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Abstract

Current theoretical and experimental endeavors to realize an anomalous Floquet chiral topological
superconductor (TSC), which is characterized by chiral Majorana edge modes independent of the
Chern number, remain insufficient. Herein, we propose a new scheme that involves jointly tuning
dynamic driving and static parameters within a magnetic topological insulator-superconductor
sandwich structure to achieve this goal. The Josephson phase modulation induced by an applied
bias voltage across the structure is utilized as a Floquet periodic drive. It is found that the interplay
between the two kinds of tunings can bring about a lot more exotic Floquet TSC phases than those
caused by only tuning the dynamic driving parameter (frequency w or period 7). More
importantly, just tuning static parameters (the chemical potential i, Zeeman field g,, and
proximity-induced superconducting energy gap A;) also can induce a series of novel topological
phase transitions. Particularly, the features in the context of the three tunings are different from
each other, originating from the combination of intrinsic and different extrinsic mechanisms. In
addition, jointly tuning 7 and p (g,) can have its own unique TSC phases. The proposed scheme
should be readily accessible in experiments, and thus the family of anomalous Floquet TSC phases
may be considerably enriched.

1. Introduction

In recent years, such well-known topological phases as Chern insulators [1, 2], topological insulators (TIs)
[3-6], and topological superconductors (TSCs) [7-9] have been attracting an enormous amount of
attention. Moreover, the non-Abelian Majorana zero modes connected intrinsically with the TSCs, have also
stimulated tremendous research interest. The modes bridge between condensed matter physics and quantum
computation [10-17].

Apart from static systems, topological phenomena also exist in systems far from equilibrium. A
prototypical example is periodically driven systems that are described by Floquet theory [18-26]. Different
parameters of the systems, such as chemical potential [27], external electromagnetic field [28], and system
mass term [29], are modulated as periodic driving. Moreover, the combination of Floquet driving and
different systems has induced rich physical properties. For example, novel topological phases are generated
by the combination with Hermitian [30-33] and non-Hermitian systems [34—-38]. Floquet systems could also
be subjected to diverse potentials, such as tilted linear potential [39]and diagonal on-site potential in square
lattice [40]. Floquet driving can be constructed upon different dimensional systems as well, such as
one-dimensional (1D) and two-dimensional (2D) TSCs [41-45], forming higher-order topological phases
with Majorana corner modes at 0 and 7 quasi-energies. For recent theoretical reviews, see [46—48].
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Floquet engineering can enable nontrivial band topology in statically trivial systems and even achieve
exotic topological phases without any static counterparts. Specifically, there may exist boundary modes in
such Floquet systems as a 2D anomalous Floquet TI of the symmetry class A, which is of radical impossibility
in static equilibrium systems [18, 20]. Even though all the corresponding Floquet bands are topologically
trivial, the boundary is remarkably characterized by chiral topological modes just like a static Chern
insulator. This has already been experimentally confirmed by the aid of ultracold atoms [49-51], photonic
lattices [33, 52—61], and acoustic platforms [62, 63].

Unfortunately, there have been few efforts to address the corresponding superconducting counterpart
except for only one very recent theoretical work [64]. A 2D anomalous Floquet chiral TSC with
Chern-number-independent chiral Majorana edge modes (MEMs) was predicted. It is considered that such a
Floquet TSC is generated entirely by the intrinsic dynamics arising from the dc-biased Josephson effect.

On the other hand, the chemical potential 1, Zeeman field g,, and proximity-induced superconducting
energy gap A, have been found to exert significant influences on the realization of topological phases in low-
and three-dimensional (3D) TSC structures.

A 1D Rashba nanowire, combined with proximity-induced s-wave superconductivity in the presence of
Zeeman field g,, is characterized by midgap Majorana modes (either chiral or non-chiral) on edges along and
perpendicular to the wires [65]. At special values of g, and p, a phase with a single chiral MEM (analogous to
a p + ip superconductor [66, 67]) can be realized, which is almost completely localized at the outmost wires.
The TSC phase can cover a broader chemical potential window in the existence of expulsive interactions,
even without requiring g, [68]. By simply tuning 1, ones can access three distinct phases, i.e. topologically
trivial s-wave, topologically nontrivial s -wave, and nodal superconducting phases under impurity subgap
states [69]. In the context of proximity-induced superconductivity induced by s -wave superconductor (SC),
the evolution of the Majorana pair is caused by tuning g,, leading to that the SC undergoes topological phase
transitions [70]. Particularly, under a Floquet driving, regular 0- and anomalous m-Majorana end modes are
generated by tuning p and driving frequency w [27]. Furthermore, non-Hermitian Floquet TSCs with
multiple MEMs were proposed, which are based on a Kitaev chain with periodically kicked superconducting
pairings and gain/losses in the chemical potential  [38, 71].

An applied staggered Zeeman field g, on the stacked tunnel-coupled 2D electron- and hole-gas layers
with Rashba spin-orbit interaction can generate a second-order TI phase. It is characterized by the
emergence of zero-mass hinge interfaces hosting chiral gapless hinge states, which is stable up to relatively
large values of g, [72]. In addition, for a 3D TI with bulk s-wave superconductivity under a perpendicular g,
the Majorana states become more localized on a single surface with p increased. However they spread into
the bulk toward the opposite surface, and at p being sufficiently high, the Majorana modes can tunnel
between surfaces [73, 74].

It is then natural to ask whether the three static parameters p, g;, and A can exert significant influences
on the realization of an anomalous Floquet chiral TSC in Floquet systems. So far, there has been a lack of
systematic study on joint tuning of the dynamic driving and static parameters in Floquet TSC systems. And
thus, the study is in need, which is the motivation of the present work.

In this work, we provide an affirmative answer to the above questions, based on a Floquet magnetic
TI-based Josephson hybrid structure (see figure 1(a)). The static bias voltage applied across the top and
bottom SC layers offers a driving protocol for the setup (the Josephson phase, i.e. the relative phase between
the SCs as a periodic function of time). By jointly tuning the dynamic driving parameter (frequency w or
period 7) and one of static parameters y, g, and Ay, (see figure 1(b)), a variety of anomalies-rich Floquet
TSC phases are exhibited, most of which are not shown in [64]. In the low frequency w or large driving
period 7 region, for different y, different novel Floquet topological phase transitions will occur sequentially
as T increases, also indicating a series of topological phase transitions at a fixed 7 induced by p. And the same
features are found for different g, and Ay, Particularly, there always exist several special values for y, g, and
Ay, respectively, at two any adjacent values of which, the corresponding topological phases appearing
successively with the increase of 7 are thoroughly different. This also indicates a series of topological phase
transitions in the whole 7 region tuned by y, g,, and Ay, respectively. Remarkably, with the enhancement of
1 and Ay, the numbers of the topological phases arising successively tuned by 7 may both increase or
decrease, while the number basically enhances with g,. More interestingly, for tuning both  and g,, there are
unique TSC phases, however, for tuning Ay, all the topological phases have appeared in those for tuning x4
and g. In addition, a total of up to 19 different topological phases are exhibited, which considerably enriches
the family of anomalous Floquet TSC phases.
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Figure 1. (a) Schematic diagram of a Floquet sandwich-like TI Josephson hybrid structure, where the middle layer is a TI, and the
top and bottom layers are s-wave SCs. A Zeeman field g; along the z direction is applied to make the TI become a 3D magnetic
one. Two gate voltages V; applied on the top and bottom surfaces of the TI can adjust the chemical potential yi. A periodic phase
concerned with a bias voltage V| between the two s-wave SC layers is used as a Floquet period drive, leading to the Josephson
junction transformed into a Floquet TSC. (b) Tuning the driving period 7 by varying the bias voltage V allows for dynamic
modulation of the Floquet TSC phase. Meanwhile, the Floquet TSC phase is subject to the manipulation of the static parameters
(chemical potential p, Zeeman field g;, and proximity-induced superconducting energy gap A;).

2. Model Hamiltonian and Floquet theory

Consider a chiral topological Josephson hybrid structure with a magnetic (Cr-doped [75]) 3D TI sandwiched
in between the top and bottom s-wave SCs. In the structure, the Zeeman field along the z direction, bias
voltage V between the top and bottom s-wave SC layers, and gate voltage V, on both the top and bottom
surfaces of the 3D magnetic TI, are applied as shown in figure 1(a). The BAG (Bogoliubov-de Gennes)
Hamiltonian of the structure is written as [76—78]

hri (k) — g ha (2) ]
H(k, 1) = { 1)
OO0 Hm (4
with the Hamiltonian of the magnetic TI
hyri(k) = v(sinkco, @ s, — sink,0, Q) s,) + t(k) o @) 5o + g.00 Q) s; and
_ [-iAe*Ws, 0
NUE @

Here o and s are the the Pauli matrices denoting the surface layer and spin degrees of freedom, respectively,
is the chemical potential, #(k) = to — #;(cosk, + cosk,) describes the hybridization between the top and
bottom Dirac surface states of the 3D magnetic T1, and g, represents the Zeeman field. In equation (2), the
pairing potentials of the top and bottom SCs respectively given by A, j, are assumed identical, and ¢ (¢)
stands for the Josephson periodic phase ¢(t) = @y + 2eVyt as a periodic driving with the frequency w = 2eV,.

The time-dependent Hamiltonian is needed to convert into a Floquet frequency- or period-dependent
one, which is infinite-dimensional and truncated appropriately for numerical calculations. Its matrix
elements are given by the following formula [79],

(Hp),,, = b 4+ wnbum,n,m € Z (3)

3
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with
B =17 / H () e'm=meidy, (4)
0

where

K9 = H(k, 1) (A, — 0),

h() = % (Ty®0+ ®5y— i7x®0'+ ®5y) ’

K5 = (), and o1 = (0 £ 0,) /2. For the matrix elements with |1 — m| > 1, the presence of ei("—m
in equation (4) makes the integration result over the entire period 7 naturally equal to 0.
The BAG Chern number C is defined by using the following formula [80]

C=> Ci (6)

where all the quasi-energy bands lying between (0,w/2] are involved and

(5)

1
C,=— | dk*Q, (k 7
= n (k) (7)
with the integral over the complete Brillouin zone. In equation (7), £2,,(k) the Berry curvature can be
expressed as a summation of eigenstates

ZHhin") (n'| S |n) — (ke < k
Qn(k)ziz<n|akx|n><n|6ky‘n>2( ° y). (8)

n'=n (&‘n—&'n/)

Here, the obtained C for a 2D anomalous Floquet chiral TSC with Chern-number-independent chiral MEMs
is, in general, clearly distinguished from that for the conventional Floquet chiral TSC. The latter is like the
one in the high-frequency limit, which is adiabatically equivalent to a static chiral TSC with the same C.
Besides, C is based on the Floquet theory, which converts the time-dependent Hamiltonian into a
frequency-dependent one. We use a truncated Floquet Hamiltonian Hp, and integrate over the entire
Brillouin zone to obtain C. This process only requires static calculations without involving time integration.
For the chiral MEMs in such a 2D anomalous Floquet chiral TSC, a relevant topological invariant, i.e. a
homotopy-based winding number, is needed to deliberately describe them [18, 20, 22, 81-83]

W= é;rz/ont//BdeTr{(UE (k,1)~' 8,U. (k,t))

)
% (U™ U (k) (U o) 0, U () )|
with Uc(k, 1) = U(k,)[U(k,7)]e *.In equation (9), the time-evolution unitary U(k,f) = TO
exp[—i fot H(k, r)ds] with 7O denonting the time ordering and [84]
t N t .
Uk,7)], "= mzlexp {*;10&, (e '”)} Py (7) (10)

with m representing the band index and P ,,(7) the projection matrix given by the eigenvector of U(k,7) for
e~ Here, e *» denotes the m-th eigenvalue of U(k,7), the summation in equation (10) extends over all
eigenvalues, and € serves as the branch cut of the logarithm by requiring ilog_(x) € [e, e+ 2m) for all

x € U(1). As we always set the branch cut to € = —, we have

ilog, (e*"g"‘) =en. (11)

For the calculation of W , the integrations over not only the Brillouin zone but also time covering a complete
driving period, are required, which is much different from the situation for calculation of C. Therefore, when
calculating W, we use the original time-dependent Hamiltonian H(k, ), and a time evolution operator with
periodic invariance U, (k, t), which satisfies U, (k,t) = U.(k,t+ 7).

The values of both C and W determine the specific form of bulk-edge correspondence. In the
quasi-one-dimensional spectrum, edge states can appear in the gaps at E =0 and/or w/2. The number of

4
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edge states in the gap at w/2 is indicated by W, while the one in the gap at E = 0 is just the sum of C and W.
Therefore, different combinations of C and W represent different topological phases. For the two topological
phases with the same W, they also have the same number of edge states in the gap at w/2. However, for the
two topological phases with the same C but different W, they possess different numbers of edge states in the
gaps at both E=0 and w/2. Specifically, in the gap at E = 0, for the driving period 7 within high-frequency
limit, the number of edge states is only dependent on C due to W = 0, while for 7 beyond the limit, relies on
both C and W. A detailed analysis will be performed by combining the specific edge states and topological
phases in the subsequent sections.

3. Results and discussions

With the gradual diminishment of V, from the high-frequency limit, Floquet TSC states with chiral MEMs
across the E = w/2 energy gap are generally expected to produce, accompanied by Floquet topological phase
transitions. The Floquet TSC states are generated entirely by the intrinsic dynamics in the present Josephson
hybrid structure, even with the starting from the topologically trivial state (C = 0), as shown in the following.
The corresponding topological phase transitions are modulated by Josephson phase through simply
changing the bias voltage V. The dynamic driving (tuning frequency w or period 7) is necessary to produce
the topological phase transitions, which is intrinsic. However, the possible results of topological phase
transitions are also sensitively dependent on static parameters (e.g. u, &, and Ay, etc). Specifically, only for
proper static parameters, can the Floquet TSC states be induced, which is extrinsic. In the following,
therefore, we investigate the Floquet TSC phases and corresponding phase transitions tuned jointly by
dynamic driving (w or 7) and static (u, g, and A,) parameters.

3.1. Topological phase transitions tuned jointly by chemical potential and driving period
In this section, we present anomalies-rich Floquet chiral TSC phases with Chern-number-independent chiral
MEMs, which are tuned simultaneously by chemical potential 1 and driving period 7.

Table 1 shows the topological phase diagram, the topological phase transitions as a function of p and 7. It
is divided into areas 1, 2, and 3 according to the different topological phases in the high-frequency limit
region. At the high-frequency limit, the phase transitions from p = 0.3 to 0.4 and from ;= 0.9 to 1 are due to
the closures of the bulk energy bands at X(7,0) and M(m, 7), respectively.

In area 1, when p is slightly increased, e.g. ;1 = 0.1, the topological phases appearing sequentially with the
increase of driving period 7 keep unchanged, including the corresponding driving period regions. This also
indicates that there exists no topological phase transition tuned by p at any fixed 7. It follows that for joint
tuning of the dynamic driving and static parameters, the former thoroughly predominates over the latter.
With the further increase of i, e.g. i = 0.2, the topological phases arising successively with 7 still keep
constant in the range for small 7 (from 0 to 2.2), while are thoroughly different in the range for big 7 (from
2.3 t0 2.6). Specifically, for the latter range, the order of the topological phases occurring successively with 7
is the three phases (0, 1), (2,—1), and (3, —2), replacing the two phases (3,—2) and (2,—1) at u=0.1. This
indicates the thoroughly different topological phase transitions with 7 and several ones at fixed periods 7
tuned by p. As 1 is continuously enhanced, e.g. 14 = 0.3, the order of the topological phase appearing
sequentially with 7 in the range for small 7 (from 0 to 2.3) keeps unchanged. Yet the period region
corresponding to each phase is considerably different from that at ; = 0.2, which means possible topological
phase transitions with p at some 7. Particularly, in the range for big 7 (from 2.3 to 2.6), the order of (0, 1),
(2,—1), and (3,—2) is replaced by the one of (0, 1), (3,—2), and (4, —2), where (4, —2) is a new phase. And
thus, the thoroughly different topological phase transitions with 7 emerge. It also follows that in the region
for the big 7, the topological phase transitions at a fixed 7 tuned by p from 0.2 to 0.3 appear. Therefore,
tuning x in the range of small 1 exerts a significant influence on producing the new topological phases only
at the range of big 7, as seen in table 1. There are six kinds of phases, i.e. (1,0), (0,1), (—1,2), (2,—1),
(3,—2), and (4,—2) in this area.

When p is increased into area 2, a variety of new topological phases thoroughly different from those in
area 1, start to emerge. For example, at © = 0.4, the order of (—1,0), (—2,1), (0,—1), (—1,0), (—2,1),
(—1,0), and (0, 0) is presented. This implies the entirely new phase topological transitions modulated by not
only 7 but also y from p = 0.3 to 0.4 (between the adjacent areas) at any fixed 7. Similarly, in this area, when
1 is slightly increased, e.g. ;1 = 0.5, the topological phases emerging successively with the increase of 7 keep
unchanged. However, each corresponding driving period region varies except for the high-frequency limit
region, indicating that the topological phase transitions with y from 0.4 to 0.5 can appear at most fixed 7.
With the further increase of p, e.g. ;. = 0.6, there still exist five topological phases, and the order of the
former four ones keeps the same, but the corresponding driving period regions are much different. And
then, with each increment of 0.1 in p from 0.6 to 0.9, one more topological phase emerges as 7 grows. The
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Table 1. The topological phase diagram tuned jointly by dynamic driving and static parameters (7 and p), where each phase is labeled
by two integer-valued topological invariants, BAG-Chern number and winding number, written as (C, W). The phase diagram is
divided into areas 1 (blue), 2 (green), and 3 (orange) according to the different topological phases in the high-frequency w (small 7)
limit. Here, g&; = 0.6 and A, = 0.4.

Tt 0 0.1 0.2 03 | 04 | 05 | 06 | 07 | 08 | 09 1
0.1
0.2
0.3
0.4
0.5
1,0 1,0 | 00
0.6 -0 | -10
1,0 1,0 1,0
0.7 1,0 1,0 1,0
0.8
0.9
1
1.1
21 | -1l
12 2,1
13 21 |
. 2,1 ?
1.4 or | 2 01 | 1,1
15 0,1 0,1 0,1 ’ 0,-1
0,1
1.6 0,0
0.1 -1,0
17 | <12 | .12 | 2.1 | 2-1 | 0el | 01 o
1.8 :
-1,0 151
1.9 0.1
1,0 -1,0
2 1,0 1.0 1,0 1,0 o 0,-1
21 2,1 ’ 0,-1
2,1 21
2.2
-1,0 -1 | 11
23 | 32 | 32 | 01 0,1
-1,0 0,1
24
2,1 00 | 00
25 | 21 | 201 EH I 00 [ -1 | 2
2.6 32 | 42 ' 42 | 31

former several phases are always identical and have the same order. Nevertheless, their corresponding driving
period regions are much different for different . Particularly, the two new topological phases (1,—1) at

1 =0.8 and 0.9 as well as (—4,2) at = 0.9 are exhibited. All these mean that a variety of new topological
phase transitions manipulated jointly by 1 and 7 take place in area 2. In this area, there are seven kinds of
phases, i.e. (—1,0), (—=2,1), (0,—1), (0,0), (1,—1), (—1,1), and (—4,2), which are thoroughly from those in
area 1, in particular, the range of p corresponding to area 2 is comparatively wide.

With p increased into area 3, e.g. ;1 = 1, there are nine topological phases arising sequentially with 7,
which are thoroughly different from those at y = 0.9, indicating different novel topological phase transitions
by not only 7 but also p at any fixed 7. There are seven kinds of phases, i.e. (0,0), (—1,1), (1,—1), (2,—1),
(0,1), (—2,1), and (—3,1) in this area.

From what has been observed above, it is concluded that just tuning static parameter  always induces a
series of novel topological phase transitions at any fixed 7 between the adjacent areas. This also suggests that
as long as the topological phase transitions at a fixed high-frequency w (small 7) limit tuned by p appear, the
ones at a fixed big 7 will take place. The reason can be explained by the combination of intrinsic and extrinsic
mechanisms as follows. As T increases, the reason for the topological phase transition is that the energy gap
of the Floquet bulk energy band at E = w/2 is in turn closed. The point for the energy gap closure lies at the
high symmetry point of the Brillouin zone (see figure 2). The variable spacing between the gap closure points
leads to a wide or narrow range of driving periods for different topological phases. We only consider the gap
at the high-symmetry point because it is the crucial indicator of the topological phase transition. More
specifically, when the topological phase transition takes place, the gap at the high-symmetry point closes
first, and then the closing point opens again with the increase of 7, forming a new topological phase. Until
the gap at the next high-symmetry point closes, the topological phase will not change again.

When 7 is relatively large, the Floquet bulk energy band is also deformed by adjusting y, and this
deformation changes the order in which the high symmetry points intersect with the E = w/2 line. For
example, the third topological phase from p = 0.1 to 0.2 undergoes a band deformation, causing the
topological phase transition from (—1,2) to (2,—1) at a fixed 7. This results in that intersecting of E = w/2
line with energy band of hY changes from at the high-symmetry X point first (see figure 2(a)) to at the M
point first (see figure 2(b)).

In addition, with the change of i, there is another kind of topological phase transitions due to the closure
of the high symmetry point of the bulk energy band near E = 0. For example, in the range of x from 0.3 to
0.42 (see figures 3(a)—(c)), with the increase of p, the bulk energy band at the high symmetry point X(7,0)
first opens, then closes and lastly opens. Resultantly, the system is driven into the topological phase
transition, making the Chern number C of the system change from 1 to —1. At the boundaries between
different areas, these two types of transitions often interact together. That is, the energy gap closes at both
E=0and w/2, which leads to completely different topological phases under modulation of y at the adjacent
boundaries of two areas.
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Figure 2. Different chemicals = 0.1 (a) and 0.2 (b) lead to intersecting of the E = w/2 lines (e.g. the two lines marked by the

dash-dot and dash ones) with the static bands hfj’ ) at different high-symmetry points. Here, only the upper half spectrum is
presented for simplicity and the other parameters are A, = 0.4 and g, = 0.6.

The general relation between the bulk topological indices (C, /) and edge Majorana physics can be
understood as follows. Let us first denote the numbers of chiral MEMs within the E =+ gap as #eqge(7) for
7 = 0,w/2, where the positive (negative) #.qgc(7) stands for the number of right- (left-) shifted chiral
MEMs. Then the bulk-edge correspondence is given by [49, 64]

w
Nedge (0) =C+ W, Nedge (*

2) —W. (12)

The bulk-edge correspondence can be exemplified by the bulk quasi-energy bands or the edge state of the
anomalous Floquet chiral TSC phase (C,W) = (1,—1) at 7 = 1.9 and 1z = 1 as shown in figure 4. It is found
that no edge state is generated at E = 0 (see figure 4(a)), but there exist two edge modes or a pair of modes
(near the two edges n =0 and 100) at E = w/2 (see figure 4(b)), which are respectively given by the red and
black lines. For each mode at E = w/2, there is left- or right-shifted chirality, e.g. the edge mode
corresponding to the red line, belongs to the former. Obviously, the total number of edge modes agrees with
equation (12). The distributed probabilities at the blue circle on the left-shifted chiral edge state at E = w/2
are shown in figure 4(c), from which we can demonstrate that the chiral MEM indeed locates near the
boundary with n=100.

3.2. Topological phase transitions regulated jointly by Zeeman field and driving period
In this section, we illustrate the anomalies-rich Floquet chiral TSC phases with Chern-number-independent
chiral MEMs tuned jointly by Zeeman field g, and driving period 7.

Table 2 shows the topological phase diagram, the topological phase transitions as a function of g, and .
It is divided into four areas 1, 2, 3, and 4 according to the topological phase of the high-frequency limit
region. At the high-frequency limit, the phase transitions tuned by g, from 0.3 to 0.4 and from 0.7 to 0.8 are
both due to the closure of the bulk energy band at I'(0,0), while the one from 0.8 to 0.9 stems from the
closure at X(7,0).

In area 1, when g, is slightly increased, the topological phases emerging sequentially with the increase of 7
have a great change. Specifically, there exist four topological phases appearing successively at g, = 0.1 but
three ones at g, = 0.2. Although the former two phases are the same for both cases, the corresponding period
regions are much different from each other. Particularly, the latter two phases at g; = 0.1 are (0,0) and

7
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Figure 3. The evolution of the bulk energy band near E = 0 induced by p, which is exemplified by = 0.35 (a), 0.394 (b), and
0.42 (c). The other parameters are the same as in figure 2.

(2,—2), which are thoroughly from the latter one at g, = 0.2. These indicate not only the new different phase
transitions tuned by 7 in the range for big 7 between each other but also the phase transitions tuned by g,
from 0.1 to 0.2 at most fixed 7. Thus, the features are much different from those with varied u from the
beginning in table 1. With the further increase of g, from 0.2 to 0.3, the topological phases arising
successively with 7 keep unchanged, but the corresponding driving period regions change greatly, which
indicates that there exist topological phase transitions tuned by g, at some fixed 7. In this area, there exist
four kinds of different topological phases, i.e. (0,0), (1,—1), (—1,1), and (2, —2).

As in table 1 for tuning p, with g, increased into area 2, a variety of new topological phases thoroughly
different from those in area 1, start to emerge, e.g. at g, = 0.4, in the order of the five phases (1,0), (0, 1),
(=1,2), (1,0), and (2,—1). This indicates not only the entirely new topological phase transitions tuned by 7
but also the topological phase ones induced by g, from 0.3 to 0.4 at any fixed 7 between the adjacent two
areas. With g, increased to 0.5, the former four topological phases occurring sequentially with the increase of
7, including the order, keep unchanged, and only the last one is (3, —2) replacing (2,—1) at g, = 0.4. But the
corresponding driving period regions change greatly except for the high-frequency limit. Thus, not only is
the last phase transition tuned by 7 different, but also the phase transition modulated by g, can take place at
most fixed 7. And then, as g, increases gradually from 0.5 to 0.7, the number of topological phases that
appear in sequence with the rising 7 also increases by one. The former five phases are always identical and
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Table 2. The same as in table 1 except that p is replaced by g; and the topological diagram is divided into areas 1 (blue), 2 (green),
3(orange), and 4 (purple). Here, p=0and A, = 0.4.

T~ 01 | 02| 03|04 05 06 07 08 | 09 1 1.1

0.6 20 | 00 0,0 | 0,0

0.8 0,0
0.9 | 0,0 .0

-1L1 -1

1.4 S R )
15 0,1 02 0,0
1.6 0,1 1.2 ] 0.0
17 ’ 1.2 o 2,2

9 | | -1,2 ’ 2,-2

22 | 0,0 ’ > " 2,-1

26 | 272 S 3.1 27 [ 10 2,0

have the same order, however, their corresponding driving period regions are much different for different g,.
Particularly, the two new topological phases (2,—1) at g, = 0.6 and 0.7 as well as (3, —1) at g, = 0.7 are
exhibited. All these mean that a variety of new topological phase transitions tuned by both g, and 7 take place
in area 2. There are six kinds of phases in this area, i.e. (1,0), (0, 1), (—1,2), (2,—1), (3,—2), and (3,—1),
which are thoroughly different from those in area 1.

With g, increased into area 3, e.g. g, = 0.8, there are still seven topological phases occurring sequentially,
but they are thoroughly different from those in the former two areas. As a result, different novel topological
phase transitions tuned by 7 are produced and there exist the topological phase transitions manipulated by g,
at almost all 7. In this area, there are four kinds of phases, i.e. (2,0), (1,1), (0,2), and (4, —2), which are not
exhibited in the former two areas.

More interestingly, when g, is slightly increased, e.g. g, = 0.9, area 4 just turns up. There still exist seven
topological phases arising successively, but they are much different from those at g, = 0.8. There exist eight
topological phases appearing sequentially at both g, = 1 and 1.1. Only the third phase (—2,2) at g, = 1 and
the last phase (2, 0) at g, = 1.1 are added, respectively, but the order for other phases is the same as the one at
g = 0.9. Thus two new phase transitions tuned by 7 from (—1,1) to (—2,2) and from (—2,2) to (0, 0) at
g, = 1, replace the one (—1,1) to (0,0) at g, = 0.9. Another new one tuned by 7 from (1, 0) to (2,0) at
g, = 1.1, is produced. However, similarly due to the corresponding driving period region for each phase
varying with g, the phase transitions tuned by g, at a fixed 7 can appear. In this area, there is a new phase
(—2,2), which is never exhibited in the former areas.

From the above, we observe that not only the six new topological phases (1, 1), (0,2), (2,0), (2,—2),
(—2,2) and (3, —1) but also some exotic topological phase transitions in table 2 are never exhibited in
table 1.

Now, take the phase (C,W) = (0,0) in table 2 with 7 =1.6 and g, = 1 as an instance to illustrate the bulk
energy bands or the edge state of the anomalous Floquet chiral TSC phase in figure 5. It is found that there
exist four (two pairs of) edge modes (near the two edges n =0 and 100) in the energy gap at E =0, which are
respectively given by the red and black lines. One pair lies near k, = 0, the other lies near k, = 7. Each mode
has a left- or right-shifted chirality, e.g. the one (the red line) near k, = 0 has the right-shifted chirality, while
the one (the red line) near k, = 7 belongs to the left-shifted chirality. The similar features are shared by the
edge modes in the energy gap at E = w/2. The total number of edge modes obviously satisfies equation (12).
The distributed probabilities of chiral modes at E= 0 and w/2 for the edge modes (the red lines) at the blue
circles are exhibited in figures 5(c)—(f), respectively, demonstrating they locate near the one with n = 100.

The anomalies-rich Floquet topological phases and corresponding phase transitions induced by g, have
the same origination as the ones by u. The Floquet bulk energy band closes at E = w/2 with the increase of T,
leading to a new topological phase transition. Similarly, the increase of g, also deforms the bulk energy band
like 14, thus bringing about the topological phase transition at a fixed 7. However, the different features
between the two tunings of static parameters (1 and g,) observed above, originate from the combination of
intrinsic (tuning 7) and different extrinsic (tuning ¢ and g,) mechanisms. p and g, occupy different
positions in the spin-dependent Hamiltonian. The former is determined by spin-independent term
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Figure 4. Edge spectrums of the anomalous Floquet chiral TSC phase (C, W) = (1,—1) of table 1 with 7 =1.9, g, = 0.6,

Ay =0.4,u=1,E=0 (a) and w/2 (b). This phase features no chiral MEM penetrating the quasi-energy gap at E = 0, but a pair
of ones with left-shifted and right-shifted chiralities at E = w/2. The red line is the chiral modes from the edges of n=100. (c)
The profiles or distributed probabilities of chiral mode at the energy marked by the blue circle in (b). The momentum for the blue
circle in (b) is k, = 3.

oo @ so, while the latter is thoroughly dependent on spin, determined by the term g,00 ) s,. Resultantly,
the difference in energy bands induced by tuning x and g, is produced.

3.3. Topological phase transitions manipulated jointly by superconducting energy gap and driving period
In this section, we display a 2D anomalous Floquet chiral TSC with Chern-number-independent chiral
MEM:s tuned commonly by the superconducting energy gap A, and driving period 7.

Table 3 illustrates the topological phase diagram, the topological phase transition as a function of A}, and
7. The diagram is divided into areas 1, 2, and 3 according to the different topological phases in the
high-frequency limit region. At the high-frequency limit, the phase transitions induced by A}, from 0.1 to 0.2
and from 1 to 1.1 are respectively due to the closure of the bulk energy band gap at I'(0,0) and X(7,0).

The range of Ay corresponding to area 1 is comparatively narrow, in which there exist five topological
phases emerging sequentially, belonging to four kinds, (2, 0), (1, 1), (0,2), and (4, —2).

When Ay is slightly increased, e.g. A, = 0.2, area 2 just emerges. Similarly, a variety of new topological
phases thoroughly different from those in area 1, start to emerge in the order of the five phases (1, 0), (0, 1),
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Figure 5. Edge spectrums of the anomalous Floquet chiral TSC phase (C,W) = (0,0) of table 2 with 7 =1.6, g, = 1, A, = 0.4,
1=0, E=0 (a) and w/2 (b). This phase features two pairs of chiral edge modes at both E=0 and w/2 near the boundaries with
n =0 (the black line) and 100 (the red one). The profiles or distributed probabilities (c) and (e) of chiral mode at the energy E=0
marked by the blue circle at k, = 0.037 and k, = 0.94m in (a), respectively. For (d) and (f), the same as in (c) and (e),
respectively, except for E=w/2 in (b).

(—1,2), (1,0), and (3,—2). This indicates the entirely new topological phase transitions tuned by 7 and the
topological transitions manipulated by A from 0.1 to 0.2 at any fixed 7 between the adjacent areas. The
range of Ay, corresponding to area 2 is considerably wide. It is found that the number of topological phases
appearing successively with the increase of 7 can be different at different A, which could increase or
decrease with the enhancement of A. This is similar to the situation for increasing p but not for enhancing
&;- The number almost always increases with the enhancement of g,. At different fixed A from 0.2 to 1, the
former four topological phases emerging successively with the increase of 7 keep unchanged, but the
corresponding driving period region for each phase has a great change. The latter several topological phases
appearing sequentially with the increase of T at different fixed Aj, are much different. In addition, the
topological phase transitions modulated by A, at a fixed 7 including the high-frequency limit region, can
appear. In this area, there exist seven new kinds of topological phases, i.e. (0, 1), (1,0), (—1,2), (3,—2),
(2,—1), (0,0) and (—1,0), which are thoroughly different from those of area 1.

With the further increase of A; from 1 to 1.1, area 3 starts to appear. The former three topological phases
appearing sequentially thoroughly turn into new ones. Different phase transitions by 7 and the phase
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Table 3. The same as in table 1 except that p is replaced by A,. Here, p =0 and g, = 0.6.
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transitions by Ay at any fixed T between the adjacent two areas, are resultantly induced. However, the latter
two topological phases arising successively keep unchanged, thus no new phase transitions with 7 are
produced and the ones at few T between the adjacent parts by A, from 1 to 1.1 are exhibited. In this area,
there exist only two kinds of new topological phases, i.e. (—2,1) and (0, —1), which are never exhibited in the
former two areas.

Although all the topological phases in table 3 are found to exhibit in tables 1 and 2, there still exist the
exotic topological phase transitions, which are never exhibited in tables 1 and 2.

The above different features by the modulation of A, from those by i and g, can be attributed to the
different Hamiltonian. The location of A, in it differs from those of p and g,, i.e. Ay is an off-diagonal term
and closely linked to the periodic phase ¢'#(*), which leads to the difference in energy bands.

Similarly, take the anomalous Floquet chiral TSC phase (C,W) = (0,2) at 7 =1.7, g, = 0.6, A, = 0.1,
and p = 0 shown in the table 3 as an example to illustrate the bulk energy bands or the edge state of the
anomalous Floquet chiral TSC phase in figure 6.

Remarkably, it is found that there exist two pairs of chiral edge modes at E = 0. The two modes with a
left-shifted chirality from the boundary n = 0 are given by the black lines, while the other two modes with the
right-shifted chirality from the boundary n = 100 are respectively presented by the red and blue lines for
subsequent analyses. The same situations are for E = w/2. Similarly, equation (12) is also fulfilled by the total
number of edge modes. The distributed probabilities of chiral modes at E =0 and E = w/2 for the edge
modes (the red and blue lines) with k, = 0.063 and 2 are respectively exhibited in figures 6(c)—(f), which
demonstrate they locate near the one with n = 100.

From the above three sections, we observe that different kinds of topological phases with 7 amount to 19
by tuning p, g,, and A,. The kind of topological phases (—3,1) by tuning p and the three ones (—2,2),
(2,—2), and (3,—1) by tuning g, are respectively not exhibited in the other two situations. However, for
tuning Ay, there are no such new topological phases.

4. Experimental feasibility

Finally, we briefly discuss the experimental feasibility. Pb(ND) is a suitable choice for the s-wave SC, as it has a
critical temperature T, of 7.2 (9.5) K. By the proximity between the SC and TI, the superconductivity on the
surface of the TI can be experimentally induced. The monocrystalline Bi, Te; (Sb,Tes), which has been
reported experimentally [75, 85, 86], is a possible candidate for the 3D TI, with a relatively small bulk energy
gap of about 300 (100) meV. The magnetic TI can be achieved by doping Cr into Bi,Te; or Sb,Te; [87]. The
magnetic TI-superconducting structures have already been realized experimentally, so the proposed magnetic
TI sandwich Josephson structures are feasible to fabricate. In experiments, the static parameters p, g,, and A,
are tunable by varying the gate voltage Vg, the external magnetic field, and the temperature, respectively. The
dynamic parameter (w or 7) is modulated by simply changing the bias voltage V. The proposed Floquet
setup and corresponding Floquet chiral TSC phases can be therefore experimentally realizable.
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Figure 6. Edge spectrums of the anomalous Floquet chiral TSC phase (C, W) = (0,2) of table 3 with 7 =1.7, ¢, = 0.6, A, = 0.1,
©=0, E=0 (a) and w/2 (b). This phase features two pairs of chiral edge modes at both E=0 and w/2, near the boundaries with
n=0 (the black line) and 100 (the red and blue ones). The profiles or distributed probabilities (c) and (e) of chiral modes at E=0
and k, = 0.063 corresponding to the circles of the blue and red lines in (a), respectively. For (d) and (f), the same as in (c) and (e),
respectively, except for E = w/2 and k, = 2 in (b).

5. Summary

In summary, we study the anomalous Floquet chiral TSC phases by jointly tuning dynamic driving and static
parameters, based on a magnetic TIs-superconductor sandwich Josephson hybrid structure. A static bias
voltage applied across the top and bottom superconducting layers provides a periodic driving. By jointly
tuning dynamic driving (7) and static (y, g;, and A,) parameters, a variety of anomalies-rich Floquet TSC
phases are exhibited. There exist four features as follows. (1) In the low frequency w region, for different i,
different novel Floquet topological phase transitions can occur sequentially with 7 increased. The processes
are accompanied by the closure of the energy gap at the high-symmetry point E = w/2 of the bulk energy
bands. The same features are for g, and Ay, (2) For y, there always exist several special values, at two any
adjacent values of which, the corresponding topological phases appearing successively with the increase of 7
could be thoroughly different. A series of topological phase transitions in the whole 7 region tuned by p are
indicated as well. The same features exhibit for g, and A;. During all the phase transitions, the closure of the
bulk band gap at E =0 occurs simultaneously at the high-symmetry points of Brillouin zone. (3) The
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numbers of the topological phases arising successively tuned by 7 may both increase or decrease with the
enhancement of the two parameters y and A, while the number is basically increased with g,. (4) Jointly
tuning 7 and p (g,) can have its own unique TSC phases.

The features among the tunings of three static parameters are different, originating from the
combination of intrinsic and different extrinsic mechanisms. The family of anomalous Floquet TSC phases
induced by the tunings is considerably enriched.

Here, it is worth noting that in the phase diagram, the computation time for a single point is
approximately one hour. To achieve a continuous phase diagram, the order of magnitude for the interval
values of both the periodic driving and static parameters is 10~2. Take table 1 as an instance, a complete
phase diagram would necessitate 25 351 points, indicating more than 1000 days of computational time, an
unfeasible duration for us. A practical approach to obtain more detailed topological phase information is to
select a region of interest in the parameter space based on the present topological phase diagram (e.g.
table 1). Taking the phase transition boundary region with 7 = (1.6,1.7) and p = (0.3,0.4) as an example,
the complete calculation would only require 144 points, which could be completed in 6 days. If the
calculation is deployed on a high-performance work cluster or supercomputer, the time will be further
reduced. Such an operation not only saves time but also ensures the accuracy and reliability of the results.
Moreover, it does not affect our qualitative conclusions and characteristics, which are thoroughly determined
by the properties of the topological invariants.
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