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Abstract
The recent development of advanced black box opti-

mization algorithms has promised order of magnitude im-
provements in optimization speed when solving accelerator
physics problems. These algorithms have been implemented
in the Python package Xopt, which has been used to solve
online and offline accelerator optimization problems at a
variety of facilities, including SLAC, Argonne, BNL, DESY,
and ESRF. This work describes updates to the Xopt frame-
work that expand its capabilities and improve optimization
performance in solving online optimization problems. We
also discuss how Xopt has been incorporated into the Bad-
ger graphical user interface that allows easy access to these
advanced control algorithms in the accelerator control room.
Finally, we explain how to integrate machine learning-based
surrogate models provided by the LUME-model package
into online optimization via Xopt.

INTRODUCTION
Advanced optimization algorithms, such as Bayesian op-

timization (BO) [1], RCDS [2], CNSGA [3], and extremum
seeking [4], have been developed to solve complex opti-
mization problems in accelerator physics, such as online
accelerator tuning or simulated accelerator design. Despite
their wide applicability, connecting these algorithms to opti-
mization problems can be challenging due to the diverse al-
gorithmic and measurement interfaces. To address this issue,
we developed the Xopt framework in Python [5, 6], which
implements a wide range of advanced optimization algo-
rithms for easy use by non-experts. On the other hand, Xopt
modules are flexible and extendable, allowing experienced
users to customize and develop optimization algorithms for
novel applications.

Xopt connects optimization algorithms to arbitrary prob-
lems using a modular approach which defines separate ob-
jects for input and output parameter spaces, algorithm op-
tions, and objective/constraint function evaluation. Evalu-
ating objectives and constraints is defined using a simple
Python callable that takes a dictionary of arguments and re-
turns a dictionary of results. This flexibility allows Xopt (and
by extension Xopt algorithms) to be used in the same way
at multiple different accelerator facilities (SLAC, Argonne,
DESY, BNL, ERSF, etc.) or in simulations. Additionally,
there are multiple ways to interact with the Xopt library
depending on the application, as shown in Fig. 1. This in-
cludes a text file based interface for dispatching parallel
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job evaluation on high performance computing clusters, a
Python-based API for complex algorithm testing and devel-
opment, and a GUI interface known as Badger [7] for online
use inside accelerator control rooms.

Figure 1: Xopt ecosystem for connecting advanced opti-
mization algorithms with arbitrary optimization problems
in accelerator physics.

In this work, we describe recent enhancements of
Bayesian optimization algorithms in Xopt, which are ap-
plicable to improving the performance and capabilities for
online and offline accelerator optimization.

INTERPOLATED MEASUREMENTS
When using Xopt to perform online accelerator control, it

is important to consider the computational costs of making
control decisions relative to the cost of evaluating objec-
tives and constraints. For example, evaluating the objectives
and/or constraints takes significantly less time than the algo-
rithm to make a control decision, it is optimal to make multi-
ple measurements in-between calls to the algorithm to make
control decisions. Furthermore, when using algorithms to
make accelerator control decisions, it is necessary to reduce
the size of parameter changes to maintain the stability of
accelerator components and internal feedback mechanisms.

To address both of these issues, we added the capa-
bility of performing interpolated measurements to BO
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algorithms implemented in Xopt, through the keyword
n_interpolate_points. Instead of simply changing the
parameters of the accelerator to the ones proposed by the BO
algorithm, we generate a sequence of parameters in small
steps along the line from the current parameter set point
to the point proposed by BO. We then sequentially evalu-
ate these points by altering the accelerator parameters and
then measuring the objectives/constraints at each point. This
reduces the instantaneous size of parameter changes from
one measurement to the next, and adds additional data to
the Gaussian process (GP) model used in BO to make de-
cisions, without incurring additional computational costs,
as discussed in [1]. While this technique is likely to reduce
overall optimization costs due to additional measurement
data per optimization step, it may have some drawbacks.
First, it is primarily useful when optimizing objectives that
are inexpensive to evaluate, as more evaluations are done
over the course of optimization. Second, since more data is
gathered over the course of optimization, decision-making
costs of the BO algorithm will increase, since the computa-
tional costs of evaluating Gaussian process models scales as
O(𝑁3). Effective use of this technique will need to balance
the trade-offs between gathering more information about the
objective function and additional computational expense.

TRUST REGION BAYESIAN
OPTIMIZATION

One drawback of BO algorithms is that they tends to over-
prioritize exploration over exploitation in high-dimensional
parameter spaces. This is due to the relatively large posterior
uncertainties of GP models that result from the exponen-
tial growth of parameter space volume with dimensionality
(models in high dimensional space need more data to update
prior function distributions). As a result, BO tends to pick
points at the extremes of the domain in high dimensional
parameter spaces even if optimal points are found in a lo-
cal region. Trust region BO (TurBO) [8] addresses these
issues by restricting optimization of the acquisition function
to a so-called “trust region" around previous measurements
where the model is expected to be the most accurate. The
trust region is a local region centered at the best previously
observed measurement so far during optimization, with side
lengths equal to a base length 𝐿 multiplied by the relative
length scale of the GP model along each axis in parameter
space. As optimization progresses, the location and size of
the trust region is continuously updated to be centered at the
best measured point in parameter space and scaled to match
length scales of the GP model.

We implemented TurBO in Xopt for single objective
Bayesian algorithms via the turbo_controller property
of Bayesian generators. Using the keyword argument
turbo_controller="optimize" implements TurBO for
single objective problems, with a default side length of 25%
of the input domain specified by VOCS and a threshold for
expanding or contracting the trust region according to the
recommendations given in [8]. TurBO in Xopt is used reg-

Figure 2: Demonstration of using TurBO to optimize sex-
tupoles at ESRF compared to basic online tuning algorithms
and raster scans performed by operators. In this case, TurBO
is used through the Badger GUI. Reproduced from [1].

ularly at SLAC as part of beam and FEL optimization. It
was also used at ESRF to tune a large number of sextupole
magnets in order to improve synchrotron lifetime, as shown
in Fig. 2 and reported in [9].

BAYESIAN ALGORITHM EXECUTION
FOR VIRTUAL OBJECTIVES

In some cases, beam properties are difficult to optimize
since they require multiple measurements of the beam dis-
tribution to determine the property of interest. For exam-
ple, measurements of the beam centroid as a function of
quadrupole strengths can be used to determine the centroid
offset of the beam with respect to the magnetic center of the
quadrupole. Additionally, characterizing the beam emittance
requires measurements of the RMS beam size at a number
of different quadrupole strengths. Multiple measurements
increase the cost of optimizing these objectives and does
not efficiently use information gathered during objective
calculation.

To address these optimization challenges we have imple-
mented the Bayesian Algorithm Execution (BAX) optimiza-
tion algorithm that uses so-called “virtual objectives” [10].
Virtual objectives, such as the rate of centroid deflection as
a function of quadrupole strength or transverse beam emit-
tance [11], are characterized not by direct measurement,
but are calculated from GP model predictions of underlying
observables, the beam centroid and size respectively. An
example of this is shown in Fig. 3, where BAX is used to opti-
mize the steering magnet parameter in order to minimize the
centroid deflection as a function of the quadrupole strength
(which corresponds to good alignment with the quadrupole
magnetic center). Additionally, in the case shown here, we
explicitly specify a Polynomial kernel function for the GP
model based on physics knowledge that the centroid posi-
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Figure 3: Visualization of the BAX process for beam steering through quadrupole magnets. (a) Experimental measurements
are used to build a GP model of the horizontal beam centroid position at a downstream screen 𝐶𝑥 as a function of the
quadrupole strength and steering parameter. Note that the GP model is built with a 1st order polynomial kernel, constraining
predictions to planar surfaces. Dashed lines denote cross sections of the GP model shown in (b). (c) The BAX acquisition
function which predicts the information gained about the ideal steering current by making future measurements.

tion is linear with respect to quadrupole and steering magnet
strengths. This functionality in Xopt is now regularly used in
AWA operations to align the beam through two quadrupole
magnets in approximately than 10 minutes, about 3 times
faster than human operators.

NON-CONSTANT PRIOR MEANS
We can speed up optimization by incorporating prior no-

tions of the objective function into the GP model [12, 13].
To support this technique in practice, Xopt now allows in-
corporating any PyTorch Module into the GP as a prior
mean function through the StandardModelConstructor
class. This can be combined with LUME-Model [14] which
provides a wrapper around neural network modules which al-
lows for dictionary based inputs/outputs and unit conversion
in and out of the neural network. By incorporating a prior
model from simulated data, we were able to significantly
improve convergence to objectives on the real machine using
this feature of Xopt, as shown in Fig. 4 and reported in [13].

Figure 4: Demonstration of using neural network prior
means in Xopt to increase convergence speed of optimiza-
tion on the LCLS injector problem. Reproduced from [13].

CONCLUSION
This work reports enhancements to the Xopt library, which

implements state-of-the-art algorithms to tackle simulated
and experimental optimization challenges. These features
are used during daily accelerator operations at a number of
accelerator facilities, accessible from text, programmatic,
and graphical user interfaces.
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