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Abstract

We present a scheme to realize quantum thermal transistor effects in a continuous-variable
electromechanical system including two microwave cavities and one mechanical oscillator. The
thermal noise fluxes between the quantum system and its baths are evaluated by quantum master
equation. It is shown that the thermal noise flux at one microwave cavity as an emitter can be
dissipated into the other as a collector by combining the heating Stokes and cooling anti-Stokes
processes. The indirect energy transfers between the two microwave modes can be significantly
amplified by small energy changes at the mechanical oscillator as the base. The extremely high
amplification depends sensitively on the detunings of the two microwave modes, which provides a
new tool for precision measurements. This study opens the door for constructing quantum
thermal transistors using various continuous-variable systems and is well accessible based on
current experimental techniques.

1. Introduction

In recent years, rapid progress has been made in the thermal noise energy harvesting and rectification at the
nanoscale [1-3], resulting in unique applications in the implementation of quantum heat engines [4-6],
quantum thermal diodes [7, 8] and transistors [9, 10] in nanosystems. The main components of such
systems typically include thermal rectifiers, such as qubit and qutrit [11-14], spins [7, 8, 15-17], quantum
dots [18] or superconducting circuits [19], which are usually simplified as two-level or three-level

systems [20—22] and designed to bias the heat flow in a given direction [3]. These quantum subsystems are
also coupled to two or more external heat sources simultaneously [7, 9, 22, 23], so that the control of heat
flow is the result of a combined action of external temperature bias and the internal energy levels and
coupling control. In addition, the regulation of heat flow and transistor effects can be achieved by driving
two-level systems with an external optical field [24, 25].

Previous researches on quantum thermal transistors (QTTs) have mainly focused on spin-boson models,
where the level spacing and transitions as well as the couplings between subsystems need to be designed
extremely carefully [26-28]. Further, these quantum thermal regulation typically occurs in nanoscale systems
with finitely many levels, while similar research at the macroscopic scales is still lacking, which makes it
urgent to investigate whether a three-terminal QTT can be realized in mesoscopic or even macroscopic
systems, such as continuous-variable (CV) systems [29-31]. It is noted that the CV optomechanical system
provides a novel platform for exploring macroscopic quantum thermal transport, such as permanent
directional heat currents [32], quantum heat management [33-36], nonreciprocal heat transport [37],
topological energy transfer [38], optomechanical heat engine [39, 40] and geometric thermo-phonon
exchange [41]. In this letter, we demonstrate that a QT'T can be created with a CV electromechanical system,
made of two microwave cavities and one mechanical oscillator. It is shown that a quantum thermal noise flux
can be established between the mechanical oscillator and its baths, and the temperature of the mechanical
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end can be used to regulate the noise fluxes at the two microwave components of the system. Further, we also
show that the amplification of the noise fluxes is highly sensitive to the microwave cavity parameters, which
may be used in precision measurement.

The rest of the paper is structured as follows. In section 2, we describe the system model and derive the
general expressions of the thermal noise fluxes between the system and its baths using the quantum master
equation method. In section 3 we focus on achieving the thermal transistor effect by regulating the
amplitude and direction of the thermal noise fluxes in the system. Further, we analyze in detail the influence
of the system parameters on the amplification factors of the noise fluxes and the quantum Fisher
information, which quantifies the sensitivity of the system to unknown parameters. The section 4 is a brief
summary of the article.

2. Model and dynamics

As sketched in figure 1(a), we consider a typical model of a three-mode electromechanical system including
two microwave cavities and one mechanical oscillator, where the phonon mode a,, with frequency w,, is
simultaneously coupled to the two microwave photon modes a; and a, with frequencies w,; and wg, [31,
42-45]. The realization of such a system can be resorted to two lumped-element superconducting circuits
and one intermediate mechanical oscillator [44—47], where the microwave cavities are driven by external
microwave sources with frequencies wy; and wy;,, as shown in figure 1(b). The total Hamiltonian in the
interaction picture with respect to Hy = hwalaial + hwaza;az is given by [29, 31, 44]

H .
7= Wil A + Z a;raj [Agj— g (af, + am) | +i9; (a]-T - aj) ) (1)
=12

where Ay = wgj — woj and || = \/2Pjr;/(hwy;) with Pj and k; being the driving power and decay rate of
the cavity field j, respectively. g; denotes the electromechanical coupling strength between the mechanical
mode and the microwave mode j.

When the microwave cavities are intensely driven, we decompose each operator into the steady-state
average and a small quantum fluctuation, i.e. a,, = a,,; + da, with i = 1,2, m. The steady-state values are
obtained by setting the time evolution of operators in equation (1) to zero, getting a;; = €2;/(iA; + £;) and
ams = (ig1|ars|” +iga|azs|?) / (iwm + Km), where Aj = A — gi(al, + apms) describes the effective detuning and
Km 1s the mechanical damping rate. The linear quantum Langevin equations (QLEs) for the quantum
fluctuations are given by

Sy, = iz G; ((561} + 561]) — (iwy + Km) dam, + \/Z/fmaim”,
J

a1 = iGy (6al, + dan) — (iA; + k1) day + /2k1a]",
Sy = iGy (8af, + dam) — (iy + K2) bay + v/2kay, -

where G; = gjaj; with aj; being assumed to be real and positive [44]. a¥", a and 4! are the vacuum and
thermal input noise operators with zero mean value, with the following correlation [48]:
(aﬂ(t)ai’ﬁ(t’)) = [Ny(wy)+1]6(t—t") and (aZ”T(t)ai"(t’)} =N, (wyu)o(t—1t") with

“w
Ny (wy) = exp( ,Z “}‘; — 1)~ " kg is the Boltzmann constant and T, is the temperature of the thermal bath 4,

as shown in figure 1(a). The linearized Hamiltonian reads Hy /h = wméa};éam + Zj Ajéa; da;

_Gj(éa;r + da;)(a}, + da,,) and the corresponding level diagram and the typical transition routes are shown
in figure 1(c).

It is clearly seen from equation (2) that noise accounts for the energy transfer between subsystems and
their baths, i.e. Q(2) = hwp ([ [€,(f) — kmdp(1)]6p(1)ds) being the stochastic energy induced by the noise
&, = i(a™t — ai)/1/2 on the momentum quadrature of the oscillator dp = i(daj, — da,,)/v/2 [49-51]. In
order to explore the possible QTT effect, here we use the quantum master equations (QMEs) to evaluate the
thermal noise flux J,, between the subsystem y and its bath. With the linearized Hamiltonian Hy, the QMEs
describing the evolution of the density matrix of the system reads [48]

i

p =5 o Hi+ Lilpl + Lalp] + Lo [p] (3)

where £,,[p] = £, (N, 4+ 1)Dla,]p+ £,N,Dla}]p are the Liouville super-operators of the microwave and
mechanical baths. D{a,]p = 2a,, paL — aLaHp — paLaH is the standard dissipative Lindblad term. The
thermal noise fluxes in and out of a quantum system are related to the temporal variation of the system mean
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Figure 1. (a) Schematic illustration of a three-mode electromechanical system with two microwave modes and one mechanical
mode. Each subsystem is in contact with its thermal environment at a certain temperature. (b) A specific realization of the system
with two lumped-element superconducting circuits and one intermediate mechanical oscillator. (c) Level diagram of the
linearized Hamiltonian H; . 1, 12, n,, denotes the state of n; and n, photons and #,, phonons in the displaced frame. Black (red)
O denotes the transitions paths corresponding to the anti-Stokes (Stokes) process with A; ; > 0 (A; < 0). By manipulating the
left and right cavities in the blue- and red-detuning regions respectively, a complete cyclic transition path through the connection
of the anti-Stokes and the Stokes transition processes |n1 + 1,12, 1 + 1) — |11, 12,1 + 1) — |11, 12, 1) —

|1, 2 4+ 1,1 — 1) = |1, n2, 0 — 1) — |11, 12, 1) — |m1 + 1, 12,1, + 1), called the red O plus black O path, can be
established, which leads to that the energy absorbed by the microwave cavity 1 from the left thermal bath can significantly
compensate for the energy transferred from the microwave cavity 2 to the right thermal bath. This indirect energy transfer
through the mechanical end acting as an intermediary is responsible for the realization of the QTT.

energy, i.e. > J,, = O(H1) /0t [52]. Then, one can identify the noise flux J, as J,, = Tr(L[p]H) [9], which
are calculated by using the QMEs (3) as

Jin = Tt 20 (N — (8af,6a,)) + GiM; + GoMs ],
I] = hl{l |:2A1 <N1 - <5aJ{5al>) + G1M1:| ,

T, = Tires [mz (Nz - <5a§5a2>) n GZMZ] : (4)

where M; = ((561]T + 8a;)(daf, + da,)). It is evident that each noise flux in equation (4) consists of three
parts, which are proportional to the thermal photon or phonon numbers N, the average occupancy

N, = <(5aL da,,) and the second moments Mj, respectively. In particular, for any linearly coupled CV systems
with multiple harmonic oscillators, the noise flux between each subsystem and its corresponding bath can be
straightforwardly generalized as J, = fikiy [2E, (N, — N,) + >, GuyMy,y], where n(n =1,2,3,...) is the
number of the harmonic oscillators, E, and {n} denotes the effective energy and the coupling strategy of
subsystems, respectively. In the steady state of p = 0, we have J; + J; + J,» = 0, which corresponds to the
energy conservation of the system. The fluxes can be measured by the scale of fiwy,, i.e. J,, = JoFiw,, with Jo,,
being regarded as a noise particle flux [41]. We emphasize that when a control parameter of the system
changes so that the coupled system transitions from one steady state to another, the sum of the changes in
noise fluxes at the three ports is always zero, i.e. 9J; + 0, + 0J,, = 0. This also means that when the noise
flux of one of the ports changes, the noise fluxes of the other two ends will also change accordingly, so as to
achieve the thermal regulation effects of one flux controlling the other flux.

In the following, we evaluate in detail the moments in equation (4). One approach is to derive the time
evolution of all the independent second-order moments, such as (3a!da;), (3alda,), (6al da,,) and so on,
using the quantum master equation (3) and then calculate the steady state dynamics of the moments [41].
Here, we directly solve QLEs (2) to obtain the corresponding steady-state correlation matrix, thus obtaining
the second-order moments in the equation (4). For the convenience of calculation, we introduce the
quantum fluctuation quadratures of the cavity fields and mechanical oscillator as x,,(f) = ((5(1L +da,)/V2
and y, (t) = i(daj, — da,,) /v/2. The corresponding input noise quadratures can be defined in the same way.
Further, by introducing the vectors of quadratures f () = [x1,1,%2, ¥2,%m, ¥m) and the corresponding

vectors of noises 17 (t) = v/2[\/RixX", /R /Fax SRyl S FmX \/Eomy"], the linear QLEs (2) can be
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written in the matrix form: f(t) = Af(t) + n(t), where A is the drift matrix, given by

—K1 A] 0 0 0 0
—Al —K1 0 0 2G1 0
0 0 —RK Az 0 0
A =
0 0 —Az —K> 2G2 0 (5)
0 0 0 0 —Km Wi
2Gy 0 2G, 0 —Wym  —FKm

When the stability condition of the system is satisfied [53—55], the steady state is a zero-mean Gaussian state
and fully characterized by a 6 x 6 covariance matrix U, defined as Uj; = (fi(00)f;(00) + fi(c0)fi(c0)) /2 with
i,j =1,2,3,4,5,6, which is obtained straightforwardly by solving the Lyapunov equation [56]:

AU+ UAT = —D, (6)

where D = diag[x1(2N; +1),k1(2N7 + 1), 63(2N; + 1), 62(2N; + 1), 6 (2N, + 1), £, (2N, + 1)]. In terms
of the covariance matrix U, the steady-state average occupancies in equation (4) are, respectively,

(8a} 8ay,) = (Uss + Ugs — 1)/2, (dalda;) = (Uyy 4 Up, — 1)/2 and (dalda,) = (Uss 4 Uy — 1)/2. Similarly,
the moments M; and M, are, respectively, M; = 2U;5 and M, = 2Uss.

3. Thermal transistor effects

Figures 2(a) and (b) show the noise fluxes Jo;, Jo, and Jy,, as a function of the normalized detuning A /k at
A; =A; =Aand A; = —A; = A. We assume that the system works in the resolvable sideband region of
Kj < Wy 1.€. Wy /2 = 10 MHz and kj = 0.03wy,,. It is also noted that in general the mechanical oscillator is
very thermally dense because of the two associated microwave cavities. Thus, the mechanical oscillator must
be pre-cooled by lowering the environment temperatures of the thermal bath, i.e. T,, = 300 mK. We see from
figure 2(a) that Jo; = Jo < 0 and therefore the system dissipates energy into two microwave baths through
the cooling anti-Stokes process, i.e. the cooling transition paths marked by the black (J and O in

figure 1(c) [41, 57-59]. At the same time, we also see that the system absorbs the same amount of energy
from the mechanical bath to ensure that energy conservation in the steady state holds true, i.e. Jo,, = —2Jo;.
In this case, no matter how a single external parameter changes, we always have 9], /0], = —1/2 and

0L,/ 0]m = —1/2. Obviously, the system can not exhibit the amplified flow regulation effect similar to that of
an electrical transistor [60-62] due to the uniform dissipation of the absorbed energy, as shown in

figure 2(c). We stress that in the case of the resolvable sideband the mechanical oscillator can be further
cooled, i.e. the average occupancy (5a},6a,,) < N, because both cooling anti-Stokes processes reduce the
effective energy of the mechanical mode through the dissipation channels in the cavity fields.

To achieve thermal transistor regulation effects, we reverse one of the dissipative fluxes, e.g. Jo1, by
reversing the corresponding detuning A;. At this time, the heating Stokes process is expected to dominate
the dynamics of the subsystem composed of the mechanical oscillator and the microwave mode 1, which
leads to that the system absorbs energy from the microwave bath 1. We also see clearly from figure 2(b) that
when the reverse operation of the left microwave cavity is in the blue-detuning regime with A; <0, Jo; is
indeed reversed to positive and the energy transfers from the microwave bath 1 to the mechanical oscillator.
In particular, in the presence of the right cooling Stokes process with the detunging A, > 0, the two
combined processes lead to that the energy absorbed from the microwave thermal bath 1 can immediately
compensate for the energy dissipated into the second microwave thermal bath, that is, Jo, = —Jo;, as shown
in figures 2(b) and (d). From the perspective of energy level transition, the indirect energy transfer is
achieved via the combined cyclic transition path mediated by the mechanical oscillator, i.e. the red (5 plus
black O path in figure 1(c). That is, along this cyclic path, the energy absorbed from the microwave bath 1 by
the blue-detuning transitions |1y, 1y, 1,,) — |11 + 1,13, 1, + 1) — |17, 15, 1, + 1) can be significantly
dissipated into the microwave bath 2 by the other red-detuning transitions |ny,n,,#1,,) — |11, 1,
+1,n, — 1) — |11, 12,1, — 1). Correspondingly, the net flux Jo,, in the cyclic path is greatly reduced by the
opposite transitions |1y, 1, 1, & 1) — 11,12, 1), 1.€. |Jom| << |Joj], as shown in the inset of figure 2(b).
Clearly, the quantum noise transport is used to establish the opposite transitions at the mechanical end and
further mediate the energy transfer from one microwave end to another along the cyclic path.

Furthermore, the changes of the transition rates of |n;,n,, 1, + 1) — |11, 12, #,,) will influence the
probability of the cyclic path so that the energy transfer between the two microwave ends can be controlled
by the mechanical bath. For example, when T and T, (T} > T,) are fixed, the increase of T}, reduces the
transition rate p™ of the phonon dissipation |n;,n,,n,, + 1) — |n1,n,,1,,) but enhances the rate p~ of the
opposite phonon absorption |ny, 1,1, — 1) — |11, 12, 1,,), where we usually have p™ > p~. Although the
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Figure 2. Jy,, as a function of A /k with (a) A; = A} = A and (b) A, = —A; = A. (¢) and (d) Directions of Jo,. (e) Jo, and
(8) a1 and o, as a function of T;, with A, = —A| = k with k; =  and (f) schematic diagram of the electromechanical system
as a thermal transistor. Insets: Magnification of Jo.,. We select the feasible experimental parameters [46], i.e. wy, /27 = 10 MHz
and /27 = 100 Hz. The other microwave parameters are assumed to be the same, i.e. woj/2m = 10.1 GHz, P; = 0.05 uW,
#j = 0.03wy, and g;/27 = 0.08 Hz. The temperatures T = 500 mK, T> = 10 mK and T,, = 300 mK.

two transition rates vary inversely with T, their joint transition rate p* p~ can still increase with the increase
of T,,. Then, the probability of the complete cyclic path increases with the increase of T}, so that the energy
transfers Jo; and Jo, increases with increasing T,,. Consequently, we can use the mediated temperature T}, as
a gating parameter to regulate the fluxes at the other microwave ends, i.e. Jo; and Jo,. Note that in the
modulation process the flux |Jo,| < |Jo1,02| is required to ensure the amplification of flux in the system.

In figure 2(e), we demonstrate the temperature regulatory effects of fluxes by depicting Jo,, as a function
of T,,,. We see from figure 2(e) that when T,, is sufficiently low, all three noise fluxes are suppressed, even
giving Jo, = 0 at T,,, = 3.8 mK. Therefore, the system is at the off state. When T, increases continuously
beyond a threshold value with |Jo;| > |Jo.|, the amplitudes of Jo; and Jo, increase quickly with T,,, while the
amplitude of Jy,, remains much lower than Jy; and Jo, and decreases slightly with T,,. At this time, the
modulated system switches to the on state and a tiny change of Jo,, will cause giant changes of J; and J,
thereby achieving the amplification of the fluxes. It should be emphasized that the combination of the Stokes
and anti-Stokes processes breaks the symmetry of quantum transition paths, which constitutes a prerequisite
condition for a directionality of the noise fluxes of the thermal transistor, where the microwave cavity ends 1
and 2 are regarded as the emitter (E) and the collector (C), respectively, as shown in figure 2(f). In particular,
similar to an electrical transistor [60—62], the source and drain noise fluxes Jo; and —Jy, in the current system
can be modulated, switched on or off and amplified by the gate parameter T,, at the mechanical end which
serves as the base (B).

In order to evaluate the amplification properties of the system, we adopt a dynamical amplification
factor [9, 10, 12]

o
o= a]]‘j, (7)

which is a measure of the thermal transistor ability to amplify a small variation of the noise flux at the base
(B) and can be casted as oy » = (9]1,2/0T ) (0)1n/OTm) " when the gate temperature T,, is changed.
Correspondingly, if a small change in J,,, makes a large change in J; or J,, the factor a4 , will be larger than 1,
i.e. |a1 2| > 1, and the thermal transistor effect of the system will be observed. Further, the larger the
amplification factor is, the better the thermal amplification function of the system is. In figure 2(g), we plot
the amplification factors ; and o as a function of Ty,. It is found from figure 2(g) that the amplification
factors of Jo; and Jo, are almost constant and very huge, i.e. || &~ o & 2.18 x 10%, which exhibits a strong
robustness to noise strengths. This also derives from the fact that when the system works at A, = —Ay, the
mechanical mode cannot be cooled or heated significantly so that (éa;,da,,) ~ N,,, which leads to a very
small and slightly temperature-dependent flux Jy,, in equation (4). In contrast, N7 and N, are constants but
(3al6ay) and (alda,) always vary with T,,. Consequently, Jo; and J, in equation (4) depend significantly
on T, so that the ratio of two slopes, i.e. &y » = (0], 2/0T ) (0)1n/OT) " can be very large. Therefore, the
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as a function of Ay /A; at A; = —k. (d) F as a function of the unknown parameter A,/A; for different . Other parameter

values are the same as those in figure 2. Insets: magnification of Jo,, and av.

current setup provides a simple and effective way of inducing large-amplitude changes in energy transport at
the microwave end with a tiny variation at the mechanical end, thereby realizing the QTT.

The changes of the noise fluxes as a function of T, with different A, are shown in figure 3(a). We see
from figure 3(a) that Jy; keeps constant and Ji, changes slightly with decreasing A, at a given T,,. However,
the amplitude of Jo,, increases significantly with a decrease of A,, as shown in the inset of figure 3(a). This is
because when A, < —A, the absorbed noise flux from bath 1 rapidly exceeds the dissipative noise flux
entering bath 2 so that more redundant energy should dissipate into the mechanical bath. In figure 3(b) we
depict the amplification factors a; and o as functions of A, /A ;. We found that an extremely high
amplification can be always obtained, i.e. oy = —671.6 and a, = 670.6 as A, = 0.95k, as shown in the inset
of figure 3(b). It is noted that the huge amplification factors «; and «; appear at two particular detunings A,
for which Jy,, is 0 and the energy absorbed from left thermal bath completely compensate for the energy
transferred to right one. This occurs for A, ~ —A; and A, ~ —1.007A, and there exists a minimum value
of amplification factor between the two. Therefore, the amplification factors drop quickly and depend
sensitively on the detuning ratio.

In particular, the sensitivity of the amplification can be used in a high-precision measurement of control
parameters [63]. For example, when a parameter, such as A, ~ Ay, = A,, is unknown, we can adjust the
known parameter A; to change until a certain criteria is reached, which corresponds to an extreme
amplification, thereby determining this unknown parameter and achieving alignments of two microwave
driving frequencies. In figure 3(c) we depict |« | as a function of A, /A at different x’s. We see from
figure 3(c) that the width between two extreme amplification points increases with increasing «. Therefore,
the smaller , the higher sensitivity to A,. Furthermore, we can use quantum Fisher information (QFI) to
quantify the sensitivity of the system to A, (see figure 3(d)), which for a CV Gaussian state, is [64—67]

F = 2vec[0,U]' M~ 'vec[0,U] + ,RT U O,R,, (8)

where M =4UT @ U+ Z®@Zwith = =A@ A@® A and A = [0, 1;—1,0]; vec[e] denotes the vectorization of
a matrix and 0, denotes the derivation with respect to the parameter x; R; is the vector of average values of
f(t). The ultimate limit in precision is given by the Cramér-Rao bound Var(A,) > 1/(N F) with N being
the number of independent probes [67]. Comparing figures 3(c) and (d), we see that the largest QFI is
obtained in the region near A, = —A; which overlaps with that for the extreme amplification in Jy;. Clearly,
in the selected parameter range a small decay rate & significantly enhances QFI, thereby indeed improving
measurement precision.

Finally, we remark that in experiments, the mechanical oscillator can be coupled capacitively to two
identical superconducting microwave circuits [45—47], where the coupling strength g; is related to the
parameters of the capacitor and the mechanical oscillator and can easily reach the order of 1 Hz. Further, the
noise fluxes can be experimentally demonstrated by detecting the covariance matrix U, where the
second-order moments of the microwave modes can be acquired via the homodyne detection of the output
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field [68] and the detection of the second moments for the mechanical mode can be obtained by
constructing auxiliary cavity [56]. In addition, the QTT can quickly switch between on and off states by
controlling the external driving, which determines the amplitude of each noise flux.

4. Conclusions

We have proposed an experimentally feasible microwave electromechanical scheme to realize
continuous-variable quantum thermal transistor. We found that by combining the heating Stokes and
cooling anti-Stokes processes of the system, the tiny changes of the energy transfer between the mechanical
oscillator and the bath produce amplified variations in energy transport at the microwave ends. In particular,
the amplifications of the noise fluxes can be sensitively modulated by changing the relative detunings of the
two microwave cavities. As a future direction, it would be interesting to study the quantum thermal
transistor effects and related quantum precision metrology based on various continuous-variable
electromechanical [31, 45], optomechanical [29, 69, 70] or magnomechanical systems [67, 71, 72], as well as
to explore the influence of the memory effect of the non-Markovian environment on the thermal transfer
and the quantum Fisher information of the coupled system [73-75].
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