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Rapid cryogenic characterization of 1,024 
integrated silicon quantum dot devices
 

Edward J. Thomas    1,2,4, Virginia N. Ciriano-Tejel    1,4, David F. Wise    1, 
Domenic Prete    1, Mathieu de Kruijf    1,3, David J. Ibberson    1, 
Grayson M. Noah    1, Alberto Gomez-Saiz    1, M. Fernando Gonzalez-Zalba    1, 
Mark A. I. Johnson    1   & John J. L. Morton    1,2,3

As quantum processors grow in complexity, new challenges arise such as 
the management of device variability and the interface with supporting 
electronics. Spin qubits in silicon quantum dots can potentially address 
these challenges given their control fidelities and potential for compatibility 
with large-scale integration. Here we report the integration of 1,024 
independent silicon quantum dot devices with on-chip digital and analogue 
electronics, all operating below 1 K. A high-frequency analogue multiplexer 
provides fast access to all devices with minimal electrical connections, 
allowing characteristic data across the quantum dot array to be acquired 
and analysed in under 10 min. This is achieved by leveraging radio-frequency 
reflectometry with state-of-the-art signal integrity, characterized by a 
typical signal-to-noise voltage ratio in excess of 75 for an integration time 
of 3.18 μs. We extract key quantum dot parameters by automated machine 
learning routines to assess quantum dot yield and understand the impact of 
device design. We find correlations between quantum dot parameters and 
room-temperature transistor behaviour that could be used as a proxy for 
in-line process monitoring.

Semiconductor quantum dots (QDs) are a potential platform to imple-
ment a fault-tolerant quantum computer, a novel computing paradigm 
expected to outperform classical high-performance computers in areas 
such as materials and drug discovery, database searches and factoriza-
tion. This is due to their small footprint, ability to host coherent and con-
trollable spin qubits, and their potential compatibility with advanced 
semiconductor manufacturing. Spin qubits in isotopically enriched 
silicon have, in particular, demonstrated control, preparation and 
read-out fidelities1–5 above the threshold to perform quantum error cor-
rection6. However, such fault tolerance—in which an error-correcting 
code reduces the error rate to a negligible amount—is predicted to 
require millions of physical qubits to resolve practical problems7.

As solid-state quantum processors scale up to useful levels of 
complexity, two important challenges must be addressed. First, the 
number of connections between the room-temperature processor and 

the quantum processor cannot continue to grow in proportion with 
the number of qubits8–10. Frequency-division multiplexing has been 
applied to allow multiple qubits to share measurement electronics. 
However, frequency crowding limits this approach, so far, to eight 
qubits per line11. Crossbar approaches12,13, in which O(√N) lines inter-
sect at N qubit locations, offer an elegant solution to reduce wiring, 
although with stringent requirements on qubit variability and limita-
tions in processor operation. Ultimately, the use of switches to achieve 
time-division multiple access (TDMA), as in dynamic random-access 
memory, in both read-out and control lines to each qubit unit cell 
provides the greatest flexibility and scalability. For d.c. signals, off-chip 
and on-chip cryogenic switches with ratios up to 1:36 and 1:64, respec-
tively, have been used to address quantum device arrays12,14,15. Multi-
plexed control circuitry operating at 1 K with >100 MHz pulsing has 
also recently been reported16. For radio-frequency (rf) signals used for 
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for QD performance and their suitability for use in qubit technologies. 
We perform a statistical analysis of different device dimensions, and 
under varied operating conditions. Ultimately, we show that the elec-
trostatic properties of these devices can be characterized at cryogenic 
temperatures in under 10 min of measurement time (Supplementary 
Section I) by means of rf reflectometry techniques. We also establish 
a link between cryogenic and room-temperature device properties, 
opening a new avenue for pre-cryogenic validation of silicon qubit 
technologies.

Cryogenic multiplexed access to 1,024 QDs
We use an all-to-all MUX that enables the selection of a single cell given 
a 10-bit input. It contains an analogue bus of three device control lines 
and ten digital address lines (five row-select lines and five column-select 
lines) to address each QD device under test in a 32 × 32 array. The devices 
are selectively connected to the analogue bus using complementary 
metal–oxide–semiconductor (CMOS) transmission gates integrated 
within the same silicon as the quantum devices.

The integrated circuit is designed using an ultrathin body and 
buried oxide fully depleted silicon-on-insulator process. QDs form in 
the undoped channel of the transistors when a voltage difference VGS 
between the gate and source approaches the threshold voltage (Fig. 1b). 
To observe the discrete charging of QDs, a source and drain tunnel-
ling resistance larger than the resistance quantum is necessary. This 
occurs naturally in these devices due to the increase in resistivity of the 
undoped silicon region at low temperatures. This region lies beneath 
the gate and spacers (Fig. 1b). In Fig. 1c, we show an example of the 
characteristic discrete charging, which is a diamond-shaped region of 
decreased conductance nestled within regions of higher conductance.

high-speed read-out, up to 1:3 switching has been shown on chip17–19, 
and high-frequency 1:4 cryogenic multiplexers (MUXs) have been used 
with superconducting qubits20. Developing TDMA at scale requires an 
efficient interface between classical electronics and the quantum 
processor.

The second challenge is managing and minimizing process vari-
ability between the qubits21, requiring each qubit to be independently 
characterized and tuned. Minimizing process variability is already 
an integral component of modern semiconductor manufacturing. 
However, current process characterization is optimized for classical 
transistors, and extending this to quantum devices requires substan-
tial development in high-throughput cryogenic testing capabilities. 
State-of-the-art methods rely on newly developed cryogenic probing to 
enable wafer-scale testing22. However, this method is currently limited 
to temperatures above 1.6 K and is unable to efficiently utilize the wafer 
space since nanometre-scale devices need to be directly contacted 
to macroscopic pads. On-chip multiplexing techniques can provide 
access to large numbers of densely packed devices with minimal input/
output connections, whereas testing can be performed under the 
optimal temperature conditions of spin qubit devices (millikelvins)12,17. 
Large-scale on-chip switching of rf signals, therefore, addresses both 
short-term and long-term challenges in quantum computer devel-
opment: providing a way to characterize many quantum devices to 
address process variability, and to address many qubits in scaled-up 
quantum processors.

In this Article, we report the rapid characterization of 1,024 QD 
devices fabricated using a commercial foundry process by integrating 
high-speed classical multiplexing electronics to individually address 
each device. We develop tools to automatically extract key indicators 
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Fig. 1 | Measurement of a 1,024 QD farm. a, Schematic of a three-dimensional 
render of the 1:1,024 MUX, with analogue access (green, VD; pink, VG; yellow, VS) 
to each QD device controlled by row–column addressing (red and blue wires). 
The black bow-tie represents the transmission gates (formed by the parallel 
combination of matched n- and p-type transistors); and the AND symbol, a 
two-input binary cell select. This farm of devices occupies a small section 
of a 3 mm × 3 mm silicon die. b, Schematic of the cross-section of a single 
transistor along the direction of current flow, showing a QD (purple) below the 

gate and between the drain and source. The region in which the QD forms is 
undoped silicon. D, drain; S, source; G, gate; BG, back-gate. c, Example of a two-
dimensional map showing a normalized device response, |S11|, (colour scale) as a 
function of the drain–source and gate–source voltages. The dashed line shows 
an automated fit to the first measured Coulomb blockade oscillation. The top 
panel shows a line cut at VDS = 0 V (indicated by the dotted line), with the time axis 
aligning with the voltage axis in the bottom panel.
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Reflectometry performance via a MUX
To expedite device measurements, we use rf reflectometry23–26. Reflec-
tometry can detect QD charge transitions with high bandwidth by 
measuring changes in device impedance. The typically high device 
impedance (>100 kΩ) is matched to a 50 Ω line by embedding the 
integrated circuit in a matching network containing a superconduct-
ing spiral inductor (Methods). This allows us to monitor the reflected 
voltage as a function of the device impedance.

Here we characterize the performance of this technique in terms 
of the signal-to-noise ratio (SNR) and bandwidth at a farm level. A 
peak in the |S11| trace corresponds to the electrochemical potential of 
the QD, aligning with the Fermi level of the source or drain. We define 
the signal as the height of this peak relative to the mean background, 
and the noise as the standard deviation of the background signal. In 
Fig. 2a, we show the SNR2 value of a QD charge transition as a function 
of integration time τ. Through linear regression assuming a y inter-
cept of zero, we determine the minimum integration time required to 
attain an SNR of 1, which amounts to tmin = 556 ± 6 ps. This minimum 
integration time serves as a benchmark for evaluating the read-out 
performance26 and demonstrates that the MUX does not compromise 
the signal quality. In fact, our apparatus outperforms the state of the 
art achieved with reflectometry in single-electron transistors27. Overall, 
in the TDMA implementation presented here, the integration time is 
fixed at tint ≈ 11 μs (Supplementary Section I).

Next, we test the bandwidth at the farm level by looking at the 
dependence of SNR with respect to the probe frequency for nine exam-
ple devices (Fig. 2b). For TDMA, it is critical that the frequency region 
of a high signal overlaps for each device in the farm. We demonstrate 
that this holds, with the average SNR bandwidth (6.4 MHz), defined as 
the full-width at half-maximum of the SNR2 signal, which is similar to 
the resonator bandwidth (9.5 MHz).

Finally, we show how the cryogenic performance of a fully 
depleted silicon-on-insulator process28,29 is pivotal in creating our 
low-temperature multiplexing circuit. In particular, back-gating 
through the buried oxide enables the compensation of the known tran-
sistor threshold voltage increase at low temperatures, which becomes 
important when delivering high-frequency signals through the MUX 
(Fig. 3). In particular, we measure the on resistance Ron of a single trans-
mission gate over a wide back-gate-voltage range (VNW,PW for the n- and 
p-type field-effect transistors, NFET and PFET, respectively) and for 
multiple common-mode drain/source voltages. During these measure-
ments, the NFET gate is held at VDD = 0.8 V and the PFET gate is held at 
VSS = 0 V. By applying a forward back-bias (positive for NFET and nega-
tive for PFET), we can reduce Ron by more than an order of magnitude 
for a common-mode voltage VD = VS = 0.4 V (Fig. 3a). We note that the 
combination of forward back-bias and the large dimensions of the MUX 
transistors prevents the undesirable occurrence of Coulomb blockade 
in the transmission gate. The impact of back-biasing on rf performance 
is also evident from the quality of the reflectometry signal. Figure 3b 
shows two Coulomb oscillations as measured in reflectometry as the 
MUX back-bias increases. The two oscillations are well resolved when 
VNW = −VPW > 1.5 V. However, for lower values, a substantial voltage drop 
occurs at the MUX, shifting the position of the oscillations. The shift 
is accompanied by a reduction in SNR, which—along with the unstable 
signal behaviour—can be linked to the increasing MUX resistance. We 
highlight that the back-gate potentials applied to the analogue circuitry 
are independent of those applied to the QD devices.

Analysis and extraction of QD features at scale
To characterize the QD devices, we develop a method to automatically 
extract (Methods) the first observed electron loading voltage (V1e), 
the gate lever arm (αG) that describes the strength of the electrostatic 
coupling of the gate electrode to the dot, and the source–drain lever 
arm difference (αD − αS) to measure the device asymmetry. More specifi-
cally, we define V1e as the gate voltage at which we first detect a Coulomb 

oscillation at zero VDS, representing the loading of an electron to a QD 
that may already contain a number of electrons. These parameters are 
the ones that can be extracted unambiguously, using the first measured 
Coulomb blockade oscillation. To extract further electrostatic proper-
ties, like the charging energy, further oscillations are required; however, 
for many measured devices, the presence of additional QDs cannot 
be conclusively ruled out. Furthermore, a secondary charge sensor 
would be required to verify that we have reached the single-electron 
regime; therefore, here, instead, we find the distribution of gate volt-
ages corresponding to the first visible transition using our read-out 
methods (reflectometry and d.c. transport) to establish the trends and 
variability between devices. Though we cannot guarantee reaching 
the single-electron regime, we have identified these QDs as being in 
the few-electron regime30 (Supplementary Section II).

As stated above, a single measurement is used to extract all of these 
parameters automatically, by monitoring the device as VGS and VDS are 
varied (Methods). A measurement of this kind is shown in Fig. 1c. In the 
farm, eight transistor variants were tested with increasing gate lengths 
(L) of 28 nm, 40 nm, 60 nm and 80 nm and channel widths (W) of 80 nm 
and 100 nm. Our first observation shows that not all transistors can 
provide good QDs (Fig. 4a). For these devices, we, therefore, cannot 
extract the QD parameters described above, and therefore, they must 
first be filtered out. We have trained a convolutional neural network 
(CNN) to categorize our devices into three categories: clear Coulomb 
blockade (good), no Coulomb blockade (bad) and multiple series QDs 
(multi), which present as non-closing diamonds (Supplementary Sec-
tion IV provides more information regarding the classification criteria). 
Each device is manually labelled by two domain experts and these labels 
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shaded region is the mean bandwidth over the selected devices.
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are used to train the CNN (Methods). The proportion of devices that 
fall into each category as determined by the CNN is shown in Fig. 4b.

To automatically extract the parameters, we developed tools 
to process data acquired through both transport (d.c.) and reflec-
tometry (rf) measurements. Transistor characteristic measurements 
are commonly performed in d.c.; thus, the d.c. data presented here 
serve as a reference for comparison with the rf data, revealing good 
agreement between both techniques (Fig. 4c–e and Extended Data 
Fig. 1). Moreover, increasing the integration time does not result in a 
substantive change in the extracted parameters (Extended Data Fig. 2). 
The parameters V1e, αG and αD − αS can be determined from the pair of 
intersecting lines in a charge map (Fig. 1c). The intercept gives V1e, and 
the lever arms can be calculated from the gradients of the two lines 
(Methods). For each charge map, we perform a fitting routine that finds 
the best pair of lines, with higher weight given to V1e at lower voltages, 
and intercept close to VDS = 0 V.

Variability of industrially fabricated QDs
To assess the inherent process variability, considerable effort was 
focused on the design stage to suppress the known sources of semi-
conductor process variability, for example, layout effects (Methods). 
Therefore, the variability we measure is primarily inherent to each 
device under test. As shown in Fig. 4b, in devices with greater gate 
lengths, multiple dots are generated, resulting in complex multi-dot 
structures. On the contrary, devices with shorter gate lengths yield 
single QDs. However, in most devices, a small gate length leads to an 

early transistor turn-on, resulting in ‘bad’ dots. Overall, the device 
designs with the highest proportion of good QD features have shorter 
gate lengths, namely, 28 nm and 40 nm. The two channel widths do 
not impart notable differences across the farm. The automatically 
extracted parameters for these good devices are shown in Fig. 4c–e. 
With decreasing gate length, we see a lower threshold voltage due to 
the increasing effect of the electric field produced by the source and 
drain, a well-known short-channel transistor effect, probably caused 
by drain-induced barrier lowering31. The gate lever arm and lever arm 
asymmetry remain fairly constant, indicating that dots remain well 
controlled by the gate even at the smallest dimensions.

For the L = 28 nm case, we find the first observed electron volt-
ages (V1e = 387 ± 22mV) and the gate lever arms (αG = 0.741 ± 0.082) 
are narrowly distributed. We find the standard deviation of V1e 
(~22 mV) is comparable to the spacing (25 ± 4 mV) between the first 
and second observed electron (V2e) loading voltages, measured from 
a subset of devices in which a second transition is clearly visible. This 
suggests that the tight requirements for shared voltage control12 are 
within reach, but need further reduction. Alternatively, small varia-
tions may be compensated with independent voltage trimming of 
each of the QD back-gates. However, this comes at the cost of a greater 
number of control lines per QD. It must be stressed that the overarch-
ing challenge with the presented devices is QD quality, which must 
be addressed before voltage sharing can be considered. Determining 
the exact origin of the variability in QD quality is beyond the scope of 
this work, but we hypothesize that irregularities in electrostatic 
potential caused by (1) an elevated number of two-level fluctuators 
near the Si/SiO2 interface30 and/or (2) gate metal workfunction inho-
mogeneities32 could be the cause. We note that the large gate lever 
arm will be beneficial when implementing gate-based dispersive 
read-out26.

The mean dot asymmetry αD − αS = −0.040 ± 150  shows that,  
on average, the QDs are well centred in the channel. We note that since 
all the lever arms must add to 1, a large asymmetry places an upper 
bound on the gate lever arm, that is, αG ≤ 1 − ∣αD − αS∣ (Supplementary 
Section V). This result highlights an inverse relation between the asym-
metric QD position within the channel and gate control over the QD, 
emphasizing the importance of QD location being central under the 
gate. We note that for the devices here, the QD is placed between two 
large conducting leads; however, for larger QD arrays, most dots may 
only have a single lead, or only other dots nearby. In such devices, the 
importance of the short-channel effect we see here is lessened. In light 
of this, our measurements provide a worst-case indication for dot 
asymmetry under a single gate.

Room-temperature correlations with QD 
parameters
It would be ideal to determine the QD parameters without needing 
to cool the device to cryogenic temperatures. For a QD, once the 
thermal energy kBT becomes much larger than the charging energy 
EC = e2/CΣ ≈ 18.5 meV (Methods), transport through the transistor does 
not exhibit blockade and the device behaves as a simple transistor. 
However, we gain a new set of parameters used in the classical model-
ling of transistors, such as the threshold voltage (Vth).

We next establish a direct link between QD parameters and classi-
cal transistor behaviour (Methods), which allows device yield and uni-
formity to be assessed without requiring expensive and time-intensive 
cooling in a dilution refrigerator. Recent work has correlated classical 
transistor behaviour from room temperature to 4.2 K (ref. 33); here we 
extend this to the behaviour of QDs at lower temperatures. We highlight 
that pre-cryogenic validation can be an invaluable tool in the life cycle 
of a silicon quantum computer.

We explore the relation between V1e and Vth obtained from devices 
with the shortest gate length, L = 28 nm, classified as ‘good’. To explore 
this, we use probabilistic programming, a technique that offers an 
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insight into both systematic patterns and random fluctuations in the 
data. We consider a simple linear model of the form

V1e(Vth) = αVth + β +𝒩𝒩𝒩0, σV1e ). (1)

Here α and β are coefficients of the linear model, and 𝒩𝒩(0, σV1e ) is 
a normal distribution that represents the intrinsic random fluctuations 
in V1e. In this approach, V1e, Vth and the parameters α, β and σV1e  are 
treated as random variables rather than fixed quantities. We express 
our initial expectations using prior distributions, which convey our 
preliminary knowledge about the parameters before any data are col-
lected. For the priors, we opt for normal distributions (𝒩𝒩), as they offer 
a balanced representation of our initial understanding without being 
overly restrictive.

Next, we refine these parameter distributions using Hamiltonian 
Monte Carlo34, aiming to find the best fit to the observed data for V1e. 
Figure 5a shows the linear fit extracted by averaging the Hamiltonian 
Monte Carlo trial results. The extracted slope (α = 1.01 ± 0.02) indi-
cates a clear relationship between room-temperature threshold voltage 
and the first observed QD electron loading voltage. It is well known 
that transistor threshold voltages increase at cryogenic temperatures, 
and this is also apparent in the V1e offset voltage, β = 210 ± 30mV.

The result from the model is the posterior distribution of V1e. The 
uncertainty of the posterior distribution (~22 mV) encompasses vari-
ations arising from both Vth  (σVth = 15mV) and the intrinsic random-

ness in V1e (σV1e = 16 ± 1mV). Completely removing variations in the 
threshold voltage at the foundry level (σVth = 0) would consequently 
decrease the variation in V1e to σV1e = 16mV.

Conclusions
We have reported testing a device farm of 1,024 QDs based on simple 
transistor structures. Our approach can, however, be extended to more 
complex unit cells, such as coupled QD systems—the basic building 
block of semiconductor-based quantum computers. Our rf read-out 
techniques can be leveraged to embed compact dispersive spin qubit 
read-out with the unit cells of scaled-up QD architectures35,36. We devel-
oped an integrated CMOS three-channel 1:1,024 analogue MUX, but the 
capabilities of this silicon technology reach further. Foundry-based 
platforms could, in particular, allow the co-integration of ultralow 
power electronic modules such as digital-to-analogue converters, 
low-noise amplifiers and digital controllers alongside the qubit system. 
These technologies have been demonstrated in stand-alone processes37, 
but tightly integrating all of these modules with semiconductor qubits—
and retaining their qualities—remains an open challenge, especially 
given the limited cooling power of cryostats and thermal conductivity 
of silicon at low temperatures. Our observation that cryogenic param-
eters of silicon QD devices can be predicted from room-temperature 
behaviour has implications for the time and resources required to 
monitor process variations and optimize the design and production 
of future quantum devices. Further development of pre-cryogenic 

rf
d.c.

28

0 50

8080

c–e

28 100

%
100

L (nm)

L (nm)L (nm)L (nm)

W (nm)

0 50

%
100

4028 4028 40

10
a

c d e

b

0

–10

0.35

Good

Bad

Multi Multi Multi

Bad Bad

Good Good

0.40

0.35 0.400.40 0.45

0.40 0.45

0.40 0.45

0.40 0.45

0.45

0.40

0.4

0

–0.4

1.0

0.8

0.6

0.4

0.35

0.40 0.45 0.40 0.45

0.35 0.40

10

0

–10

10

0

–10

VGS (V)

V 1
e (

V)

α G

α D
 –

 α
S

V D
S 

(m
V)

V D
S 

(m
V)

V D
S 

(m
V)

VGS (V) VGS (V)

Fig. 4 | QD yield and key parameters. a, Example two-dimensional maps  
for nine different devices. The labels indicate the quality of Coulomb blockade 
observed; ‘multi’ refers to signatures of multiple series dots forming in the 
device. b, Relative frequency of each device category for different gate lengths 
L = [28, 40, 60, 80] nm and channel widths W = [80, 100] nm. These data were 
extracted using the CNN. c–e, Distributions of automatically extracted gate 
voltage for the first detected electron transition (c), gate lever arm (d) and  

drain–source coupling asymmetry (e) for different gate lengths. In the rf dataset, 
there are 150 examples at 28 nm gate length and 71 examples at 40 nm gate 
length. In the d.c. dataset, there are 156 examples at 28 nm gate length and 81 
examples at 40 nm gate length. The features of the box plot are as follows: centre 
line, median, box edges (25th and 75th percentiles), whiskers, and minimum 
and maximum of the dataset excluding outliers more than 1.5× outside the 
interquartile range.

http://www.nature.com/natureelectronics


Nature Electronics | Volume 8 | January 2025 | 75–83 80

Article https://doi.org/10.1038/s41928-024-01304-y

methods and analysis tools could allow wider industry engagement 
and a substantial cost reduction in technology development, particu-
larly if further correlations can be extracted when complex unit cells 
are studied.

Methods
d.c. transport measurement
With a small bias of ~ 1 mV, the transport current formed by the tun-
nelling of electrons one by one through a QD is typically small (~1 pA 
to 1,000 pA). To record this level of current, we use a transimpedance 
amplifier to convert the current to a voltage with a gain of 107 V A−1. To 
acquire a Coulomb diamond map, a triangular wave with a frequency 
of 20 Hz was applied to the gate and the signal is acquired on the ris-
ing edge of the slope. Devices were measured with either five or ten 
averages; a single transport Coulomb diamond measurement takes 
approximately 15 s or 30 s.

rf reflectometry measurement
Measuring a high-impedance device in reflectometry requires an 
impedance-transforming circuit (Supplementary Section VI). This 
allows changes in an otherwise large device impedance to be meas-
ured by a 50 Ω matched meter, for example, resistance changing from 
1,000 kΩ to 100 kΩ. The complex impedance of the QD has contribu-
tions from the resistance and capacitance of the tunnel barrier between 
the source lead and the dot. When the dot and source electrochemical 
potentials are equal, the Coulomb blockade is lifted and electrons can 
tunnel elastically through the barrier. This results in an apparent change 
in the barrier resistance and capacitance, the latter of which may have 
both quantum and junction contributions38,39. This impedance change 
can be detected at the 50 Ω output as a change in the reflected rf signal 
near the resonance frequency.

To measure the Coulomb diamond maps, a triangular waveform 
with a frequency of 203 Hz was applied to the gate. Signal acquisition 
occurs during the rising edge of the waveform. The frequency of the 
triangular waveform is constrained by the RC low-pass filter on the 
printed circuit board with a cutoff frequency of fc = 16 kHz.

Each Coulomb diamond map comprises 60 distinct traces, cov-
ering a range of source–drain voltages (VDS) from –15 mV to 15 mV.  

The acquisition time required for measuring the 1,024 Coulomb  
diamond maps is 2 min 31 s.

The sampling rate used for acquiring these maps is 1 MSa s−1.  
However, the effective integration time is constrained to 10.68 μs due 
to limitations imposed by the room-temperature low-pass filters for 
the in-phase and quadrature signals (Supplementary Section I).

Coulomb diamond classification using a neural network
We categorize devices into three groups based on their Coulomb  
blockade maps (Fig. 4a).

•	 Good: these devices display a clearly defined hourglass shape in their 
Coulomb blockade map, enabling parameter extraction (Fig. 1c).

•	 Bad: these devices lack observable Coulomb blockade or exhib-
iting classical transistor turn-on superimposed with Coulomb 
blockade. This behaviour is probably caused by low resistances 
of the tunnelling barriers.

•	 Multi: these devices form several QDs in series, identifiable by 
overlapping Coulomb diamonds, giving rise to extended regions 
of blockade.

On the basis of the above criteria, domain experts manually clas-
sified the devices. However, the boundaries between categories can 
be ambiguous, as evidenced by experts agreeing on the classification 
approximately 80% of the time for the same dataset. Examples of such 
ambiguity are faint hourglass shapes mixed with noise or incomplete 
hourglass shapes.

Although manual classification worked well with the current num-
ber of devices (approximately 1,000), the expected increase in device 
volume calls for an automated solution. To tackle this challenge with 
our modest dataset, we applied strategies proven effective in image 
classification with limited training data. Specifically, we utilize transfer 
learning by implementing the well-known ResNet26d architecture, 
pre-trained on the extensive ImageNet’s database. This approach  
enables robust performance despite the scale of our dataset40.

Alongside transfer learning, we used data augmentation tech-
niques like image rotation, warping, zooming and changes in satu-
ration. These methods introduce variety into the training data. In 
addition, we incorporate mixup, a technique that generates new images 
by linearly combining pairs of original training images41.

The neural network processes Coulomb blockade data as greyscale 
images. The dataset was randomly partitioned, with 80% allocated to a 
training set and 20%, to a test set. To optimize the training process, we 
used the one-cycle policy, which dynamically adjusts the learning rate, 
increasing it to the maximum and then gradually decreasing it42. This 
dynamic learning rate schedule helps regulate the training process, 
accelerates convergence and reduces sensitivity to the hyperparameter 
of the learning rate, ensuring a more robust and efficient training phase.

In our neural network implementation, we focus on capturing label 
uncertainty. This is achieved through label smoothing43. In standard 
binary assignment, like entropy loss, the correct class receives a prob-
ability of 1 and others, 0. On the contrary, label smoothing adjusts the 
ground-truth labels by assigning a probability slightly less than 1 to 
the correct class and distributing the remaining probability uniformly 
across all classes. This adjustment helps mitigate over-reliance on 
specific training labels and encourages the model to generalize better 
across different classes.

The performance of the CNN is assessed using the confusion 
matrix (Extended Data Table 1), yielding an accuracy of 88%. This accu-
racy level is constrained due to the ambiguous boundaries between 
different device classes.

To demonstrate that, we evaluated the ChimeraMix architecture, 
a state-of-the-art approach, which achieved over 96% classification 
accuracy using labels from a single expert. ChimeraMix relies on train-
ing a generative adversarial network to mix examples of the same class, 
augmenting the size of the dataset.
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Fig. 5 | Correlation of voltage threshold with electron loading. a, V1e, measured 
at 50 mK, against Vth, measured at room temperature and analysed using Bayesian 
modelling techniques to extract an underlying linear relationship. The solid 
black line is the average of the estimated linear fits and the shaded region shows 
the 95% confidence interval over possible linear fits (slope and intercept). The 
dashed lines represent the 95% confidence interval for V1e accounting for noise. 
The solid grey line indicates a nominal Vth used to analyse the distribution of V1e in 
b. b Comparison of the observed distribution of V1e extracted from the measured 
data (red) with the predicted posterior distribution (black), showing a standard 
deviation of approximately σ ≈ 22 mV.
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Finally, to optimize the neural network further, we suggest a 
non-binary scoring system for each Coulomb map (for example, using 
a scale from one to ten). This approach involves training the network on 
labels that reflect the collective agreement among multiple human clas-
sifiers, which helps mitigate individual biases. Moreover, adopting this 
method enables the neural network to better understand the nuances 
present in edge cases between good, multi and bad dots.

Parameter extraction from Coulomb diamonds
Most key parameters that describe a single QD can be obtained from 
the position and shape of the Coulomb diamond measurements44,45. 
When measuring the rf response at the drain, the positive (negative) 
edges of the Coulomb diamonds appear when the QD electrochemi-
cal potential μdot is aligned with the drain (source) electrochemical 
potential μD (μS). The first observed electron loading voltage V1e cor-
responds to the crossing point of the first pair of these edges (nominally 
at μS = μD = 0 eV).

The gate lever arm αG = CG/CΣ, where CG is the gate capacitance 
and CΣ is the sum of the dot capacitance to each terminal, represents 
the coupling strength of the gate to the dot. This parameter can be 
calculated as

αG = ( 1
|m1|

+ 1
|m2|

)
−1
, (2)

where m1 and m2 are the positive and negative gradients of the pair of 
edges that form the first visible hourglass (Fig. 1c).

Moreover, when a voltage bias is applied antisymmetrically 
(VD = −VS), the relative coupling capacitance of the source (αS = CS/CΣ) 
and drain (αD = CD/CΣ) can be directly obtained from the gradient of the 
Coulomb diamond edges as

αD − αS =
m1 +m2
m1 −m2

. (3)

This is a measure of the asymmetry of dot formation under the gate.
The full step-by-step process for extracting the dot parameters 

from Coulomb blockade maps is detailed in Supplementary Section IV, 
but we provide a succinct summary here. We perform digital filtering 
to reduce noise and enhance contrast in the acquired data, and then 
apply a Canny edge detection algorithm to digitize the charge stability 
map and identify the edges of the Coulomb diamonds. We then use a 
Hough transform to convert the binary image to information about the 
edges parametrized by their length and angle. We identify good fits to 
the first visible Coulomb oscillation with a pair of long line segments, 
one with a positive slope and the other with a negative one, which 
intersect near VDS = 0 V.

Room-temperature measurements and cryogenic correlations
We analyse the transport measurements through transistors at room 
temperature with a source–drain bias of VDS = 50 mV. Vth is determined 
by extrapolating the ID–VGS curve, between the maximum transconduct-
ance point max(gm) = max(dID/dVGS) and the maximum subthreshold 
slope point max(SS) = max(log[ID/VGS]) (ref. 46). Vth is the voltage at 
which this extrapolated line intersects ID = 0.

To understand the systematic relationship between V1e and Vth and 
their random variation, we use the probabilistic programming frame-
work NumPyro47. As stated in the main text, we use a model defined by 
three random variables: α, β and σ. These variables are initially set with 
a suitable prior distribution. The posterior distribution is then formed 
using Hamiltonian Monte Carlo34 sampling.

Charging energy
We obtain a charge energy of EC = 18.5 ± 3 meV as EC = ∣e∣ΔVGαG, where 
∣e∣ ≈ 1.6 × 10−19 C is the elementary charge, αG is the gate lever arm and 

ΔVG is the difference between the first and second detected electron 
(V2e) loading voltages. Some examples of Coulomb diamonds can be 
found in the main text showing slightly smaller charging energies than 
the average.

Device fabrication
The die was fabricated using the GlobalFoundries 22FDX 22 nm 
fully depleted silicon-on-insulator process. A single die was used for  
this study.

Experimental setup
The integrated circuit die was glued to a carrier printed circuit board 
with conducting silver paste. The die is wire bonded (17.5 μm AlSi) to 
gold-plated copper tracks. The low-frequency control lines are routed 
to a connector to attach to a motherboard, which has passive first-order 
in-line filtering (RC = 10 μs). The reflectometry line is directly routed to 
an SMP connector on the carrier printed circuit board.

All the cryogenic measurements were performed in a Bluefors 
XLD dilution refrigerator, where the device was mounted to the mixing 
chamber plate operating at 10 mK. When the chip is powered on, the die 
temperature was measured as 600 mK using on-chip thermometry48 
(value quoted for a nominally identical die). The reason for this elevated 
temperature is the static power draw of approximately 4 μW needed 
for the digital and analogue support electronics.

A QDevil QDAC II was used to supply the d.c. voltages to the QD 
device terminals, chip supplies and row/column address lines. To 
sweep the gate voltage, a triangular wave with 50% duty cycle was 
supplied by a Keysight 33500B arbitrary waveform generator. The 
rf reference signal was generated by a Rohde & Schwarz SMB100B. 
The reflected signal was amplified by a Low Noise Factory cryogenic 
amplifier (LNF-LNC0.2_3A s/n 2541z) at 4 K. This signal is then further 
amplified at room temperature using two Mini-Circuits amplifiers 
(ZX60-P103LN+ and ZX60-33LNR-S+) before being separated into its 
in-phase and quadrature components using a Polyphase microwave 
quadrature demodulator (AD0540B). These signals are finally ampli-
fied and filtered by a Stanford SR560 and then digitized via a Spectrum 
M4i.4421-x8 digitizer PCIe card.

For d.c. measurements, we used two transimpedance amplifiers 
(Basel Precision Instruments SP983c, IF3602 junction field-effect 
transistor) to simultaneously monitor the source (IS) and drain (ID) 
currents. The gain of the amplifiers was set to 107 V A−1 with a low-pass 
filter bandwidth of 1 kHz. For our measurements, we use Isig = (ID − IS)/2 
to remove any offsets. During rf measurements, the transimpedance 
amplifiers are removed and the source and drain are directly driven 
with the QDAC II voltage sources mentioned above.

Data availability
The data that support the plots within this paper and other findings of 
this study are available from the corresponding author upon request.
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Extended Data Fig. 1 | Parameter variation with back-gate voltage.  
a-c, Estimated distributions of first observed electron loading voltage, gate lever 
arm and QD asymmetry as back-gate voltage is varied (L = 28 nm). As backgate 
increases the dc and rf datasets have 206, 207, 178, 170, 175 and 176 data points. 

The box plot features are as follows: centre line, median, box edges 25th and 75th 
percentile, whiskers, minimum and maximum of the dataset excluding outliers 
more than 1.5 × outside the interquartile range.
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Extended Data Fig. 2 | Parameter extraction performance with increasing 
integration time. a-c, Distributions of extracted parameters (first detected 
electron loading voltage, gate lever arm, and source-drain asymmetry) using 
swarm plots (left) and a box plot (right), as the number of averages is varied in rf 
measurements. The swarm plot reveals individual data points’ distribution, while 
the box plot displays central tendencies and quartiles for easy comparison and 

outlier detection. As expected, we observe a decrease in the parameter standard 
deviation as averages increase. Each group contains 206 samples after removing 
outliers which are more than 1.5 × outside the interquartile range. The box plot 
features are as follows: centre line, median, box edges 25th and 75th percentile, 
whiskers, minimum and maximum of the dataset excluding outliers more than 
1.5x outside the interquartile range.
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Extended Data Table 1 | Confusion matrix of the convolutional neural network on the test data set

The elements on the diagonal are the number of instances correctly identified as ‘good’ or ‘other’, whereas the off-diagonal elements are the false ‘good’ and ‘other’. We observe a precision of 
0.67 and a recall of 0.86.
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