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ABSTRACT

We present the results of a search for K5 A 7T0€+€_ and K5 A won‘t/f,
from the NA48 high intensity 2002 K5 run. These channels are needed to
fully understand their CP-violating contributions in the corresponding KI, de-
cays. In addition, we show the collected data sample of Ki —> wie+e— and
Ki —> witfi'p— from the 2003 Ki run. That data sample will help determine
whether the resulting interference between the direct and indirect CP—Violating
amplitudes in KL A 7136+? are constructive or destructive.

1 Introduction

Physics beyond the standard model could be accessed from K —> Mt from ex-
isting machines! New physics could manifest itself through loops for KL, Ks,
and Ki in these channels. In this talk: we focus on recent NA48 results
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Figure 1: Unitary triangle in the Kaon system, and contribution from various
rare decays.

on KL=KS, and Ki rare decays that will allow us to predict the CP con-
serving(CPC)= CP-violating(CPV) and interference components of KL —> 71-66,
where Z = e: ,u. These processes will allow us to perform high-precision tests
of Standard Model (SM) flavor physics= including the CKM mechanism for CP
violation (Fig. 1): and define very sensitive probes of new physics.

The CKM matrix has the explicit form

Vud ‘fus l/ub

'V : Vlad Vcs Vcb 2 (1)
t V23 t

—/\ 1 — A2 /2 AV
AA3(1 — g — in) —A/\2 1

where the second expression is the useful approximate representation due to
Wolfenstein with the parameters A, A, Q and the complex phase 17. The absolute
values of the elements of the CKM matrix show a hierarchical pattern with the
diagonal elements being close to unity: the elements |Vus| = A and |Vcag| being of
order 0.2, the elements cbl = .4/\2 and |Vts| of order 4-10—2 whereas IVubl and

1—/\2/2 /\ AA3(g—in)( ) <2)
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Figure 2: Scatter plot of meew versus mee (a) and 7716677 versus my, (1)} for
events passing all the cuts desmibed in Ref. 1). The regions of 3a and 60' are
shown.

|Wd| are of order 5-10—3. Recent results on /\ based on kaon semileptonic decays
were discussed at this conference, but in this talk we will focus on channels that
provide the g and i7 parameters like KL —> roe+e— and KL —> 7TO/I,+,ll,_. As
shown in Fig. 1, this requires the measurement of several rare kaon decays, like
Ks —> 7r0€+€_ to determine the indirect CPV component and the interference
term, KL —> 71-077 to determine the CPC component, and Ki —> 71-15%— as
extra information to determine the sign of the interference term.

2 Results and Discussion for the KS —> 7r0£+€_ (E = e, ,u)

The [(3 run used in these analyses took place in 2002 and it had a total of
(2 — 4) x 1010 KS decays. As shown in Fig. 2, seven events were found in the
K5 —> noe+e_ signal region, with a background estimate of 0.15133 events
(Fig. 3), while six events were found in the signal region for Ks —> 7r0,u+/.L_
(Fig. 4), with a background estimate of 0.221%:51g events (Fig. 5). These are the
first observations for K3 —> 7r0e+e‘ and Ks —> 7r0p+,u‘ decays.

The kinematic properties of the Ks —> 7r06+e_ and Ks —> 71-0,uflf can—
didates were consistent with those expected based on Monte Carlo simulation
of the signal.

Taking into account the trigger efficiency, the acceptance and the flux,
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Figure 3: (a) Distributions of mee after all the cuts have been applied. Su-
perimposed we show the Monte Carlo predictions from all important sources.
Figure (a) shows the components with opposite-sign tracks. (b)Scatter plot of
1716677 versus mw for events selected as KL —> e+e_'y'y in the 2001 data used
to estimate the background. The boxes represent the 30 and 60 regions.

the K5 —> roe+e_ branching ratio was measured to be 1):

B(KS —> 7T0€+€_) = [5.8t3:§(stat) :i: U.8(syst)] X 10—9= (3)

and the Ks —> rolfiu— 2):

BUYS —> 7T0/1,+/L_) = [2.9fi:g(stat) :i: 0.2(syst)] X 10—9. (4)

The results for K3 —> roe+e_ includes the extrapolation to the low me+e—
region excluded from the analysis in order to avoid backgrounds. These re—
sults are consistent within errors with the recent predictions based on Chiral
Perturbation Theory 4= 5).

2.1 Test of Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) can be used to predict the branching ratio
for Ks —> 71-061'6— and the corresponding dilepton mass spectrum: 777.52. The
measurement presented here tests these predictions and constrains the param-
eters of the model.
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Figure 4: Scatter plot for the events passing all the cuts described in 2): (a)
for the 777.77 versus mmm plane and {b} for the mm, versus 771W plane. The
2.50 and the 60 signal and control regions and the mW kinematic limits are
also shown.

The K3 —> 7r0£+€‘ branching ratios can be expressed as a function of two
parameters, as and 03 4):

B(KS —> noe+e_)
X10_10

B(KS —> 7TOIU,+[I,_)
X10_11

2 [0.01 — 0.76a3 — 0.211154 46.50% + 12.90303 + 1.441%]
(5)

= [0.07 — 4520.3 — 1.5003 + 98.70% + 57.7asbs + 8.95025]
(6)

where the total form factor is W's-(z) = Gpni§((a5- + bsz) + WEN/t), z =
m’fZ/mir. mK is the kaon mass, ma is the invariant mass of the two leptons, and
WE.” (z) is expected to be small. Assuming VMD= which predicts bs : 0.4 as

, the value of the parameter |a5| can be obtained from the measurement of
the individual Ks —> 7r0€+£_ branching ratios via the relations 6)

B(KS —> noe+e_) 2

B(Ks —> WOW/f) 2
5.2 x 10—90%,
1.2 x 10—9 (1%.

(7)
(8)

Using our new results for these branching ratios, the value of the parameter
|as| is found to be:

laSlee : 1061—83? :l: (1.07

laSIn/r : 1-54tgég i 0.06.
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Figure 6: (a) Allowed regions of as and b3 determined from the observed
number of Ks —> r0n+n_ and K5 —> 7r0e+e_ events separately. The region
between the inner and outer solid (dashed) elliptical contours is the allowed
region for K3 —> ro/fl'p‘ (K3 —> r0e+e—} at 68% CL. {b} Allowed regions of
as and by for the K5 —> WOIU,+}L_ and K3 —) r0e+e— channels combined. The
inner {outer} contour of each pair delimits the 10 (20} allowed region from the
combined log-likelihood. The dashed straight line in both plots corresponds to
b3 2 0.4a3, as predicted by the VMD model.

assessment of the linear dependence of the form factor on 2:.

2.2 CPV component of KL —> 7703*?—
The branching ratios for the decay KS —> 7r0£+£— (Z = e, ) measured by
NA48 allows us to predict the CPV contribution to the bran mg ratio of the
corresponding KL decay, KL —> r0£+£‘, as a function of Im(/\t) to within a
sign ambiguity 8

2
B(KL a 7T0£+[_)CPV X 1012 = CMIX :l: CINT (1135—3?) + CDIR (M) = (11)

Where

Off/fix 3.0 x 109 B(K5 —> 7r06+e_), (if/fix : 3.1 x 109 B(KS —> «Ohm—L

Cf§T 8.6 x 104 ‘ /B(KS —> 7r0e+e—), 055T = 4.6 x 104 ‘ /B(K5 —> now/r),
031R : 2.4 cggR:1.0.

CINT is the coefficient for the term due to the interference between the di-
rect(CD1R) and indirect (CMIX) CPV components, and At = Vitfg.
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Figure 6: (a) Allowed regions of as and b3 determined from the observed
number of Ks —> ro/flL/F and K3 —> roe+e— events separately. The region
between the inner and outer solid (dashed) elliptical contours is the allowed
region for K3 —> wo/fl'p— (K3 —> r0e+e_} at 68% CL. {b} Allowed regions of
as and by for the K5 —> nouflf and K3 —> roe+e_ channels combined. The
inner {outer} contour of each pair delimits the 10 (20} allowed region from the
combined log-likelihood. The dashed straight line in both plots corresponds to
b3 2 0.4a3, as predicted by the VMD model.

assessment of the linear dependence of the form factor on 2.

2.2 CPV component of KL —> 77°64'6—
The branching ratios for the decay K5 —> r0£+£— (K 2 egg) measured by
NA48 allows us to predict the CPV contribution to the bran 1ng ratio of the
corresponding KL decay, KL —> r0€+£‘, as a function of Im(/\t) to within a
sign ambiguity

2
B(KL —> 7r0[+[_)CPV X 1012 = CMIX + CINT(II1n0(—_A:))+ CD1R(Iln:J(—_):)) = (11)

Where

3.0 x 109 B(K5 —> noe+e_), Cffix : 3.1 X 109 B(KS —> «Ohm—y,

OffiT 8.6 x 104 ‘ /B(K5 —> Troe+e—), 0n = 4.6 x 104 ‘ /B(K5 —> now/r),
031R : 2.4 C‘S‘I‘R:1.0.

«is
C MIX

CINT is the coefficient for the term due to the interference between the di-

rect (CDIR) and indirect (CMIX) CPV components, and At = V201“; _
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Figure 7: Predicted CPV component of the KL —> fro/L+u_ (solid curves} and
KL —) r0e+e— (dashed curves} branching ratios as a function of Im(/\t) as-
suming {a} as < 0 and {b} as > 0. Each pair of curves delimits the allowed
range derived from the $10 measured values of |a3|. The vertical shaded band
corresponds to the world average value of Im(/\t).

Taking the central value of the measured branching ratio B(KS —> 7r0£+£_)
and Im(/\t) = 1.36 x 10-4 9) gives:

2?B(KL _> 7TO€+6—)CPV X 1012 17~2111ixing It 9-4interference + 4-7direct:(12)

B(KL —> 7T0/j,+/J,_)CPV X 1012 R 8-8niixing ll: 3~3interference + 1-8direct- (13)

The predicted dependence of B(KL —> 770£+£_)CPV 0n Im(/\t) is shown in
Fig. 7 assuming VMD.

2.3 SM prediction for KL —> «OFFE—

The CPC component of KL —> r0£+£— decays can be constrained using NA—iS
and KTeV measurements of the decay KL —) now 10= 11). A recent analysis
based on ChPT obtained the prediction (5.2 i 1.6) X 10—12 8) for the muon
channel= while it is negligible for the electron.

Combining the CPV and the CPC components, the central value for
the total KL —> roe+e_ (KL —> w0u+u_) branching ratio is estimated to be
32(19) X 10—12 or 13(12) >< 10—12= depending on the sign of the interference
term between the direct and the indirect (mixing) amplitudes. This estimate
is consistent with the present experimental upper limit presented by KTeV
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in this conference, that is B(KL —>7r0e+e_) of 2.8 x 10—10(900/0 CL) and
B(KL —> 770/1+}L_) of 3.8 X 10—10(90% CL).

3 Results and Discussion for the Ki —> 71-10%—

In principle, xPT theory can predict whether the resulting interference be-
tween the direct and indirect CP—violating amplitudes in KL —> 7r0€+fi_ are
constructive or destructive. To gain confidence in this model, we must com—
pare its predictions for the decay rate and the invariant 6+? mass spectrum.
There are not enough events in the NA48 K3 —> 7T0€+€_ and K3 —> Wolff/l-

ie+e_ anddata sample. Therefore, analyses of mass spectrum for Ki —> 7r
Ki —> 71¢,ufla‘ will be studied instead.

After combining the data from the 2003 and 2004 Ki run, we will have
a Ki —> wie+e— that will be as large as the world data sample, that is, we
will have more than 10,000 events. The current world data on Ki —> Wi/DL/a—
consist of only 800 events. The NA48 sample will be at least three times larger.
In both channels the background levels will be low, see Fig. 8.
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Figure 8: NA48 reconstructed Ki —> wie+e_ and Ki —> wilfilf events for
a fraction of the available data sample.
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