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1 Faculty of Physics, University of Belgrade, Studentski trg 12, 11000 Beograd, Serbia;
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Abstract: Within the framework of noncommutative (NC) deformation of gauge field

theory by the angular twist, we first rederive the NC scalar and gauge field model from

our previous papers, and then generalize it to the second order in the Seiberg–Witten (SW)

map. It turns out that SW expansion is finite and that it ceases at the second order in

the deformation parameter, ultimately giving rise to the equation of motion for the scalar

field in the Reissner–Nordström (RN) metric that is nonperturbative and exact at the same

order. As a further step, we show that the effective metric put forth and constructed in

our previous work satisfies the equations of Einstein–Maxwell gravity, but only within the

first order of deformation and when the gauge field is fixed by the Coulomb potential of

the charged black hole. Thus, the obtained NC deformation of the Reissner–Nordström

(RN) metric appears to have an additional off-diagonal element which scales linearly with

a deformation parameter. We analyze various properties of this metric.

Keywords: noncommutative spaces; angular twist; black hole and effective metric

1. Introduction

So far, general relativity (GR) has been shown to be a highly successful theory of gravity,

manifested in its remarkable ability to explain a series of observations [1–4] ranging from

the early-days examinations of the perihelion precession of Mercury, the bending of light,

and the gravitational redshift of radiation from distant stars, to modern day experimental

achievements in detecting gravitational waves and imaging of black holes. What was

in the not-so-recent past only a mere theoretical conception, following the appearance

of advanced ground-based and space-based missions [5–9] like the LIGO and the Event

Horizon Telescope, soon became a factual physical reality. While the LIGO experiment set

the ground for the first ever detection of gravitational waves from colliding black holes

and neutron stars, the Event Horizon Telescope provided an image of the black hole M87*

(actually an image of the gas orbiting around the black hole at the center of the supergiant

elliptical galaxy Messier 87), thus further adding to GR’s enviable predictive power [10–16].

However, in order that a premise of general relativity as the correct theory of gravity

be sustained, it was necessary to introduce into consideration a few exotic ingredients, such

as dark matter and dark energy [17–19], to explain the galactic rotation curves and the

accelerated expansion of the universe. In addition, the conceptual problems with black

holes and the Big Bang singularity [20,21] point to the fact that the ultraviolet character of

gravity still lacks a complete understanding. With all these issues, any attempt to modify
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general relativity or to consider alternative gravity models appears to come as a quite

natural endeavor.

In this paper, we use the methods of noncommutative geometry and noncommutative

gravity [22–30], first to recapitulate a construction of the NC scalar and gauge field model

from reference [31], and then to generalize it to the second order in the Seiberg–Witten

map [23]. It is shown that the second order in the expansion is at the same time an

ultimate order, and consequently the model obtained is nonperturbative and exact. Using

certain duality symmetries that are present at the first order in SW expansion, we recap a

construction from [31,32] that gives rise to a particular noncommutative deformation of

the RN metric. While this construction turns out to be possible at the first order in SW, it

fails at the second order. This is due to the fact that duality symmetry breaks at the second

order in SW expansion.

As a further step, we show that the metric put forth and constructed in [32] appears to

be a deformation of the Reissner–Nordström (RN) black hole that acquires an additional off-

diagonal element, linear in the deformation parameter, and satisfying the Einstein–Maxwell

equations at the first order of deformation. The construction in reference [32] was carried

out by utilizing the methods of noncommutative (NC) gauge field theory [22–30] coupled

to an NC spinor field and to a classical geometry of the RN type. The methods of NC gauge

theory and gravity offer yet another convenient way to modify general relativity in order

to capture effects that are expected to appear close to the Planck scale. The ultimate hope

is that the NC modifications of gravity will unravel something of its quantum character.

In the rest of the paper, we go on to explore the physical properties of this NC-deformed

metric and try to understand its origin and meaning.

It is noteworthy that the construction considered in [32] is not the only attempt in the

literature to deform the RN metric (within the framework of noncommutative physics). In-

deed, in recent years there have been several investigations concerning the noncommutative

versions of Reissner–Nordström (RN) black holes [33–38]. Most of the research in the litera-

ture however has dealt with the so-called Moyal-type noncommutativity [x̂µ, x̂ν] = θµν. For

example, in [33,34,36] the authors used this type of noncommutativity and implemented

it using smeared δ-functions for the mass and charge distributions. The main feature of

such systems is the change in Hawking temperature and entropy. An alternative approach

was presented in [35], where Moyal noncommutativity was introduced using deformed

embedding of RN into deformed Riemannian geometry. Using the framework of the NC

gauge theory of gravity, the authors of [37] were able to construct corrections to the RN

solution and showed that this could lead to a removal of singularities.

The structure of the paper is as follows: In the following section, we review our model

of the NC charged scalar field in a curved background coupled to the NC U(1) gauge

field. In Section 3, we extend our results to the second-order expansion in the deformation

parameter and show that the equation of motion for the NC scalar field does not contain

higher-order terms. This defines the exact (in the NC parameter expansion) model of an

NC charged scalar field coupled to the curved (spherically symmetric) background. In

Sections 4 and 5, we discuss the properties of the NC charged black hole, obtained from the

effective/dual metric in the equation of motion for the NC scalar filed. Section 6 contains

further discussion and some conclusions. In particular, we comment on the possibility of

constructing the effective metric up to the second order in the deformation parameter by

introducing the nonmetricity tensor.

2. NC Scalar Field in the Reissner–Nordström Background

Consider a system consisting of a charged scalar and U(1) gauge field, as well as the

classical gravitational field. We want to deform this system in order to ultimately generate
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one type of deformation of the classical solution to Einstein’s gravity. In particular, it is a

noncommutative deformation of the RN metric that we focus our attention on. The required

steps may be carried out by following [32], where noncommutativity was introduced at

the level of the scalar field that is probing the underlying RN background. After a careful

derivation of the corresponding equation of motion, which we briefly repeat here, one

comes to the conclusion that this system of an RN black hole coupled to an NC scalar and

gauge fields is equivalent/dual to a system of a commutative scalar field and a new effective

background, which up to the first order in the deformation parameter absorbs all NC effects.

We refer to this effective background as the noncommutative Reissner–Nordström (NCRN)

black hole.

Let us start with writing the action functional for the NC U(1)⋆ gauge theory of a

massless charged scalar field φ̂ in an arbitrary background (that has Killing vectors ∂t and

∂ϕ) [31]:

S [φ̂, Â] =
∫

(dφ̂ − iÂ ⋆ φ̂)† ∧⋆ ∗(dφ̂ − iÂ ⋆ φ̂)− 1

4

∫

F̂ ∧⋆ ∗F̂

=
∫

d4x
√

|g| ⋆ gµν
⋆ Dµφ̂†

⋆ Dνφ̂ − 1

4

∫

d4x
√

|g| ⋆ gαβ
⋆ gµν

⋆ F̂αµ ⋆ F̂βν

(1)

where Dµ is the covariant derivative defined by

Dµφ̂ = ∂µφ̂ − iqÂ ⋆ φ̂ (2)

and F̂ = F̂µν ⋆ dxµ ∧⋆ dxν is the field strength, defined by

F̂µν = ∂µ Âν − ∂ν Âµ − i[Âµ
⋆, Âν]. (3)

Action (1) is written in spherical coordinates as xµ = (t, r, θ, ϕ) and the Hodge dual is

denoted by ∗.

The ⋆-product is given by the Abelian twist

F = e−
ia
2 (∂t⊗∂ϕ−∂ϕ⊗∂t) = e−

i
2 θαβ∂α⊗∂β (4)

via (m is the multiplication map m(a ⊗ b) = ab)

f ⋆ g = m
(

F−1
▷ f ⊗ g

)

= f g +
ia

2

(

∂ f

∂t

∂g

∂ϕ
− ∂ f

∂ϕ

∂g

∂t

)

+O(a2),
(5)

where f , g ∈ C∞ and θαβ are components of the NC deformation, with only θtϕ and θϕt being

different from zero: θtϕ = −θϕt = a. Note that this twist leads to the only nonvanishing

commutator [t⋆,eiϕ] = −aeiϕ. The twist (4) may be seen as a special case of the general class

of twists related to the Lie-algebraic deformation of Minkowski space [39]. Note that since

the twist F acts trivially on the metric, the ⋆-product in
√

|g| ⋆ gαβ ⋆ gµν can be omitted.

Now, it is straightforward to check that action (1) is invariant under the infinitesimal U(1)⋆
gauge transformations defined by

δ⋆φ̂ = iΛ̂ ⋆ φ̂, δ⋆ Âµ = ∂µΛ̂ + i[Λ̂⋆, Âµ], δ⋆ F̂µν = i[Λ̂⋆, F̂µν] (6)

where Λ̂ is the NC gauge parameter.

Using the Seiberg–Witten(SW) map [23], one can express the NC fields as functions

of the corresponding commutative fields, which can then be expanded as a series in



Symmetry 2025, 17, 54 4 of 19

the deformation parameter a. Using the twist (4), one obtains the following recursion

relations [40]:

φ̂(n+1) = − 1

4(n + 1)
θρσ

(

Âρ ⋆ (∂σφ̂ + Dσφ̂)
)(n)

,

Â
(n+1)
µ = − 1

4(n + 1)
θρσ

(

{Âρ
⋆,(∂σ Âµ + F̂σµ)}

)(n)
,

F̂µν = − 1

4(n + 1)
θρσ

(

{Âρ
⋆,∂σ F̂µν + Dσ F̂

(n+1)
µν }

)(n)
+

1

2(n + 1)
θρσ

(

{F̂µρ
⋆, F̂νσ}

)(n)
.

(7)

Using the first-order results of (7) and the ⋆-product (5), we expand action (1) up to the first

order in the deformation parameter a as follows:

S =
∫

d4x
√

|g|
(

Dµφ†Dµφ − 1

4
FµνFµν +

1

8
gµρgνσθαβ(FαβFµνFρσ − 4FµαFνβFρσ)

+
1

2
θαβgµν(−1

2
FαβDµφ†Dνφ + FανDµφ†Dβφ + FαµDβφ†Dνφ)

)

+O(a2),

(8)

where Dµ is the usual U(1) covariant derivative Dµφ = ∂µφ − iqAµφ. If we add the

classical EH action to (8), the resulting functional may be viewed as a deformation of

Einstein–Maxwell gravity, leading to an effective theory of gravity akin to some effective

models of gravity obtained in the low-energy limit of a string theory action containing the

gravitational, gauge, and dilaton or axion fields [41,42].

By varying action (8) with respect to φ†, one obtains an equation of motion for φ:

gµν
[

DµDνφ − Γ
λ
µνDλφ

− 1

4
θαβ

(

Dµ(FαβDνφ)− Γ
λ
µνFαβDλφ − 2Dµ(FανDβφ) + 2Γ

λ
µνFαλDβφ − 2Dβ(FαµDνφ)

)

]

= 0. (9)

Varying the action with respect to Aλ, one can obtain the NC Maxwell’s equations [31].

The gravitational background is defined by the Reissner–Nordström spacetime, with metric

gµν =











− f (r) 0 0 0

0 1
f (r)

0 0

0 0 r2 0

0 0 0 r2 sin2 θ











, f = 1 − 2M

r
+

Q2

r2
, (10)

where M is the mass and Q the charge of the RN black hole, and the U(1) gauge field is

Aµ = (−Q

r
, 0⃗ ). (11)

The corresponding field strength Fµν has the only nonvanishing components:

Ftr = −Frt = −Q

r2
. (12)

Furthermore, since the only nonvanishing components of the NC deformation θαβ are

θtϕ = −θϕt = a, by inserting (10), (11), and (12) into (9), we finally obtain

(

1

f
∂2

t − ∆ + (1 − f )∂2
r +

2M

r2
∂r +

2iqQ

r f
∂t −

q2Q2

r2 f

)

φ +
aqQ

r3

((

M

r
− Q2

r2

)

∂ϕ + r f ∂r∂ϕ

)

φ = 0. (13)

Equation (13) is the equation of motion of an NC scalar field in the background of the RN

black hole. This equation, its quasinormal-mode solutions, and the Bekenstein–Hawking
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entropy were extensively studied in [31,43,44]. Note that in the limit a → 0 one obtains the

usual equation of motion of a commutative scalar field in the RN background.

3. Exact Equation in the Second-Order SW Map

In this section, we extend the previous analysis to the second order in the SW ex-

pansion. Remarkably, the SW expansion terminates at this order, and consequently the

resulting equations of motion is exact. In order to find the second-order NC corrections,

we use recurrent relations for the SW map (7) and follow steps similar to those in Sections

3 and 4 in [40]. Similarly to (7), the recursion relations for action (1) allow us to express

corrections in order n + 1 from the corrections in order n by substituting all pointwise

products with the ⋆-products and commutative fields with the corresponding NC fields.

By closer inspection and taking into account that the only nonvanishing components of

the θµν and Fµν are θtϕ and Ftr, we see that the terms from the first-order expansion which

give nonzero corrections in the second order are the following (the superscript in (. . .)(i)

denotes that only the i-th order in the deformation parameter a is retained):

S(2) =
√

|g| θ
αβgµν

2
(Dµφ̂†

⋆ F̂αν ⋆ Dβφ̂ + Dβφ̂†
⋆ F̂αµ ⋆ Dνφ̂)(1). (14)

Inserting the SW map solutions (7) and expanding the ⋆-products, with the help of the

useful method for obtaining manifestly covariant results given in Appendix B in [45],

(14) becomes

S(2) =
√

|g|1
4

θαβθγδgµν(−2Aγ∂δ(Dµφ†FανDβφ) + iDγ(Dµφ†Dβφ)DδFαν

+iFαν(DγDµφ†)(DδDβφ) + Dµφ†FανFγβDδφ

+Dδφ†FανFγµDβφ + 2Dµφ†FγαFδνDβφ)

+
√

|g|1
4

θαβθγδgµν(−2Aγ∂δ(Dβφ†FαµDνφ) + iDγ(Dβφ†Dνφ)DδFαµ

+iFαµ(DγDβφ†)(DδDνφ) + Dβφ†FαµFγνDδφ

+Dδφ†FαµFγνDνφ + 2Dβφ†FγαFδµDνφ). (15)

After subsequent partial integrations and the use of the identity i[Dα, Dβ]φ = Fαβφ, as well

as the fact that derivatives which are contracted with the NC deformation parameter matrix

θαβ do not act on the field strength tensor Fµν, we obtain

S(2) =
√

|g|1
4

θαβθγδgµν(−Fγδ(Dµφ†FανDβφ) + iDγ(Dµφ†Dβφ)DδFαν

−Fαν(Dµφ†)Fγδ(Dβφ) + Dµφ†FανFγβDδφ

+Dδφ†FανFγµDβφ + 2Dµφ†FγαFδνDβφ)

+
1

4

√

|g|θαβθγδgµν(−Fγδ(Dβφ†FαµDνφ) + iDγ(Dβφ†Dνφ)DδFαµ

+Fαµ(Dβφ†)Fγδ(Dνφ) + Dβφ†FαµFγνDδφ

+Dδφ†FαµFγβDνφ + 2Dβφ†FγαFδµDνφ). (16)

Since Ftϕ = 0, some of the above terms vanish, while the others add to one term given by

S(2) =
√

|g|1
4

θαβθγδgµν(Dβφ†FαµFγνDδφ + Dβφ†FαµFγνDδφ) =
√

|g|1
2

θαβθγδgµν(Dβφ†FαµFγνDδφ). (17)
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Variation of these terms with respect to φ† gives rise to additional terms in the equation of

motion. It turns out that only one new term appears, which is of the form

1

2
θαβθγδgµνFαµFγνDβDδφ.

More explicitly, we obtain

1

2
θtϕθtϕgrrFtrFtr∂2

ϕφ =
1

2
a2(− f )

q2Q2

r4
∂2

ϕφ = − a2q2Q2

2r4
f ∂2

ϕφ.

Finally, the resulting equation of motion is

( 1

f
∂2

t − ∆ + (1 − f )∂2
r +

2MG

r2
∂r + 2iqQ

1

r f
∂t −

q2Q2

r2 f

)

φ

+
aqQ

r3

(

(
MG

r
− GQ2

r2
)∂ϕ + r f ∂r∂ϕ

)

φ − a2q2Q2

2r4
f ∂2

ϕφ = 0. (18)

As already noted, the equation of motion (18) is not just a perturbative result valid

up to the second order in deformation. It is an exact result and may be attributed to the

SW map terminating at that same order. As an advantageous outcome, one finds that all

analysis that is ever going to follow from this equation requires no perturbative protocols

anymore. All results following from (18) are exact automatically. There is one more way

to justify why Equation (18) is exact and no higher-order corrections appear. Namely, the

SW map is linear in matter fields, while action (1) is quadratic in the matter field φ. The

only nonzero components of the deformation parameter θ are θtϕ, so each new order of

expansion contributes one additional set of ϕ and t indices. Note that the index ϕ can only

appear contracted to Dϕφ, since all Fµϕ = 0. Since action (1) is quadratic in the field φ and

we can always partially integrate multiple covariant derivatives on φ to obtain Fρσ, we

conclude that the maximal number of Dϕ in the expanded action is two, and therefore the

expansion of the action has to terminate at the second order.

4. Noncommutative Reissner–Nordström Black Hole

In this section, we focus on the first order in the SW expansion, that is, the equation of

motion (13), and identify a duality symmetry that exists at that order. This symmetry will

allow us to absorb the noncommutative contributions into a single d’Alembertian operator

and ultimately to identify the effective metric related to this problem, which will turn out

to be a deformation of the Reissner–Nordström metric. We later discuss possible extensions

of the duality symmetry to higher orders.

The equation of motion for the NC scalar field minimally coupled to the RN back-

ground can be written in the following form [32]:

1
√

|g|
Dµ(

√

|g|gµνDνφ) +□aφ = 0, (19)

where □a is the part of (13) which contains only NC contributions. Now, we try to rearrange

(19) so that the NC operator □a is absorbed into some effective metric g′µν. Namely, we write

1
√

|g′|
Dµ(

√

|g′|g′µνDνφ) =
1

√

|g|
Dµ(

√

|g|gµνDνφ) +□aφ. (20)
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We can write an ansatz for g′µν, and after carefully comparing the left- and right-hand sides

of (20), we can extract the components of the effective metric g′µν to obtain

g′µν =













− f 0 0 0

0 1
f 0

aqQ
2 sin2 θ

0 0 r2 0

0
aqQ

2 sin2 θ 0 r2 sin2 θ













+O(a2). (21)

Since we have an effective metric g′µν, we can notice an equivalence between the equation of

motion of an NC scalar field in the RN background (9) and the equation of motion guiding

a commutative scalar field on some effective background endowed with the effective metric

g′µν. The similar property has already been observed for the NC scalar field on the BTZ

background [46–49] in the context of κ-deformation. In particular, in [46–49] it was shown

that noncommutativity may give rise to black hole spin and that it essentially mimics its

advent. It is interesting to note that a similar type of feature, where the noncommutativity

is assigned the role of a mimicker of some specific physical property, is quite usual in the

literature; see, for example, reference [50]. As the effective metric g′µν appears to absorb all

NC effects, we name this new effective space as NCRN, and in what follows we investigate

its physical properties. This effective metric provides a dual picture to the same physical

system, comprising the NC scalar field with the charge q and the background metric

generated by the black hole with mass M and charge Q. Note that from now on we deal

with only one metric, that pertaining to NCRN, and for simplicity we switch the notation

accordingly, i.e., g′ → g.

Thus, the metric of NCRN is given by

gµν =











− f (r) 0 0 0

0 1
f (r)

0 A sin2 θ

0 0 r2 0

0 A sin2 θ 0 r2 sin2 θ











, (22)

written with the abbreviations

f (r) = 1 − 2M

r
+

Q2

r2
and A =

aqQ

2
. (23)

As A → 0, we recover the commutative limit. Interestingly, when the same procedure is

carried out for the spin 1/2 field up to the first order in deformation, the same effective

metric (22) arises [32]. The situation with the extension of this analysis to the vector field

is, however, a little bit different. Namely, for the electromagnetic spin 1 field there are

no corrections to the equation of motion in the first order, while in higher orders in Θ,

due to the SW map (7) the NC Maxwell equation becomes nonlinear in Aµ, rendering any

possibility of constructing a dual picture with an effective metric impossible. On the other

hand, in order to extend this construction to the second order in the deformation parameter,

we need to allow a more general connection. We comment on this in the concluding section.

From now on, we drop the scalar field from any subsequent discussion and the only

subject of our interest is a system consisting of the gauge field and the gravitational field

(metric tensor).
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Now, the main question is what geometry and physics lie behind the NCRN metric (22).

Let us evaluate the Einstein tensor:

Gµν = Rµν −
1

2
Rgµν =















Q2 f

r4 0 0 0

0 − Q2

r4 f
0 A Q2 sin2 θ

r4

0 0 Q2

r2 0

0 A Q2 sin2 θ
r4 0 Q2 sin2 θ

r2















+O(A2) . (24)

As can be seen, the Einstein tensor is nonzero, so the NCRN metric, as expected, is not a

vacuum solution to the Einstein equation.

Thus, the NC effect may be encrypted within some effective matter source, ap-

pearing on the right-hand side of the Einstein field equation. The interesting feature

is that for the metric (22) this effective matter source may be fixed by Maxwell’s energy–

momentum tensor:

TM
µν =

1

4π

(

FµλF λ
ν − 1

4
gµνFλσFλσ

)

. (25)

Indeed, it may be shown that up to first order in the deformation A the metric (22) satisfies

the Einstein–Maxwell field equation:

Gµν = 8πTM
µν. (26)

We first note that the zeroth order in A in (24), i.e., the Einstein tensor for the RN metric,

is proportional to the Maxwell energy–momentum tensor (25), where the only nonvan-

ishing component of the electromagnetic tensor Fµν is Frt = −Ftr = Q/r2. In order to

see what happens in higher orders, in particular the first order in A, we absorb the NC

corrections appearing in (24) into the energy–momentum tensor TM
ab , and simultaneously

allow the modifications in the electromagnetic tensor Fab. In this way, we propose the

following ansatz:

Fµν =











0 −Q
r2 − AF0 AF1 AF2

Q
r2 + AF0 0 AF3 AF4

−AF1 −AF3 0 AF5

−AF2 −AF4 −AF5 0











(27)

where Fi = Fi(t, r, θ, ϕ) are yet-unknown functions. Now, using the Einstein tensor (24)

calculated for the metric (22) and the energy–momentum tensor (25), evaluated for the

ansatz (27), we can calculate the difference tensor:

Gµν − 8πTM
µν =















− AQ f

r2 F0 0 − 2AQ f

r2 F3 − 2AQ f

r2 F4

0 2AQ
r2 f

F0 − 2AQ
r2 f

F1 − 2AQ
r2 f

F2

− 2AQ f

r2 F3 − 2AQ
r2 f

F1 −2AQF0 0

− 2AQ f

r2 F4 − 2AQ
r2 f

F2 0 −2AQF0 sin2 θ















+O(A2). (28)

The only way that the above difference tensor vanishes is if

F0 = F1 = F2 = F3 = F4 = 0, (29)

leaving the function F5(t, r, θ, ϕ) still arbitrary. Thus, we see that up to first order in A, the

metric (22) satisfies the Einstein–Maxwell field Equation (26).

An alternative perspective on this situation might be that the nonvanishing Gµν in (24)

results from a modification of Einstein’s gravitational field equation. In that case, we are
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interpreting all corrections as coming from the (NC) geometry part [40,45,51–60]; i.e., as

corrections to the left-hand side of the Einstein equation. In this way, one would obviously

fix the energy–momentum part and modify the Einstein tensor Gµν −→ Ĝµν according to

Ĝµν = Rµν −
1

2
gµνR +O(A).

5. Physical Properties of NCRN

In the following we make a review of some general properties of the metric (22). Later

on, we shall see that many of these properties may be easily understood through the lenses

of a transition to another coordinate system.

5.1. Various Aspects of NCRN

Primarily, it is easy to see that this metric is static since its stationary Killing vector

field k = ∂/∂t satisfies k ∧ k. = 0 and the metric is written explicitly in block-diagonal form.

Furthermore, by the Vishveshwara–Carter theorem we know that ergosurfaces, consisting

of points where the Killing vector field ka becomes null, coincide with the Killing horizon

H[k] generated by ka.

On the other hand, the horizon can be quickly found by looking at the zeros of

the metric function f (r), which are formally identical, as in the commutative Reissner–

Nordström black hole. However, as the original coordinate system in which the metric

is written is not regular at the black hole horizon, we have to use some of the light-

like coordinates, such as v = t + r∗ with the tortoise coordinate r∗, introduced via the

r.∗ = r./ f (r): spacetime metric in the coordinate system {v, r, θ, ϕ}, that takes the form

ds2 = − f (r)dv2 + 2 dv dr + 2A sin 2θ dr dϕ + r2(dθ2 + sin 2θ dϕ2). (30)

Nevertheless, here we have k = ∂/∂v and again k2 = gvv = − f (r). Let us denote the zeros

of f (r) with r+ and r−, so that

r± = M ±
√

M2 − Q2,

as in the case of an RN black hole.

Another interesting point is the temperature of the NCRN black hole. It appears

that the temperature of the Reissner–Nordström black hole remains unaltered by the

noncommutative corrections. This may be seen from the following line of arguments,

starting from the well-known expression for surface gravity:

κ2 = − lim
H

(kb∇bka)(kc∇cka)

kaka
. (31)

The evaluation of the expression in the numerator gives

kα∇αkµ = kα∂αkµ + kα
Γ

µ
αβkβ = 0 + Γ

µ
tt =

1

2
gµr∂r f (r)

and consequently

(kα∇αkµ)(kβ∇βkµ) =
1

4
gµνgµrgνr(∂r f )2 =

1

4
grr(∂r f )2 , k2 = gtt = − f . (32)
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Since the only component of the metric that we need is grr and it is given by

grr =
1

1
f − A2 sin2 θ

r2

,

one finally obtains

κ2 = lim
r→r+

1

4

( f ′)2

1 − A2 sin2 θ
r2 f

= lim
r→r+

( f ′)2

4
.

Formally, as above, this has to be checked in a regular coordinate system, such as {v, r, θ, ϕ}.

Here, we have

kα∇αkµ = Γ
µ
vv =

1

2
gµr∂r f (r)

and consequently

(kα∇αkµ)(kβ∇βkµ) =
1

4
grr(∂r f )2 =

1

4

( f ′)2

1
f − A2 sin2 θ

r2

.

Again, the conclusion remains unaltered, κ = f ′(r+)/2. Expectedly, this result is in

accordance with that obtained in [31] when calculating the emission rate of the scalar

particles using the Parikh–Wilczek tunneling formalism. Moreover, the conclusion that the

lowest nonvanishing NC correction to the horizon temperature is beyond the linear one

seems to be in agreement with other approaches in the literature [61–63].

5.2. The Newtonian Limit

The Newtonian limit is defined by the three following premises [64]:

1. The particle is moving slowly with respect to the speed of light;

2. The gravitational field is weak and can be considered as perturbation of a flat space;

3. The gravitational field is static.

The mathematical description of premise 1 is given by the requirement

dxi

dτ
≪ dt

dτ
, (33)

which simplifies the geodesic equation

d2xµ

dτ2
+ Γ

µ
tt

(

dt

dτ

)2

= 0. (34)

Moreover, since the gravitational field is static, we have

Γ
µ
tt = −1

2
gµr∂rgtt.

In the subsequent analysis, we will need the inverse of the metric (22), which is given by

gµν =













− 1
f 0 0 0

0 f 0 −A
f

r2

0 0 1
r2 0

0 −A
f

r2 0 1
r2 sin2 θ













+O[A]2. (35)
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Now, if we examine Equation (34) for µ = t, we obtain

d2t

dτ2
= 0 =⇒ dt

dτ
= const. (36)

which enables us to rewrite (34) in terms of the coordinate time t only:

d2xµ

dt2
+ Γ

µ
tt = 0 . (37)

At this point, we use premise 2, which tells us that the gravitational field is weak and that

it can be treated as a perturbation of the flat metric. In fact, one is dealing here with two

types of perturbations: gravitational and noncommutative. Therefore, the inverse of the

metric can be written as

gµν = ηµν − hµν + Akµν +O(A · h, h2, A2), (38)

where only the lowest order in h and A is kept. Let us calculate the Christoffel symbol in

this approximation:

Γ
µ
tt = −1

2
gµr∂rgtt = −1

2
(ηµr − hµr + Akµr)∂rgtt = −1

2
(ηµr + Akµr)∂rgtt +O[h2, A2]. (39)

In the last equality, we used the fact that in the lowest order −gtt = f (r) = 1 +O[h], i.e.,

∂g ∼= O[h]. Thus, the Christoffel symbols are

Γ
t
tt = Γ

θ
tt = 0, Γ

r
tt =

1

2

∂ f

∂r
, Γ

ϕ
tt = − A

2r2

∂ f

∂r
(40)

so that (34) in the Newtonian limit reduces to

r̈ = −1

2

∂ f

∂r
, ϕ̈ =

A

2r2

∂ f

∂r
, θ̈ = 0. (41)

While the noncommutativity does not affect the radial equation, it affects the equation for

the polar coordinate. The equations of motion (41) can be written in a unified way as

ẍi = −∂̃iV(r), (42)

where V(r) = 1
2 f is the generalized Newtonian potential (for all practical purposes it is

really the Newtonian potential since f ≈ 1 − 2M
r for 2M

r ≫ Q2

r2 ) and ∂̃i ≡ ∂i + Θ̃
j

i ∂j is the

generalized Laplacian, with

Θ̃
j

i =







0 0 A
2r2

0 0 0

− A
2r2 0 0






. (43)

Equation (42) represents the noncommutative version of the Newton equation.

5.3. Geodesics in NCRN

Let us investigate the geodesics for the classical, electrically neutral particle moving

in the background of NCRN (22). For the sake of simplicity let us examine geodesics in

the θ = π/2 plane. The 4-velocity is uµ = (ṫ, ṙ, 0, ϕ̇), where the dot denotes the derivative

with respect to proper time (in case of time-like geodesics), or with respect to some affine
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parameter (in case of null geodesics). The kinematics is encapsulated in the square of the

4-velocity,

−κ = uµuµ = − f (r)ṫ2 +
ṙ2

f (r)
+ r2 sin2 θ ϕ̇2 + 2A sin2 θ ṙϕ̇ , (44)

written with the parameter

κ =

{

1 , timelike

0 , null
(45)

On the other hand, due to the Killing vectors k = ∂/∂t and m = ∂/∂ϕ, there are two

conserved quantities: energy e and angular momentum ℓ,

e = −gµνuµkν = f (r)ṫ ⇒ ṫ =
e

f (r)
,

ℓ = gµνuµmν = A sin2 θ ṙ + r2 sin2 θ ϕ̇ ⇒ ϕ̇ =
ℓ

r2 sin2 θ
− A

r2
ṙ.

Thus, taking into account that θ = π/2 and noting that terms linear in A cancel, we have

−κ =

(

1

f (r)
− A2

r2

)

ṙ2 − e2

f (r)
+

ℓ2

r2
.

Formally, we can put this into standard form with an effective potential via auxiliary

function R(τ):
Ṙ2

2
+ V(r) =

e2

2
, (46)

where

V(r) =
f (r)

r2
(l2 + κr2),

Ṙ2

f (r)
=

(

1

f (r)
− A2

r2

)

ṙ2 i.e., R. = r.

√

1 − A2

r2
f (r) .

However, it is difficult to write this relation explicitly.

Interestingly, in this analysis the circular trajectories (ṙ = 0) are completely unaffected

by noncommutativity. However, a particle that would be released from rest (i.e., with ℓ = 0)

at great distance from the black hole would nevertheless gain some nonvanishing shift in

the angle due to the NC term −Aṙ/r2. This implies that the total time of the free fall for the

photon would display a difference when calculated and compared between commutative

and noncommutative cases. Indeed, if l = 0 we see that the radial motion is unchanged (up

to A2 it is the same situation as in the commutative case) and unfolds according to

r(τ) = R0 + eτ, (47)

where R0 is the initial radius r(0) = R0. The polar coordinate should then acquire the

NC correction

ϕ̇ = − A

r2
ṙ =⇒ ϕ(τ) = ϕ0 − Ae

(

1

R0e − e2τ
− 1

R0e

)

. (48)

However, one should be careful about proper interpretation of these results, in particular

about observational claims. As far as it goes, in our analysis we are relying on a specific

coordinate system, and in this particular case it is not as intuitive as one would initially

expect, this being due to the presence of the grϕ component in the metric. For example,

we could say that the experiment is performed by “static observers”, that is observers

with 4-velocities ua-tangent to the orbits of the stationary Killing vector field ka = ∂a
t ;

more concretely, uµ = (1/
√−gtt, 0, 0, 0), in which case the conclusions drawn might be
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somewhat different. These issues are addressed in more detail in the final section, where

we take on the task of finding a genuine physical interpretation of the NCRN metric (22)

and specifically of its only nonvanishing off-diagonal component grϕ.

6. Concluding Remarks

This work has provided a study of the noncommutative U(1) gauge field gravity

model coupled to a scalar field all up to the second order in the Seiberg–Witten map. If

classical Einstein–Hilbert action is added to this model, the resulting setup may be viewed

as a deformation of the system consisting of the gauge field, gravitational field, and dilaton

field that one usually encounters in some models of quantum gravity after the low-energy

limit is taken. The approach that we use provides yet another procedure to modify GR in

order to make it more compatible with physics that is expected to occur at the Planck scale.

Using duality symmetry that is present at the first order in SW, we have rederived the

effective metric from the reference [32] (see Equation (22)), which turns out to be a non-

commutative deformation of the Reissner–Nordström metric, with the only nonvanishing

off-diagonal component sitting at the entry (r, ϕ) and scaling linearly with the deformation

parameter a. This metric has been shown to satisfy the equations of Einstein–Maxwell

gravity when the gauge field is fixed to be the Coulomb potential with its origin in a

black hole charge, albeit only within the first order of deformation. On the contrary, as

we demonstrate in the Appendix A, the construction of the effective metric fails at the

second order in SW expansion due to duality symmetry being broken there. However,

it is worthy to note that if we extend the definition of the connection and in addition to

the ordinary Christoffels take it to also involve the contorsion and nonmetricity, then the

construction of the effective metric can be pushed through up to the second order and

beyond. More precisely, it can be shown that the inverse of the effective metric that in such

an extended framework is able to produce the exact (nonperturbative) Equation (18) by

means of the general equation of motion (20) appears to pick up an additional term in the

component gϕϕ:

gϕϕ(2) = − a2q2Q2

2r4
f . (49)

Consequently, the effective metric itself in this more extended framework acquires the

corrections

g
(2)
ϕϕ =

a2q2Q2

4
f sin4 θ, g

(2)
rr = − a2q2Q2

4r2
sin2 θ. (50)

Note that the inverse of the effective metric is given by the exact result, while its inverse,

i.e., the effective metric itself, has been expanded up to second order in deformation. For

details we refer the reader to the Appendix A. Here, we only make a note that such a

construction is nonunique.

In Section 4, we have touched upon an important question dealing with an actual

interpretation and better understanding of the metric (22), which we here come back to.

Specifically, we are interested in the interpretation of the grϕ metric component, as well as

the meaning of the coordinates in which the metric is expressed and in which the calcula-

tions were carried out previously (especially in the preceding section). A call for caution

has already been given before, as there might be a possibility that the predictions obtained

in the previous section might not be fully trustworthy, due to possible misinterpretation of

the coordinates. Indeed, we should not jump to the conclusion that the obtained results

are completely reliable just because the coordinates we work with are denoted as standard

spherical coordinates. In other words, just because some coordinates are denoted by “r” or

“ϕ” does not automatically mean that they are “usual spherical coordinates” (e.g., it might
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be that r ∈ ⟨−∞, ∞⟩ or even ϕ ∈ ⟨−∞, ∞⟩). For this purpose, here we investigate this point

in some more detail.

Using the new coordinates (t̃, r̃, θ̃, ϕ̃) = (t, r, θ, ϕ − Ar−1) the metric turns into

gµ̃ν̃ =











− f (r)

h(r, θ)

r2

r2 sin2 θ











, h(r, θ) =
1

f (r)
− (A sin θ)2

r2
. (51)

Therefore, we see that upon making a coordinate transformation, the NCRN metric (22) is

transformed into a new, more familiar, format, which to a first order of deformation appears

to be no different to the RN metric. Moreover, in this coordinate system it is manifestly clear

that the metric is asymptotically flat up to the first order in the NC deformation parameter.

In addition, it can be easily checked that the same change in coordinates may be used to

transform away the deflection of a photon in its free fall toward the center of the black

hole studied in the previous section; i.e., to erase the only seemingly nontrivial effect of

the NCRN presented in this work. This would consequently mean that the NC corrections

present in the metric (22) are trivial and that they do not have any physical meaning. In

light of these findings, it does not come as a surprise that the NCRN metric (22) appears

to have the properties that we have so far encountered, in particular that all nontrivial

changes appear at orders that are not lower than the second.

However, we want to stress that the above reasoning, as well as the conclusions drawn

from it, do not present the whole picture, but only a portion of it. As such, this reasoning

alone is insufficient to provide any reliable or far-reaching conclusion and in many aspects

is misleading. It is indeed true that the metric tensor in the new coordinates at the first order

in the NC parameter a seems to be the same as the ordinary RN metric. Nonetheless, the

problem with such a stance is that it completely ignores the context which brought about

the metric (22) and in which it was derived. Regarding the context in this concrete example,

imagine that we have two spacetimes, the background (M, gab) with RN metric gab, where

we place the NC scalar field, and “effective” spacetime (M, g′ab) with the effective metric

g′ab. Unfortunately, as the whole setting (background spacetime and NC action) is prepared

in a specific coordinate system, we cannot easily transform components of the effective

metric g′ab without going back to the origin of this construction. At best, coordinate changes

such as the one above may be trusted at infinity.

An additional point in this case is that the coordinates are noncommutative and the

partial derivatives are also noncommutative. In particular,

∂r̃ = ∂r −
A

r2
∂ϕ. (52)

From these reasons, it is clear that the new geometry will have nontrivial NC effects up to

the first order in the NC deformation parameter a, contrary to the argument made around

(51). Not a bit less important is that the coupling of the NCRN metric with other fields

makes a huge difference in comparison with a situation when this metric is taken alone

and studied as an isolated entity. This is where the importance of the duality symmetry

and a validity of the corresponding requirement (20) comes into play. Namely, after the

coordinate transformation leading to (51), the duality does not hold anymore.

The latter argument is readily confirmed in references [31,32,43], where the metric (22)

was coupled to the spin 1/2 field and scalar field, respectively. We point out that, already

at the linear order in the deformation parameter, these couplings lead to QNM spectra

that differ from the corresponding QNM spectra when the same fields are coupled to the

ordinary RN metric. In this way, the assertion that at the first order in deformation the

NCRN metric is essentially the same as the RN metric directly contradicts with the findings
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in [31,43], where it was explicitly shown that scalar perturbations of RN and NCRN give

rise to different QNM spectra already at linear order in the deformation parameter. Also,

this assertion is in contradiction with the findings in [32], which show that the spin 1/2

field perturbations of RN and NCRN are governed by different equations of motion.

In summary, when talking about the physical properties of the NCRN metric (22), we

may conclude by saying that, observed only by itself, outside of the context in which it was

derived, it appears to be just the RN metric in different coordinates. However, what brings

something new to this metric and its consequences for physics is when it couples to other

types of fields, for example, the scalar, spinor, and gauge fields.
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Appendix A. Second-Order Corrections to the Effective Metric

In this appendix, we describe the challenges one encounters when trying to deduce

the form of the effective metric in higher orders of deformation. In order to make a

construction in higher orders possible, one has to extend the existing framework and

redefine the coefficients of affine connection Γ
ρ
µν in such a way that, in addition to the

ordinary Christoffels {ρ
µν}, they also include the contorsion K

ρ
µν and the nonmetricity C

ρ
µν:

Γ
ρ
µν = {ρ

µν}+
1

2
C

ρ
µν + K

ρ
µν.

Nonmetricity and contorsion are the symmetric and antisymmetric parts of the connection,

respectively.

It is readily seen that the second-order effective metric obtained by adding the con-

tribution (49) to the first-order metric (21) can easily account for the terms with second

derivatives in Equation (18). However, the issue with the first-order derivatives becomes

more involved. It appears that the only way to account for these redundant first derivative

terms is to extend the connection as described above, so that nonmetricity and contorsion

may absorb these terms. More precisely, from (20) it can be seen that the first derivative

terms have the form

−gµν
Γ

ρ
µν∂ρΦ = −gµν(0)

Γ
ρ(2)
µν ∂ρΦ − gµν1

Γ
ρ(1)
µν ∂ρΦ − gµν(2)

Γ
ρ(0)
µν ∂ρΦ (A1)

Here, all necessary nonzero Christoffels may be calculated from (49) and (50) to give
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{r
rr}(2) = −(aqQ)2 f sin2 θ

4r3
, {r

ϕϕ}(2) = (aqQ)2 f f ′ sin4 θ

8
,

{θ
rr}(2) = −(aqQ)2 sin θ cos θ

4r4
, {θ

ϕϕ}(2) = −(aqQ)2 f cos θ sin3 θ

2r2
,

{θ
rϕ}(1) = −(aqQ)

sin θ cos θ

2r2
, {θ

ϕϕ}(0) = − sin θ cos θ,

{r
ϕϕ}(0) = −r f sin2 θ.

Interestingly, as the contorsion needs to be antisymmetric in the last two indices, all

its contributions to (A1) will vanish, as they need to be contracted with the inverse metric

tensor gµν, which is symmetric. This means that the only terms that may annihilate the first

derivative corrections in (A1),

(aqQ)2 f sin θ cos θ

4r4
∂θΦ + (aqQ)2( f ′ − 6 f

r
)

f sin2 θ

8r2
∂rΦ, (A2)

are those that involve components of the nonmetricity tensor.

There are several ways one can remove unwanted first derivative terms:

• Nonmetricity may be introduced as a first-order deformation, so that we may demand

−grϕ(1)C
θ(1)
rϕ = (aqQ)2 f sin θ cos θ

4r4
⇒ C

θ(1)
rϕ = (aqQ)

sin θ cos θ

4r2

−grϕ(1)C
r(1)
rϕ = (aqQ)2( f ′ − 6 f

r
)

f sin2 θ

8r2
⇒ C

r(1)
rϕ = (aqQ)( f ′ − 6 f

r
)

sin2 θ

8
.

From there, the components of nonmetricity immediately follow.

• Nonmetricity may be introduced as a second-order deformation, so that we may

demand

−1

2
grr(0)C

θ(2)
rr = (aqQ)2 f sin θ cos θ

4r4
⇒ C

θ(2)
rr = −2(aqQ)2 sin θ cos θ

4r4
,

−1

2
grr(0)C

r(2)
rr = (aqQ)2( f ′ − 6 f

r
)

f sin2 θ

8r2
⇒ C

r(2)
rr = −2(aqQ)2( f ′ − 6 f

r
)

sin2 θ

8r2
.

The other possibility is

−1

2
gϕϕ(0)C

θ(2)
ϕϕ = (aqQ)2 f sin θ cos θ

4r4
⇒ C

θ(2)
ϕϕ = −(aqQ)2 f sin3 θ cos θ

2r2
,

−1

2
gϕϕ(0)C

r(2)
ϕϕ = (aqQ)2( f ′ − 6 f

r
)

f sin2 θ

8r2
⇒ C

r(2)
ϕϕ = −(aqQ)2( f ′ − 6 f

r
)

f sin4 θ

4
.

We may conclude that the way of implementing nonmetricity, which the framework

we work in allows, is certainly not unique. It would be interesting to understand more

deeply the physical consequences of the effective nonmetric geometry. Also, we point

out that while the equation of motion for the NC scalar field is exact, all other results,

such as the components of the metric and nonmetricity tensors, are not exact. They

are instead perturbative and given only up to a second order in the NC parameter a

(i.e., they have higher-order corrections).
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M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J.

2019, 875, L6.

17. Bekenstein, J.; Milgrom, M. Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 1984, 286,

7–14. [CrossRef]

18. Supernova Cosmology Project Collaboration; Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.;

Deustua, S.; Fabbro, S.; Goobar, A.; et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J.

1999, 517, 565.

19. Supernova Search Team Collaboration; Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.;

Gillil, R.L.; Hogan, C.J.; Jha, S.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological

constant. Astron. J. 1998, 116, 1009.

20. Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57. [CrossRef]

21. Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. 1976, D14, 2460. [CrossRef]

22. Snyder, H.S. Quantized space-time. Phys. Rev. 1947, 71, 38. [CrossRef]

23. Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 032. [CrossRef]

24. Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977. [CrossRef]

25. Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rept. 2003, 378, 207. [CrossRef]
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