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Abstract: We examine the key aspects of gravitational theories that incorporate non-local terms,

particularly in the context of cosmology and spherical symmetry. We thus explore various extensions

of General Relativity, including non-local effects in the action through the function F(R,□−1R),

where R denotes the Ricci curvature scalar and the operator □−1 introduces non-locality. By selecting

the functional forms using Noether Symmetries, we identify exact solutions within a cosmological

framework. We can thus reduce the dynamics of these chosen models and obtain analytical solutions

for the equations of motion. Therefore, we study the capability of the selected models in matching

cosmological observations by evaluating the phase space and the fixed points; this allows one to

further constrain the non-local model selected by symmetry considerations. Furthermore, we also

investigate gravitational non-local effects on astrophysical scales. In this context, we seek symmetries

within the framework of f (R,□−1R) gravity and place constraints on the free parameters. Specifically,

we analyze the impact of non-locality on the orbits of the S2 star orbiting SgrA∗.

Keywords: non-locality; modified theories of gravity; cosmology

1. Introduction

Quantum Mechanics ushered in an entirely new perspective on nature across all scales.
In contrast to the determinism of Classical Mechanics, Quantum Mechanics introduced
a probabilistic approach to phenomena on a small scale, effectively accommodating ex-
perimental results. While it enabled us to comprehensively describe the quantum realm,
it came at the cost of the exact predictability of quantum system evolution. Quantum
Field Theory (QFT) subsequently emerged to unify fundamental interactions under a com-
mon framework. It quickly became evident that this approach did not readily extend
to gravitational interactions due to the probabilistic nature of Quantum Mechanics, in
contrast to the deterministic nature of Einstein’s General Relativity (GR), which prohibits
non-local interactions.

A theory capable of reconciling the large-scale structure and the Ultraviolet (UV) scale
remains elusive. Additionally, neither QFT nor GR can effectively address the Planck scale,
where new physics likely comes into play. On the one hand, despite extensive experimental
validations, the fundamental meaning of Quantum Mechanics remains elusive. On the other
hand, while GR is mathematically rigorous and well-developed, it exhibits inconsistencies
at both macro and micro scales [1]. Efforts to merge the formalisms of GR and QFT have thus
far been unsuccessful. Although QFT in curved spacetime offers insights into phenomena
at smaller scales (e.g., Hawking Radiation, the Unruh effect, or cosmic inflation), it faces
limitations. For instance, GR can be renormalized only to the second loop level, resulting in
intractable divergences when applying the same scheme as QFT to gravity [2]. Furthermore,
unlike other fundamental interactions, GR cannot be treated with the Yang–Mills framework
due to the absence of a corresponding Hilbert space and a probabilistic interpretation of the
gravitational wave function [3,4]. Consequently, the quest for a coherent and self-consistent
theory of Quantum Gravity remains an active research area.
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In recent years, the quantum framework has been adapted to cosmology, where
dynamics can be simplified by considering a minisuperspace of variables. This “toy
model” has yielded critical insights into the early stages of the Universe. Nonetheless,
Quantum Cosmology remains far from being a comprehensive and self-consistent Quantum
Gravity theory.

In the context of astrophysics, GR has enjoyed notable success, supported by observa-
tions of light deflection, Radar Echo Delay, and precise estimations of Mercury’s perihelion
precession. Recent discoveries of gravitational waves and black holes further validate the
relativistic description of astrophysical phenomena [5,6].

Nonetheless, several shortcomings have emerged in recent years [7]. For example,
GR cannot predict the mass-radius profile of compact objects or the speeds of the farthest
stars orbiting galaxies [8,9], which have been experimentally measured to be lower than
theoretical expectations. To address the latter issue, “Dark Matter”, a hypothetical zero-
pressure fluid, was introduced, accounting for 26% of the Universe. However, Dark Matter
remains undetected at the fundamental particle level. The cosmological constant Λ was
introduced to explain the observed accelerated expansion of the Universe [10,11], referred
to as “Dark Energy”, which constitutes approximately 68% of Universe’s energy-matter
content. However, at the quantum level, a vast discrepancy exists, with a 120-order
magnitude difference between the theoretical and experimental values of Λ.

In response to these challenges, several new theories have emerged, often beginning
with modifications to the Einstein–Hilbert gravitational action, introducing additional
curvature invariants [12] or coupling between geometry and scalar fields [13–15]. The
simplest extension, f (R) gravity, contains a function of the scalar curvature in the action,
resulting in fourth-order field equations [16–21]. Certain forms of this theory can solve
the Galaxy Rotation Curve problem without invoking Dark Matter, as well as explain the
Universe’s exponential expansion without Dark Energy [22]. Another notable theory is the
Starobinsky model [23], featuring a quadratic term in the scalar curvature and accurately
describing cosmic inflation.

Besides f (R) gravity, modifications to GR include non-minimal coupling with one
or more dynamical scalar fields. These scalar-tensor theories can be reformulated into
higher-order theories via conformal transformations. Furthermore, higher-order curvature
invariants, such as the “Gauss–Bonnet” scalar, play a role in modified gravity theories,
offering potential solutions to GR’s inconsistencies [24–26].

Given the wide range of alternatives to GR, a selection criterion based on Noether
symmetries is essential to constrain the starting action [27–29]. Testing gravitational theories
through observational cosmology serves as an effective approach to identify viable theories
with predictive power. Models exhibiting Noether symmetries allow for the selection of
Lagrangians with reducible dynamics and conserved quantities, simplifying the study of
their dynamical systems and offering physically meaningful models.

In this paper, we study the basic foundations and the applications of modified gravity
models containing non-locality in gravitational action. In particular, we start from a general
non-local modified action and constrain the functional models by applying the Noether
Symmetry Approach. Selected models are thus tested in a cosmological and spherically
symmetric background.

The paper is organized as follows: in Section 2, we summarize the role of non-locality
in physics, paying particular attention to gravity theories. In particular, we distinguish
between two classes of non-local gravity theories and discuss their features. In Section 3, the
Noether symmetry approach is introduced, as well as how to apply the prescription to grav-
itational Lagrangians. In Section 4, we select non-local models by symmetry considerations
and find the related cosmological solutions. Moreover, we also analyze the phase space
of some selected models and further constrain the functional form of the Lagrangian by
searching for fixed points. In Section 5, we reconstruct the shape of the non-local function
by cosmograpic evaluation and compare the results with those obtained in Section 4. In
Section 6, Noether’s approach is applied to a non-local action in a spherically symmetric
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background. Again, the resulting model is compared with observations on S2 star orbit. In
Section 7, we search for additional gravitational waves modes by performing the first-order
expansion of the metric and, finally, in Section 8 we conclude the work summarizing the
results and discussing the future perspectives.

2. Extensions of General Relativity including Non-Locality

Non-locality is an inherent aspect of Quantum Physics, representing a significant
challenge when trying to reconcile the frameworks of QFT and GR. In contrast to classical
theories, which are fundamentally local, Quantum Mechanics exhibits a kinematical non-
locality. It is crucial to draw a distinction between kinematical and dynamical non-locality.
The former pertains to the states that describe a theory, while the latter is related to the
interactions within the theory itself. Consequently, dynamical locality (or non-locality)
arises from the local (or non-local) form of the action.

2.1. Standard Examples of Non-Locality

In a general context, transcendental functions of fields can be represented using the
integral kernels of differential operators. One such operator, denoted as □−1 ≡ gµν∇µ∇ν

(where ∇µ represents the covariant derivative and gµν is the metric tensor), plays a role in
accounting for long-range non-local effects. This can be expressed in terms of the associated
Green function, denoted as G(x, x′), through the following equation:

□
−1ϕ (x) ≡

∫
d4x′ G(x, x′)ϕ(x′) .

In classical theories, at any point during their evolution, the fields can be precisely
localized, allowing measurements without disturbing their state. Therefore, classical field
theories exhibit what is known as kinematical locality.

Conversely, Quantum Mechanics is inherently non-local. According to Heisenberg’s
Uncertainty Principle, it is impossible to precisely localize a given particle. This property
implies that a particle, initially at position x1 and moving toward a final position x2, can
follow any conceivable path connecting the two points. Unlike Classical Mechanics, where
the actual path between two fixed endpoints is uniquely determined by initial conditions,
in Quantum Mechanics all possible paths are simultaneously allowed.

It is essential to note that the kinematical non-locality of the theory does not inherently
imply dynamical non-locality. For a theory to exhibit dynamical non-locality, the action
itself must possess a non-local form. Another illustration of non-locality in Quantum
Mechanics is the phenomenon of entanglement, which results from a kinematical non-
locality due to distant interactions between particles.

In the framework of QFT, fundamental interactions display dynamical non-locality
when considering their one-loop effective actions. This is evident in cases like the Euler-
Heisenberg Lagrangian, as represented by the following equation:

LEH = −1

4
F 2 − e2

32π2

∫ ∞

0

ds

s
eiεse−m2s

[
Re cosh(esX)

Im cosh(esX)
FµνF̃µν − 4

e2s2
− 2

3
F 2

]
, (1)

In this equation, Fµν represents the electromagnetic tensor, defined via the potential
Aµ as Fµν = ∂µ Aν − ∂ν Aµ and X = F + iE · B. The constants e and m correspond to
charge and mass, respectively. The Lagrangian mentioned above is the renormalized one-
loop effective Lagrangian that arises after integrating out a massive fermion from the full
Lagrangian of quantum electrodynamics. The non-locality here can be attributed to the
intrinsic non-local nature of an integration, which can be interpreted as the inverse of a
differential operator.
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Another example is provided by the low-energy limit of the Yukawa theory, involving
a scalar field ϕ with mass m. The effective Lagrangian is:

LY = iψ̄/∂ψ − 1

2
ϕ(□+ m2)ϕ + λ ϕψ̄ψ → Le f f = iψ̄/∂ψ +

λ2

2
ψ̄ψ(□+ m2)−1ψ̄ψ .

The non-locality in this context arises from the operator (□+ m2)−1 and, after per-
forming a Taylor expansion, the Lagrangian can be expressed as:

Le f f = iψ̄/∂ψ +
λ2

2m2
ψ̄ψψ̄ψ − λ2

2m4
ψ̄ψ□ψ̄ψ + . . . ,

This formulation turns into the 4-Fermi theory as soon as ϕ accounts for the W or
Z boson.

2.2. Non-Local Gravity

As mentioned briefly in the introduction, it is worth noting that some of the assump-
tions made in GR lack direct experimental support. For example, the assumption that
the action is linearly dependent on the scalar curvature, giving rise to second-order field
equations, is often considered, though no theoretical constraint imposes the action to be
linear with respect to R. Additionally, the affine connection is often taken symmetric with
respect to the lowest indexes, resulting in a spacetime without torsion. This assumption is
rooted in the Equivalence Principle, which is in complete agreement with the Levi–Civita
connection. Conversely, in the Einstein–Cartan formalism, the antisymmetric part of the
connection is incorporated into the curvature tensor, leading to a description of spacetime
that includes both curvature and torsion.

In the large-scale regime, to accommodate the various stages of the universe’s evolu-
tion, the cosmological constant was introduced into the action to account for phenomena
known as Dark Matter and Dark Energy.

When one relaxes the constraint of having second-order field equations, it becomes
possible to extend the Einstein–Hilbert Lagrangian by introducing additional terms in-
volving curvature invariants. One of the most extensively explored extensions is the f (R)
gravity, leading to fourth-order field equations that reduce to Einstein ones when f (R) = R:

fR(R)Rµν −
1

2
f (R)gµν +

[
gµν□− DµDν

]
fR(R) = κTµν. (2)

Here, f (R) is a general function of the Ricci scalar, L(m) denotes the matter Lagrangian,
and κ stands for the gravitational coupling, defined as κ = 8πGN , where GN represents
the Newton constant. Additional modified actions can be formulated by incorporating
combinations of the Riemann, Ricci, and Weyl tensors. This is the case, e.g., of the so called
Gauss–Bonnet invariant, defined as:

G = R2 − 4RµνRµν + RµνρσRµνρσ, (3)

with Rµν and Rµνρσ being the Ricci and the Riemann tensors, respectively. This combination
of second-order invariants gives rise to a topological surface term, which in four dimensions
is the Euler density. Often, in order to reduce the order of the field equations and the related
dynamics, a function of G is evaluated for cosmological and astrophysical purposes [24,25].

Another possible modification of GR includes non-local operators into the starting
action. The primary distinction when compared to their local counterparts lies in the pres-
ence of non-local operators of various forms within the effective action. These operators are
intended to bridge the gap between gravitational interactions and the quantum framework.

Depending on the specific nature of non-locality, theories of non-local gravity can
be broadly categorized into two primary classes: Infinite Derivative Theories of Gravity
(IDGs) and Integral Kernel Theories of Gravity (IKGs).
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The former involves analytical transcendental functions of the covariant d’Alembert
operator, denoted as □. An illustrative example can be found in the model proposed in
Ref. [30], which offers a solution for classical black holes and Big Bang singularities, as
documented in Refs. [31,32].

On the other hand, IKGs primarily utilize the inverse operator □−1. These theories
were initially explored in [33], where it was demonstrated that the application of the non-
local operator □−1 to the scalar curvature R results in the late-time cosmic expansion of
the universe without necessitating the inclusion of any Dark Energy contribution. In the
pursuit of unifying gravity with other fundamental interactions, IDGs offer renormaliz-
able and unitary quantum gravity theories, as discussed in Ref. [34]. Conversely, IKGs
address infrared (IR) quantum corrections arising from the formulation of QFT in a curved
spacetime, as showed in Ref. [35]. It is worth stressing that, despite these appealing at-
tributes, thus far, no local or non-local theory has emerged that is capable of resolving all
the issues associated with large-scale structure and fully aligning with all the currently
available observations.

In this paper, we will mostly focus in the latter category of non-local theories, namely,
IKGs. They introduce quantum corrections in two distinct regimes through an expansion
around s = 0 for UV corrections and around s → ∞ for IR corrections. However, dealing
with IR corrections can be challenging for several reasons. First, the Schwinger proper time
integral can only be resolved when the masses of matter fields are greater than the potential.
Second, in the massless limit, the proper time integration diverges as time progresses. These
issues arise from the perturbative approach used for the Schwinger proper time integral,
necessitating a non-perturbative technique to capture both UV (s = 0) and IR (s → ∞)
corrections. The quantum effective action derived from this non-perturbative technique is
presented in [35] as follows:

W0 = −
∫

d4x
√
−g
[
V(x) + V(x)(□− V)−1V(x)

]
+

1

6
Σ . (4)

Here, V(x) represents a generic potential, and Σ is a surface term defined through the
inverse of the d’Alembert operator as:

Σ =
1

2κ

∫
d4x
√
−g
{

R − Rµν □
−1Gµν + 2−1R

(
□

−1Rµν
)
□

−1Rµν

− Rµν
(
□

−1Rµν

)
□

−1R +
(
□

−1Rαβ
)(

Dα □
−1R

)
Dβ □

−1R

− 2
(

Dµ
□

−1Rνα
)(

Dν □
−1Rµα

)
□

−1R

− 2
(
□

−1Rµν
)(

Dµ □
−1Rαβ

)
Dν □

−1Rαβ + O
[
R 4

µν

]}
.

(5)

In this case, the non-locality arises from the integral operator □−1, which is responsible
for the quantum corrections. However, the action (4) gives rise to non-linear higher-order
field equations, potentially complicating the search for exact solutions. As a result, several
specific cases have been explored in the literature, one of which is the direct modification
of GR presented in [33]:

S =
1

2κ

∫
d4x
√
−g R

[
1 + F

(
□

−1R
)]

+ S (m) . (6)

In this equation, F
(
□

−1R
)

is an arbitrary function of the non-local term □
−1R. When

the action is varied with respect to the metric tensor, it leads to the following field equation:

Gµν + ∆Gµν = κT
(m)

µν , (7)
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where the definitions of ∆Gµν are as follows:

∆Gµν =
(

Gµν + gµν □− DµDν

){
F +□

−1
[

R F′
]}

+

[
δ
(ρ

µ δ
σ)

ν − 1

2
gµνgρσ

]
∂ρ

(
□

−1R
)

∂σ

(
□

−1
[

R F′
])

, (8)

F ≡ F
(
□

−1R
)

, F′ ≡ ∂F

∂
(
□−1R

) . (9)

In the upcoming sections, we will concentrate on higher-order Integrated Klein–
Gordon (IKG) equations, where non-locality is introduced by the operator □

−1. These
equations are extensions of the IKGs examined in previous works such as [33,36–38]. While
we will not delve into the details of the UV quantum corrections in these theories, it is antic-
ipated that the presence of non-local operators plays a role in achieving renormalizability
and unitarity. To seek exact cosmological solutions, we simplify the dynamics by searching
for Noether symmetries, an approach developed to identify viable models, as outlined in
the next section.

3. The Noether Symmetry Approach

To summarize the essential components of the Noether Symmetry Approach that will
be used in Section 4, we start with the assumption that the Lagrangian remains invariant
under certain transformations involving both coordinates xµ and fields ϕi, i.e.,

{
x̃µ = xµ + ϵξµ

(
xµ, ϕi

)
+ O

(
ϵ2
)

ϕ̃i = ϕi + ϵηi
(
xµ, ϕi

)
+ O

(
ϵ2
)
.

(10)

Here, ξµ and ηi represent the infinitesimal generators of the symmetry transformation.
The total generator of this transformation is denoted as:

X = ξµ∂µ + ηi ∂

∂ϕi
, (11)

By applying this generator to the Lagrangian and assuming X to be the generator of a
certain symmetry, it can be shown that when the condition

[
ξµ∂µ + ηi ∂

∂ϕi
+
(

∂µηi − ∂µϕi∂νξν
) ∂

∂
(
∂µϕi

) + ∂µξµ

]
L = ∂µgµ, (12)

is satisfied; then, the quantity

jµ = − ∂L

∂
(
∂µϕi

)ηi +
∂L

∂
(
∂µϕi

)∂νϕiξν −L ξµ + gµ, (13)

becomes a first integral of motion [27]. In this context, gµ is a general function of coordinates
and fields, referred to as a “Gauge Function”. The expression for X[1] (the first prolongation
of Noether’s vector) is

X[1] = ξµ∂µ + ηi ∂

∂ϕi
+
(

∂µηi − ∂µϕi∂νξν
) ∂

∂
(
∂µϕi

) . (14)

This allows us to rewrite the identity in Equation (12) as:

X[1]
L + ∂µξµ

L = ∂µgµ. (15)
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In cosmological contexts, where the variables are solely time-dependent, X[1] and the
identity (15) become, respectively,

X[1] = ξ
∂

∂t
+ ηi ∂

∂ϕi
+ ηi[1] ∂

∂ϕ̇i
= ξ

∂

∂t
+ ηi ∂

∂ϕi
+
(

η̇i − ϕ̇i ξ̇
) ∂

∂ϕ̇i
, (16)

and
X[1]L+ ξ̇L = ġ

(
t, ϕi

)
, (17)

For internal symmetries, where the infinitesimal generator ξµ is zero, the condition in
Equation (12) takes the form

[
ηi ∂

∂ϕi
+ ∂µηi ∂

∂
(
∂µϕi

)
]
L = ∂µgµ. (18)

By setting gµ to zero, this equation can be reformulated in terms of the vanishing Lie
derivative of the Lagrangian along the flow of the generator X. Clearly, Equation (18) leads
to introduce a first integral in the Euler–Lagrange equations. This, in turn, enables us to
simplify the dynamics and potentially find solutions. In all the scenarios described above,
this procedure also aids in discovering physically meaningful models.

4. Non-Local Gravity Cosmology via Noether Symmetries

To illustrate the concepts mentioned above, let us delve into the non-local IKG within
the metric framework. This gravitational theory is defined by the following action:

S =
1

2κ

∫
d4x
√
−g F

(
R,□−1R

)
. (19)

It serves as a straightforward extension of both f (R) gravity and the action (6). To
formulate a Lagrangian suitable for cosmological studies, we introduce an auxiliary local
scalar field, denoted as ϕ and defined as:

ϕ ≡ □
−1R, so that R ≡ □ϕ . (20)

This definition simplifies the theory into a category of higher-order scalar-tensor
models characterized by the action:

S =
∫

d4x
√
−g F(R, ϕ), (21)

In this expression, the constant 1/2κ is incorporated into the function F. The action
presented in Equation (21) is a broader form of the one examined in Ref. [36], where the
authors consider the Deser–Woodard action to uncover precise cosmological solutions.
From this perspective, the Noether Symmetry Approach offers the advantage of selecting
the action based on a physical criterion, out of numerous conceivable choices. Although
the Deser–Woodard action is encompassed within Equation (21), various other models can
be chosen through the research for symmetries. Nevertheless, the associated conserved
quantities simplify the dynamics and facilitate the identification of analytical solutions.
When the cosmological expressions for R and □R are incorporated into a Friedmann–
Lemaître–Robertson–Walker (FLRW) spacetime, that is

ds2 = dt2 − a(t)2dxidxjδij, (22)

the action can be recast as:

S =
π2

κ

∫
dt a3

{
F(R, ϕ)− λ1(R − ϕ̈ − 3Hϕ̇)− λ2

[
R + 6

(
ä

a
+
( ȧ

a

)2
)]}

. (23)
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Here, λ1 and λ2 are Lagrange multipliers, a(t) is the scale factor, and δij is the three-
dimensional unity matrix. The relation between these two multipliers is found by varying
the action concerning R:

λ2 =
∂F(R, ϕ)

∂R
− λ1.

Following a procedure akin to [36,39], the constant λ1 can be transformed into a
time-dependent scalar field by setting λ1 ≡ ϵ(t). Consequently, Equation (23) can be
rewritten as:

S =
π2

κ

∫
dt a3

{
F(R, ϕ)− ϵ(R − ϕ̈ − 3Hϕ̇)−

(
∂F(R, ϕ)

∂R
− ϵ

)[
R + 6

(
ä

a
+

ȧ2

a2

)]}
. (24)

When dealing with the Lagrange multipliers method, ϕ and R must be treated as
independent fields so that the variation of the action with respect to the scalar fields ϕ and
ϵ leads to the Klein–Gordon equations

□ϵ(t) = Fϕ(R, ϕ), □ϕ = R, (25)

Integrating out the second derivatives, the point-like Lagrangian expressed within the
configuration space Q ≡ {a(t), R(t), ϕ(t), ϵ(t)} is:

L = a3F − a3ϕ̇ϵ̇ − a3R ∂RF + 6aȧ2∂RF − 6aȧ2ϵ

+ 6a2 ȧṘ ∂RRF + 6a2 ȧϕ̇ ∂RϕF − 6a2 ȧϵ̇. (26)

It is important to note that not all the Euler–Lagrange equations contribute to the
dynamics. The equations concerning ϵ and ϕ essentially return the Klein–Gordon equa-
tions previously mentioned. The Euler–Lagrange equation involving the scalar curvature
provides the cosmological expression for R by construction. The Euler–Lagrange equation
associated with the scale factor, in conjunction with the energy condition, represents the
only dynamical equations of motion through which analytical solutions can be derived.
These equations correspond to the “0,0” and “1,1” components of the field equations. In
the corresponding configuration space, referred to as the minisuperspace, the symmetry
generator takes the form:

X = ξ(t, a, ϕ, R, ϵ)
∂

∂t
+ α(t, a, R, ϕ, ϵ)

∂

∂a
+ β(t, a, R, ϕ, ϵ)

∂

∂R

+ γ(t, a, R, ϕ, R, ϵ)
∂

∂ϕ
+ δ(t, a, R, ϕ, ϵ)

∂

∂ϵ
. (27)

By applying the Noether symmetry existence condition (12) to the Lagrangian (26),
we obtain a system of 28 differential equations, six of which are linearly independent [40]:

α ∂RF − αϵ + aβ ∂RRF + aγ ∂RϕF − aδ + 2a ∂RF ∂aα − 2aϵ ∂aα

+ a2∂RRF ∂aβ + a2∂RϕF ∂aγ − a2∂aδ − a ∂RF ∂tξ + aϵ ∂tξ = 0,

2α ∂RRF + aβ ∂RRRF + aγ ∂RRϕF + a ∂aα ∂RRF

+ a ∂Rβ ∂RRF − a ∂tξ ∂RRF = 0,

12α ∂RϕF + 6aβ ∂RRϕF + 6aγ ∂RϕϕF + 6a ∂aα ∂RϕF

+ 6a ∂ϕβ ∂RRF + 6a ∂ϕγ ∂RϕF − a2∂aδ − 6a ∂RϕF ∂tξ = 0,
(28)

−12α − 6a ∂aα + 6a ∂ϵβ ∂RRF − a2∂aγ − 6a ∂ϵδ + 6a ∂tξ = 0,

−3α − a ∂ϕγ − a ∂ϵδ + a ∂tξ = 0,

3αF − 3αR ∂RF − aR β ∂RRF + aγ ∂ϕF − aR γ ∂RϕF

+ aF ∂tξ − aR ∂RF ∂tξ = 0.
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A potential solution is given by the following generator:

X = (ξ0t + ξ1)∂t +
ξ0

3
(2n − 1)∂a − 2ξ0R∂R +

2ξ0(1 − ℓ)

n
∂ϕ + (2ξ0(1 − n)ϵ + δ1)∂ϵ (29)

Additionally, the request for the presence of symmetries also select two functions,
namely,

FI(R, ϕ) =
δ1

2ξ0(n − 1)
R + [2ξ0R]nF

(
ϕ +

(1 − n)

ℓ
log[2ξ0R]

)
, (30)

FI I(R, ϕ) =
δ1

2ξ0(n − 1)
R + G(R)ekϕ, (31)

where F
(
ϕ+ (1−n)

ℓ
log[2ξ0R]

)
represents an arbitrary integration function of

(
ϕ+ (1−n)

ℓ
log[2ξ0R]

)
,

and G(R) is a function of the scalar curvature, while ξ0, ξ1, ℓ, δ1, n, and k are constants
of integration.

It is worth noting that the second function can be related to the first by choosing an
appropriate form for G(R). Specifically, when G(R) = G0Rm, the second function becomes:

FI I(R, ϕ) =
δ1

2ξ0(n − 1)
R + G0Rmekϕ, (32)

representing a subcase of FI . Let us now focus on the function FI to explore exact cosmo-
logical solutions. For simplicity, we assume that this function is linearly dependent on
its argument:

F1

(
ϕ +

(1 − n)

ℓ
log[2ξ0R]

)
≡ ϕ +

(1 − n)

ℓ
log[2ξ0R] + q. (33)

As a result, we obtain:

F1(R, ϕ) =
δ1

2ξ0(n − 1)
R + (2ξ0R)n(q + ϕ) + (2ξ0R)n (1 − n)

ℓ
log[2ξ0R], (34)

with q being a real constant. If we set n = 2, we recover the Starobinsky gravity non-
minimally coupled to a scalar field ϕ. The solution of the equations of motion for arbitrary
n yields three different scale factors.

The first one, valid only for n = 3, describes a de Sitter-like expansion:

a(t) = a0eΛt, R(t) = −12Λ2, ϕ(t) = −1

3
(40 + 3q)− 4Λt,

ϵ(t) = 576(2ξ0)
3
Λ5t − C3e−3Λt

3Λ
+

δ1

4ξ0
, (35)

where we have defined

Λ =

√
− 1

24ξ0e
(ξ0 < 0). (36)

The second solution arises when the scalar curvature is zero, leading to a power-law
scale factor:

a(t) = a0t
1
2 , R(t) = 0, ϕ(t) = C2, ϵ(t) =

δ1

2ξ0(n − 1)
− 2C3√

t
(37)

In this case, the theory is equivalent to GR when minimally coupled to a scalar field,
and the corresponding function is:

F
(2)
1 (R, ϕ) =

δ1

2ξ0(n − 1)
R + ϕ. (38)
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Finally, in the last case, we obtain:

a(t) = a0t−10, R(t) ∼ t−2, ϕ(t) ∼ C2 + log(t),

ϵ(t) =
δ1

2ξ0(n − 1)
+ C3t31 + c4(2ξ0)

3t−4 (39)

In this scenario, the function is constrained with respect to the general one in Equation (34),
resulting in:

F
(3)
1 (R, ϕ) =

δ1

2ξ0(n − 1)
R + (ϕ + q)(2ξ0R)3 − 16ξ3

0

ℓ
R3 log[2ξ0R] (40)

It is worth noting that, regardless of the restrictions induced by the Euler–Lagrange

equation solutions, the above function remains a generalization of F
(1)
1 .

The models discussed in this section incorporate higher-order curvature invariants
and local scalar fields, potentially capable of inducing both an inflationary phase and
late-time cosmic acceleration. The specific behavior depends on the energy regime being
considered. A comprehensive analysis is required to determine if these solutions align
with cosmological and astrophysical observations. This is just a starting point in the quest
to identify reliable non-local gravity models that can address both the UV and IR issues
encountered by GR and thereby establish a self-consistent cosmic history.

Comparison with Cosmological Observations

The function in Equation (31) has been studied in Ref. [41], where the cosmological
implications are evaluated, and here the main steps are reported. More precisely, the
function studied by the authors can be obtained from Equation (31) by setting

δ1

ξ0
= n − 1, G(R) =

R

2
f0, k ≡ α. (41)

The action can be thus written in terms of the Lagrange multiplier ξ as

S =
∫

d4x
√
−g

{
1

2

[
R(1 + ψ)− fϕ(∇ϕ)2 +∇µψ∇µϕ

]
+ Lm

}
, (42)

with the definition
ψ ≡ f (ϕ)− ξ. (43)

The variation of Equation (42) with respect to the metric and to the scalar field ϕ yield,
respectively,

Rµν(1 + ψ)− 1
2 gµν

[
R(1 + ψ)− fϕ(∇ϕ)2 +∇σψ∇σϕ − 2□ψ

]

+∇µψ∇νϕ −∇µ∇νψ − fϕ∇µϕ∇νϕ = Tµν,

□ψ − fϕϕ(∇ϕ)2 − 2R fϕ = 0,

where Tµν is the matter energy-momentum tensor. In a FLRW space-time as in Equation (22),
the field equations become

3H2 =
1

1 + ψ

[
κρm +

1

2

(
fϕϕ̇2 − ψ̇ϕ̇

)
− 3Hψ̇

]
,

−2Ḣ − 3H2 =
1

1 + ψ

[
κpm +

1

2

(
fϕϕ̇2 − ψ̇ϕ̇

)
+ ψ̈ + 2Hψ̇

], (44)

which, along with the continuity equation

ρ̇m + 3H(1 + wm)ρm = 0 (45)
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and the two Klein–Gordon equations

ψ̈ + 3Hψ̇ = fϕϕϕ̇2 − 12 fϕ

(
Ḣ + 2H2

)
,

ϕ̈ + 3Hϕ̇ = −6
(

Ḣ + 2H2
)

,
(46)

form the whole set of cosmological equations. In order to evaluate the dynamics, the order
of the above system can be reduced, by means of the following substitutions:

x ≡ ϕ̇

6H
, y = − ψ̇

H(1 + ψ)
,

z ≡ 6 fϕ

1 + ψ
, Ωm ≡ ρm

3H2(1 + ψ)
.

(47)

Assuming now a pressureless matter, substituting the form of f (ϕ) in Equation (31)
(selected by the imposition of Noether symmetries) and considering the relations (47), the
cosmological equations can be finally written as

x′ =
1

2
[weff(1 + x)− 3x − 1],

y′ = y2 +
3

2
(weff − 1)y + z

(
1 − 6αx2 − 3weff

)
,

z′ = z(6αx + y),
Ω′

m = Ωm(y + 3weff),

(48)

with the prime denoting the derivative with respect to N ≡ ln(a), namely, the number of
e-folds. Furthermore, in the above equation, weff represents the effective EoS parameter

weff = −1 +
4(y − z) + 6x[y + xz(1 + α)] + 3Ωm

3(1 − z)
(49)

and Ωm the matter density parameter. Once recasting the field equations as a first-order
system of ordinary differential equations, the goal is now to search for the critical points
and unveiling possible attractors. Specifically, it is possible to study the phase space and to
detect the fixed points and the related trajectories around them. The first step is to identify
the fixed point, by solving the system for x′ = y′ = z′ = 0. To this purpose, we study the
cases of cosmological interest, namely, a matter-dominated Universe (Ωm = 1, weff = 0),
an accelerated Universe (−1 < weff < −1/3), and a de Sitter-like Universe (weff = −1,
Ωm = 0). In Table 1, the critical points and the corresponding values of weff, Ωm, and α
are listed.

Table 1. Number of critical points with corresponding values of Ωm, we f f and conditions for the

existence in terms of α.

Critical Point (x, y, z) Ωm weff Existence

I
(
− 1

3 , 0, 0
)

1 0 ∀α

II
(

1
2

(
− 1 +

√
1 − 2

3α

)
, 3α −

√
3α(3α − 2), 0

)
0 1 − 2α + 2

√
α2 − 2α

3 α < 0 ∨ α ≥ 2
3

III
(
− 1

2

(
1 +

√
1 − 2

3α

)
, 3α +

√
3α(3α − 2), 0

)
0 1 − 2α − 2

√
α2 − 2α

3 α < 0 ∨ α ≥ 2
3

IV
(
− 1

3α , 2, 3α(2 − 3α)
)

0 α−1
3α−1 α ̸= 0 ∨ α ̸= 1

3

V

(
2α

6α2−3α−η
, 12α2

3α−6α2+η
,

9α−6α2−η
2

)
2α[α(78α2−39α+9−11η)+3η]

(3α−6α2+η)2
1
6

(
3 − 6α − η

α

)
α ̸= 0

The first fixed point describes a matter-dominated solution, while the second point
cannot describe either accelerated or de Sitter-like solutions since weff cannot lie within the
ranges required for these space-times. The third fixed point corresponds to an accelerated
solution when 2/3 < α < 3/4 and to a de Sitter Universe fully-dominated by a pure
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cosmological constant when α = 3/4. In the fourth case, a de Sitter space-time occurs for
α = 1/2. Finally, in the fifth case, accelerated solutions occur for 1/3 ≤ α < 3/4 and a de
Sitter solution for α = 3/4.

Let us now explore the stability of the critical points, examining whether the cosmo-
logical solutions previously obtained could potentially act as late-time attractors. To do this,
we will compute linear perturbations of the dynamical system and analyze the eigenvalues
signs of the Jacobian matrix when calculated for each fixed point. We can distinguish three
potential scenarios: if all the real parts of the eigenvalues are negative, we are dealing with a
stable (attractor) point. Conversely, if they are all positive, it indicates an unstable (repeller)
point. When the signs are mixed, the corresponding critical point is a saddle point.

In order to investigate the stability, let us then consider linear perturbations of the
cosmological Equation (48): 


δx′

δy′

δz′


 = J




δx
δy
δz


, (50)

with J being the Jacobian matrix, whose elements are given by

J11 =
(3x + 2)[3xz(2α + 1) + 2y] + 2z − 3

2(1 − z)
, J12 =

(x + 1)(3x + 1)

2(1 − z)
,

J13 =
(x + 1)[3x(2αx + x + y) + y − 1]

2(1 − z)2
,

J21 =
3

2

[
4αxz(y − 2) + (y − 2z)(2xz + y)

1 − z

]
,

J22 =
y(6x − 4z + 6) + 3xz(2αx + x − 2)− 3

2(1 − z)
,

J23 =
1

2(1 − z)2

{
6x2[(z − 2)z − 2α] + (3x + 1)y2 + 2 + 3y[x(2αx + x − 2)− 1]

}
,

J31 = 6αz, J32 = z, J33 = 6αx + y.

(51)

The eigenvalues of J are reported in Table 2, along with the outcomes of the
stability analysis.

Table 2. Number of critical points with corresponding eigenvalues and conditions for stability in

terms of α.

Critical Point Eigenvalues Stability

I
(
− 3

2 , − 3
2 , −2α

)
Stable for α > 0, saddle for α < 0

II
(

0, 0, 3 − 3α +
√

3α(3α − 2)
)

Unstable

III
(

0, 0, 3 − 3α −
√

3α(3α − 2)
)

Unstable

IV
(

2−3α
1−3α , 2−3α

1−3α , 5−9α
1−3α

)
Stable for 1

3 < α <
5
9 , saddle for 5

9 < α <
2
3 , unstable for α <

1
3 ∨ α >

2
3

V – Saddle for α < 0 ∨ 0 < α <
5
9 ∨ α >

3
4 , unstable for α = 3

4

Discussing the results of the phase-space analysis, concerning the effective EoS in
the non-local model under consideration is of extreme importance in order to establish
theoretical constraints for the free parameter α. To accomplish this, it is worth noticing that
a Universe devoid of matter and solely featuring a cosmological constant cannot support
stable cosmological solutions. The physical solutions detailed in Table 1, which are derived
from the autonomous dynamical system, pertain to critical points within the associated
phase space, as pointed out in [41]. However, they do not offer additional insights into the
current matter density value Ωm ∼ 0.3, as determined by contemporary observations.

Furthermore, it is crucial to make a comparison between the non-local model and the
predictions of the ΛCDM model, as well as with scenarios involving dark fluid. While the
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ΛCDM model has an effective equation of state (weff) equal to −1, dark fluid scenarios can
yield an EoS with weff ∼ −3.

To make a comparison, let us examine the solutions that were identified for the fourth
critical point (refer to Table 1). In this instance, the condition −1 ≤ weff < 0 imposes the
constraint 1/2 ≤ α < 1. However, as previously discussed, the stability of the fourth
fixed point narrows this range down to 1/3 < α < 5/9. Consequently, feasible values
for α fall within the confined range [0.5, 0.55]. It is also worth noting that, apart from this
issue of fine-tuning, the matter component is entirely absent, rendering it less suitable for
cosmological applications.

5. Model Reconstruction via Cosmographic Analysis

In the previous sections, we applied the Noether Symmetry Approach to select the
functional form of the action and used the selected non-local function to evaluate the
cosmological implications. Here, we consider the general action (6) again and reconstruct
the shape of the distortion function in a model-independent way. Thus, results can be
compared with those coming from Noether’s approach in order to check whether the latter
is actually capable of selecting viable cosmological theories. The approach presented in this
section can be pursued by adopting proper boundary conditions, allowing one to deduce
the best analytical approximation of the numerical outcome. More precisely, we initially
present the cosmographic method employing Padé polynomials and Bayesian analysis to
constrain cosmographic parameters through present data. Next, we explore the dynamic
patterns of additional fields resulting from action localization. To these purposes, let us
first define

X = □
−1R, (52)

Y = □
−1
(

gµν∂µX∂νX
)
, (53)

and act a localization process by introducing two auxiliary scalar fields, U and V, treated
as Lagrange multipliers:

S =
1

2

∫
d4x
{

R[1 + U + f (Y)] + gµνBµν

}√
−g, (54)

with
Bµν ≡ ∂µX∂νU + ∂µY∂νV + V∂µX∂νX. (55)

Hence, the expressions of the fields U and V can be found by varying the above action
with respect to X and Y, obtaining the two dynamical Klein–Gordon equations

U = −2□−1∇µ(V∇µX), (56)

V = □
−1

(
R

d f

dY

)
. (57)

It is important to emphasize that the additional scalars adhere to delayed boundary
conditions and become null, along with their initial time derivatives, when assessed at the
starting surface. This characteristic guarantees the absence of extra variables, averting the
emergence of problematic entities known as ghosts. Furthermore, these auxiliary fields
propagate along the characteristic paths of the d’Alembert scalar, aligning the speed of
sound with that of light, which mitigates complications often associated with various
modified gravity theories. The non-local field Equation (8), written in terms of the newly
introduced quantities, read:

(
Gµν + gµν□−∇µ∇ν

)
[1 + U + f (Y)] + B(µν) − 1

2 gµνgαβBαβ = 8πGTµν,
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which, in a cosmological background as in Equation (22), become

3H

(
H +

d

dt

)
[1 + U + f (Y)] +

1

2

(
Ẋ2 + ẊU̇ + ẎV̇) = 8πGρ, (58)

−
(

3H2 + 2Ḣ +
d2

dt2
+ 2H

d

dt

)
[1 + U + f (Y)]

+
1

2

(
Ẋ2 + ẊU̇ + ẎV̇

)
= 8πGp, (59)

(
6H2 + 2Ḣ +

d2

dt2
+ 5H

d

dt

)
W(t) = 8πG(ρ − p), (60)

with ρ and p being the density and the pressure of the fluid, respectively, while

W ≡ 1 + U + f . (61)

Notice that the three equations are not independent as the third can be obtained as a
linear combination of the first two.

The main objective of this section is to offer an alternative understanding of the
Universe’s acceleration without encountering the fine-tuning issues associated with the
cosmological constant, within the non-local model under consideration. Consequently, we
refrain from imposing the ΛCDM expansion history, or any other specific one, to reduce
potential biases in reconstructing f (Y). Instead, our purpose is to ascertain the distortion
function in a manner independent of any particular model. To achieve this, we combine
analytical and numerical techniques, relying on the following approach. The first step is to
consider the Taylor expansion of the scale factor a(t) around the present time t0, namely,

a(t) = 1 +
∞

∑
k=1

1

k!

dka

dtk

∣∣∣∣∣
t=t0

(t − t0)
k, (62)

which, along with the cosmographic parameters j, q, s, can provide the expression of the
luminosity distance

dL(z) =
z

H0

(
1 +

∞

∑
k=1

ckzk

)
, (63)

in terms of the redshift z ≡ a−1 − 1, with

c1 =
1

2
(1 − q0) (64)

c2 = −1

6

(
1 − q0 − 3q2

0 + j0

)
(65)

c3 =
1

24

(
2 − 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0 j0 + s0

)
. (66)

In this way, the Hubble parameter can also be recast as

H(z) =

[
d

dz

(
dL(z)

1 + z

)]−1

. (67)

Due to theoretical problems related to the short convergence radius of the Taylor
series [42], the above luminosity distance is often expanded via Padé polinomials, as in
Refs. [43,44]. Moreover, as pointed out in [42], the (2, 1) Padé parametrization stands out as
the optimal approximation for yielding precise cosmographic outcomes as it exhibits lower
susceptibility to numerical error propagation due to the low number of free parameters. In
our case, the (2, 1) Padé approximation of Equation (63) yields:
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d2,1(z) =
1

H0

[
z(6(q0 − 1) + (q0(8 + 3q0)− 5 − 2j0)z)

2q0(3 + z + 3q0z)− 2(3 + z + j0z)

]
. (68)

In general, starting from the Taylor expansion, f (z) = ∑
∞
k=0 ckzk, the related Padé

approximation of the order (n, m) is given by

Pn,m(z) =
∑

n
i=0 aiz

i

∑
m
j=0 bjz

j
,

with ai and bi being defined as:

{
ai = ∑

i
k=0 bi−kck

∑
m
j=1 bjcn+k+j = −b0cn+k, k = 1, . . . , m

(20)

The values of H0, q0, and j0 can be determined by the Markov chain Monte Carlo
(MCMC) analysis based on the Metropolis–Hasting algorithm. Considering the combina-
tion of CC and SN data, at the 1σ confidence level one obtains [42]:

H0 = 69.3+2.0
−2.0 km/s/Mpc (69)

q0 = −0.73+0.13
−0.13 (70)

j0 = 2.84+1.00
−1.23 (71)

The above values, along with the expression of the luminosity distance (63), allow
for the precise characterization of the Universe’s evolution up to intermediate redshifts.
The first Friedmann equation can be written in terms of the (2, 1) Padé parametrization of
the normalized Hubble rate H2,1, as 8πGρ = 3H2

2,1. In this regard, let us define, for future
convenience, the (2, 1) Padé parametrization of the normalized Hubble rate h2,1 ≡ H2,1/H0

in terms of the e-fold number, N ≡ ln a:

h2,1 =
P(q0, j0)

Q(q0, j0)
, (72)

where

P ≡4e−4N
[
eN
(

j0 − 3q2
0 + 2q0 − 2

)
− j0 + 3q2

0 + q0 − 1
]4

(73)

Q ≡
{

14 + j0

(
7 − 10q0 − 9q2

0

)
+ 2j20 − 40q0 + 17q2

0 + 18q3
0

+ 9q4
0 − 2eN

(
j0 − q0 − 1 + 2q2

0 + 2j20 + 9q3
0 + 9q4

0

−4j0q0 − 9j0q2
0

)
+ e2N

[
2 + 2j20 + 2q0 + 5q2

0 + 9q4
0

+j0

(
−5 + 2q0 − 9q2

0

)]}2
. (74)

and where we considered the (2, 1) Padé approximation of Equation (67). Also notice that
the introduction of the parameter N makes the time derivative become:

d

dt
= H

d

dN
,

d2

dt2
= H

(
H′ d

dN
+ H

d2

dN2

)
, (75)

with the prime denoting the derivative with respect to N.
If we also assume that matter behaves as dust, the second Friedmann equation reads

8πGp = H2
0 Ωr0e−4N , with Ωr0 ≃ 9.2 × 10−5 being the current value of the radiation

energy density [45]. In so doing, the background evolution of the Universe can be then
parametrized as h2 ≃ h2

r + h2
2,1, where h2

r = Ωr0e−4N .
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In the late times, the contribution of h2
r is negligible, so that h ≈ h2,1 for |N| < 1. Finally,

taking into account Equation (75) and the cosmological expression of the Ricci scalar, the
field Equation (60); the definitions (52), (53); and the Klein Gordon Equations (56) and (57)
become, respectively,





W ′′ + (5 + ξ)W ′ + 2(3 + ξ)W = µ

X′′ + (3 + ξ)X′ + 6(2 + ξ) = 0

Y′′ + (3 + ξ)Y′ = X′2

U′ + 2VX′ = 0

V′′ + (3 + ξ)V′ + 6(2 + ξ)
d f

dY
= 0

ξ ≡ h′/h, µ ≡
(

3h2
2,1 − h2

r

)
/h2 .

(76)

Notice that, due to Equation (61), the fist derivative of f can be expressed as d f /dY =
(W ′ − U′)/Y′, with Y′ ̸= 0. Imposing the retarded boundary conditions N0 = −16 : X0 =
X′

0 = U0 = V0 = V′
0 = W0 = W ′

0 = 0 along with Y0 = 0, and Y′
0 = 10−2 (to avoid

divergences of scalar quantities), the system can be solved numerically with respect to f (Y).
It turns out that the function f (Y) that best fits the numerical solution is:

f (Y) = exp(αYn + β), (77)

with
(α, β, n) = (11.5, 7.16, 0.23). (78)

More precisely, the comparison between the numerical solution and the function in
Equation (77) is reported in Figure 1.

Figure 1. Comparison between the numerical solution of the system (76) (dashed line) and the

analytical function in Equation (77) (solid line), with the values for α, β, and n as in Equation (78).

Interestingly, notice that the function selected in this section by cosmographic consid-
eration can be framed within the function in Equation (30), selected by symmetries. This
means that the Noether’s approach is intrinsecally capable of selecting viable function
fitting cosmological observations. As we will see in the next section, the same shape of
the distorsion function will also be selected by Noether’s approach in spherical symmetry,
where will be studied in the weak field limit.
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6. Non-Local Gravity in Spherical Symmetry

After exploring the effects of non-local gravity in a cosmological context, now we apply
a similar approach to a spherically symmetric spacetime described by the following metric:

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − r2dΩ2. (79)

To find analytical solutions through the Noether symmetry approach and to derive a
set of equations of motion, we consider the spherically symmetric action:

S =
1

2κ

∫ √
−g
{

R[1 + f (ϕ)] + ε(r, t)(□ϕ − R)
}

d4x , (80)

where the auxiliary field ϕ is introduced to localize the dynamics. The configuration
space, denoted as Q, consists of the variables ν, λ, ϕ, ε since the scalar curvature can be
explicitly expressed in terms of the metric potentials eν and eλ. It is important to note that
the constraint

ν ≡ ν(r) = −λ(r), (81)

cannot be applied a priori; it arises as a consequence of resolving the field equations, and it
is related to the Schwarzschild solution.

The main goal of this section is to demonstrate that the free parameters in the spheri-
cally symmetric Lagrangian for a point-like particle, which are determined by the presence
of Noether symmetries, can be constrained through astronomical data, specifically data
from the S2 star orbiting around SgrA∗. These constraints are established within the weak
field limit and consider corrections to the Newtonian potential due to non-locality effects.

It is important to stress that the action written above is expressed in terms of the scalar
fields ε(r, t) and ϕ(r, t) using the same localization procedure as in the previous sections.
The Klein–Gordon equations for ϕ and ε are as follows:

δS

δϕ
= 0 → □ε = −R fϕ,

δS

δε
= 0 → □ϕ = R, (82)

whereas variations with respect to the metric yield the field equations:

[1 + f (ϕ)− ε]Gµν =
(

DµDν − gµν□
)

f (ϕ)− 1

2
gµνDαεDαϕ + DµεDνϕ. (83)

Before deriving the point-like Lagrangian, it is worth noting that the metric depends
on both the radial coordinate r and the time coordinate t. Therefore, the infinitesimal
generator ξµ consists of two components, namely, ξt and ξr. After considering the form of
the d’Alembert operator in spherical symmetry and integrating out the second derivatives,
the canonical Lagrangian is given by:

L(r, ν, λ) = e−
1
2 (λ+ν)

[
−eνr2νrϕr fϕ(ϕ) + eλr2λtϕt fϕ(ϕ)

− 2eν f (ϕ)
(

eλ + rλr − 1
)
− 2eλ+ν + 2eν + eνr2εrϕr + eνr2νrεr

− eλr2εtϕt − eλr2λtεt + 2eνε
(

eλ + rλr − 1
)
− 2eνrλr

]
, (84)

and the corresponding symmetry generator is

X = ξt∂t + ξr∂r + α∂ν + β∂λ + γ∂ϕ + δ∂ε. (85)

Applying Noether’s Theorem to the point-like Lagrangian (84), we identify two mod-
els as follows:
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Model 1 :
{
X = (ξ0t + ξt(r))∂t − 2ξ0∂ν + (γ0 + 2ξ0)∂ϕ + δ0(γ0 + 2ξ0)∂ε,

f (ϕ) = δ0ϕ + f1

(86)

Model 2:




X = (ξ0t + ξr(r))∂t −

ξ1

2
r∂r − (2ξ0 + ξ1)∂ν + γ0∂ϕ + ξ1(ε − δ0 − 1)∂ε,

f (ϕ) = δ0 + f1e
γ0
ξ1

ϕ
.

(87)

To explore the weak-field limit, we narrow down the range of solutions to a particular
subclass where the Birkhoff theorem holds, which means that both ν and λ are time-
independent. This assumption is quite reasonable as an initial approximation, given that in
the weak-field limit, a static and spherically symmetric spacetime adequately describes the
dynamics around SgrA∗. In light of this, let us recast the line element as:

ds2 = A(r)dt2 − B(r) dr2 − r2dΩ2. (88)

Our goal is to investigate the Post-Newtonian limit of the theory, aiming to constrain
the non-local action based on observations from the S2 star’s orbit around SgrA∗. To achieve
this, we perform an expansion of the metric components. We expand the g00 component
up to the sixth order and the g11 component up to the fourth, resulting in:

g00 ∼ O(6), g0i ∼ O(5) and gij ∼ O(4). (89)

These expansions yield the following expressions:





A(r) = 1 +
1

c2
Φ(r)(2) +

1

c4
Φ(r)(4) +

1

c6
Φ(r)(6) +O(8)

B(r) = 1 +
1

c2
Ψ(r)(2) +

1

c4
Ψ(r)(4) +O(6)

ϕ(r) = ϕ0 +
1

c2
ϕ(r)(2) +

1

c4
ϕ(r)(4) +

1

c6
ϕ(r)(6) +O(8)

ε(r) = ε0 +
1

c2
ε(r)(2) +

1

c4
ε(r)(4) +

1

c6
ε(r)(6) +O(8)

(90)

In the above expressions, Φ(r) and Ψ(r) represent the Newtonian potentials derived
from the expansion of g00 and g11, respectively, and ϕ0 and ε0 are constants. Setting
δ0 = f1 = 1, γ0 = ξ1 and taking into account the function in Equation (87), the Klein–
Gordon equations along with the field equations give rise to the following system:

2B2
(
−ε + eϕ + 2

)
+ rB′(−2ε − rε′ + reϕϕ′ + 2eϕ + 4

)

− B
[
−2ε + 2

(
−r2ε′′ + r2eϕϕ′′ + r2eϕ

(
ϕ′)2

+ 2reϕϕ′ + eϕ + 2
)
+ rε′

(
rϕ′ − 4

)]
= 0,

rA′(−2ε − rε′ + reϕϕ′ + 2eϕ + 4
)

− A
[
2B
(
−ε + eϕ + 2

)
+ 2ε + r2ε′ϕ′ + 4rε′ − 4reϕϕ′ − 2eϕ − 4

]
= 0,

A2
[
−4B2eϕ + rB′(rε′ − 4eϕ

)
+ B

(
−2r2ε′′ − 4rε′ + 4eϕ

)]

+ Br2
(
−eϕ

)(
A′)2

+ Ar
{

B
[
2reϕ A′′ + A′(4eϕ − rε′

)]
− reϕ A′B′} = 0,

A2
[
−4B2 − rB′(rϕ′ + 4

)
+ 2B

(
r2ϕ′′ + 2rϕ′ + 2

)]
+ B

(
−r2

)(
A′)2

+ Ar
{

B
[
2rA′′ + A′(rϕ′ + 4

)]
− rA′B′} = 0,

(91)

where the derivative with respect to r is denoted by a prime. We can express the solutions
to the above system in terms of the effective gravitational constant, Ge f f = GNϕc, with ϕc
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representing a real constant. Substituting the perturbations from Equation (90) into the
system, we obtain:

A(r) = 1 − 2GN Mϕc

c2r
+

G2
N M2

c4r2

[
14

9
ϕ2

c +
18rε − 11rϕ

6rεrϕ
r

]

−G3
N M3

c6r3


50rε − 7rϕ

12rεrϕ
ϕcr +

16ϕ3
c

27
−

r2
(

2r2
ε − r2

ϕ

)

r2
ε r2

ϕ


,

B(r) = 1 +
2GN Mϕc

3c2r
+

G2
N M2

c4r2

[
2ϕ2

c

9
+

(
3

2rε
− 1

rϕ

)
r

]
,

ϕ(r) =
4GN Mϕc

3c2r
− G2

N M2

c4r2

[(
11

6rε
+

1

rϕ

)
r − 2ϕ2

c

9

]

−G3
N M3

c6r3

[
r2

r2
ϕ

−
(

25

12rε
− 7

6rϕ

)
ϕcr − 4ϕ3

c

81

]
,

ε(r) = 1 +
G2

N M2

c4r2

[
2ϕ2

c

3
−
(

13

6rε
− 1

rϕ

)
r

]

+
G3

N M3

c6r3

[
20ϕ3

c

27
−
(

1

r2
ε
− 1

r2
ϕ

)
r2 −

(
131

36rε
+

1

6rϕ

)
ϕcr

]
,

The lengths scales rε and rϕ are related to the scalar fields ε and ϕ, which in turn are
connected to the concept of non-locality. Before considering the experimental observations
of the S2 star’s orbit, we must further constrain the free parameters ϕc. This can be achieved
by examining the second-order expansion of the potential Φ, i.e.,

Φ(2)(r) = −2GN M

r
ϕc, (92)

by means of which we deduce that the constant ϕc must be set to 1, thus recovering the
Newtonian potential as a specific limit. The other two free parameters, rϕ and rε, can be
constrained using a two-body simulation of S2 orbiting around SgrA∗. Let us define the
reduced mass µ as µ = M · ms/(M + ms), where M represents the mass of SgrA∗, and mS

is the mass of S2. According to the data available in Ref. [46], we vary the values of rε

and rϕ to identify solutions that yield a lower χ2 compared to the Keplerian orbit (where
χ2 ∼ 1.89). Following the approach of Refs. [47,48], we calculate the reduced χ2 as follows:

χ2 =
1

2N − ν

N

∑
i=1



(

xo
i − xc

i

σxi

)2

+

(
yo

i − yc
i

σyi

)2

, (93)

where (xo
i , yo

i ) and (xc
i , yc

i ) represent the observed and theoretical apparent positions, respec-
tively. N is the number of observations, ν is the number of initial conditions, and σxi and
σyi denote the uncertainties of the observed positions. The graphs in Figure 2 depict the χ2

values in different regions of the parameter space rϕ − rε.
From these graphs, it is evident that the optimal value for rϕ lies within the range

rϕ ∼ 0.1–2.5 AU. However, the analysis of the reduced χ2 primarily constrains the length
rϕ as rε is related to the non-dynamical scalar field ε, which serves as a mathematical tool
for localization purposes.
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Figure 2. Values of χ2 in the parameter space rϕ-rε. The lengths of rϕ and rε are reported in AU and

refer to the simulated orbits of S2 star providing a lower χ2 than the Keplerian orbit. Darker colors

refer to a lower χ2, namely, to a better fit.

To determine the potential energy in the weak-field limit, we can use the expansion of
the potential Φ, leading to the following expressions

Φ(2)(r) = −2GN M

r
ϕc,

Φ(4)(r) =
G2

N M2

r2

[
14

9
ϕ2

c +
18rε − 11rϕ

6rεrϕ
r

]
,

Φ(6)(r) =
G3

N M3

r3

[
7rϕ − 50rε

12rεrϕ
ϕcr − 16ϕ3

c

27
+

2r2
ε − r2

ϕ

r2
ε r2

ϕ

r2

]
, (94)

which allows us to calculate the energy as:

UNL =− GN M

r
ϕc +

G2
N M2

2c2r2

[
14

9
ϕ2

c +
18rε − 11rϕ

6rεrϕ
r

]

+
G3

N M3

2c4r3

[
7rϕ − 50rε

12rεrϕ
ϕcr − 16ϕ3

c

27
+

2r2
ε − r2

ϕ

r2
ε r2

ϕ

r2

]
.

(95)

This equation incorporates non-local corrections related to the function f (ϕ), which
enables us to calculate the precession per orbital period (see Figure 3).

In conclusion, by considering the values rϕ ∼ 1.2 AU and rε ∼ 1.1 AU, corresponding
to a χ2 of approximately 1.72, the comparison between the Keplerian orbit of the S2 star
and the non-local orbit is illustrated in Figures 4 and 5.
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Figure 3. Precession per orbital period in the parameter space rϕ-rε. Colors are darker when the

precession angles are lower.

Figure 4. The plot in the Figure contrasts the Keplerian orbit with the non-local orbit. The red dashed

line accounts for the Keplerian orbit, whereas the blue solid line represents the orbit derived from the

non-local theory. The parameters utilized correspond to those yielding the minimum χ2 value, while

∆α and ∆δ denote the coordinates of the S2 star.

Figure 5. The plot in the Figure displays the most optimal non-local gravity orbit, characterized by

parameters rϕ and rε that minimize the χ2 value, with ∆α and ∆δ denoting the coordinates of the

S2 star.

These figures demonstrate that certain regions align with observations even more
closely than the Keplerian model. This selection of the non-local action is fine-tuned to
make the scalar degrees of freedom, rϕ and rε, match astrometric data. The results highlight
that corrections from non-local gravity effects can be compared with data, presenting a
method for fitting astrophysical scales to reveal potential non-local effects. As a final
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remark, we want to point out that, when the non-local term is not present in the starting
action, the weak-field analysis provides a Yukawa-like potential for the resulting f (R)-like
model, in addition to the standard Newtonian potential. This is clearly shown in [49],
where the authors also study the orbits in f (R) gravity and the perihelion precession of
different planets in a Yukawa-like potential.

7. Gravitational Waves

Let us finally consider the function in Equation (34) and set δ1 = (n − 1), ξ0 = n = 1,
and q = 0, in order to study the presence of additional modes in the gravitational waves.
To this purpose, we plug a first-order expansion of the metric, namely,

gµν = ηµν + hµν +O
(

h2
)

, (96)

into the non-local field equations and obtain [50,51]

□h̄µν + 2
n

∑
k=1

αk

(
ηµν□

k+2 − ∂µ∂ν□
k+1
)

h̄ = −2T (0)
µν , (97)

where T (0)
µν is the zero-order matter energy-momentum tensor and h̄µν = hµν −

1

2
ηµνh. In

vacuum and in the k-space, the trace of the above equation becomes:

(
k2 + 6

n

∑
l=1

αl(−1)lk2(l+2)

)
ĥ(k) = 0, (98)

with ĥ(k) being the Fourier transformation of the metric perturbation h(x). Using the
inverse Fourier transformation of ĥ(k), i.e.,

h̄(x) =
∫

d4k

(2π)2
ĥ(k)eikαxα , (99)

we obtain

hµν(x) =
∫

d3k

(2π)3/2
Cµν(k)e

ikα
1 xα (100)

+
n+2

∑
m=2

∫
d3k

(2π)3/2

{
1

3

[
ηµν

2
+

(km)µ(km)ν

k2
m

]}
B̂m(k)e

ikα
mxα + c.c.

B̂m(k) =
Qm(k)

2
√

2πωm

∣∣∣6 ∑
n
l=1(l + 2)αl(−1)lω

2(l+1)
m + 1

∣∣∣
(101)

where Qm is a suitable complex function and ωm are the m-frequencies

ωm =
√

M2
m + |k|2, (102)

with Mm being the solutions of the linear equation

k2 + 6
n

∑
l=1

αl(−1)lk2(l+2) = 0. (103)

In order to investigate the polarizations and oscillation patterns of waves described by
Equation (100), we employ the geodesic deviation equation for a wave propagating along
the +z-direction within a local proper reference frame ẍi = −Ri

0k0xk. The tensor Ri
0k0 is
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the so called “electric” component of the Riemann tensor and can be written as a tensor
function of hµν as

R
(1)
i0j0 =

1

2

(
hi0,0j + h0j,i0 − hij,00 − h00,ij

)
. (104)

By substituting the relation ẍi = −Ri
0k0xk and the form of hµν (100) into Equation (104),

one obtains a system of three differential equations whose solution provides the polar-
ization modes of the gravitational waves. Keeping k fixed, setting k

µ
1 = (ω1, 0, 0, kz) and

ω2
1 − k2

z = 0, we obtain:





ẍ(t) = 1
2 ω2

1

[
ϵ̂(+)(ω1)x + ϵ̂(×)(ω1)y

]
eiω1(t−z) + c.c.

ÿ(t) = 1
2 ω2

1

[
ϵ̂(×)(ω1)x − ϵ̂(+)(ω1)y

]
eiω1(t−z) + c.c.

z̈(t) = 0

. (105)

The solutions correspond to the two polarization modes of GR, namely, the plus and
cross polarizations. These modes are linked to the purely transverse, massless nature of
2-helicity waves linked to the frequency ω1. On the other hand, it is also possible to obtain
other polarization modes by considering k

µ
m = (ωm, 0, 0, kz), ω2

m − k2
z = M2

m = k2
m ̸= 0,

which is equal to the square of m-th mass of scalar field (where m = 2, ,̈n + 2). In this case,
the system reads 




ẍ(t) = − 1
12 ω2

m B̂m(kz)xei(ωmt−kzz) + c.c.

ÿ(t) = − 1
12 ω2

m B̂m(kz)yei(ωmt−kzz) + c.c.

z̈(t) = − 1
12 M2

m B̂m(kz)zei(ωmt−kzz) + c.c.

. (106)

By integrating the above system, one obtains n + 1 further mixed massive scalar
modes, both transverse and longitudinal, with zero-helicity. The perturbation hµν can be
thus written as

hµν(t, z) =
1√
2

[
ϵ̂(+)(kz)ϵ

(+)
µν + ϵ̂(×)(kz)ϵ

(×)
µν

]
eiω1(t−z)

+
n+2

∑
m=2

ϵ̂
(sm)
µν (kz)e

i(ωmt−kzz) + c.c. , (107)

with ϵ̂(+) and ϵ̂(×) being the standard polarization modes of GR, that is,

ϵ
(+)
µν =

1√
2




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


, ϵ

(×)
µν =

1√
2




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 (108)

and with

ϵ̂
(sm)
µν (kz) =

[(
1

2
+

ω2
m

k2
m

)
ϵ
(TT)
µν −

√
2ωmkz

k2
m

ϵ
(TS)
µν − 1√

2
ϵ
(b)
µν

+

(
−1

2
+

k2
z

k2
m

)
ϵ
(l)
µν

]
B̂m(kz)

6
(109)
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admitting four polarization modes of the form

ϵ
(TT)
µν =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, ϵ

(TS)
µν =

1√
2




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


,

ϵ
(b)
µν =

1√
2




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


, ϵ

(l)
µν =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


. (110)

Three out of six modes, however, are negligible with respect to the others when the
gravitational wave speed approach c, namely, when the mass of the non-local gravitational
wave goes to zero, as pointed out in Ref. [52]. Therefore, only three modes survive, namely,
two massless 2-helicity tensor modes and one massive 0-helicity scalar mode, exactly like
f (R) gravity.

Let us conclude by pointing out that identifying additional modes, such as the scalar
mode derived in this context, serves as a significant indicator to distinguish and resolve the
ambiguities in modified gravity theories at a fundamental level.

8. Conclusions

In this work, we investigated various aspects of non-locality, with a primary focus on
non-local theories of gravity. More specifically, we explored three distinct categories of IKG
theories and identified the corresponding actions using the Noether Symmetry Approach.
In Section 4, we delved into a specific action depending on the scalar curvature and
containing the non-locality through the function F(R,□−1R). The presence of symmetries
enabled us to discover exact cosmological solutions that naturally account for accelerated
cosmic expansion, all without the need for fine-tuning parameters. It is important to
note that the models selected through these symmetries align with criteria related to
unitarity and super-renormalizability in certain effective theories of quantum gravity
(see [31,32,53,54] for further details). This observation suggests that the Noether Symmetry
Approach might serve as a criterion for selecting physically viable theories.

From this perspective, a prospective avenue for cosmological purposes within non-
local gravity theories involves constraining free parameters through observational data.
An example in this direction is detailed in Ref. [55].

Subsequently, after simplifying the action to a dual-scalar tensor theory, with a scalar field
non-minimally coupled to gravity, we derived the field equations in a FLRW-like universe.

To explore the cosmic dynamics, we employed dimensionless parameters and reformu-
lated the cosmological equations as a self-contained set of differential equations that dictate
the behavior of the effective EoS. Then, we examined the solutions within this system,
taking into account the non-local contributions introduced by the exponential function
f (ϕ) ∼ eαϕ, which naturally arise from Lagrangian symmetries. We then conducted a
phase-space analysis, identifying critical points and assessing their stability. By studying
linear perturbations of the dynamical system and the eigenvalues of the Jacobian matrix
at each fixed point, we sought to identify unstable points, saddle points, and attractor
solutions in the late-time context. Particularly intriguing were the solutions corresponding
to a matter-dominated universe and an accelerated universe, which act as cosmological
attractors if α < 0 and 1/3 < α < 5/9, respectively. Notably, for α = 1/2, we obtain
a de Sitter universe characterized by dominance of the cosmological constant, with the
associated fixed point being a stable attractor.

Consequently, we studied the physical implications of the non-local scenario in com-
parison to the ΛCDM and dark fluid models. To further corroborate the viability of the
model under consideration, it would be valuable to conduct a direct comparison with
cosmological observations through a numerical analysis employing Bayesian methods.
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This approach could place constraints on the parameter α and provide a comprehensive
understanding of cosmic evolution.

The incorporation of non-local terms in the gravitational Lagrangian offers a natural
means to regulate the transition from a matter-dominated phase to a late accelerated expansion,
potentially addressing cosmological tensions and other recent observational challenges.

Then, we explored a minimal non-local extension of GR in spherical symmetry and
again applied the Noether symmetry prescription to constrain the resulting model using
astrometric data from the S2 star orbit. The analysis involves adjusting the length scales to
minimize the reduced χ2 until it better matches experimental observations than traditional
Keplerian orbits. This development is significant because it highlights the feasibility of
directly investigating non-local effects through galactic-scale observations.

Another result of this work reveals the existence of a scalar gravitational mode, along-
side the conventional massless tensor modes, within a non-local gravity theory selected
by Noether symmetries. This theoretical framework can be viewed as a straightforward
expansion of GR, incorporating non-local corrections. The additional scalar mode emerges
when we examine plane waves, assuming the observer is positioned at a considerable
distance from the wave source.
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