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As quantum processors grow in complexity, new challenges arise such as

the management of device variability and the interface with supporting
electronics. Spin qubits insilicon quantum dots can potentially address
these challenges given their control fidelities and potential for compatibility
with large-scale integration. Here we report the integration of 1,024
independent silicon quantum dot devices with on-chip digital and analogue
electronics, all operating below 1 K. A high-frequency analogue multiplexer
provides fast access to all devices with minimal electrical connections,
allowing characteristic data across the quantum dot array to be acquired
and analysed in under 10 min. This is achieved by leveraging radio-frequency
reflectometry with state-of-the-art signal integrity, characterized by a
typical signal-to-noise voltage ratio in excess of 75 for an integration time

of 3.18 ps. We extract key quantum dot parameters by automated machine
learning routines to assess quantum dot yield and understand the impact of
device design. We find correlations between quantum dot parameters and
room-temperature transistor behaviour that could be used as a proxy for
in-line process monitoring.

Semiconductor quantum dots (QDs) are a potential platformtoimple-
mentafault-tolerant quantum computer, a novel computing paradigm
expected to outperform classical high-performance computersin areas
such as materials and drug discovery, database searches and factoriza-
tion. Thisis dueto their small footprint, ability to host coherent and con-
trollable spin qubits, and their potential compatibility with advanced
semiconductor manufacturing. Spin qubits in isotopically enriched
silicon have, in particular, demonstrated control, preparation and
read-out fidelities' above the threshold to perform quantum error cor-
rection®. However, such fault tolerance—in which an error-correcting
code reduces the error rate to a negligible amount—is predicted to
require millions of physical qubits to resolve practical problems’.

As solid-state quantum processors scale up to useful levels of
complexity, two important challenges must be addressed. First, the
number of connections between the room-temperature processor and

the quantum processor cannot continue to grow in proportion with
the number of qubits®*°. Frequency-division multiplexing has been
applied to allow multiple qubits to share measurement electronics.
However, frequency crowding limits this approach, so far, to eight
qubits per line™’. Crossbar approaches>?, in which O/ N) lines inter-
sect at N qubit locations, offer an elegant solution to reduce wiring,
although with stringent requirements on qubit variability and limita-
tionsin processor operation. Ultimately, the use of switches to achieve
time-division multiple access (TDMA), as in dynamic random-access
memory, in both read-out and control lines to each qubit unit cell
provides the greatest flexibility and scalability. For d.c. signals, off-chip
and on-chip cryogenic switches with ratiosup to1:36 and 1:64, respec-
tively, have been used to address quantum device arrays™'*". Multi-
plexed control circuitry operating at 1 K with >100 MHz pulsing has
alsorecently beenreported®. For radio-frequency (rf) signals used for
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Fig.1|Measurement ofa1,024 QD farm. a, Schematic of a three-dimensional
render of the 1:1,024 MUX, with analogue access (green, V,,; pink, V;; yellow, V)
to each QD device controlled by row-column addressing (red and blue wires).
Theblack bow-tie represents the transmission gates (formed by the parallel
combination of matched n-and p-type transistors); and the AND symbol, a
two-input binary cell select. This farm of devices occupies a small section
ofa3 mm x 3 mmsilicon die. b, Schematic of the cross-section of a single
transistor along the direction of current flow, showing a QD (purple) below the
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gate and between the drainand source. The region in which the QD formsis
undopedsilicon. D, drain; S, source; G, gate; BG, back-gate. ¢, Example of a two-
dimensional map showing a normalized device response, |S|, (colour scale) as a
function of the drain-source and gate-source voltages. The dashed line shows
an automated fit to the first measured Coulomb blockade oscillation. The top
panel showsaline cutat Vs = 0 V (indicated by the dotted line), with the time axis
aligning with the voltage axis in the bottom panel.

high-speed read-out, up to 1:3 switching has been shown on chip” ™",
and high-frequency 1:4 cryogenic multiplexers (MUXs) have been used
with superconducting qubits®. Developing TDMA at scale requiresan
efficient interface between classical electronics and the quantum
processor.

The second challenge is managing and minimizing process vari-
ability between the qubits?, requiring each qubit tobeindependently
characterized and tuned. Minimizing process variability is already
an integral component of modern semiconductor manufacturing.
However, current process characterization is optimized for classical
transistors, and extending this to quantum devices requires substan-
tial development in high-throughput cryogenic testing capabilities.
State-of-the-art methods rely on newly developed cryogenic probing to
enable wafer-scale testing”. However, this method is currently limited
totemperatures above 1.6 Kand is unable to efficiently utilize the wafer
space since nanometre-scale devices need to be directly contacted
to macroscopic pads. On-chip multiplexing techniques can provide
accesstolarge numbers of densely packed devices with minimal input/
output connections, whereas testing can be performed under the
optimal temperature conditions of spin qubit devices (millikelvins)'>".
Large-scale on-chip switching of rf signals, therefore, addresses both
short-term and long-term challenges in quantum computer devel-
opment: providing a way to characterize many quantum devices to
address process variability, and to address many qubits in scaled-up
quantum processors.

In this Article, we report the rapid characterization of 1,024 QD
devices fabricated using acommercial foundry process by integrating
high-speed classical multiplexing electronics to individually address
each device. We develop tools to automatically extract key indicators

for QD performance and their suitability for use in qubit technologies.
We perform a statistical analysis of different device dimensions, and
under varied operating conditions. Ultimately, we show that the elec-
trostatic properties of these devices can be characterized at cryogenic
temperatures in under 10 min of measurement time (Supplementary
Section I) by means of rf reflectometry techniques. We also establish
alink between cryogenic and room-temperature device properties,
opening a new avenue for pre-cryogenic validation of silicon qubit
technologies.

Cryogenic multiplexed access t01,024 QDs

We use anall-to-allMUX that enables the selection of asingle cell given
al0-bitinput.It contains an analogue bus of three device control lines
andtendigital address lines (five row-selectlines and five column-select
lines) toaddresseach QD device undertestina32 x 32 array. The devices
are selectively connected to the analogue bus using complementary
metal-oxide-semiconductor (CMOS) transmission gates integrated
within the same silicon as the quantum devices.

The integrated circuit is designed using an ultrathin body and
buried oxide fully depleted silicon-on-insulator process. QDs formin
the undoped channel of the transistors when a voltage difference Vg
betweenthe gate and source approaches the threshold voltage (Fig. 1b).
To observe the discrete charging of QDs, a source and drain tunnel-
ling resistance larger than the resistance quantum is necessary. This
occursnaturallyinthese devices dueto theincreaseinresistivity of the
undoped silicon region at low temperatures. This region lies beneath
the gate and spacers (Fig. 1b). In Fig. 1c, we show an example of the
characteristic discrete charging, whichis adiamond-shaped region of
decreased conductance nestled within regions of higher conductance.
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Reflectometry performance viaa MUX

To expedite device measurements, we use rfreflectometry® 2, Reflec-
tometry can detect QD charge transitions with high bandwidth by
measuring changes in device impedance. The typically high device
impedance (>100 kQ) is matched to a 50 Q line by embedding the
integrated circuit in a matching network containing a superconduct-
ing spiralinductor (Methods). This allows us to monitor the reflected
voltage as afunction of the device impedance.

Here we characterize the performance of this technique interms
of the signal-to-noise ratio (SNR) and bandwidth at a farm level. A
peakinthe|S;| trace corresponds to the electrochemical potential of
the QD, aligning with the Fermi level of the source or drain. We define
the signal as the height of this peak relative to the mean background,
and the noise as the standard deviation of the background signal. In
Fig. 2a, we show the SNR?value of a QD charge transition as a function
of integration time 7. Through linear regression assuming a y inter-
ceptof zero, we determine the minimum ntegration time required to
attain an SNR of 1, which amounts to ¢, = 556 + 6 ps. This minimum
integration time serves as a benchmark for evaluating the read-out
performance® and demonstrates that the MUX does not compromise
the signal quality. In fact, our apparatus outperforms the state of the
artachieved with reflectometry insingle-electron transistors®. Overall,
in the TDMA implementation presented here, the integration time is
fixed at ¢,,, = 11 ps (Supplementary Section I).

Next, we test the bandwidth at the farm level by looking at the
dependence of SNRwith respect to the probe frequency for nine exam-
ple devices (Fig.2b). For TDMA, it is critical that the frequency region
of a high signal overlaps for each device in the farm. We demonstrate
that this holds, with the average SNR bandwidth (6.4 MHz), defined as
the full-width at half-maximum of the SNR? signal, which is similar to
the resonator bandwidth (9.5 MHz).

Finally, we show how the cryogenic performance of a fully
depleted silicon-on-insulator process*** is pivotal in creating our
low-temperature multiplexing circuit. In particular, back-gating
through the buried oxide enables the compensation of the known tran-
sistor threshold voltage increase at low temperatures, whichbecomes
important when delivering high-frequency signals through the MUX
(Fig.3).Inparticular, we measure the onresistance R,,, of asingle trans-
mission gate over awide back-gate-voltage range (Vyww for the n-and
p-type field-effect transistors, NFET and PFET, respectively) and for
multiple common-mode drain/source voltages. During these measure-
ments, the NFET gateis held at V/;,, = 0.8 Vand the PFET gate is held at
Vs =0 V.By applying aforward back-bias (positive for NFET and nega-
tive for PFET), we canreduce R, by more than an order of magnitude
for acommon-mode voltage V, = Vs = 0.4 V (Fig. 3a). We note that the
combination of forward back-bias and the large dimensions of the MUX
transistors prevents the undesirable occurrence of Coulomb blockade
inthe transmission gate. Theimpact of back-biasing on rf performance
is also evident from the quality of the reflectometry signal. Figure 3b
shows two Coulomb oscillations as measured in reflectometry as the
MUX back-bias increases. The two oscillations are well resolved when
Viw =—Vew > 1.5 V.However, for lower values, a substantial voltage drop
occurs at the MUX, shifting the position of the oscillations. The shift
isaccompanied by areductionin SNR, which—along with the unstable
signal behaviour—can be linked to the increasing MUX resistance. We
highlight that the back-gate potentials applied to the analogue circuitry
areindependent of those applied to the QD devices.

Analysis and extraction of QD features at scale

To characterize the QD devices, we develop amethod to automatically
extract (Methods) the first observed electron loading voltage (V,.),
the gate lever arm (&) that describes the strength of the electrostatic
coupling of the gate electrode to the dot, and the source-drain lever
armdifference (ap, — a5) to measure the device asymmetry. More specifi-
cally, we define V,. as the gate voltage at which we first detect a Coulomb
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Fig.2|SNR. a, Power SNR as a function of integration time. Data points
correspond to the square of the measured SNR (SNR?) at different integration
times 7. We fit this with a straight line (solid black) through the origin. The
minimum integration time ¢,,;,, where this line crosses SNR =1, is approximately
0.5 ns. The insets show example Coulomb oscillations, with normalized
amplitudes, measured at the longest integration time ¢,,, = 1.6 ms and shortest
integration time t;,,=3.18 ps (indicated in red). The horizontal axes in the inset are
the gate voltage (V) in volts. b, Normalized SNR for nine devices are each shown
as faint grey lines, and the heavy black line is the mean response. The green-
shaded regionis the mean bandwidth over the selected devices.

oscillation at zero Vyy, representing the loading of an electrontoa QD
that may already contain anumber of electrons. These parameters are
the ones that can be extracted unambiguously, using the first measured
Coulombblockade oscillation. To extract further electrostatic proper-
ties, like the charging energy, further oscillations are required; however,
for many measured devices, the presence of additional QDs cannot
be conclusively ruled out. Furthermore, a secondary charge sensor
would be required to verify that we have reached the single-electron
regime; therefore, here, instead, we find the distribution of gate volt-
ages corresponding to the first visible transition using our read-out
methods (reflectometry and d.c. transport) to establish the trends and
variability between devices. Though we cannot guarantee reaching
the single-electron regime, we have identified these QDs as being in
the few-electron regime®® (Supplementary SectionII).

Asstated above, asingle measurementis used to extract all of these
parameters automatically, by monitoring the device as Vsand Vs are
varied (Methods). A measurement of thiskind isshowninFig.1c.Inthe
farm, eight transistor variants were tested with increasing gate lengths
(L) of 28 nm,40 nm, 60 nmand 80 nm and channel widths (W) of 80 nm
and 100 nm. Our first observation shows that not all transistors can
provide good QDs (Fig. 4a). For these devices, we, therefore, cannot
extract the QD parameters described above, and therefore, they must
first be filtered out. We have trained a convolutional neural network
(CNN) to categorize our devices into three categories: clear Coulomb
blockade (good), no Coulomb blockade (bad) and multiple series QDs
(multi), which present as non-closing diamonds (Supplementary Sec-
tionV provides more information regarding the classification criteria).
Eachdeviceis manually labelled by two domain experts and these labels
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Fig. 3| Integrated cryogenic1:1,024 MUX performance. a, R, of a single MUX
transmission gate with varied analogue back-gates Vy, and V,,, for the NFET and
PFET, respectively. b, Normalized reflected signal from the device as the analogue
back-gates are varied. The MUX reaches a stable configuration when V,, > 1.5V
and V,,, <-1.5V, corresponding to a transmission gate impedance of -2 kQ with
Vps =20 mV.

are used to train the CNN (Methods). The proportion of devices that
fall into each category as determined by the CNN is shown in Fig. 4b.

To automatically extract the parameters, we developed tools
to process data acquired through both transport (d.c.) and reflec-
tometry (rf) measurements. Transistor characteristic measurements
are commonly performed in d.c.; thus, the d.c. data presented here
serve as a reference for comparison with the rf data, revealing good
agreement between both techniques (Fig. 4c—e and Extended Data
Fig.1). Moreover, increasing the integration time does not resultina
substantive changein the extracted parameters (Extended DataFig. 2).
The parameters V., & and a, — a5 can be determined from the pair of
intersectinglinesinacharge map (Fig.1c). Theintercept gives V,, and
the lever arms can be calculated from the gradients of the two lines
(Methods). For each charge map, we performafitting routine that finds
the best pair of lines, with higher weight given to V,. at lower voltages,
andinterceptcloseto Vps=0 V.

Variability ofindustrially fabricated QDs

To assess the inherent process variability, considerable effort was
focused on the design stage to suppress the known sources of semi-
conductor process variability, for example, layout effects (Methods).
Therefore, the variability we measure is primarily inherent to each
device under test. As shown in Fig. 4b, in devices with greater gate
lengths, multiple dots are generated, resulting in complex multi-dot
structures. On the contrary, devices with shorter gate lengths yield
single QDs. However, in most devices, a small gate length leads to an

early transistor turn-on, resulting in ‘bad’ dots. Overall, the device
designs with the highest proportion of good QD features have shorter
gate lengths, namely, 28 nm and 40 nm. The two channel widths do
not impart notable differences across the farm. The automatically
extracted parameters for these good devices are shown in Fig. 4c-e.
With decreasing gate length, we see a lower threshold voltage due to
the increasing effect of the electric field produced by the source and
drain, a well-known short-channel transistor effect, probably caused
by drain-induced barrier lowering®. The gate lever arm and lever arm
asymmetry remain fairly constant, indicating that dots remain well
controlled by the gate even at the smallest dimensions.

For the L =28 nm case, we find the first observed electron volt-
ages (Vy. = 387 + 22 m V) and the gate lever arms (ag = 0.741 + 0.082)
are narrowly distributed. We find the standard deviation of V.
(-22 mV) is comparable to the spacing (25 £ 4 mV) between the first
and second observed electron (V,.) loading voltages, measured from
asubset of devicesinwhich asecond transitionis clearly visible. This
suggests that the tight requirements for shared voltage controlare
withinreach, but need further reduction. Alternatively, small varia-
tions may be compensated with independent voltage trimming of
each of the QD back-gates. However, thiscomes at the cost of agreater
number of control lines per QD. It must be stressed that the overarch-
ing challenge with the presented devices is QD quality, which must
be addressed before voltage sharing can be considered. Determining
the exact origin of the variability in QD quality is beyond the scope of
this work, but we hypothesize that irregularities in electrostatic
potential caused by (1) an elevated number of two-level fluctuators
near the Si/Si0, interface® and/or (2) gate metal workfunction inho-
mogeneities* could be the cause. We note that the large gate lever
arm will be beneficial when implementing gate-based dispersive
read-out®.

The mean dot asymmetry ap, — as = —0.040 + 150 shows that,
onaverage, the QDs are well centred in the channel. We note that since
all the lever arms must add to 1, a large asymmetry places an upper
bound on the gate lever arm, that is, ag <1 - |ap — as| (Supplementary
Section V). Thisresult highlights aninverse relation between the asym-
metric QD position within the channel and gate control over the QD,
emphasizing the importance of QD location being central under the
gate. We note that for the devices here, the QD is placed between two
large conducting leads; however, for larger QD arrays, most dots may
only have assingle lead, or only other dots nearby. In such devices, the
importance of the short-channel effect we see here islessened. Inlight
of this, our measurements provide a worst-case indication for dot
asymmetry under asingle gate.

Room-temperature correlations with QD
parameters

It would be ideal to determine the QD parameters without needing
to cool the device to cryogenic temperatures. For a QD, once the
thermal energy k;Tbecomes much larger than the charging energy
E.=€?/C;=18.5 meV (Methods), transport through the transistor does
not exhibit blockade and the device behaves as a simple transistor.
However, we gain anew set of parameters used in the classical model-
ling of transistors, such as the threshold voltage (V,,).

We next establish a direct link between QD parameters and classi-
caltransistor behaviour (Methods), which allows device yield and uni-
formity to be assessed without requiring expensive and time-intensive
coolinginadilutionrefrigerator. Recent work has correlated classical
transistor behaviour fromroom temperature to 4.2 K (ref. 33); here we
extendthis tothe behaviour of QDs at lower temperatures. We highlight
that pre-cryogenic validation canbe aninvaluable tool in thelife cycle
of asilicon quantum computer.

We exploretherelationbetween V,.and V;, obtained from devices
withtheshortest gatelength, L =28 nm, classified as ‘good’. To explore
this, we use probabilistic programming, a technique that offers an
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Fig.4|QDyield and key parameters. a, Example two-dimensional maps

for nine different devices. The labels indicate the quality of Coulomb blockade
observed; ‘multi’ refers to signatures of multiple series dots forming in the
device. b, Relative frequency of each device category for different gate lengths
L=[28,40,60,80] nmand channel widths W=[80,100] nm. These data were
extracted using the CNN. c-e, Distributions of automatically extracted gate
voltage for the first detected electron transition (c), gate lever arm (d) and

drain-source coupling asymmetry (e) for different gate lengths. In the rf dataset,
there are 150 examples at 28 nm gate length and 71 examples at 40 nm gate
length. Inthe d.c. dataset, there are 156 examples at 28 nm gate length and 81
examples at 40 nm gate length. The features of the box plot are as follows: centre
line, median, box edges (25th and 75th percentiles), whiskers, and minimum

and maximum of the dataset excluding outliers more than 1.5x outside the
interquartile range.

insight into both systematic patterns and random fluctuations in the
data. We consider asimple linear model of the form

Vie(Vin) = aVin + B + N(O, 0y,,). ¢y

Here wand Bare coefficients of the linear model, and (0, oy, )is
anormaldistribution that represents the intrinsicrandom fluctuations
in V.. In this approach, V,., V;; and the parameters a, f and oy, are
treated as random variables rather than fixed quantities. We express
our initial expectations using prior distributions, which convey our
preliminary knowledge about the parameters before any dataare col-
lected. For the priors, we opt for normal distributions (), as they offer
abalanced representation of our initial understanding without being
overly restrictive.

Next, werefine these parameter distributions using Hamiltonian
Monte Carlo**, aiming to find the best fit to the observed data for V..
Figure 5a shows the linear fit extracted by averaging the Hamiltonian
Monte Carlo trial results. The extracted slope (a« = 1.01 = 0.02) indi-
catesaclearrelationship between room-temperature threshold voltage
and the first observed QD electron loading voltage. It is well known
that transistor threshold voltages increase at cryogenic temperatures,
and thisis also apparentin the V. offset voltage, f = 210 =30 m V.

The result fromthe modelis the posterior distribution of V.. The
uncertainty of the posterior distribution (-22 mV) encompasses vari-
ations arising from both V_m ((m =15mV) and the intrinsic random-

ness in V. (0y,, = 16 £ 1mV). Completely removing variations in the
threshold voltage at the foundry level (oy,, = 0) would consequently
decrease the variationin V. to oy, = 16 mV.

Conclusions

We have reported testing a device farm of 1,024 QDs based on simple
transistor structures. Our approach can, however, be extended tomore
complex unit cells, such as coupled QD systems—the basic building
block of semiconductor-based quantum computers. Our rf read-out
techniques canbe leveraged to embed compact dispersive spin qubit
read-out with the unit cells of scaled-up QD architectures®>°. We devel-
opedanintegrated CMOS three-channel 1:1,024 analogue MUX, but the
capabilities of this silicon technology reach further. Foundry-based
platforms could, in particular, allow the co-integration of ultralow
power electronic modules such as digital-to-analogue converters,
low-noise amplifiers and digital controllers alongside the qubit system.
These technologies have been demonstrated instand-alone processes”,
buttightly integratingall of these modules with semiconductor qubits—
and retaining their qualities—remains an open challenge, especially
given the limited cooling power of cryostats and thermal conductivity
of silicon atlow temperatures. Our observation that cryogenic param-
eters of silicon QD devices can be predicted from room-temperature
behaviour has implications for the time and resources required to
monitor process variations and optimize the design and production
of future quantum devices. Further development of pre-cryogenic
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Fig. 5| Correlation of voltage threshold with electron loading. a, V,., measured
at 50 mK, against V,,, measured at room temperature and analysed using Bayesian
modelling techniques to extract an underlying linear relationship. The solid
blacklineis the average of the estimated linear fits and the shaded region shows
the 95% confidence interval over possible linear fits (slope and intercept). The
dashed lines represent the 95% confidence interval for V,. accounting for noise.
The solid grey line indicates anominal V,, used to analyse the distribution of V,.in
b.b Comparison of the observed distribution of V,. extracted from the measured
data (red) with the predicted posterior distribution (black), showing a standard
deviation of approximately o0 =22 mV.

methods and analysis tools could allow wider industry engagement
and asubstantial cost reductionintechnology development, particu-
larly if further correlations can be extracted when complex unit cells
are studied.

Methods

d.c. transport measurement

With a small bias of ~1mV, the transport current formed by the tun-
nelling of electrons one by one through a QD is typically small (-1 pA
to1,000 pA). Torecord this level of current, we use a transimpedance
amplifier to convert the current to a voltage withagain of 10’ VA™ To
acquire a Coulomb diamond map, a triangular wave with a frequency
of 20 Hz was applied to the gate and the signal is acquired on the ris-
ing edge of the slope. Devices were measured with either five or ten
averages; a single transport Coulomb diamond measurement takes
approximately15sor30s.

rfreflectometry measurement

Measuring a high-impedance device in reflectometry requires an
impedance-transforming circuit (Supplementary Section VI). This
allows changes in an otherwise large device impedance to be meas-
ured by a50 Q matched meter, for example, resistance changing from
1,000 kQto 100 kQ. The complex impedance of the QD has contribu-
tions fromtheresistance and capacitance of the tunnel barrier between
thesourcelead and the dot. When the dot and source electrochemical
potentials are equal, the Coulomb blockade s lifted and electrons can
tunnel elastically through the barrier. This resultsin anapparent change
inthebarrier resistance and capacitance, the latter of which may have
both quantum and junction contributions®**’, Thisimpedance change
canbedetected atthe 50 Qoutputasachangeinthereflected rf signal
near the resonance frequency.

To measure the Coulomb diamond maps, a triangular waveform
with afrequency of 203 Hz was applied to the gate. Signal acquisition
occurs during the rising edge of the waveform. The frequency of the
triangular waveform is constrained by the RC low-pass filter on the
printed circuit board with a cutoff frequency of f, =16 kHz.

Each Coulomb diamond map comprises 60 distinct traces, cov-
ering a range of source-drain voltages (Vps) from -15mV to 15 mV.

The acquisition time required for measuring the 1,024 Coulomb
diamond mapsis2 min31s.

The sampling rate used for acquiring these maps is1MSas™.
However, the effective integration timeis constrained to 10.68 ps due
to limitations imposed by the room-temperature low-pass filters for
thein-phase and quadrature signals (Supplementary Section ).

Coulomb diamond classification using a neural network
We categorize devices into three groups based on their Coulomb
blockade maps (Fig. 4a).

«  Good: these devices display a clearly defined hourglass shape in their
Coulomb blockade map, enabling parameter extraction (Fig.1c).

» Bad: these devices lack observable Coulomb blockade or exhib-
iting classical transistor turn-on superimposed with Coulomb
blockade. This behaviour is probably caused by low resistances
of the tunnelling barriers.

e Multi: these devices form several QDs in series, identifiable by
overlapping Coulomb diamonds, giving rise to extended regions
of blockade.

Onthe basis of the above criteria, domain experts manually clas-
sified the devices. However, the boundaries between categories can
beambiguous, as evidenced by experts agreeing on the classification
approximately 80% of the time for the same dataset. Examples of such
ambiguity are faint hourglass shapes mixed with noise orincomplete
hourglass shapes.

Although manual classification worked well with the current num-
berof devices (approximately 1,000), the expectedincrease in device
volume calls for an automated solution. To tackle this challenge with
our modest dataset, we applied strategies proven effective in image
classification with limited training data. Specifically, we utilize transfer
learning by implementing the well-known ResNet26d architecture,
pre-trained on the extensive ImageNet’s database. This approach
enables robust performance despite the scale of our dataset*.

Alongside transfer learning, we used data augmentation tech-
niques like image rotation, warping, zooming and changes in satu-
ration. These methods introduce variety into the training data. In
addition, weincorporate mixup, atechnique that generates new images
by linearly combining pairs of original training images*..

The neural network processes Coulomb blockade dataas greyscale
images. The dataset was randomly partitioned, with 80% allocatedtoa
training setand 20%, to a test set. To optimize the training process, we
used the one-cycle policy, whichdynamically adjusts the learning rate,
increasing it to the maximum and then gradually decreasing it*>. This
dynamic learning rate schedule helps regulate the training process,
accelerates convergence and reduces sensitivity to the hyperparameter
ofthelearningrate, ensuringamorerobust and efficient training phase.

Inour neural networkimplementation, we focus on capturing label
uncertainty. This is achieved through label smoothing®. In standard
binary assignment, like entropy loss, the correct class receives a prob-
ability of 1and others, 0. On the contrary, label smoothing adjusts the
ground-truth labels by assigning a probability slightly less than1to
the correct class and distributing the remaining probability uniformly
across all classes. This adjustment helps mitigate over-reliance on
specifictraining labels and encourages the model to generalize better
across different classes.

The performance of the CNN is assessed using the confusion
matrix (Extended Data Table1), yielding anaccuracy of 88%. This accu-
racy level is constrained due to the ambiguous boundaries between
different device classes.

Todemonstrate that, we evaluated the ChimeraMix architecture,
a state-of-the-art approach, which achieved over 96% classification
accuracy using labels from asingle expert. ChimeraMix relies on train-
ing agenerative adversarial network to mix examples of the same class,
augmenting the size of the dataset.
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Finally, to optimize the neural network further, we suggest a
non-binary scoring system for each Coulomb map (for example, using
ascalefromonetoten). Thisapproachinvolves training the network on
labels thatreflect the collective agreement among multiple human clas-
sifiers, which helps mitigate individual biases. Moreover, adopting this
method enables the neural network to better understand the nuances
present in edge cases between good, multi and bad dots.

Parameter extraction from Coulomb diamonds

Most key parameters that describe a single QD can be obtained from
the position and shape of the Coulomb diamond measurements***,
When measuring the rf response at the drain, the positive (negative)
edges of the Coulomb diamonds appear when the QD electrochemi-
cal potential yy,, is aligned with the drain (source) electrochemical
potential u;, (us). The first observed electron loading voltage V. cor-
responds to the crossing point of the first pair of these edges (nominally
atus=p,=0¢eV).

The gate lever arm a = C;/C;, where C; is the gate capacitance
and C; is the sum of the dot capacitance to each terminal, represents
the coupling strength of the gate to the dot. This parameter can be
calculated as

-1

acz( LI ) , )

ES— + —_—
[my|  |my|

where m, and m, are the positive and negative gradients of the pair of
edges that form the first visible hourglass (Fig. 1c).

Moreover, when a voltage bias is applied antisymmetrically
(Vp=-Vs), therelative coupling capacitance of the source (as = Cs/Cy)
anddrain (ap = Cp/C;) canbe directly obtained from the gradient of the
Coulomb diamond edges as

m;+m,
my—my’

3)

ap — s =

Thisisameasure of the asymmetry of dot formation under the gate.

The full step-by-step process for extracting the dot parameters
from Coulomb blockade mapsis detailed in Supplementary Section 1V,
but we provide a succinct summary here. We perform digital filtering
to reduce noise and enhance contrast in the acquired data, and then
apply aCanny edge detection algorithmto digitize the charge stability
map and identify the edges of the Coulomb diamonds. We then use a
Hough transformto convert the binaryimage toinformation about the
edges parametrized by their length and angle. We identify good fits to
the first visible Coulomb oscillation with a pair of long line segments,
one with a positive slope and the other with a negative one, which
intersectnear Vps=0V.

Room-temperature measurements and cryogenic correlations
We analyse the transport measurements through transistors at room
temperature with asource-drain bias of V,s =50 mV. V,,, is determined
by extrapolating the /,- Vs curve, between the maximum transconduct-
ance point max(g,,) = max(d/,/dV;s) and the maximum subthreshold
slope point max(SS) = max(log[/p/V¢s) (ref. 46). V,, is the voltage at
which this extrapolated line intersects /, = 0.

Tounderstand the systematic relationship between V,. and V;;, and
their random variation, we use the probabilistic programming frame-
work NumPyro*. As stated in the main text, we use amodel defined by
threerandom variables: a, fand 0. These variables areinitially set with
asuitable prior distribution. The posterior distributionis thenformed
using Hamiltonian Monte Carlo®* sampling.

Charging energy
We obtain a charge energy of £, =18.5+3 meV as E. = |e|]AV;a;, where
le| = 1.6 x 107 C is the elementary charge, a; is the gate lever arm and

AV, is the difference between the first and second detected electron
(V,e) loading voltages. Some examples of Coulomb diamonds can be
foundin the maintext showing slightly smaller charging energies than
the average.

Device fabrication

The die was fabricated using the GlobalFoundries 22FDX 22 nm
fully depleted silicon-on-insulator process. A single die was used for
this study.

Experimental setup

The integrated circuit die was glued to a carrier printed circuit board
with conducting silver paste. The die is wire bonded (17.5 pm AlSi) to
gold-plated copper tracks. The low-frequency control lines are routed
toaconnector toattach toamotherboard, which has passive first-order
in-line filtering (RC =10 ps). Thereflectometry lineis directly routed to
an SMP connector on the carrier printed circuit board.

All the cryogenic measurements were performed in a Bluefors
XLDdilutionrefrigerator, where the device was mounted to the mixing
chamber plate operating at 10 mK. When the chip is powered on, the die
temperature was measured as 600 mK using on-chip thermometry*®
(value quoted for anominally identical die). The reason for this elevated
temperature is the static power draw of approximately 4 pW needed
for the digital and analogue support electronics.

A QDevil QDAC Il was used to supply the d.c. voltages to the QD
device terminals, chip supplies and row/column address lines. To
sweep the gate voltage, a triangular wave with 50% duty cycle was
supplied by a Keysight 33500B arbitrary waveform generator. The
rf reference signal was generated by a Rohde & Schwarz SMB100B.
The reflected signal was amplified by a Low Noise Factory cryogenic
amplifier (LNF-LNCO0.2_3A s/n2541z) at 4 K. This signal is then further
amplified at room temperature using two Mini-Circuits amplifiers
(ZX60-P103LN+and ZX60-33LNR-S+) before being separated into its
in-phase and quadrature components using a Polyphase microwave
quadrature demodulator (AD0540B). These signals are finally ampli-
fied and filtered by a Stanford SR560 and then digitized viaa Spectrum
M4i.4421-x8 digitizer PCle card.

For d.c. measurements, we used two transimpedance amplifiers
(Basel Precision Instruments SP983c, IF3602 junction field-effect
transistor) to simultaneously monitor the source (/s) and drain (/,)
currents. The gain of the amplifiers was set to 10’ V A with alow-pass
filterbandwidth of 1 kHz. For our measurements, we use /g, = (I, — /5)/2
to remove any offsets. During rf measurements, the transimpedance
amplifiers are removed and the source and drain are directly driven
with the QDAC Il voltage sources mentioned above.

Data availability
Thedatathat support the plots within this paper and other findings of
this study are available from the corresponding author uponrequest.
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Extended Data Fig. 1| Parameter variation with back-gate voltage. Thebox plot features are as follows: centre line, median, box edges 25th and 75th
a-c, Estimated distributions of first observed electron loading voltage, gate lever percentile, whiskers, minimum and maximum of the dataset excluding outliers
arm and QD asymmetry as back-gate voltageis varied (L =28 nm). As backgate more than 1.5 x outside the interquartile range.

increases the dc and rf datasets have 206, 207,178,170, 175 and 176 data points.
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Extended Data Table 1| Confusion matrix of the convolutional neural network on the test data set

CNN
Good Other
Good 37 6
Other 18 143

The elements on the diagonal are the number of instances correctly identified as ‘good’ or ‘other’, whereas the off-diagonal elements are the false ‘good’ and ‘other’. We observe a precision of
0.67 and a recall of 0.86.
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