of higher dimensions, etc. Perturbations d¢ in such a scalar field ¢ (consider
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quintessence or scalar-tensor theories) will be involved in the relationship between
dm and ®. However, from the field equation for dp, equations (3.18) and (3.19), we
can see that dp o< ®(aH/k)? for quintessence and dp o ® for scalar-tensor theories
when aH/k < 1. Thus, even if additional scalar fields are present, our ansatz should
be a good approximation for the relationship between the matter distribution and
the metric at the scales of interest. Note that we have assumed ¥ = O[®] for this

argument.

Another feature of our ansatz is that & and ¥ are directly proportional to 9,,.
This might seem unusual, since it implies that in the absence of nonrelativistic matter
perturbations, there would be no metric perturbations. This is certainly not true in
principle if an additional scalar field is present. However observationally, we know
that nonrelativistic perturbations are present and they dominate over perturbations
in other fields. The following argument provides a more detailed justification. Since
on the smallest scales, to lowest order in (aH/k), the potential ® oc d,,(aH/k)?,
we have dp o d,,(aH/k)* and 6p o §,,(aH/k)? in quintessence models and STT
respectively. This means that the potentials and pertubations in other scalar fields
are supported by the nonrelativistic matter perturbations. We do not expect to see
the effects of the initial power spectrum of these additional fields up to the order of
the terms considered in our ansatz, with the initial power spectrum of the additional
field possibly playing a role in higher order terms. This is one of the reasons for not

extending the power series in aH/k beyond the order considered in the ansatz.

Our ansatz does not capture the matter-metric relationship for all available models
in the literature. Consider for example k-essence [43],where the effective “sound
speed” (cs) can be small. This leads to a significant clustering of dark energy on
small scales which can be comparable to nonrelativistic matter perturbations. In
these scenarios, our ansatz does not provide a good approximation to the full theory.
The coefficients 35, 72(ox ¢572) > 1 signaling a breakdown in our assumptions. More
generally, if a model introduces an additional physical scale within the range of scales
of interest, then care needs to be taken in using our ansatz. In the k-essence example,
this additional scale is the Jean’s length for the scalar field fluctuations, whereas

in the case of f(R) models this could the “Compton wavelength” (~ 1;11%/ %) of the
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effective gravitational scalar degree of freedom (see for example [44]). In such cases
the ansatz might still be applicable in a more limited range of parameters and length

scales (see Section 3.4).

We note that some of the above arguments are made under the assumption that
the additional gravitational or nongravitational contribution to the field equations is
due to a scalar field (quintessence or scalar tensor theories). As argued above, this
leads to only even powers of aH/k in the expansion. Furthermore, f(R) modification
of the Einstein-Hilbert action also lead to even powers of aH/k. An intriguing case
where one can get an odd power of aH/k is in DGP braneworld models. In these
extra-dimensional theories, the junction conditions on our 4 dimensional brane gives
rise to a scale dependence involving terms linear in aH/k. We come back to this in
Section 3.5.

Regarding ¥, we assume that the relationship between ¥ and J,, has the same
(aH/k) dependence as ® and d,, since from GR we expect & = ¥ when no anisotropic
stress is present. The form of d,,(k,a) in the ansatz can be motivated from the
conservation equation for nonrelativistic matter at first order in ®, ¥ and §,,:

2
a?026,, + (2 + ¢)ad,b,, = — (%) D+ 3 [a*02U+(2 + q)ad, V] . (3.3)

As discussed above at lowest order in (aH/k)?, the metric perturbations ®, ¥ o
dm(aH/k)?, thus the largest term on the RHS of equation (3.3) is proportional to
dm(k,a). At this order we get a homogeneous equation for §,, which has a solution
of the form 6,,(k,a) = dmi(k)dg(a). This is the usual approximation used when
investigating the growth function on small scales. Perturbatively including the next
order term on the RHS, we can see that our ansatz captures the general form of the
solution to that order. Again, we use this argument as motivation for the form of
the ansatz, being aware of the fact that nonrelativistic dark matter is not covariantly
conserved in some models. In §,,, we include both baryonic and nonbaryonic dark
matter, with an understanding that baryonic matter contibutes a small fraction to
the total. We assume that baryons are covariantly conserved and follow timelike

geodesics, serving as test particles whose motion can be used to probe the metric.
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Figure 3.1: The ratio of the physical size of the perturbation to the size of the
horizon is used as an expansion parameter in our anzatz. We plot this ratio, (aH/k),
as a function of a from last scattering to the present for the concordance model
(yellow region). The upper and lower bounds of the yellow region are determined by
considering scales that are small enough so that cosmic variance does not dominate
the errors and at the same time large enough so that nonlinear evolution and baryon
cooling are not a significant factor. Most of the observations in the next decade will
yield information in the range 107! < a < 1. If we are interested in observations that
only care about a smaller range of the scale factor, then the allowed range of Hy/k
increases. We also plot lines of constant multipole | ~ kd(a), which provides a rough
estimate of the relationship between k£ and angular scales at different redshifts.
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We now turn to a discussion of the range of scales where we expect our procedure to
be applicable. Our ansatz uses the ratio of the physical size of the perturbation d,(a)
to the size of the Hubble horizon dy(a) = 1/H(a) as our small (post-Newtonian)
expansion parameter. In Fourier space d,(a) ~ a/k and we need d,(a)/dn(a) ~
aH/k < 1 for the expansion in aH/k to be meaningful. From Figure 1, we can see
that for a given k, aH/k is a decreasing function of the scale factor (till dark energy

domination). So if aH/k < 1 at early times, it will remain so till today.
We first give a rough upper bound on Hy/k. In addition to aH/k < 1, from

an observational standpoint, the largest scales of interest are the ones where cosmic
variance does not significantly limit the precision of our measurements (angular mul-
tipoles [ > 1). To convert this constraint on [ to a constraint on Hy/k, we need a
relationship between k and [. For large k, a perturbation with a given k corresponds
roughly to a multipole I ~ kd(a) = (aH/k) ‘aHd(a), where d(a) is the co-moving dis-
tance. Note that this relationship is scale factor dependent. Let us take [ ~ 30 as the
largest angular scale where cosmic variance does not significantly limit measurement
precision. For 0.1 < a < 0.5 we get aH/k ~ aHd(a)/l < 0.06 since aHd(a) < 3.7 in
this range. At a ~ 0.5, the corresponding comoving wavevector of the perturbation
is k ~ 1072 hMpc ™" or equivalently Hy/k ~ 3 x 1072, On the other hand, this same
[ would correspond to aH/k > 1 for a ~ 107®. So if we are also interested in the
CMB, then aH/k < 1 implies that [ ~ (aH/k) 'aHd(a) 2 55 at a ~ 1073 because
aHd(a) ~ 55 at last scattering. In summary, for observations at large redshifts, the
requirement aH/k < 1 provides the upper bound on the scales for which our ansatz
can be used wheres [ 2 30 does the same as low redshifts. This upper bound can be

relaxed depending on the range of redshift in which the observations are made.

Now, for the lower bound on Hy/k we get Hy/k 2 3 x 1072, This corresponds to
ki ~ 107" h Mpc~* which is at the boundary between linear and nonlinear evolution
of d,, today. At these scales the linear and nonlinear matter power spectrum differ
by a few percent today (and less in the past). Since the scalar metric fluctuations
O[®(x,a), ¥(x,a)] ~ 107° on these scales, as indicated by measurements of the cosmic
microwave background (CMB), we can linearize the field equations in &, ¥ and §,, at

these scales. Another reason for this lower bound is that on scales larger than these we
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do not expect a significant bias between the baryonic and nonbaryonic matter. We can
relax the lower bound if the observations are restricted to smaller scale factors since
the scale factor dependence of the boundary between linear and nonlinear evolution
is given by kn(a) ~ 107'a=32hMpc™'. For example if we restrict our selves to
1072 <a <107%, then Hy/k = 1074,

Figure 1 shows the typical order of magnitude of aH/k for the range 3 x 1073 <
Hy/k < 3 x 1072 (filled yellow region). Finally, the range of scale factors we have
in mind for our framework is 107! < @ < 1. Gravitational dynamics at late times
(large a) is particularly interesting due to cosmic acceleration. The next generation
of observations including lensing, BAO, cluster counts, galaxy power spectra etc. will
be made within this range. Although we concentrate on late times, with some care,
our framework can be used with CMB observations. For example, after including
radiation and baryons, using our framework we can calculate the anisotropies in the
CMB if we know the initial conditions for each mode after it enters the horizon.
Once the modes are sufficiently subhorizon, their subsequent evolution can be used
to constrain the coefficient functions. Note, that for the mode corresponding to the
first acoustic peak (I ~ 220), aH/k ~ 0.3 at last scattering. This comoving scale (as

well as a range of smaller scales) is within the yellow shaded region in Figure 1.

Before we end this section we provide a concrete example of what the coefficient

functions look like in a simple case, the Einstein-de Sitter universe:

Bo=" =1,

Br=m=0,

5 = :_37

2 =72 (3.4)
50 :a/ai,

51207

9y = 3(a/a;)(1 —a/a;).

where a; ~ 1072. We turn to the calculation of the coefficient functions in the next

section.
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3.3 Application of the framework with examples

In this section we calculate the coefficient functions for GR with a cosmological con-
stant and nonrelativistic matter, GR with quintessence, scalar-tensor theories, f(R)
theories and DGP gravity. In general, the nonrelativistic matter consists of baryons,
massive neutrinos and nonbaryonic dark matter with (possibly) nongravitational in-
teractions between them and other fields. For simplicity we will ignore massive neu-
trinos and baryons in this section. Local tests of gravity provide strong constraints
on baryons and photons and their interactions. They do not yet provide similar con-
straints on the interactions of nonbaryonic matter. Hence, nonbaryonic matter need
not be covariantly conserved. However in the examples considered, we treat dark
matter as a perfect fluid that is covariantly conserved for simplicity. This allows
us to use the conservation equation (3.3), which is sometimes easier to use than a

gravitational field equation that would otherwise take its place.

The basic strategy is to substitute our ansatz into the field equations and con-
servation equations and solve for the coefficient functions. We begin by substituting
our ansatz (3.2) into the conservation equation for nonrelativistic perfect fluid dark
matter (3.3), collecting terms with like powers of (aH/k) and setting their coefficient

terms equal to zero to obtain

ArGpm

[&283 + (2 + q)a@a} 50 - Tﬁoé@ = O,
@202 + (2 + q)ady) [(aH)8] — 4”§fm Bol(aH)é] = 4”55“1 (aH)Brdo, s
@202 + (2 + q)ad,] [(aH)?6] — 4W§fm Bol(aH)?85]

_AnGpy,

72 (aH)?*[26161 + B2bo — 3(a”D2 + qada — q)(7000)],

where ¢(a) and H(a) are assumed to be known from the background evolution. The
above equations are second order differential equations for dy, d; and d5. The equation
for 9y can be solved once (3 is known. Gf is the effective gravitational “constant”. If
By = 1, the equation for Jy is the usual equation for the fractional matter overdensity

on linear and small scales in GR with nonrelativistic matter as the only clustering
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component.

We digress a bit to note that for 6, = (aH)"6,, the differential operator acting
on 8, is [a20% + (2 + q)ad, — 47Gp,Bo/H?]. This feature continues if we were to go
to higher order terms as well, hence it might be useful to find a Green’s function for
this operator. In general, to solve for d;, we need to know [y, 3; and dy with two
initial conditions. Similarly, to solve for d, we need to know [y, o, do, 01,01 and (o
along with two initial conditions. To progress further we turn to specific theories
of gravitation. Our aim is to show how to apply the formalism rather than discuss
in detail the various models considered. We leave out the detailed steps, which are

straightforward but tedious.

3.3.1 General relativity with cold dark matter and the cos-

mological constant

We start with the usual Einstein Hilbert action:

1
5= 16nC

/ d*r/—g[R —2A] + / d*a/=gLm, (3.6)

with £,,, the lagrangian density for perfect fluid cold dark matter The corresponding
field equations are
Gl + Aol = 8nGTY, (3.7)

where G# = Rt — 0FR/2 and T} is the energy-momentum tensor for a pressureless
perfect fluid. As usual, we separate the field equations into the background and
perturbed parts (first order in ®, ¥ and §,,). Upon substitution of our ansatz into the

perturbed field equations we get the following expressions/equations for the coefficient
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functions. 4G
[a282 + (2 + q)a@a} 50 — WHme(SO = 0,
4G o,
(@32 + (2+ q)ad,] [(aH)81] — =" [(aH)5:] = 0,
47Gpp,
(@02 + (2 + q)ad] [(aH)*6a] — 2" ((aH)*6)]
127Gpp,
= — T(CLH)2 [azag + (q + 1)61/8& — q:| 507 (38)
Bo =" =1,
Br=m=0,
o)
fo =12 = —32 ¢
do

where we used the 00 and ¢ # j Einstein equations along with the coefficient form of
the conservation equations (3.5). We need to provide 6 constants of integration for

the three second order differential equations. We take these to be

(50((%) = 1, ai(%éo(ai) = 1,
51(6%) = 0, aiﬁaél(ai) = O, (39)
(52(6@;) == 07 aiaaég(ai) = -3.

This ensures that 0,,(k,a;) = d,,:(k), thus defining d,,;(k) in our ansatz (3.2). The
derivatives are chosen to agree with the case of pure matter domination at early
times (a; ~ 1072), where the explicit solution takes the form §y = a/a;, § = 0 and
dy = 3(a/a;)(1 — a/a;) after rejecting the decaying modes. For any model under
consideration, we can choose fix initial condition by rejecting the decaying mode.
For simplicity, we shall use the above initial conditions for the scalar-tensor as well
the braneworld models for which we plot the coefficient functions. For these models
the parameters have been chosen so that at a; ~ 1072, the conservation equations

approach those of an Einstein-deSitter universe in GR.

The dashed lines in Figures 2 and 3 show these dimensionless coefficient functions
for the spatially flat-ACDM with €, = 87Gpne/3HZ = 0.3. Since By = v = 1,
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there are no corrections to the Newtonian gravitational constant as far as growth of
perturbations is concerned on small scales. Since single gradients do not appear in
the Einstein equations involving d,,, ® and ¥ (after eliminating the velocity through
the conservation equation), #; = 71 = 0. The 00 Einstein equation imposes d; = 0.
The fact that By = 5 # 0 reflects corrections because of GR to the relationship
between matter and metric perturbations, whereas Js = v, # —3 reflects the effect of
the cosmological constant. dy characterizes the growth of structure on small scales.
It deviates from dy = a/a; because of A. ¢y reflects the corrections to the growth
function as we move to larger scales. Note that G and 75 and 5 are multiplied by
(aH/k)?, whose magnitude is shown in Figure 1. The terms (By(aH/k)?, vo(aH/k)?
and dy(aH/k)? are much smaller than 3, v and &y, making it difficult to observe

their effects unless we investigate large scales.

3.3.2 Scalar-tensor theory with cold dark matter (matter

representation)

Scalar-tensor theories are popular alternatives to GR. In the matter representation

(also called the Jordan frame), the action contains two free functions f(y) and V()

1
167G

S= / /=g [F(9)R + L] + / /=G . (3.10)
Note that we have decided to make ¢ dimensionless since we wish to treat the per-
turbation in this field d¢ on the same footing as the metric perturbations ® and W.
Also L, = —(9¢)?/2 =V (p) and L,, does not contain ¢. The field equations for this

theory are

1
Gl + 7 (040 — VIV, f
3.11)
8tG 1 1 (
— IR -7 _ s 20
7 T" + o7 [8 w0, — o (28 goaggo—i-‘/)} :
The field equation for ¢ is
Lo — Ve + foR=0, (3.12)

where f, = 0,f and V,, = 0,V
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These field equations at the background level can be found in the literature (for
example see [45]). Using our ansatz in the perturbed gravitational field equations and
the field equations for ¢ at first order in ®, W, §,, and dyp, collecting terms with like
powers of (aH/k), and setting the expression in front of each power of (aH/k) equal

to zero, we get the following expressions/equations for the coefficient functions:

2
B = 1 (M) ~ 1 +0l?,

f\1+3fa? /
1 (1+2fa?\ 1 )
= (1+3fa2) ~ g okl
ﬁl =M= 07
3 a@aéo 1 2
52 _? 5 + 4_f2(aaa<'0)
B a0, 00 1 2 % 3V, a (3.13)
+ [ 3(ad, ) 5 + Z(aaa@) + 3(ad.p) + 07| 7
+0la?],
o 3 a@aéo 1 2
V2 7 0 m(aaa@
a0udo | 1 2% _ Ve |a
+ [fadue) %+ (0% — (atup) - 7] S

where a = f,,/f is the coupling function and all the functions depend on the scale
factor a . We have calculated the full expressions for 3, and s, which are rather long.
The first two terms are listed as a power series in the coupling function a@ < 1 with
Q ~ O, Q... . We used the 7 # j equation, adp = ¥ — @, to eliminate d¢ from the
field equations. The 00 equation and the field equation for dp yield 3, and ~, with
(n =0,1,2). The equations for &y, §; and do are given by equations (3.5) with /3, and
Yo (n =0,1,2) given above. Again using the initial conditions (3.9), we can solve for
all the coefficient functions once f(¢) and V(¢) have been provided. Note that the
difference ® — ¥ depends on 3, — 7, (n = 0,2). This is usually small for & < 1 since

Bo =70~ a? and [y — 75 ~ a.

We plot the coefficient functions in Figures 2 and 3. We have chosen f(yp) =
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Figure 3.2: The dimensionless coefficient functions characterizing the relationship
between the metric perturbations and matter distribution are shown above for
FACDM(dashed lines) and the scalar-tensor theory (STT) (solid lines). The STT
model is chosen so that its expansion history is consistent with observations. In the
case of ACDM By = v =1, /1 =y = 0 and [ = 72. At early time (matter domi-
nation) By = 75 = —3 with the cosmological constant causing a departure from this
value at late times. The variation of 3y with the scale factor in the STT can be inter-
preted as a variation of Newton’s constant “G(3,” as far as growth of perturbations is
concerned. Also note that for STT, By # 7o and By # 7,. For STT, the difference in
the coefficient functions is due to ® — ¥ = —a(p)dp # 0. Note that £ =y = 0 in
STT as well as ACDM. We remind the reader that in the ansatz (3.2) the coefficients
B and 7y, are multiplied by (aH/k)?, whose magnitude is shown in Figure 1, making
them accessible at large scales only.
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Figure 3.3: The dimensionless coefficient functions characterizing growth of structure
are show above for ACDM(dashed lines) and the scalar-tensor theory (STT) (solid
lines). The STT model is chosen so that its expansion history is consistent with
observations. dy is the usual growth function on small scales, whereas 65 characterizes
the departures as we move to larger scales. For ACDM and STT, §; = 0. We note
that d, is the coefficient of (aH/k)? which is small withing the scales of interest
(see Figure 1). The initial conditions for dy and dy are chosen at a; ~ 1072 and are
consistent with growth of structure in a matter dominated era.
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1+ c19? and V(p) = 2A(1 + cp?®) with ¢; = ¢ = 0.1. The initial conditions
and ¢y, co were chosen to ensure that the expansion history remains consistent with
observations (consistent with ACDM to within a few percent). The difference between
B and v, (n =0,2) is due to nonminimal coupling (a # 0). We stress that we have
not included baryons in this illustrative calculation. Including baryons would lead to
very strong constraints on the function f(¢) today from solar system tests [46]. For
an example of a STT that includes dark matter and baryons with different couplings

to gravity see [47].

3.3.3 General relativity with cold dark matter and quintessence

GR with quintessence is a special case of the scalar-tensor theories discussed above,

with f(¢) = 1. The action and corresponding field equations are

_ 1 4 4 =
= om0 d*zy/ g[R+£¢]+/d /gLy, (3.14)
1 1
C%:8ﬂﬂy+§{W¢&¢—M(§W¢&¢+V)] (3.15)

Op—V, =0 (3.16)

The coefficient functions are given by

Bo = Y =1,
fr=m =0, (3.17)
) 1
Bo =2 = —3aaa 4+ —(adup)?
5o 4

where (a0,9)*/4 =1 — q — 47Gp,,/H*. The i # j Einstein equation yields £, = 7,
(n =0,1,2). We used the 0i equation to eliminate dp from the field equations. As
before &g, d; and dy are provided by equation (3.5).
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We pause to comment on a difference between minimally and nonminimally cou-

pled scalar-tensor theories. Consider the field equation (3.12) for de:

[a*02 + (34 q)ad,] 6 +

2
(a%) + % —6(1 + Cl)fw] 0
=(a0,p — 6fa)ad,® + 3(adsp — 2(4 + q) fa)ad, ¥ (3.18)

-2 (6fa(1+q)+%) P+ 2fa (%) (® —20)

In the minimally coupled case we set f(p) = 1,a(p) =0 to get

2
BV Ve
aH H?

=(a0,)a0, P + 3(a0,p)ad, ¥ — 2%@.

(0?02 + (34 q)ad,] o + S

(3.19)

From the above equations we can see that in the nonminimally coupled case, for
k/aH > 1 we have dp o a(p)® whereas in the minimally coupled case dp
®(aH/k)?. Along with ® o §,,(aH/k)?, at large k the additional field d¢ follows
the same aH/k expansion as the potentials with §,,;(k) multiplying the expansion.
This is one of the arguments we had used in Section 2 to justify the form of our

ansatz. We have assumed ¥ = O[®] in this argument.

3.3.4 f(R) gravity with cold dark matter

In recent years modifications of the Einstein-Hilbert action in the form of a function
of the Ricci scalar has become a popular alternative to quintessence (see for example

[22, 48]). The action and field equations are

1
5= 167G

(1+ fr)GY =0}

d'ay=g R+ f(R)+ [ d'oy=gL,

I
2

(3.20)
+ [040 — VAV, fr = 87GT" .
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In the above expressions fr = dgf(R). The coefficient functions are

4
KT

2
T3 fa)
Br=m=0,

1 2 a0
b2 = (1+fr) |3 0o

- —{(24B(J+q—2)+2—q}aa Gl

+4B {10 — 49+ ¢* + 2j(q — 4 —3} (3.21)
1
+72B%(j +q —2)* — 4(j + q — 2)ad, B—|—2q—9—B
. 1 2@282(50
T2 = (1 -+ fR) 3 do

FSA(6BG+a-2) ~T—q)

—4B{4—q+ ¢ +j(2¢—5 —s}

a(? 50

1

+4(j + q — 2)ad, B—2q—|—9—B

where 7 = dg/dIna — (1 — 2q)q and s = dj/dIlna — (2 — 3q)j are the scale factor
dependent functions, jerk and snap respectively, and B = H?frr/(1 + fr)*. To
obtain dg, 07 and Jd, we use equation (3.5). Again, as in the case of GR and scalar-
tensor example, the coefficients of the aH/k term in the ansatz vanish. Note that
we have assumed (aH/k)?B~! < 1 in deriving the above expressions, hence it is
not appropriate to take the limit B — 0 after deriving the coefficient functions.
Under this assumption, to lowest order in aH/k, we get & = 2V, unlike GR with
ACDM where ® = W. If we take the opposite limit, (aH/k)?B~! > 1 the coefficient

1

functions are quite different. In particular, fy = 70 = (1 + fr)~"' and we get reach

the GR limit as we let fr — 0. As long as we ensure, a priori, that this transition

40ur B = H?frr/(1+ fr) differs from the definition of B in [49] by a factor of (¢—1)/6(j +q—2)

99



CHAPTER 3. A FRAMEWORK FOR PROBING GRAVITY ON
COSMOLOGICAL SCALES

scale (H/ko) ~ B'Y? (see for example [44]) is outside the length range of physical
scales of interest, we can use our ansatz. More details on the dynamics of f(R)
theories in the context of structure formation, solar system tests, etc. can be found in
[50, 49, 51, 52, 44]. Finally we note, that our purpose in discussing f(R) models was
to illustrate an application of our framework. These models suffer from a number
of problems including fine tuning to match the solar system constraints as well as
a rather serious instability, where the curvature blows up at finite matter densities
[53].

3.3.5 Brane world models: DGP Gravity

As a final example, we provide the expressions and equations governing the coefficient
functions for DGP gravity. In this model, matter is restricted to a four dimensional
brane in a five dimensional bulk. In addition to the the Einstein-Hilbert action in
the bulk, there is an induced four dimensional term [41]. More explicitly, the full 5D

action is given by

1

= S, / Toy/=g0F)
1
+ — d4x\/—gR+/d4x\/—g£m.
167G

(3.22)
In the above action 7. = G®)/2G where G® is 5D gravitational constant. The field
equations are given by the Einstein equations in the bulk (A, B =0, 1,2, 3,4):
G4 =0, (3.23)
and the Israel junction conditions on the brane (u,v =0, 1,2, 3)
1
Kt =r, (fo — 59’55) , (3.24)
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where K} is the extrinsic curvature on the brane. In Gaussian normal co-ordinates,

the extrinsic curvature is given by the derivative normal to the brane

1
Kzét = égyg;w . (325)
On the RHS of the junction conditions
gl =Gl —8rGTY, (3.26)

where G¥ and T# are the 4D Einstein and stress-energy tensors respectively. For this
model our coefficient functions are given by (which can be easily determined from the
results in [54])

4 —2Hr.(2+q)
60 3
- 2HT0(2 + Q>
2 —2Hr.(2+q)
O S 2" (24 q) (327
5 12(—1 + Hr.(1 + q))? '
YT Hr (3—2Hr (2 +q))?’
~ 6(1 — 2HTC)(1 B H’rc(l + Q))
1= .

Hr.(3 —2Hr.(2 + q))?

We can solve for dy and d; using (3.5). Note that even though d;(a;) = @;0,91(a;) = 0,
d1(a) # 0 because ; # 0. We note an important difference between the the DGP
braneworld model and the examples considered so far in this paper. Unlike the
previous examples, the coefficients of the odd power of aH /k are non-zero (31, v1, 01 #
0). As explained below, the odd power of aH/k arises due to the junction conditions
that must be satisfied by metric perturbations at the location of our four dimensional

brane in the higher dimensional bulk.

A general way to understand the odd power in our (aH/k) expansion is as follows.
The Israel junction condition relates the first (y) derivative of a metric perturbation
normal to the brane at its surface to the 4D Einstein tensor and stress-energy tensor in
the brane (see equations (3.24),(3.25) and (3.26)). The 5D vacuum Einstein equations
in the bulk provide homogeneous second-order linear differential equations for the

metric perturbations. Just outside the brane, the operators in these equations will be
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Figure 3.4: The dimensionless coefficient functions characterizing the relation-
ship between the metric perturbations and matter distribution are show above for
ACDM(dashed lines) and DGP braneworld model (solid lines). The variation of /3,
with the scale factor in DGP can be interpreted as a variation of Newton’s con-
stant “G3,” as far as growth of perturbations is concerned. Also note that for DGP,
Bo # 7o- In contrast to all the other examples considered, the coefficients of aH /k:
B1,71 # 0. This is due to the junction conditions on the brane. The linear aH/k
term provides an intriguing signature of braneworld models.
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Figure 3.5: The dimensionless coefficient functions characterizing growth of structure
are show above for ACDM(dashed lines) and DGP braneworld model (solid lines). o
is the usual growth function on small scales, whereas §; characterizes the departures
as we move to larger scales. In contrast to ACDM, for the DGP case §; # 0. This
could provide a distinct signature of braneworld models.

103



CHAPTER 3. A FRAMEWORK FOR PROBING GRAVITY ON
COSMOLOGICAL SCALES

dominated (in our large k limit) by the 3-dimensional spatial derivatives (continuous
across the brane surface), giving terms proportional to k%. These must be balanced
by terms proportional to 85. Thus we see that 9, must be proportional to k.

We note that the above arguments are rather general. Although the RHS of
equation (3.24) will be different in different braneworld models, due to the LHS a
linear k~! term will be present in most braneworld models. However, the coefficients
might not be of O[1] as in the case of DGP. ® The existence of this non-zero linear
aH/k term provides an exciting new signature for the DGP (or other ) braneworld
models. Since on subhorizon scales aH/k < 1, it is significantly easier to constrain
the linear term compared to the quadratic one.

We plot the coefficient functions in Figures 4 and 5. For DGP, we have assumed
Q= 0.25 and Q = 0 for simplicity although this model is in tension with current
data [55]. The dotted lines represent the coefficients in ACDM. We have not calculated
the coefficients 35,72 and d, of the (aH/k)? terms for the DGP case because they are
expected to be subdominant compared to the linear aH/k terms.

We have ignored two important features in the DGP model, the strong coupling
problem and the ghost problem in the self accelerating branch (see for example [56,
57]). The transition to the strong coupling regime happens at the Vainshtein radius
7. . For a localized matter distributions with Schwarzchild radius 7, r, ~ (r,r2)'/3.
Using r. ~ 1/Hy, for the largest localized distribution in our universe, galaxy clusters
(M ~ 10" M), we get r, < 10 Mpc. This scale is well below the smallest scales where
we intend to apply our framework. We are unaware of a calculation for r,, when
considering distribution of matter on cosmological scales (which is not localized).
To avoid the ghost problem one can choose the normal branch rather than the self-
accelerating branch of the DGP model (see for example [58]). A calculation similar
to the one done in this section can be repeated for the normal branch, however in
that case we do not have an accelerating universe.

In this section we have calculated the coefficient functions for a few examples.

Our aim was to give a flavor of the calculations rather than be exhaustive in the

® Another way of seeing the odd power of aH/k in DGP case is through the form of a propagator
which involves v [41].
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investigation of the models considered. It would be interesting to investigate these
models in more detail in the context of these coefficient functions to see if there is come
generic behavior across a large class of models. Based on the examples considered
it might be tempting to conclude that 3, — v, # 0 indicates physics beyond general
relativity. However this is not so. For example a hypothetical dark energy component
could also yield significant anisotropic stress. In the early universe, a more standard
source of anisotropic stress was provided by neutrinos. Nevertheless this difference
could serve as an indicator of new physics in the matter or gravity sector. Another
intriguing result was the presence of a term linear in aH /k in the braneworld scenario,
which could provide a unique signature of braneworld models. We have left out many
possibilities including Bekenstein’s TeVeS [59], models with non-canonical kinetic
terms [60], models of imperfect fluid dark energy with anisotropic stress [61], and
many others (see [62] for a review). We now turn our attention to observables and

their relationship to the coefficient functions.

3.4 Observational implications

We have outlined a procedure that allows many alternative, dynamical theories to
GR with FACDM cosmology to be explored within a common framework. Our ap-
proach has been devised with future observations in mind as its usefulness is limited
to the observations that we expect will be the most prescriptive. We assume that
the expansion history of the universe is well constrained through the distance redshift
relation obtained from the apparent magnitude of Type la supernovae, the baryon
acoustic oscillation scale and the ratio of baryons to total matter in galaxy clusters.
The large k expansion connects the inhomogeneous nonrelativstic matter distribution
to the perturbed metric in a universe of known (unperturbed) kinematical behavior,
i.e. with a given relation H(a) [or, equivalently, a(t)]. Our approach also presumes
that the theories under consideration provide an understanding of how the distribu-
tion of observable entities such as galaxies relate to that of total mass. This allows

us to focus on the manner in which structure can be observed to grow in the linear
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regime well within the horizon, which avoids the limitations imposed by cosmic vari-
ance considerations and the complications associated with gas dynamics. We further
suppose that gravitational motion of baryonic matter and photons follows timelike

and null geodesics respectively in this spacetime.

From an observational standpoint, our focus is on comoving length scales from
~ 40 Mpc to ~ 400 Mpc or equivalently 300 2 [ = 30 at z ~ 1, where we expect
the effects to stand out the best. There are three types of observations that are likely
to be relevant. Firstly, there are direct measurements of the two point correlation
function and its evolution. Counting galaxies (or clusters) in three dimensions will
lead to measurements of the evolution of the density function ¢,, using future survey
instruments such as LSST [63, 64] limited solely by cosmic variance as the photo-
metric redshift accuracy and biasing errrors will be ignorable on these scales. We
can construct the ratio of the matter power spectrum Ps,_ (k,a) at different redshifts
to obtain constraints on dg(a), d1(a) and dz(a). As discussed in the Introduction, by

taking ratios, we can eliminate the need for knowing the initial conidtions d,,;(k):

[ )]

where {f(k,a)};* = f(k,a2) — f(k,a1).

The second type of observation that will be carried out involves departures from
the Hubble flow. These are dominated by the potential function ®. Under our
assumptions, galaxies will follow timelike geodesics and satisfy the linear conservation

equations relating their peculiar velocities to ®.

Finally there are weak lensing observations which depend upon the sum, & 4+ ¥,
presuming photons follow null geodesics. These then allow us to track the evolution
of . A combination of these measurements would not only allow us to understand
the scale dependent evolution of ®, ¥ and §,, but also allow us to probe the rela-
tionship between them. For example, using our ansatz, one can obtain constraints

on the coefficient functions by comparing the correlation functions for the potentials,
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Ppy(k,a) (provided by lensing tomography) and the nonrelativistic matter overden-

sity Ps,, (k,a) (provided by growth of structure measurements) using

H
]{?4Pq>+qj (0.8 P(;m(ﬂ() +’70)2 |:1 + 2 (g;%::;) (%) + :| .

Comparing the matter and potential power spectrum allows us to constrain the coef-
ficient function without worrying about the initial conditions, though one would still
have to obtain this ratio at different redshifts to constrain the time evolution of the

coefficient functions.

In this exploratory paper, we have discussed only a handful of observations that
can allow is to constrain the coefficient functions. In addition to the observations
mentioned above, we list a few other observations that we think might be relevant for
our framework. The matter and potential fluctuations at the last scattering surface
can be compared to their counterparts at late times, as long as we restrict ourselves
to linear subhorizon scales. The same is true for BAO measurements (see discussion
of range of scales at the end of Section 2). Recently, a 30 detection of lensing of the
CMB at large [, has been reported by the ACBAR group [65]. This measurement
probes the distribution and evolution of potentials after last scattering, and can also
be used for constraining the coefficient functions [66]. With the Planck mission [16],
such constraints are expected to improve significantly. Another exciting probe of the
three dimensional matter distribution may be provided by the 21 c¢m observations

(see for example [67] and references therein).

We have limited ourselves to the linear regime. On small scales, the nonlinear
matter power spectrum and its evolution can play a role in the observations discussed
above. The linear to nonlinear mapping discussed in [68] can be used for this purpose.
However, without understanding the theories under consideration in the nonlinear

regime, this is not fully robust.

Recall that {3, Vn, d,} with (n = 0, 1, 2) are functions of the scale factor, a. If the
observations are to be done in a limited range of redshifts then Taylor expanding the
coefficient functions around the central value of the redshift might be a simple and

model independent way of characterizing these coefficient functions in terms of a few
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parameters. From a theoretical perspective, the coefficient functions will depend on
relevant parameters in the theory or model under consideration. A detailed investiga-
tion of the parameterization of the coefficient functions and the possible constraints
that can be obtained from current and future observations is beyond the scope of this
paper. For a more detailed discussion of the observations for distinguishing differ-
ent models of modified gravity and dark energy we refer the reader to some of the

references cited at the end of Section 1 in this paper.

3.5 Discussion

We have outlined a procedure that can be used to test the application of general
relativity (more specifically FACDM) on cosmological scales in the context where it
is most likely to fail and in the regime where observations should be most sensitive to
measuring a departure from the general relativistic prediction. The scales are large
enough to avoid the complications from nonlinearities and gas physics, yet small
enough to avoid strong limitations to the interpretation of observations posed by
cosmic variance.

Our procedure assumes that (i) The geometry and kinematics of the universe is
understood (ii) baryons and photons behave as ideal test particles following geodesics
of the cosmological metric. Given these assumptions, at late times, it is the rela-
tionship between the cosmological metric and the nonrelativistic matter distribution
(along with their respective evolution) that provides a test for alternatives GR with
a cosmological constant and cold dark matter. To probe the dynamics of gravity (or
any additional fields) we provided an ansatz, equation(3.2), which gave a relation-
ship between the cosmological metric and nonrelativistic matter perturbations in the
linear, subhorizon regime. This form of the ansatz is consistent with a large class of
theories with the differences between different theories evident in the coefficient func-
tions {B,(a),y(a),0n(a)} with n = 0,1,2. It is hoped that three scalar functions,
the nonrelativistic matter overdensity d,, and the metric potentials ® and ¥ can be
measured over the next decade, providing constraints on the coefficient functions.

Constraining these coefficient functions provides observers with concrete targets for
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testing gravity in a scale dependent manner.

Our goal was to provide a perturbative framework, similar in spirit to the PPN
formalism for testing gravity on solar system scales. However unlike the PPN case,
we were left with coefficient functions that depend on the scale factor rather than
constant coefficients. Although we have not done so in this paper, if the observations
are limited to a small range of scale factors, it is possible to characterize these coef-
ficient functions using a few parameters by expanding around a given scale factor at
which the observations are centered.

With our choice of scales, we have restricted ourselves to linear, subhorizon evo-
lution. We leave the connection between superhorizon and subhorizon evolution as
well as consideration of nonlinearities for the future. Although, we have restricted
ourselves to scalar perturbations, the framework could be extended to include vector

and tensor perturbations.
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3.A Aspects of cosmological perturbation theory

The purpose of this appendix is two fold. First, we provide a pedagogical (but
rigorous) discussion of gauge invariance and gauge transformations. We also introduce
the notion of scalar, vector and tensor decomposition of perturbations. After that,
we collect some useful results for scalar perturbations in the Newtonian gauge which

was used throughout this chapter.

3.A.1 Gauge transformations and invariance

(My, gp)

In cosmological perturbation theory we usually start with a known solution for the
evolution of a field and the spacetime in some simplified scenario. For example, the
evolution of a homogenous and isotropic scalar field ¢ in a FRW universe. The next
step is to perturb the spacetime and the field about the known solution and try to un-
derstand how these perturbations evolve. However, there is an ambiguity in what we
mean by perturbations in a field when the spacetime is also perturbed ¢. This ambi-
guity in defining perturbations will lead us to the notion of gauge transformations and
to the idea of gauge invariant perturbations. We discuss these concepts from a geo-

metric viewpoint first and then relate it to a more conventional co-ordinate viewpoint.

6The ambiguity exists in unperturbed spacetime as well. Different foliations of spacetime would
yield different description of the field and its perturbations. However usually physical considerations
such as homogeneity of matter and isotropy allow us to choose the right foliation
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Geometric View: Consider two spacetimes: the perturbed physical spacetime
(M,, gp) and a fictitious background spacetime (My, g,) where g, and gy are the
metrics on the manifolds M, and M, respectively. Let A, be a tensor field defined
on M, and let Ay, be a related tensor field defined on M;,. We will assume that
gp, and Ay, are known.” To understand the evolution of perturbations, first, we need
to construct a difference between these A, and Ayp. Since these fields are defined
on different manifolds, we must first associate points in M, with points in M, and
then provide a prescription for comparing the tensor fields defined on two different
manifiolds.

Let D : M, — M, be a diffeomorphism® between the two spacetimes. Pick a
point B in M,. The corresponding point in M, under D is P = D(B). D naturally
induces a map which takes the tensor field A,(P) to the point B in M, through the
pull back map D*A,. Note that D*A}, is a tensor field in M. Its action on vectors
in the tangent space of some point B in M, is equal to the action of the A, on the
pull back of those vectors to the tangent space at P in M,,. With these tools in hand

we can construct the required difference:
JA(B) = [D*A,](B) — Ap(B). (3.28)

This difference is a tensor field defined on M,. Thus what we mean by a perturbation
at a given spacetime point depends on the identification maps between the perturbed
and the unperturbed spacetimes.

Now consider a different map D such that ZS(E) = P. Under this map, the

difference between the pull back of A,(P) to M, and Ay(B):
OA(B) = [D"Ap)(B) — Ap(B). (3.29)

We cannot compare (ﬁ(é) and 0A(B) yet because they are evaluated at different

“From now on A can be the metric g also.
8 A diffeomorphism is a bijective map between manifolds with the property that both the map
and its inverse are differentiable.
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points of M. So we need the pull back of (SAA(B) to B which requires a map from B —
B. Now, the diffeomorphisms D, D: M — M, are linked by another diffeomorphism
¢ : My — M,. This diffeomorphism is given by ¢ = D~ - D under which o(B) = B.
Using ¢ to pull back (ﬁ(f?) we get

[p"6A](B) — 6A(B) = —[p*Ap)(B) + Ap(B) (3.30)

because [*D*AL](B) = [D*A,](B). If ¢ is the integral curve of an infinitesimal
vector field &, then the above difference can be expressed as the Lie derivative of Ay,

with respect to &, ie.
[p*6A](B) — 6A(B) = —LcAp(B). (3.31)

There were two important steps in deriving equation (3.31). The first was constructing
the difference d A between tensors on different manifolds and second was constructing
the the difference between dA (resulting from different identification maps) at two
different points on the same manifold.

In summary, we have shown that in relativistic perturbation theory (i) the per-
turbation in a field depends on the identification of points between the background
spacetime time and the perturbed spacetime. (i) The difference between pertur-
bations resulting from two different identification maps can be expressed as a Lie
derivative of the (known) background field. The choice of the identification map is
often called a choice of “gauge” and the transformation that allows us to relate per-

turbations in different gauges are called gauge transformations.

Gauge Invariance: The perturbation §A is “gauge-invariant” iff LAy = 0 for all

¢ (equivalently, all pairs D, ﬁ), ie. when Ay = constant on the background.

Co-ordinate View: Let us now write the above expressions (3.28) and (3.31) in
component form. The maps, D and D can be thought of as inducing different co-

ordinate systems on M, in the following sense. Let 27 and 27 = 27 + {7 be the
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co-ordinates associated with the points B = D~(P) and B = D~Y(P) in M,. The
point P in M, is assigned 27 and 27 depending on the identification maps D and D.
In component notation, equation (3.28) becomes
A () = S SO O g 0 — [Asltiin ()
"x') = () — rr(x
Vl...Um Oxvt " Oxvm O Gran PlB1...0m blvy..vm,

= (Al (o) — [l (a7),

V1...Um Vl...Um

(3.32)

where the first equality results from the definition of the pull back map. The second
equality is due of our assigning of the same co-ordinates to B and P. Similarly, the

equation (3.31) becomes

—~ 0P 9FPm gxt Jxhn ~—an...am 1. pin
FOALHL B (7)) = 0A 7)) = 0A v 3.33
[SO ] (93' ) 8.73”1 8$Vm 8530‘1 8@0‘” B1...-Bm (l' ) (l‘ )7 ( )

V1...Um V1..Um

where the first equality is the definition of the pull back map and the last equality fol-
lows from our assumption that £ is infinitesimal. We restrict ourselves to coordinate
systems where [(ﬁ]ﬁ;;;;ﬁ; remain small. Finally we have the following operational way

of comparing perturbations in two different gauges (ie. maps D, 15)

T M1 -Mn

6 Ay, o, (@7) = AL D (27) — LAY hn (7)), (3.34)
where
LeAltin — 29, Al hin
- At 08— A

+ Al)f.l.:’z;inaulf/\ + ...+ Al,jll.....'éfnaumg)\

(3.35)
= AV AL
— ANt Vg — = AL Vg

+ A, L ARy,

For ease of future reference, we write down (3.35) explicitly for scalar, vector and

higher rank tensor fields.
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e scalar field perturbations ¢:

b = bp — E 0 (3.36)

e four velocity u,,
Sty = Oy — E 0wy, — uy0,60 (3.37)

e metric perturbation dg,, we have

(fguu = 5guu - gAa)\g/W - gxuauf)‘ - gu)\aqu (338)

3.A.2 C(Classifying perturbations

One can decompose perturbations in tensor field based on how they transform under
spatial rotations and translations at a given instant of time. For concreteness, let us
decompose perturbations in the metric tensor (on a spatially flat FRW background)
. Based on the index structure, it is clear that the metric perturbation dgg behaves
like a (spatial) scalar. We will write it as dggo = —2A. The space-time part, dgo; can
be written as a sum of a divergence free and curl free spatial vector dgo; = 0; B + B;,

where 0°B; = 0. The space-space part can be written as
1
8gi; = a® | —216;; + {9:0; — géijVQ}QE + 20 Fj) + hij|

where 'F; = 0 and h! = 9'h;; = 0. To make sure we have accounted for all ten
components of the metric perturbation, let us count the number of free functions. We
have 4 scalar function (A, B, 1, E), two transverse vectors (B;, F;) and one transverse,
traceless tensor h;;. (B;, F;) contain 4 free functions, and h;; contains 2 free functions.
Putting it all together we have 10 free functions as expected for a symmetric 4D
matrix.

In cosmological perturbation theory, when talking about scalar, vector and tensor
perturbations we are referring to perturbations constructed out of scalar functions,

transverse, spatial vectors and transverse, traceless spatial tensors respectively. When
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using the Einstein equations; scalar, vector and tensor perturbations decouple at

linear order.

3.A.3 Scalar metric perturbations

For the most part scalar perturbations are the ones relevant for structure formation,
CMB temperature fluctuations etc. For scalar perturbations the perturbed metric is

given by

@2:—a+2Amﬁ+2@3ﬁmﬁ+fum1—mm%+{@@—%@ﬁﬁpEmﬂmﬁ

(3.39)

Even when we restrict ourselves to scalar fluctuations, we can simplify the field
equations considerably by an appropriate choice of gauge. Here is the general proce-
dure. Like any other perturbation, the components of the infinitesimal vector field
€7 in (3.35) can be be written as £ = (£Y,¢£%). The spatial part & can be further
decomposed into a curl free and a divergence free part: &' = '€+ &', where 9;¢ = 0.
For scalar perturbations we are only interested in £ and &' = 9°¢. Under the gauge

transformation generated by €7 = (£°, 9¢), the four functions in the metric transform

as )
A=A—¢
B=B+2H—£+&°
) 2 3.40
b=+ HE 4 e (340
= §

Since the field equations are gauge invariant, we are free to choose £° and €. With
the help of these two functions £° and & we can eliminate two out of the four scalar
functions in the metric perturbations. A particular choice of these two functions,
corresponds to a choice of gauge.

Consider the metric in some arbitrary co-ordinate system (z7) defined by the
functions A, B, ¥ and E. Now consider the a gauge transformation defined by ¢ = a?F
and £ = —(B — a®F). This choice sets B = E = 0. We then define ® = A =
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A+ (B—a?E) and U =) =+ V2E— H (B — a2E> to get the metric in the form

ds® = — (14 2®)dt* + a*(1 — 2V)d,;dz" dx’.

This gauge is called the Newtonian gauge. There are a number of benefits in
using the Newtonian gauge. First, it is diagonal which simplifies calculations. For
the purposes of this chapter the most important aspect is the following. In this
gauge, on small scales and in the presence of non-relativistic sources, the perturbed
Einstein field equations yield ® = ¥ and the usual Poisson equation V2® = 47Gp,,,0,,.
Similarly, the conservation equations also yield equations similar to their Newtonian
counterparts. Hence in this gauge, our intuition from perturbations in “Newtonian”

cosmology carries over nicely. °

On the other hand one can also work with explicitly gauge invariant variables.
The idea is to take combinations of the above transformation equations in such a way

that the dependence on £7 is eliminated. We then have equations of the form

F(A, B, E,A,B..)=F(A,B,{,E,AB...),

where F'is a linear function of its arguments. Any such function F'is a gauge invariant
variable. A particularly useful and complete set of gauge invariant variables is (gauge

invariance an be easily checked using equation (3.40)

Doy = A+ <B . aQE)'
. (3.41)
\IIGI:w+V2E—H<B—a2E>

9For a more physical perspective consider particles at rest with respect to this co-ordinate system.
The four velocity (which is normal to the spatial hypersurface) is given by u* = (1 — ®,0). One can
then check that, these world-lines have no shear, ie.

V. u”
(g — upuy) = 0.

Ouv = v(#uV) o 3

Similarly there is no rotation either. This means that the world lines of particles at rest converge
towards or diverge away from each other.
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Note that the above gauge invariant variables are the amplitudes of the metric pertur-
bations ® = A and U = ¢ in the Newtonian gauge. This is another extremely useful
feature of the Newtonian gauge. In practical terms, one can simply do the calculation
in Newtonian gauge and in the end, then in the end make the replacement ¥ — Wy
and & — ®gy to express the results in an explicitly gauge invariant form. Because
of these reasons we exclusively used the Newtonian gauge throughout the chapter.
Below we provide a number of formulae in the Newtonian gauge that are quite useful
for calculations. For more details on cosmological perturbation theory and different

gauge choices see ([42]).

3.A.4 Newtonian gauge: useful formulae

e metric: ds? = —(1+ 2®)dt? + a?*(1 — 2V)4;;dx'da?.

e Christoffel Symbols

ng = H(S; — 80\115;
Y = a’Ho;; — a’[0oV + 2H(® + V)]6;

I'h, = 0p®
. 0@
oo = ?
F;Z = F;.j = —ng = —8]-\11 1#£ ]
I =0 itk

e Conservation equations

dop+3H(p+p) =0
00Ty + 00Ty + 3HOTY — HOT! = —3(p + )V
0T + 0;6T7 + 3HOT? = —(p + p)0;®
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where we have ignored the following term 2(® + W)§7?

¢ Ricci Tensor(mixed)

1 1 1
0_ arr2 2 — 92 2
RS =3H%q - 3H (2q<I> + 7 00(® +20) + 75V + oV q>>

1
9= 200 | ®+ =0y
R; a( + 570 )
R =3H*(2+q)
1

1 1
2 2 2
—3H {2(2 + )2+ 200D+ 60) 7500 + s V(D 4\1/)}

J

L1 o,

e Ricci Scalar

1
a?H?

3 3
R =6H*(1+q)—2H" {6(1 +q)® + an(cb 4 40) + ﬁagq/ + V(P — 2\1/)}

e Einstein Tensor(mixed)

Ay 1
0= 3H>4+6H>(®+ 2 — —— VU
GY = —3H*+6 + 3V

. 1
GY = —a*G, = —2H; (CD - 807)
G! = —3H*(1+2q)

1
3a2H?

1 1
+ 6H? [(1 +2¢)® + Hao@ +30) + magxl/ + V2(® — )

- 1

J a

9;0;(® W) i#j
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fla, ) = [ f(a, E)ei’;’fd%. 7 and k are co-moving co-ordinates and wave
numbers respectively with & - ¥ = Skizt, k; = k' and k% = k;k'. We define

/%i = k;/aH. Derivatives with respect to a are denoted by primes.

e Christoffel Symbols

I, = HO! — aHV'S!
Y =a’Hé;; — a’HaV' + 2(D + U)]6y;

9 = aHd
1% = iaHk;®
. kid
I =iH
00 — 1 a
i, = rg.j = T, = —iaHk;V 1#£ ]
T =0 LFJFk

e Conservation equations

ap' +3(p+p) =0
a(0TL) + iak 0Ty + 36T — 6T = —3(p + p)aVy’ (3.42)
a(0TLY + iak;6T) + 36T = —(p + p)iak;®

e Ricci Tensor(mixed)

1-
R) = 3H?*q — 3H? <2q<1> +a® + (2 + q)aV’ + a*V” — §k2<b>

R = —i2aH?k; (® + a¥’)
R =3H*(2+q)

1~
— 3H? {2(2 +q)® + a® + (6 + q)a¥’ + a* V" — §k52(<1> - 4\1:)}

Ri = Hkik;(® — W)  i#j
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e Ricci Scalar

R =6H*(1+ q) — 2H? [6(1 +q)® + 3a®’ + 3(4 + @)V + 320" — k2(d — 2)
e Einstein Tensor

1~
G) = —3H? + 6H* <<I> +al’ + §k2\11>
GY = —a’Gl = —i2aH?k; (® + V')
G! = —-3H*(1+2q)
1~
+6H? {(1 +2¢)® + a® + (3+ q)a¥V' + a® V" — §k2(@ — )

G' = H’kikj(® —T)  i#j
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N

3.B Braneworld perturbations

In this appendix, we wish to carry out a detailed calculation of perturbations in
braneworld models. Our main interest is in understanding the odd power of the co-
moving wave number, k, that are expected to arise in the field equation for braneworld
models (see Section 3.3.5 of this chapter). To gain some intuition into the calculation,
we first explore braneworld electrostatics as an analogy for braneworld gravity. We
then move on to the calculation of Dvali-Gabadase-Porrati (DGP)[41] and Randall
Sundrum (RS)[69] braneworld perturbations to sub-leading order in spatial deriva-

tives.

3.B.1 Braneworld electrostatics: An analogy

Let us begin with a lower dimensional case. Consider the following (341) dimensional

Lagrangian density (with 23 = 2)

1. 21 ! a
L= =1 Fi Ry = 0(2) | 16 Fi Foya + ~JaAl) | (3.43)

where 1 = constant, [n] = L, {u,v = 0,1,2,3} whereas {a,b = 0,1,2} and the
subscripts “(2)” and “(3)” denote fields defined on the sheet at z = 0 and in the full
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3-space respectively. The field tensors Fis),, and Fi)q are not independent. They
are related by Floja = 040y F(3)uw|.—0. For the above lagrangian density, the field

equations are given by

a Am
—0uFly) — 6(2) | 200, F ) — 7}{’2) = 0. (3.44)

For b = 0, with F® = E' and J° = co(r) with r = 27 + yj and assuming static
configurations, equation (3.44) yields

V-E@) +0(2) [27V, - Eg) — 470 =0, (3.45)

where V =10, + j0, + kO, and V, = 0, + 70,. The 2D and 3D fields are related by
E@). = E@)el:—0, B2)y = E@)yl:—0. Now, for z # 0 we get the usual Gauss’ law.

V- E(3) =0 z 7é 0. (3.46)
We integrate the equation (3.45) across the z = 0 surface to get
E@). =210 — (0. By, + 0yE@)y,)  z=0. (3.47)

As usual, we define a potential function ® corresponding to the fields: Eq) =
—V,®(r,z =0) and E) = —V®(r, ). Then equations (3.46) and (3.47) yield

Ve =0 z #0,

(3.48)
0,9 = —2n0 — nVid z=0.

Note: The junction condition yields a relationship between the “off-brane”(linear) and

“in-brane” derivatives.
Let o(r) = 09 + [ d*k oxe™™ and ®(r,z) = —2m0¢z + [ d’)k Py (z)e™ ™. This yields

(02— k) =0  z#0.

(3.49)
0,0 = 2710y + nk* Py z=0.
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A solution is given by

efklzl
) =2 ———Ox. 3.50
<) =2 ey o) (350
For small scales, we get
27 [ 1 ]
D= Lo |[1— — + ... 2=0, kp>> 1. 3.51
< ™' ) 321

Note that we get an odd power of k as the leading order correction to the Poisson
equation on the brane. This same feature will be carried over in the DGP scenario
(as is shown next)!®. The reason that the off-brane derivative introduces an on-brane
linear power of k is because of the bulk field equation, which enforces 9, ~ k. In the

braneworld models the Israel junction conditions on the brane yield

1
8yg;w = /1%5) (g,uy - ggg#y) 5 (352)

where ks is the bulk gravitational coupling and i, v = 0, 1,2, 3. The linear derivative,
0y, is normal to the brane. The tensor G, represents an effective energy momentum
tensor on the brane. For the case of DGP it is given by k2 (G, — k*T},,) where
k is the 4D gravitational coupling, G, is the 4D Einstein tensor and 7}, is the
energy momentum tensor of matter on the brane. Again, the important feature is
that there is a relationship between the offbrane, linear y-derivative and the in brane
derivatives (present in G, and G). Along with G4 =0 (A,B=0,1,2,3,y =4) in
the bulk, arguments similar to the ones used for the electrostatics case yields the odd

k dependence. We turn to the detailed calculation in the subsequent sections.

3.B.2 Braneworld perturbations: Details

In the following, we obtain the matter-metric relation to sub-leading order in spa-

tial derivatives. Following [54] we will consider an action of the following form for

10The RS scenario is discussed in the last section of this appendix
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braneworld models:

1

=52
2/§(5)

S

/dsx\/—g(g,) [R(g,) — 2A(5)} + /d4$\/ —gLes, (3.53)

where Lo is the effective Lagrangian on the brane (see below for explicit examples).
The brane energy momentum tensor corresponding to this effective brane lagrangian

is defined as
2 )

V=g ogm

In the bulk, the field equations are given by

G = / d* /=g L. (3.54)

G+ A)op =0

where A, B =0, 1,2,3,4. In addition the metric must also satisfy the Israel Junction

condition at the location of the brane. This is given by

Kis) 1

where K* is the extrinsic curvature of the brane and G = Tr[G¥]. We have assumed

Z, symmetry about the brane and pu, v =0,1,2,3.1

Although we will try to keep our arguments as general as possible, as explicit
examples, we will consider the DGP and RS models. DGP modified gravity on

cosmological scales whereas RS does the same on sub millimeter scales.

To carry out the calculation will need the Einstein tensor in the bulk, the ex-
trinsic curvature and the effective energy momentum tensor. The form of first two
is independent of the model under consideration. So we shall calculate them first.
Then we will calculate the effective energy momentum tensor for the DGP and RS
models. Finally we will put these tensors into the field equations and the junction
conditions to obtain the desired matter metric relation at sub-leading order in spatial

derivatives.

UFor k, A, g, R etc. when the subscript (5) is not used, we are referring to their 4D values.
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Einstein tensor and extrinsic curvature tensor

Consider a metric of the form (see [70])
ds® = —N?(1 + 2®0)dt> + A*(1 — 2V)5,;dz’dx’ + 210;pda’dy + (1 + 2T)dy*  (3.56)

where N = N(t,y),A = A(t,y) and the others functions: ®, ¥, ¢ and T' depend
on all five co-ordinates. [ is a constant ([/]=length) which we will choose based on
the problem under consideration. The brane is located at y = 0. To recover the
perturbed FRW metric in Newtonian gauge on the brane, we require A(t,0) = a(t)
and N(t,0) = 1. The Einstein tensor upto linear order in the perturbations is given

by (“ prime "= 0, and “dot”= 0,)

N\ 2
AN A 1 A

0 _

Go=3 (z) *7‘@(2)

" v2 / A, Al !/ !/
— 30 +E(F—lgo —2zz¢—2\p)—3z(r +47)
. 2 .
A A2 6 (A 3 A . .
—6{7+<z) }”m(z) ® - (M-20)
Go_i il éM
YVTON2| A AN
1 v oA - (3.57)
6 N'A 3 (A A" NN .
+WFZ¢_W{ZF+(Z_W)‘1’}
l 1 i . A
0_ " 9 (Y -} . _
Gi_QNzaz[ng gD]—I—NQ@ -2 A(r+2q>)

N 2A/N_AN’+A’ +1 _3A’+N’ _
AN AN TA(7 T2 AN
, 0:0; ) AN
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GY =3

Y

P . 2 .
A 2+A’N’+1AN 1 A +A
A AN "N2AN N2)\A A

2 N/ A/ A/ N/
+v— (@-2@ —l{——{—?—}gp) — 3= (9 —20) — 3V

A? N A A N
. 2 . ..
_|_£ é _|_é_éﬂ Q)_i él 2+£M I
N2 A A AN N2 A AN
3 A : 0
+WZ<®+4‘I’>+W
.o . 2 .
. AN A AN N" 2 AN 1 A A
Gi=3 z) +27+{22N+W}+mmm{(z> ”z}]

. 2 .. .
AN? AN A" N 6 A AN A
_6{<Z) ”zw”z*w}”m{(z) QZW?z}@

The extrinsic curvature is defined as'?

[ p
Kl =V, n",

12In the case of Gaussian-normal co-odinates adapted to the brane, the extrinsic curvature is
defined as K, = % y G-
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where n# is the normal to the brane. For the metric (3.56), the normal is given by
n* = (0,lA720;p,1 — T'). Explicitly, the extrinsic curvature on the brane upto linear

order in the perturbations is given by

!

N’ N
Ki=—+® +T—,

N N
4 A’ \V& A’
Ki—32 1Y 30T 3.58
i =3 Hlge =3V +T=), (3.58)
K;=1 a;np

To make further progress we need G/. The form of G! depends on the model under

consideration. Let us first concentrate on the DGP model.

Large scale modification of gravity: DGP model:

For this model, A5 = 0 in the action (3.53) and

1
2K2

Log = —R— Lo, (3.59)

where L,, is the lagrangian for non-relativistic dark matter (for simplicity). The field

equations in the bulk are given by

For this model a length scale is defined by the ratio of the gravitational coupling in
the bulk and the brane

l=r.==2,
" 2k2

In what follows we take 7. ~ O[H,; '] which is required for consistency with the
expansion history. One of the solutions in this model allows for cosmic acceleration
and is referred to as the self-accelerated solution. Note that gravity becomes 5D at

scales comparable to and larger than r..
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The effective energy momentum tensor defined by equations (3.54) and (3.59) is
Gl = w7 (G~ WTL)
where T# is the matter energy momentum tensor. For the r.h.s of the Israel junction

conditions we need G4 —£Gd% which on the brane is given by (upto the order O[V>®]):

2

1 2 2
(08 - 368 ) =~ = 20) + 2o+ 3 [~ (@ 0) 4 2,
a

1 2
k2 Gl — =G6' ) =3H? — K*py, + QV—\I/ — K2 PO, 3.60
3T a?

S 0,0, .,
(0= 300 ) =~ "@ - w) P4

We now have all the essential ingredients for obtaining the matter metric relation.

The field equations in the bulk , G4 = 0, are satisfied by (at the background level)

A=a(l+ Hy) and N = (1+ Hqy).

Now we move on to the perturbed junction condition!3. The junction condition
up to sub-leading order in the spatial derivatives yields (see equations (3.55, 3.58,
3.60))

o, 2
o = ; [—%(@Jr\p) +/<02pm5m] , 0-0
p=V-0, i (3.62)
2 2
U= % [%gp — 2%\1/ + m2pm5m} i—i

Combining the above three equations one gets ® — 20’ = 0. Fourier transforming

13The Israel junction condition (using the background parts of the ii equations in (3.58, 3.60)),
we get the modified Friedmann equation

H K2
Te 3

Note that for r.H < 1 we recover the usual Friedmann equation.
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the above equations, and using i # j equation in ¢ — ¢ equation we have

2

re | Kk
V=2 (04 V) + K206 |

3 La? (3.63)
' — 20 = 0.

To eliminate ¥ we need another expression involving W', ® and V. This is provided
by the solution to a “wave” equation for ¥ in the bulk (obtained below). Also, to
obtain, ® and ¥ independently in terms of §,, we need another equation relating ®
and W. This additional equation is also provided by the bulk field equations, which

we turn to next.

In the bulk G4 = 0 (refer to (3.57)). Starting with §GJ = 0, eliminating I' — 7.y’
using (5G§ = 0 and then using 0GY = 0 to eliminate ® we get

2 Al Al A/ N/
v’ 4 % (\If + rczgo) + = (T + 49") + Z(@/ — 20" + W\Iﬂ = 0.

Now from 6GY = 0 we see that ® — 20" ~ O[®] so we drop this term. This leaves us
with

2 A\ A N’
v+ % (\If + rczgo) + (" +49") + W‘Iﬂ =0. (3.64)

We collect two important equations. These are 6GY = 0 and equation (3.64). To

sub-leading order in the spatial derivatives, the fourier transformed equations yield

k? A A N’
e 2 o — (I + 40+ —0' =

A2(+rAgo)+A( + )+N 0,
k> N’ A N’ (365)
(D -2V —r, ¢ — + 2 — V' =0.
A2< TC{N+ A}QO)+3N 0

We need equation (3.64) only upto leading order in the spatial derivatives;
k2 A’
v — ye <\II + Tcch) =0, (3.66)
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which can be solved up to leading order in £ to obtain
A/
U= ¢ (1+ Hy) " 1 rer ¢ (3.67)

This implies that L
Wlymo = =~ (¥ = reH)ly=0- (3.68)
Note that the off-brane derivative provides an odd power of k. On the other hand

from 0GY = 0 we get,

N A N'_,
@—Q\IJ—TC{W+2Z}QO+3W\II =0, (3.69)

which when evaluated on the brane, yields

® — 20 — r H(2+ q)p + 3Hq¥' = 0. (3.70)

Now we are ready to write down a complete set of equations that allow us to read
off the matter-metric relationship to sub-leading order in spatial derivatives (using
equations (3.63, 3.68, 3.70))

r. [Kk?

= 5 E((I) +U) + K2 pmbm

v = —g(qf — 1 H(® — 1)) (3.71)
/{32

= @ — 2V —r . H(2+ q)(® — V)] + 3HqV' =0

The above equations can be rearranged in the form

ArGpmdy, ((aH 2 aH
oot () [oen () ¢
ArGpmdm [aH 2 aH
v () [ () ++]
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where!4
4—2Hr.(2+q)
b= S 2 q)
_ 2—-2Hr.(2+q)
O S 2" (24 q) (373)
_12(1— Hr.)(1 — Hr.(3+q)) '
b= Hro(3—2Hr.(2+q))?
L, 60 = 2Hr 1+ )1 = Hre(3+g)

Hr.(3—2Hr.(2+ q))?

Thus we have explicitly obtained the matter-metric relationship in for the DGP
model upto subleading order in spatial derivatives. As expected, there is a linear
power of k due to the Israel junction condition. Note that £ (aH/k),v1(aH/k) ~
O[1] x (a/rck), so essentially we are expanding in powers of (a/r.k). We suspect
that for any braneworld model that modifies gravity on Hubble scales (I = H™!),
the matter-metric relation in Fourier space will involve an odd power of a/lk. This
provides a possibly unique signature of such braneworld models.

We now provide a similar calculation for the RS model that modifies gravity on
small scales (A < mm). We take a slightly different approach to the calculation, and

use the results from [54] directly to read off the coefficient functions.

Small scale modifications: RS model

Let us consider braneworld models which modify gravity on small scales (~ [) and
investigate their impact on linear, cosmological perturbations. We are interested in
scales a/k such that

l<<%<<H*1

with the requirement that a poisson equation be recovered on intermediate (~ mm
to cluster scales). This is a bit silly since linearity certainly does not hold on these
scales. Also we expect the scale [ < 0.1lmm to evade laboratory tests, which means
it will have a negligible effect on cosmological scales. However, the purpose of this

exercise is to gain insight into how the odd k& term might (or might not) enter into the

“The coefficient functions (B1,71) derived above do not agree with the ones derived from [54].
We suspect that this is due a different choice of gauge.

131



CHAPTER 3. A FRAMEWORK FOR PROBING GRAVITY ON
COSMOLOGICAL SCALES

equations when the modification to GR is on small scales rather than Hubble scales

(as in the case of DGP). We expect the following form for the perturbed matter-metric

2
o = —4%6;#;15”“ (%) [ﬁo + B <l§) + ]

ATGpmbm (aH\* [ _ [k

since the modifications are coming in from small scales. Compare this with the form

relation:

(3.74)

used when the modification is expected to come in at Hubble scales

47Gp b (aH\* H
ottt (4 0 ()

ArG o ((aH 2 aH
Ve \ 7 ) [t 7 ) T

We will calculate these coefficients (3,,%,) in the Randall Sundrum model (no

(3.75)

cosmic acceleration here), whose action is given by (3.53) with

L= -2 g (3.76)

K2

2
K
[ =r@ = % = \/—6A;) = V6A-T.

This fine tuning of parameters is essential for recovering standard gravity. The back-

For this model

ground metric in the bulk has the form
N(t,y)=e¥"® and A(t,y) = a(t)e "o,

Note that we have ignored terms of order rfx°p, < 1 which is required for a
standard matter dominated era and follows from r) < H ~L1. This is a pretty good
approximation (we are making errors of the order (r) H)?). We will continue this
approximation in the perturbation equations below as well. The strong warping of
the brane near the bulk localizes low momentum modes and thus allows recovery of

standard gravity at scales which are large compared to r ).
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We will calculate the coefficients using the results in (equation 107 — 109 in [54]).
First we tweek the equations (107 — 109) in [54]) to make them more transparent.
We rearrange the terms in such a way that the terms that are expected to be largest,

appear first (remember 75y < a/k < H™'). The equations are

1] 1 2 k2 ,
1] 1 1 k2
1 1 k2 3
2 _
K“0pm = 4 [—%g (Q + r(5)8yQ) - %H@ (Q + 7“(5)6119) :

To get the above form, we have assumed that the time evolution happens on Hubble
scales and 7(50,§2 ~ Q. Q is the Mukhoyama master variable [71], which satisfies the

following wave equation

2
o () + (_ N j;_) Noo, (Y00
Even without solving the Mukhoyama master equation, we can see that from the
first terms in the expressions for ®, U and dp,,, ie. terms linear in Q + r5)0,(2, we
recover “Newtonian” gravity with 3y = 5o = 1. To make further progress we require
an understanding of the solution to the master equation for 2. Let us first solve the
master equation under the assumption the 9,2 ~ HQ and k?/A? ~ k?/a® near the

brane. In this case it is easy to write down the solution as

k
Q) x exp {— (1 — T(S)E) %}

which yields

k
O+ r(5)8y(2 = T(S)EQ'
It is worth noting that 0,{) = —r(_sQ at lowest order. We need to keep the next

order term to get the k—dependence. Nevertheless, this term is still much larger than
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7’(5)k'2 /a?. With the above result we rewrite the expression for ®, ¥ and dp,, as

2
- Fq {1—&E+...1,
2ar ) a 3 a
v 1 K {1—@E+..}, (3.78)
2ar ) a 3 a
k3 a®
K20 pm = — —Q [1 +3-5Ho In Qal} .
ar(s) a k

We leave the evaluation of 9;InQa~! for later (we expect it to be O[H]). Moreover

we do not need it to calculate 3; and 7.

Combining the above expressions we get

AnGpp - (aHN [ 25k aH\ 1 »
O=——>-—0p(— | |1 —-——=——-3(— | =0:InQ o
7 ( k: ) 3 a R ) et
4rG HY | k HY 1 379)
TG Pm a T(5) a _1
V=s——o— — ) [1——==3(— ] =0 InQ
2 m(k) 3 a ‘9’(1<;)Ha“na+
This allows us to read off our coefficients (/3,,7,) which are as follows
Bo="% =1,
9 (3.80)
P =2% = 3
As a bonus, we can also read off the coefficients (/3,,~,) which are
ﬁO =% = 17
fr=m=0, (3.81)

Po =12 = —3H'9,InQa" .

Of course as expected, on cosmological scales, the corrections from the small scales

is irrelevant.
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For the sake of completeness it might seem useful to construct a two parameter
expansion (lk/a) and (aH/k) as the expansion scales. Though, this is not too im-
portant since the small scale (I < 0.1mm) will have no effect on cosmological scales
where linear perturbation theory in density is valid at late time. To make use of both
scales one might have to go to the early universe. Another possibility is that dark
matter alone feels this extra dimension in which the scale [ can be as large as the
galactic scale or cluster scale. This needs further consideration and is beyond the
scope of this thesis.

In summary, we have calculated the matter metric-relation in braneworld models
up to the leading correction to Poisson’s equation. After discussing the importance of
the Israel Junction conditions, we considered two models as examples: the DGP model
modifies gravity on Hubble scales whereas the RS model does so on sub-millimeter
scales. We have shown that the Israel junction condition leads to an odd power of k

in the matter-metric relation, providing an exciting signature of braneworld models.
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Abstract In a large region of the supersymmetry parameter space, the annihilation cross section
for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles.
We explore the consequences of this velocity dependence in the context of indirect detection of dark
matter from the Galactic center. We find that the increase in the annihilation cross section at high
velocities leads to a flattening of the halo density profile near the Galactic center and an enhance-
ment of the annihilation signal. For the models considered, the annihilation signal can be doubled.

These models are typically undetectable by current experiments in spite of the enhancement.
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4.1 Introduction

Indirect detection is one of the most promising avenues for the discovery of dark
matter through its non-gravitational effects. Many efforts are underway and more are
planned to detect the products of dark matter annihilations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
The best places to look for the annihilation signal are regions where the density of
dark matter is expected to be high, for example, centers of dark matter halos [11],

center of stars [12, 13] and neighborhoods of compact objects [14].

We concentrate on the sub-parsec region around the super-massive black hole
(SBH) at center of our galaxy (M, ~ 4 x 10°M, [15, 16]). Gondolo and Silk [17]
argued that a sharp dark matter spike should form around the SBH leading to a large
enhancement of the annihilation signal. Subsequent authors (for example [18, 19, 20,
21]) qualified this statement, pointing out several phenomena which would have the
effect of smoothing and reducing the spike. The debate over the existence of a dark
matter spike at the center of the galaxy has yet to be resolved. For the purpose of

this paper, we assume that a spike does exist.

In this study we discuss a new correction to the predictions for the annihilation
rate and halo profile around the SBH. We point out that near the black hole the dark
matter particles will be moving sub-relativistically (v/c < 0.2). This is in contrast
to the usual assumption whereby the dark matter is taken to be cold and slow. In
fact, most previous calculations (see for example [17]) have been performed in the
limit (v/c) — 0 where v is the relative velocity between particles. For a certain
class of supersymmetric dark matter models, the cross section for annihilation can
be enhanced by several orders of magnitude in the vicinity of the SBH due a strong
dependence on v. In the presence of a central dark matter spike this can produce a
measurable correction to the observed annihilation signal. In addition, the enhanced
cross section leads to depletion of the spike and a widening of the “annihilation core”.
We explore these two effects for a variety of halo profiles to account for the many

astrophysical uncertainties regarding the nature of the density profile.

We find that the enhancements in the annihilation signals occur primarily in

models for which the indirect detection signals are too small to be seen by current
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experiments. However, these models are quite plausible theoretically and are even
preferred by some criteria. We can easily imagine a scenario in which particle physics
experiments point to one of these theories as a correct description of nature. This
will motivate dedicated gamma ray observations concentrating on objects where dark
matter is likely to be concentrated. We will argue that, in this situation, the velocity-
dependent enhancement of the annihilation cross section must be taken into account.

The rest of the paper is organized as follows. In Section 4.2 we give a brief review
of supersymmetric dark matter and enumerate the circumstances whereby a strong
enhancement to the annihilation cross section may arise. In Section 4.3 we estimate
the corrections to the halo profile arising from the enhanced annihilation rate and
calculate corrections to the annihilation signal. Our conclusions are presented in

Section 4.4.

4.2 Supersymmetric dark matter

For the purpose of this study we restrict ourselves to the minimal supersymmetric
standard model (MSSM). In this class of theories there exist four neutral fermionic
mass eigenstates — the neutralinos. The lightest of these is often the lightest super-
partner in the theory (LSP) and provides a good dark matter candidate. We are
interested in describing the conditions under which the annihilation of the LSP to
standard model particles exhibits a strong velocity dependence leading to an enhance-
ment of the indirect detection signal.

A sample of the most important Feynman diagrams contributing to neutralino
annihilations are depicted in Figure 4.1. First, a pair of neutralinos may exchange a
fermion superpartner (sfermion), producing two standard model fermions. Fermions
may also be produced through an s-channel exchange of a heavy scalar, in this case
the A° Higgs boson. Notably, this diagram does not admit a p-wave component, a
fact which will be important in the coming analysis. Finally, the neutralinos may
annihilate to standard model gauge bosons. In Figure 4.1 we present the annihilation
to two ZY bosons via the exchange of a heavier neutralino.

In the MSSM, neutralinos are Majorana particles. This leads to a well-known
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Figure 4.1: A typical set of Feynman diagrams contributing to the self annihilations
of a neutralino into Standard Model particles. The LSP is denoted by xi, X; is a
heavier neutralino and A is the neutral CP-odd Higgs boson.

helicity suppression of the amplitude for pair annihilation into light fermions [22]. If
x denotes the dark matter particle and f the fermion, the s-wave cross section will
be suppressed by a factor of

22 =mj/m? .

For the annihilation of a 200 GeV neutralino to Standard Model leptons, 22 is less
than 10~*. Consequently, the p-wave annihiliation, which is suppressed only by v?/c?,
may dominate. We can therefore conclude that for models where the LSP annihilates
primarily to fermions, the annihilation cross section will exhibit a strong velocity
dependence. It is this effect which lies at the core of our present work. In the next
few paragraphs, we review how these helicity-suppressed cross sections arise in the
MSSM parameter space. A more complete description can be found, for example, in
[23]. For an excellent review of the MSSM and supersymmetry in general see [24].

As mentioned, only annihilations to fermions undergo helicity suppression. We
would like to identify the regions of parameter space for which the dominant annihi-
lation channels do undergo helicity suppression and the resulting process is p-wave.
It is this class of models which will exhibit a strong velocity dependence.

In the MSSM, each neutralino is a linear combination of the superpartners of two

neutral gauge bosons and two neutral Higgs bosons. It is typically parametrized by
_ 0 770 F70 770
Xi = Zle + ZZQW + Zi3H1 + Zi4H2,

where Y; is the i*" neutralino and tildes denote superpartners. The partners of the
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Figure 4.2: ov as a function of (v/c) for sample models from the 7 coannihilation
region. In (a) my is scanned, increasing from top to bottom, and in (b) m: is scanned,
increasing from top to bottom.

B°, W° and Higgs bosons are usually called wino, bino and Higgsino respectively. Of
these four only the bino is a gauge singlet, meaning that it does not interact with
gauge bosons. Thus, by making Z;; large compared to the other components, we
can eliminate the third diagram in Figure 4.1, leaving only fermionic processes. The
annihilation of Majorana particles through a scalar coupling can only take place in
the s-wave. Thus, if the second diagram were to dominate over the first, the cross
section would indeed be helicity suppressed but no strong velocity dependence would
arise. To suppress this diagram we demand that the A° boson is significantly heavier
than the fermion superpartners. We must also make sure that no resonance enhances

the A° diagram, that is, m4 cannot be too close to 2m,,.

We may now ask how generic are these constraints? The condition of large Z;; is
quite generic. The theoretically compelling assumption of gauge unification naturally
leads to a bino that is lighter than the wino by a factor of two [25]. In many classes
of models, for example, minimal supergravity, the condition of electroweak symmetry
breaking requires that the higgsinos are quite heavy. In these cases the LSP is mostly
bino. The mass of the A° boson is, in principal, unconstrained and can easily be large

enough to suppress the A° exchange diagram.

Thus, helicity-suppressed dark matter annihilation is quite likely in models of

supersymmetry. This implies a strong dependence of the annihilation rate on the
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relative velocity of the incoming particles. In the following, we will consider sam-
ple MSSM models from this region of parameter space. We will choose models for
which the predicted dark matter relic density agrees with value Q,h? & 0.1 given by
the WMAP experiment [26]. All cross sections and relic density calculations were
performed using the DarkSUSY software package [27].

In Figure 4.2, we show the annihilation cross section times the velocity for the dark
matter particle in several of these models. The strong velocity dependence is evident,
enhancing the total cross section by several orders of magnitude over the value at
v = 0. We show how the low and high velocity behaviors of the cross section can be
tuned independently by varying different supersymmetric parameters. In Figure 4.2
(a) the mass of the the A° is scanned. As it is decreased the s-channel diagram in
Figure 4.1 becomes increasingly important, the s-wave component of the amplitude
increases, and the v = 0 cross section grows. In 4.2 (b) the mass of the stau is
scanned. As this parameter is decreased the t-channel scalar exchange diagram is
enhanced and the p-wave, velocity dependent, component of the cross section grows.
Notably, we must vary the mass of the LSP along with the stau mass in order to
maintain the correct relic abundance.

The curves in Figure 4.2 can be well fit by expressions of the form

ov = (ov)g + (ov)1(v/c)? (4.1)

where (ov)y and (ov); are fit parameters. We use this approximation in the following

sections.

4.3 Astrophysics

In the previous section we introduced a class of SUSY models for which the neutralino
annihilation cross section shows a strong velocity dependence. In this section we
explore the consequences for the density profile and the expected annihilation signal
from the dark matter in the sub-parsec region around our Galactic center. To the

best of our knowledge, this effect has been ignored in the literature. We find that
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neglecting this velocity dependence leads to an underestimation of the size of the
annihilation core as well as the expected annihilation signal. In addition, we find

that these corrections depend strongly on the density profile of the halo.

4.3.1 Density profile

The annihilation signal depends on the the density profile of dark matter. In particu-
lar, it is sensitive to the profile in the sub-parsec region around the central black hole
where the density is expected to be quite high. Our first goal is to understand how
the density profile changes in this region when we include the velocity dependence of

the cross section.

The density profile depends on a number of physical processes such as the initial
phase space distribution of the dark matter particles that collapsed to form the halo,
the steepening of the profile due to the baryons, scattering by stars, loss to the central
black hole, black hole or galactic merger history etc. A detailed calculation of the
density profile is beyond the scope of this paper (see [28] for an excellent review).

Following [29], we take the dark matter density profile to be given by

p(re) 10r, <r <r.
p(r) =19 po(r/r) ™ re<r <y, (4.2)
po (r/my) <71,

In the above expression r, &~ 4 x 10~" pc [15] is the Scwarzchild radius of the central
black hole, 7, is the size of the spike, 7, is the slope of the halo and ~, is the spike

slope. 7. is the size of the annihilation core which will be discussed below.

The spike slope is related to 4. and given by

Yop =2+ 1/(4 =) (4.3)

(see for example [17]). Due to the interactions of dark matter with baryons and scat-

tering off stars, the size of the spike decreases with time. We follow the perscription

151



CHAPTER 4. RELATIVISTIC DARK MATTER AT THE GALACTIC CENTER

given by [29] and set

.
rp(7) = 0.2, X exp {——2(%1) — %)}

where 7y, is the radius of gravitational influence of the SBH and 7 is the time since

the formation of the black hole in units of the heating time #,..; ~ 10°yrs [30, 28].

In the following we take 7 ~ 10 [20]. It is important to note that the relation (4.3)

also breaks down with time [20]. However, for short enough formation times it is

approximately valid and for simplicity we continue using it throughout this paper.
For r < 10r, the density of dark matter particles decreases rapidly and vanishes

at r = 4r, [17]. We set the normalization of the density profile, py, by extrapolating

r Ye
po = po (—G) :
Ty

The density at the solar radius po = 0.3GeV /cm®.

inwards from the solar radius:

We now turn to the core radius r.. As discussed above, the density profile is
determined by self annihilation, scattering by stars, loss to the SBH etc. If the
density gets too high, annihilation becomes efficient enough to prevent further rise in
the density. This results in the formation of a flattened core near the galactic center.

The radius at which the core starts forming is determined by

11ann(7’c) ~ (T theat)_l (44)

The annihilation rate Iy, (1) = p(r)ov(r)/m where m is the mass of the dark matter
particle. The position dependence of ov arises due to its velocity dependence. For
a virialized halo, (v/c)? = r,/2r). Since the dark matter density is significant for
r > 10r,, the relavent velocities are bounded by (v/c)* < 0.05.

We consider a model taken from the stau coannihilation region of mSugra. The
mass of the LSP m = 166 GeV and the mass of the lightest stau is 173 GeV. The
relic density is Qqmh? =~ 0.1. In this model, (ov)g = 9 x 1073 cm3s™! and (ov), =

8.9 x 107 cm3s™! (see equation (4.1)). We will refer to this model as our fiducial

152



4.3. ASTROPHYSICS

[0 24 T T T T T T e T
g ] 108 S g
75 1 I 1
2. ] 10° !
1077k E £ E
_ i 45 ] 10%E
-T L 4 E 3
2 I 1 I 102k E
g 10_262 é é F 3
£ b re_ys s :
L. r o r b
10271 ¢ : 10_25 E
r 1 10_4g E
10—28 E oo R ) L AR NE 10_6 k. Lo L oiim L im Lo e

10 10® 107 0% 105 10 10° 10° 107 10°

ov [em’s™'] V/”g

Figure 4.3: (a) The variation of the core radius with (ov)q and (ov);. Ignoring the
(ov); leads to an underestimate of the core radius. (b) Spike profile for 7. =1 — 1.5,
increasing from bottom to top. Note that for large values of v, the radius of the
annihilation core is also large. The dotted lines indicate the density profile when we
set (ov); = 0.

model. Whenever a parameter is not explicitly defined or varied, its value is taken

from this model.

For our fiducial model with 7. = 1 (NFW profile), the core radius r. ~ 46r,, with
a core density of p(r.) ~ 2 x 10° p where p = 6733 M pc™3. If we ignore the velocity
dependence, then we do not get a core. In Figure 4.3(a) we plot r. for different
(ov)p and (ow); for the same density profile. We note that the size of the core is
not independent of (ov); and ignoring it leads to an underestimation of the core size.
If (ov); has a dominant contribution in determining the core radius ., it has to be
significantly larger than (ov)y. This is because the factor (v/c)? ~ r,/2r in front of

(o) is small unless we are close to the central black hole.

Another important factor that determines the size and density of the core is the
steepness of the density profile parametrized by .. For the fiducial model, the size of
the core as well as the density increases with increasing «, as shown in Figure 4.3(b).

The dotted lines represent the density profiles for (ov); =
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4.3.2 Annihilation flux

The flux of photons (as observed by us) can be written as

o= L [ g Novrr) (4.5)
2m? dm|d + r|?

where p(r) is the dark matter density and ov(r) is the annihilation cross section times
the typical relative velocity of the annihilating particles. In the above expression d is
the vector joining the sun and the galactic center, m is the mass of the annihilating
dark matter particles and N is the number of photons (above the detector thresh-hold)
produced in the annihilation process. The integral is done over a solid angle which
depends on the angular resolution of the detector. We take this to be AQ ~ 10~ °sr
which is the approximate angular resolution for GLAST. We remind the reader that
the position dependence of Nov(r) arises from the position dependence of the velocity
in a virialized halo. Due to this position dependence of the cross section, we cannot
simply separate the particle physics and astrophysics aspects of the integral as is
commonly done in the literature.

The annihilation signal depends on the cross section in two ways: Explicitly
through Nov appearing in equation (4.5) and implicity through p which depends
on ov as discussed in the Section 4.3.1.

For the fiducial model with . = 1, the expected flux is enhanced by a factor of
~ 2 compared to the case when the velocity dependence is ignored. One should view
this number with caution, since it does depend strongly on the parameters of the
model.

In Figure 4.4(a), we plot the annihilation flux as a function of (ov)y and (ov);
with the same halo profile. In Figure 4.4(b) we plot the ratio of the fluxes, with and
without the velocity dependence in the cross section : ®/®, where ‘0’ indicates that
we set (ov); = 0. As expected, ignoring the velocity dependence of the cross section
leads to an underestimation of the flux. The enhancement is large when (ov);/(ov)g
is large.

Next, in Figure 4.5 we show the flux and enhancement as a function of v.. As seen

in Figure 3(b), the core size increased with v.. Thus, the fraction of particles moving
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Figure 4.4: (a) The annihilation flux as a function of (ov)y and (ov);. &y = 6 X
107"%m~2s~! which is the (approximate) sensitivity of GLAST at an energy threshold
of 1GeV. (b) The ratio of annihilation fluxes ®/®; where ‘0’ refers to the flux
calculated by setting (ov); = 0.

at relativistic velocities decreases and the enhancement to the signal is weakened.
We note that the enhancement of the signal occurs in models that are not de-
tectable by current or planned experiments. For our fiducial model, the flux is two
orders of magnitude below GLAST sensitivity (see for example [31]). This is mainly
due to the small (ov)g since it is (ov)y that determines the annihilation flux in re-
gions with r > 10%r,. It is tempting to explore the SUSY parameter space with the
aim of finding models with a large (ov)o and (ov)1/(ov)p, so that the flux is large to
begin with and the velocity dependent enhancement provides a further boost. How-
ever, relic dark matter abundance constrains (ov);(v/c)?* < 107*°cm?®s~!. Thus, for

(ov)1/(ov)g 2 10%, (ov)g is typically small leading to a small overall flux.

4.4 Discussion

In this paper we have discussed the consequences of relativistic dark matter near the
black hole at the center of our galaxy. We have argued that, in general, the commonly

used approximation whereby the relative velocity of dark matter particles is taken
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Figure 4.5: (a) Flux as a function of 7.. ®y = 6 x 107"%cm2?s~! which is the

(approximate) sensitivity of GLAST at an energy threshold of 1 GeV. (b) The ratio
of the annihilation fluxes: ®/®( as a function of v.. @y is the annihilation flux when
we set (ov); = 0. As 7. increases the core gets larger which results in a decrease in
the relative fraction of of particles close to the galactic center. This in turn leads to
a decrease in the enhancement

to vanish may be inapropriate. In regions very close to the black hole, the cold
dark matter is no longer cold. If the dark matter has accumulated in a sharp spike
around the black hole, this region may account for a large fraction of the expected
signal. We presented a specific class of supersymmetric models in which the dark
matter annihilation cross section is strongly dependent on the relative velocity of the
incoming particles. In these theories, the expression for the annihilation flux no longer
separates neatly into factors depending on the astrophysics and the particle physics.
When the full velocity dependent cross section is considered, the annihilation flux
receives up to an order of magnitude enhancement over the v = 0 value. In addition,
we found that the enhanced cross section effects the halo profile close to the galactic

center. The increased annihilations deplete the spike and widen the annihilation core.

We explored the change in the density profile and annihilation signal for anni-

hilation cross sections of the form ov = (0v)g + (ov)i(v/c)*. We showed how the
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annihilation core size and the flux changed as a function of (ov)y and (ov);. To ac-
count for the astrophysical uncertainties in determining the dark matter density near
the galactic centre, we presented our results for a variety of halo profiles.

None of the models we have considered are detectable by current or upcoming
gamma ray observations. If the neutralino is the dominant component of dark matter
and is produced thermally, the cross section at high velocity cannot be larger than
about 1072¢ cm?/sec; otherwise the relic abundance would be too small. In most
regions of the galaxy today, the neutralino velocity v/c would be very small, and the
annihilation signal would be highly suppressed. However, if particle physics observa-
tions should indicate a scenario like those we have described, it would be worthwhile
to mount dedicated gamma ray observations concentrating on the galactic center and
the centers of nearby galaxies. Uniquely in those environments, in the neighborhood
of the central black holes, the annihilation cross section would be enhance by the

effect described in this paper.
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Appendix

In this appendix we provide some analytic approximations to the flux integral, equa-
tion (4.5). We will assume that the velocity dependence of the cross section takes the
form of equation (4.1), although this is not essential in the numerical calculations.
We split the flux integral into three parts; ® = ®core + Ppike + Prato bases on the
density profile (4.2). In most cases, the largest contribution to the signal comes from
the spike and core. However, the contribution from the halo is not always negligible.

For example in the fiducial model, the spike, core and halo contribute 45, 54.5 and 0.5
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percent of the signal respectively for an angular resolution of AQ = 107%sr, v, = 7/3
and . = 1.
For the density profile, equation (4.2), we can calculate the core and spike parts

of the integral analytically (since r., m,, < d). For the case when 7, # 3/2 we have

1— <10rg> }
B, ~ 1 (Nav)o pird 1 10r,\? L+ 3 (Nov)iry [ re
Te 4 (Now)o e {1_ <%)3}

6 d?2 m?
1 N 2,.3 . 3—27sp
Doie ~ Sl [1 - (—) x (4.6)

r. and p. depend on the cross section and gp.

158



Bibliography 4

[12]

http: // www-glast.stanford.edu/, 2007.

http: // www.veritas.sao.arizona.edu/, 2007.

http:/ /www.mpi-hd.mpg.de/hfm/HESS/HESS.html/, 2007.
hitp:/ /wwwmagic.mppmu.mpg.de/, 2007.
hitp://cossc.gsfe.nasa.gov/docs/cqgro/cossc/egret/, 2007.

S. W. Barwick et al. The high-energy antimatter telescope (HEAT): An instru-
ment for the study of cosmic ray positrons. Nucl. Instrum. Meth., A400:34-52,
1997.

http://wizard.roma2.infn.it/pamela/, 2007.

http://astrophysics.gsfc.nasa.gov/astroparticles /programs/bess/BESS. html,
2007.

http://sci.esa.int/science-e/www/area/index. cfm?fareaid=21, 2007.
http://agile.rm.iasf.cnr.it/publ02.html, 2007.

Piero Ullio, Lars Bergstrom, Joakim Edsjo, and Cedric G. Lacey. Cosmolog-
ical dark matter annihilations into gamma-rays: A closer look. Phys. Rev.,
D66:123502, 2002.

P. Salati and J. Silk. A stellar probe of dark matter annihilation in galactic
nuclei. ApJ, 338:24-31, March 1989.

159



BIBLIOGRAPHY 4

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Igor V. Moskalenko and Lawrence L. Wai. Dark matter burners. Astrophys. J.,
659:1.29-1.32, 2007.

Gianfranco Bertone and Malcolm Fairbairn. Compact Stars as Dark Matter
Probes. Phys. Rev., D77:043515, 2008.

R. Genzel et al. The Stellar Cusp Around the Supermassive Black Hole in the
Galactic Center. Astrophys. J., 594:812-832, 2003.

R. Schodel et al. Stellar dynamics in the central arcsecond of our galaxy. Astro-
phys. J., 596:1015-1034, 2003.

Paolo Gondolo and Joseph Silk. Dark matter annihilation at the galactic center.
Phys. Rev. Lett., 83:1719-1722, 1999.

Piero Ullio, HongSheng Zhao, and Marc Kamionkowski. A Dark-Matter Spike
at the Galactic Center? Phys. Rev., D64:043504, 2001.

David Merritt. Evolution of the Dark Matter Distribution at the Galactic Center.
Phys. Rev. Lett., 92:201304, 2004.

Gianfranco Bertone and David Merritt. Time-dependent models for dark matter
at the Galactic center. Phys. Rev., D72:103502, 2005.

David Merritt, Stefan Harfst, and Gianfranco Bertone. Collisionally Regenerated
Dark Matter Structures in Galactic Nuclei. Phys. Rev., D75:043517, 2007.

H. Goldberg. Constraint on the photino mass from cosmology. Phys. Rev. Lett.,
50:1419, 1983.

Kim Griest. Cross sections, relic abundance, and detection rates for neutralino
dark matter. Phys. Rev., D38:2357, 1988.

Stephen P. Martin. A supersymmetry primer. 1997.

Kenzo Inoue, Akira Kakuto, Hiromasa Komatsu, and Seiichiro Takeshita. As-
pects of Grand Unified Models with Softly Broken Supersymmetry. Prog. Theor.
Phys., 68:927, 1982.

160



BIBLIOGRAPHY 4

[26]

[27]

28]

[29]

[30]

[31]

D. N. Spergel et al. Wilkinson microwave anisotropy probe (wmap) three year

results: Implications for cosmology. Astrophys. J. Suppl., 170:377, 2007.

P. Gondolo et al. DarkSUSY: Computing supersymmetric dark matter properties
numerically. JCAP, 0407:008, 2004.

Gianfranco Bertone and David Merritt. Dark matter dynamics and indirect
detection. Mod. Phys. Lett., A20:1021, 2005.

Eun-Joo Ahn, Gianfranco Bertone, and David Merritt. Impact of astrophysical
processes on the gamma-ray background from dark matter annihilations. Phys.
Rev., D76:023517, 2007.

L. J. Spitzer and M. H. Hart. Random Gravitational Encounters and the Evo-
lution of Spherical Systems. I. Method. ApJ, 164:399—, March 1971.

Gianfranco Bertone, Torsten Bringmann, Riccardo Rando, Giovanni Busetto,
and Aldo Morselli. GLAST sensitivity to point sources of dark matter annihila-
tion. 2006.

161



BIBLIOGRAPHY 4

162



Chapter 5

Persistent geometric patterns in

accretion discs
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Abstract We present a set of new characteristic frequencies associated with accretion disks around
compact objects. These frequencies arise from persistent rotating patterns in the disk that are finite
in radial extent and driven purely by the gravity of the central body. Their existence depends on
general relativistic corrections to orbital motion and, if observed, could be used to probe the strong
gravity region around a black hole. We also discuss a possible connection to the puzzle of quasi-

periodic oscillations.
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5.1 Introduction

Timing observations of accreting X-ray binary systems have revealed luminosity mod-
ulation at a number of characteristic frequencies. Phenomenology of these quasi-
periodic oscillations (QPOs) is quite rich. For a detailed review, see [1] and references
therein. Some of the features are rather puzzling, such as stability of high frequency
QPOs in black hole binaries and that in some systems they appear in pairs at 3:2

frequency ratio.

QPOs in black hole systems are thought to arise from physical processes in accre-
tion disks. Depending on where the oscillations reside, one can roughly divide models
for QPOs in accretion disks into two classes: local and global. Local models tie down
the oscillation frequency to a particular place in the disk (like an edge or a hot spot).
In this case, the question of what determines that place has to be answered. One
line of argument is that the location of the hot spot is determined by a resonance
2, 3, 4, 5]. This model has an attractive feature that the observed 3:2 frequency ratio
can be explained by non-linear mode locking. A hot spot can give rise to luminosity
variation, for example, due to Doppler beaming [6, 7]. However, a potential difficulty
is to have a hot spot which is sufficiently bright. Achieving sufficient luminosity vari-
ation seems less problematic in global models, in which modes occupy a larger region
of the disk. Linear perturbation analysis of the accretion disk in diskoseismology ap-
proach [8, 9, 10, 11] naturally solves the issue of spatial and frequency localization of
modes. The 3:2 frequency ratio would be accidental for two fundamental diskoseismic

modes, but it could arise from higher azimuthal g-modes which are nearly harmonic.

In this paper, we describe a set of new characteristic frequencies which might be
present in accretion disks around compact objects. To the best of our knowledge,
they have remained unnoticed in the literature. These frequencies arise from rotating
patterns in the disk which are quasi-stationary, finite in radial extent, and driven
purely by gravity of the central body. We neglect self-gravity and the hydrodynamics
of the accreting matter. The main idea is similar to the notion of density waves that
give rise to the spiral structure in galaxies [12, 13, 14], although these patterns depend

on general relativity rather than a distributed matter source for their existence.
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While it is tempting to identify the frequencies of these patterns with the source
of QPOs, we cannot claim to have a complete model. The issues of how they are
excited, how they translate to X-ray luminosity variation, and effects of pressure and
viscosity need to be investigated in more detail. We will return to these points with

some plausibility arguments in Section 5.4.

5.2 Accretion disk kinematics

A test particle in a circular equatorial orbit around a Kerr black hole has an orbital

frequency [15]
1

=T (5.1)
with respect to Boyer-Lindquist time ¢, where r is the orbit radius and a is the
dimensionless black hole spin parameter (a = ¢J/GM?). We work in dimensionless
units scaled by the black hole mass M (i.e., distances measured in units of GM/c?,
times measured in units of GM/c?, etc.), and will further set G = ¢ = 1. Here and
later we will assume that particles co-rotate with the black hole.

If perturbed from the circular orbit, the particle will undergo radial and perpen-

dicular oscillations with epicyclic frequencies x and €2, respectively [16]

6 8a a?
2 A2 b oea a”
K* = (1 " + 32 3 7“2) (5.2)
and )
4a a
2 A2

The factors multiplying €2 on the right-hand sides of these expressions are general
relativistic corrections. They are absent in Keplerian mechanics, where both epicyclic
and orbital frequencies are all the same (k = Q; = ). The radial dependences of
orbital frequency {2 and radial epicyclic frequency s for a typical rotating black hole
are illustrated in Figure 5.1. Circular orbits close to a black hole are unstable; the
innermost stable circular orbit (ISCO) is located where x? vanishes.

If orbital and epicyclic frequencies are the same, as they are for a Keplerian
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Figure 5.1: Orbital frequency €2, radial epicyclic frequency &, and precession frequency
w = ) — 2k of a 2:1 orbit in an accretion disk around a Kerr black hole with M =
10 M and a = 1/2. Precession frequency exhibits a shallow negative minimum at
ry &~ 9.64. The radial extent of the rotating pattern with 20% deviation in frequency
is marked by vertical bars.

potential, the orbits are closed. However, if the potential deviates from 1/r (either
because of general relativity corrections, as in our case, or due to a distributed matter
source, as happens in galaxies), the two frequencies will in general be different, and
the orbits will precess. The condition for an orbit to close in a frame rotating with
frequency w is for the orbital and epicyclic frequencies to be commensurate, m(€2 —

w) = nk, which gives the precession frequency

w=0—-—kK. (5.4)

n
m
The integers n and m determine the shape of the precessing orbit, and from here on,
we will use the abbreviation n:m to refer to their values. Figure 5.2 shows the shape of
1:2 and 2:1 orbits, which are representative of the deformed and the self-intersecting
orbit classes.

In general, precession frequency w depends on r, and any pattern initially present
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1:2 2:1

Figure 5.2: Sample closed orbits. 1:2 orbit (left) corresponds to 2 epicycles per 1
rotation around a central body, while 2:1 orbit (right) corresponds to 1 epicycle per
2 rotations.

will shear away as the disk rotates. However, if w is approximately constant over
some portion of the disk, collective orbit precession can lead to a nearly rigid pattern
rotation. One example of this is the spiral structure in galaxies caused by the 1:2
mode [12, 13, 14]. The 1:1 mode in Keplerian disks gives rise to a static one-armed
spiral pattern [17], which is seen in numerical simulations as well [18]. An attempt
has been made to trap the 1:1 mode in the region of the strong gravity [19], but
trapping depends strongly on the pressure distribution within the disk [20].

5.3 Persistent patterns in the disk

Our key observation is that for n > m, the precession frequency w(r) develops a very
shallow minimum at a radius r = r,, as illustrated in Figure 5.1 for the 2:1 orbit.
Collective excitation of particles on orbits precessing at the same rate would lead to
a pattern occupying a sizable portion of the disk around r, and rotating with little
shear at a frequency w, = w(r,). Somewhat unusual are the facts that the pattern
is counter-rotating and that the orbit closes in several rotations rather than a single

one.
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1:2

Figure 5.3: Evolution of density patterns obtained by distributing particles on stacked
1:2 (left) and 2:1 (right) orbits. Top row shows initial configuration, middle row -
after one period of rotation of 2:1 pattern elapsed, bottom row - after twenty periods.
Density contrast has been enhanced by histogram equalization.
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In a real accretion disk, the collective particle motion would have to be excited
by some dynamical mechanism. It might be complicated and could require numerical
simulations of the disk to fully understand the driving process. In the present paper,
we will be content with studying the kinematics only. We will set off a collective
mode by selecting appropriate initial conditions (as described below) and follow the
pattern evolution by tracing the motion of individual particles making up the disk.
The purpose is to find out if there is a long-lived pattern that survives the differential
rotation.

If perturbed from a circular orbit at » = ry by a small displacement ¢ in the radial

direction, the trajectory of a test particle (to first order in €) is
r(t) = ro + esin(kt + x), (5.5)

2Q)
P(t) =+ Qt+ — Te cos(kt + x), (5.6)

where ¢ and y are initial orbital and epicyclic phases, and

1—3 4 22
Y=o ) (57)

is a relativistic correction factor (which, however, changes little in the region of the
disk we are interested in). We populate the disk by spreading N particles uniformly

on a n:m orbit, with initial phases of a k' particle

2mn 2mm
=L =k 5.8
Pk N 3 Xk N 3 ( )

while stacking the orbits in a radial direction at an angle a by giving the orbit located

at r; a phase offset

Pik = Yk T+ ar;. (5.9)
This particle distribution leads to a spiral structure in the disk. Figure 5.3 shows the
surface density contrast (smoothed with a Gaussian kernel) for patterns obtained by

distributing particles on stacked 1:2 (left) and 2:1 (right) orbits. The three rows of

Figure 5.3 show a time-lapse sequence of pattern evolution. The top row shows the

169



CHAPTER 5. PERSISTENT GEOMETRIC PATTERNS IN ACCRETION DISCS

initial conditions, and the second and the third rows show patterns at ¢ = 75.; and
t = 20Ty, correspondingly. Tp.; = 2m/wq. denotes a period of rotation of the 2:1
pattern.

The frequency of the 1:2 orbit precession depends monotonically on the radius, so
one expects differential rotation to destroy the pattern. Indeed, at t = T5.1, the spiral
is seen to wind up, and by t = 20751, it is wound up so tightly that the smoothing
removes all traces of structure. The evolution of the 2:1 pattern is markedly different.
Signs of shear are clearly seen after a single rotation. However, even after twenty
rotations, there is still a pattern present around r, ~ 9.6 (which is exactly where the
minimum of wy.; occurs). As this time span corresponds to almost 50 orbital rotations

at r,, the pattern is remarkably persistent.

5.4 Discussion

In the last section, we have shown that an accretion disk around a compact object
can support persistent rotating patterns due to the collective excitations of particles
in the disk. Their existence depends on general relativity effects and is sensitive to
the parameters of the central body but not to the accretion rate. All the frequencies
in the problem scale inversely proportionally to the central body mass. In addition,
persistent pattern frequencies depend on the spin parameter. Figure 5.4 shows the
rotation frequencies of the three lowest-order persistent patterns (2:1, 3:1, and 3:2) for
a 10M-mass black hole as the spin is varied. This dependence in principle could be
used to measure the mass and spin of the central object, provided that the frequencies
of two distinct modes are observed and identified correctly. One should note, though,
that for multi-armed patterns (for example the 3:2 pattern which has two arms)
modulation frequency could be a multiple of the rotation frequency.

Several different persistent patterns could coexist in the accretion disk; however,
it is likely that the lowest-order ones are strongly selected based on geometrical con-
siderations. Surface density modulation of the 2:1 pattern is second-order in particle
displacement e, while the 3:1 and 3:2 patterns are third-order. The cancellation of

lower-order terms is directly caused by the multiple-fold geometry of the orbits with
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Figure 5.4: Persistent pattern frequencies of three lowest-order radial modes (2:1, 3:1,
and 3:2) for a 10My-mass black hole as a function of black hole spin parameter a.

5000 800
3:1
\
4000
600
T 3000 s
E 400 =
§ 2000 L S
200
1000
3:2
-

0.6 0.7 0.8 09 1

a —

Figure 5.5: Persistent pattern frequencies of three lowest-order transverse modes (2:1,
3:1, and 3:2) for a 10M-mass black hole as a function of black hole spin parameter
a.
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n > 1. Being higher-order could explain why these persistent patterns are not ap-
parent in the linear perturbation analysis of [8]. Despite second-order scaling, the
2:1 pattern in Figure 5.3 (lower right) shows 1% amplitude of the surface density
modulation for moderate displacement values (¢/r, =~ 0.022). The radial extent of
the 2:1 pattern (Ar ~ 4) also appears to be wider than that of a fundamental g-mode
(the width of which is proportional to c’* and is estimated as Ar ~ 1 by [8]).

In this paper, we focused on kinematics and neglected particle interactions and
the hydrodynamics of the disk. The extent to which this approximation is justified
should be further investigated. Of critical importance for the model is understanding
the excitation mechanism. It is possible for the spiral waves to be driven from the
outer edge of the disk [21, 22]; however, whether that is sufficient to cause persistent
patterns to appear remains to be seen. Both questions could be answered by turning
to numerical simulations of the accretion disk hydrodynamics. However, that is a
much more complicated problem, and we feel that it is beyond the scope of this
paper, the intent of which is merely to point out the existence of new characteristic

frequencies in the disk.

It is plausible that the characteristic frequency of the collective motion will man-
ifest itself in X-ray luminosity variation, but the exact mechanism responsible for
the modulation is not clear to us. Density pattern in the accretion disk need not
be a direct cause. Particles weaving in and out on self-intersecting orbits could lead
to efficient gas heating, possibly due to shock formation, and create a temperature
pattern in the accretion disk (in a sense, an extensive “hot spot”). The picture of
temperature modulation of the disk causing X-ray luminosity variations is not entirely
satisfactory as quasi-periodic oscillations are seen primarily in the hard non-thermal
component of the emission [1]. That could indicate that the quasi-periodic emission
is coming from a coronal region rather than from a disk [23]. It is possible that the
transfer mechanism might involve a magnetic field threading the disk (Blandford,
unpublished).

So far we have been talking about patterns arising from radial oscillations. It is
worth mentioning that a similar thing could happen for transverse oscillations as well.

The precession frequency w; = €2 — 2 also has a minimum if n > m. However,
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the minimum lies inside an innermost stable circular orbit unless the black hole is
spinning rapidly (e > 0.8 for 2:1 orbit). The frequencies of the three lowest-order
transverse modes are shown in Figure 5.5. Transverse particle excitations would lead
to a corrugated accretion disk rather than a surface density pattern.

To summarize, we have found a set of new characteristic frequencies associated
with accretion disks around compact objects. Although many questions remain, it
might be interesting to pursue this idea further and see if it could lead to a model
of quasi-periodic oscillations in X-ray binaries. In particular, the numerical values of
our characteristic frequencies and their independence of the accretion rate suggest an

application to high-frequency QPOs in black hole binaries.
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