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Abstract

This thesis is about probing gravity on cosmological and astrophysical scales. It also

includes a discussion of an indirect probe of dark matter. It is a collection of projects

that are fairly independent. However, gravitational physics plays an important role

in each one of them.

In the first half of the thesis, we concentrate on cosmological scales. We provide a

kinematic prescription for constraining the accelerated expansion of space. Then, as

a more detailed investigation into the cause of this accelerated expansion, we provide

a scale-dependent framework for probing the dynamics of gravitational and matter

perturbations on linear, sub-horizon scales.

In the second half, we move to smaller, astrophysical scales. This half includes

two independent projects. First, we investigate the effects of relativistic dark matter

on the dark matter density profile and the self-annihilation flux from the Galactic

center. Second, we propose the existence of quasi-stationary, spiral density patterns

in accretion discs around black holes.
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Preface

Our understanding of gravitation has come a long way since the proverbial apple fell

close to Newton. From Newton’s force laws to a description of gravity in terms of

spacetime curvature, our understanding of gravity has repeatedly challenged our view

of the cosmos. We have moved on from pondering the perfect shapes of planetary

orbits to questions about the past, present and future dynamics of the entire universe.

That we have a theory, Einstein’s general relativity (GR), that allows us to sensibly

ask these questions is remarkable.

Within GR, spacetime becomes a malleable, swirling, fluttering entity with all

forms of energy democratically controlling and responding to its variations. Based

on the Principle of Equivalence, GR, with its geometric description of gravity is both

powerful and elegant. Yet, it is this very description that puts it at odds with what

we currently understand of the the rest of fundamental physics. The strong, weak

and electromagnetic interactions take place in the arena of spacetime. Gravity is

this arena itself. All known fundamental interactions find a description and a (likely)

unification in terms of quantum fields. Gravity, as yet, does not. With our current

understanding, besides gravity, none of the interactions care about the absolute energy

scales in the problem. This difference is leading us to another paradigm shift in our

view of the physical world.

Our understanding of gravity has led us to triumphant solutions of long-standing

problems in the weak-field limit (GM/Lc2 ∼ 10−5, where M and L are the character-

istic mass and length scales and G is Newtons gravitational constant). The perihelion

shift of Mercury was one such solution. It has also led to some unnerving predictions,

such as the existence of black holes in the strong field limit. It has enabled us to weigh
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the universe without seeing it, leading us to infer the existence of large amounts of

dark matter on astrophysical and cosmological scales. Viewing our universe on the

grandest of scales, GR is providing us a glimpse into the nature of nothingness.

In the weak-field limit, GR has been tested against a wealth of observations on

solar system scales. However, it is more poorly constrained on astrophysical and cos-

mological scales. This thesis is about probing gravity on cosmological and astrophys-

ical scales. It also includes a discussion of a probe into the nature of dark matter. It

is a collection of projects which are fairly independent; however, gravitational physics

plays an important role in each one of them. The two chapters following the Introduc-

tion (Chapter 1) are about probing gravity on cosmological scales. Chapter 2 deals

with the background, homogeneous universe. It provides a kinematic prescription for

constraining the expansion history of the universe. Chapter 3 provides a framework

for probing the relationship between the cosmological metric and matter fluctuations.

In Chapters 4 and 5, we leave the realm of cosmology and move to more astrophysical

phenomenon. In Chapter 4, we investigate the effects of relativistic dark matter at

the Galactic center on the density profile of dark matter and the self-annihilation flux.

In Chapter 5, we propose the existence of quasi-stationary spiral density patterns in

accretion discs around black holes.

The bulk of the thesis (each chapter) is composed of already published (or ac-

cepted for publication) work. The published papers were written in collaboration

with various co-authors. None of the papers would have been possible without their

guidance, insight, effort and enthusiasm. In addition to these papers, I have added

a number of appendices at the end of each chapter. These are not yet published.

Some serve a pedagogical purpose, some provide a collection of results that might be

of future use, and some provide a concentrated effort in a particular direction that

would have otherwise taken us too far from the main body of the chapter. They do,

however, form an integral part of this thesis.
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Chapter 1

Introduction

This introduction is meant to provide context, motivation and a brief historical back-

ground for the chapters to follow. A more detailed introduction to the ideas relevant

for the chapters, including a survey of related works in the literature can be found

at the beginning of each chapter. Below, we provide a combined introduction for

Chapters 2 and 3 and individual ones for Chapters 4 and 5.

1.1 Probing gravity on cosmological scales

Modern cosmology began in 1915 with Einstein’s general theory of relativity [1].

Within general relativity, it became possible to address the questions of the dynamics

of the entire universe and its dependence on the universe’s constituents. From 1915 to

1929, Friedmann, Lemâıtre, Einstein, de Sitter (amongst others) all played their part

in cosmological model building. The cosmological constant was introduced, discarded

and reintroduced.1 Models that were static, collapsing, expanding, bouncing and

1Einstein introduced it for two reasons. First, based on Mach’s ideas, Einstein considered it
an unwanted characteristic that his field equations should admit a solution without matter. He
(erroneously) believed that his field equations with a cosmological constant would not admit a
solution without matter. The second reason was the desire to have a static universe (consistent
with observations at the time). After Einsteins initial introduction of the cosmological constant,
it was reintroduced for different reasons by other cosmologists. Lemâıtre, investigated the effects
of the cosmological constant on the expansion history [2]. He even suggested its connections to
vacuum energy [3]. Eddington, strongly supported its inclusion on grounds that it represented a
necessary length scale for cosmology. Initial measurements of the contemporary rate of expansion

1



CHAPTER 1. INTRODUCTION

accelerating were proposed and investigated. With Hubble’s characterization of the

distance-redshift relation of receding nebulae in 1929 [5], an expanding universe came

to be accepted. Yet the detailed description of the expansion history would have to

wait more than six decades. Open, closed, and flat universes were all possible. Our

understanding of the various components that make up our universe was shaky at

best. As early as 1933, based on the large velocity dispersion in clusters, Fritz Zwicky

had pointed at the missing mass problem [6]. Assuming a universe that started in a

hot, dense and singular state (the big bang), big bang nucleosynthesis (BBN) was able

to correctly predict relative abundances of the light elements in our universe [7, 8].

However, it was not until the cosmic microwave background (CMB) was measured

by Penzias and Wilson [9] that we gave up on the notion of a steady state universe

where matter was constantly regenerated. This was the status of cosmology before

the 1980s.

Today, we are in a rather different position. In the last two decades cosmology has

undergone a revolution. The journey from a speculative science to an observationally

driven field has been nothing short of spectacular. With the discovery of the cosmic

microwave background, a universe with a hot, dense and homogeneous past has come

to be accepted. We have not only measured an almost perfect black-body spectrum

of this radiation but have mapped out fluctuations in its temperature at the level of

one part in 105 [10, 26]. The contemporary expansion rate has been measured to a

few percent level accuracy [3].

Despite this incredible progress, the last two decades have also brought forth some

unexpected challenges. The uniformity of the cosmic microwave background has led

to questions about acausal correlations in the sky (the horizon problem). We need

a mechanism for explaining the almost scale-invariant fluctuations in the cosmic mi-

crowave background. Observations of the rotation curves of galaxies, the temperature

of the gas in galaxy clusters, the galaxy velocities in clusters and gravitational lensing

are forcing us to introduce a new, non-standard model component (dark matter) that

interacts with the rest of the universe mainly through its gravity. In addition, the

of the universe pointed towards a universe that was younger than the stars in it. The cosmological
constant also helped in alleviating this problem. A more detailed historical account can be found in
[4].

2



1.1. PROBING GRAVITY ON COSMOLOGICAL SCALES

observed amount of structure in our universe requires dark matter to aid gravitational

instability. Finally, there is the unexpected discovery (1998) that the expansion of

our universe is accelerating [2, 1].

From a theoretical perspective, the above challenges have been addressed with

varying levels of success. The inflationary paradigm [15] that arose in the 1980s out

of a desire to solve the monopole problem, ended up providing an explanation for the

horizon problem, explained spatial flatness and also provided a mechanism for gen-

erating (almost) scale invariant density fluctuations. Despite its success, connecting

the cause of inflation to the rest of particle physics has yet to be fully accomplished.

The requirement of a non-baryonic component is satisfied by WIMPs (weakly inter-

acting massive particles) arising naturally in super-symmetric (SUSY) extensions of

the standard model (see [16] for a review). One should keep in mind though, that we

have yet to detect any SUSY particles. Finally, cosmic acceleration can be explained

by once again introducing a cosmological constant into the Einstein field equations,

but its connection to particle physics is far from clear (see [18] for a review).

The inflationary paradigm for the very early universe and a contemporary uni-

verse dominated by dark matter and cosmological constant has become the standard

model of cosmology. It is consistent with all observational data. However, one should

also bear in mind that none of these components (inflaton, dark matter, and cosmo-

logical constant) has been probed by non-gravitational means. Given the profound

implications of this standard cosmological model, one should be cautious in claiming

it as a unique physical description of our universe. It is natural to consider whether

alternatives to the standard model could explain the observations equally well.

At the present, no alternatives provide a significant advantage over the standard

model (which we will refer to as ΛCDM from now on and concentrate on late times,

z . 1000). In particular, all attempts at removing dark matter from the standard

model have met with very limited success. Usually, additional clustering fields need

to be reintroduced, which essentially introduce dark matter. Thus, for the purpose

of this thesis, we will assume the existence of dark matter. For explaining cosmic

acceleration, a number of alternatives to the cosmological constant (for example,
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quintessence, extra dimensions, etc.) have been proposed. A few words of caution re-

garding these alternatives are in order. None of the models that try to explain cosmic

acceleration are “better” than the cosmological constant in the sense that they all

need a fine tuned parameter (a Hubble length scale) and usually introduce additional

complications. Nevertheless, in our view, the benefit of studying models beyond the

standard model is that they teach us a lot about why GR with a cosmological con-

stant is special. These models and their respective phenomenology allow us to gain

an insight into the solution space of theories (and their consequences) close to ΛCDM.

They help us understand the features that are specific to the standard cosmological

model, thus allowing us to concentrate our experiments and observational efforts to

look for departures from these features.

The difficulty of coming up with a good alternative to ΛCDM should not deter

us from testing this standard model of cosmology. To do this one can take two ap-

proaches. The first is to assume that ΛCDM with GR is correct and simply compare

the consequences with observations. However, this approach cannot tell us anything

about the uniqueness of ΛCDM as a physical model for our universe. To gain con-

fidence in ΛCDM, one must explore the solution space around this model. For this

purpose, a parameterized approach is beneficial. A parameterized approach (the Pa-

rameterized Post-Newtonian framework or PPN framework in short) was undertaken

to explore the solution space around GR on solar system scales over the last century.

The PPN framework began with Eddington in 1922 but was restricted to the vacuum

spacetime around a spherically symmetric central body. Its current version is mainly

due to Nordtvedt and Will (see [15, 19] for a more detailed history). The essential

idea is to start with Newtonian gravity and include relativistic effects in a system-

atic manner. The metric is constructed out of moments of stresses, densities, etc,

systematically arranged as an expansion in v/c and the gravitational potential Φ/c2.

The relativistic contributions are preceded by coefficients that can be calculated for

any given theory. Within certain physical limitations on its applicability, the PPN

framework includes ten PPN coefficients which can be used to test GR and rule out

alternatives (see [15]).

A similar theoretical framework that will allow for a classification of the existing
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and upcoming models is required on cosmological scales. Such a framework should

allow us to zero in on the common and distinguishing features of different models.

It should also provide a common language for theorists to compare and contrast the

observational consequences of different models. On the observational front, it should

allow for a smarter choice of observational projects that are best suited to reveal

departures from the standard or are able to eliminate a large class of alternatives.

The provision of such a framework is the goal of the first part of this thesis. We leave

the detailed introduction to our framework and a review of the current literature on

this subject to the introduction provided at the beginning of Chapters 2 and 3.

1.2 Relativistic dark matter at the Galactic center

In 1933, based on the high velocity dispersion in galaxy clusters, Fritz Zwicky started

our quest for some unseen matter that made its presence felt through its gravitational

effects. Its existence on the scale of galaxies was first suggested by the high velocities

of stars and gas in the outskirts of the Andromeda galaxy (1939) [20]. Four decades

later, Rubin and Ford obtained similar results (with much improved observations)

for a number of galaxies [21]. On the theoretical front, in 1973, Ostriker and Peebles

argued that a halo of dark matter was necessary for the stability of disc galaxies

[22]. Although astronomers were convinced that the missing matter was present in

cosmologically significant amounts, whether it was baryonic matter, black holes or an

indication of physics beyond the standard model was unclear. The idea of cold dark

matter, as it is used in the modern cosmological context, can be credited R. Bond

(1983) [23].

It is difficult to overstate the importance of dark matter in our contemporary

view of the cosmos. It provides the missing matter that aids gravitational instability,

it explains the depth of the gravitational potential wells in galaxy clusters, and it

also explains the rotation curves of galaxies. Today, detailed observations of the

power spectrum of CMB fluctuations and the distribution of galaxies and gravitational

lensing measurements are all consistent with the cold dark matter paradigm. Merging

clusters (for example, the Bullet cluster [24]) with physically separated mass and
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light concentrations provide, arguably, the most striking blow to models without

dark matter. From a particle physics perspective, it provides strong evidence for

physics beyond the standard model. It could perhaps be the most striking evidence

for supersymmetry. Given its importance, it is imperative that we probe dark matter

though all possible means.

Probing dark matter through its gravitational interactions is now a mature field.

For the purposes of structure formation, galaxy clusters, lensing and galaxy rotation

curves, all that is required is that dark matter is reasonably massive, that it clumps

gravitationally and that it is otherwise weakly interacting. Consequently, it is difficult

to obtain detailed information about interaction cross sections, masses, etc. from

these observations (unless one goes to small enough scales where the free streaming

becomes important). However, when one starts looking at the total dark matter

abundance, its possible decay channels, its (non-gravitational) self-interaction and

interactions with baryons a more detailed picture emerges.

Experiments that probe the nature of dark matter particles beyond their grav-

itational interactions can be divided roughly into two classes: direct and indirect

detection experiments. Direct detection experiments like Cryogenic Dark Matter

Search (CDMS) [25] essentially measure the recoil energy from the interaction of the

incoming dark matter particle and the nucleus of a chosen target material. The mea-

sured recoil energy provides a strong constraint on the cross section and a weaker

one on the mass of the particle. The Large Hadron Collider (LHC) [26] will provide

a controlled way of probing the properties of dark matter. However, in the case of

the LHC, it will be difficult to be certain whether the new particles produced are the

dark matter candidates required by astrophysical observations.

The idea behind indirect detection is to look for the annihilation (or decay) prod-

ucts of dark matter. Since the rate of such annihilations is dependent on the number

density, it is best to look for regions where the density of dark matter particles is

expected to be high. Apart from the early universe, such high density regions are

expected to arise naturally in the centre of dark matter haloes, its clumpy substruc-

ture and in the vicinity of compact objects. The earliest ideas on indirect detection

of dark matter surfaced in the early 1980s. Since then, a number of experiments have
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turned their eyes towards the heavens in search of the ashes of dark matter particles.

At the time of this writing, the latest of such efforts, the Gamma-ray Large Area

Space Telescope (GLAST), is about to launch [1].

Most of the signal of dark matter annihilation is expected to come from our

Galactic center. There is strong evidence that gravitational dynamics in the sub-

parsec region at our galactic center is governed by a ∼ 106 solar mass black hole [16].

It is plausible that the vicinity of the black hole contains a large density of dark matter

particles moving at sub-relativistic velocities. Could these sub-relativistic velocities

have an effect on the expected annihilation signal? In Chapter 5, we discuss a new

relativistic effect on the self annihilation cross section of dark matter particles, that

might be relevant for future indirect detection experiments. Although the presence

of a black hole plays an important role in our problem, this part of the thesis is not

about probing strong field gravity. This part is about the observational consequences

of dark matter particles moving at relativistic velocities near the black hole at our

Galactic center. We investigate how the annihilation cross section, density profile

and annihilation signal of dark matter near our Galactic center are influenced by the

presence of the central black hole.

1.3 Probing strong field gravity on astrophysical

scales

Compared to weak-field gravity, strong-field gravity is far less constrained by obser-

vations. Yet it is in this regime where the most dramatic departures from Newtonian

gravity occur. Apart from cosmology, the vicinities of black holes and neutron stars

are the only other laboratories for probing strong-field gravity. There are a number

of reasons for the dearth of constraints in this regime, the obvious one being that the

masses and length scales required are impossible to achieve in terrestrial laborato-

ries. Typically, probing the vicinities of black holes and neutron stars is difficult due

to the small sizes of these systems and/or their large distances from us. Moreover,

such regions are rarely devoid of matter, whose often complicated fluid dynamics and
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electromagnetic interactions makes the extraction of information about gravitational

aspects a tall order.

Currently, some of the best tests for gravity come from binary pulsars. By mea-

suring the advance in the periastron, time dilation and rate of change of the orbital

period, stringent constrains on gravity can be obtained [29]. Other tests include the

use of electromagnetic signatures from matter accreting in the vicinity of the com-

pact objects. In some cases, black hole horizons or the last stable orbit can leave

unique signatures in these observations (see for example [16]). A careful study of

the relativistic broadening of the iron lines from these regions also yields a (limited)

map of the distorted space-time close to the horizon (see for example [16]). Another

exciting and puzzling class of astrophysical objects that have a potential for probing

strong-field gravity is the so-called quasi-periodic oscillators (QPOs), particularly in

the high frequency (40-450 Hz) regime. When observed in X-rays, their time vari-

ability is quasi-periodic. Remarkably, in a number of black hole systems, the time

variability contains two characteristic frequencies with an almost constant ratio of 3:2

(see, for example, the review article [1]).

Our initial motivation for the work presented in Chapter 5 was providing a dynam-

ical mechanism to explain the remarkably stable ratio (3:2) of frequencies associated

with these QPOs. Our idea is similar to that of density waves, which was put forth

as an explanation of the spiral structure of galaxies. The crucial requirement for the

existence of these density waves is a non-Keplerian potential. Such potentials are

present in galaxies due to the disc-like distribution of matter whereas in the vicinity

of black-holes they arise due to the relativistic corrections to Newtonian gravity.

In our investigation, we find that a remarkably persistent (∼ 50 orbital periods),

counter-rotating geometric pattern exists in thin cold accretion discs at a radius of

r ∼ 10rg with a width of ∆r ∼ 4rg (rg ≡ GM/c2). A single disc can support

more than one such pattern, each with its own characteristic frequency. Although

the excitation mechanism is unknown, once excited, these patterns can persist for a

long time. We do not provide any mechanism to convert these density patterns into

X-rays, but there is the tantalizing possibility of a connection of the frequencies of

the longest-lived patterns with those seen in QPOs.
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Given the likely complexity of the magneto-fluid dynamics and emission mech-

anism for X-rays, our work is far from providing a complete physical description.

Nevertheless, it provides a starting point, and perhaps a motivation, for more de-

tailed numerical investigations.

The mechanism we suggest depends crucially on the general relativistic corrections

to the orbital motion of the particles. If the central object is a black hole, the

frequency associated with this rotating pattern depends on the black hole spin and

mass. It scales inversely with mass and increases with spin. Thus, in principle, these

patterns can be used to probe gravity in the strong field regime.

9



CHAPTER 1. INTRODUCTION

10



Bibliography 1

[1] A. Einstein. Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich

Preußischen Akademie der Wissenschaften (Berlin), Seite 844-847., pages 844–

847, 1915.
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Abstract We present and employ a new kinematical approach to cosmological ‘dark energy’ studies.

We construct models in terms of the dimensionless second and third derivatives of the scale factor

a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q0 and

the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all ΛCDM mod-

els have j(t) = 1 (constant), which facilitates simple tests for departures from the ΛCDM paradigm.

Applying our model to the three best available sets of redshift-independent distance measurements,

from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statisti-

cal evidence for a late time transition from a decelerating to an accelerating phase. For a flat model

with constant jerk, j(t) = j, we measure q0 = −0.81± 0.14 and j = 2.16+0.81
−0.75, results that are con-

sistent with ΛCDM at about the 1σ confidence level. A standard ‘dynamical’ analysis of the same

data, employing the Friedmann equations and modeling the dark energy as a fluid with an equation

of state parameter, w (constant), gives Ωm = 0.306+0.042
−0.040 and w = −1.15+0.14

−0.18, also consistent with

ΛCDM at about the 1σ level. In comparison to dynamical analyses, the kinematical approach uses a

different model set and employs a minimum of prior information, being independent of any particular
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gravity theory. The results obtained with this new approach therefore provide important additional

information and we argue that both kinematical and dynamical techniques should be employed in

future dark energy studies, where possible. Our results provide further interesting support for the

concordance ΛCDM paradigm.

Note

In this paper, my main contribution was in the theoretical aspects of the kinematic

formalism (based on [1]). The appendices at the end of this chapter are new, and

were not included in the published paper.

2.1 Introduction

The field of cosmology has made unprecedented progress during the past decade.

This has largely been driven by new observations, including precise measurements

of the spectrum of cosmic microwave background (CMB) anisotropies([2, 3] and ref-

erences therein), the distance-redshift relation to type Ia supernovae [4, 5, 6, 7, 8],

the distance-redshift relation to X-ray galaxy clusters [9, 10, 11], measurements of

the mean matter density and amplitude of matter fluctuations from X-ray clusters

[12, 13, 14, 15, 16], measurements of the matter power spectrum from galaxy redshift

surveys [17, 18, 19], Lyman-α forest studies [20, 21, 22] and weak lensing surveys

[23, 24, 25, 26], and measurements of the Integrated Sachs-Wolfe effect [27, 28].

These and other experiments have lead to the definition of the so-called concor-

dance ΛCDM cosmology. In this model, the Universe is geometrically flat with only

∼4 per cent of the current mass-energy budget consisting of normal baryonic matter.

Approximately 23 per cent is cold dark matter, which interacts only weakly with nor-

mal baryonic matter but which clusters under the action of gravity. The remaining

∼ 73 per cent consists of smoothly distributed quantum vacuum energy (the cos-

mological constant), which pushes the Universe apart. This combination of matter

and vacuum energy leads to the expectation that the Universe should undergo a late
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time transition from a decelerating to an accelerating phase of expansion. Late-time

acceleration of the Universe is now an observed fact [7, 10, 8]. A transition from a

decelerating phase to a late-time accelerating phase is required to explain both these

late-time acceleration measurements and the observed growth of structure.

Despite the observational success of the concordance ΛCDM model, significant

fine tuning problems exist. In particular, difficulties arise in adjusting the density of

the vacuum energy to be a non-zero but tiny number, when compared with the value

predicted by standard theoretical calculations, and with explaining why the current

matter and vacuum energy densities are so similar (the ‘cosmic coincidence’ problem).

For these reasons, amongst others, a large number of alternative cosmological models

have been proposed. These include models that introduce new energy components

to the Universe - so called ‘dark energy’ models e.g. scalar ‘quintessence’ fields [29,

30, 31, 32, 33], K-essence [34, 35, 36], tachyon fields [37, 38] and Chaplygin gas

models [39, 40]. Other possibilities include modified gravity theories, motivated by

e.g. the existence of extra dimensions [41, 42, 43, 44, 45] or other modifications of

General Relativity [46, 47, 48, 49, 50, 51, 52], which can also lead to late-time cosmic

acceleration. The simplicity of the concordance ΛCDM model, however, makes it

highly attractive. A central goal of modern observational cosmology is to test whether

this model continues to provide an adequate description of rapidly improving data.

Most current analyses of cosmological data assume General Relativity and employ

the mean matter density of the Universe, Ωm, and the dark energy equation of state

w as model parameters. Such analyses are often referred to as ‘dynamical studies’,

employing as they do the Friedmann equations. Other dynamical analyses employ

modified Friedmann equations for a particular gravity model. However, a purely

kinematical approach is also possible that does not assume any particular gravity

theory. Kinematical models provide important, complementary information when

seeking to understand the origin of the observed late-time accelerated expansion.

In a pioneering study, [7] measured a transition from a decelerating to accelerat-

ing phase using a simple linear parameterization of the deceleration parameter q(z),

where q(z) is the dimensionless second derivative of the scale factor, a(t), with respect
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to cosmic time. Recently, [53], [54] and [55] have employed a variety of other param-

eterizations, constructed in terms of q(z), to study this transition. However, since

the underlying physics of the transition are unknown, the choice of a particular pa-

rameterization for q(z) is quite arbitrary. [53] applied a principal component analysis

of q(z) to the supernovae data of [7] and found strong evidence for recent, changing

acceleration but weak evidence for a decelerated phase in the past (i.e. weak evidence

for a transition between the two phases). [55] employed a Bayesian analysis to the [7]

data and the more recent SNLS supernovae sample of [8], obtaining a similar result.

In this paper we develop an improved method for studying the kinematical history

of the Universe. Instead of using parameterizations constructed in terms of q(z), we

follow [1] and introduce the cosmic jerk, j(a), the dimensionless third derivative of

the scale factor with respect to cosmic time. (Here a is the cosmic scale factor,

with a = 1/1 + z.) The use of the cosmic jerk formalism provides a more natural

parameter space for kinematical studies. Our results are presented in terms of current

deceleration parameter q0 and j(a), where the latter can be either constant or evolving.

We apply our method to the three best current kinematical data sets: the‘gold’

sample of type Ia supernovae (hereafter SNIa) measurements of [7], the SNIa data

from the first year of the Supernova Legacy Survey (SNLS) project [8], and the X-ray

galaxy cluster distance measurements of [56]. This latter data set is derived from

measurements of the baryonic mass fraction in the largest relaxed galaxy clusters,

which is assumed to be a standard quantity for such systems [10].

In General Relativity j(a) depends in a non-trivial way on both Ωm and w(a)

[1]. In general, there is no one-to-one mapping between models with constant j and

models with constant w. A powerful feature of the standard dynamical approach is

that all ΛCDM models have w = −1 which make it easy to search for departures

from ΛCDM. Likewise, the use of the jerk formalism imbues the kinematical analysis

with a similar important feature in that all ΛCDM models are represented by a single

value of j = 1. The use of the jerk formalism thus enables us to constrain and

explore departures from ΛCDM in the kinematical framework in an equally effective

manner. Moreover, by employing both the dynamical and kinematical approaches to

the analysis of a single data set, we explore a wider set of questions than with a single
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approach. We note that [57] and [58] also drew attention to the importance of the

jerk parameter for discriminating models of dark energy and/or modified gravity. [59]

and [60] also showed its relevance for probing the spatial curvature of the Universe.

Using the three kinematical data sets mentioned above, we find clear evidence

for a negative value of q0 (current acceleration) and a positive cosmic jerk, assuming

j constant. The concordance ΛCDM model provides a reasonable description of

the data, using both the new kinematical and standard dynamical approaches. We

also search for more complicated deviations from ΛCDM, allowing j(a) to evolve

as the Universe expands, in an analogous manner to dynamical studies which allow

from time-variation of the dark energy equation of state w(a). Our analysis employs

a Chebyshev polynomial expansion and a Markov Chain Monte Carlo approach to

explore parameter spaces. We find no evidence for a time-varying jerk.

This paper is structured as follows: in section 2.2 we describe our new kinematical

approach. In section 2.3 we describe the scheme adopted for polynomial expansions of

j(a). Section 2.4 includes details of the data analysis. The results from the application

of our method to the supernovae and X-ray cluster data are presented in section 2.5.

Finally, our main conclusions are summarized in section 2.7. Throughout this paper,

we assume that the Universe is geometrically flat.

2.2 The kinematical and dynamical frameworks for

late time cosmic acceleration

2.2.1 Previous work

The expansion rate of the Universe can be written in terms of the Hubble parameter,

H = ȧ/a, where a is the scale factor and ȧ is its first derivative with respect to time.

The current value of the Hubble parameter is the Hubble Constant, usually written

as H0. Under the action of gravity, and for negligible vacuum energy, the expansion of

the Universe is expected to decelerate at late times. Contrary to this expectation, in

the late 1990s, type Ia supernovae experiments [4, 5] provided the first direct evidence

for a late time accelerated expansion of the Universe. In particular, the present value
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of the deceleration parameter, q0, measured from the supernova data was found to

be negative. In detail, the deceleration parameter q is defined as the dimensionless

second derivative of the scale factor

q(t) = − 1

H2

(
ä

a

)
, (2.1)

and in terms of the scale factor,

q(a) = − 1

H
(aH)′ (2.2)

where the ‘dots’ and ‘primes’ denote derivatives with respect to cosmic time and scale

factor, respectively.

The current ‘concordance’ cosmological model, ΛCDM, has been successful in

explaining the SNIa results and all other precision cosmology measurements to date.

Together with it’s theoretical simplicity, this makes the ΛCDM model very attractive.

However, as discussed in the introduction, the concordance model does face significant

theoretical challenges and a wide-range of other possible models also provide adequate

descriptions of the current data (see for an extensive review [61]).

An excellent way to distinguish between models is to obtain precise measurements

of the time evolution of the expansion of the Universe. Given such data, a number

of different analysis approaches are possible. In searching for time evolution in the

deceleration parameter, as measured by current SNIa data, [7] assumed a linear pa-

rameterization of q(z),

q(z) = q0 +
dq

dz
z. (2.3)

These authors measured a change in sign of the deceleration parameter, from pos-

tive to negative approaching the present day, at a redshift zt = 0.46 ± 0.13. Using

this parameterization for q(z), the definition of the deceleration parameter given by

equation (2.1), and integrating over the redshift, we obtain that for this model the

evolution of the Hubble parameter is given in the form
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E(z) = H(z)/H0 = (1 + z)(1+q0−q′)eq′z, (2.4)

where q′ = dq/dz.

However, since the origin of cosmic acceleration is unknown, it is important to

recognize that the choice of any particular parameterized expansion for q(z) is essen-

tially arbitrary. Indeed, when (or if) a transition between decelerated and accelerated

phases if inferred to occur can depend on the parameterization used. [55] showed that

using the linear parameterization described by equation (2.3) and fitting to the SNIa

data set of [8] a transition redshift zt ∼ 2.0 is obtained which, uncomfortably, lies

beyond the range of the data used.

Transitions between phases of different cosmic acceleration are more naturally

described by models incorporating a cosmic ‘jerk’. The jerk parameter, j(a), is defined

as the dimensionless third derivative of the scale factor with respect to cosmic time

[1]

j(t) =
1

H3

( ˙̈a

a

)
, (2.5)

and in terms of the scale factor

j(a) =
(a2H2)′′

2H2
(2.6)

where again the ‘dots’ and ‘primes’ denote derivatives with respect to cosmic time

and scale factor, respectively.

In such models, a transition from a decelerating phase at early times to an accel-

erating phase at late times occurs for all models with q0 < 0 and a positive cosmic

jerk. Note that a Taylor expansion of the Hubble parameter around small redshifts

[62, 7] contains the present value of both the deceleration and jerk parameters, q0 and

j0. Such Taylor expansions are inappropriate for fitting high-redshift objects [1, 63],

such as those included in the data sets used here.

[1] describe how the jerk parameterization provides a convenient, alternative method

to describe models close to ΛCDM. In this parameterization, flat ΛCDM models have
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a constant jerk with j(a) = 1 (note that this neglects the effects of radiation over

the redshift range of interest, which is also usually the case when modeling within

the dynamic framework). Thus, any deviation from j = 1 measures a departure from

ΛCDM, just as deviations from w = −1 do in more standard dynamical analyses. Im-

portantly, in comparison to dynamical approaches, however, the kinematical approach

presented here both explores a different set of models and imposes fewer assumptions.

The dynamical approach has other strengths, however, and can be applied to a wider

range of data (e.g. CMB and growth of structure studies), making the kinematical

and dynamical approaches highly complementary.

It is interesting to note that, in principle, any particular dynamical parameter

space will have its own physical limits. For instance, within the dynamical (Ωm, w)

plane, models with w < −1, known as ‘phantom’ dark energy models, violate the dom-

inant energy condition [64, 65] and present serious problems relating to the treatment

of dark energy perturbations [66, 67, 68, 69] when w(z) crosses the boundary w = −1.

Current data allow models with w < −1 [70, 7, 10, 8, 3, 71] and models in which w(z)

crosses the boundary w = −1 [72, 73, 22, 74, 75, 76]. However, another dynamical

parameter space, coming e.g. from a different gravity theory, might not pathologically

suffer from such boundaries around the models allowed for current data.

Since the (q0, j) plane (see below) is purely kinematical, i.e. no particular gravity

theory is assumed, we are not forced to interpret j = 1, or any locus in this plane, as

a barrier. Note, however, that caution is required in extending the results from the

kinematical analysis beyond the range of the observed data (for details see [77]). For

example, inappropriately extending a jerk model to very high redshifts could imply

an unphysical Hubble parameter at early times, i.e., these models do not have a Big

Bang in the past.

2.2.2 A new kinematical framework

For our kinematical analysis, we first calculateH(a) given j(a; C) where C = (c0, c1, ..., cN)

is the selected vector of parameters used to describe the evolution of j(a) (see below).

Following [1] we rewrite the defining equation for the jerk parameter (2.6) in a more
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convenient form

a2V ′′(a)− 2j(a)V (a) = 0 (2.7)

where ′ denotes derivative with respect to a and V (a) is defined as

V (a) = −a
2H2

2H2
0

. (2.8)

We specify the two constants of integration required by (2.7) in terms of the present

Hubble parameter H0 and the present deceleration parameter q0 as follows

V (1) = −1

2
, V ′(1) = q0 , (2.9)

where a(t0) = 1 at the present time t0. Here the first condition comes from H(1) = H0

and the second from

V ′(1) = −H
′
0

H0

− 1 = q0 . (2.10)

The Hubble parameter, H(a), obtained from equations (2.7), (2.8) and (2.9) is used to

calculate the angular diameter (dA) and luminosity (dL) distances for a flat Friedmann-

Robertson-Walker-Lemâıtre (FRWL) metric

dA(a) = a2 dL(a) =
c

H0

a

∫ 1

a

1

a2E(a)
da, (2.11)

where c is the speed of light. These theoretical distances dL(a) and dA(a) are then

used in the data analysis (see section 2.4).

Our framework provides a simple and intuitive approach for kinematical studies.

For models with q0 < 0 (> 0), the Universe is currently accelerating (decelerating).

Models with q0 < 0 and j(a) = 1 (constant) are currently accelerating and have the

expansion evolving in a manner consistent with ΛCDM. Any significant departure

from j = 1 indicates that some other mechanism is responsible for the acceleration.
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2.2.3 Standard dynamical framework

For comparison purposes, we have also carried out a standard dynamical analysis of

the data in which we employ a dark energy model with a constant dark energy equa-

tion of state, w. From energy conservation of the dark energy fluid and the Friedmann

equation, we obtain the evolution of the Hubble parameter, H(z) = H0E(z),

E(z) = [Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1+w)]1/2, (2.12)

where Ωm is the mean matter density in units of the critical density. As with the

kinematical analysis, we assume flatness and neglect the effects of radiation density.

In this framework, models with a cosmological constant have w = −1 at all times.

2.3 Evolving jerk models

Our analysis allows for the possibility the cosmic jerk parameter, j(a) may evolve

with the scale factor. We have restricted our analysis to the range of a where we

have data, [amin = 0.36, amax = 1]. In searching for possible evolution, our approach

is to adopt ΛCDM as a base model and search for progressively more complicated

deviations from this. We begin by allowing a constant deviation ∆j from ΛCDM

(j = 1). For this model, it is possible to solve the jerk equation (2.7) analytically.

Using the initial conditions listed in (2.9), we obtain

V (a) = −
√
a

2

[(
p− u

2p

)
ap +

(
p+ u

2p

)
a−p

]
(2.13)

where p ≡ (1/2)
√

(1 + 8j) and u ≡ 2(q0 + 1/4). Note that in the (q0,j) plane for

j <

{
q0 + 2q2

0 q0 < −1/4

−1/8 q0 > −1/4

}
(2.14)

there is no Big Bang in the past 1 The models allowed by our combined data sets do

not cross this boundary.

1Allowed (q0,j) values are those for which the equation V (a) = 0 has no solution in the past
(a < 1) [77].
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For the next most complicated possible deviation from ΛCDM, we have j(a; C) =

jΛCDM +∆j(a; C). Here jΛCDM = 1 and j(a; C) is the cosmic jerk for the cosmology in

question. In order to meaningfully increase the number of parameters in the vector

C, we employ a framework constructed from Chebyshev polynomials. The Chebyshev

polynomials form a basis set of polynomials that can be used to approximate a given

function over the interval [−1, 1]. We rescale this interval to locate our function

∆j(a; C) in the range of scale factor where we have data:

ac ≡
a− (1/2)(amin + amax)

(1/2)(amax − amin)
, (2.15)

where a is the scale factor in the range of interest and ac is Chebyshev variable. The

trigonometric expression for a Chebyshev polynomial of degree n is given by

Tn(ac) = cos(n arccos ac). (2.16)

These polynomials can also be calculated using the recurrent formula

Tn+1(ac) = 2acTn(ac)− Tn−1(ac), n ≥ 1 , (2.17)

where T0(ac) = 1 and, for example, the next three orders are T1(ac) = ac, T2(ac) =

2ac
2−1, T3(ac) = 4ac

3−3ac, etc. Using a weighted combination of these components,

any arbitrary function can be approximately reconstructed. The underlying deviation

from ΛCDM can be expressed as

∆j(a; C) '
N∑

n=0

cnTn(ac) (2.18)

where the weighting coefficients form our vector of parameters, C = (c0, c1, ..., cN).

Thus, using equation (2.18) we produce different parameterizations for increasing N .

With higher N ’s we allow a more precise exploration of the [q0, j(a; C)] parameter

space. However, it is clear that this process will be limited by the ability of the

current data to distinguish between such models. In order to judge how many orders

of polynomials to include, we quantify the improvements to the fits obtained from the

inclusion of progressively higher orders in a variety of ways (see below). In general, we
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find that models with a degree of complexity beyond a constant jerk are not required

by current data.

We note that approches other than expanding ∆j in Chebyshev polynomials are

possible, e.g. one could include the dimensionless fourth derivative of the scale factor

as a model parameter. However, since ΛCDM does not make any special prediction

for the value of this derivative, we prefer to use our general expansion in ∆j here.

2.4 Data and analysis methods

2.4.1 Type Ia supernovae data

For the analysis of SNIa data, we use both the ‘gold’ sample of [7] and the first year

SNLS sample of [8]. The former data set contains 157 2 SNIa, where a subset of 37

low-redshift objects are in common with the data of [8]. [8] contains 115 3 objects.

We use the measurements of [8] for objects in common between the studies. Thus,

combining both data sets we have 120 SNIa from the [7] gold sample (157 minus the

37 low-redshift objects in common) and 115 SNIa from [8].

The two SNIa studies use different light-curve fitting methods. In order to com-

pare and combine the data, we fit the observed distance moduli µobs(zi) = mobs(zi)−
M , where m is the apparent magnitude at maximum light after applying galac-

tic extinction, K-correction and light curve width-luminosity corrections, and M is

the absolute magnitude, with the theoretical predictions, µth(zi) = mth(zi) −M =

5 log10DL(zi; θ) + µ0, where DL = H0 dL is the H0-free luminosity distance, µ0 =

25− 5log10H0 and m0 ≡ M + µ0 is a “nuisance parameter” which contains both the

absolute magnitude and H0.

For the [q0, j(a; C)] parameter space, the luminosity distance dL(z; θ) is directly

obtained integrating the solution of the differential equation (2.7) with the definition

(2.11) as presented in subsection 2.2.2. For models using linear parameterization

2[7] presented 16 new Hubble Space Telescope (HST) SNIa, combined with 170 previously re-
ported SNIa from ground-based data. They identified a widely used “high-confidence” subset, usually
referred to as the gold sample, which includes 14 HST SNIa.

371 SNLS objects, plus 44 previously reported nearby objects.
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of q(z) and/or dynamical models with Ωm and w, we plug the equations (2.4) and

(2.12), respectively, into the equation describing the luminosity distance for a flat

FRWL metric, in units of megaparsecs

dL(z; θ) =
c(1 + z)

H0

∫ z

0

dz

E(z; θ)
(2.19)

where the speed of light, c, is in km s−1 and the present Hubble parameter, H0, in

km(s Mpc)−1. Here the vectors of parameters for each model are θ = (q0, dq/dz)

and θ = (Ωm, w) respectively. For the gold sample data of [7], we use the extinction-

corrected distance moduli, µobs(zi) and associated errors, σ2
i . For the SNLS data of

[8] we use the rest-frame-B-band magnitude at maximum light m∗
B(zi), the stretch

factor si and the rest-frame color ci to obtain µobs(zi) = m∗
B(zi)−M +α(si− 1)−βci.

These values were derived from the light curves by [8], who also provide best-fitting

values for α = 1.52± 0.14 and β = 1.57± 0.15.

For both SNIa data sets, we have

χ2(θ;m0) =
∑
SNIa

[µth(zi; θ, µ0)− µobs(zi; θ,M)]2

σ2
i

, (2.20)

where the dispersion associated with each data point, σ2
i = σ2

µi,obs
+ σ2

int,i + σ2
v,i. Here

σ2
µi,obs

accounts for flux uncertainties, σ2
int,i accounts for intrinsic, systematic dispersion

in SNIa absolute magnitudes and σ2
v,i accounts for systematic scatter due to peculiar

velocities. The SNLS analysis includes an intrinsic dispersion of 0.13104 magnitudes4

and a peculiar velocity scatter of 300 km/s. The gold sample analysis includes 400

km/s peculiar velocity scatter, with an additional 2500 km/s added in quadrature for

high redshift SNIa.

We marginalise analytically over m0

χ̃2(θ) = −2 ln

∫ ∞

−∞
exp

(
−1

2
χ2(θ,m0)

)
dm0 (2.21)

obtaining

4http://snls.in2p3.fr/conf/papers/cosmo1/
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χ̃2 = ln
( c

2π

)
+ a− b2

c
, (2.22)

where

a =
∑
SNIa

[5 log10DL(zi; θ)−mobs(zi)]
2

σ2
i

, (2.23)

b =
∑
SNIa

5 log10DL(zi; θ)−mobs(zi)

σ2
i

, c =
∑
SNIa

1

σ2
i

. (2.24)

Note that the absolute value of χ2 = a − (b2/c). For the analysis in the standard

dynamic framework, our results agree with those of [7] and [8], and the comparison

work of [78].

2.4.2 X-ray cluster data

For the analysis of cluster X-ray gas mass fractions, we use the data of [56], which

contains 41 X-ray luminous, relaxed galaxy clusters, including 26 previously studied

[10]. [Some of the original 26 have since been revisited by the Chandra X-ray obser-

vatory leading to improved constraints (for details see [56]). The new X-ray data set

spans a redshift interval 0.06 < z < 1.07. Our analysis follows the method of [10],

fitting the apparent redshift evolution of the cluster gas fraction with the expression

f ref
gas(zi) = F Rref(zi), Rref(zi) ≡

[
dref

A (zi)

DA(zi)

]1.5

, (2.25)

where F = (bΩbH
1.5
0 )/[(1 + 0.19

√
h) Ωm] is the normalization of the fgas(z) curve,

dA and dref
A (z) are the angular diameter distances (dA = dL/(1 + z)2) to the clusters

for a given cosmology and for the reference ΛCDM cosmology (with H0 = 70 km(s

Mpc)−1 and Ωm = 0.3) respectively, and DA = H0 dA is the H0-free angular diameter

distance. For the kinematical approach we treat the normalization F as a single

‘nuisance’ parameter, which we marginalize over in the MCMC chains.

For the dynamical analysis of the same X-ray data, we follow [10] and employ

Gaussian priors on the present value of the Hubble parameter H0 = 72 ± 8 km(s
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Mpc)−1 [79], the mean baryon density Ωbh
2 = 0.0214 ± 0.0020 [80] and the X-ray

bias factor b = 0.824 ± 0.089 [determined from the hydrodynamical simulations of

[81], including a 10 per cent allowance for systematic uncertainties]. The application

of these priors leads to an additional constraint on Ωm from the normalization of the

fgas(z) curve. Since the kinematical approach does not constrain Ωm, the kinematical

analysis does not involve these priors and draws information only from the shape of

the fgas(z) curve. The dynamical analysis, in constrast, extracts information from

both the shape and normalization.
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2.4.3 Markov Chain Monte Carlo analysis

For both the kinematical and dynamical analyses, we sample the posterior prob-

ability distributions for all parameter spaces using a Markov Chain Monte Carlo

(MCMC) technique. This provides a powerful tool for cosmological studies, allowing

the exploration of large multi-dimensional parameter spaces. In detail, we use the

Metropolis-Hastings algorithm implemented in the cosmomc 5 code of [82] for the

dynamic formalism, and a modified version of this code for the kinematic analysis.

Our analysis uses four MCMC chains for each combination of model and data. We

ensure convergence by applying the Gelman-Rubin criterion [83], where the conver-

gence is deemed acceptable if the ratio of the between-chain and mean-chain variances

satisfies R− 1 < 0.1. In general, our chains have R− 1 � 0.1.

2.4.4 Hypothesis testing in the kinematical analysis: how

many model parameters are required?

In the first case, we examined a kinematical model in which the deceleration parameter

q0 was included as the only interesting free parameter [see equation (2.4) with q′ = 0].

This is hereafter referred to as the model Q. As detailed in section 2.2, we next

introduced the jerk parameter, j, as an additional free parameter, allowing it to take

any constant value. We refer to this as model J , which has the interesting free

parameters, q0 and j. Note that model J includes the set of possible ΛCDM models,

which all have constant j = 1.

We next explored a series of models that allow for progressively more complicated

deviations from ΛCDM. In each case, the improvement obtained with the introduction

of additional model parameters, has been gauged from the MCMC chains using a

variety of statistical tests. In the first case, we follow a frequentist approach and use

the F-test, for which

F =
∆χ2

χ2
ν ∆m

, (2.26)

5http://cosmologist.info/cosmomc/
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Figure 2.1: A summary of the results from the kinematical (left panels) and dynamical
(right panels) analyses. The top left panel shows the 68.3 and 95.4 per cent confidence
limits in the (q0,j) plane for the kinematical model with a constant jerk, j, obtained
using all three data sets: both SNIa data sets (Riess et al. 2004; Astier et al. 2005)
and the cluster fgas data of Allen et al. (2006). The top right panel shows the results in
the (Ωm,w) plane obtained using the same three data sets and assuming HST, BBNS
and b priors. (Note that the kinematical analysis does not use the HST, BBNS and
b priors). The dashed lines show the expectation for a cosmological constant model
in both formalisms (j = 1, w = −1, respectively). The bottom panels show the
confidence contours in the same planes for the individual data sets: the SNLS SNIa
data (orange contours), the Riess et al. (2004) ‘gold’ SNIa sample (blue contours)
and the cluster fgas data (green contours). Here, the dashed lines again indicate the
cosmological constant model.
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where ∆χ2 is the difference in the minimum χ2 between the two models, χ2
ν is the

reduced χ2 (χ2/ν, where ν is number of degrees of freedom of the fit, dof) of the

final model, and ∆m is the difference in the number of free parameters in the two

models. Given ∆m and ν, we calculate the probability that the new model would

give ∆χ2 ≥ F χ2
ν ∆m by random chance. This allows us to quantify the significance

of the model extension.

The Bayesian Information Criterion (BIC) provides a more stringent model se-

lection criterion and is an approximation to the Bayesian Evidence [84]. The BIC is

defined as

BIC = −2 lnL+ k lnN (2.27)

where L corresponds to the maximum likelihood obtained for a given model (thus,

−2 lnL is the minimum χ2), k is the number of free parameters in the model and N

is the number of data points. Values for ∆BIC < 2 between two models are typically

considered to represent weak evidence for an improvement in the fit. ∆BIC between

2 and 6 indicates ‘positive evidence’ for an improvement, and values greater than 6

signify ‘strong evidence’ for the model with the higher BIC [85, 86, 87, 88].

Finally, we have compared the full posterior probability distributions for different

models, using the Bayes Factor to quantify the significance of any improvement in the

fit obtained. The Bayes Factor is defined as the ratio between the Bayesian evidences

of the two models [86]. If P (D|θ,M) is the probability of the data D given a model

M , the Bayesian evidence is defined as the integral over the parameter space, θ

E(M) ≡ P (D|M) =

∫
dθP (D|θ,M)P (θ|M), (2.28)

where P (θ|M) is the prior on the set parameters θ, normalised to unity. We employ

top hat priors for all parameters and evaluate the integrals using the MCMC samples:

E(M) ∼ 1

N∆θ

N∑
P (D|θn, ) (2.29)

where ∆θ is the volume in the parameter space selected to have probability 1 within
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Table 2.2: The marginalised median values and 68.3 per cent confidence intervals
obtained analysing all three data sets together. We show the results for the constant
j model (kinematical) and the constant w model (dynamical) and their corresponding
χ2 per degree of freedom.

Approach Model parameters χ2/dof

Kinematical q0 = −0.81± 0.14, j = 2.16+0.81
−0.75 290.1/271

Dynamical Ωm = 0.306+0.042
−0.040, w = −1.15+0.14

−0.18 291.7/272

the top hat priors, N is the number of MCMC samples and θn the sampled parameter

space. Note that
∑N P (D|θn) is the expected probability of the data in the posterior

distribution [82]. The evidence of the model E(M) can be estimated trivially from

the MCMC samples as the mean likelihood of the samples divided by the volume of

the prior. It is clear, though, that this volume will depend on our selection of the top

hat priors. In order to be as objective as possible, within the Bayesian framework, we

use the same priors for parameters in common between the two models involved in a

comparison. For parameters not in common, we calculate their volumes subtracting

their maximum and minimum values in the MCMC samples.

The Bayes factor between two models M0 and M1 is B01 = E(M0)/E(M1). If

lnB01 is positive, M0 is ‘preferred’ over M1. If lnB01 is negative, M1 is preferred

over M0. Following the scale of [85], if 0 < lnB01 < 1 only a “bare mention” of the

preference is considered warranted. If 1 < lnB01 < 2.5, the preference is regarded as

of “substantial” significance. If 2.5 < lnB01 < 5 the significance is considered to be

going from “strong” to “very strong”.

2.5 Results

2.5.1 Comparison of constant jerk and constant w models

We first examine the statistical improvement obtained in moving from the simplest

kinematical model Q = [q0], in which q0 is the only interesting free parameter, to
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model J = [q0, j(c0)], where we include constant jerk j = 1 + c0 (i.e. we allow j to

take values other than zero). The results obtained, using the three statistical tests

described in subsection 2.4.4 applied to each data set alone and for all three data

sets together are summarized in Table 2.1. We find that the ‘gold’ sample is the

only data set that, on it’s own, indicates a ‘substantial’ preference for model J over

model Q according to the Bayes factor test. Note that this is not only due to the

fact that the ‘gold’ sample extends to higher redshifts, thereby providing additional

constraining power, but also due to the fact that the ‘gold’ sample hints a small

tension in the ground-based ‘gold’ sample data to prefer j > 1 values 6. Combining

all three data sets, we obtain a ‘strong’ preference for model J over model Q, from

all three statistical tests. Table 2.1 shows the mean marginalised parameters for each

model and the 1σ confidence levels. Combining all three data sets, we obtain tight

constraints on q0 = −0.81 ± 0.14 and j = 2.16+0.81
−0.75. Our result represents the first

measurement of the jerk parameter from cosmological data 7.

Our dynamical analysis of the same three data sets gives w = −1.15+0.14
−0.18 and

Ωm = 0.306+0.042
−0.040 (see Table 2.2). Figure 2.1 shows the constraints for both the

kinematical (q0, j; top left panel) and dynamical (Ωm, w; top right panel) models,

using all three data sets combined. In both cases, the dashed lines indicates the

expected range of results for ΛCDM models (i.e. a cosmological constant). We find

that both the kinematical and dynamical analyses of the combined data are consistent

with the ΛCDM model at about the 1σ level.

It is important to recognise that the results from the kinematical and dynamical

analyses constrain different sets of departures from ΛCDM. We are using two sim-

ple, but very different parameterizations based on different underlying assumptions.

The results presented in Figure 2.1 therefore provide interesting new support for the

ΛCDM model.

The lower panels of figure 2.1 show the constraints obtained for the three data sets

6An analysis of the ‘gold’ sample data in which the HST supernovae are excluded leads to even
stronger preference for j > 0: ∆χ2

JQ = 10.6. In this case, for model J we obtain q0 = −1.17± 0.28
and j = 4.95+2.05

−1.84.
7Note that Riess et al. (2004) measured j0 > 0 at the 2σ level, where j0 comes from a Taylor

expansion of the Hubble parameter around small redshifts [62]. As noted in subsection 2.2.1 such
an expansion is not appropiate when high redshift data are included, as in the ‘gold’ sample.
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when analysed individually. It is important to note the consistent results from the

independent SNIa and X-ray cluster data sets. Note that in the dynamical analysis,

the X-ray data provide valuable additional constraints on Ωm, when employing the

H0 and Ωbh
2 priors. The overlap of all three data sets in both parameter spaces

highlights the robustness of the measurements. Comparing the upper and lower

panels of figure 2.1, we see how the combination of data sets significantly tightens the

constraints.

2.5.2 More complicated kinematical models

For the combined data set, we have also searched for more complicated departures

from ΛCDM by including extra model parameters, as described in Section 2.3. We find

no significant evidence for models more complicated than a constant jerk model. In

particular, we find a negligible ∆χ2 between models with constant jerk J = [q0, j(c0)]

and the next most sophisticated model J1 = [q0, j(a; c0, c1)], and between the latter

model and the next one, J2 = [q0, j(a; c0, c1, c2)].

It is, however, interesting to plot the differences between the constraints obtained

for each model. Figure 2.2 shows the current 1σ and 2σ constraints around the median

values of j(a) at different scale factors, a, over the range where we have data [0.36, 1].

The green, lighter contours show the constraints for the J1 model and the red, darker

contours for the J model. From this figure it is clear that current data provide the

best constraints around a ∼ 0.77, i.e. z ∼ 0.3, and that at higher and lower redshift

more data are required. For the low redshift range, the forthcoming SDSS II SNIa

data will be helpful. For the high redshift range, new HST SNIa and further X-ray

cluster data should be available in the near future. In the longer term, SNIa data

from the Large Synaptic Survey Telescope (LSST) 8 and the Supernovae Acceleration

Probe (SNAP) 9, and X-ray cluster data from Constellation-X 10 should provide tight

constraints on both j(a) and w(a). Future galaxy redshift surveys covering a high

redshift range will also help to tighten these constraints, using the baryon oscillation

8http://www.lsst.org/lsst home.shtml
9http://snap.lbl.gov/

10http://constellation.gsfc.nasa.gov/
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experiment [19, 18].

2.5.3 Comparison of distance measurements

It is interesting to compare directly the distance curves for the kinematical (con-

stant j) and dynamical (constant w) models, as determined from the MCMC chains.

Fig 2.3 shows the 68.3 and 95.4 per cent confidence limits on the offset in distance, as

a function of scale factor, relative to a reference ΛCDM cosmology with Ωm = 0.27,

ΩΛ = 0.73. We see that the kinematical and dynamical results occupy very simi-

lar, though not identical, loci in the distance-scale factor plane. For the dynamical

analysis, the addition of the extra constraint on Ωm from the normalization of the

fgas curve tightens the constraints and pushes the results in a direction slightly more

consistent with the reference ΛCDM cosmology.

2.5.4 Comparison with Riess et al. (2004)

For comparison purposes, we also present the results obtained using the linear pa-

rameterization of q(z) described by equation (2.3) and used by [7]. Figure 2.4 shows

the constraints in the plane (q0, dq/dz) determined from each data set, and by com-

bining the three data sets (solid, orange contours). It is clear that the constraints

from the three independent data sets overlap and that by combining them we obtain

significantly tighter results than using the ‘gold’ sample alone.

2.6 The distance to the last-scattering surface

Finally, we note that there is one further pseudo-distance measurement available to

us - the distance to the last scattering surface from CMB data. Although this is not

a purely kinematical data point, for illustration purposes we show the constraints on

j(a) that can be achieved if one is willing to make extra assumptions and include this

measurement. The extra assumptions involved, though strong, are well-motivated.

In detail, in order to use the distance to last scattering, we assume that dark matter

behaves like standard cold dark matter at all redshifts, an assumption well tested
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Figure 2.2: The 68.3 and 95.4 per cent confidence variations about the median values
for j(a) as a function of the scale factor a, over the range where we have data [0.36,1].
Results are shown for the constant jerk model (model J ) (red, darker contours) and
J1 model (green, lighter contours). In both cases, the constraints for all three data
sets have been combined. The dashed line indicates the expectation, j = 1 (constant)
for a cosmological constant (ΛCDM) model.
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Figure 2.3: The 68.3 and 95.4 per cent confidence limits on the offset in distance as
a function of scale factor, relative to the reference ΛCDM cosmology, for both the
kinematical (constant j; green, shaded curves) and dynamical (constant w; dotted
and dashed curves) analyses. The dotted curves show the results for the dynamical
analysis in which the additional constraint on Ωm from the normalization of the fgas

curve is used. The dashed curve is for a dynamical analysis where this extra constraint
on the normalization is ignored. The same MCMC samples used to construct Fig 2.1
have been used.
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Figure 2.4: The 68.3 and 95.4 per cent confidence limits in the (q0,dq/dz) plane
obtained using the SNIa data from the first year of the SNLS (Astier et al. 2005),
the ‘gold’ sample of Riess et al. (2004) (dashed contours), the cluster fgas data of
Allen et al. (2006) (green contours) and the combination of all three data sets (orange
contours).
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by e.g. galaxy cluster, weak lensing and galaxy redshift surveys at low redshifts and

CMB experiments at high-z. We also assume that pre-recombination physics can

be well described by a standard combination of cold dark matter, a photon-baryon

fluid and neutrinos, and that any early dark energy component has a negligible affect

on the dynamics. With these assumptions, one can construct the comoving angular

diameter distance to the last scattering surface from dA = rs(adec)/θA, where rs(arec)

and θA are the comoving sound horizon at decoupling and the characteristic angular

scale of the acoustic peaks, respectively. For a geometrically flat Universe with a

negligible early dark energy component, we calculate the sound horizon at decoupling

as [89]

rs(adec) '
∫ adec

0

cs(a)

H0(Ωma+ Ωrad)1/2
da , (2.30)

where cs(a) = c/[1 + (3Ωba)/(4Ωγ)] is the sound speed in the photon-baryon fluid,

Ωrad = Ωγ +Ων is the present radiation energy density, and Ωγ and Ων are the present

photon and neutrino energy densities, respectively. We use our X-ray galaxy cluster

data, assuming HST, BBNS and b priors, to determine Ωm = 0.27 ± 0.04 (Allen et

al. 2006; note that this constraint mainly comes from low-redshift clusters). We also

use the COBE measurement of the CMB temperature T0 = 2.725± 0.002K [90] and

a standard three neutrino species model with negligible masses to obtain Ωrad. For

these constraints, we obtain rs(zdec) ' 146± 10Mpc.

From [91] we have the multipole of the first acoustic peak l1 = 220.7±0.7. This is

related to lA by a shift φ, l1 = lA(1− φ). Using the fitting formula of [92], the BBNS

prior for Ωbh
2, a scalar spectral index ns = 0.95±0.02 [3] and assuming no early dark

energy, we find θA = 0.6±0.01 degrees. We then obtain a pseudo-model-independent

distance to decoupling, d(zdec) ' 13.8± 1.1Gpc, where zdec = 1088 [3].

Fig 2.5 shows the tightening of the constraints obtained using this “data-point-

prior” at high redshift 11. Note that figure 2.5 is plotted on the same scale as figure 2.2

11Note that extending the analysis to the decoupling redshift zdec = 1088 means that the radiation
density becomes non-negligible. Although, j can still be calculated as usual, jΛCDM will not equal 1
at these redshifts. However, the ΛCDM model can then be almost perfectly described as jΛCDM (a) =
1 + 2/(1 + (a/aeq)) (for details see [77]) where aeq is the mean marginalised scale factor at equality,
from WMAP data. We have explicitly verified that, within the 1σ values of aeq, systematic offsets
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and shows J (red, darker contours) and J1 (green, lighter contours) models as before,

plus the J2 model (blue contours). Note also that here the range of the data is

[amin = 0.0009, amax = 1]. Again, using equation (2.15) we rescale the Chebyshev

interval [−1, 1] to locate the functions ∆j(a; C) in the range of scale factor spanned by

the data. The prior information at high redshift, from the distance to last scattering,

tightens the constraints significantly. Evidently, the constraints from the kinematic

analysis are sensitive to the data quality at high redshift.

2.7 Conclusions

We have developed a new kinematical approach to study the expansion of the history

of the Universe, building on the earlier work of [1]. Our technique uses the parameter

space defined by the current value of the cosmic deceleration parameter q0 and the

jerk parameter j, where q and j are the dimensionless second and third derivatives of

the scale factor with respect to cosmic time. The use of this (q0, j) parameter space

provides a natural framework for kinematical studies. In particular, it provides a

simple prescription for searching for departures from ΛCDM, since the complete set

of ΛCDM models are characterized by j = 1 (constant).

We have applied our technique to the three best available sets of redshift-independent

distance measurements, from type Ia supernovae studies [7, 8] and measurements of

the X-ray gas mass fraction in X-ray luminous, dynamically relaxed galaxy clusters

[56]. Assuming geometric flatness, we measure q0 = −0.82 ± 0.14 and j = 2.16+0.81
−0.75

(Figure 2.1). Note that this represents the first measurement of the cosmic jerk param-

eter, j. A more standard, dynamical analysis of the same data gives w = −1.15+0.14
−0.18

and Ωm = 0.306+0.042
−0.040, also assuming flatness and HST, BBNS and b priors (Fig-

ure 2.1). Both sets of results are consistent with the standard ΛCDM paradigm, at

about the 1σ level.

In comparison to standard, dynamical approaches, our kinematical framework pro-

vides a different set of simple models and involves fewer assumptions. In particular,

due to the affects of radiation have a negligible effect on the derived distances.
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Figure 2.5: 1σ and 2σ constraints on j(a) over the range (including the distance to
the last scattering surface) of the data [0.0009,1]. Note that this figure and figure 2.2
are plotted on the same scale for comparison purposes. This figure shows the same
models as figure 2.2 plus the J2 model, and uses the CMB prior as described at the
text. The dotted line shows the median j(a) curve for the J1 model.
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kinematical analyses such as that presented here do not assume a particular grav-

ity theory. The combination of the kinematical and dynamical approaches therefore

provides important, complementary information for investigating late time cosmic ac-

celeration. The fact that both the kinematical and dynamical results presented here

are consistent with ΛCDM provides important additional support for that model.

The fact that the two independent sets of distance measurements, from X-ray galaxy

clusters and supernovae, are individually consistent with ΛCDM, is reassuring (Fig-

ure 2.1).

We have searched for departures from ΛCDM using a new scheme based on the

introduction of Chebyshev polynomials. These orthonormal functions allow us to

expand any deviation from ΛCDM, ∆j(a; C), as a linear combination of polynomials.

We use the coefficients of these polynomials, C, as fit parameters. The current data

provide no evidence for a dependence of j on a more complicated than a constant

value. However, higher order terms may be required to describe future data sets.

In that case, our scheme has the advantage that, over a finite interval and using

enough high order terms, it will provide an acceptable global approximation to the

true underlying shape. Note that this scheme is also applicable to dynamical studies

of the evolution of the dark energy equation of state, w(a). Note also that Chebyshev

polynomial expansions of the same order for w(a) and j(a) explore a different set of

models. For example, a constant j 6= 1 model corresponds to an evolving w(a) model

and vice versa.

We suggest that future studies should endeavour to use both kinematical and

dynamical approaches where possible, in order to extract the most information from

the data. The two approaches have different strengths, can be applied to with a

variety of data sets, and are highly complementary. The combination of techniques

may be especially helpful in distinguishing an origin for cosmic acceleration that lies

with dark energy (i.e. a new energy component to the Universe) from modifications

to General Relativity.
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2.A Analysis in the kinematic plane

Note: In the chapter and the associated paper, an unpublished paper, [77], was cited.

The parts of that paper relevant for this chapter are presented in this appendix.

In this chapter, we provided constraints on the present deceleration parameter q0

and a constant j (along with other models) using kinematics measurements of the

expansion history. We did not discuss the behavior of the scale-factor a(t) corre-

sponding to different points in the q0− j plane. This appendix is intended to provide

a global picture of the behavior of models corresponding to different points in this

plane. Although we concentrate on q0 − j models, the method used is quite general

and can be applied to the study of expansion history for more general cases as well.

Consider the following identity:

ȧ2

2H2
0

+ V (a) = 0

where V (a) ≡ −a2H2/2H2
0 with H(a) = ȧ/a. V (a) is usually provided by the model

under consideration. For example in GR, using the Friedmann equation we get V (a) =

−4πGa2ρ/3H2
0 +k/3H+02 where ρ is the total energy density and k stands for spatial

curvature.

We rescale time as follows H0t→ t to obtain

ȧ2

2
+ V (a) = 0

Considering a(t) as the trajectory of a particle with unit mass, V (a) and ȧ2/2 play

the roles of potential energy and kinetic energy respectively of that particle. This

particle has zero total energy. The classical turning points in the motion of this

particle correspond to the zeroes of V (a). Let us assume that at the present time

t0, a(t0) = 1, ȧ(t0) > 0 and V (t0) < 0 (since the universe is expanding). If there

exists 0 < at < 1 such that V (at) = 0 then there exists a time tt in the past when

a(t) transitions from a decreasing function of time to an increasing function of time.

Similarly, if there exists 1 < at such that V (at) = 0 then there exists a time tt in
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the future when a(t) transitions from an increasing function of time to a decreasing

function of time. Finally if V (at) = 0 has roots amax
t > 1 and 0 < amin

t < 1 then a(t)

oscillates between amax
t and amin

t . Hence the problem of understanding this motion is

reduced to determining whether V (a) = 0 has a solution in the the regions 0 < a < 1

and a > 1. In terms of cosmology, 0 < at < 1 implies a bounce in the past, 1 < at

implies a contracting phase in the future (big crunch) and if at exist in both regions

then we have an oscillating universe (We ignore cases where V ′(at) = 0).

We now turn our attention to a specific form of V (a). Let us consider the case

where V (a) is obtained by solving the jerk equation (see equation (2.7)):

a2V ′′(a)− 2jV (a) = 0

with the initial conditions V (1) = −1/2 and V ′(1) = q0. The solution, for j =

constant is given by

V (a) = −1

2

(
p− u

2p
ap− 1

2 +
p+ u

2p
a−p− 1

2

)
where

p =
1

2

√
1 + 8j, u = 2

(
q0 +

1

4

)
The roots of V (a) = 0 are given by (excluding a = 0)

a2p
t =

(
u+ p

u− p

)
We first delineate different regions in the q0 − j plane based on the behavior of the

roots. The relevant regions are delineated based on the following curves (see Figure

2.6):

j = 2q2
0 + q0,

j = −1

8
,

q0 = −1

4
.

• Region I: j > 2q2
0 + q0; p > |u|. No positive, real at. This universe has a big
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II

III

IV

I

Figure 2.6: Delineated regions in the q0− j plane. The constraints on q0− j lie safely
within the physically allowed region. Note that we only used data from the relatively
low redshift universe where the constant j models can provide a good description of
the expansion history.

bang singularity in the past.

• Region II: −1/8 < j < 2q2
0 + q0, q0 > −1/4; 0 < p < |u|; 1 < at. If the

universe is currently expanding, then it continues expanding untill it reaches at.

At this point it turns around and starts its collapse to a future singularity. This

universe has a big bang singularity in the past and a big crunch in the future.

• Region III: −1/8 < j < 2q2
0 + q0, q0 < −1/4; |u| < p; 0 < at < 1. V (a) = 0

has a root at < 1. If the universe is currently expanding, then it continues

expanding. This region has a bounce in the past.

• Region IV: j < −1
8
. V (a) is oscillatory with roots at > 1 and at < 1.This

implies that a(t) is oscillatory.
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The panels in Figure 2.7 show how different forms of V (a) (corresponding to points

in q0 − j plane) yield very different behaviors for a(t). As mentioned before this

technique, which is often used in classical mechanics, provides a simple yet powerful

means of understanding the behavior of a(t) for very general scenarios.
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0.0 0.5 1.0 1.5 2.0
!1.0

!0.5

0.0

0.5

1.0

a

V!a"

Region II : j = 0.5, q0 = 0.7

0.0 0.5 1.0 1.5 2.0
!1.0

!0.5

0.0

0.5

1.0

a

V!a"

Region III : j = 0.5, q0 = −0.9
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Figure 2.7: The above panel shows typical forms of V (a) in regions I, II, III and IV
as discussed in the text. By thinking of V (a) as an effective potential, it is easy to
understand the qualitative behavior of a(t) in these models.
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2.B Cosmology with a constant ratio

measured

constant
Mgas

Mtot
= G(FX , TX , θ, a)d3/2(a)

dA

θ r = θdA

cosmology

Figure 2.8: Distance measurements with clusters of galaxies

In this chapter we used fgas (defined below) measurements for constraining the

expansion history of the universe. In this short note, we describe how these measure-

ments serve as probes of cosmology. This is meant to be a pedagogical note, where

we ignore some details for the sake of simplicity. For a more in depth discussion,

especially of the actual observations, see [56] and references therein.

Definition: fgas is the fraction of X-ray emitting gas to the total mass in clusters:

fgas =
Mgas

Mtot

.

As we show in this appendix,

Mgas

Mtot

= G(FX(θ), TX(θ), θ, a)d3/2(a), (2.31)

where the X-ray flux FX , temperature TX , angular size θ and scaler-factor a are
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observables, G is a known function of these observables and d(a) is the co-moving

distance to the cluster.

Main idea: Assume fgas is constant12, measure G(FX(θ), TX(θ), θ, a), infer d(a)

which will constrain the expansion history.13

The rest of this appendix is devoted to providing a derivation for (2.31). We begin

by deriving an expression for Mtot in terms of the observables mentioned above and

cosmological distances. The main assumptions going into this part of the derivation

are those of hydrostatic equilibrium (dP/dr = GMρ/r2) and the ideal gas law (P =

nkBT ) for the X-ray emitting gas. With these assumptions we get an expression

relating the temperature, number density (nX) of the gas and the total mass within

a given radius.

d lnnX(r)

d ln r
+
d lnTX(r)

d ln r
=

µ

kBTX(r)

GNMtot(r)

r
, (2.32)

where µ is the average mass per baryon. Since we observe things in the sky as a

function of the angular size θ, rather than the physical size r, we re-express the above

equation in terms of the angular size to get

d lnnX(θ)

d ln θ
+
d lnTX(θ)

d ln θ
=

µ

kBTX(θ)

GNMtot(θ)

θdA(a)
, (2.33)

where dA is the angular diameter distance to the cluster. For the sake of simplicity,

we assume that nX ∝ T γ
X . Then, the LHS is (γ+1)d lnTX/d ln θ. TX can be measured

as a function of θ. So, we get

Mtot(θ) =

[
(γ + 1)

kB

Gµ
θ2dTX(θ)

dθ

]
dA(a). (2.34)

with everything in the square brackets being a directly measurable quantity for each

cluster. Note that, instead of assuming the power law relation, one can also obtain

12See discussion at the end of this appendix.
13In this sense it is very similar to the way Type Ia supernovae are used to measure cosmological

distances with the following identifications: SN Luminosity → fgas , flux → G(FX(θ), TX(θ), θ).
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nX from X-ray flux measurements and get temperature TX from the spectrum.

Let us now turn to deriving an expression for Mgas. As in the case of Mtot, we

would like to derive an expression for Mgas in terms of the X-ray observables, angular

sizes and cosmological distances. The key point in this derivation is that the number

density of the gas can be obtained from the measured temperature and flux. The

mass of the X-ray emitting gas:

Mgas = g1µ n̄X(r)V (r) = g1µ n̄X(θ)(θdA(a))3, (2.35)

where V (r) ∝ r3 = (θdA)3 is the volume enclosed within a physical radius r and n̄X

is the (volume averaged) number density of the X-ray emitting gas. The factor g1 is

a geometric factor (which arises from the volume average). Since we cannot measure

n̄X directly, we will express it in terms of the X-ray observables and distances as

follows. The X-ray flux from a region with angular size θ is

FX(θ) =
LX(θ)

4πd2
L(a)

.

In the above expression dL(a) is the luminosity distance and LX(θ) is the X-ray

luminosity. Now, LX ∝ n̄2
XV . More explicitly, it is given by

LX(θ) = g2(TX)n̄2
X(θ)(θdA(a))3,

where g2 contains a dimensionless gaunt factor and a temperature dependence which

depends upon the detailed microphysics. For this note, we will not specify its func-

tional form. Note as in g1, g2 will also contain a geometric factor from volume

averaging. Re-arranging the above equation, we get

n̄X(θ) = g
−1/2
2 (TX)

[
4πFX(θ)d2

L(a)

(θdA(a))3

]1/2

Using this expression for n̄X in (2.35), we get

Mgas(θ) = g1g
−1/2
2 (TX)µ

[
4π(θ)FX(θ)θ3

]1/2
dL(a)d

3/2
A (a). (2.36)
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Using the expressions in (2.34) and (2.36) in (2.31) we get

fgas(θ) =
Mgas(θ)

Mtot(θ)
= g1g

−1/2
2 (TX)

[
(γ + 1)

kB

Gµ2

dTX(θ)

dθ

]−1 [
4π

a

FX(θ)

θ

]1/2

d3/2(a),

where we used a−1dA(a) = adL(a) = d(a). Note that FX(θ) is the flux from the entire

region within θ. Also note that we get fgas as a function of θ. fgas is expected to

be constant across a population of clusters when measured at the same over-density

only (based on simulations). Now, a given over-density will correspond to a different

θ = θ2500 for each cluster (“2500” stands for an over-density of 2500 times the critical

density). This chosen over-density (and hence θ2500) is measured by using the observed

temperature in the Virial relation. It is this angular size where fgas is measured. For

more details, see [56].

As promised, we have derived the function G(FX(θ), TX(θ), θ, a) up to the factors

g1 and g2. The main assumptions were those of hydrostatic equilibrium, use of the

ideal gas law and spherical symmetry which can all be relaxed in a more detailed

study.

We end with a few statements about the main idea and some caveats. We assumed

that fgas is constant across clusters. Although, seemingly obvious, this statement

requires some qualification. As a first approximation, since clusters are the largest

collapsed objects in our universe, the ratio reflects the average baryon to matter ratio

in our universe (after taking into account the fraction in stars). In reality, fgas is

expected to evolve slightly with redshift due to the loss of baryons from the clusters

which has to be modeled using simulations (or have extra parameters that need to be

marginalized over). Also, non-thermal pressure from turbulence, magnetic fields etc.

is expected to play a role in determining the total mass. Again, simulations likely

shed light on this in this aspect in the near future. The value of fgas can be obtained

from local measurements (a ≈ 1), which is independent of cosmology. However, it

is difficult to find a large enough sample of clusters at low enough redshifts. So the

calibration of fgas includes some information about cosmology (mainly H0 and Ωm).

To ameliorate this problem, in practice, a ratio of the true distance and the distance

in a reference cosmology is used. It is also possible to use the constancy of fgas rather
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than its numerical value for kinematic measurements.
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2.C Cosmokinematics

2.C.1 Introduction

In this appendix, we investigate the behavior of a class of dimensionless kinematic

variables which allows us to extract salient features of the expansion history. When

necessary, we will use the ΛCDM model as a concrete example, although most of

the discussion carries over to more general models. This appendix is independent of

the chapter, except that it provides additional motivation and background for using

kinematic variables.

It is perhaps worth asking, why one should consider a kinematic approach. As we

know, kinematic approaches have been fruitful in the past. Long before Newton came

up with his laws of motion, Galileo was able to determine empirical relations between

kinematic variables for describing the motion of objects at constant acceleration.

In cosmology, we too are perhaps at a similar stage. We can measure the expansion

history, but the law governing it is yet to be fully understood. A better understanding

of the kinematics will hopefully lead us to a deeper understanding of the dynamics

responsible for cosmic acceleration.

Consider an expanding, spatially flat, homogeneous and isotropic universe. In a

metric theory of gravity, such universe can be described by a FRW metric of the form

ds2 = −dt2 + a2(t)δijdx
idxj, (2.37)

where a(t) is the dimensionless “scale factor” normalized to be a(t0) = 1 at the present

time t0. The scale factor is related to the the redshift z through a = (1 + z)−1. In

what follows we shall assume that a(t) is sufficiently smooth. Interesting features

regarding the behavior of the scale factor can be gleaned from a set of dimensionless
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functions un(t) constructed out of the derivatives of the scale factor. For n = 1 we

explicitly define

u1(t) ≡
1

H0

ȧ(t)

a(t)
, (2.38)

where H0 is the Hubble constant. For n ≥ 2

un(t) ≡ a(n)(t)an−1(t)

ȧn(t)
, (2.39)

where “.” = d/dt and a(n)(t) = dna(t)/dtn. For example for n = 2, 3 we have

u2(t) =
ä(t)a(t)

ȧ2(t)
≡ q(t),

u3(t) =

...
a (t)a2(t)

ȧ3(t)
≡ j(t),

(2.40)

where q(t) is the acceleration parameter and j(t) is the jerk parameter. Note that we

define q(t) as the acceleration parameter rather than the more conventional deceler-

ation parameter which differs from our definition by a minus sign. A more familiar

context where these dimensionless functions are introduced is in the Taylor expansion

of the Hubble parameter around the present time t0:

H(t) = H0[1 + (1 + q0)H0(t− t0) +
1

2!
(j0 − 3q0 + 2)H2

0 (t− t0)
2 + ...], (2.41)

where H0, q0, j0 etc. refer to the values of the kinematic parameters evaluated at the

present time t0.

2.C.2 Kinematic flows

A useful feature of the kinematic variables is that for any power law scale factor

a(t) ∝ tβ =⇒ un(t) =
(β − 1)(β − 2)...(β − n− 1)

βn−1
(2.42)
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for n ≥ 2. For an exponetial scale factor, it is even simpler

a(t) ∝ eβt =⇒ un(t) = 1 n ≥ 2. (2.43)

Differentiating equation [2.39] with respect to time and changing the independent

variable to “ln a” with ′ denoting d/d ln a we obtain the following recursion relation

between these variables

u′n = un+1 + (n− 1− nq)un. (2.44)

Writing this system explicitly, we have

H ′ = (q − 1)H,

q′ = j + (1− 2q)q,

j′ = s+ (2− 3q)j,

s′ = c+ (3− 4q)s,

.

.

.

(2.45)

When working with kinematic variables, the above identities often simplify expres-

sions considerably. One can think about the above equations as a dynamical system

with critical points

un+1 = −(n− 1− nq)un. (2.46)

To analzse the stability of the finite critical points we consider the evolution of the a

small perturbation away from the critical point

δu′n = δun+1 − δun − nδq. (2.47)

The fixed point un = 1 with 2 ≤ n ≤ N is a stable fixed point if we truncate the

series at any N ≥ 2 setting uN = 1. All the eigenvalues lie in the left half of the

complex plane and we get the trajectories spiraling into the fixed point. Note that
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so far we have not assumed anything about a(t). These identities are true for any

smooth function and have nothing to do with cosmology yet. However, to solve this

system, we need a closure relation which is where the law determining a(t) (or some

combination of kinematic variables) comes in. The physics is in the closure relations.

As we shall see simple algebraic closure relations between j and q describe a very large

number of cosmological models. A similar system had been investigated in the context

of inflation with slow roll variables in place of kinematic variables (see for example

[93] and references therein). Also see [29] for a related approach in reconstructing the

quintessence potential at late times.

Having defined the kinematic variables and some of their properties we turn our

attention to their importance in cosmology. The kinematic variables discussed above

are quite useful in understanding salient features about the expansion rate and the

contents driving the expansion. Although we want to stay away from dynamics, it

helps to know how these variable are related to the behavior of the contents of our

universe. For example, in the standard cosmological model with GR, we can relate

the kinematic variables to the total pressure and density through the Friedmann

equations as follows:

H2 =
8πG

3
ρ

q =− 1

2
− 4πG

H2
P

j =1− 4πG

H3
Ṗ

(2.48)

• H(a) : Sign tells us whether the universe is expanding or contracting. Its

magnitude tells us how much stuff there is in our universe.

• q(a): Sign tells us whether the universe is accelerating or decelerating. Its

magnitude tells us about the total pressure in our universe.

• j(a): Sign tells us whether the rate or acceleration is increasing or decreating.

j(a) 6= 1 implies a time evolving pressure.

During an era with non-relativistic matter (Pm = 0) and a cosmological constant

(PΛ = −ρΛ) the effective pressure P = PΛ + Pm = −Λ/8πG = constant. Hence in
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Figure 2.9: In the qj plane the the expansion history of our universe is extremely
simple. In the standard model with radiation, cold dark matter and cosmological
constant j = −(1 + 4q) when matter and radiation dominate the energy density
whereas when matter and the cosmological constant dominate we have j = 1.

a universe with cold dark matter and cosmological constant as the dominant energy

densities,

j = 1 (2.49)

When radiation (Pr = ρr/3) and cold dark matter dominate the energy densities

we get

j = −(1 + 4q) (2.50)

The jerk starts out at j = 3 deep in the radiation era, approaches j = 1 as mat-

ter domination approaches. The expansion of our universe looks simplest in the qj

plane shown in the Figure 2.9. The points (q, j) = (−1, 3), (q, j) = (−1/2, 1) and
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(q, j) = (1, 1) correspond to radiation, matter and cosmological constant domination

respectively. It is worth noting that the jerk parameter: j = 1 in any era when the

effective pressure in our universe is constant with time. If one considers a slightly

more general (but arbitrary) model for dark energy with Pw = wρw with constant w,

then we get j = −1
2
(1 + 3w) − 3q(1 + w). Adding more components usually lead to

more complicated relations between the kinematic variables.

2.C.3 Step-kinematics

Let us take a more detailed view of the kinematic variables in a spatially flat universe

filled with radiation, cold-dark matter and a cosmological constant. For the standard

model, we have
H2

H2
0

= 1− Ωm − Ωr + Ωma
−3 + Ωra

−4, (2.51)

where Ωi = ρi/ρc are the contemporary Russian density parameters with ρc being the

critical density. From the above equation we can solve for the scale factor a(H0t; Ωi).

For the scale factor a(H0t; Ωi) obtained from [2.51], we can construct un(H0t; Ωi). It is

instructive to plot these dimensionless kinematic parameters as a function of the scale

factor a rather than H0t. Figure 2.10. shows u2(a), u3(a) and u4(a) (ie. q(a), j(a)

and s(a)) as our universe evolves from a radiation dominated era to a cosmological

constant dominated era via a matter dominated era. Note the step like behavior in

the kinematic parameters. We shall concentrate on three features of these kinematic

steps: (i) The height (ii) location of transition (iii) rate of transition. We will restrict

our attention to two kinematic variable u2 = q and u3 = j. Let us first look at the

height of the steps. For a� 1, the expansion rate is dominated by the cosmological

constant. In this era the scale factor has an exponential dependence on time which

yields un(a) = 1. As discussed before, for any era with a power law scale factor,

un(a) = constant. Specifically, during matter domination we have

a(t) ∝ t2/3 =⇒ u2(a) = q(a) = −1

2
, u3(a) = j(a) = 1, (2.52)
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Figure 2.10: The evolution of kinematic variables as a function of scale factor a for
a spatially flat universe with radiation, matter and a cosmological constant. For
any era with a power law scale factor a(t) ∝ tβ, the kinematic variables un(t) =
a(n)(t)an−1(t)/ȧn(t), (n ≥ 2) are constants. During radiation domination a(t) ∝ t1/2

and we have [u2(a), u3(a), u4(a)] = [q(a), j(a), s(a)] = [−1, 3,−15] whereas during
matter domination a(t) ∝ t2/3 which yields [u2(a), u3(a), u4(a)] = [q(a), j(a), s(a)] =
[−1/2, 1,−7/2]. For the de-Sitter era (a � 1) we have an exponential scale factor
which yields un(a) = 1 for all n, all the kinematic variables asymptode to one. In the
above plot we have taken Ωm = 0.3,Ωr = 10−4 which determine the location of the
transitions. At the radiation matter transition dq/d ln a = 1/8 and dj/d ln a = −1/2
while at the matter dark energy transition we have dq/d ln a = 9/8 and dj/d ln a = 0
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while during radiation era

a(t) ∝ t1/2 =⇒ u2(a) = q(a) = −1, u3(a) = j(a) = 3, (2.53)

The value of the scale factor where the transitions occur are determined by the Ωi

or the energy densities of the different components. At radiation matter equality the

transition rates are

dq

d ln a

∣∣∣∣
a=arm

=
1

8
,

dj

d ln a

∣∣∣∣
a=arm

= −1

2
, (2.54)

whereas at matter-Λ equality

dq

d ln a

∣∣∣∣
a=amΛ

=
9

8
,

dj

d ln a

∣∣∣∣
a=amΛ

= 0. (2.55)

Possible applications

The step like behavior suggests many simple ways of constructing departures from the

standard model. Although we do not go into details here, a simple approach would be

to use parameters that control the height of the steps, the location of the transition

and the rate of the transition. Most dark energy models in the current literature can

be described (at least to a good approximation) by such a parameterization.

2.C.4 Reconstruction

Finally, we provide a taste of how kinematic variables can be related to relevant

features of an unknown component responsible for cosmic acceleration. For example,

if it is assumed that quintessence is responsible for cosmic acceleration, then we can

reconstruct it from the kinematic variables as follows

φ̇2 = −ρc

(
2

3

H2

H2
0

(q − 1) + Ωma
−3

)
,

V = ρc

(
1

3

H2

H2
0

(2 + q)− 1

2
Ωma

−3

)
.

(2.56)
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Using the above expression, one can easily relate the kinematic variables and the

effective equation of state parameter:

w =
φ̇2/2− V

φ̇2/2 + V
= −1

3

(1 + 2q)

1− Ωma−3(H0/H)2
.

Similarly, it is also possible to reconstruct relevant “potentials” in modified gravity

models from the expansion history. In general, the problem is not that we can find

a model that fits a given expansion history, but the fact that we can find too many

(though none have a strong theoretical basis). One way of alleviating this problem is

to include information from the inhomogeneous universe. This is pursued in the next

chapter.
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Abstract The relationship between the metric and nonrelativistic matter distribution depends on

the theory of gravity and additional fields, hence providing a possible way of distinguishing compet-

ing theories. With the assumption that the geometry and kinematics of the homogeneous universe

have been measured to sufficient accuracy, we present a procedure for understanding and testing

the relationship between the cosmological matter distribution and metric perturbations (along with

their respective evolution) using the ratio of the physical size of the perturbation to the size of

the horizon as our small expansion parameter. We expand around Newtonian gravity on linear,

subhorizon scales with coefficient functions in front of the expansion parameter. Our framework

relies on an ansatz which ensures that (i) the Poisson equation is recovered on small scales (ii)

the metric variables (and any additional fields) are generated and supported by the nonrelativistic

matter overdensity. The scales for which our framework is intended are small enough so that cosmic

variance does not significantly limit the accuracy of the measurements and large enough to avoid

complications due to nonlinear effects and baryon cooling. From a theoretical perspective, the co-

efficient functions provide a general framework for contrasting the consequences of ΛCDM and its
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alternatives. We calculate the coefficient functions for general relativity (GR) with a cosmological

constant and dark matter, GR with dark matter and quintessence, scalar-tensor theories (STT),

f(R) gravity and braneworld (DGP) models. We identify a possibly unique signature of braneworld

models. For observers, constraining the coefficient functions provides a streamlined approach for

testing gravity in a scale dependent manner. We briefly discuss the observations best suited for an

application of our framework.
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3.1 Introduction

A successful model of the universe must include a background geometry, an inventory

of its contents, a kinematical description of its expansion and a dynamical explanation

of how its constituents interact, drive the expansion and develop structure. Recent

observations (for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 26, 11, 12, 13, 14] and references

therein) have led to a “Flat ΛCDM cosmology” (henceforth FΛCDM), dominated by

dark energy (cosmological constant Λ) and matter (predominately dark and initially

cold) and the observed expansion rate and growth of structure agree with the predic-

tions of this model at the ten percent level. Future observations should be capable

of testing this model at the one percent level. If they verify its predictions, they

will affirm a remarkable, simple description of the universe, implicit in the earliest

relativistic investigations of Einstein, Friedmann and Lemâıtre, analogous to the affir-

mation of general relativity (GR) that took place twenty years ago (for example [15]).

If FΛCDM passes this test, then the challenge will be to account for this outcome in

terms of physical processes operating at earlier epochs; if it fails, then we shall either

have learned something important about gravitational physics or described a new,

dominant component of the universe. Many alternatives, with and without GR, to

FΛCDM have been proposed. At this stage, none of them stands out. There is there-

fore a need to provide a framework for describing future observations and theoretical

investigations in general terms which will facilitate a distinction between FΛCDM

and its alternatives. The provision of one such framework is the goal of this paper.

Further observational progress is anticipated over the coming decade. The anal-

ysis of Planck observations [16] of the microwave background, coupled with local

measurements of the contemporary Hubble parameter, H0, should result in an ex-

tremely accurate description of the physical conditions and the statistical properties

of the density fluctuation spectrum at the epoch of recombination when the universe

had a scale factor a ≡ (1 + z)−1 ∼ 10−3 relative to today. Combining the calcu-

lated physical sizes of the acoustic peaks in the background radiation spectrum with

the Hubble constant and the Copernican Principle leads to a measurement of spatial

curvature, which is already known to contribute to the kinematics at a level of less
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than a few percent [14]. We shall adopt a value of zero for illustration purposes.

Essentially kinematic measurements, for example, those involving Type Ia supernova

explosions, baryonic acoustic oscillations (BAO) and baryonic gas fractions in clusters

should provide a record of the comoving distance, d(a) =
∫
cdt/a, from which the

evolution of the Hubble parameter H(a) = d ln a/dt and the acceleration parameter

q(a) = d ln(Ha)/d ln a can be inferred1. For the rest of the paper we shall assume

that these evolutions have been measured to a sufficient accuracy. Note that we are

using a instead of the cosmic time t as the time coordinate as this relates directly

to the observable photon frequency shift. For recent constraints on the expansion

history, see for example [17] and references therein.

Given an understanding of the geometry and kinematics, the task is then to see

if the dynamical evolution of the universe is consistent with GR or mandates an

alternative theory. Now, GR provides a relationship between the spacetime geom-

etry on a cosmological scale measured by the Einstein tensor G[gµν ] and the total

Energy-Momentum Tensor (EMT) of its contents T, G[gµν ] = 8πGT. The discovery

that G[gµν ] 6= 8πGT[“obs”] where T[“obs”] includes known forms of matter such

as electromagnetic radiation, baryons etc. has led to the addition of dark matter

and dark energy contributions to the EMT. Dark matter candidates include Weakly

Interacting Massive Particles and axions which would presumably behave gravita-

tionally like baryonic matter. However other possibilities exist which might behave

differently such as massive neutrinos (as a subdominant component). Dark energy

is most simply characterized as a temporaily and spatially constant vacuum energy

field with zero enthalpy (see [18] for a review). However, it could also have quite

different dynamical properties and might include contributions from additional scalar

[19], vector [20] or tensor fields with possible interactions between each other [21] and

with known forms of matter. Historically, the first representation of dark energy was

Einstein’s cosmological constant, which was seen as an augmentation to G, not T

(see for example [22]). This original proposal has also been generalized in many ways

so that G[gµν ]+F[gµν , ϕ] = 8πGT[“obs”], where F[gµν , ϕ] depends on the metric and

1Our acceleration parameter differs from the conventional deceleration parameter by a minus
sign.
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more generally some additional gravitational fields, ϕ. For example ϕ could be the

additional gravitational scalar field in Scalar-Tensor Theories (STT) (see for example

[23, 24]). Nature could of course be unkind and we might have

G[gµν ] + F[gµν , ϕ] = 8πGT[“obs”] + 8πGT[“dark”]. (3.1)

Considerable effort has been made in constructing models that fall into the above

mentioned categories and more recently in finding ways to distinguish between them

(for example see [25, 26, 27, 28, 29]).

Now, modifying the physics beyond GR with cold dark matter and Λ can have

three quite separate manifestations. Firstly it can lead to a change in expansion of

the universe, secondly, it can influence the growth of structure and the metric and

thirdly, it can confront local tests of the theory of gravity. The approach that we fol-

low is to assume that the theory is constrained by the first and third manifestations

and that it is the growth of structure that is providing the test. This oversimplifies

the data analysis but does lead to a transparent and simple approach. One impor-

tant consequence of adopting local gravitational tests is that photons and baryons, at

least, will follow geodesics and that the unperturbed photons will be subject to cos-

mological redshifting of their frequencies, ν ∝ a−1. This simplifies the interpretation

of observational data.

Our procedure is to adopt a general form for the metric of a linearly perturbed ho-

mogeneous and isotropic universe which introduces two potentials Φ(x, a) and Ψ(x, a)

(scalar metric perturbations in the Newtonian gauge), where x denotes the three spa-

tial coordinates. We also introduce an associated fractional density perturbation

δm(x, a) in nonrelativistic matter and relate it to the potentials. We assume that

there is a dominant nonbaryonic contribution to the clustering of nonrelativistic mat-

ter. In practice, it is easier to work with Fourier modes and this allows us to focus

attention on the range of length scales that are most relevant observationally: suffi-

ciently smaller than the horizon so that our expansion is valid and we can observe

enough independent volumes within our current horizon allowing for a high precision

measurement despite “cosmic variance”, and yet large enough that nonlinear effects
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and baryonic cooling are not a factor. Within this range of length scales, we adopt

the following ansatz regarding the relationship between linearized metric and density

perturbations, written as an expansion in powers of (aH/k), where k is the magnitude

of the comoving wavevector k

Φ(k, a) = −4πGρm

H2

(
aH

k

)2

δm(k, a)

[
β0(a) + β1(a)

(
aH

k

)
+ β2(a)

(
aH

k

)2

+ . . .

]

Ψ(k, a) = −4πGρm

H2

(
aH

k

)2

δm(k, a)

[
γ0(a) + γ1(a)

(
aH

k

)
+ γ2(a)

(
aH

k

)2

+ . . .

]

δm(k, a) = δmi(k)

[
δ0(a) + δ1(a)

(
aH

k

)
+ δ2(a)

(
aH

k

)2

+ . . .

]
(3.2)

We have set the speed of light c = 1. The background mass density ρm ∝ a−3. δmi(k)

is determined from initial conditions which can in principle be taken close to the

surface of last scattering, ai ∼ 10−3, as long as the modes are sufficiently sub-horizon.

Note that often, we are only interested in the scale dependence of the growth of the

perturbations in the matter distribution and the metric at linear, subhorizon scales.

Such measurements require taking ratios of the matter distribution or the metric at

different redshifts, whereby, the initial conditions cancel out in the final expressions.

The coefficient functions {βn, γn, δn} with n = 0, 1, 2 are arbitrary functions of the

scale factor. The leading terms in the expansion agree with Poisson’s equation on

small scales, while subsequent terms allow for a scale-dependent departure as we

move towards larger scales. This approach introduces a length-scale dependence to

the perturbations through an expansion in powers of (GM/dp)
1/2 ∼ dP/dH , where

M ∼ ρmd
3
p is the total mass enclosed within the physical size dp and dH ≡ 1/H is the

Hubble horizon. In Fourier space, with dp ∼ a/k, we get (GM/dp)
1/2 ∼ aH/k.
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The theories that we discuss below introduce different corrections (different co-

efficient functions {βn, γn, δn}) and these differences are measurable2 . From an ob-

server’s perspective, constraining the coefficient functions with measurents of Φ,Ψ

and δm provides a streamlined approach to characterizing gravity on cosmological

scales in a scale dependent manner. On the other hand, from a theorist’s perspective,

substituting the ansatz into the field equations for a given theory allows for a (mostly

straightforward) calculation of the coefficient functions. The coefficient functions pro-

vide a means of comparing the consequences of different theories. We shall discuss

our assumptions, limitations and our ansatz in detail in the next section.

This is certainly not the first time that an attempt at constructing and applying

such a framework has been made. The Parametrized Post Newtonian formalism (see

[15] and references therein) has been a powerful framework for understanding and

constraining gravity on solar system (and other isolated system) scales. Our aim is

to construct a similar framework for cosmological scales. Recently a few attempts

have been made in this direction. However most of these are either concerned with

the expansion history alone, deal with specific aspects of departures from GR such

as effective gravitational constant on small scales [30], growth of perturbations on

small scales [31], the gravitational slip [32], or deal with superhorizon scales [33].

The authors in [34] take into account growth of structure, anisotropic stress and

the modification to the Poisson equation and parametrize departures from Einstein’s

gravity with a growth index and two functions of the scale factor which are relevant

for weak lensing surveys. However, they do not consider scale dependent departures.

Another popular phenomenological approach for characterizing the effects of the un-

known physics (additional fields, their interactions, or modified gravitational laws)

is to define an effective fluid energy momentum tensor for everything other than the

standard model matter, effectively move F in equation (3.1) to the right hand side

and define Teff = −(8πG)−1F[ϕ, gµν ] + T[“dark”]. This effective energy momentum

2As we shall see at the end of Section 2 and in Section 3, the coefficients β2, γ2, δ2 6= 0 even
in GR with non-relativistic matter and represent “post-Newtonian” corrections. Also note that δm

characterizes the fractional matter density perturbation in the Newtonian gauge, which is related to
the often used comoving density perturbation ∆m through ∆m = δm + 3a∂a(δm − 3Ψ)(aH/k)2. A
combination of the 00 and 0i Einstein equations yields (k/aH)2Ψ = −(4πGρm/H2)∆m.
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tensor is then parametrized in terms of the equation of state, sound speed, anisotropic

stress, etc. [35, 36]. This approach, however, seems to put an unnecessary restriction

of a fluid interpretation which might be misleading, especially when the effective dark

energy is due to modified gravity or extra dimensions. We are unaware of a systematic

approach undertaken where the framework includes a scale dependent departure in

the relationship between the matter distribution and the metric perturbations along

with their respective evolution on cosmological scales up to post-Newtonian order. 3

The rest of the paper is organized as follows. Section 2 discusses our assumptions

and the particular form of the ansatz in detail. In Section 3 we apply our framework

to GR, STT, quintessence, f(R) models [18] and DGP gravity [41]. In particular,

we calculate the coefficient functions in these theories and comment on our ansatz

in the context of these theories. Section 4 is devoted to how our framework might

be employed by observers. We briefly discuss the observations that could be used to

constrain the different coefficient functions. Section 5 presents a short summary and

future directions for extending the framework.

3.2 Our ansatz and associated assumptions

With an eye towards observations in the next decade, we assume that the geometry

(spatial curvature) and kinematics (expansion history) of the universe have been

measured to a percent level accuracy. What remains to be understood and measured

accurately (at the few percent level) is the relationship between the metric fluctuations

and the nonrelativistic matter distribution along with their respective evolution on

linear, subhorizon scales. This relationship will depend on the theory of gravity or

the presence of yet unknown components, thus providing a test for distinguishing

3We note that during the final stages of preparation of this this paper we became aware of a scale
dependent framework for modified gravity that includes super and sub-horizon scales [37]. After
submission of this manuscript, the following were posted on arXiv.org which are relevant to this
work. [38] provide an analysis of the observational tests for modified gravity; [39] use evolution of
galaxy bias to constrain scale dependent departures from GR; whereas [40] build on [33] to include
sub-horizon scales; [37] extend [37] to include multiple fluids and curvature relevant for cosmic
microwave background calculations and constraints; whereas [32] discuss the effects of gravitational
slip on the CMB, growth of structure, and lensing observations.
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different theories. To explore this relationship in an (almost) model independent

way, we provide an ansatz, equation (3.2), relating the scalar metric perturbations (in

Newtonian gauge) and the nonrelativistic matter overdensity in Fourier space. In this

section we discuss the particular form of the ansatz and the underlying assumptions

in detail. We introduce our notation and conventions followed by some physical

arguments regarding our choice of the particular form of the ansatz. We end with a

discussion of the range of scales for which our ansatz is expected to be useful.

We focus on a perturbed FRW universe (spatially flat) with scalar metric fluctu-

ations in the Newtonian gauge [42]. In this gauge the metric takes the following form

(c = 1)

ds2 = −[1 + 2Φ(x, t)]dt2 + a2(t)[1− 2Ψ(x, t)]dx · dx

Here the metric perturbations |Φ(x, t)|, |Ψ(x, t)| � 1. We choose to work in the

Newtonian gauge because Φ(x, t) is the generalization of the Newtonian gravitational

potential and the potentials Φ(x, t) and Ψ(x, t) are gauge invariant Bardeen variables

when we specialize to the Newtonian gauge. The energy density perturbation δm(x, t)

is also gauge invariant, corresponding to the energy density perturbation on the zero

shear spatial hypersurface which is closest to Newtonian time slicing (see equation

(3.14) in [42]). In what follows, we use the scale factor a as the independent variable

instead of cosmic time t with a(today) = 1. With this change of variables, the metric

takes the form

ds2 = −[1 + 2Φ(x, a)](aH)−2da2 + a2[1− 2Ψ(x, a)]dx · dx

We shall work primarily in Fourier space and use the following convention: f(x, a) =

(2π)−3
∫
d3kf(k, a)eik·x. To avoid unnecessary clutter we write the Fourier transform

of the metric perturbations Φ(k, a)eik·x as Φ. The same is true for Ψ and δm. The

background quantities depend on a. We shall often suppress this dependence; for

example by H we mean H(a).

We have assumed spatial flatness as expected on the basis of the simplest inter-

pretation of inflation. If the universe has measureable spatial curvature or large scale

deviations from the Robertson-Walker assumptions of homogeneity and isotropy, then
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the following development must be generalized at the expense of introducing param-

eters that need fitting. A purely geometrical demonstration of spatial flatness would

obviate some of this concern. Such a demonstration is possible, in principle, using two

screen gravitational lenses (Blandford 2008, in preparation), though it is not known

how practical it will be to implement this demonstration. If we choose to include

curvature as an additional parameter, then location of the first acoustic peak in the

CMB (and BAO scale) would likely provide the best constraints.

Our ansatz provides a relationship between Φ, Ψ and δm on linear (in Φ,Ψ and

δm), subhorizon scales. We now turn to the discussion of some important features of

this ansatz. On scales that are much smaller than the size of the horizon, aH/k � 1,

the leading term has the form of a linearised Newtonian gravitational field equation.

For the purpose of this paper the Newtonian form of the field equation refers to

the the following relation between the time-time metric perturbation Φ(x, a) and

the nonrelativistic matter density contrast δm(x, a), ∇2Φ(x, a) ∝ δm(x, a), which in

Fourier space becomes Φ ∝ (aH/k)2δm. Now, in the Newtonian gauge Φ(x, a) plays

the role of the Newtonian potential once the background has been subtracted out.

The proportionality allows for a possible temporal variation in the effective Newton’s

constant which could depend on the cosmological background evolution.

From GR we know that this Newtonian relation starts breaking down as the

size of the perturbation becomes comparable to the size of the horizon. In general,

different theories of gravity will introduce different scale dependent departures from

this equation, changing the metric-matter relationship. Our claim is that for a large

class of theories, our ansatz, equation (3.2), captures the scale dependence of the

relationship between the nonrelativistic matter distribution and cosmological metric

perturbations. In particular, our ansatz faithfully reproduces the scale dependence of

the metric-matter relationship in the fiducial case of GR with cold dark matter and

a cosmological constant. In the presence of additional fields one might expect this

relationship to break down; however, this is usually not the case. Suppose that an

additional field enters the equations, for example as a source (quintessence), as a time

varying gravitational constant (Brans Dicke theory) or indirectly encapsulating the

effect of higher dimensions, etc. Perturbations δϕ in such a scalar field ϕ (consider
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quintessence or scalar-tensor theories) will be involved in the relationship between

δm and Φ. However, from the field equation for δϕ, equations (3.18) and (3.19), we

can see that δϕ ∝ Φ(aH/k)2 for quintessence and δϕ ∝ Φ for scalar-tensor theories

when aH/k � 1. Thus, even if additional scalar fields are present, our ansatz should

be a good approximation for the relationship between the matter distribution and

the metric at the scales of interest. Note that we have assumed Ψ = O[Φ] for this

argument.

Another feature of our ansatz is that Φ and Ψ are directly proportional to δm.

This might seem unusual, since it implies that in the absence of nonrelativistic matter

perturbations, there would be no metric perturbations. This is certainly not true in

principle if an additional scalar field is present. However observationally, we know

that nonrelativistic perturbations are present and they dominate over perturbations

in other fields. The following argument provides a more detailed justification. Since

on the smallest scales, to lowest order in (aH/k), the potential Φ ∝ δm(aH/k)2,

we have δϕ ∝ δm(aH/k)4 and δϕ ∝ δm(aH/k)2 in quintessence models and STT

respectively. This means that the potentials and pertubations in other scalar fields

are supported by the nonrelativistic matter perturbations. We do not expect to see

the effects of the initial power spectrum of these additional fields up to the order of

the terms considered in our ansatz, with the initial power spectrum of the additional

field possibly playing a role in higher order terms. This is one of the reasons for not

extending the power series in aH/k beyond the order considered in the ansatz.

Our ansatz does not capture the matter-metric relationship for all available models

in the literature. Consider for example k-essence [43],where the effective “sound

speed” (cs) can be small. This leads to a significant clustering of dark energy on

small scales which can be comparable to nonrelativistic matter perturbations. In

these scenarios, our ansatz does not provide a good approximation to the full theory.

The coefficients β2, γ2(∝ cs
−2) � 1 signaling a breakdown in our assumptions. More

generally, if a model introduces an additional physical scale within the range of scales

of interest, then care needs to be taken in using our ansatz. In the k-essence example,

this additional scale is the Jean’s length for the scalar field fluctuations, whereas

in the case of f(R) models this could the “Compton wavelength” (∼ f
−1/2
RR ) of the
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effective gravitational scalar degree of freedom (see for example [44]). In such cases

the ansatz might still be applicable in a more limited range of parameters and length

scales (see Section 3.4).

We note that some of the above arguments are made under the assumption that

the additional gravitational or nongravitational contribution to the field equations is

due to a scalar field (quintessence or scalar tensor theories). As argued above, this

leads to only even powers of aH/k in the expansion. Furthermore, f(R) modification

of the Einstein-Hilbert action also lead to even powers of aH/k. An intriguing case

where one can get an odd power of aH/k is in DGP braneworld models. In these

extra-dimensional theories, the junction conditions on our 4 dimensional brane gives

rise to a scale dependence involving terms linear in aH/k. We come back to this in

Section 3.5.

Regarding Ψ, we assume that the relationship between Ψ and δm has the same

(aH/k) dependence as Φ and δm since from GR we expect Φ = Ψ when no anisotropic

stress is present. The form of δm(k, a) in the ansatz can be motivated from the

conservation equation for nonrelativistic matter at first order in Φ,Ψ and δm:

a2∂2
aδm + (2 + q)a∂aδm = −

(
k

aH

)2

Φ + 3
[
a2∂2

aΨ+(2 + q)a∂aΨ
]
. (3.3)

As discussed above at lowest order in (aH/k)2, the metric perturbations Φ,Ψ ∝
δm(aH/k)2, thus the largest term on the RHS of equation (3.3) is proportional to

δm(k, a). At this order we get a homogeneous equation for δm which has a solution

of the form δm(k, a) = δmi(k)δ0(a). This is the usual approximation used when

investigating the growth function on small scales. Perturbatively including the next

order term on the RHS, we can see that our ansatz captures the general form of the

solution to that order. Again, we use this argument as motivation for the form of

the ansatz, being aware of the fact that nonrelativistic dark matter is not covariantly

conserved in some models. In δm, we include both baryonic and nonbaryonic dark

matter, with an understanding that baryonic matter contibutes a small fraction to

the total. We assume that baryons are covariantly conserved and follow timelike

geodesics, serving as test particles whose motion can be used to probe the metric.
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Figure 3.1: The ratio of the physical size of the perturbation to the size of the
horizon is used as an expansion parameter in our anzatz. We plot this ratio, (aH/k),
as a function of a from last scattering to the present for the concordance model
(yellow region). The upper and lower bounds of the yellow region are determined by
considering scales that are small enough so that cosmic variance does not dominate
the errors and at the same time large enough so that nonlinear evolution and baryon
cooling are not a significant factor. Most of the observations in the next decade will
yield information in the range 10−1 . a . 1. If we are interested in observations that
only care about a smaller range of the scale factor, then the allowed range of H0/k
increases. We also plot lines of constant multipole l ∼ kd(a), which provides a rough
estimate of the relationship between k and angular scales at different redshifts.
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We now turn to a discussion of the range of scales where we expect our procedure to

be applicable. Our ansatz uses the ratio of the physical size of the perturbation dp(a)

to the size of the Hubble horizon dH(a) ≡ 1/H(a) as our small (post-Newtonian)

expansion parameter. In Fourier space dp(a) ∼ a/k and we need dp(a)/dH(a) ∼
aH/k � 1 for the expansion in aH/k to be meaningful. From Figure 1, we can see

that for a given k, aH/k is a decreasing function of the scale factor (till dark energy

domination). So if aH/k � 1 at early times, it will remain so till today.

We first give a rough upper bound on H0/k. In addition to aH/k � 1, from

an observational standpoint, the largest scales of interest are the ones where cosmic

variance does not significantly limit the precision of our measurements (angular mul-

tipoles l � 1). To convert this constraint on l to a constraint on H0/k, we need a

relationship between k and l. For large k, a perturbation with a given k corresponds

roughly to a multipole l ∼ kd(a) = (aH/k)−1aHd(a), where d(a) is the co-moving dis-

tance. Note that this relationship is scale factor dependent. Let us take l ∼ 30 as the

largest angular scale where cosmic variance does not significantly limit measurement

precision. For 0.1 . a . 0.5 we get aH/k ∼ aHd(a)/l . 0.06 since aHd(a) . 3.7 in

this range. At a ∼ 0.5, the corresponding comoving wavevector of the perturbation

is k ∼ 10−2 hMpc−1 or equivalently H0/k ∼ 3× 10−2. On the other hand, this same

l would correspond to aH/k > 1 for a ∼ 10−3. So if we are also interested in the

CMB, then aH/k . 1 implies that l ∼ (aH/k)−1aHd(a) & 55 at a ∼ 10−3 because

aHd(a) ∼ 55 at last scattering. In summary, for observations at large redshifts, the

requirement aH/k . 1 provides the upper bound on the scales for which our ansatz

can be used wheres l & 30 does the same as low redshifts. This upper bound can be

relaxed depending on the range of redshift in which the observations are made.

Now, for the lower bound on H0/k we get H0/k & 3× 10−3. This corresponds to

knl ∼ 10−1 hMpc−1 which is at the boundary between linear and nonlinear evolution

of δm today. At these scales the linear and nonlinear matter power spectrum differ

by a few percent today (and less in the past). Since the scalar metric fluctuations

O[Φ(x, a),Ψ(x, a)] ∼ 10−5 on these scales, as indicated by measurements of the cosmic

microwave background (CMB), we can linearize the field equations in Φ,Ψ and δm at

these scales. Another reason for this lower bound is that on scales larger than these we
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do not expect a significant bias between the baryonic and nonbaryonic matter. We can

relax the lower bound if the observations are restricted to smaller scale factors since

the scale factor dependence of the boundary between linear and nonlinear evolution

is given by knl(a) ∼ 10−1a−3/2 hMpc−1. For example if we restrict our selves to

10−3 . a . 10−1, then H0/k & 10−4.

Figure 1 shows the typical order of magnitude of aH/k for the range 3× 10−3 .

H0/k . 3 × 10−2 (filled yellow region). Finally, the range of scale factors we have

in mind for our framework is 10−1 . a . 1. Gravitational dynamics at late times

(large a) is particularly interesting due to cosmic acceleration. The next generation

of observations including lensing, BAO, cluster counts, galaxy power spectra etc. will

be made within this range. Although we concentrate on late times, with some care,

our framework can be used with CMB observations. For example, after including

radiation and baryons, using our framework we can calculate the anisotropies in the

CMB if we know the initial conditions for each mode after it enters the horizon.

Once the modes are sufficiently subhorizon, their subsequent evolution can be used

to constrain the coefficient functions. Note, that for the mode corresponding to the

first acoustic peak (l ∼ 220), aH/k ∼ 0.3 at last scattering. This comoving scale (as

well as a range of smaller scales) is within the yellow shaded region in Figure 1.

Before we end this section we provide a concrete example of what the coefficient

functions look like in a simple case, the Einstein-de Sitter universe:

β0 = γ0 = 1,

β1 = γ1 = 0,

β2 = γ2 = −3,

δ0 = a/ai,

δ1 = 0,

δ2 = 3(a/ai)(1− a/ai).

(3.4)

where ai ∼ 10−2. We turn to the calculation of the coefficient functions in the next

section.
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3.3 Application of the framework with examples

In this section we calculate the coefficient functions for GR with a cosmological con-

stant and nonrelativistic matter, GR with quintessence, scalar-tensor theories, f(R)

theories and DGP gravity. In general, the nonrelativistic matter consists of baryons,

massive neutrinos and nonbaryonic dark matter with (possibly) nongravitational in-

teractions between them and other fields. For simplicity we will ignore massive neu-

trinos and baryons in this section. Local tests of gravity provide strong constraints

on baryons and photons and their interactions. They do not yet provide similar con-

straints on the interactions of nonbaryonic matter. Hence, nonbaryonic matter need

not be covariantly conserved. However in the examples considered, we treat dark

matter as a perfect fluid that is covariantly conserved for simplicity. This allows

us to use the conservation equation (3.3), which is sometimes easier to use than a

gravitational field equation that would otherwise take its place.

The basic strategy is to substitute our ansatz into the field equations and con-

servation equations and solve for the coefficient functions. We begin by substituting

our ansatz (3.2) into the conservation equation for nonrelativistic perfect fluid dark

matter (3.3), collecting terms with like powers of (aH/k) and setting their coefficient

terms equal to zero to obtain

[
a2∂2

a + (2 + q)a∂a

]
δ0 −

4πGρm

H2
β0δ0 = 0,[

a2∂2
a + (2 + q)a∂a

]
[(aH)δ1]−

4πGρm

H2
β0[(aH)δ1] =

4πGρm

H2
(aH)β1δ0,[

a2∂2
a + (2 + q)a∂a

]
[(aH)2δ2]−

4πGρm

H2
β0[(aH)2δ2]

=
4πGρm

H2
(aH)2[2β1δ1 + β2δ0 − 3(a2∂2

a + qa∂a − q)(γ0δ0)],

(3.5)

where q(a) and H(a) are assumed to be known from the background evolution. The

above equations are second order differential equations for δ0, δ1 and δ2. The equation

for δ0 can be solved once β0 is known. Gβ0 is the effective gravitational “constant”. If

β0 = 1, the equation for δ0 is the usual equation for the fractional matter overdensity

on linear and small scales in GR with nonrelativistic matter as the only clustering
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component.

We digress a bit to note that for δ̄n ≡ (aH)nδn, the differential operator acting

on δ̄n is [a2∂2
a + (2 + q)a∂a − 4πGρmβ0/H

2]. This feature continues if we were to go

to higher order terms as well, hence it might be useful to find a Green’s function for

this operator. In general, to solve for δ1, we need to know β0, β1 and δ0 with two

initial conditions. Similarly, to solve for δ2 we need to know β0, γ0, δ0, β1, δ1 and β2

along with two initial conditions. To progress further we turn to specific theories

of gravitation. Our aim is to show how to apply the formalism rather than discuss

in detail the various models considered. We leave out the detailed steps, which are

straightforward but tedious.

3.3.1 General relativity with cold dark matter and the cos-

mological constant

We start with the usual Einstein Hilbert action:

S =
1

16πG

∫
d4x
√
−g [R− 2Λ] +

∫
d4x
√
−gLm, (3.6)

with Lm, the lagrangian density for perfect fluid cold dark matter The corresponding

field equations are

Gµ
ν + Λδµ

ν = 8πGT µ
ν , (3.7)

where Gµ
ν = Rµ

ν − δµ
νR/2 and T µ

ν is the energy-momentum tensor for a pressureless

perfect fluid. As usual, we separate the field equations into the background and

perturbed parts (first order in Φ,Ψ and δm). Upon substitution of our ansatz into the

perturbed field equations we get the following expressions/equations for the coefficient
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functions. [
a2∂2

a + (2 + q)a∂a

]
δ0 −

4πGρm

H2
δ0 = 0,[

a2∂2
a + (2 + q)a∂a

]
[(aH)δ1]−

4πGρm

H2
[(aH)δ1] = 0,[

a2∂2
a + (2 + q)a∂a

]
[(aH)2δ2]−

4πGρm

H2
[(aH)2δ2]

=− 12πGρm

H2
(aH)2

[
a2∂2

a + (q + 1)a∂a − q
]
δ0,

β0 = γ0 = 1,

β1 = γ1 = 0,

β2 = γ2 = −3
a∂aδ0
δ0

,

(3.8)

where we used the 00 and i 6= j Einstein equations along with the coefficient form of

the conservation equations (3.5). We need to provide 6 constants of integration for

the three second order differential equations. We take these to be

δ0(ai) = 1, ai∂aδ0(ai) = 1,

δ1(ai) = 0, ai∂aδ1(ai) = 0,

δ2(ai) = 0, ai∂aδ2(ai) = −3.

(3.9)

This ensures that δm(k, ai) = δmi(k), thus defining δmi(k) in our ansatz (3.2). The

derivatives are chosen to agree with the case of pure matter domination at early

times (ai ∼ 10−2), where the explicit solution takes the form δ0 = a/ai, δ1 = 0 and

δ2 = 3(a/ai)(1 − a/ai) after rejecting the decaying modes. For any model under

consideration, we can choose fix initial condition by rejecting the decaying mode.

For simplicity, we shall use the above initial conditions for the scalar-tensor as well

the braneworld models for which we plot the coefficient functions. For these models

the parameters have been chosen so that at ai ∼ 10−2, the conservation equations

approach those of an Einstein-deSitter universe in GR.

The dashed lines in Figures 2 and 3 show these dimensionless coefficient functions

for the spatially flat-ΛCDM with Ωm = 8πGρm0/3H
2
0 = 0.3. Since β0 = γ0 = 1,
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there are no corrections to the Newtonian gravitational constant as far as growth of

perturbations is concerned on small scales. Since single gradients do not appear in

the Einstein equations involving δm,Φ and Ψ (after eliminating the velocity through

the conservation equation), β1 = γ1 = 0. The 00 Einstein equation imposes δ1 = 0.

The fact that β2 = γ2 6= 0 reflects corrections because of GR to the relationship

between matter and metric perturbations, whereas β2 = γ2 6= −3 reflects the effect of

the cosmological constant. δ0 characterizes the growth of structure on small scales.

It deviates from δ0 = a/ai because of Λ. δ2 reflects the corrections to the growth

function as we move to larger scales. Note that β2 and γ2 and δ2 are multiplied by

(aH/k)2, whose magnitude is shown in Figure 1. The terms β2(aH/k)
2, γ2(aH/k)

2

and δ2(aH/k)
2 are much smaller than β0, γ0 and δ0, making it difficult to observe

their effects unless we investigate large scales.

3.3.2 Scalar-tensor theory with cold dark matter (matter

representation)

Scalar-tensor theories are popular alternatives to GR. In the matter representation

(also called the Jordan frame), the action contains two free functions f(ϕ) and V (ϕ)

S =
1

16πG

∫
d4x
√
−g [f(ϕ)R + Lϕ] +

∫
d4x
√
−gLm. (3.10)

Note that we have decided to make ϕ dimensionless since we wish to treat the per-

turbation in this field δϕ on the same footing as the metric perturbations Φ and Ψ.

Also Lϕ = −(∂ϕ)2/2−V (ϕ) and Lm does not contain ϕ. The field equations for this

theory are

Gµ
ν +

1

f
[δµ

ν �−∇µ∇ν ] f

=
8πG

f
T µ

ν +
1

2f

[
∂µϕ∂νϕ− δµ

ν

(
1

2
∂σϕ∂σϕ+ V

)]
.

(3.11)

The field equation for ϕ is

�ϕ− Vϕ + fϕR = 0, (3.12)

where fϕ = ∂ϕf and Vϕ = ∂ϕV .
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These field equations at the background level can be found in the literature (for

example see [45]). Using our ansatz in the perturbed gravitational field equations and

the field equations for ϕ at first order in Φ,Ψ, δm and δϕ, collecting terms with like

powers of (aH/k), and setting the expression in front of each power of (aH/k) equal

to zero, we get the following expressions/equations for the coefficient functions:

β0 =
1

f

(
1 + 4fα2

1 + 3fα2

)
≈ 1

f
+O[α2],

γ0 =
1

f

(
1 + 2fα2

1 + 3fα2

)
≈ 1

f
+O[α2],

β1 = γ1 = 0,

β2 = − 3

f

a∂aδ0
δ0

+
1

4f 2
(a∂aϕ)2

+

[
−3(a∂aϕ)

a∂aδ0
δ0

+
1

2
(a∂aϕ)2αϕ

α
+ 3(a∂aϕ) +

3Vϕ

2H2

]
α

f

+O[α2],

γ2 = − 3

f

a∂aδ0
δ0

+
1

4f 2
(a∂aϕ)2

+

[
(a∂aϕ)

a∂aδ0
δ0

+
1

2
(a∂aϕ)2αϕ

α
− (a∂aϕ)− Vϕ

2H2

]
α

f

+O[α2],

(3.13)

where α = fϕ/f is the coupling function and all the functions depend on the scale

factor a . We have calculated the full expressions for β2 and γ2, which are rather long.

The first two terms are listed as a power series in the coupling function α � 1 with

α ∼ αϕ, αϕϕ... . We used the i 6= j equation, αδϕ = Ψ− Φ, to eliminate δϕ from the

field equations. The 00 equation and the field equation for δϕ yield βn and γn with

(n = 0, 1, 2). The equations for δ0, δ1 and δ2 are given by equations (3.5) with βn and

γn (n = 0, 1, 2) given above. Again using the initial conditions (3.9), we can solve for

all the coefficient functions once f(ϕ) and V (ϕ) have been provided. Note that the

difference Φ−Ψ depends on βn− γn (n = 0, 2). This is usually small for α� 1 since

β0 − γ0 ∼ α2 and β2 − γ2 ∼ α.

We plot the coefficient functions in Figures 2 and 3. We have chosen f(ϕ) =
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Figure 3.2: The dimensionless coefficient functions characterizing the relationship
between the metric perturbations and matter distribution are shown above for
FΛCDM(dashed lines) and the scalar-tensor theory (STT) (solid lines). The STT
model is chosen so that its expansion history is consistent with observations. In the
case of ΛCDM β0 = γ0 = 1, β1 = γ1 = 0 and β2 = γ2. At early time (matter domi-
nation) β2 = γ2 = −3 with the cosmological constant causing a departure from this
value at late times. The variation of β0 with the scale factor in the STT can be inter-
preted as a variation of Newton’s constant “Gβ0” as far as growth of perturbations is
concerned. Also note that for STT, β0 6= γ0 and β2 6= γ2. For STT, the difference in
the coefficient functions is due to Φ − Ψ = −α(ϕ)δϕ 6= 0. Note that β1 = γ1 = 0 in
STT as well as ΛCDM. We remind the reader that in the ansatz (3.2) the coefficients
β2 and γ2 are multiplied by (aH/k)2, whose magnitude is shown in Figure 1, making
them accessible at large scales only.
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Figure 3.3: The dimensionless coefficient functions characterizing growth of structure
are show above for ΛCDM(dashed lines) and the scalar-tensor theory (STT) (solid
lines). The STT model is chosen so that its expansion history is consistent with
observations. δ0 is the usual growth function on small scales, whereas δ2 characterizes
the departures as we move to larger scales. For ΛCDM and STT, δ1 = 0. We note
that δ2 is the coefficient of (aH/k)2, which is small withing the scales of interest
(see Figure 1). The initial conditions for δ0 and δ2 are chosen at ai ∼ 10−2 and are
consistent with growth of structure in a matter dominated era.
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1 + c1ϕ
2 and V (ϕ) = 2Λ(1 + c2ϕ

2) with c1 = c2 = 0.1. The initial conditions

and c1, c2 were chosen to ensure that the expansion history remains consistent with

observations (consistent with ΛCDM to within a few percent). The difference between

βn and γn (n = 0, 2) is due to nonminimal coupling (α 6= 0). We stress that we have

not included baryons in this illustrative calculation. Including baryons would lead to

very strong constraints on the function f(ϕ) today from solar system tests [46]. For

an example of a STT that includes dark matter and baryons with different couplings

to gravity see [47].

3.3.3 General relativity with cold dark matter and quintessence

GR with quintessence is a special case of the scalar-tensor theories discussed above,

with f(ϕ) = 1. The action and corresponding field equations are

S =
1

16πG

∫
d4x
√
−g [R + Lϕ] +

∫
d4x
√
−gLm (3.14)

Gµ
ν = 8πGT µ

ν +
1

2

[
∂µϕ∂νϕ− δµ

ν

(
1

2
∂σϕ∂σϕ+ V

)]
(3.15)

�ϕ− Vϕ = 0 (3.16)

The coefficient functions are given by

β0 = γ0 = 1,

β1 = γ1 = 0,

β2 = γ2 = −3
a∂aδ0
δ0

+
1

4
(a∂aϕ)2

(3.17)

where (a∂aϕ)2/4 = 1 − q − 4πGρm/H
2. The i 6= j Einstein equation yields βn = γn

(n = 0, 1, 2). We used the 0i equation to eliminate δϕ from the field equations. As

before δ0, δ1 and δ2 are provided by equation (3.5).
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We pause to comment on a difference between minimally and nonminimally cou-

pled scalar-tensor theories. Consider the field equation (3.12) for δϕ:

[
a2∂2

a + (3 + q)a∂a

]
δϕ+

[(
k

aH

)2

+
Vϕϕ

H2
− 6(1 + q)fϕϕ

]
δϕ

=(a∂aϕ− 6fα)a∂aΦ + 3(a∂aϕ− 2(4 + q)fα)a∂aΨ

− 2

(
6fα(1 + q) +

Vϕ

H2

)
Φ + 2fα

(
k

aH

)2

(Φ− 2Ψ)

(3.18)

In the minimally coupled case we set f(ϕ) = 1, α(ϕ) = 0 to get

[
a2∂2

a + (3 + q)a∂a

]
δϕ+

[(
k

aH

)2

+
Vϕϕ

H2

]
δϕ

=(a∂aϕ)a∂aΦ + 3(a∂aϕ)a∂aΨ− 2
Vϕ

H2
Φ.

(3.19)

From the above equations we can see that in the nonminimally coupled case, for

k/aH � 1 we have δϕ ∝ α(ϕ)Φ whereas in the minimally coupled case δϕ ∝
Φ(aH/k)2. Along with Φ ∝ δm(aH/k)2, at large k the additional field δϕ follows

the same aH/k expansion as the potentials with δmi(k) multiplying the expansion.

This is one of the arguments we had used in Section 2 to justify the form of our

ansatz. We have assumed Ψ = O[Φ] in this argument.

3.3.4 f(R) gravity with cold dark matter

In recent years modifications of the Einstein-Hilbert action in the form of a function

of the Ricci scalar has become a popular alternative to quintessence (see for example

[22, 48]). The action and field equations are

S =
1

16πG

∫
d4x
√
−g [R + f(R)] +

∫
d4x
√
−gLm

(1 + fR)Gµ
ν − δµ

ν

f

2
+ [δµ

ν �−∇µ∇ν ]fR = 8πGT µ
ν .

(3.20)
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In the above expressions fR = ∂Rf(R). The coefficient functions are

β0 =
4

3(1 + fR)
,

γ0 =
2

3(1 + fR)
,

β1 = γ1 = 0,

β2 =
1

(1 + fR)

[
2

3

a2∂2
aδ0
δ0

− 2

3
{(24B(j + q − 2) + 2− q} a∂aδ0

δ0

+4B
{
10− 4q + q2 + 2j(q − 4)− s

}
+72B2(j + q − 2)2 − 4(j + q − 2)a∂aB + 2q − 1

9B

]
,

γ2 =
1

(1 + fR)

[
−2

3

a2∂2
aδ0
δ0

+
2

3
{(6B(j + q − 2)− 7− q} a∂aδ0

δ0

−4B
{
4− q + q2 + j(2q − 5)− s

}
+4(j + q − 2)a∂aB − 2q +

1

9B

]
,

(3.21)

where j = dq/d ln a − (1 − 2q)q and s = dj/d ln a − (2 − 3q)j are the scale factor

dependent functions, jerk and snap respectively, and B = H2fRR/(1 + fR)4. To

obtain δ0, δ1 and δ2 we use equation (3.5). Again, as in the case of GR and scalar-

tensor example, the coefficients of the aH/k term in the ansatz vanish. Note that

we have assumed (aH/k)2B−1 � 1 in deriving the above expressions, hence it is

not appropriate to take the limit B → 0 after deriving the coefficient functions.

Under this assumption, to lowest order in aH/k, we get Φ = 2Ψ, unlike GR with

ΛCDM where Φ = Ψ. If we take the opposite limit, (aH/k)2B−1 � 1 the coefficient

functions are quite different. In particular, β0 = γ0 = (1 + fR)−1 and we get reach

the GR limit as we let fR → 0. As long as we ensure, a priori, that this transition

4Our B = H2fRR/(1+fR) differs from the definition of B in [49] by a factor of (q−1)/6(j+q−2)
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scale (H/kC) ∼ B1/2 (see for example [44]) is outside the length range of physical

scales of interest, we can use our ansatz. More details on the dynamics of f(R)

theories in the context of structure formation, solar system tests, etc. can be found in

[50, 49, 51, 52, 44]. Finally we note, that our purpose in discussing f(R) models was

to illustrate an application of our framework. These models suffer from a number

of problems including fine tuning to match the solar system constraints as well as

a rather serious instability, where the curvature blows up at finite matter densities

[53].

3.3.5 Brane world models: DGP Gravity

As a final example, we provide the expressions and equations governing the coefficient

functions for DGP gravity. In this model, matter is restricted to a four dimensional

brane in a five dimensional bulk. In addition to the the Einstein-Hilbert action in

the bulk, there is an induced four dimensional term [41]. More explicitly, the full 5D

action is given by

S =
1

32πGrc

∫
d5x
√
−g(5)R(5)

+
1

16πG

∫
d4x
√
−gR +

∫
d4x
√
−gLm .

(3.22)

In the above action rc = G(5)/2G where G(5) is 5D gravitational constant. The field

equations are given by the Einstein equations in the bulk (A,B = 0, 1, 2, 3, 4):

GA
B = 0, (3.23)

and the Israel junction conditions on the brane (µ, ν = 0, 1, 2, 3)

Kµ
ν = rc

(
Gµ

ν −
1

3
Gδµ

ν

)
, (3.24)
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where Kµ
ν is the extrinsic curvature on the brane. In Gaussian normal co-ordinates,

the extrinsic curvature is given by the derivative normal to the brane

Kµ
ν =

1

2
∂ygµν . (3.25)

On the RHS of the junction conditions

Gµ
ν = Gµ

ν − 8πGT µ
ν , (3.26)

where Gµ
ν and T µ

ν are the 4D Einstein and stress-energy tensors respectively. For this

model our coefficient functions are given by (which can be easily determined from the

results in [54])

β0 =
4− 2Hrc(2 + q)

3− 2Hrc(2 + q)
,

γ0 =
2− 2Hrc(2 + q)

3− 2Hrc(2 + q)
,

β1 =
12(−1 +Hrc(1 + q))2

Hrc(3− 2Hrc(2 + q))2
,

γ1 =
6(1− 2Hrc)(1−Hrc(1 + q))

Hrc(3− 2Hrc(2 + q))2
.

(3.27)

We can solve for δ0 and δ1 using (3.5). Note that even though δ1(ai) = ai∂aδ1(ai) = 0,

δ1(a) 6= 0 because β1 6= 0. We note an important difference between the the DGP

braneworld model and the examples considered so far in this paper. Unlike the

previous examples, the coefficients of the odd power of aH/k are non-zero (β1, γ1, δ1 6=
0). As explained below, the odd power of aH/k arises due to the junction conditions

that must be satisfied by metric perturbations at the location of our four dimensional

brane in the higher dimensional bulk.

A general way to understand the odd power in our (aH/k) expansion is as follows.

The Israel junction condition relates the first (y) derivative of a metric perturbation

normal to the brane at its surface to the 4D Einstein tensor and stress-energy tensor in

the brane (see equations (3.24),(3.25) and (3.26)). The 5D vacuum Einstein equations

in the bulk provide homogeneous second-order linear differential equations for the

metric perturbations. Just outside the brane, the operators in these equations will be
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Figure 3.4: The dimensionless coefficient functions characterizing the relation-
ship between the metric perturbations and matter distribution are show above for
ΛCDM(dashed lines) and DGP braneworld model (solid lines). The variation of β0

with the scale factor in DGP can be interpreted as a variation of Newton’s con-
stant “Gβ0” as far as growth of perturbations is concerned. Also note that for DGP,
β0 6= γ0. In contrast to all the other examples considered, the coefficients of aH/k:
β1, γ1 6= 0. This is due to the junction conditions on the brane. The linear aH/k
term provides an intriguing signature of braneworld models.
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Figure 3.5: The dimensionless coefficient functions characterizing growth of structure
are show above for ΛCDM(dashed lines) and DGP braneworld model (solid lines). δ0
is the usual growth function on small scales, whereas δ1 characterizes the departures
as we move to larger scales. In contrast to ΛCDM, for the DGP case δ1 6= 0. This
could provide a distinct signature of braneworld models.
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dominated (in our large k limit) by the 3-dimensional spatial derivatives (continuous

across the brane surface), giving terms proportional to k2. These must be balanced

by terms proportional to ∂2
y . Thus we see that ∂y must be proportional to k.

We note that the above arguments are rather general. Although the RHS of

equation (3.24) will be different in different braneworld models, due to the LHS a

linear k−1 term will be present in most braneworld models. However, the coefficients

might not be of O[1] as in the case of DGP. 5 The existence of this non-zero linear

aH/k term provides an exciting new signature for the DGP (or other ) braneworld

models. Since on subhorizon scales aH/k � 1, it is significantly easier to constrain

the linear term compared to the quadratic one.

We plot the coefficient functions in Figures 4 and 5. For DGP, we have assumed

Ωm = 0.25 and Ωk = 0 for simplicity although this model is in tension with current

data [55]. The dotted lines represent the coefficients in ΛCDM. We have not calculated

the coefficients β2, γ2 and δ2 of the (aH/k)2 terms for the DGP case because they are

expected to be subdominant compared to the linear aH/k terms.

We have ignored two important features in the DGP model, the strong coupling

problem and the ghost problem in the self accelerating branch (see for example [56,

57]). The transition to the strong coupling regime happens at the Vainshtein radius

r? . For a localized matter distributions with Schwarzchild radius rg, r? ∼ (rgr
2
c )

1/3.

Using rc ∼ 1/H0, for the largest localized distribution in our universe, galaxy clusters

(M ∼ 1014M�), we get r? < 10 Mpc. This scale is well below the smallest scales where

we intend to apply our framework. We are unaware of a calculation for r?, when

considering distribution of matter on cosmological scales (which is not localized).

To avoid the ghost problem one can choose the normal branch rather than the self-

accelerating branch of the DGP model (see for example [58]). A calculation similar

to the one done in this section can be repeated for the normal branch, however in

that case we do not have an accelerating universe.

In this section we have calculated the coefficient functions for a few examples.

Our aim was to give a flavor of the calculations rather than be exhaustive in the

5Another way of seeing the odd power of aH/k in DGP case is through the form of a propagator
which involves

√
� [41].

104



3.4. OBSERVATIONAL IMPLICATIONS

investigation of the models considered. It would be interesting to investigate these

models in more detail in the context of these coefficient functions to see if there is come

generic behavior across a large class of models. Based on the examples considered

it might be tempting to conclude that βn − γn 6= 0 indicates physics beyond general

relativity. However this is not so. For example a hypothetical dark energy component

could also yield significant anisotropic stress. In the early universe, a more standard

source of anisotropic stress was provided by neutrinos. Nevertheless this difference

could serve as an indicator of new physics in the matter or gravity sector. Another

intriguing result was the presence of a term linear in aH/k in the braneworld scenario,

which could provide a unique signature of braneworld models. We have left out many

possibilities including Bekenstein’s TeVeS [59], models with non-canonical kinetic

terms [60], models of imperfect fluid dark energy with anisotropic stress [61], and

many others (see [62] for a review). We now turn our attention to observables and

their relationship to the coefficient functions.

3.4 Observational implications

We have outlined a procedure that allows many alternative, dynamical theories to

GR with FΛCDM cosmology to be explored within a common framework. Our ap-

proach has been devised with future observations in mind as its usefulness is limited

to the observations that we expect will be the most prescriptive. We assume that

the expansion history of the universe is well constrained through the distance redshift

relation obtained from the apparent magnitude of Type 1a supernovae, the baryon

acoustic oscillation scale and the ratio of baryons to total matter in galaxy clusters.

The large k expansion connects the inhomogeneous nonrelativstic matter distribution

to the perturbed metric in a universe of known (unperturbed) kinematical behavior,

i.e. with a given relation H(a) [or, equivalently, a(t)]. Our approach also presumes

that the theories under consideration provide an understanding of how the distribu-

tion of observable entities such as galaxies relate to that of total mass. This allows

us to focus on the manner in which structure can be observed to grow in the linear
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regime well within the horizon, which avoids the limitations imposed by cosmic vari-

ance considerations and the complications associated with gas dynamics. We further

suppose that gravitational motion of baryonic matter and photons follows timelike

and null geodesics respectively in this spacetime.

From an observational standpoint, our focus is on comoving length scales from

∼ 40 Mpc to ∼ 400 Mpc or equivalently 300 & l & 30 at z ∼ 1, where we expect

the effects to stand out the best. There are three types of observations that are likely

to be relevant. Firstly, there are direct measurements of the two point correlation

function and its evolution. Counting galaxies (or clusters) in three dimensions will

lead to measurements of the evolution of the density function δm using future survey

instruments such as LSST [63, 64] limited solely by cosmic variance as the photo-

metric redshift accuracy and biasing errrors will be ignorable on these scales. We

can construct the ratio of the matter power spectrum Pδm(k, a) at different redshifts

to obtain constraints on δ0(a), δ1(a) and δ2(a). As discussed in the Introduction, by

taking ratios, we can eliminate the need for knowing the initial conidtions δmi(k):

Pδm(k, a2)

Pδm(k, a1)
=

[
δ0(a2)

δ0(a1)

]2
[
1 +

{
aH

k

δ0
δ1

}a2

a1

+ . . .

]
,

where {f(k, a)}a2

a1
≡ f(k, a2)− f(k, a1).

The second type of observation that will be carried out involves departures from

the Hubble flow. These are dominated by the potential function Φ. Under our

assumptions, galaxies will follow timelike geodesics and satisfy the linear conservation

equations relating their peculiar velocities to Φ.

Finally there are weak lensing observations which depend upon the sum, Φ + Ψ,

presuming photons follow null geodesics. These then allow us to track the evolution

of Ψ. A combination of these measurements would not only allow us to understand

the scale dependent evolution of Φ,Ψ and δm but also allow us to probe the rela-

tionship between them. For example, using our ansatz, one can obtain constraints

on the coefficient functions by comparing the correlation functions for the potentials,
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PΦ+Ψ(k, a) (provided by lensing tomography) and the nonrelativistic matter overden-

sity Pδm(k, a) (provided by growth of structure measurements) using

k4PΦ+Ψ ∝ Pδm(β0 + γ0)
2

[
1 + 2

(
β1 + γ1

β0 + γ0

)(
aH

k

)
+ ...

]
.

Comparing the matter and potential power spectrum allows us to constrain the coef-

ficient function without worrying about the initial conditions, though one would still

have to obtain this ratio at different redshifts to constrain the time evolution of the

coefficient functions.

In this exploratory paper, we have discussed only a handful of observations that

can allow is to constrain the coefficient functions. In addition to the observations

mentioned above, we list a few other observations that we think might be relevant for

our framework. The matter and potential fluctuations at the last scattering surface

can be compared to their counterparts at late times, as long as we restrict ourselves

to linear subhorizon scales. The same is true for BAO measurements (see discussion

of range of scales at the end of Section 2). Recently, a 3σ detection of lensing of the

CMB at large l, has been reported by the ACBAR group [65]. This measurement

probes the distribution and evolution of potentials after last scattering, and can also

be used for constraining the coefficient functions [66]. With the Planck mission [16],

such constraints are expected to improve significantly. Another exciting probe of the

three dimensional matter distribution may be provided by the 21 cm observations

(see for example [67] and references therein).

We have limited ourselves to the linear regime. On small scales, the nonlinear

matter power spectrum and its evolution can play a role in the observations discussed

above. The linear to nonlinear mapping discussed in [68] can be used for this purpose.

However, without understanding the theories under consideration in the nonlinear

regime, this is not fully robust.

Recall that {βn, γn, δn} with (n = 0, 1, 2) are functions of the scale factor, a. If the

observations are to be done in a limited range of redshifts then Taylor expanding the

coefficient functions around the central value of the redshift might be a simple and

model independent way of characterizing these coefficient functions in terms of a few
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parameters. From a theoretical perspective, the coefficient functions will depend on

relevant parameters in the theory or model under consideration. A detailed investiga-

tion of the parameterization of the coefficient functions and the possible constraints

that can be obtained from current and future observations is beyond the scope of this

paper. For a more detailed discussion of the observations for distinguishing differ-

ent models of modified gravity and dark energy we refer the reader to some of the

references cited at the end of Section 1 in this paper.

3.5 Discussion

We have outlined a procedure that can be used to test the application of general

relativity (more specifically FΛCDM) on cosmological scales in the context where it

is most likely to fail and in the regime where observations should be most sensitive to

measuring a departure from the general relativistic prediction. The scales are large

enough to avoid the complications from nonlinearities and gas physics, yet small

enough to avoid strong limitations to the interpretation of observations posed by

cosmic variance.

Our procedure assumes that (i) The geometry and kinematics of the universe is

understood (ii) baryons and photons behave as ideal test particles following geodesics

of the cosmological metric. Given these assumptions, at late times, it is the rela-

tionship between the cosmological metric and the nonrelativistic matter distribution

(along with their respective evolution) that provides a test for alternatives GR with

a cosmological constant and cold dark matter. To probe the dynamics of gravity (or

any additional fields) we provided an ansatz, equation(3.2), which gave a relation-

ship between the cosmological metric and nonrelativistic matter perturbations in the

linear, subhorizon regime. This form of the ansatz is consistent with a large class of

theories with the differences between different theories evident in the coefficient func-

tions {βn(a), γn(a), δn(a)} with n = 0, 1, 2. It is hoped that three scalar functions,

the nonrelativistic matter overdensity δm and the metric potentials Φ and Ψ can be

measured over the next decade, providing constraints on the coefficient functions.

Constraining these coefficient functions provides observers with concrete targets for
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testing gravity in a scale dependent manner.

Our goal was to provide a perturbative framework, similar in spirit to the PPN

formalism for testing gravity on solar system scales. However unlike the PPN case,

we were left with coefficient functions that depend on the scale factor rather than

constant coefficients. Although we have not done so in this paper, if the observations

are limited to a small range of scale factors, it is possible to characterize these coef-

ficient functions using a few parameters by expanding around a given scale factor at

which the observations are centered.

With our choice of scales, we have restricted ourselves to linear, subhorizon evo-

lution. We leave the connection between superhorizon and subhorizon evolution as

well as consideration of nonlinearities for the future. Although, we have restricted

ourselves to scalar perturbations, the framework could be extended to include vector

and tensor perturbations.
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3.A Aspects of cosmological perturbation theory

The purpose of this appendix is two fold. First, we provide a pedagogical (but

rigorous) discussion of gauge invariance and gauge transformations. We also introduce

the notion of scalar, vector and tensor decomposition of perturbations. After that,

we collect some useful results for scalar perturbations in the Newtonian gauge which

was used throughout this chapter.

3.A.1 Gauge transformations and invariance

B

P

D :Mb →Mp

(Mb,gb) (Mp,gp)

D̃ :Mb →Mp
B̃

ϕ :Mb →Mb

In cosmological perturbation theory we usually start with a known solution for the

evolution of a field and the spacetime in some simplified scenario. For example, the

evolution of a homogenous and isotropic scalar field ϕ in a FRW universe. The next

step is to perturb the spacetime and the field about the known solution and try to un-

derstand how these perturbations evolve. However, there is an ambiguity in what we

mean by perturbations in a field when the spacetime is also perturbed 6. This ambi-

guity in defining perturbations will lead us to the notion of gauge transformations and

to the idea of gauge invariant perturbations. We discuss these concepts from a geo-

metric viewpoint first and then relate it to a more conventional co-ordinate viewpoint.

6The ambiguity exists in unperturbed spacetime as well. Different foliations of spacetime would
yield different description of the field and its perturbations. However usually physical considerations
such as homogeneity of matter and isotropy allow us to choose the right foliation
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Geometric View: Consider two spacetimes: the perturbed physical spacetime

(Mp,gp) and a fictitious background spacetime (Mb,gb) where gp and gb are the

metrics on the manifolds Mp and Mb respectively. Let Ap be a tensor field defined

on Mp and let Ab be a related tensor field defined on Mb. We will assume that

gb and Ab are known.7 To understand the evolution of perturbations, first, we need

to construct a difference between these Ap and Ab. Since these fields are defined

on different manifolds, we must first associate points in Mb with points in Mp and

then provide a prescription for comparing the tensor fields defined on two different

manifiolds.

Let D : Mb → Mp be a diffeomorphism8 between the two spacetimes. Pick a

point B in Mb. The corresponding point in Mp under D is P = D(B). D naturally

induces a map which takes the tensor field Ap(P ) to the point B in Mb through the

pull back map D∗Ap. Note that D∗Ap is a tensor field in Mb. Its action on vectors

in the tangent space of some point B in Mb is equal to the action of the Ap on the

pull back of those vectors to the tangent space at P in Mp. With these tools in hand

we can construct the required difference:

δA(B) = [D∗Ap](B)−Ab(B). (3.28)

This difference is a tensor field defined onMb. Thus what we mean by a perturbation

at a given spacetime point depends on the identification maps between the perturbed

and the unperturbed spacetimes.

Now consider a different map D̃ such that D̃(B̃) = P . Under this map, the

difference between the pull back of Ap(P ) to Mb and Ab(B̃):

δ̃A(B̃) = [D̃∗Ap](B̃)−Ab(B̃). (3.29)

We cannot compare δ̃A(B̃) and δA(B) yet because they are evaluated at different

7From now on A can be the metric g also.
8A diffeomorphism is a bijective map between manifolds with the property that both the map

and its inverse are differentiable.
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points ofMb. So we need the pull back of δ̃A(B̃) to B which requires a map from B →
B̃. Now, the diffeomorphisms D, D̃ : Mb →Mp are linked by another diffeomorphism

ϕ : Mb →Mb. This diffeomorphism is given by ϕ = D̃−1 ·D under which ϕ(B) = B̃.

Using ϕ to pull back δ̃A(B̃) we get

[ϕ∗δ̃A](B)− δA(B) = −[ϕ∗Ab](B) + Ab(B) (3.30)

because [ϕ∗D̃∗Ap](B) = [D∗Ap](B). If ϕ is the integral curve of an infinitesimal

vector field ξ, then the above difference can be expressed as the Lie derivative of Ab

with respect to ξ, ie.

[ϕ∗δ̃A](B)− δA(B) = −LξAb(B). (3.31)

There were two important steps in deriving equation (3.31). The first was constructing

the difference δA between tensors on different manifolds and second was constructing

the the difference between δA (resulting from different identification maps) at two

different points on the same manifold.

In summary, we have shown that in relativistic perturbation theory (i) the per-

turbation in a field depends on the identification of points between the background

spacetime time and the perturbed spacetime. (ii) The difference between pertur-

bations resulting from two different identification maps can be expressed as a Lie

derivative of the (known) background field. The choice of the identification map is

often called a choice of “gauge” and the transformation that allows us to relate per-

turbations in different gauges are called gauge transformations.

Gauge Invariance: The perturbation δA is “gauge-invariant” iff LξAb = 0 for all

ξ (equivalently, all pairs D, D̃), ie. when Ab = constant on the background.

Co-ordinate View: Let us now write the above expressions (3.28) and (3.31) in

component form. The maps, D and D̃ can be thought of as inducing different co-

ordinate systems on Mp in the following sense. Let xγ and x̃γ = xγ + ξγ be the
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co-ordinates associated with the points B = D−1(P ) and B̃ = D̃−1(P ) in Mb. The

point P in Mp is assigned xγ and x̃γ depending on the identification maps D and D̃.

In component notation, equation (3.28) becomes

[δA]µ1...µn
ν1...νm

(xγ) =
∂xβ1

∂xν1
...
∂xβm

∂xνm

∂xµ1

∂xα1
...
∂xµn

∂xαn
[Ap]α1...αn

β1...βm
(xγ)− [Ab]µ1...µn

ν1...νm
(xγ)

= [Ap]µ1...µn
ν1...νm

(xγ)− [Ab]µ1...µn
ν1...νm

(xγ),

(3.32)

where the first equality results from the definition of the pull back map. The second

equality is due of our assigning of the same co-ordinates to B and P . Similarly, the

equation (3.31) becomes

[ϕ∗δ̃A]µ1...µn
ν1...νm

(xγ) =
∂x̃β1

∂xν1
...
∂x̃βm

∂xνm

∂xµ1

∂x̃α1
...
∂xµn

∂x̃αn
δ̃A

α1...αn

β1...βm
(x̃γ) = δ̃A

µ1...µn

ν1...νm
(xγ), (3.33)

where the first equality is the definition of the pull back map and the last equality fol-

lows from our assumption that ξγ is infinitesimal. We restrict ourselves to coordinate

systems where [δ̃A]µ1...µn
ν1...νm

remain small. Finally we have the following operational way

of comparing perturbations in two different gauges (ie. maps D, D̃)

δ̃A
µ1...µn

ν1...νm
(xγ) = δAµ1...µn

ν1...νm
(xγ)− LξA

µ1...µn
ν1...νm

(xγ), (3.34)

where
LξA

µ1...µn
ν1...νm

= ξλ∂λA
µ1...µn
ν1...νm

− Aλ...µn
ν1...νm

∂λξ
µ1 − ...− Aµ1...λ

ν1...νm
∂λξ

µn

+ Aµ1...µn

λ...νm
∂ν1ξ

λ + ...+ Aµ1...µn

ν1...λ ∂νmξ
λ

= ξλ∇λA
µ1...µn
ν1...νm

− Aλ...µn
ν1...νm

∇λξ
µ1 − ...− Aµ1...λ

ν1...νm
∇λξ

µn

+ Aµ1...µn

λ...νm
∇ν1ξ

λ + ...+ Aµ1...µn

ν1...λ ∇νmξ
λ.

(3.35)

For ease of future reference, we write down (3.35) explicitly for scalar, vector and

higher rank tensor fields.
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• scalar field perturbations ϕ:

δ̃ϕ = δϕ− ξλ∂λϕ (3.36)

• four velocity uµ

δ̃uµ = δuµ − ξλ∂λuµ − uλ∂µξ
λ (3.37)

• metric perturbation δgµν we have

δ̃gµν = δgµν − ξλ∂λgµν − gλν∂µξ
λ − gµλ∂νξ

λ (3.38)

3.A.2 Classifying perturbations

One can decompose perturbations in tensor field based on how they transform under

spatial rotations and translations at a given instant of time. For concreteness, let us

decompose perturbations in the metric tensor (on a spatially flat FRW background)

. Based on the index structure, it is clear that the metric perturbation δg00 behaves

like a (spatial) scalar. We will write it as δg00 = −2A. The space-time part, δg0i can

be written as a sum of a divergence free and curl free spatial vector δg0i = ∂iB +Bi,

where ∂iBi = 0. The space-space part can be written as

δgij = a2

[
−2ψδij + {∂i∂j −

1

3
δij∇2}2E + 2∂(iFj) + hij

]
,

where ∂iFi = 0 and hi
i = ∂ihij = 0. To make sure we have accounted for all ten

components of the metric perturbation, let us count the number of free functions. We

have 4 scalar function (A,B, ψ,E), two transverse vectors (Bi, Fi) and one transverse,

traceless tensor hij. (Bi, Fi) contain 4 free functions, and hij contains 2 free functions.

Putting it all together we have 10 free functions as expected for a symmetric 4D

matrix.

In cosmological perturbation theory, when talking about scalar, vector and tensor

perturbations we are referring to perturbations constructed out of scalar functions,

transverse, spatial vectors and transverse, traceless spatial tensors respectively. When
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using the Einstein equations; scalar, vector and tensor perturbations decouple at

linear order.

3.A.3 Scalar metric perturbations

For the most part scalar perturbations are the ones relevant for structure formation,

CMB temperature fluctuations etc. For scalar perturbations the perturbed metric is

given by

ds2 = −(1 + 2A)dt2 + 2∂iBdtdx
i + a2(t)[(1− 2ψ)δij + {∂i∂j −

1

3
δij∇2}2E]dxidxj

(3.39)

Even when we restrict ourselves to scalar fluctuations, we can simplify the field

equations considerably by an appropriate choice of gauge. Here is the general proce-

dure. Like any other perturbation, the components of the infinitesimal vector field

ξγ in (3.35) can be be written as ξγ = (ξ0, ξi). The spatial part ξi can be further

decomposed into a curl free and a divergence free part: ξi = ∂iξ+ξi
⊥, where ∂iξ

i
⊥ = 0.

For scalar perturbations we are only interested in ξ0 and ξi = ∂iξ. Under the gauge

transformation generated by ξγ = (ξ0, ∂iξ), the four functions in the metric transform

as
Ã = A− ξ̇0

B̃ = B + 2Hξ − ξ̇ + ξ0

ψ̃ = ψ +Hξ0 +
∇2

a2
ξ

Ẽ = E − ξ

a2

(3.40)

Since the field equations are gauge invariant, we are free to choose ξ0 and ξ. With

the help of these two functions ξ0 and ξ we can eliminate two out of the four scalar

functions in the metric perturbations. A particular choice of these two functions,

corresponds to a choice of gauge.

Consider the metric in some arbitrary co-ordinate system (xγ) defined by the

functions A,B,Ψ and E. Now consider the a gauge transformation defined by ξ = a2E

and ξ0 = −(B − a2Ė). This choice sets B̃ = Ẽ = 0. We then define Φ ≡ Ã =
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A+ (B− a2Ė). and Ψ ≡ ψ̃ = ψ+∇2E−H
(
B − a2Ė

)
to get the metric in the form

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj.

This gauge is called the Newtonian gauge. There are a number of benefits in

using the Newtonian gauge. First, it is diagonal which simplifies calculations. For

the purposes of this chapter the most important aspect is the following. In this

gauge, on small scales and in the presence of non-relativistic sources, the perturbed

Einstein field equations yield Φ = Ψ and the usual Poisson equation∇2Φ = 4πGρmδm.

Similarly, the conservation equations also yield equations similar to their Newtonian

counterparts. Hence in this gauge, our intuition from perturbations in “Newtonian”

cosmology carries over nicely. 9

On the other hand one can also work with explicitly gauge invariant variables.

The idea is to take combinations of the above transformation equations in such a way

that the dependence on ξγ is eliminated. We then have equations of the form

F (A,B, ψ,E, Ȧ, Ḃ . . .) = F (Ã, B̃, ψ̃, Ẽ, ˙̃A, ˙̃B . . .),

where F is a linear function of its arguments. Any such function F is a gauge invariant

variable. A particularly useful and complete set of gauge invariant variables is (gauge

invariance an be easily checked using equation (3.40)

ΦGI = A+
(
B − a2Ė

).

ΨGI = ψ +∇2E −H
(
B − a2Ė

) (3.41)

9For a more physical perspective consider particles at rest with respect to this co-ordinate system.
The four velocity (which is normal to the spatial hypersurface) is given by uµ = (1−Φ,~0). One can
then check that, these world-lines have no shear, ie.

σµν = ∇(µuν) −
∇γuγ

3
(gµν − uµuν) = 0.

Similarly there is no rotation either. This means that the world lines of particles at rest converge
towards or diverge away from each other.
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Note that the above gauge invariant variables are the amplitudes of the metric pertur-

bations Φ = Ã and Ψ = ψ̃ in the Newtonian gauge. This is another extremely useful

feature of the Newtonian gauge. In practical terms, one can simply do the calculation

in Newtonian gauge and in the end, then in the end make the replacement Ψ → ΨGI

and Φ → ΦGI to express the results in an explicitly gauge invariant form. Because

of these reasons we exclusively used the Newtonian gauge throughout the chapter.

Below we provide a number of formulae in the Newtonian gauge that are quite useful

for calculations. For more details on cosmological perturbation theory and different

gauge choices see ([42]).

3.A.4 Newtonian gauge: useful formulae

• metric: ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj.

• Christoffel Symbols

Γi
0j = Hδi

j − ∂0Ψδ
i
j

Γ0
ij = a2Hδij − a2[∂0Ψ + 2H(Φ + Ψ)]δij

Γ0
00 = ∂0Φ

Γ0
i0 = ∂iΦ

Γi
00 =

∂iΦ

a2

Γi
ji = Γj

jj = −Γj
ii = −∂jΨ i 6= j

Γi
jk = 0 i 6= j 6= k

• Conservation equations

∂0ρ̄+ 3H(ρ̄+ p̄) = 0

∂0δT
0
0 + ∂iδT

i
0 + 3HδT 0

0 −HδT i
i = −3(ρ̄+ p̄)∂0Ψ

∂0δT
0
i + ∂jδT

j
i + 3HδT 0

i = −(ρ̄+ p̄)∂iΦ
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where we have ignored the following term 2(Φ + Ψ)δT 0
i

• Ricci Tensor(mixed)

R0
0 = 3H2q − 3H2

(
2qΦ +

1

H
∂0(Φ + 2Ψ) +

1

H2
∂2

0Ψ +
1

3a2H2
∇2Φ

)
R0

i = −2H∂i

(
Φ +

1

H
∂0Ψ

)
Ri

i = 3H2(2 + q)

− 3H2

[
2(2 + q)Φ +

1

H
∂0(Φ + 6Ψ)

1

H2
∂2

0Ψ +
1

3a2H2
∇2(Φ− 4Ψ)

]
Ri

j = − 1

a2
∂i∂j(Φ−Ψ) i 6= j

• Ricci Scalar

R = 6H2(1+q)−2H2

[
6(1 + q)Φ +

3

H
∂0(Φ + 4Ψ) +

3

H2
∂2

0Ψ +
1

a2H2
∇2(Φ− 2Ψ)

]

• Einstein Tensor(mixed)

G0
0 = −3H2 + 6H2

(
Φ +

∂0Ψ

H
− 1

3a2H2
∇2Ψ

)
G0

i = −a2Gi
0 = −2H∂i

(
Φ +

∂0Ψ

H

)
Gi

i = −3H2(1 + 2q)

+ 6H2

[
(1 + 2q)Φ +

1

H
∂0(Φ + 3Ψ) +

1

H2
∂2

0Ψ +
1

3a2H2
∇2(Φ−Ψ)

]
Gi

j = − 1

a2
∂i∂j(Φ−Ψ) i 6= j
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f(a, ~x) =
∫
f(a,~k)ei~k·~xd3k. ~x and ~k are co-moving co-ordinates and wave

numbers respectively with ~k · ~x ≡ Σkixi, ki = ki and k2 = kik
i. We define

k̃i = ki/aH. Derivatives with respect to a are denoted by primes.

• Christoffel Symbols

Γi
0j = Hδi

j − aHΨ′δi
j

Γ0
ij = a2Hδij − a2H[aΨ′ + 2(Φ + Ψ)]δij

Γ0
00 = aHΦ′

Γ0
i0 = iaHk̃iΦ

Γi
00 = iH

k̃iΦ

a

Γi
ji = Γj

jj = −Γj
ii = −iaHk̃jΨ i 6= j

Γi
jk = 0 i 6= j 6= k

• Conservation equations

aρ̄′ + 3(ρ̄+ p̄) = 0

a(δT 0
0 )′ + iak̃iδT

i
0 + 3δT 0

0 − δT i
i = −3(ρ̄+ p̄)aΨ′

a(δT 0
i )′ + iak̃jδT

j
i + 3δT 0

i = −(ρ̄+ p̄)iak̃iΦ

(3.42)

• Ricci Tensor(mixed)

R0
0 = 3H2q − 3H2

(
2qΦ + aΦ′ + (2 + q)aΨ′ + a2Ψ′′ − 1

3
k̃2Φ

)
R0

i = −i2aH2k̃i (Φ + aΨ′)

Ri
i = 3H2(2 + q)

− 3H2

[
2(2 + q)Φ + aΦ′ + (6 + q)aΨ′ + a2Ψ′′ − 1

3
k̃2(Φ− 4Ψ)

]
Ri

j = H2k̃ik̃j(Φ−Ψ) i 6= j
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• Ricci Scalar

R = 6H2(1 + q)− 2H2
[
6(1 + q)Φ + 3aΦ′ + 3(4 + q)Ψ′ + 3a2Ψ′′ − k̃2(Φ− 2Ψ)

]
• Einstein Tensor

G0
0 = −3H2 + 6H2

(
Φ + aΨ′ +

1

3
k̃2Ψ

)
G0

i = −a2Gi
0 = −i2aH2k̃i (Φ + aΨ′)

Gi
i = −3H2(1 + 2q)

+ 6H2

[
(1 + 2q)Φ + aΦ′ + (3 + q)aΨ′ + a2Ψ′′ − 1

3
k̃2(Φ−Ψ)

]
Gi

j = H2k̃ik̃j(Φ−Ψ) i 6= j
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z

r

3.B Braneworld perturbations

In this appendix, we wish to carry out a detailed calculation of perturbations in

braneworld models. Our main interest is in understanding the odd power of the co-

moving wave number, k, that are expected to arise in the field equation for braneworld

models (see Section 3.3.5 of this chapter). To gain some intuition into the calculation,

we first explore braneworld electrostatics as an analogy for braneworld gravity. We

then move on to the calculation of Dvali-Gabadase-Porrati (DGP)[41] and Randall

Sundrum (RS)[69] braneworld perturbations to sub-leading order in spatial deriva-

tives.

3.B.1 Braneworld electrostatics: An analogy

Let us begin with a lower dimensional case. Consider the following (3+1) dimensional

Lagrangian density (with x3 = z)

L = − 1

16π
F µν

(3)F(3)µν − δ(z)

[
2η

16π
F ab

(2)F(2)ab +
1

c
J(2)aA

a
(2)

]
, (3.43)

where η = constant, [η] = L, {µ, ν = 0, 1, 2, 3} whereas {a, b = 0, 1, 2} and the

subscripts “(2)” and “(3)” denote fields defined on the sheet at z = 0 and in the full
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3-space respectively. The field tensors F(3)µν and F(2)ab are not independent. They

are related by F(2)ab = δµ
aδ

ν
bF(3)µν |z=0. For the above lagrangian density, the field

equations are given by

−∂µF
µb
(3) − δ(z)

[
2η∂aF

ab
(2) −

4π

c
J b

(2)

]
= 0. (3.44)

For b = 0, with F i0 ≡ Ei and J0 ≡ c σ(r) with r = xî + yĵ and assuming static

configurations, equation (3.44) yields

∇ · E(3) + δ(z)
[
2η∇r · E(2) − 4πσ

]
= 0, (3.45)

where ∇ = î∂x + ĵ∂y + k̂∂z and ∇r = î∂x + ĵ∂y. The 2D and 3D fields are related by

E(2)x = E(3)x|z=0,E(2)y = E(3)y|z=0. Now, for z 6= 0 we get the usual Gauss’ law.

∇ · E(3) = 0 z 6= 0. (3.46)

We integrate the equation (3.45) across the z = 0 surface to get

E(3)z = 2πσ − η(∂xE(2)x + ∂yE(2)y) z = 0. (3.47)

As usual, we define a potential function Φ corresponding to the fields: E(2) =

−∇rΦ(r, z = 0) and E(3) = −∇Φ(r, z). Then equations (3.46) and (3.47) yield

∇2Φ = 0 z 6= 0,

∂zΦ = −2πσ − η∇2
rΦ z = 0.

(3.48)

Note: The junction condition yields a relationship between the “off-brane”(linear) and

“in-brane” derivatives.

Let σ(r) = σ0 +
∫
d2kσke

ik·r and Φ(r, z) = −2πσ0z +
∫
d2kΦk(z)e

ik·r. This yields

(
∂2

z − k2
)
Φk = 0 z 6= 0.

∂zΦk = −2πσk + ηk2Φk z = 0.
(3.49)
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A solution is given by

Φk(z) = 2πη
e−k|z|

(kη)2 + (kη)
σk. (3.50)

For small scales, we get

Φk =
2πη

(kη)2
σk

[
1− 1

(kη)
+ . . .

]
z = 0, kη � 1. (3.51)

Note that we get an odd power of k as the leading order correction to the Poisson

equation on the brane. This same feature will be carried over in the DGP scenario

(as is shown next)10. The reason that the off-brane derivative introduces an on-brane

linear power of k is because of the bulk field equation, which enforces ∂z ∼ k. In the

braneworld models the Israel junction conditions on the brane yield

∂ygµν = κ2
(5)

(
Gµν −

1

3
Ggµν

)
, (3.52)

where κ(5) is the bulk gravitational coupling and µ, ν = 0, 1, 2, 3. The linear derivative,

∂y, is normal to the brane. The tensor Gµν represents an effective energy momentum

tensor on the brane. For the case of DGP it is given by κ−2 (Gµν − κ2Tµν) where

κ is the 4D gravitational coupling, Gµν is the 4D Einstein tensor and Tµν is the

energy momentum tensor of matter on the brane. Again, the important feature is

that there is a relationship between the offbrane, linear y-derivative and the in brane

derivatives (present in Gµν and G). Along with GAB = 0 (A,B = 0, 1, 2, 3, y = 4) in

the bulk, arguments similar to the ones used for the electrostatics case yields the odd

k dependence. We turn to the detailed calculation in the subsequent sections.

3.B.2 Braneworld perturbations: Details

In the following, we obtain the matter-metric relation to sub-leading order in spa-

tial derivatives. Following [54] we will consider an action of the following form for

10The RS scenario is discussed in the last section of this appendix
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braneworld models:

S =
1

2κ2
(5)

∫
d5x
√
−g(5)

[
R(5) − 2Λ(5)

]
+

∫
d4x
√
−gLeff , (3.53)

where Leff is the effective Lagrangian on the brane (see below for explicit examples).

The brane energy momentum tensor corresponding to this effective brane lagrangian

is defined as

Gµν = − 2√
−g

δ

δgµν

∫
d4x
√
−gLeff . (3.54)

In the bulk, the field equations are given by

GA
B + Λ(5)δ

A
B = 0

where A,B = 0, 1, 2, 3, 4. In addition the metric must also satisfy the Israel Junction

condition at the location of the brane. This is given by

Kµ
ν =

κ2
(5)

2

(
Gµ

ν −
1

3
Gδµ

ν

)
(3.55)

where Kµ
ν is the extrinsic curvature of the brane and G = Tr[Gµ

ν ]. We have assumed

Z2 symmetry about the brane and µ, ν = 0, 1, 2, 3.11

Although we will try to keep our arguments as general as possible, as explicit

examples, we will consider the DGP and RS models. DGP modified gravity on

cosmological scales whereas RS does the same on sub millimeter scales.

To carry out the calculation will need the Einstein tensor in the bulk, the ex-

trinsic curvature and the effective energy momentum tensor. The form of first two

is independent of the model under consideration. So we shall calculate them first.

Then we will calculate the effective energy momentum tensor for the DGP and RS

models. Finally we will put these tensors into the field equations and the junction

conditions to obtain the desired matter metric relation at sub-leading order in spatial

derivatives.

11For κ, Λ, g, R etc. when the subscript (5) is not used, we are referring to their 4D values.
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Einstein tensor and extrinsic curvature tensor

Consider a metric of the form (see [70])

ds2 = −N2(1 + 2Φ)dt2 + A2(1− 2Ψ)δijdx
idxj + 2l∂iϕdx

idy + (1 + 2Γ)dy2 (3.56)

where N = N(t, y), A = A(t, y) and the others functions: Φ,Ψ, ϕ and Γ depend

on all five co-ordinates. l is a constant ([l]=length) which we will choose based on

the problem under consideration. The brane is located at y = 0. To recover the

perturbed FRW metric in Newtonian gauge on the brane, we require A(t, 0) = a(t)

and N(t, 0) = 1. The Einstein tensor upto linear order in the perturbations is given

by (“ prime ”= ∂y and “dot”= ∂t)

G0
0 = 3

(A′

A

)2

+
A′′

A
− 1

N2

(
Ȧ

A

)2


− 3Ψ′′ +
∇2

A2

(
Γ− lϕ′ − 2l

A′

A
ϕ− 2Ψ

)
− 3

A′

A
(Γ′ + 4Ψ′)

− 6

{
A′′

A
+

(
A′

A

)2
}

Γ +
6

N2

(
Ȧ

A

)2

Φ− 3

N2

Ȧ

A

(
Γ̇− 2Ψ̇

)
G0

y =
3

N2

[
Ȧ′

A
− Ȧ

A

N ′

N

]

− 1

2N2

(
l
∇2

A2
ϕ′ + 6

Ȧ

A
(Φ′ + Ψ′) + 6Ψ̇′

)

+
6

N2

N ′

N

Ȧ

A
Φ− 3

N2

{
A′

A
Γ̇ +

(
A′

A
− N ′

N

)
Ψ̇

}
G0

i =
l

2N2
∂i [2ϕ

′ − ϕ̇′] +
1

N2
∂i

[
Γ̇− 2Ψ̇− Ȧ

A
(Γ + 2Φ)

+l

({
2
A′

A

Ṅ

N
− Ȧ

A

N ′

N
+
Ȧ′

A

}
ϕ+

1

2

{
−3

A′

A
+
N ′

N

}
ϕ̇

)]

Gi
j = −∂i∂j

A2

(
Γ− lϕ′ − l

{
A′

A
+
N ′

N

}
ϕ+ Φ−Ψ

)

(3.57)
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Gy
y = 3

(A′

A

)2

+
A′

A

N ′

N
+

1

N2

Ȧ

A

Ṅ

N
− 1

N2


(
Ȧ

A

)2

+
Ä

A




+
∇2

A2

(
Φ− 2Ψ− l

{
N ′

N
+ 2

A′

A

}
ϕ

)
− 3

A′

A
(Φ′ − 2Ψ′)− 3

N ′

N
Ψ′

+
6

N2


(
Ȧ

A

)2

+
Ä

A
− Ȧ

A

Ṅ

N

Φ− 6

N2

{(
A′

A

)2

+
A′

A

N ′

N

}
Γ

+
3

N2

Ȧ

A

(
Φ̇ + 4Ψ̇

)
+

Ψ̈

N2

Gi
i = 3

(A′

A

)2

+ 2
A′′

A
+

{
2
A′

A

N ′

N
+
N ′′

N

}
+

2

N2

Ȧ

A

Ṅ

N
− 1

N2


(
Ȧ

A

)2

+ 2
Ä

A




+ 2
∇2

A2

(
Γ− lϕ′ + Φ−Ψ− l

{
A′

A
+
N ′

N

}
ϕ

)
+ 3(Φ′′ − 2Ψ′′)

− 3
N ′

N
(Γ′ + 2Ψ′ − 2Φ′)− 6

A′

A
(Γ′ − Φ′ + 3Ψ′)

− 6

{(
A′

A

)2

+ 2
A′

A

N ′

N
+ 2

A′′

A
+
N ′′

N

}
Γ +

6

N2


(
Ȧ

A

)2

− 2
Ȧ

A

Ṅ

N
+ 2

Ä

A

Φ

+
3

N2

{
Ṅ

N
− 2

Ȧ

A

}
Γ̇ +

6

N2

Ȧ

A
Φ̇ +

6

N2

{
3
Ȧ

A
− Ṅ

N

}
Ψ̇− 3

N2

{
Γ̈− 2Ψ̈

}
Gy

i = −∂i(Φ
′ − 2Ψ′) + ∂i

[{
A′

A
− N ′

N

}
Φ +

{
2
A′

A
+
N ′

N

}
Γ

− l

N2

ÄA − Ȧ

A

Ṅ

N
+ 2

(
Ȧ

A

)2
ϕ− 1

2

{
Ȧ

A
− Ṅ

N

}
ϕ̇+

1

2
ϕ̈


The extrinsic curvature is defined as12

Kµ
ν = ∇νn

µ,

12In the case of Gaussian-normal co-odinates adapted to the brane, the extrinsic curvature is
defined as Kµν = 1

2∂ygµν .
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where nµ is the normal to the brane. For the metric (3.56), the normal is given by

nµ = (0, lA−2∂iϕ, 1− Γ). Explicitly, the extrinsic curvature on the brane upto linear

order in the perturbations is given by

K0
0 =

N ′

N
+ Φ′ + Γ

N ′

N
,

Ki
i = 3

A′

A
+ l
∇2

a2
ϕ− 3(Ψ′ + Γ

A′

A
),

Ki
j = l

∂i∂j

a2
ϕ.

(3.58)

To make further progress we need Gµ
ν . The form of Gµ

ν depends on the model under

consideration. Let us first concentrate on the DGP model.

Large scale modification of gravity: DGP model:

For this model, Λ(5) = 0 in the action (3.53) and

Leff =
1

2κ2
R− Lm, (3.59)

where Lm is the lagrangian for non-relativistic dark matter (for simplicity). The field

equations in the bulk are given by

GA
B = 0.

For this model a length scale is defined by the ratio of the gravitational coupling in

the bulk and the brane

l = rc =
κ2

(5)

2κ2
.

In what follows we take rc ∼ O[H−1
0 ] which is required for consistency with the

expansion history. One of the solutions in this model allows for cosmic acceleration

and is referred to as the self-accelerated solution. Note that gravity becomes 5D at

scales comparable to and larger than rc.
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The effective energy momentum tensor defined by equations (3.54) and (3.59) is

Gµ
ν = κ−2

(
Gµ

ν − κ2T µ
ν

)
,

where T µ
ν is the matter energy momentum tensor. For the r.h.s of the Israel junction

conditions we need Gµ
ν − 1

3
Gδµ

ν which on the brane is given by (upto the order O[∇2Φ]):

κ2

(
G0

0 −
1

3
Gδ0

0

)
= −H2(1− 2q) +

2

3
κ2ρm +

2

3

[
−∇

2

a2
(Φ + Ψ) + κ2ρmδm

]
,

κ2

(
Gi

i −
1

3
Gδi

i

)
= 3H2 − κ2ρm + 2

∇2

a2
Ψ− κ2ρmδm,

κ2

(
Gi

j −
1

3
Gδi

j

)
= −∂i∂j

a2
(Φ−Ψ). i 6= j

(3.60)

We now have all the essential ingredients for obtaining the matter metric relation.

The field equations in the bulk , GA
B = 0, are satisfied by (at the background level)

A = a(1 +Hy) and N = (1 +Hqy).

Now we move on to the perturbed junction condition13. The junction condition

up to sub-leading order in the spatial derivatives yields (see equations (3.55, 3.58,

3.60))

Φ′ =
2rc

3

[
−∇

2

a2
(Φ + Ψ) + κ2ρmδm

]
, 0− 0

ϕ = Ψ− Φ, i 6= j

Ψ′ =
rc

3

[
∇2

a2
ϕ− 2

∇2

a2
Ψ + κ2ρmδm

]
. i− i

(3.62)

Combining the above three equations one gets Φ′ − 2Ψ′ = 0. Fourier transforming

13The Israel junction condition (using the background parts of the ii equations in (3.58, 3.60)),
we get the modified Friedmann equation

H2 − H

rc
=

κ2

3
ρm (3.61)

Note that for rcH � 1 we recover the usual Friedmann equation.
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the above equations, and using i 6= j equation in i− i equation we have

Ψ′ =
rc

3

[
k2

a2
(Φ + Ψ) + κ2ρmδm

]
,

Φ′ − 2Ψ′ = 0.

(3.63)

To eliminate Ψ′ we need another expression involving Ψ′,Φ and Ψ. This is provided

by the solution to a “wave” equation for Ψ in the bulk (obtained below). Also, to

obtain, Φ and Ψ independently in terms of δm we need another equation relating Φ

and Ψ. This additional equation is also provided by the bulk field equations, which

we turn to next.

In the bulk δGA
B = 0 (refer to (3.57)). Starting with δG0

0 = 0, eliminating Γ− rcϕ
′

using δGi
j = 0 and then using δGy

y = 0 to eliminate Φ we get

Ψ′′ +
∇2

A2

(
Ψ + rc

A′

A
ϕ

)
+
A′

A
(Γ′ + 4Ψ′) +

A′

A
(Φ′ − 2Ψ′) +

N ′

N
Ψ′ = 0.

Now from δGy
i = 0 we see that Φ′ − 2Ψ′ ∼ O[Φ] so we drop this term. This leaves us

with

Ψ′′ +
∇2

A2

(
Ψ + rc

A′

A
ϕ

)
+
A′

A
(Γ′ + 4Ψ′) +

N ′

N
Ψ′ = 0. (3.64)

We collect two important equations. These are δGy
y = 0 and equation (3.64). To

sub-leading order in the spatial derivatives, the fourier transformed equations yield

Ψ′′ − k2

A2

(
Ψ + rc

A′

A
ϕ

)
+
A′

A
(Γ′ + 4Ψ′) +

N ′

N
Ψ′ = 0,

k2

A2

(
Φ− 2Ψ− rc

{
N ′

N
+ 2

A′

A

}
ϕ

)
+ 3

N ′

N
Ψ′ = 0.

(3.65)

We need equation (3.64) only upto leading order in the spatial derivatives;

Ψ′′ − k2

A2

(
Ψ + rc

A′

A
ϕ

)
= 0, (3.66)
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which can be solved up to leading order in k to obtain

Ψ = c1(1 +Hy)−k/aH + rc
A′

A
ϕ. (3.67)

This implies that

Ψ′|y=0 = −k
a
(Ψ− rcHϕ)|y=0. (3.68)

Note that the off-brane derivative provides an odd power of k. On the other hand

from δGy
y = 0 we get,

Φ− 2Ψ− rc

{
N ′

N
+ 2

A′

A

}
ϕ+ 3

N ′

N
Ψ′ = 0, (3.69)

which when evaluated on the brane, yields

Φ− 2Ψ− rcH(2 + q)ϕ+ 3HqΨ′ = 0. (3.70)

Now we are ready to write down a complete set of equations that allow us to read

off the matter-metric relationship to sub-leading order in spatial derivatives (using

equations (3.63, 3.68, 3.70))

Ψ′ =
rc

3

[
k2

a2
(Φ + Ψ) + κ2

4ρmδm

]
Ψ′ = −k

a
(Ψ− rcH(Φ−Ψ))

k2

a2
[Φ− 2Ψ− rcH(2 + q)(Φ−Ψ)] + 3HqΨ′ = 0

(3.71)

The above equations can be rearranged in the form

Φ = −4πGρmδm
H2

(
aH

k

)2 [
β0 + β1

(
aH

k

)
+ ...

]
Ψ = −4πGρmδm

H2

(
aH

k

)2 [
γ0 + γ1

(
aH

k

)
+ ...

] (3.72)
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where14

β0 =
4− 2Hrc(2 + q)

3− 2Hrc(2 + q)
,

γ0 =
2− 2Hrc(2 + q)

3− 2Hrc(2 + q)
,

β1 =
12(1−Hrc)(1−Hrc(3 + q))

Hrc(3− 2Hrc(2 + q))2
,

γ1 =
6(1− 2Hrc(1 + q))(1−Hrc(3 + q))

Hrc(3− 2Hrc(2 + q))2
.

(3.73)

Thus we have explicitly obtained the matter-metric relationship in for the DGP

model upto subleading order in spatial derivatives. As expected, there is a linear

power of k due to the Israel junction condition. Note that β1(aH/k), γ1(aH/k) ∼
O[1] × (a/rck), so essentially we are expanding in powers of (a/rck). We suspect

that for any braneworld model that modifies gravity on Hubble scales (l & H−1),

the matter-metric relation in Fourier space will involve an odd power of a/lk. This

provides a possibly unique signature of such braneworld models.

We now provide a similar calculation for the RS model that modifies gravity on

small scales (Λ . mm). We take a slightly different approach to the calculation, and

use the results from [54] directly to read off the coefficient functions.

Small scale modifications: RS model

Let us consider braneworld models which modify gravity on small scales (∼ l) and

investigate their impact on linear, cosmological perturbations. We are interested in

scales a/k such that

l� a

k
� H−1

with the requirement that a poisson equation be recovered on intermediate (∼ mm

to cluster scales). This is a bit silly since linearity certainly does not hold on these

scales. Also we expect the scale l . 0.1mm to evade laboratory tests, which means

it will have a negligible effect on cosmological scales. However, the purpose of this

exercise is to gain insight into how the odd k term might (or might not) enter into the

14The coefficient functions (β1, γ1) derived above do not agree with the ones derived from [54].
We suspect that this is due a different choice of gauge.

131



CHAPTER 3. A FRAMEWORK FOR PROBING GRAVITY ON
COSMOLOGICAL SCALES

equations when the modification to GR is on small scales rather than Hubble scales

(as in the case of DGP). We expect the following form for the perturbed matter-metric

relation:

Φ = −4πGρmδm
H2

(
aH

k

)2 [
β̄0 + β̄1

(
l
k

a

)
+ ...

]
Ψ = −4πGρmδm

H2

(
aH

k

)2 [
γ̄0 + γ̄1

(
l
k

a

)
+ ...

] (3.74)

since the modifications are coming in from small scales. Compare this with the form

used when the modification is expected to come in at Hubble scales

Φ = −4πGρmδm
H2

(
aH

k

)2 [
β0 + β1

(
aH

k

)
+ ...

]
Ψ = −4πGρmδm

H2

(
aH

k

)2 [
γ0 + γ1

(
aH

k

)
+ ...

] (3.75)

We will calculate these coefficients (β̄n, γ̄n) in the Randall Sundrum model (no

cosmic acceleration here), whose action is given by (3.53) with

Leff = − Λ

κ2
− Lm. (3.76)

For this model

l = r(5) =
κ2

(5)

κ2
=
√
−6Λ−1

(5) =
√

6Λ−1.

This fine tuning of parameters is essential for recovering standard gravity. The back-

ground metric in the bulk has the form

N(t, y) = e−y/r(5) and A(t, y) = a(t)e−y/r(5) .

Note that we have ignored terms of order r2
(5)κ

2ρm � 1 which is required for a

standard matter dominated era and follows from r(5) � H−1. This is a pretty good

approximation (we are making errors of the order (r(5)H)2). We will continue this

approximation in the perturbation equations below as well. The strong warping of

the brane near the bulk localizes low momentum modes and thus allows recovery of

standard gravity at scales which are large compared to r(5).
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We will calculate the coefficients using the results in (equation 107− 109 in [54]).

First we tweek the equations (107 − 109) in [54]) to make them more transparent.

We rearrange the terms in such a way that the terms that are expected to be largest,

appear first (remember r(5) � a/k � H−1). The equations are

Φ =
1

2a

[
1

r2
(5)

(
Ω + r(5)∂yΩ

)
− 2

3

k2

a2
Ω + 2H∂tΩ− ∂2

t Ω

]
,

Ψ =
1

2a

[
1

r2
(5)

(
Ω + r(5)∂yΩ

)
− 1

3

k2

a2
Ω +H∂tΩ

]
,

κ2δρm =
1

a

[
− 1

r2
(5)

k2

a2

(
Ω + r(5)∂yΩ

)
− 3

r2
(5)

H∂t

(
Ω + r(5)∂yΩ

)]
.

(3.77)

To get the above form, we have assumed that the time evolution happens on Hubble

scales and r(5)∂yΩ ∼ Ω. Ω is the Mukhoyama master variable [71], which satisfies the

following wave equation

∂t

(
1

NA3
∂tΩ

)
+

(
− 1

r2
(5)

+
k2

A2

)
N

A3
Ω− ∂y

(
N∂yΩ

A3

)
= 0.

Even without solving the Mukhoyama master equation, we can see that from the

first terms in the expressions for Φ,Ψ and δρm, ie. terms linear in Ω + r(5)∂yΩ, we

recover “Newtonian” gravity with β̄0 = γ̄0 = 1. To make further progress we require

an understanding of the solution to the master equation for Ω. Let us first solve the

master equation under the assumption the ∂tΩ ∼ HΩ and k2/A2 ≈ k2/a2 near the

brane. In this case it is easy to write down the solution as

Ω ∝ exp

[
−
(

1− r(5)
k

a

)
y

r(5)

]
which yields

Ω + r(5)∂yΩ = r(5)
k

a
Ω.

It is worth noting that ∂yΩ = −r−1
(5)Ω at lowest order. We need to keep the next

order term to get the k−dependence. Nevertheless, this term is still much larger than
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r(5)k
2/a2. With the above result we rewrite the expression for Φ,Ψ and δρm as

Φ =
1

2ar(5)

k

a
Ω

[
1−

2r(5)
3

k

a
+ ...

]
,

Ψ =
1

2ar(5)

k

a
Ω

[
1−

r(5)
3

k

a
+ ...

]
,

κ2δρm = − 1

ar(5)

k3

a3
Ω

[
1 + 3

a2

k2
H∂t ln Ωa−1

]
.

(3.78)

We leave the evaluation of ∂t ln Ωa−1 for later (we expect it to be O[H]). Moreover

we do not need it to calculate β̄1 and γ̄1.

Combining the above expressions we get

Φ = −4πGρm

H2
δm

(
aH

k

)2
[
1−

2r(5)
3

k

a
− 3

(
aH

k

)2
1

H
∂t ln Ωa−1 + . . .

]
,

Ψ = −4πGρm

H2
δm

(
aH

k

)2
[
1−

r(5)
3

k

a
− 3

(
aH

k

)2
1

H
∂t ln Ωa−1 + . . .

]
.

(3.79)

This allows us to read off our coefficients (β̄n, γ̄n) which are as follows

β̄0 = γ̄0 = 1,

β̄1 = 2γ̄1 = −2

3
.

(3.80)

As a bonus, we can also read off the coefficients (βn, γn) which are

β0 = γ0 = 1,

β1 = γ1 = 0,

β2 = γ2 = −3H−1∂t ln Ωa−1.

(3.81)

Of course as expected, on cosmological scales, the corrections from the small scales

is irrelevant.
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For the sake of completeness it might seem useful to construct a two parameter

expansion (lk/a) and (aH/k) as the expansion scales. Though, this is not too im-

portant since the small scale (l . 0.1mm) will have no effect on cosmological scales

where linear perturbation theory in density is valid at late time. To make use of both

scales one might have to go to the early universe. Another possibility is that dark

matter alone feels this extra dimension in which the scale l can be as large as the

galactic scale or cluster scale. This needs further consideration and is beyond the

scope of this thesis.

In summary, we have calculated the matter metric-relation in braneworld models

up to the leading correction to Poisson’s equation. After discussing the importance of

the Israel Junction conditions, we considered two models as examples: the DGP model

modifies gravity on Hubble scales whereas the RS model does so on sub-millimeter

scales. We have shown that the Israel junction condition leads to an odd power of k

in the matter-metric relation, providing an exciting signature of braneworld models.
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Abstract In a large region of the supersymmetry parameter space, the annihilation cross section

for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles.

We explore the consequences of this velocity dependence in the context of indirect detection of dark

matter from the Galactic center. We find that the increase in the annihilation cross section at high

velocities leads to a flattening of the halo density profile near the Galactic center and an enhance-

ment of the annihilation signal. For the models considered, the annihilation signal can be doubled.

These models are typically undetectable by current experiments in spite of the enhancement.
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4.1 Introduction

Indirect detection is one of the most promising avenues for the discovery of dark

matter through its non-gravitational effects. Many efforts are underway and more are

planned to detect the products of dark matter annihilations [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The best places to look for the annihilation signal are regions where the density of

dark matter is expected to be high, for example, centers of dark matter halos [11],

center of stars [12, 13] and neighborhoods of compact objects [14].

We concentrate on the sub-parsec region around the super-massive black hole

(SBH) at center of our galaxy (Mbh ≈ 4 × 106M� [15, 16]). Gondolo and Silk [17]

argued that a sharp dark matter spike should form around the SBH leading to a large

enhancement of the annihilation signal. Subsequent authors (for example [18, 19, 20,

21]) qualified this statement, pointing out several phenomena which would have the

effect of smoothing and reducing the spike. The debate over the existence of a dark

matter spike at the center of the galaxy has yet to be resolved. For the purpose of

this paper, we assume that a spike does exist.

In this study we discuss a new correction to the predictions for the annihilation

rate and halo profile around the SBH. We point out that near the black hole the dark

matter particles will be moving sub-relativistically (v/c . 0.2). This is in contrast

to the usual assumption whereby the dark matter is taken to be cold and slow. In

fact, most previous calculations (see for example [17]) have been performed in the

limit (v/c) → 0 where v is the relative velocity between particles. For a certain

class of supersymmetric dark matter models, the cross section for annihilation can

be enhanced by several orders of magnitude in the vicinity of the SBH due a strong

dependence on v. In the presence of a central dark matter spike this can produce a

measurable correction to the observed annihilation signal. In addition, the enhanced

cross section leads to depletion of the spike and a widening of the “annihilation core”.

We explore these two effects for a variety of halo profiles to account for the many

astrophysical uncertainties regarding the nature of the density profile.

We find that the enhancements in the annihilation signals occur primarily in

models for which the indirect detection signals are too small to be seen by current
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experiments. However, these models are quite plausible theoretically and are even

preferred by some criteria. We can easily imagine a scenario in which particle physics

experiments point to one of these theories as a correct description of nature. This

will motivate dedicated gamma ray observations concentrating on objects where dark

matter is likely to be concentrated. We will argue that, in this situation, the velocity-

dependent enhancement of the annihilation cross section must be taken into account.

The rest of the paper is organized as follows. In Section 4.2 we give a brief review

of supersymmetric dark matter and enumerate the circumstances whereby a strong

enhancement to the annihilation cross section may arise. In Section 4.3 we estimate

the corrections to the halo profile arising from the enhanced annihilation rate and

calculate corrections to the annihilation signal. Our conclusions are presented in

Section 4.4.

4.2 Supersymmetric dark matter

For the purpose of this study we restrict ourselves to the minimal supersymmetric

standard model (MSSM). In this class of theories there exist four neutral fermionic

mass eigenstates – the neutralinos. The lightest of these is often the lightest super-

partner in the theory (LSP) and provides a good dark matter candidate. We are

interested in describing the conditions under which the annihilation of the LSP to

standard model particles exhibits a strong velocity dependence leading to an enhance-

ment of the indirect detection signal.

A sample of the most important Feynman diagrams contributing to neutralino

annihilations are depicted in Figure 4.1. First, a pair of neutralinos may exchange a

fermion superpartner (sfermion), producing two standard model fermions. Fermions

may also be produced through an s-channel exchange of a heavy scalar, in this case

the A0 Higgs boson. Notably, this diagram does not admit a p-wave component, a

fact which will be important in the coming analysis. Finally, the neutralinos may

annihilate to standard model gauge bosons. In Figure 4.1 we present the annihilation

to two Z0 bosons via the exchange of a heavier neutralino.

In the MSSM, neutralinos are Majorana particles. This leads to a well-known
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f̃

χ1

f̄

χ1
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A0

f̄ f

χj

Z Z

Figure 4.1: A typical set of Feynman diagrams contributing to the self annihilations
of a neutralino into Standard Model particles. The LSP is denoted by χ1, χj is a
heavier neutralino and A0 is the neutral CP-odd Higgs boson.

helicity suppression of the amplitude for pair annihilation into light fermions [22]. If

χ denotes the dark matter particle and f the fermion, the s-wave cross section will

be suppressed by a factor of

z2 = m2
f/m

2
χ .

For the annihilation of a 200 GeV neutralino to Standard Model leptons, z2 is less

than 10−4. Consequently, the p-wave annihiliation, which is suppressed only by v2/c2,

may dominate. We can therefore conclude that for models where the LSP annihilates

primarily to fermions, the annihilation cross section will exhibit a strong velocity

dependence. It is this effect which lies at the core of our present work. In the next

few paragraphs, we review how these helicity-suppressed cross sections arise in the

MSSM parameter space. A more complete description can be found, for example, in

[23]. For an excellent review of the MSSM and supersymmetry in general see [24].

As mentioned, only annihilations to fermions undergo helicity suppression. We

would like to identify the regions of parameter space for which the dominant annihi-

lation channels do undergo helicity suppression and the resulting process is p-wave.

It is this class of models which will exhibit a strong velocity dependence.

In the MSSM, each neutralino is a linear combination of the superpartners of two

neutral gauge bosons and two neutral Higgs bosons. It is typically parametrized by

χi = Zi1B̃
0 + Zi2W̃

0 + Zi3H̃
0
1 + Zi4H̃

0
2 ,

where χi is the ith neutralino and tildes denote superpartners. The partners of the
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Figure 4.2: σv as a function of (v/c) for sample models from the τ̃ coannihilation
region. In (a) mA is scanned, increasing from top to bottom, and in (b) mτ̃ is scanned,
increasing from top to bottom.

B0, W 0 and Higgs bosons are usually called wino, bino and Higgsino respectively. Of

these four only the bino is a gauge singlet, meaning that it does not interact with

gauge bosons. Thus, by making Z11 large compared to the other components, we

can eliminate the third diagram in Figure 4.1, leaving only fermionic processes. The

annihilation of Majorana particles through a scalar coupling can only take place in

the s-wave. Thus, if the second diagram were to dominate over the first, the cross

section would indeed be helicity suppressed but no strong velocity dependence would

arise. To suppress this diagram we demand that the A0 boson is significantly heavier

than the fermion superpartners. We must also make sure that no resonance enhances

the A0 diagram, that is, mA cannot be too close to 2mχ.

We may now ask how generic are these constraints? The condition of large Z11 is

quite generic. The theoretically compelling assumption of gauge unification naturally

leads to a bino that is lighter than the wino by a factor of two [25]. In many classes

of models, for example, minimal supergravity, the condition of electroweak symmetry

breaking requires that the higgsinos are quite heavy. In these cases the LSP is mostly

bino. The mass of the A0 boson is, in principal, unconstrained and can easily be large

enough to suppress the A0 exchange diagram.

Thus, helicity-suppressed dark matter annihilation is quite likely in models of

supersymmetry. This implies a strong dependence of the annihilation rate on the
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relative velocity of the incoming particles. In the following, we will consider sam-

ple MSSM models from this region of parameter space. We will choose models for

which the predicted dark matter relic density agrees with value Ωχh
2 ≈ 0.1 given by

the WMAP experiment [26]. All cross sections and relic density calculations were

performed using the DarkSUSY software package [27].

In Figure 4.2, we show the annihilation cross section times the velocity for the dark

matter particle in several of these models. The strong velocity dependence is evident,

enhancing the total cross section by several orders of magnitude over the value at

v = 0. We show how the low and high velocity behaviors of the cross section can be

tuned independently by varying different supersymmetric parameters. In Figure 4.2

(a) the mass of the the A0 is scanned. As it is decreased the s-channel diagram in

Figure 4.1 becomes increasingly important, the s-wave component of the amplitude

increases, and the v = 0 cross section grows. In 4.2 (b) the mass of the stau is

scanned. As this parameter is decreased the t-channel scalar exchange diagram is

enhanced and the p-wave, velocity dependent, component of the cross section grows.

Notably, we must vary the mass of the LSP along with the stau mass in order to

maintain the correct relic abundance.

The curves in Figure 4.2 can be well fit by expressions of the form

σv ≈ (σv)0 + (σv)1(v/c)
2 (4.1)

where (σv)0 and (σv)1 are fit parameters. We use this approximation in the following

sections.

4.3 Astrophysics

In the previous section we introduced a class of SUSY models for which the neutralino

annihilation cross section shows a strong velocity dependence. In this section we

explore the consequences for the density profile and the expected annihilation signal

from the dark matter in the sub-parsec region around our Galactic center. To the

best of our knowledge, this effect has been ignored in the literature. We find that
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neglecting this velocity dependence leads to an underestimation of the size of the

annihilation core as well as the expected annihilation signal. In addition, we find

that these corrections depend strongly on the density profile of the halo.

4.3.1 Density profile

The annihilation signal depends on the the density profile of dark matter. In particu-

lar, it is sensitive to the profile in the sub-parsec region around the central black hole

where the density is expected to be quite high. Our first goal is to understand how

the density profile changes in this region when we include the velocity dependence of

the cross section.

The density profile depends on a number of physical processes such as the initial

phase space distribution of the dark matter particles that collapsed to form the halo,

the steepening of the profile due to the baryons, scattering by stars, loss to the central

black hole, black hole or galactic merger history etc. A detailed calculation of the

density profile is beyond the scope of this paper (see [28] for an excellent review).

Following [29], we take the dark matter density profile to be given by

ρ(r) =


ρ(rc) 10rg < r ≤ rc

ρ0 (r/rb)
−γsp rc < r ≤ rb ,

ρ0 (r/rb)
−γc rb < r ,

(4.2)

In the above expression rg ≈ 4× 10−7 pc [15] is the Scwarzchild radius of the central

black hole, rb is the size of the spike, γc is the slope of the halo and γsp is the spike

slope. rc is the size of the annihilation core which will be discussed below.

The spike slope is related to γc and given by

γsp = 2 + 1/(4− γc) (4.3)

(see for example [17]). Due to the interactions of dark matter with baryons and scat-

tering off stars, the size of the spike decreases with time. We follow the perscription
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given by [29] and set

rb(τ) = 0.2 rbh × exp

[
− τ

2(γsp − γc)

]
where rbh is the radius of gravitational influence of the SBH and τ is the time since

the formation of the black hole in units of the heating time theat ≈ 109 yrs [30, 28].

In the following we take τ ≈ 10 [20]. It is important to note that the relation (4.3)

also breaks down with time [20]. However, for short enough formation times it is

approximately valid and for simplicity we continue using it throughout this paper.

For r < 10rg the density of dark matter particles decreases rapidly and vanishes

at r = 4rg [17]. We set the normalization of the density profile, ρ0, by extrapolating

inwards from the solar radius:

ρ0 = ρ�

(
r�
rb

)γc

.

The density at the solar radius ρ� = 0.3GeV/cm3.

We now turn to the core radius rc. As discussed above, the density profile is

determined by self annihilation, scattering by stars, loss to the SBH etc. If the

density gets too high, annihilation becomes efficient enough to prevent further rise in

the density. This results in the formation of a flattened core near the galactic center.

The radius at which the core starts forming is determined by

Γann(rc) ≈ (τ theat)
−1 (4.4)

The annihilation rate Γann(r) = ρ(r)σv(r)/m where m is the mass of the dark matter

particle. The position dependence of σv arises due to its velocity dependence. For

a virialized halo, (v/c)2 ≈ rg/2r). Since the dark matter density is significant for

r > 10rg, the relavent velocities are bounded by (v/c)2 . 0.05.

We consider a model taken from the stau coannihilation region of mSugra. The

mass of the LSP m = 166 GeV and the mass of the lightest stau is 173 GeV. The

relic density is Ωdmh
2 ≈ 0.1. In this model, (σv)0 = 9 × 10−30 cm3s−1 and (σv)1 =

8.9 × 10−26 cm3s−1 (see equation (4.1)). We will refer to this model as our fiducial
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Figure 4.3: (a) The variation of the core radius with (σv)0 and (σv)1. Ignoring the
(σv)1 leads to an underestimate of the core radius. (b) Spike profile for γc = 1− 1.5,
increasing from bottom to top. Note that for large values of γsp, the radius of the
annihilation core is also large. The dotted lines indicate the density profile when we
set (σv)1 = 0.

model. Whenever a parameter is not explicitly defined or varied, its value is taken

from this model.

For our fiducial model with γc = 1 (NFW profile), the core radius rc ≈ 46rg, with

a core density of ρ(rc) ≈ 2× 106 ρ̄ where ρ̄ = 6733 M� pc−3. If we ignore the velocity

dependence, then we do not get a core. In Figure 4.3(a) we plot rc for different

(σv)0 and (σv)1 for the same density profile. We note that the size of the core is

not independent of (σv)1 and ignoring it leads to an underestimation of the core size.

If (σv)1 has a dominant contribution in determining the core radius rc, it has to be

significantly larger than (σv)0. This is because the factor (v/c)2 ≈ rg/2r in front of

(σv)1 is small unless we are close to the central black hole.

Another important factor that determines the size and density of the core is the

steepness of the density profile parametrized by γc. For the fiducial model, the size of

the core as well as the density increases with increasing γc as shown in Figure 4.3(b).

The dotted lines represent the density profiles for (σv)1 = 0.
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4.3.2 Annihilation flux

The flux of photons (as observed by us) can be written as

Φ =
1

2m2

∫
d3r

Nσv(r)ρ2(r)

4π|d + r|2
(4.5)

where ρ(r) is the dark matter density and σv(r) is the annihilation cross section times

the typical relative velocity of the annihilating particles. In the above expression d is

the vector joining the sun and the galactic center, m is the mass of the annihilating

dark matter particles andN is the number of photons (above the detector thresh-hold)

produced in the annihilation process. The integral is done over a solid angle which

depends on the angular resolution of the detector. We take this to be ∆Ω ≈ 10−5sr

which is the approximate angular resolution for GLAST. We remind the reader that

the position dependence of Nσv(r) arises from the position dependence of the velocity

in a virialized halo. Due to this position dependence of the cross section, we cannot

simply separate the particle physics and astrophysics aspects of the integral as is

commonly done in the literature.

The annihilation signal depends on the cross section in two ways: Explicitly

through Nσv appearing in equation (4.5) and implicity through ρ which depends

on σv as discussed in the Section 4.3.1.

For the fiducial model with γc = 1, the expected flux is enhanced by a factor of

∼ 2 compared to the case when the velocity dependence is ignored. One should view

this number with caution, since it does depend strongly on the parameters of the

model.

In Figure 4.4(a), we plot the annihilation flux as a function of (σv)0 and (σv)1

with the same halo profile. In Figure 4.4(b) we plot the ratio of the fluxes, with and

without the velocity dependence in the cross section : Φ/Φ0 where ‘0’ indicates that

we set (σv)1 = 0. As expected, ignoring the velocity dependence of the cross section

leads to an underestimation of the flux. The enhancement is large when (σv)1/(σv)0

is large.

Next, in Figure 4.5 we show the flux and enhancement as a function of γc. As seen

in Figure 3(b), the core size increased with γc. Thus, the fraction of particles moving
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Figure 4.4: (a) The annihilation flux as a function of (σv)0 and (σv)1. ΦN = 6 ×
10−10cm−2s−1 which is the (approximate) sensitivity of GLAST at an energy threshold
of 1 GeV. (b) The ratio of annihilation fluxes Φ/Φ0 where ‘0’ refers to the flux
calculated by setting (σv)1 = 0.

at relativistic velocities decreases and the enhancement to the signal is weakened.

We note that the enhancement of the signal occurs in models that are not de-

tectable by current or planned experiments. For our fiducial model, the flux is two

orders of magnitude below GLAST sensitivity (see for example [31]). This is mainly

due to the small (σv)0 since it is (σv)0 that determines the annihilation flux in re-

gions with r & 104rg. It is tempting to explore the SUSY parameter space with the

aim of finding models with a large (σv)0 and (σv)1/(σv)0, so that the flux is large to

begin with and the velocity dependent enhancement provides a further boost. How-

ever, relic dark matter abundance constrains (σv)1(v/c)
2 . 10−26cm3s−1. Thus, for

(σv)1/(σv)0 & 104, (σv)0 is typically small leading to a small overall flux.

4.4 Discussion

In this paper we have discussed the consequences of relativistic dark matter near the

black hole at the center of our galaxy. We have argued that, in general, the commonly

used approximation whereby the relative velocity of dark matter particles is taken

155



CHAPTER 4. RELATIVISTIC DARK MATTER AT THE GALACTIC CENTER

1.0 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

10

Γc

" "
N

(a)

1.0 1.1 1.2 1.3 1.4 1.5

0.5

1.0

1.5

2.0

Γc

" "
0

(b)

Figure 4.5: (a) Flux as a function of γc. ΦN = 6 × 10−10cm−2s−1 which is the
(approximate) sensitivity of GLAST at an energy threshold of 1 GeV. (b) The ratio
of the annihilation fluxes: Φ/Φ0 as a function of γc. Φ0 is the annihilation flux when
we set (σv)1 = 0. As γc increases the core gets larger which results in a decrease in
the relative fraction of of particles close to the galactic center. This in turn leads to
a decrease in the enhancement

to vanish may be inapropriate. In regions very close to the black hole, the cold

dark matter is no longer cold. If the dark matter has accumulated in a sharp spike

around the black hole, this region may account for a large fraction of the expected

signal. We presented a specific class of supersymmetric models in which the dark

matter annihilation cross section is strongly dependent on the relative velocity of the

incoming particles. In these theories, the expression for the annihilation flux no longer

separates neatly into factors depending on the astrophysics and the particle physics.

When the full velocity dependent cross section is considered, the annihilation flux

receives up to an order of magnitude enhancement over the v = 0 value. In addition,

we found that the enhanced cross section effects the halo profile close to the galactic

center. The increased annihilations deplete the spike and widen the annihilation core.

We explored the change in the density profile and annihilation signal for anni-

hilation cross sections of the form σv = (σv)0 + (σv)1(v/c)
2. We showed how the
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annihilation core size and the flux changed as a function of (σv)0 and (σv)1. To ac-

count for the astrophysical uncertainties in determining the dark matter density near

the galactic centre, we presented our results for a variety of halo profiles.

None of the models we have considered are detectable by current or upcoming

gamma ray observations. If the neutralino is the dominant component of dark matter

and is produced thermally, the cross section at high velocity cannot be larger than

about 10−26 cm3/sec; otherwise the relic abundance would be too small. In most

regions of the galaxy today, the neutralino velocity v/c would be very small, and the

annihilation signal would be highly suppressed. However, if particle physics observa-

tions should indicate a scenario like those we have described, it would be worthwhile

to mount dedicated gamma ray observations concentrating on the galactic center and

the centers of nearby galaxies. Uniquely in those environments, in the neighborhood

of the central black holes, the annihilation cross section would be enhance by the

effect described in this paper.
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Appendix

In this appendix we provide some analytic approximations to the flux integral, equa-

tion (4.5). We will assume that the velocity dependence of the cross section takes the

form of equation (4.1), although this is not essential in the numerical calculations.

We split the flux integral into three parts; Φ = Φcore + Φspike + Φhalo bases on the

density profile (4.2). In most cases, the largest contribution to the signal comes from

the spike and core. However, the contribution from the halo is not always negligible.

For example in the fiducial model, the spike, core and halo contribute 45, 54.5 and 0.5
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percent of the signal respectively for an angular resolution of ∆Ω = 10−5sr, γsp = 7/3

and γc = 1.

For the density profile, equation (4.2), we can calculate the core and spike parts

of the integral analytically (since rc, rbh � d). For the case when γsp 6= 3/2 we have

Φcore ≈
1
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ρ2
cr
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rc
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1
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(4.6)

rc and ρc depend on the cross section and γsp.
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Abstract We present a set of new characteristic frequencies associated with accretion disks around

compact objects. These frequencies arise from persistent rotating patterns in the disk that are finite

in radial extent and driven purely by the gravity of the central body. Their existence depends on

general relativistic corrections to orbital motion and, if observed, could be used to probe the strong

gravity region around a black hole. We also discuss a possible connection to the puzzle of quasi-

periodic oscillations.
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CHAPTER 5. PERSISTENT GEOMETRIC PATTERNS IN ACCRETION DISCS

5.1 Introduction

Timing observations of accreting X-ray binary systems have revealed luminosity mod-

ulation at a number of characteristic frequencies. Phenomenology of these quasi-

periodic oscillations (QPOs) is quite rich. For a detailed review, see [1] and references

therein. Some of the features are rather puzzling, such as stability of high frequency

QPOs in black hole binaries and that in some systems they appear in pairs at 3:2

frequency ratio.

QPOs in black hole systems are thought to arise from physical processes in accre-

tion disks. Depending on where the oscillations reside, one can roughly divide models

for QPOs in accretion disks into two classes: local and global. Local models tie down

the oscillation frequency to a particular place in the disk (like an edge or a hot spot).

In this case, the question of what determines that place has to be answered. One

line of argument is that the location of the hot spot is determined by a resonance

[2, 3, 4, 5]. This model has an attractive feature that the observed 3:2 frequency ratio

can be explained by non-linear mode locking. A hot spot can give rise to luminosity

variation, for example, due to Doppler beaming [6, 7]. However, a potential difficulty

is to have a hot spot which is sufficiently bright. Achieving sufficient luminosity vari-

ation seems less problematic in global models, in which modes occupy a larger region

of the disk. Linear perturbation analysis of the accretion disk in diskoseismology ap-

proach [8, 9, 10, 11] naturally solves the issue of spatial and frequency localization of

modes. The 3:2 frequency ratio would be accidental for two fundamental diskoseismic

modes, but it could arise from higher azimuthal g-modes which are nearly harmonic.

In this paper, we describe a set of new characteristic frequencies which might be

present in accretion disks around compact objects. To the best of our knowledge,

they have remained unnoticed in the literature. These frequencies arise from rotating

patterns in the disk which are quasi-stationary, finite in radial extent, and driven

purely by gravity of the central body. We neglect self-gravity and the hydrodynamics

of the accreting matter. The main idea is similar to the notion of density waves that

give rise to the spiral structure in galaxies [12, 13, 14], although these patterns depend

on general relativity rather than a distributed matter source for their existence.
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5.2. ACCRETION DISK KINEMATICS

While it is tempting to identify the frequencies of these patterns with the source

of QPOs, we cannot claim to have a complete model. The issues of how they are

excited, how they translate to X-ray luminosity variation, and effects of pressure and

viscosity need to be investigated in more detail. We will return to these points with

some plausibility arguments in Section 5.4.

5.2 Accretion disk kinematics

A test particle in a circular equatorial orbit around a Kerr black hole has an orbital

frequency [15]

Ω =
1

r3/2 + a
(5.1)

with respect to Boyer-Lindquist time t, where r is the orbit radius and a is the

dimensionless black hole spin parameter (a = cJ/GM2). We work in dimensionless

units scaled by the black hole mass M (i.e., distances measured in units of GM/c2,

times measured in units of GM/c3, etc.), and will further set G = c = 1. Here and

later we will assume that particles co-rotate with the black hole.

If perturbed from the circular orbit, the particle will undergo radial and perpen-

dicular oscillations with epicyclic frequencies κ and Ω⊥ respectively [16]

κ2 = Ω2

(
1− 6

r
+

8a

r3/2
− 3

a2

r2

)
(5.2)

and

Ω2
⊥ = Ω2

(
1− 4a

r3/2
+ 3

a2

r2

)
. (5.3)

The factors multiplying Ω on the right-hand sides of these expressions are general

relativistic corrections. They are absent in Keplerian mechanics, where both epicyclic

and orbital frequencies are all the same (κ = Ω⊥ = Ω). The radial dependences of

orbital frequency Ω and radial epicyclic frequency κ for a typical rotating black hole

are illustrated in Figure 5.1. Circular orbits close to a black hole are unstable; the

innermost stable circular orbit (ISCO) is located where κ2 vanishes.

If orbital and epicyclic frequencies are the same, as they are for a Keplerian
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Figure 5.1: Orbital frequency Ω, radial epicyclic frequency κ, and precession frequency
ω = Ω − 2κ of a 2:1 orbit in an accretion disk around a Kerr black hole with M =
10M� and a = 1/2. Precession frequency exhibits a shallow negative minimum at
r∗ ≈ 9.64. The radial extent of the rotating pattern with 20% deviation in frequency
is marked by vertical bars.

potential, the orbits are closed. However, if the potential deviates from 1/r (either

because of general relativity corrections, as in our case, or due to a distributed matter

source, as happens in galaxies), the two frequencies will in general be different, and

the orbits will precess. The condition for an orbit to close in a frame rotating with

frequency ω is for the orbital and epicyclic frequencies to be commensurate, m(Ω −
ω) = nκ, which gives the precession frequency

ω = Ω− n

m
κ. (5.4)

The integers n and m determine the shape of the precessing orbit, and from here on,

we will use the abbreviation n:m to refer to their values. Figure 5.2 shows the shape of

1:2 and 2:1 orbits, which are representative of the deformed and the self-intersecting

orbit classes.

In general, precession frequency ω depends on r, and any pattern initially present
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5.3. PERSISTENT PATTERNS IN THE DISK

1:2 2:1

Figure 5.2: Sample closed orbits. 1:2 orbit (left) corresponds to 2 epicycles per 1
rotation around a central body, while 2:1 orbit (right) corresponds to 1 epicycle per
2 rotations.

will shear away as the disk rotates. However, if ω is approximately constant over

some portion of the disk, collective orbit precession can lead to a nearly rigid pattern

rotation. One example of this is the spiral structure in galaxies caused by the 1:2

mode [12, 13, 14]. The 1:1 mode in Keplerian disks gives rise to a static one-armed

spiral pattern [17], which is seen in numerical simulations as well [18]. An attempt

has been made to trap the 1:1 mode in the region of the strong gravity [19], but

trapping depends strongly on the pressure distribution within the disk [20].

5.3 Persistent patterns in the disk

Our key observation is that for n > m, the precession frequency ω(r) develops a very

shallow minimum at a radius r = r∗, as illustrated in Figure 5.1 for the 2:1 orbit.

Collective excitation of particles on orbits precessing at the same rate would lead to

a pattern occupying a sizable portion of the disk around r∗ and rotating with little

shear at a frequency ωp = ω(r∗). Somewhat unusual are the facts that the pattern

is counter-rotating and that the orbit closes in several rotations rather than a single

one.
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Figure 5.3: Evolution of density patterns obtained by distributing particles on stacked
1:2 (left) and 2:1 (right) orbits. Top row shows initial configuration, middle row -
after one period of rotation of 2:1 pattern elapsed, bottom row - after twenty periods.
Density contrast has been enhanced by histogram equalization.
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5.3. PERSISTENT PATTERNS IN THE DISK

In a real accretion disk, the collective particle motion would have to be excited

by some dynamical mechanism. It might be complicated and could require numerical

simulations of the disk to fully understand the driving process. In the present paper,

we will be content with studying the kinematics only. We will set off a collective

mode by selecting appropriate initial conditions (as described below) and follow the

pattern evolution by tracing the motion of individual particles making up the disk.

The purpose is to find out if there is a long-lived pattern that survives the differential

rotation.

If perturbed from a circular orbit at r = r0 by a small displacement ε in the radial

direction, the trajectory of a test particle (to first order in ε) is

r(t) = r0 + ε sin(κt+ χ), (5.5)

φ(t) = ϕ+ Ωt+
2Ω

κr
Υε cos(κt+ χ), (5.6)

where ϕ and χ are initial orbital and epicyclic phases, and

Υ =
1− 3

r
+ 2a

r3/2

1− 2
r

+ a2

r2

(
r3/2Ω

)
(5.7)

is a relativistic correction factor (which, however, changes little in the region of the

disk we are interested in). We populate the disk by spreading N particles uniformly

on a n:m orbit, with initial phases of a kth particle

ϕk =
2πn

N
k, χk =

2πm

N
k, (5.8)

while stacking the orbits in a radial direction at an angle α by giving the orbit located

at rj a phase offset

ϕjk = ϕk + αrj. (5.9)

This particle distribution leads to a spiral structure in the disk. Figure 5.3 shows the

surface density contrast (smoothed with a Gaussian kernel) for patterns obtained by

distributing particles on stacked 1:2 (left) and 2:1 (right) orbits. The three rows of

Figure 5.3 show a time-lapse sequence of pattern evolution. The top row shows the
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initial conditions, and the second and the third rows show patterns at t = T2:1 and

t = 20T2:1 correspondingly. T2:1 = 2π/ω2:1 denotes a period of rotation of the 2:1

pattern.

The frequency of the 1:2 orbit precession depends monotonically on the radius, so

one expects differential rotation to destroy the pattern. Indeed, at t = T2:1, the spiral

is seen to wind up, and by t = 20T2:1, it is wound up so tightly that the smoothing

removes all traces of structure. The evolution of the 2:1 pattern is markedly different.

Signs of shear are clearly seen after a single rotation. However, even after twenty

rotations, there is still a pattern present around r∗ ≈ 9.6 (which is exactly where the

minimum of ω2:1 occurs). As this time span corresponds to almost 50 orbital rotations

at r∗, the pattern is remarkably persistent.

5.4 Discussion

In the last section, we have shown that an accretion disk around a compact object

can support persistent rotating patterns due to the collective excitations of particles

in the disk. Their existence depends on general relativity effects and is sensitive to

the parameters of the central body but not to the accretion rate. All the frequencies

in the problem scale inversely proportionally to the central body mass. In addition,

persistent pattern frequencies depend on the spin parameter. Figure 5.4 shows the

rotation frequencies of the three lowest-order persistent patterns (2:1, 3:1, and 3:2) for

a 10M�-mass black hole as the spin is varied. This dependence in principle could be

used to measure the mass and spin of the central object, provided that the frequencies

of two distinct modes are observed and identified correctly. One should note, though,

that for multi-armed patterns (for example the 3:2 pattern which has two arms)

modulation frequency could be a multiple of the rotation frequency.

Several different persistent patterns could coexist in the accretion disk; however,

it is likely that the lowest-order ones are strongly selected based on geometrical con-

siderations. Surface density modulation of the 2:1 pattern is second-order in particle

displacement ε, while the 3:1 and 3:2 patterns are third-order. The cancellation of

lower-order terms is directly caused by the multiple-fold geometry of the orbits with
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Figure 5.4: Persistent pattern frequencies of three lowest-order radial modes (2:1, 3:1,
and 3:2) for a 10M�-mass black hole as a function of black hole spin parameter a.
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Figure 5.5: Persistent pattern frequencies of three lowest-order transverse modes (2:1,
3:1, and 3:2) for a 10M�-mass black hole as a function of black hole spin parameter
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n > 1. Being higher-order could explain why these persistent patterns are not ap-

parent in the linear perturbation analysis of [8]. Despite second-order scaling, the

2:1 pattern in Figure 5.3 (lower right) shows 1% amplitude of the surface density

modulation for moderate displacement values (ε/r∗ ≈ 0.022). The radial extent of

the 2:1 pattern (∆r ∼ 4) also appears to be wider than that of a fundamental g-mode

(the width of which is proportional to c
1/2
s and is estimated as ∆r ∼ 1 by [8]).

In this paper, we focused on kinematics and neglected particle interactions and

the hydrodynamics of the disk. The extent to which this approximation is justified

should be further investigated. Of critical importance for the model is understanding

the excitation mechanism. It is possible for the spiral waves to be driven from the

outer edge of the disk [21, 22]; however, whether that is sufficient to cause persistent

patterns to appear remains to be seen. Both questions could be answered by turning

to numerical simulations of the accretion disk hydrodynamics. However, that is a

much more complicated problem, and we feel that it is beyond the scope of this

paper, the intent of which is merely to point out the existence of new characteristic

frequencies in the disk.

It is plausible that the characteristic frequency of the collective motion will man-

ifest itself in X-ray luminosity variation, but the exact mechanism responsible for

the modulation is not clear to us. Density pattern in the accretion disk need not

be a direct cause. Particles weaving in and out on self-intersecting orbits could lead

to efficient gas heating, possibly due to shock formation, and create a temperature

pattern in the accretion disk (in a sense, an extensive “hot spot”). The picture of

temperature modulation of the disk causing X-ray luminosity variations is not entirely

satisfactory as quasi-periodic oscillations are seen primarily in the hard non-thermal

component of the emission [1]. That could indicate that the quasi-periodic emission

is coming from a coronal region rather than from a disk [23]. It is possible that the

transfer mechanism might involve a magnetic field threading the disk (Blandford,

unpublished).

So far we have been talking about patterns arising from radial oscillations. It is

worth mentioning that a similar thing could happen for transverse oscillations as well.

The precession frequency ω⊥ = Ω − n
m

Ω⊥ also has a minimum if n > m. However,
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the minimum lies inside an innermost stable circular orbit unless the black hole is

spinning rapidly (a > 0.8 for 2:1 orbit). The frequencies of the three lowest-order

transverse modes are shown in Figure 5.5. Transverse particle excitations would lead

to a corrugated accretion disk rather than a surface density pattern.

To summarize, we have found a set of new characteristic frequencies associated

with accretion disks around compact objects. Although many questions remain, it

might be interesting to pursue this idea further and see if it could lead to a model

of quasi-periodic oscillations in X-ray binaries. In particular, the numerical values of

our characteristic frequencies and their independence of the accretion rate suggest an

application to high-frequency QPOs in black hole binaries.
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