

Rapid cryogenic characterization of 1,024 integrated silicon quantum dot devices

Received: 13 February 2024

Accepted: 5 November 2024

Published online: 3 January 2025

Edward J. Thomas ^{1,2,4}, Virginia N. Ciriano-Tejel ^{1,4}, David F. Wise ¹, Domenic Prete ¹, Mathieu de Kruijf ^{1,3}, David J. Ibberson ¹, Grayson M. Noah ¹, Alberto Gomez-Saiz ¹, M. Fernando Gonzalez-Zalba ¹, Mark A. I. Johnson ¹ & John J. L. Morton ^{1,2,3}

 Check for updates

As quantum processors grow in complexity, new challenges arise such as the management of device variability and the interface with supporting electronics. Spin qubits in silicon quantum dots can potentially address these challenges given their control fidelities and potential for compatibility with large-scale integration. Here we report the integration of 1,024 independent silicon quantum dot devices with on-chip digital and analogue electronics, all operating below 1 K. A high-frequency analogue multiplexer provides fast access to all devices with minimal electrical connections, allowing characteristic data across the quantum dot array to be acquired and analysed in under 10 min. This is achieved by leveraging radio-frequency reflectometry with state-of-the-art signal integrity, characterized by a typical signal-to-noise voltage ratio in excess of 75 for an integration time of 3.18 μ s. We extract key quantum dot parameters by automated machine learning routines to assess quantum dot yield and understand the impact of device design. We find correlations between quantum dot parameters and room-temperature transistor behaviour that could be used as a proxy for in-line process monitoring.

Semiconductor quantum dots (QDs) are a potential platform to implement a fault-tolerant quantum computer, a novel computing paradigm expected to outperform classical high-performance computers in areas such as materials and drug discovery, database searches and factorization. This is due to their small footprint, ability to host coherent and controllable spin qubits, and their potential compatibility with advanced semiconductor manufacturing. Spin qubits in isotopically enriched silicon have, in particular, demonstrated control, preparation and read-out fidelities^{1–5} above the threshold to perform quantum error correction⁶. However, such fault tolerance—in which an error-correcting code reduces the error rate to a negligible amount—is predicted to require millions of physical qubits to resolve practical problems⁷.

As solid-state quantum processors scale up to useful levels of complexity, two important challenges must be addressed. First, the number of connections between the room-temperature processor and

the quantum processor cannot continue to grow in proportion with the number of qubits^{8–10}. Frequency-division multiplexing has been applied to allow multiple qubits to share measurement electronics. However, frequency crowding limits this approach, so far, to eight qubits per line¹¹. Crossbar approaches^{12,13}, in which $O(\sqrt{N})$ lines intersect at N qubit locations, offer an elegant solution to reduce wiring, although with stringent requirements on qubit variability and limitations in processor operation. Ultimately, the use of switches to achieve time-division multiple access (TDMA), as in dynamic random-access memory, in both read-out and control lines to each qubit unit cell provides the greatest flexibility and scalability. For d.c. signals, off-chip and on-chip cryogenic switches with ratios up to 1:36 and 1:64, respectively, have been used to address quantum device arrays^{12,14,15}. Multiplexed control circuitry operating at 1 K with >100 MHz pulsing has also recently been reported¹⁶. For radio-frequency (rf) signals used for

¹Quantum Motion, London, UK. ²Department of Electronic and Electrical Engineering, UCL, London, UK. ³London Centre for Nanotechnology, UCL, London, UK. ⁴These authors contributed equally: Edward J. Thomas, Virginia N. Ciriano-Tejel. e-mail: mark@quantummotion.tech

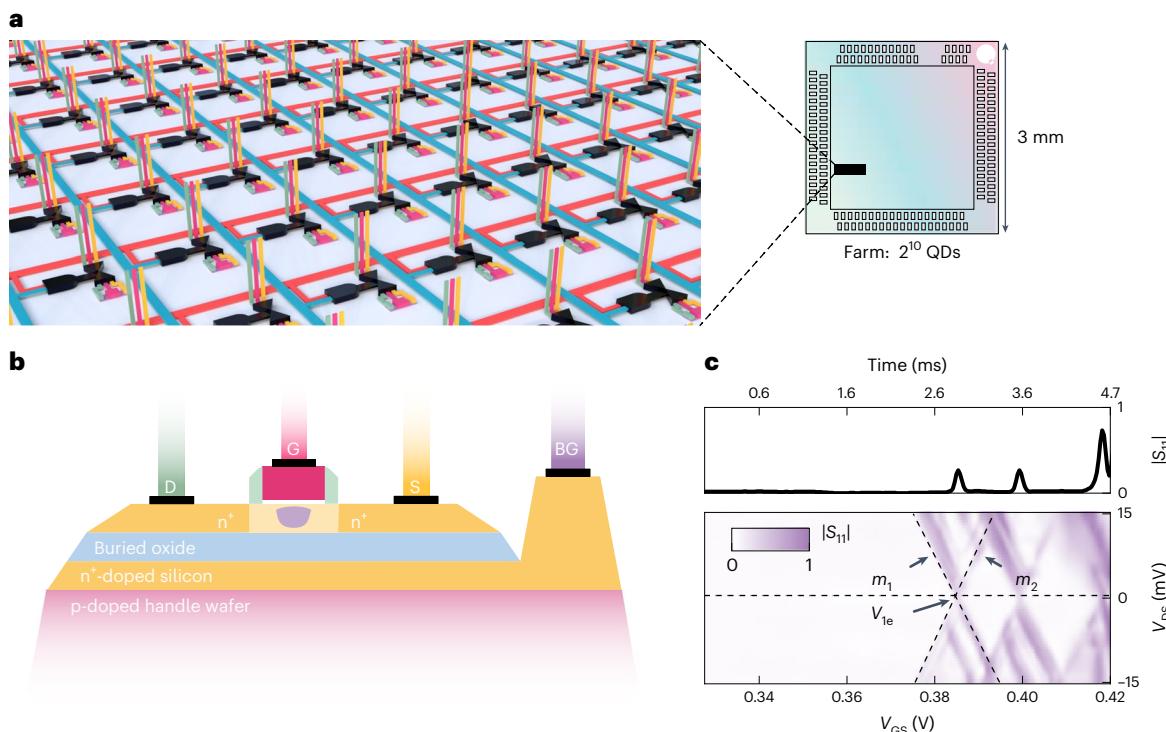


Fig. 1 | Measurement of a 1,024 QD farm. **a**, Schematic of a three-dimensional render of the 1:1,024 MUX, with analogue access (V_D ; pink, V_G ; yellow, V_S) to each QD device controlled by row–column addressing (red and blue wires). The black bow-tie represents the transmission gates (formed by the parallel combination of matched n- and p-type transistors); and the AND symbol, a two-input binary cell select. This farm of devices occupies a small section of a 3 mm \times 3 mm silicon die. **b**, Schematic of the cross-section of a single transistor along the direction of current flow, showing a QD (purple) below the

gate and between the drain and source. The region in which the QD forms is undoped silicon. D, drain; S, source; G, gate; BG, back-gate. **c**, Example of a two-dimensional map showing a normalized device response, $|S_{11}|$ (colour scale) as a function of the drain–source and gate–source voltages. The dashed line shows an automated fit to the first measured Coulomb blockade oscillation. The top panel shows a line cut at $V_{DS} = 0$ V (indicated by the dotted line), with the time axis aligning with the voltage axis in the bottom panel.

high-speed read-out, up to 1:3 switching has been shown on chip^{17–19}, and high-frequency 1:4 cryogenic multiplexers (MUXs) have been used with superconducting qubits²⁰. Developing TDMA at scale requires an efficient interface between classical electronics and the quantum processor.

The second challenge is managing and minimizing process variability between the qubits²¹, requiring each qubit to be independently characterized and tuned. Minimizing process variability is already an integral component of modern semiconductor manufacturing. However, current process characterization is optimized for classical transistors, and extending this to quantum devices requires substantial development in high-throughput cryogenic testing capabilities. State-of-the-art methods rely on newly developed cryogenic probing to enable wafer-scale testing²². However, this method is currently limited to temperatures above 1.6 K and is unable to efficiently utilize the wafer space since nanometre-scale devices need to be directly contacted to macroscopic pads. On-chip multiplexing techniques can provide access to large numbers of densely packed devices with minimal input/output connections, whereas testing can be performed under the optimal temperature conditions of spin qubit devices (millikelvins)^{12,17}. Large-scale on-chip switching of rf signals, therefore, addresses both short-term and long-term challenges in quantum computer development: providing a way to characterize many quantum devices to address process variability, and to address many qubits in scaled-up quantum processors.

In this Article, we report the rapid characterization of 1,024 QD devices fabricated using a commercial foundry process by integrating high-speed classical multiplexing electronics to individually address each device. We develop tools to automatically extract key indicators

for QD performance and their suitability for use in qubit technologies. We perform a statistical analysis of different device dimensions, and under varied operating conditions. Ultimately, we show that the electrostatic properties of these devices can be characterized at cryogenic temperatures in under 10 min of measurement time (Supplementary Section I) by means of rf reflectometry techniques. We also establish a link between cryogenic and room-temperature device properties, opening a new avenue for pre-cryogenic validation of silicon qubit technologies.

Cryogenic multiplexed access to 1,024 QDs

We use an all-to-all MUX that enables the selection of a single cell given a 10-bit input. It contains an analogue bus of three device control lines and ten digital address lines (five row-select lines and five column-select lines) to address each QD device under test in a 32×32 array. The devices are selectively connected to the analogue bus using complementary metal–oxide–semiconductor (CMOS) transmission gates integrated within the same silicon as the quantum devices.

The integrated circuit is designed using an ultrathin body and buried oxide fully depleted silicon-on-insulator process. QDs form in the undoped channel of the transistors when a voltage difference V_{GS} between the gate and source approaches the threshold voltage (Fig. 1b). To observe the discrete charging of QDs, a source and drain tunnelling resistance larger than the resistance quantum is necessary. This occurs naturally in these devices due to the increase in resistivity of the undoped silicon region at low temperatures. This region lies beneath the gate and spacers (Fig. 1b). In Fig. 1c, we show an example of the characteristic discrete charging, which is a diamond-shaped region of decreased conductance nestled within regions of higher conductance.

Reflectometry performance via a MUX

To expedite device measurements, we use rf reflectometry^{23–26}. Reflectometry can detect QD charge transitions with high bandwidth by measuring changes in device impedance. The typically high device impedance (>100 k Ω) is matched to a 50 Ω line by embedding the integrated circuit in a matching network containing a superconducting spiral inductor (Methods). This allows us to monitor the reflected voltage as a function of the device impedance.

Here we characterize the performance of this technique in terms of the signal-to-noise ratio (SNR) and bandwidth at a farm level. A peak in the $|S_{11}|$ trace corresponds to the electrochemical potential of the QD, aligning with the Fermi level of the source or drain. We define the signal as the height of this peak relative to the mean background, and the noise as the standard deviation of the background signal. In Fig. 2a, we show the SNR^2 value of a QD charge transition as a function of integration time τ . Through linear regression assuming a y intercept of zero, we determine the minimum integration time required to attain an SNR of 1, which amounts to $t_{\min} = 556 \pm 6$ ps. This minimum integration time serves as a benchmark for evaluating the read-out performance²⁶ and demonstrates that the MUX does not compromise the signal quality. In fact, our apparatus outperforms the state of the art achieved with reflectometry in single-electron transistors²⁷. Overall, in the TDMA implementation presented here, the integration time is fixed at $t_{\text{int}} \approx 11$ μ s (Supplementary Section I).

Next, we test the bandwidth at the farm level by looking at the dependence of SNR with respect to the probe frequency for nine example devices (Fig. 2b). For TDMA, it is critical that the frequency region of a high signal overlaps for each device in the farm. We demonstrate that this holds, with the average SNR bandwidth (6.4 MHz), defined as the full-width at half-maximum of the SNR^2 signal, which is similar to the resonator bandwidth (9.5 MHz).

Finally, we show how the cryogenic performance of a fully depleted silicon-on-insulator process^{28,29} is pivotal in creating our low-temperature multiplexing circuit. In particular, back-gating through the buried oxide enables the compensation of the known transistor threshold voltage increase at low temperatures, which becomes important when delivering high-frequency signals through the MUX (Fig. 3). In particular, we measure the on resistance R_{on} of a single transmission gate over a wide back-gate-voltage range ($V_{\text{NW},\text{PW}}$ for the n- and p-type field-effect transistors, NFET and PFET, respectively) and for multiple common-mode drain/source voltages. During these measurements, the NFET gate is held at $V_{\text{DD}} = 0.8$ V and the PFET gate is held at $V_{\text{SS}} = 0$ V. By applying a forward back-bias (positive for NFET and negative for PFET), we can reduce R_{on} by more than an order of magnitude for a common-mode voltage $V_{\text{D}} = V_{\text{S}} = 0.4$ V (Fig. 3a). We note that the combination of forward back-bias and the large dimensions of the MUX transistors prevents the undesirable occurrence of Coulomb blockade in the transmission gate. The impact of back-biasing on rf performance is also evident from the quality of the reflectometry signal. Figure 3b shows two Coulomb oscillations as measured in reflectometry as the MUX back-bias increases. The two oscillations are well resolved when $V_{\text{NW}} = -V_{\text{PW}} > 1.5$ V. However, for lower values, a substantial voltage drop occurs at the MUX, shifting the position of the oscillations. The shift is accompanied by a reduction in SNR, which—along with the unstable signal behaviour—can be linked to the increasing MUX resistance. We highlight that the back-gate potentials applied to the analogue circuitry are independent of those applied to the QD devices.

Analysis and extraction of QD features at scale

To characterize the QD devices, we develop a method to automatically extract (Methods) the first observed electron loading voltage (V_{le}), the gate lever arm (α_{G}) that describes the strength of the electrostatic coupling of the gate electrode to the dot, and the source–drain lever arm difference ($\alpha_{\text{D}} - \alpha_{\text{S}}$) to measure the device asymmetry. More specifically, we define V_{le} as the gate voltage at which we first detect a Coulomb

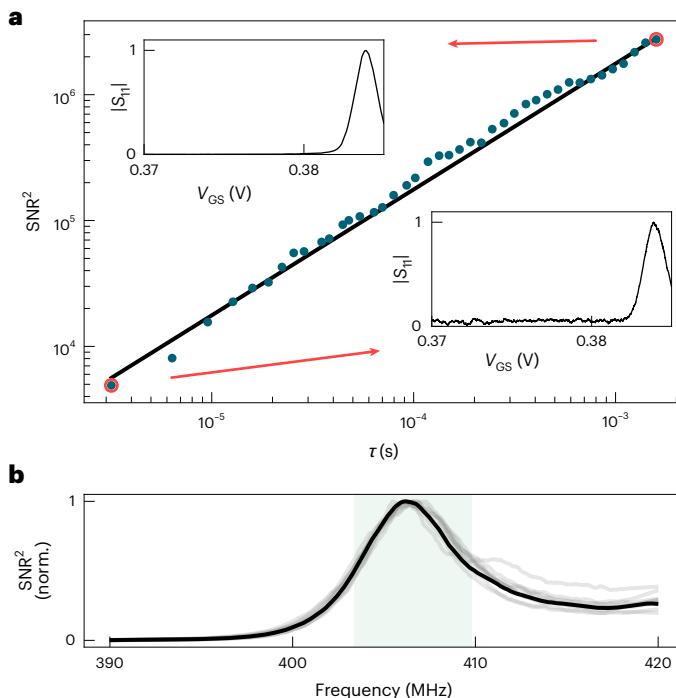


Fig. 2 | SNR. **a**, Power SNR as a function of integration time. Data points correspond to the square of the measured SNR (SNR^2) at different integration times τ . We fit this with a straight line (solid black) through the origin. The minimum integration time t_{\min} , where this line crosses $\text{SNR} = 1$, is approximately 0.5 ns. The insets show example Coulomb oscillations, with normalized amplitudes, measured at the longest integration time $t_{\text{int}} = 1.6$ ms and shortest integration time $t_{\text{int}} = 3.18$ μ s (indicated in red). The horizontal axes in the inset are the gate voltage (V_{GS}) in volts. **b**, Normalized SNR for nine devices are each shown as faint grey lines, and the heavy black line is the mean response. The green-shaded region is the mean bandwidth over the selected devices.

oscillation at zero V_{DS} , representing the loading of an electron to a QD that may already contain a number of electrons. These parameters are the ones that can be extracted unambiguously, using the first measured Coulomb blockade oscillation. To extract further electrostatic properties, like the charging energy, further oscillations are required; however, for many measured devices, the presence of additional QDs cannot be conclusively ruled out. Furthermore, a secondary charge sensor would be required to verify that we have reached the single-electron regime; therefore, here, instead, we find the distribution of gate voltages corresponding to the first visible transition using our read-out methods (reflectometry and d.c. transport) to establish the trends and variability between devices. Though we cannot guarantee reaching the single-electron regime, we have identified these QDs as being in the few-electron regime³⁰ (Supplementary Section II).

As stated above, a single measurement is used to extract all of these parameters automatically, by monitoring the device as V_{GS} and V_{DS} are varied (Methods). A measurement of this kind is shown in Fig. 1c. In the farm, eight transistor variants were tested with increasing gate lengths (L) of 28 nm, 40 nm, 60 nm and 80 nm and channel widths (W) of 80 nm and 100 nm. Our first observation shows that not all transistors can provide good QDs (Fig. 4a). For these devices, we, therefore, cannot extract the QD parameters described above, and therefore, they must first be filtered out. We have trained a convolutional neural network (CNN) to categorize our devices into three categories: clear Coulomb blockade (good), no Coulomb blockade (bad) and multiple series QDs (multi), which present as non-closing diamonds (Supplementary Section IV provides more information regarding the classification criteria). Each device is manually labelled by two domain experts and these labels

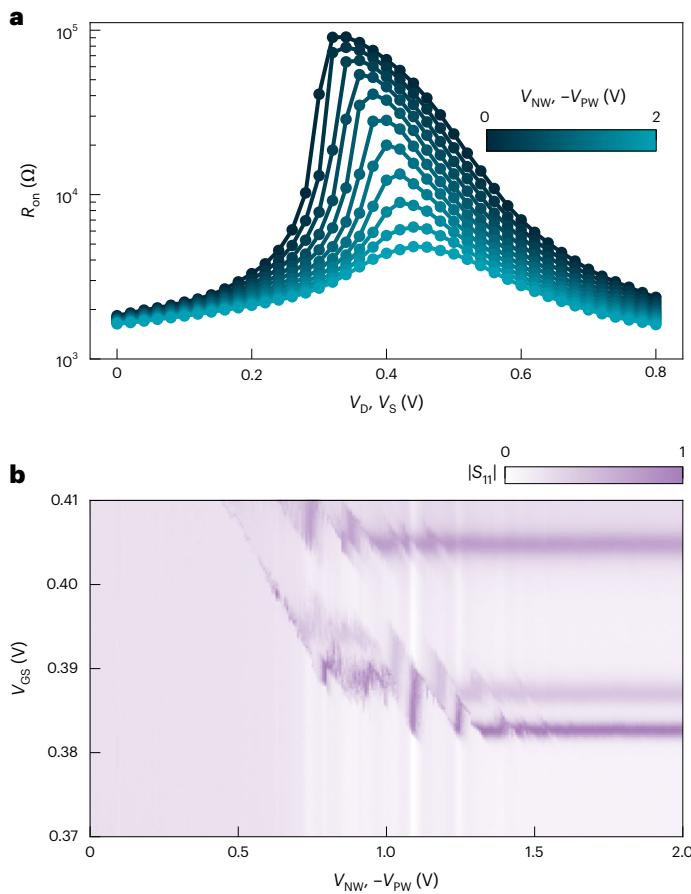


Fig. 3 | Integrated cryogenic 1:1,024 MUX performance. **a**, R_{on} of a single MUX transmission gate with varied analogue back-gates V_{NW} and V_{PW} for the NFET and PFET, respectively. **b**, Normalized reflected signal from the device as the analogue back-gates are varied. The MUX reaches a stable configuration when $V_{NW} > 1.5$ V and $V_{PW} < -1.5$ V, corresponding to a transmission gate impedance of ~ 2 k Ω with $V_{DS} = 20$ mV.

are used to train the CNN (Methods). The proportion of devices that fall into each category as determined by the CNN is shown in Fig. 4b.

To automatically extract the parameters, we developed tools to process data acquired through both transport (d.c.) and reflectometry (rf) measurements. Transistor characteristic measurements are commonly performed in d.c.; thus, the d.c. data presented here serve as a reference for comparison with the rf data, revealing good agreement between both techniques (Fig. 4c–e and Extended Data Fig. 1). Moreover, increasing the integration time does not result in a substantive change in the extracted parameters (Extended Data Fig. 2). The parameters V_{le} , α_G and $\alpha_D - \alpha_S$ can be determined from the pair of intersecting lines in a charge map (Fig. 1c). The intercept gives V_{le} , and the lever arms can be calculated from the gradients of the two lines (Methods). For each charge map, we perform a fitting routine that finds the best pair of lines, with higher weight given to V_{le} at lower voltages, and intercept close to $V_{DS} = 0$ V.

Variability of industrially fabricated QDs

To assess the inherent process variability, considerable effort was focused on the design stage to suppress the known sources of semiconductor process variability, for example, layout effects (Methods). Therefore, the variability we measure is primarily inherent to each device under test. As shown in Fig. 4b, in devices with greater gate lengths, multiple dots are generated, resulting in complex multi-dot structures. On the contrary, devices with shorter gate lengths yield single QDs. However, in most devices, a small gate length leads to an

early transistor turn-on, resulting in ‘bad’ dots. Overall, the device designs with the highest proportion of good QD features have shorter gate lengths, namely, 28 nm and 40 nm. The two channel widths do not impart notable differences across the farm. The automatically extracted parameters for these good devices are shown in Fig. 4c–e. With decreasing gate length, we see a lower threshold voltage due to the increasing effect of the electric field produced by the source and drain, a well-known short-channel transistor effect, probably caused by drain-induced barrier lowering³¹. The gate lever arm and lever arm asymmetry remain fairly constant, indicating that dots remain well controlled by the gate even at the smallest dimensions.

For the $L = 28$ nm case, we find the first observed electron voltages ($\overline{V_{le}} = 387 \pm 22$ mV) and the gate lever arms ($\overline{\alpha_G} = 0.741 \pm 0.082$) are narrowly distributed. We find the standard deviation of V_{le} (~ 22 mV) is comparable to the spacing (25 ± 4 mV) between the first and second observed electron (V_{2e}) loading voltages, measured from a subset of devices in which a second transition is clearly visible. This suggests that the tight requirements for shared voltage control¹² are within reach, but need further reduction. Alternatively, small variations may be compensated with independent voltage trimming of each of the QD back-gates. However, this comes at the cost of a greater number of control lines per QD. It must be stressed that the overarching challenge with the presented devices is QD quality, which must be addressed before voltage sharing can be considered. Determining the exact origin of the variability in QD quality is beyond the scope of this work, but we hypothesize that irregularities in electrostatic potential caused by (1) an elevated number of two-level fluctuators near the Si/SiO₂ interface³⁰ and/or (2) gate metal workfunction inhomogeneities³² could be the cause. We note that the large gate lever arm will be beneficial when implementing gate-based dispersive read-out²⁶.

The mean dot asymmetry $\overline{\alpha_D - \alpha_S} = -0.040 \pm 150$ shows that, on average, the QDs are well centred in the channel. We note that since all the lever arms must add to 1, a large asymmetry places an upper bound on the gate lever arm, that is, $\alpha_G \leq 1 - |\alpha_D - \alpha_S|$ (Supplementary Section V). This result highlights an inverse relation between the asymmetric QD position within the channel and gate control over the QD, emphasizing the importance of QD location being central under the gate. We note that for the devices here, the QD is placed between two large conducting leads; however, for larger QD arrays, most dots may only have a single lead, or only other dots nearby. In such devices, the importance of the short-channel effect we see here is lessened. In light of this, our measurements provide a worst-case indication for dot asymmetry under a single gate.

Room-temperature correlations with QD parameters

It would be ideal to determine the QD parameters without needing to cool the device to cryogenic temperatures. For a QD, once the thermal energy $k_B T$ becomes much larger than the charging energy $E_C = e^2/C \approx 18.5$ meV (Methods), transport through the transistor does not exhibit blockade and the device behaves as a simple transistor. However, we gain a new set of parameters used in the classical modelling of transistors, such as the threshold voltage (V_{th}).

We next establish a direct link between QD parameters and classical transistor behaviour (Methods), which allows device yield and uniformity to be assessed without requiring expensive and time-intensive cooling in a dilution refrigerator. Recent work has correlated classical transistor behaviour from room temperature to 4.2 K (ref. 33); here we extend this to the behaviour of QDs at lower temperatures. We highlight that pre-cryogenic validation can be an invaluable tool in the life cycle of a silicon quantum computer.

We explore the relation between V_{le} and V_{th} obtained from devices with the shortest gate length, $L = 28$ nm, classified as ‘good’. To explore this, we use probabilistic programming, a technique that offers an

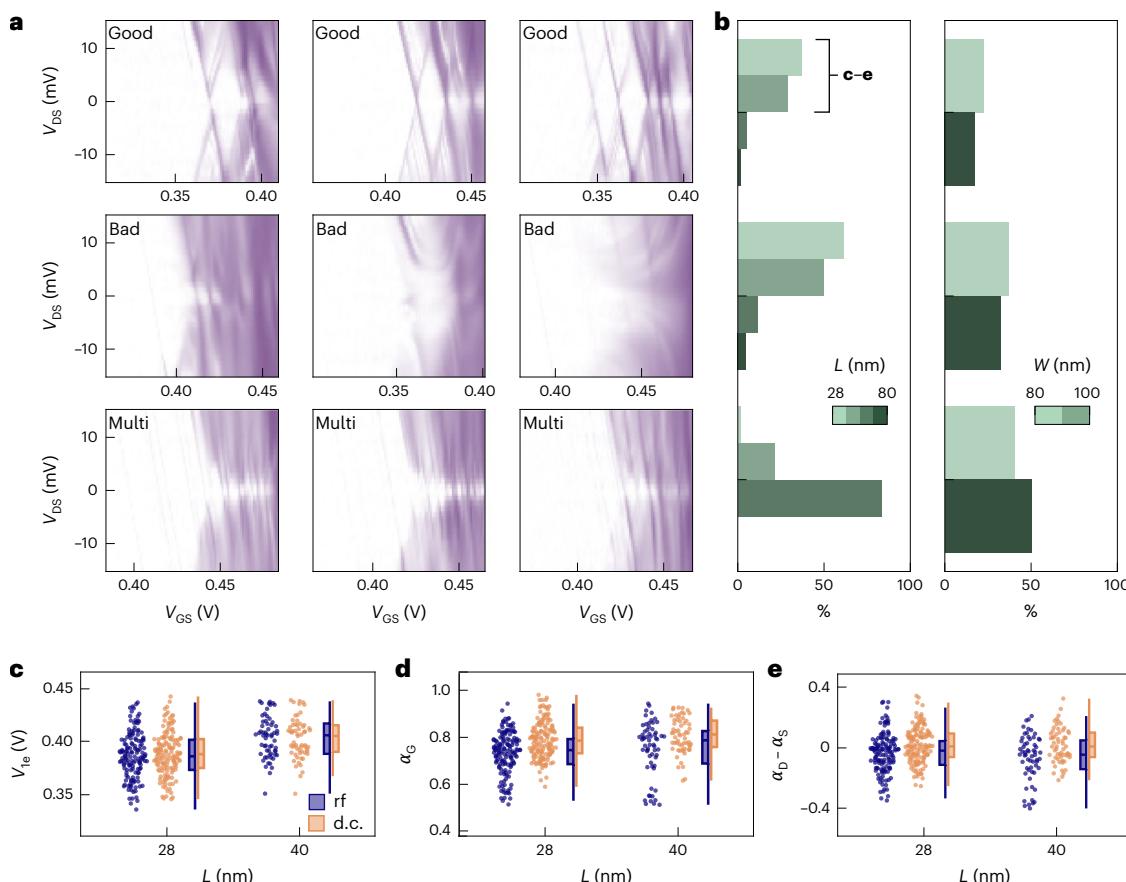


Fig. 4 | QD yield and key parameters. **a**, Example two-dimensional maps for nine different devices. The labels indicate the quality of Coulomb blockade observed; ‘multi’ refers to signatures of multiple series dots forming in the device. **b**, Relative frequency of each device category for different gate lengths $L = [28, 40, 60, 80]$ nm and channel widths $W = [80, 100]$ nm. These data were extracted using the CNN. **c–e**, Distributions of automatically extracted gate voltage for the first detected electron transition (**c**), gate lever arm (**d**) and

drain–source coupling asymmetry (**e**) for different gate lengths. In the rf dataset, there are 150 examples at 28 nm gate length and 71 examples at 40 nm gate length. In the d.c. dataset, there are 156 examples at 28 nm gate length and 81 examples at 40 nm gate length. The features of the box plot are as follows: centre line, median, box edges (25th and 75th percentiles), whiskers, and minimum and maximum of the dataset excluding outliers more than $1.5 \times$ outside the interquartile range.

insight into both systematic patterns and random fluctuations in the data. We consider a simple linear model of the form

$$V_{le}(V_{th}) = \alpha V_{th} + \beta + \mathcal{N}(0, \sigma_{V_{le}}). \quad (1)$$

Here α and β are coefficients of the linear model, and $\mathcal{N}(0, \sigma_{V_{le}})$ is a normal distribution that represents the intrinsic random fluctuations in V_{le} . In this approach, V_{le} , V_{th} and the parameters α , β and $\sigma_{V_{le}}$ are treated as random variables rather than fixed quantities. We express our initial expectations using prior distributions, which convey our preliminary knowledge about the parameters before any data are collected. For the priors, we opt for normal distributions (\mathcal{N}), as they offer a balanced representation of our initial understanding without being overly restrictive.

Next, we refine these parameter distributions using Hamiltonian Monte Carlo³⁴, aiming to find the best fit to the observed data for V_{le} . Figure 5a shows the linear fit extracted by averaging the Hamiltonian Monte Carlo trial results. The extracted slope ($\bar{\alpha} = 1.01 \pm 0.02$) indicates a clear relationship between room-temperature threshold voltage and the first observed QD electron loading voltage. It is well known that transistor threshold voltages increase at cryogenic temperatures, and this is also apparent in the V_{le} offset voltage, $\beta = 210 \pm 30$ mV.

The result from the model is the posterior distribution of V_{le} . The uncertainty of the posterior distribution (~22 mV) encompasses variations arising from both V_{th} ($\sigma_{V_{th}} = 15$ mV) and the intrinsic random-

ness in V_{le} ($\sigma_{V_{le}} = 16 \pm 1$ mV). Completely removing variations in the threshold voltage at the foundry level ($\sigma_{V_{th}} = 0$) would consequently decrease the variation in V_{le} to $\sigma_{V_{le}} = 16$ mV.

Conclusions

We have reported testing a device farm of 1,024 QDs based on simple transistor structures. Our approach can, however, be extended to more complex unit cells, such as coupled QD systems—the basic building block of semiconductor-based quantum computers. Our rf read-out techniques can be leveraged to embed compact dispersive spin qubit read-out with the unit cells of scaled-up QD architectures^{35,36}. We developed an integrated CMOS three-channel 1:1,024 analogue MUX, but the capabilities of this silicon technology reach further. Foundry-based platforms could, in particular, allow the co-integration of ultralow power electronic modules such as digital-to-analogue converters, low-noise amplifiers and digital controllers alongside the qubit system. These technologies have been demonstrated in stand-alone processes³⁷, but tightly integrating all of these modules with semiconductor qubits—and retaining their qualities—remains an open challenge, especially given the limited cooling power of cryostats and thermal conductivity of silicon at low temperatures. Our observation that cryogenic parameters of silicon QD devices can be predicted from room-temperature behaviour has implications for the time and resources required to monitor process variations and optimize the design and production of future quantum devices. Further development of pre-cryogenic

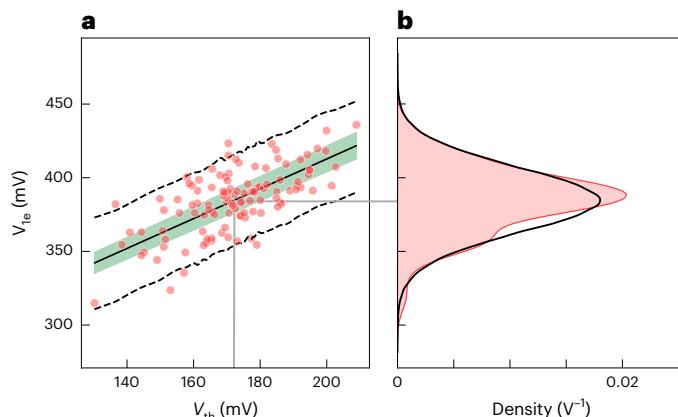


Fig. 5 | Correlation of voltage threshold with electron loading. **a**, V_{le} measured at 50 mK, against V_{th} , measured at room temperature and analysed using Bayesian modelling techniques to extract an underlying linear relationship. The solid black line is the average of the estimated linear fits and the shaded region shows the 95% confidence interval over possible linear fits (slope and intercept). The dashed lines represent the 95% confidence interval for V_{le} accounting for noise. The solid grey line indicates a nominal V_{th} used to analyse the distribution of V_{le} in **b**. **b**, Comparison of the observed distribution of V_{le} extracted from the measured data (red) with the predicted posterior distribution (black), showing a standard deviation of approximately $\sigma \approx 22$ mV.

methods and analysis tools could allow wider industry engagement and a substantial cost reduction in technology development, particularly if further correlations can be extracted when complex unit cells are studied.

Methods

dc. transport measurement

With a small bias of ~1 mV, the transport current formed by the tunnelling of electrons one by one through a QD is typically small (~1 pA to 1,000 pA). To record this level of current, we use a transimpedance amplifier to convert the current to a voltage with a gain of 10^7 V A $^{-1}$. To acquire a Coulomb diamond map, a triangular wave with a frequency of 20 Hz was applied to the gate and the signal is acquired on the rising edge of the slope. Devices were measured with either five or ten averages; a single transport Coulomb diamond measurement takes approximately 15 s or 30 s.

rf reflectometry measurement

Measuring a high-impedance device in reflectometry requires an impedance-transforming circuit (Supplementary Section VI). This allows changes in an otherwise large device impedance to be measured by a 50 Ω matched meter, for example, resistance changing from 1,000 k Ω to 100 k Ω . The complex impedance of the QD has contributions from the resistance and capacitance of the tunnel barrier between the source lead and the dot. When the dot and source electrochemical potentials are equal, the Coulomb blockade is lifted and electrons can tunnel elastically through the barrier. This results in an apparent change in the barrier resistance and capacitance, the latter of which may have both quantum and junction contributions^{38,39}. This impedance change can be detected at the 50 Ω output as a change in the reflected rf signal near the resonance frequency.

To measure the Coulomb diamond maps, a triangular waveform with a frequency of 203 Hz was applied to the gate. Signal acquisition occurs during the rising edge of the waveform. The frequency of the triangular waveform is constrained by the RC low-pass filter on the printed circuit board with a cutoff frequency of $f_c = 16$ kHz.

Each Coulomb diamond map comprises 60 distinct traces, covering a range of source–drain voltages (V_{DS}) from -15 mV to 15 mV.

The acquisition time required for measuring the 1,024 Coulomb diamond maps is 2 min 31 s.

The sampling rate used for acquiring these maps is 1 MSa s $^{-1}$. However, the effective integration time is constrained to 10.68 μ s due to limitations imposed by the room-temperature low-pass filters for the in-phase and quadrature signals (Supplementary Section I).

Coulomb diamond classification using a neural network

We categorize devices into three groups based on their Coulomb blockade maps (Fig. 4a).

- Good: these devices display a clearly defined hourglass shape in their Coulomb blockade map, enabling parameter extraction (Fig. 1c).
- Bad: these devices lack observable Coulomb blockade or exhibiting classical transistor turn-on superimposed with Coulomb blockade. This behaviour is probably caused by low resistances of the tunnelling barriers.
- Multi: these devices form several QDs in series, identifiable by overlapping Coulomb diamonds, giving rise to extended regions of blockade.

On the basis of the above criteria, domain experts manually classified the devices. However, the boundaries between categories can be ambiguous, as evidenced by experts agreeing on the classification approximately 80% of the time for the same dataset. Examples of such ambiguity are faint hourglass shapes mixed with noise or incomplete hourglass shapes.

Although manual classification worked well with the current number of devices (approximately 1,000), the expected increase in device volume calls for an automated solution. To tackle this challenge with our modest dataset, we applied strategies proven effective in image classification with limited training data. Specifically, we utilize transfer learning by implementing the well-known ResNet26d architecture, pre-trained on the extensive ImageNet's database. This approach enables robust performance despite the scale of our dataset⁴⁰.

Alongside transfer learning, we used data augmentation techniques like image rotation, warping, zooming and changes in saturation. These methods introduce variety into the training data. In addition, we incorporate mixup, a technique that generates new images by linearly combining pairs of original training images⁴¹.

The neural network processes Coulomb blockade data as greyscale images. The dataset was randomly partitioned, with 80% allocated to a training set and 20%, to a test set. To optimize the training process, we used the one-cycle policy, which dynamically adjusts the learning rate, increasing it to the maximum and then gradually decreasing it⁴². This dynamic learning rate schedule helps regulate the training process, accelerates convergence and reduces sensitivity to the hyperparameter of the learning rate, ensuring a more robust and efficient training phase.

In our neural network implementation, we focus on capturing label uncertainty. This is achieved through label smoothing⁴³. In standard binary assignment, like entropy loss, the correct class receives a probability of 1 and others, 0. On the contrary, label smoothing adjusts the ground-truth labels by assigning a probability slightly less than 1 to the correct class and distributing the remaining probability uniformly across all classes. This adjustment helps mitigate over-reliance on specific training labels and encourages the model to generalize better across different classes.

The performance of the CNN is assessed using the confusion matrix (Extended Data Table 1), yielding an accuracy of 88%. This accuracy level is constrained due to the ambiguous boundaries between different device classes.

To demonstrate that, we evaluated the ChimeraMix architecture, a state-of-the-art approach, which achieved over 96% classification accuracy using labels from a single expert. ChimeraMix relies on training a generative adversarial network to mix examples of the same class, augmenting the size of the dataset.

Finally, to optimize the neural network further, we suggest a non-binary scoring system for each Coulomb map (for example, using a scale from one to ten). This approach involves training the network on labels that reflect the collective agreement among multiple human classifiers, which helps mitigate individual biases. Moreover, adopting this method enables the neural network to better understand the nuances present in edge cases between good, multi and bad dots.

Parameter extraction from Coulomb diamonds

Most key parameters that describe a single QD can be obtained from the position and shape of the Coulomb diamond measurements^{44,45}. When measuring the rf response at the drain, the positive (negative) edges of the Coulomb diamonds appear when the QD electrochemical potential μ_{dot} is aligned with the drain (source) electrochemical potential μ_{D} (μ_{S}). The first observed electron loading voltage V_{le} corresponds to the crossing point of the first pair of these edges (nominally at $\mu_{\text{S}} = \mu_{\text{D}} = 0$ eV).

The gate lever arm $\alpha_{\text{G}} = C_{\text{G}}/C_{\Sigma}$, where C_{G} is the gate capacitance and C_{Σ} is the sum of the dot capacitance to each terminal, represents the coupling strength of the gate to the dot. This parameter can be calculated as

$$\alpha_{\text{G}} = \left(\frac{1}{|m_1|} + \frac{1}{|m_2|} \right)^{-1}, \quad (2)$$

where m_1 and m_2 are the positive and negative gradients of the pair of edges that form the first visible hourglass (Fig. 1c).

Moreover, when a voltage bias is applied antisymmetrically ($V_{\text{D}} = -V_{\text{S}}$), the relative coupling capacitance of the source ($\alpha_{\text{S}} = C_{\text{S}}/C_{\Sigma}$) and drain ($\alpha_{\text{D}} = C_{\text{D}}/C_{\Sigma}$) can be directly obtained from the gradient of the Coulomb diamond edges as

$$\alpha_{\text{D}} - \alpha_{\text{S}} = \frac{m_1 + m_2}{m_1 - m_2}. \quad (3)$$

This is a measure of the asymmetry of dot formation under the gate.

The full step-by-step process for extracting the dot parameters from Coulomb blockade maps is detailed in Supplementary Section IV, but we provide a succinct summary here. We perform digital filtering to reduce noise and enhance contrast in the acquired data, and then apply a Canny edge detection algorithm to digitize the charge stability map and identify the edges of the Coulomb diamonds. We then use a Hough transform to convert the binary image to information about the edges parametrized by their length and angle. We identify good fits to the first visible Coulomb oscillation with a pair of long line segments, one with a positive slope and the other with a negative one, which intersect near $V_{\text{DS}} = 0$ V.

Room-temperature measurements and cryogenic correlations

We analyse the transport measurements through transistors at room temperature with a source–drain bias of $V_{\text{DS}} = 50$ mV. V_{th} is determined by extrapolating the $I_{\text{D}}-V_{\text{GS}}$ curve, between the maximum transconductance point $\text{max}(g_{\text{m}}) = \text{max}(dI_{\text{D}}/dV_{\text{GS}})$ and the maximum subthreshold slope point $\text{max}(\text{SS}) = \text{max}(\log[I_{\text{D}}/V_{\text{GS}}])$ (ref. 46). V_{th} is the voltage at which this extrapolated line intersects $I_{\text{D}} = 0$.

To understand the systematic relationship between V_{le} and V_{th} and their random variation, we use the probabilistic programming framework NumPyro⁴⁷. As stated in the main text, we use a model defined by three random variables: α , β and σ . These variables are initially set with a suitable prior distribution. The posterior distribution is then formed using Hamiltonian Monte Carlo³⁴ sampling.

Charging energy

We obtain a charge energy of $E_{\text{C}} = 18.5 \pm 3$ meV as $E_{\text{C}} = |e|\Delta V_{\text{G}}\alpha_{\text{G}}$, where $|e| \approx 1.6 \times 10^{-19}$ C is the elementary charge, α_{G} is the gate lever arm and

ΔV_{G} is the difference between the first and second detected electron (V_{2e}) loading voltages. Some examples of Coulomb diamonds can be found in the main text showing slightly smaller charging energies than the average.

Device fabrication

The die was fabricated using the GlobalFoundries 22FDX 22 nm fully depleted silicon-on-insulator process. A single die was used for this study.

Experimental setup

The integrated circuit die was glued to a carrier printed circuit board with conducting silver paste. The die is wire bonded (17.5 μm AlSi) to gold-plated copper tracks. The low-frequency control lines are routed to a connector to attach to a motherboard, which has passive first-order in-line filtering ($RC = 10$ μs). The reflectometry line is directly routed to an SMP connector on the carrier printed circuit board.

All the cryogenic measurements were performed in a Bluefors XLD dilution refrigerator, where the device was mounted to the mixing chamber plate operating at 10 mK. When the chip is powered on, the die temperature was measured as 600 mK using on-chip thermometry⁴⁸ (value quoted for a nominally identical die). The reason for this elevated temperature is the static power draw of approximately 4 μW needed for the digital and analogue support electronics.

A QDevil QDAC II was used to supply the d.c. voltages to the QD device terminals, chip supplies and row/column address lines. To sweep the gate voltage, a triangular wave with 50% duty cycle was supplied by a Keysight 33500B arbitrary waveform generator. The rf reference signal was generated by a Rohde & Schwarz SMB100B. The reflected signal was amplified by a Low Noise Factory cryogenic amplifier (LNF-LNC0.2, 3As/n 2541z) at 4 K. This signal is then further amplified at room temperature using two Mini-Circuits amplifiers (ZX60-P103LN+ and ZX60-33LNR-S+) before being separated into its in-phase and quadrature components using a Polyphase microwave quadrature demodulator (AD0540B). These signals are finally amplified and filtered by a Stanford SR560 and then digitized via a Spectrum M4i.4421-x8 digitizer PCIe card.

For d.c. measurements, we used two transimpedance amplifiers (Basel Precision Instruments SP983c, IF3602 junction field-effect transistor) to simultaneously monitor the source (I_{S}) and drain (I_{D}) currents. The gain of the amplifiers was set to 10^7 V A^{-1} with a low-pass filter bandwidth of 1 kHz. For our measurements, we use $I_{\text{sig}} = (I_{\text{D}} - I_{\text{S}})/2$ to remove any offsets. During rf measurements, the transimpedance amplifiers are removed and the source and drain are directly driven with the QDAC II voltage sources mentioned above.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

References

1. Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. *Nature* **601**, 343–347 (2022).
2. Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. *Nature* **601**, 338 (2022).
3. Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. *Sci. Adv.* **8**, eabn5130 (2022).
4. Yoneda, J. et al. Quantum non-demolition readout of an electron spin in silicon. *Nat. Commun.* **11**, 1144 (2020).
5. Blumoff, J. Z. et al. Fast and high-fidelity state preparation and measurement in triple-quantum-dot spin qubits. *PRX Quantum* **3**, 010352 (2022).
6. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. *Phys. Rev. A* **86**, 032324 (2012).

7. Beverland, M. E. et al. Assessing requirements to scale to practical quantum advantage. Preprint at <https://arxiv.org/abs/2211.07629> (2022).
8. Gonzalez-Zalba, M. F., Barraud, S., Ferguson, A. J. & Betz, A. C. Probing the limits of gate-based charge sensing. *Nat. Commun.* **6**, 6084 (2015).
9. Franke, D., Clarke, J., Vandersypen, L. & Veldhorst, M. Rent's rule and extensibility in quantum computing. *Microprocess. Microsyst.* **67**, 1 (2019).
10. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. *npj Quantum Inf.* **3**, 34 (2017).
11. George, R. E. et al. Multiplexing superconducting qubit circuit for single microwave photon generation. *J. Low Temp. Phys.* **189**, 60 (2017).
12. Bavadz, P. L. et al. A quantum dot crossbar with sublinear scaling of interconnects at cryogenic temperature. *npj Quantum Inf.* **8**, 86 (2022).
13. Li, R. et al. A crossbar network for silicon quantum dot qubits. *Sci. Adv.* **4**, eaar3960 (2018).
14. Al-Taie, H. et al. Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices. *Appl. Phys. Lett.* **102**, 243102 (2013).
15. Puddy, R. K. et al. Multiplexed charge-locking device for large arrays of quantum devices. *Appl. Phys. Lett.* **107**, 143501 (2015).
16. Jadot, B. et al. A cryogenic active router for qubit array biasing from d.c. to 320 MHz at 100 nm gate pitch. In *ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC)* 157–160 (IEEE, 2023).
17. Ruffino, A. et al. A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics. *Nat. Electron.* **5**, 53 (2022).
18. Schaal, S. et al. A CMOS dynamic random access architecture for radio-frequency readout of quantum devices. *Nat. Electron.* **2**, 236 (2019).
19. Ward, D. R., Savage, D. E., Lagally, M. G., Coppersmith, S. N. & Eriksson, M. A. Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing. *Appl. Phys. Lett.* **102**, 213107 (2013).
20. Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. *Nature* **614**, 676 (2023).
21. Gonzalez-Zalba, M. F. et al. Scaling silicon-based quantum computing using CMOS technology. *Nat. Electron.* **4**, 872 (2021).
22. Neyens, S. et al. Probing single electrons across 300-mm spin qubit wafers. *Nature* **629**, 80–85 (2024).
23. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. *Science* **280**, 1238–1242 (1998).
24. Duty, T. et al. Observation of quantum capacitance in the Cooper-Pair transistor. *Phys. Rev. Lett.* **95**, 206807 (2005).
25. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. *Nature* **431**, 162 (2004).
26. Vigneau, F. et al. Probing quantum devices with radio-frequency reflectometry. *Appl. Phys. Rev.* **10**, 021305 (2023).
27. Keith, D. et al. Single-shot spin readout in semiconductors near the shot-noise sensitivity limit. *Phys. Rev. X* **9**, 041003 (2019).
28. Beckers, A. et al. Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures. *Solid-State Electron.* **159**, 106 (2019).
29. Cardoso Paz, B. et al. Performance and low-frequency noise of 22-nm FDSOI down to 4.2 K for cryogenic applications. *IEEE Trans. Electron Devices* **67**, 4563 (2020).
30. de Kruijf, M., Noah, G. M., Gomez-Saiz, A., Morton, J. J. & Gonzalez-Zalba, M. Measurement of cryoelectronics heating using a local quantum dot thermometer in silicon. *Chip* **3**, 100097 (2024).
31. Troutman, R. & Fortino, A. Simple model for threshold voltage in a short-channel IGFET. *IEEE Trans. Electron Devices* **24**, 1266 (1977).
32. Zeng, Z., Triozon, F. & Niquet, Y.-M. Carrier scattering by workfunction fluctuations and interface dipoles in high-K/metal gate stacks. In *2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)* 369–372 (IEEE, 2016).
33. Paz, B. C. et al. Integrated variability measurements of 28 nm FDSOI MOSFETs down to 4.2 K for cryogenic CMOS applications. In *2020 IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS)* 1–5 (IEEE, 2020).
34. Hoffman, M. D. & Gelman, A. The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. *J. Mach. Learn. Res.* **15**, 1593–1623 (2014).
35. Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. *Nat. Commun.* **8**, 1766 (2017).
36. Oakes, G. A. et al. Fast high-fidelity single-shot readout of spins in silicon using a single-electron box. *Phys. Rev. X* **13**, 011023 (2023).
37. Xue, X. et al. CMOS-based cryogenic control of silicon quantum circuits. *Nature* **593**, 205 (2021).
38. Luryi, S. Quantum capacitance devices. *Appl. Phys. Lett.* **52**, 501 (1988).
39. Büttiker, M., Thomas, H. & Prêtre, A. Mesoscopic capacitors. *Phys. Lett. A* **180**, 364 (1993).
40. Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? *Adv. Neural Inf. Process. Syst.* **27**, 3320–3328 (2014).
41. Zhang, H., Cisse, M., Dauphin, Y. N. & Lopez-Paz, D. mixup: beyond empirical risk minimization. Preprint at <https://arxiv.org/abs/1710.09412> (2017).
42. Smith, L. N. & Topin, N. Super-convergence: very fast training of neural networks using large learning rates. In *Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications* 1100612 (SPIE, 2019).
43. Müller, R., Kornblith, S. & Hinton, G. E. When does label smoothing help? *Adv. Neural Inf. Process. Syst.* **32**, 4694–4703 (2019).
44. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. *Rev. Mod. Phys.* **79**, 1217 (2007).
45. Yang, T. Y. et al. Quantum transport in 40-nm MOSFETs at deep-cryogenic temperatures. *IEEE Electron Device Lett.* **41**, 981 (2020).
46. Pierre, M. et al. Single-donor ionization energies in a nanoscale CMOS channel. *Nat. Nanotechnol.* **5**, 133 (2010).
47. Phan, D., Pradhan, N. & Jankowiak, M. Composable effects for flexible and accelerated probabilistic programming in NumPyro. Preprint at <https://arxiv.org/abs/1912.11554> (2019).
48. Noah, G. M. et al. CMOS on-chip thermometry at deep cryogenic temperatures. *Appl. Phys. Rev.* **11**, 021414 (2024).

Acknowledgements

E.J.T. acknowledges the Engineering and Physical Sciences Research Council (EPSRC) through the Centre for Doctoral Training in Delivering Quantum Technologies (grant no. EP/S021582/1). M.F.G.-Z. acknowledges a UKRI Future Leaders Fellowship (grant no. MR/V023284/1). We thank N. Cave at GlobalFoundries for helpful discussions.

Author contributions

E.J.T., V.N.C.-T. and D.P. performed the experiments under the supervision of M.A.I.J. and M.F.G.-Z. M.d.K. and D.J.I. contributed to the preparation of the experiment and preliminary characterization. M.F.G.-Z. and J.J.L.M. conceived the experiment. A.G.-S. designed the device with contributions from M.F.G.-Z. and J.J.L.M. The device analogue components were validated by G.M.N. D.F.W. and V.N.C.-T. designed and developed the automated analysis tools. Further data analysis was performed by E.J.T., V.N.C.-T., D.F.W. and M.A.I.J. The manuscript was prepared by M.A.I.J., V.N.C.-T., D.F.W. and M.F.G.-Z., with contributions from all authors.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at <https://doi.org/10.1038/s41928-024-01304-y>.

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41928-024-01304-y>.

Correspondence and requests for materials should be addressed to Mark A. I. Johnson.

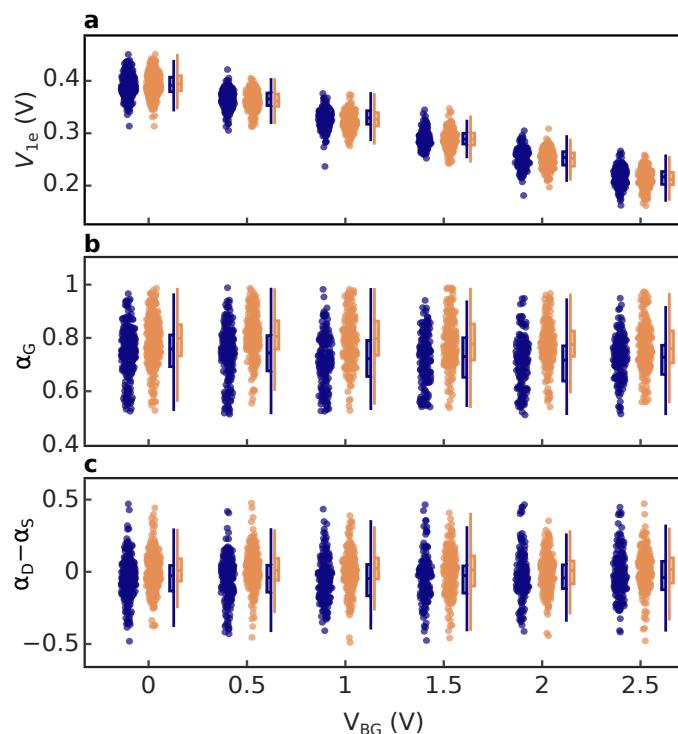
Peer review information *Nature Electronics* thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

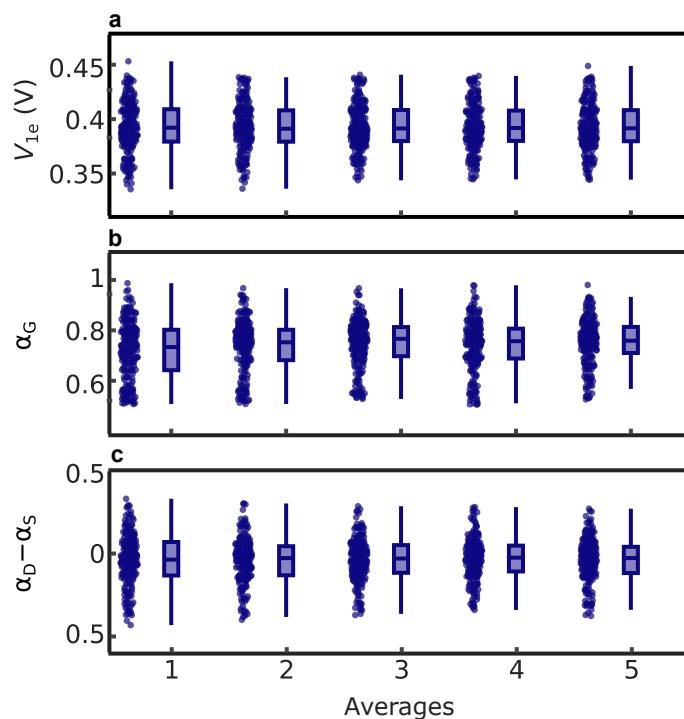
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2025

**Extended Data Fig. 1 | Parameter variation with back-gate voltage.**

a-c, Estimated distributions of first observed electron loading voltage, gate lever arm and QD asymmetry as back-gate voltage is varied ($L = 28$ nm). As backgate increases the dc and rf datasets have 206, 207, 178, 170, 175 and 176 data points.

The box plot features are as follows: centre line, median, box edges 25th and 75th percentile, whiskers, minimum and maximum of the dataset excluding outliers more than $1.5 \times$ outside the interquartile range.



Extended Data Fig. 2 | Parameter extraction performance with increasing integration time. **a-c**, Distributions of extracted parameters (first detected electron loading voltage, gate lever arm, and source-drain asymmetry) using swarm plots (left) and a box plot (right), as the number of averages is varied in rf measurements. The swarm plot reveals individual data points' distribution, while the box plot displays central tendencies and quartiles for easy comparison and

outlier detection. As expected, we observe a decrease in the parameter standard deviation as averages increase. Each group contains 206 samples after removing outliers which are more than $1.5 \times$ outside the interquartile range. The box plot features are as follows: centre line, median, box edges 25th and 75th percentile, whiskers, minimum and maximum of the dataset excluding outliers more than $1.5 \times$ outside the interquartile range.

Extended Data Table 1 | Confusion matrix of the convolutional neural network on the test data set

Manual

		CNN	
		Good	Other
Manual	Good	37	6
	Other	18	143

The elements on the diagonal are the number of instances correctly identified as 'good' or 'other', whereas the off-diagonal elements are the false 'good' and 'other'. We observe a precision of 0.67 and a recall of 0.86.