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Abstract
The theory of Schwarzschild geodesics is revisited. Basing on a result by Weier-
strass and Biermann, we derive a formula describing all non radial, timelike and
null trajectories in terms of Weierstrass elliptic functions. Quite remarkably, a
single formula works for an entire geodesic trajectory, even if it passes through
turning points. Using this formula, we derive expressions for the proper and
coordinate time along the geodesic.
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1. Introduction

In this paper we revisit some elements of the theory of geodesics in the Schwarzschild space-
time. The motivation for repeating this classic calculation in a new form stems from the works
on the kinetic description of the Vlasov gas on the Schwarzschild spacetime and the accretion
of the Vlasov gas onto Schwarzschild black holes [13, 23, 25, 43–45, 53, 54]. In particular, we
were motivated by an ongoing project aiming at constructing Monte Carlo type simulations
of the gas consisting of collisionless particles moving around the Schwarzschild black hole.
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Having those applications in mind, we put special emphasis on unbounded trajectories—they
are neglected in many discussions, but they play a crucial role in the description of Bondi-type
accretion processes.

Existing descriptions of Schwarzschild geodesics differ in the parametrization and also in
types elliptic functions used to express the solutions. As usual, different prescriptions appear to
be more or less convenient, depending on the actual problem at hand. Our goal was to specify
the constants of motion (in particular the energy and the angular momentum) together with the
initial location of the particle, and obtain the corresponding trajectory in an exact and reliable
manner. We achieve this aim using Weierstrass elliptic functions, but our prescription turns
out to be different than existing ones (or at least the ones we are aware of). The main result
presented in this paper is a concise formula describing all types of timelike and null trajectories
in the Schwarzschild metric (except for the purely radial ones), based on a theorem due to
Biermann and Weierstrass.

The problem of an analytic description of the motion of test particles in the Schwarzschild
spacetime is nearly as old as the Schwarzschild solution itself. The first attempt to solve
geodesic equations in the Schwarzschild spacetime was published in 1917 by Droste, together
with a derivation of the Schwarzschild metric [18] (this paper is now also available as a ‘Golden
Oldie’ reprint [19]). Droste expressed his solution in terms of the Weierstrass elliptic function.
Thirteen years later Hagihara gave a full description of the motion of test particles around a
Schwarzschild black hole [34]. His work contains a complete characterization of all types of
allowed orbits and is now a classic position in the theory of Schwarzschild geodesics.

Simultaneously to the development of solutions based on Weierstrass functions, Forsyth,
Greenhill, Morton, Darwin, Mielnik, and Plebański succeeded in expressing Schwarzschild
geodesics in terms of Jacobi elliptic functions and Legendre integrals [16, 17, 21, 30, 47, 49].
Publication years of these papers span across several decades. As a historical remark, let us
note that the authors of references [16, 47], published in 1959 and 1962, already admitted that
their calculations could had been made almost forty years earlier, as all required mathematical
tools were already known at that time.

In subsequent years, researchers were mostly aware of the existence of two general ways
of solving Schwarzschild geodesic equations, choosing between them according to their pref-
erences and needs [8, 10, 15, 24, 26, 31, 32, 37–39, 42, 46, 50, 55, 56, 58–60, 62]. Similar
methods were also applied to an analysis of the geodesic motion in other spherically symmet-
ric spacetimes, for which geodesic equations are solvable [12, 14, 51, 61]. In some of such
cases equations of motion contain effectively a fifth degree polynomial expression, leading to
hyperelliptic abelian integrals [33, 40, 61].

A slightly different approach to the geodesic motion in the Schwarzschild metric was
recently proposed by Scharf [57]. Scharf’s analysis is based on a simplified version of a result
which we will refer to as the Biermann–Weierstrass formula.

According to references [29, 52, 65], around 1860 Weierstrass obtained a general solution
of an ordinary differential equation

d2x(t)
dt2

= αx(t)3 + βx(t)2 + γx(t) + δ, (1)

where α, β, γ, and δ are constant coefficients, which is roughly equivalent to an integral
problem

t =
∫ x(t)

x0

dx′√
f (x′)

, (2)
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where f is a quartic polynomial, and x0 = x(0). Weierstrasss’ solution was later published by
his student Biermann, as a part of his inaugural dissertation [6]. The Weierstrass–Biermann
formula is derived in Greenhill’s textbook [29]; it appears also in the classic textbook by
Whittaker and Watson [65]. On the other hand, it is absent in other textbooks dealing with
elliptic functions from that time [3, 9, 20, 35, 36], nor does it appear in standard textbooks
and tables used by physicists [1, 2, 5, 7, 11, 27].

The Biermann–Weierstrass formula for x = x(t) simplifies, if x0 is a zero of the
polynomial f , and this version is used by Scharf. In the context of the geodesic motion this
requirement restricts the choice of the starting (reference) point of the trajectory to turning
points. In our work, we start with the general Biermann–Weierstrass expression, and hence
this restriction is removed. A single formula (equation (36) of this article) describes all time-
like and null geodesic trajectories, except purely radial ones. Moreover, it is valid along the
entire trajectory, even if it passes through turning points. The latter fact is not immediately
obvious from the derivation of equation (36), but it can be shown using addition theorems for
elliptic functions.

The affine parameter and the coordinate time along a geodesic can be obtained as inte-
grals involving the Biermann–Weierstrass expression. While, in principle, they can be eval-
uated assuming the general form of equation (36), the resulting formulas are lengthy and
thus of little practical use. For completeness, we decided to provide appropriate expres-
sions for the affine parameter and the coordinate time, assuming the simplified version of the
Biermann–Weierstrass formula.

A proof of the Biermann–Weierstrass formula is given in appendix A; we decided to provide
this material, since existing, known to us proofs of the Biermann–Weierstrass formula are
rather hard to follow in detail. Apart from a sketch of the proof given in Biermann’s dissertation
[6], there is a proof in Greenhill’s textbook [29], and its more modern account in [52]. We fill
some minor gaps missing in [52].

The order of this paper is as follows. The next section specifies horizon-penetrating coor-
dinates used in this paper. Equations of motion are derived in section 3. The main result of
this paper—a single formula describing non-radial, timelike and null trajectories—is given in
section 4. In section 5 we discuss the range of the true anomaly parameter. The proper time
and the coordinate time along a geodesic are computed in sections 6 and 7, respectively. The
proof of the Biermann–Weierstrass formula is given in appendix A. Appendix B contains a
brief classification of timelike and null geodesics. In appendix C we evaluate certain elliptic
integrals, required to control the range of the true anomaly parameter for unbounded orbits.

Throughout the paper we use geometric units with c = G = 1, where c is the speed of
light, and G denotes the gravitational constant. The signature of the metric is assumed to be
(−,+,+,+). Spacetime dimensions are labeled with Greek indices, μ = 0, 1, 2, 3.

2. Horizon-penetrating coordinates

We will work in spherical coordinates (t, r, θ,ϕ). In its simplest form (in the so-called
Schwarzschild coordinates) the Schwarzschild metric can be written as

g = −N d̄t2 +
dr̄2

N
+ r̄2 dθ2 + r̄2 sin2 θ dϕ2, (3)

where

N = 1 − 2M
r̄

, (4)
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and M denotes the black hole mass. Since ultimately we envisage applications of geodesic
solutions to accretion problems, we will also need coordinates in which the metric is explicitly
regular at the horizon. Such coordinates can be easily obtained by a choice of the time foliation.
The transformation

t = t̄ +
∫ r̄[ 1

N(s)
− η(s)

]
ds, r = r̄, (5)

where η = η(r̄) is a function of radius r̄, yields the metric in the form

g = −Ndt2 + 2(1 − Nη)dt dr + η(2 − Nη)dr2 + r2 dθ2 + r2 sin2 θ dϕ2. (6)

The function η defines the time foliation. A popular choice η ≡ 1 leads to coordinates
which are manifestly regular at the horizon r = 2M, and which are sometimes referred to as
Eddington–Finkelstein coordinates. Note that since we only change the time foliation, the
radial coordinate r retains its interpretation as the areal radius.

Contravariant components of the metric (6) are given by

gtt = η(−2 + Nη), gtr = 1 − Nη, grr = N, gθθ =
1
r2

, gϕϕ =
1

r2 sin2 θ
. (7)

Moreover, (
gtr
)2 − grrgtt = 1. (8)

3. Geodesic motion

There are many well-known descriptions of the geodesic motion. In order to keep a connection
with the works [44, 45, 53, 54], we will work in the Hamiltonian framework. The Hamiltonian
H describing the geodesic motion of a free particle can be chosen as

H =
1
2

gμν(xα)pμpν . (9)

Here (xμ, pμ) are treated as canonical variables, and H depends on xα through gμν(xα). It is
easy to verify that the Hamilton equations

dxμ

ds̃
=

∂H
∂pμ

,
dpμ
ds̃

= − ∂H
∂xμ

(10)

lead to standard geodesic equations of the form

d2xμ

ds̃2
+ Γμ

αβ

dxα

ds̃
dxβ

ds̃
= 0. (11)

For timelike geodesics we choose the affine parameter s̃ as a rescaled proper time τ̃ , i.e.,
s̃ = τ̃ /m, where m is the particle rest mass. The four velocity uμ = dxμ/dτ̃ is normalized as
gμνuμuν = −1. We require that pμ = dxμ/ds̃, and that H = 1

2 gμν pμpν = − 1
2 m2.

For null geodesics m = 0 and H = 1
2 gμν pμpν = 0. In this case the affine parameter s̃ is

unique up to a transformation

s̃ → s̃′ = αs̃ + β, (12)
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with α > 0 and an arbitrary β. Such an affine reparametrization implies a rescaling of the
tangent vector

pμ → p′μ =
1
α

pμ. (13)

The explicit form of the Hamiltonian H, assuming metric (6), reads

H =
1
2

[
gtt(r)p2

t + 2gtr(r)pt pr + grr(r)p2
r +

1
r2

(
p2
θ +

p2
ϕ

sin2 θ

)]
. (14)

Since H depends neither on t nor on ϕ, the momentum components E ≡ −pt (the energy) and
lz ≡ pϕ are constants of motion. The Hamiltonian H is also independent of s̃, and hence it is
also conserved. A simple calculation allows one to check that the total angular momentum

l =

√
p2
θ +

p2
ϕ

sin2 θ
(15)

is another constant of motion.
The remaining momentum components pθ and pr can be expressed as

pθ = εθ

√
l2 − l2z

sin2 θ
(16)

and

pr =

gtr E + εr

√[
(gtr)2 − gttgrr

]
E2 − grr

(
m2 + l2

r2

)
grr

=
(1 − Nη)E + εr

√
E2 − Ũl,m(r)

N
,

(17)

where

Ũl,m(r) =

(
1 − 2M

r

)(
m2 +

l2

r2

)
(18)

is the radial effective potential, and where we have introduced the signs εθ = ±1, and εr = ±1,
corresponding to the directions of motion. Here and in what follows, the symbol ↘√ denotes
the non-negative branch of the square root. Equation (16) follows directly from equation (15).
Equation (17) can be obtained from the equality H = − 1

2 m2. Note also that, contrary to the
formula for pr, the expression for pr,

pr = εr

√
E2 − Ũl,m(r), (19)

does not depend on η. On the other hand

pt =
E
N

+ εr
1 − Nη

N

√
E2 − Ũl,m(r), (20)

and this expression enters the equations of motion listed below. Also note that, while for
εr = +1 (outgoing motion) the expression for pr diverges at the horizon, the corresponding
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expression for εr = −1 is perfectly regular (particles are allowed to fall into the black hole).
An expression for pr with εr = −1, manifestly regular at r = 2M, reads

pr = −ηE +
m2 + l2

r2

E +
√

E2 − Ũl,m(r)
. (21)

Equations dxμ/ds̃ = ∂H/∂pμ can be written as

dr
ds̃

=
∂H
∂pr

= εr

√
E2 − Ũl,m(r), (22a)

dϕ
ds̃

=
∂H
∂pϕ

=
lz

r2 sin2 θ
, (22b)

dθ
ds̃

=
∂H
∂pθ

=
εθ
r2

√
l2 − l2z

sin2 θ
, (22c)

dt
ds̃

=
∂H
∂pt

=
E
N

+ εr
1 − Nη

N

√
E2 − Ũl,m(r). (22d)

Note that the dependence on η appears only in equation (22d). In standard Schwarzschild
coordinates Nη ≡ 1 and dt/ds̃ = E/N.

It is convenient to work in dimensionless rescaled variables. For timelike geodesics we
define such variables as in [54], i.e., by

t = Mτ , r = Mξ, pr = mπξ , pθ = Mmπθ, E = mε, l = Mmλ, lz = Mmλz. (23)

In addition, a new affine parameter s is defined by

s̃ =
M
m

s. (24)

For null geodesics m = 0. We introduce an arbitrary mass parameter m̃ > 0, and define

t = Mτ , r = Mξ, pr = m̃πξ , pθ = Mm̃πθ, E = m̃ε, l = Mm̃λ, lz = Mm̃λz,

(25)

and s̃ = (M/m̃)s.
In terms of these dimensionless variables, the equations of motion (22) can be written as

dξ
ds

= εr

√
ε2 − Uλ(ξ), (26a)

dϕ
ds

=
λz

ξ2 sin2 θ
, (26b)

dθ
ds

= εθ
1
ξ2

√
λ2 − λ2

z

sin2 θ
, (26c)

dτ
ds

=
ε

N(ξ)
+ εr

1 − N(ξ)η(ξ)
N(ξ)

√
ε2 − Uλ(ξ), (26d)
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where N(ξ) = 1–2/ξ. The dimensionless radial potential reads

Uλ(ξ) =

(
1 − 2

ξ

)(
1 +

λ2

ξ2

)
= 1 − 2

ξ
+

λ2

ξ2
− 2λ2

ξ3
(27)

for timelike geodesics, and

Uλ(ξ) =

(
1 − 2

ξ

)
λ2

ξ2
(28)

for null ones.
It is well known that geodesic motion in the Schwarzschild spacetime is confined to a plane.

Choosing the coordinate system so that θ ≡ π/2, and dθ/ds ≡ 0, we get λ2 = λ2
z , and thus

λz = ±λ. We will adopt a convention with λ � 0 and define the angle in the orbital plane (the
so-called true anomaly) ψ = sgn(λz)ϕ. The relevant equations of motion can be written as

dξ
ds

= εr

√
ε2 − Uλ(ξ), (29a)

dψ
ds

=
λ

ξ2
, (29b)

dτ
ds

=
ε

N(ξ)
+ εr

1 − N(ξ)η(ξ)
N(ξ)

√
ε2 − Uλ(ξ). (29c)

System (29) can also be obtained by introducing standard orbital elements such as the orbital
inclination, the argument of periapsis, the argument of latitude, and the true anomaly (see, e.g.
[39]). Another possibility to (partially) decouple the equations of motion (26) is to introduce
the so-called Mino time [48].

A qualitative analysis of the effective radial potential allows for a general classification of
different types of orbits. This is done, to some extent, in appendix B, both for timelike and
null orbits. In general, we divide trajectories into bound and unbound ones. Unbound trajecto-
ries can either start at infinity and plunge into the black hole (we refer to such trajectories as
absorbed ones). The second large class of unbound trajectories consists of orbits characterized
by sufficiently large angular momentum. In this case the particles arriving from infinity are
scattered off the centrifugal barrier (these trajectories are referred to as scattered ones).

4. Solution of equations of motion

4.1. Timelike geodesics

We will start our analysis with timelike geodesics. Given the form of equation (29), it is natural
to treat ψ as a parameter and search for a solution of the form ξ = ξ(ψ). From (29a) and (29b)
we get immediately

dξ
dψ

= εr
ξ2

λ

√
ε2 − Uλ(ξ) = εr

√
ε2 − 1
λ2

ξ4 +
2
λ2

ξ3 − ξ2 + 2ξ. (30)

Defining

f (ξ) = a0ξ
4 + 4a1ξ

3 + 6a2ξ
2 + 4a3ξ + a4, (31)
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where

a0 =
ε2 − 1
λ2

, 4a1 =
2
λ2

, 6a2 = −1, 4a3 = 2, a4 = 0, (32)

one can write equation (30) as

dξ
dψ

= εr

√
f (ξ). (33)

For a segment of the trajectory for which εr is constant, we get

ψ = εr

∫ ξ

ξ0

dξ′√
f (ξ′)

, (34)

where ξ0 is an arbitrarily chosen radius corresponding to the angleψ = 0. We emphasize that√
is assumed to be non-negative.Weierstrass invariants of the polynomial f read (see appendix A)

g2 =
1

12
− 1

λ2
, (35a)

g3 =
1
63

− 1
12λ2

− ε2 − 1
4λ2

. (35b)

Therefore, thanks to the Biermann–Weierstrass theorem (see appendix A for a statement of
this theorem and the proof), we can write the formula for ξ = ξ(ψ) as

ξ(ψ) = ξ0 +
−εr

√
f (ξ0)℘′(ψ) + 1

2 f ′(ξ0)
[
℘(ψ) − 1

24 f ′′(ξ0)
]
+ 1

24 f (ξ0) f ′′′(ξ0)

2
[
℘(ψ) − 1

24 f ′′(ξ0)
]2 − 1

48 f (ξ0) f (4)(ξ0)
. (36)

Here ℘ is understood to be defined by the invariants g2, and g3 given by equation (35), i.e.,
℘(z) = ℘(z; g2, g3), and f is defined in equations (31) and (32).

We emphasize that formula (36) works in a much more general setting than described above.
It turns out to be valid also for trajectories along which the sign εr changes. This can be checked
numerically, but there is also a way to demonstrate this fact analytically. The argument can be
sketched as follows.

Denote the functions defined by equation (36) and corresponding to two different signs εr

as

ξ−(ψ; ξ0) = ξ0 +
+
√

f (ξ0)℘′(ψ) + 1
2 f ′(ξ0)

[
℘(ψ) − 1

24 f ′′(ξ0)
]
+ 1

24 f (ξ0) f ′′′(ξ0)

2
[
℘(ψ) − 1

24 f ′′(ξ0)
]2 − 1

48 f (ξ0) f (4)(ξ0)
(37)

and

ξ+(ψ; ξ0) = ξ0 +
−
√

f (ξ0)℘′(ψ) + 1
2 f ′(ξ0)

[
℘(ψ) − 1

24 f ′′(ξ0)
]
+ 1

24 f (ξ0) f ′′′(ξ0)

2
[
℘(ψ) − 1

24 f ′′(ξ0)
]2 − 1

48 f (ξ0) f (4)(ξ0)
. (38)

It follows from equation (34) that ξ−(ψ; ξ0) = ξ+(−ψ; ξ0).
Consider a particle moving initially inwards (i.e., with εr = −1) from a starting position

ξ0 to the turning point ξ1, for which f (ξ1) = 0, and then moving outwards (with εr = +1) up

8
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to a point with the radius ξ. The angle ψ corresponding to this motion can be expressed as
ψ = ψ1 + ψ2, where

ψ1 = −
∫ ξ1

ξ0

dξ′√
f (ξ′)

=

∫ ξ0

ξ1

dξ′√
f (ξ′)

, ψ2 =

∫ ξ

ξ1

dξ′√
f (ξ′)

. (39)

For both angles ψ1 and ψ2 we have, according to the Biermann–Weierstrass theorem
(equation (A.19)):

℘(ψ1) =
f ′(ξ1)

4(ξ0 − ξ1)
+

f ′′(ξ1)
24

, (40a)

℘(ψ2) =
f ′(ξ1)

4(ξ − ξ1)
+

f ′′(ξ1)
24

, (40b)

℘′(ψ1) = − f ′(ξ1)
√

f (ξ0)
4(ξ0 − ξ1)2

, (40c)

℘′(ψ2) = − f ′(ξ1)
√

f (ξ)
4(ξ − ξ1)2

. (40d)

The simplicity of the above formulas is, of course, due to the fact that f (ξ1) = 0. Using
expression (37) we get ξ1 = ξ−(ψ1; ξ0). The fact that the formula (37) describes the continu-
ation of the trajectory in the segment from ξ1 to ξ means that

ξ = ξ−(ψ1 + ψ2; ξ0) = ξ+(ψ2; ξ1) = ξ−(−ψ2; ξ1). (41)

While the above expression could, in principle, be checked directly, it is much easier to
check the corresponding relations involving Weierstrass ℘ functions. According to the addition
theorem for the Weierstrass elliptic function ℘, we have

℘(ψ1 − ψ2) =
1
4

[
℘′(ψ1) + ℘′(ψ2)
℘(ψ1) − ℘(ψ2)

]2

− ℘(ψ1) − ℘(ψ2). (42)

Inserting in the above formula the expressions for ℘(ψ1), ℘(ψ2), ℘′(ψ1), and ℘′(ψ2) given by
equation (40), we get, after some algebra,

℘(ψ1 − ψ2) =

√
f (ξ) f (ξ0) + f (ξ0)

2(ξ − ξ0)2
+

f ′(ξ0)
4(ξ − ξ0)

+
f ′′(ξ0)

24
, (43)

as predicted by the Biermann–Weierstrass formula (A.19). Deriving equation (43), we have
to remember that f is a fourth order polynomial given by equation (31), and f (ξ1) = 0. The
reason for considering the difference ψ1 − ψ2, instead of the sum ψ1 + ψ2, can be understood
in the light of equation (41) and the fact that ξ+(ψ2; ξ1) = ξ−(−ψ2; ξ1).

In summary, equation (36) can be used to describe any orbit with ψ = 0 for ξ = ξ0. The
sign εr in equation (36) can be understood as referring to the direction of motion at ψ = 0, and
it need not be changed as the trajectory passes through a turning point. This stays in a clear
contrast to the approaches based on Jacobi and Legendre elliptic functions, where one has to
deal with different types of orbits separately. Apart from this universality, the main practical
advantage of formula (36) is the fact that it does not require finding zeros of the polynomial
f . Of course, there are applications in which the knowledge about zeros of the polynomial f

9
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Figure 1. Sample of timelike inner bound orbits (type IIa) for λ = 4.2. Solid color lines
correspond to solutions obtained with equation (36). Dotted lines depict corresponding
numerical solutions.

is required—we require such knowledge indirectly in sections 5–7, dealing with the allowed
range of ψ, the proper and coordinate time s and τ , respectively. Note that

f (ξ) =
ξ4

λ2

[
ε2 − Uλ(ξ)

]
, (44)

and consequently zeros of the polynomial f are related to zeros of the expression ε2 − Uλ(ξ),
corresponding to turning points and discussed in appendix B. The Biermann–Weierstrass
expression is based on a transformation of the integral appearing on the right-hand side of
equation (34) to the Weierstrass form, i.e.,∫ ξ

ξ0

dξ′√
f (ξ′)

= ±
∫ ∞

w(x)

dw′√
4w′3 − g2w′ − g3

(45)

(see appendix A). Zeros of the polynomial W = 4w3 − g2w − g3 depend on the sign of the
discriminant Δ = g3

2 − 27g2
3. The case with Δ = 0 corresponds to λ = λc(ε), defined by

equation (B.6).
Figures 1–4 show various kinds of orbits obtained with the help of equation (36). Figure 1

depicts examples of bound inner orbits. Figure 2 shows a sample outer bound orbit. Unbound
absorbed orbits are shown in figure 3. Finally, a family of unbound scattered orbits is plotted in
figure 4. In all figures, the left panel depicts the radius ξ versus the angle ψ. Right panels show
the orbits in the orbital plane with Cartesian coordinates x, y. For comparison, in all cases we
draw the same orbits obtained by integrating geodesic equations numerically. These numerical
results are depicted with dotted or dashed lines.

4.2. Null geodesics

The reasoning for null geodesics is analogous. The equation defining the trajectory reads

dξ
dψ

= εr

√
ε2

λ2
ξ4 − ξ2 + 2ξ. (46)

10
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Figure 2. Sample of timelike outer bound orbits (type IIb) for λ = 4.2. Solid color lines
correspond to solutions obtained with equation (36). Dotted lines depict corresponding
numerical solutions.

Figure 3. Sample of timelike unbound absorbed orbits (type IIIa) for λ = 8. Solid color
lines correspond to solutions obtained with equation (36). Dotted lines depict corre-
sponding numerical solutions.

Adhering to the same notation as for timelike orbits, we set

f (ξ) = a0ξ
4 + 4a1ξ

3 + 6a2ξ
2 + 4a3ξ + a4 =

ε2

λ2
ξ4 − ξ2 + 2ξ, (47)

i.e.,

a0 =
ε2

λ2
, a2 = −1

6
, a3 =

1
2

, (48)

11
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Figure 4. Sample of timelike unobound scattered orbits (type IIIb) for λ = 9.68. Solid
color lines correspond to solutions obtained with equation (36). Dotted lines depict
corresponding numerical solutions.

Figure 5. Sample of null bound orbits (type II) for λ = 4.2. Solid color lines correspond
to solutions obtained with equation (36). Dotted lines depict corresponding numerical
solutions.

and a1 = a4 = 0. The Weierstrass invariants can be written as

g2 =
1

12
, (49a)

g3 =
1

216
− ε2

4λ2
. (49b)

With these modifications, remaining equations of the previous subsection hold for null
geodesics as well. In particular, equation (36), with f (ξ) and the Weirestrass invariants given
by equation (47) and (49), is valid also for null geodesics.

12
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Figure 6. Sample of null unbound absorbed orbits (type IIIa) for λ = 8. Solid color lines
correspond to solutions obtained with equation (36). Dotted lines depict corresponding
numerical solutions.

Figure 7. Sample of null unbound absorbed orbits (type IIIa) for λ = 9.68. Solid color
lines correspond to solutions obtained with equation (36). Dotted lines depict corre-
sponding numerical solutions.

Figures 5–7 show a sample of null trajectories obtained with equation (36). As for timelike
geodesics, dotted lines depict solutions obtained numerically.

5. The range of ψ

In practical applications, one may need to control the allowed range of the parameter ψ or to
compute the values of ψ referring to certain points at the trajectory (pericenter, apocenter).

13
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In particular, for unbound scattered orbits the angles ψ∞± corresponding to the asymptotics
ξ →∞ could be obtained from the equation

℘(ψ∞±) =
1
24

f ′′(ξ0) ±
√

1
96

f (ξ0) f (4)(ξ0), (50)

i.e., from the requirement that the denominator in equation (36) vanishes.
For unbound trajectories of particles that fall into the black hole, the sign εr is constant along

the trajectory. As a consequence, one can use equation (A.19) of appendix A applied directly
to the integral in equation (34). This yields

lim
ξ→∞

℘(ψ) = lim
ξ→∞

[√
f (ξ) f (ξ0) + f (ξ0)

2(ξ − ξ0)2
+

f ′(ξ0)
4(ξ − ξ0)

+
f ′′(ξ0)

24

]

=
f ′′(ξ0)

24
+

√
a0 f (ξ0)

2
=

1
24

f ′′(ξ0) +

√
1
96

f (ξ0) f (4)(ξ0)

= ℘
(
ψ∞+

)
, (51)

meaning that ψ∞+ is the relevant angle in this case.
Note that in order to get ψ∞± directly form equation (50), one would have to invert (locally)

the Weierstrass function ℘, which is troublesome in practical applications, as ℘ is not a one to
one map.

In appendix C, we express the function

X(ξ0) =
∫ ∞

ξ0

dξ√
f (ξ)

(52)

for an unbound scattered timelike or null trajectory in terms of the Legendre elliptic integrals.
The result reads

X(ξ) =
1√

y3 − y1

⎡
⎣F

⎛
⎝arccos

√
y2 +

1
12 − 1

2ξ

y2 − y1
, k

⎞
⎠− F

⎛
⎝arccos

√
y2 +

1
12

y2 − y1
, k

⎞
⎠
⎤
⎦, (53)

where y1 < y2 < y3 are real zeros of the polynomial 4y3 − g2y − g3, and k2 = (y2 − y1)/
(y3 − y1).

For a particle arriving from infinity at a scattered trajectory, the angles ψ∞± can be obtained
in a way illustrated in figure 8. Let ξ0 be a location of an incoming particle, with εr = −1,
corresponding to ψ = 0. The angle ψ∞+ < 0 can be expressed as ψ∞+ = −X(ξ0). Denote the
location of the pericenter as ξper; suppose it corresponds to ψ = ψ̃. We have

ψ̃ + |ψ∞+| = ψ̃ − ψ∞+ = X(ξper). (54)

Since the orbit is symmetric with respect to ξper, one can express ψ∞− as

ψ∞− = 2ψ̃ + |ψ∞+| = 2X(ξper) − |ψ∞+| = 2X(ξper) − X(ξ0). (55)

For an unbound absorbed trajectory the parameter ψ∞+ can be expressed as before by
ψ∞+ = −X(ξ0) (we take εr = −1), but an explicitly real expression for X(ξ0) is different, and
it is given by equations (C.15) and (C.17) of appendix C.

14
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Figure 8. Trajectory of a scattered particle in the motion plane. The radius ξper and the
angle ψ̃ correspond to the pericenter.

For all types of trajectories—bounded and unbounded ones—one can define the integral

Y(ξ0; ξ̃) =
∫ ξ̃

ξ0

dξ√
f (ξ)

, (56)

which we also compute in appendix C.
Finally note that for scattered trajectories the values ψ∞± yield the bending (or deflec-

tion) angle in the Schwarzschild spacetime, which has been studied both for timelike and null
geodesics [22, 41, 63, 64].

6. Affine parameter (proper time)

In this section we compute the affine parameter s associated with a given angle ψ. For timelike
geodesics the value of s is related to the proper time τ̃ by τ̃ = Ms.

Given an expression for ξ = ξ(ψ), the corresponding affine parameter can be computed by
integrating equation (29b), i.e., as

s(ψ) =
1
λ

∫ ψ

0
ξ2
(
ψ′)dψ′. (57)

Integrating the square of expression (36) is, in principle, possible, but it is tedious, and the result
seems to be too complicated to be useful in practical applications. Much simpler formulas can
be obtained using equation (29b) with the reference position taken at a zero of the polynomial
f (ξ).

15
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Let ξ1 denote a radius such that f (ξ1) = 0 (usually a periapsis or an apoapsis); assume that
it corresponds to ψ = 0. The radius ξ corresponding to an angle ψ reads

ξ(ψ) = ξ1 +
1
4 f ′(ξ1)

℘(ψ) − 1
24 f ′′(ξ1)

(58)

(irrespectively of the radial direction of motion, i.e., the value of εr). The affine parameter
elapsed during the motion from ψ = 0 to some ψ = ψ2 can be written as

s∗(ψ2; ξ1) =
1
λ

∫ ψ2

0

{
ξ2

1 +
1
2 f ′(ξ1)ξ1

℘(ψ) − 1
24 f ′′(ξ1)

+
1

16

[
f ′(ξ1)

]2[
℘(ψ) − 1

24 f ′′(ξ1)
]2
}

dψ.

(59)

The above integral can be computed with the help of the following two integral formulas
([7], p 312 and [27], p 626):

I1(x; y) =
∫

dx
℘(x) − ℘(y)

=
1

℘′(y)

(
2ζ(y)x + ln

σ(x − y)
σ(x + y)

)
, (60)

I2(x; y) =
∫

dx

(℘(x) − ℘(y))2 = − ℘′′(y)
℘′3(y)

ln
σ(x − y)
σ(x + y)

− 1
℘′2(y)

(
ζ(x + y) + ζ(x − y) +

(
2℘(y) +

2℘′′(y)ζ(y)
℘′(y)

)
x

)
, (61)

where ζ(x) and σ(x) denote the Weierstrass functions ζ(x; g2, g3) andσ(x; g2, g3), respectively.
We have

s∗(ψ2, ξ1) =
1
λ

{
ξ2

1ψ2 +
1
2

f ′(ξ1)ξ1[I1(ψ2; y) − I1(0; y)]

+
1
16

[
f ′(ξ1)

]2
[I2(ψ2; y) − I2(0; y)]

}
, (62)

where ℘(y) = 1
24 f ′′(ξ1) or y = ℘−1

(
1
24 f ′′(ξ1)

)
. Usually, using the inverse of the Weierstrass

function is troublesome, since ℘ is not a one-to-one function. Fortunately, in formula (62), one
is permitted to choose any y satisfying the above condition.

We now invoke to the reasoning from the end of the previous section. Consider a motion of
a particle starting from an arbitrary location ξ0 and moving inwards, up to a periapsis with the
radius ξ1 (thus f (ξ1) = 0). Next the particle moves outwards, up to a location with a radius ξ.
Define the angles ψ1 and ψ2 by equation (39). Both angles satisfy ψ1 � 0 and ψ2 � 0. Let
ψ = ψ1 + ψ2. Because of symmetry, the proper time of the entire motion can be written as

s(ψ) = s∗(ψ1; ξ1) + s∗(ψ2; ξ2) = s∗(ψ1; ξ1) + s∗(ψ − ψ1; ξ1). (63)

Formula (63) can be understood as a replacement for integral (57) with ξ(ψ) given by
equation (36). Note that, since s∗(ψ2; ξ1) is an odd function of ψ2, we get s(ψ = 0) = 0,
as expected. It can also be checked that the same formula holds for ξ1 corresponding to an
apoapsis, provided that definitions (39) are changed accordingly, so that ψ1 � 0 and ψ2 � 0.
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7. Coordinate time

The coordinate time τ can be obtained in a way similar to the calculation of the affine
parameter s. Consider a trajectory originating at ξ = ξ0, ψ = 0, τ = 0. The coordinate time
corresponding to the lapse of the parameter ψ can be computed by integrating equation (29).
Combining equations (29b) and (29c), one gets

τ (ψ) = T1(ψ) + T2(ψ), (64)

where

T1(ψ) =
ε

λ

∫ ψ

0

ξ2(ψ′)
N(ξ(ψ′))

dψ′ =
ε

λ

∫ ψ

0

ξ2(ψ′)
1 − 2

ξ(ψ′)

dψ′ (65)

and

T2(ψ) =
1
λ

∫ ψ

0

εrξ
2(ψ′)

[
1 − N(ξ(ψ′))η(ξ(ψ′))

]√
ε2 − Uλ(ξ(ψ′))

N(ξ(ψ′))
dψ′

=

∫ ξ(ψ)

ξ0

[
1

1 − 2
ξ′
− η(ξ′)

]
dξ′. (66)

The second equality in equation (66) follows from equation (29a).
The integral T2 is clearly gauge-dependent. In the standard Schwarzschild coordinates

η(ξ) = 1/N(ξ), and T2 ≡ 0. Of course,

T2(ψ) =
∫ ξ(ψ)

ξ0

[
1

1 − 2
ξ′
− η(ξ′)

]
dξ′ = ξ(ψ) − ξ0 + 2 ln

ξ(ψ) − 2
ξ0 − 2

−
∫ ξ(ψ)

ξ0

η(ξ′)dξ′. (67)

With the help of the identity

ξ2

1 − 2
ξ

= ξ2 + 2ξ + 4 +
8

ξ − 2
, (68)

integral (65) can be written as

T1(ψ) =
ε

λ

[∫ ψ

0
ξ2(ψ′)dψ′ + 2

∫ ψ

0
ξ(ψ′)dψ′ + 4ψ + 8

∫ ψ

0

1
ξ(ψ′) − 2

dψ′
]
. (69)

In analogy to the discussion of the previous section, we will start the computation of T1

considering at first the special case of a trajectory originating at a turning point ξ = ξ1, ψ = 0,
such that f (ξ1) = 0. In this case the radius ξ = ξ(ψ) is given by equation (58). The lapse of
the function T1 during the motion from ψ = 0 to ψ = ψ2 can be expressed as

T1∗(ψ2) = εs∗(ψ2; ξ1) +
ε

λ

{
2ξ1ψ2 +

1
2

f ′(ξ1)[I1(ψ2; y) − I1(0; y)] + 4ψ2

}

+
8ε
λ

∫ ψ2

0

1

ξ1 − 2 + (1/4) f ′(ξ1)
℘(ψ′ )−(1/24) f ′′(ξ1)

dψ′, (70)
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where ℘(y) = 1
24 f ′′(ξ1) and the function I1 is defined by equation (60). The last integral can be

written in the form∫ ψ2

0

1

ξ1 − 2 + (1/4) f ′(ξ1)
℘(ψ′)−(1/24) f ′′(ξ1)

dψ′

=
1

ξ1 − 2

∫ ψ2

0
1 −

f ′(ξ1)
4(ξ1−2)

℘(ψ) − ℘(z)
dψ′

=
1

ξ1 − 2

{
ψ2 −

f ′(ξ1)
4(ξ1 − 2)

[I1(ψ2; z) − I1(0; z)]

}
, (71)

where ℘(z) = 1
24 f ′′(ξ1) − f ′(ξ1)

4(ξ1−2) . Equation (70) can now be written as

T1∗(ψ2) = εs∗(ψ2; ξ1) +
ε

λ

{
2ξ2

1

ξ1 − 2
ψ2 +

1
2

f ′(ξ1)[I1(ψ2; y) − I1(0; y)]

− 2 f ′(ξ1)
(ξ1 − 2)2

[I1(ψ2; z) − I1(0; z)]

}
. (72)

The next step proceeds as in the previous section. Consider a particle on a trajectory orig-
inating at the radius ξ0 and ψ = 0, moving inwards to the turning point ξ = ξ1, ψ = ψ1, and
then continuing outwards, up to a location with an arbitrary radius ξ = ξ(ψ). Let ψ = ψ1 + ψ2,
ψ1 � 0, ψ2 � 0, where ψ1 and ψ2 are given by (39). Thanks to symmetry

T1(ψ) = T1∗(ψ1; ξ1) + T1∗(ψ2; ξ2) = T1∗(ψ1; ξ1) + T1∗(ψ − ψ1; ξ1). (73)

Again, the same formula holds for a particle moving initially outwards, provided that the signs
in the definitions of ψ1 and ψ2 are suitably adjusted.

8. Summary

We have revisited the theory of timelike and null geodesics in the Schwarzschild spacetime.
The novel aspect of our work is the application of the Biermann–Weierstrass theorem to the
description of Schwarzschild geodesics. A single formula (36) describes all types of timelike
or null geodesic orbits, except for purely radial ones. Working with a single formula gives an
advantage in those applications, in which one is forced to deal with many different orbits at the
same time. We should emphasize that, in contrast to standard numerical methods, equation (36)
yields exact solutions for arbitrary evolution times, even in the case of dynamically unstable
orbits.

Our motivation comes from works on kinetic description of relativistic gases. Hence, we
parameterize geodesics with conserved quantities (the energy and the angular momentum of
the particle) and the particle initial location. Although such a parametrization is natural (and
perhaps also the most popular), it might not be optimal in some applications, especially in the
context of null geodesics, in which case specifying the locations of the emitter and the observer
could by more convenient (cf [28]).

The Biermann–Weierstrass method of this paper is fairly general, and it is deliberately pre-
sented as such in this paper. We choose as our example the Schwarzschild spacetime, but a
generalization to a large class of spherically symmetric metrics is straightforward, the Reiss-
ner–Nordström spacetime being one of natural possibilities. This fact opens up a variety of
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applications, including astrophysical ones, related to testing the nature of astrophysical black
holes, both in the context of light propagation and the motion of massive particles (see, e.g. [4]).
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Appendix A. Biermann–Weierstrass theorem

The proofs of lemma A.1 and theorem A.2 given below are adapted from references
[6, 29, 52].

For any quartic polynomial

f (x) = a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4, (A.1)

we express its Weierstrass invariants ([65], p 453) as

g2 ≡ a0a4 − 4a1a3 + 3a2
2, (A.2a)

g3 ≡ a0a2a4 + 2a1a2a3 − a3
2 − a0a2

3 − a2
1a4. (A.2b)

The Weierstrass elliptic function ℘ satisfies the integral formula

z ≡
∫ ∞

℘(z;g2,g3)

dw√
4w3 − g2w − g3

; (A.3)

the derivative of ℘ satisfies the relation[
d℘(z; g2, g3)

dz

]2

= 4℘(z; g2, g3)3 − g2℘(z; g2, g3) − g3. (A.4)

In what follows, we will use an abbreviated notation: ℘(z) = ℘(z; g2, g3), ℘′(z) =
d℘(z; g2, g3)/dz.

Lemma A.1. (Euler 1761). Let f (x) = a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4. The differen-
tial equation

dy
dx

=

√
f (y(x))√

f (x)
(A.5)

has an integral of the form[√
f (x) +

√
f (y(x))

x − y(x)

]2

= a0[x + y(x)]2 + 4a1[x + y(x)] + w′, (A.6)
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where w′ is an integration constant. Similarly, equation

dy
dx

= −
√

f (y(x))√
f (x)

(A.7)

has an integral of the form

[√
f (x) −

√
f (y(x))

x − y(x)

]2

= a0[x + y(x)]2 + 4a1[x + y(x)] + w′, (A.8)

Proof. The following proof is due to Lagrange [29]. For simplicity, we only give the proof
of equation (A.6). Equation (A.8) can be proved in an analogous way.

Let us introduce a new independent variable Λ such that dx/dΛ =
√

f (x). With a slight
abuse of notation we write y(Λ) = y(x(Λ)). It follows that dy/dΛ =

√
f (y(Λ)). Define p(Λ) =

x(Λ) + y(Λ) and q(Λ) = x(Λ) − y(Λ), so that

dp
dΛ

=
√

f (x(Λ)) +
√

f (y(Λ)),
dq
dΛ

=
√

f (x(Λ)) −
√

f (y(Λ)). (A.9)

Differentiating further with respect to Λ, one gets

d2 p

dΛ2 =
1
2

[
f ′(x(Λ)) + f ′(y(Λ))

]
=

1
2

a0
(

p3 + 3pq2
)
+ 3a1

(
p2 + q2

)
+ 6a2 p+ 4a3 (A.10)

and

dp
dΛ

dq
dΛ

= f (x(Λ)) − f (y(Λ)) =
1
2

a0 pq
(

p2 + q2
)
+ a1q

(
3p2 + q2

)
+ 6a2 pq + 4a3q.

(A.11)

Hence

2
q2

dp
dΛ

d2 p

dΛ2 − 2
q3

dq
dΛ

(
dp
dΛ

)2

= 2a0 p
dp
dΛ

+ 4a1
dp
dΛ

. (A.12)

The above equation can be readily integrated, yielding

(
1
q

dp
dΛ

)2

= a0 p2 + 4a1 p+ w (A.13)

or, equivalently,

[√
f (x) +

√
f (y(x))

x − y(x)

]2

= a0(x + y)2 + 4a1(x + y) + w′, (A.14)

where w′ is an integration constant. �

Theorem A.2. (Biermann–Weierstrass). Let

f (x) = a0x4 + 4a1x3 + 6a2x2 + 4a3x + a4, (A.15)
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be a quartic polynomial. Denote the Weierstrass invariants of f by g2 and g3, i.e.,

g2 ≡ a0a4 − 4a1a3 + 3a2
2, (A.16a)

g3 ≡ a0a2a4 + 2a1a2a3 − a3
2 − a0a2

3 − a2
1a4. (A.16b)

Let

z(x) =
∫ x

x0

dx′√
f (x′)

, (A.17)

where x0 is any constant, not necessarily a zero of f (x). Then

x = x0 +
−
√

f (x0)℘′(z) + 1
2 f ′(x0)

(
℘(z) − 1

24 f ′′(x0)
)
+ 1

24 f (x0) f ′′′(x0)

2
(
℘(z) − 1

24 f ′′(x0)
)2 − 1

48 f (x0) f (4)(x0)
,

(A.18)

and

℘(z) =

√
f (x) f (x0) + f (x0)

2(x − x0)2
+

f ′(x0)
4(x − x0)

+
f ′′(x0)

24
, (A.19a)

℘′(z) = −
[

f (x)
(x − x0)3

− f ′(x)
4(x − x0)2

]√
f (x0) −

[
f (x0)

(x − x0)3
+

f ′(x0)
4(x − x0)2

]√
f (x),

(A.19b)

where ℘(z) = ℘(z; g2, g3) is the Weierstrass function corresponding to invariants (A.16).

Proof. In what follows, we assume that z, x, and x0 are real. We also assume that f (x) � 0
in the interval (x0, x). Hence z > 0 for x > x0, and conversely z < 0 for x < x0. In the first step
of the proof, we show that the integral (A.17) can be transformed to the Weierstrass form, i.e.,
there exists a transformation w = w(x) such that

z(x) =
∫ x

x0

dx′√
f (x′)

= ±
∫ w(x)

w(x0)

dw′√
4w′3 − g2w′ − g3

. (A.20)

Quite remarkably, such a transformation is related to formula (A.6) of lemma A.1. Let us take

w(x) =
1
4

[√
f (x) +

√
f (y)

x − y

]2

− 1
4

a0(x + y)2 − a1(x + y) − a2, (A.21)

where y is treated as a parameter. Note that w = 1
4w

′ − a2, where w′ is the constant appearing
in equation (A.6). A straightforward computation yields

dw
dx

= −A(x, y)√
f (x)

, (A.22)
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where

A(x, y) =

[
f (x)

(x − y)3
− f ′(x)

4(x − y)2

]√
f (y) +

[
f (y)

(x − y)3
+

f ′(y)
4(x − y)2

]√
f (x).

(A.23)

In the following, we restrict ourselves to the range in which dw/dx (and hence also A(x, y)) has
a definite sign, so that the map x → w(x) constitutes a valid change of the integration variable.
One can show that A2(x, y) = W(w(x)), where W = 4w3 − g2w − g3, and the invariants g2 and
g3 are given by equation (A.16). Consequently, A(x, y) = ε

√
W(w(x)), where ε = ±1. This

proves equation (A.20). More precisely,

z(x) =
∫ x

x0

dx′√
f (x′)

= −ε

∫ w(x)

w(x0)

dw′√
4w′3 − g2w′ − g3

= ε

∫ w(x0)

w(x)

dw′√
4w′3 − g2w′ − g3

. (A.24)

Setting y = x0 in equation (A.21), we get w →+∞ for x → x0. As a consequence, one obtains

z(x) =
∫ x

x0

dx′√
f (x′)

= ε

∫ ∞

w(x)

dw′√
4w′3 − g2w′ − g3

. (A.25)

Note that ε = +1 for x > x0, and ε = −1 for x < x0. It follows that w(x) can be written as
w(x) = ℘(εz(x); g2, g3) = ℘(z(x); g2, g3) and

√
W(w(x)) = −ε℘′(z(x); g2, g3) (the last relation

can be obtained directly by differentiating equation (A.25) with respect to x).
It is easy to check that w defined by equation (A.21) can be also written as

w =
F1(x, y) +

√
f (x) f (y)

2(x − y)2
, (A.26)

where F1(x, y) = f (y) + 1
2 f ′(y)(x − y) + 1

12 f ′′(y)(x − y)2. It is a positive root of the quadratic
equation

(x − y)2w2 − F1(x, y)w + F2(x, y) = 0, (A.27)

where

F2(x, y) =
F1(x, y)2 − f (x) f (y)

4(x − y)2
. (A.28)

Using the relation

f (x) = f (y) + f ′(y)(x − y) +
1
2

f ′′(y)(x − y)2 +
1
6

f ′′′(y)(x − y)3 +
1

24
f (4)(y)(x − y)4,

(A.29)

one can transform equation (A.27) into the form
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[
w2 − 1

12
w f ′′(y) +

1
576

f ′′(y)2 − 1
96

f (y) f 4(y)

]
(x − y)2

+

[
−1

2
w f ′(y) +

1
48

f ′(y) f ′′(y) − 1
24

f (y) f ′′′(y)

]
(x − y)

− w f (y) +
1

16
f ′(y)2 − 1

12
f (y) f ′′(y) = 0, (A.30)

which is a quadratic equation with respect to x − y. Solutions of this equation can be
written as

x − y =
±
√

f (y)
√

W + 1
2 f ′(y)

[
w − 1

24 f ′′(y)
]
+ 1

24 f (y) f ′′′(y)

2
[
w − 1

24 f ′′(y)
]2 − 1

48 f (y) f (4)(y)
. (A.31)

A close inspection shows that the plus and minus sign in the above expression is correlated
with the sign of x − y. We have

x − y =
+
√

f (y)
√

W + 1
2 f ′(y)

[
w − 1

24 f ′′(y)
]
+ 1

24 f (y) f ′′′(y)

2
[
w − 1

24 f ′′(y)
]2 − 1

48 f (y) f (4)(y)
(A.32)

for x > y, and

x − y =
−
√

f (y)
√

W + 1
2 f ′(y)

[
w − 1

24 f ′′(y)
]
+ 1

24 f (y) f ′′′(y)

2
[
w − 1

24 f ′′(y)
]2 − 1

48 f (y) f (4)(y)
(A.33)

for x < y. This observation follows from noticing thatw(x) is a decreasing function of x for x >
y and an increasing function of x for x < y (cf equation (A.22)), and from inspecting the lim-
its of the above expressions for w→+∞. Given that ℘′(z(x); g2, g3) = −ε

√
W(w(x)) = −A

(x, x0), and returning to our choice y = x0, we write the expression for x as

x = x0 +
−
√

f (x0)℘′(z) + 1
2 f ′(x0)

[
℘(z) − 1

24 f ′′(x0)
]
+ 1

24 f (x0) f ′′′(x0)

2
[
℘(z) − 1

24 f ′′(x0)
]2 − 1

48 f (x0) f (4)(x0)
,

(A.34)

i.e., in the form of equation (A.18). Equation (A.19) follow directly from equations (A.23) and
(A.26). �

Appendix B. Classification of trajectories

B.1. Timelike trajectories

Qualitative behavior of timelike trajectories depend on the properties of the dimensionless
effective radial potential (27). The motion of a massive particle is only possible in regions
where

ε2 − Uλ(ξ) � 0. (B.1)
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For 0 � λ2 � 12, Uλ(ξ) is a monotonically increasing function of ξ, growing from 0 at ξ = 2
to Uλ(ξ) → 1 for ξ →∞. For λ2 > 12, Uλ(ξ) has two local extrema: a local minimum at

ξmin =
λ2

2

(
1 +

√
1 − 12

λ2

)
, (B.2)

and a local maximum at

ξmax =
λ2

2

(
1 −

√
1 − 12

λ2

)
(B.3)

(see e.g. [54]). The location of the minimum ξmin grows monotonically from 6 to infinity, as λ2

increases from 12 to infinity. At the same time, the radius ξmax decreases monotonically from
6 to 3. We have

Uλ(ξmin) =
8
9
+

λ2 − 12
9ξmin

, Uλ(ξmax) =
8
9
+

λ2 − 12
9ξmax

. (B.4)

The value Uλ(ξmin) grows from 8/9 to 1, as λ2 increases from 12 to infinity. Simultaneously,
the value Uλ(ξmax) grows from 8/9 to infinity. For λ2 � 16, the value of the potential at the
maximum is always greater than or equal to one; otherwise, it is smaller.

Consider an equation

Uλ(ξmax) = ε2, (B.5)

i.e., a limiting case of inequality (B.1), where ξmax is given by equation (B.3). A solution of
equation (B.5) with respect to λ2 reads

λc(ε)2 =
12

1 − 4(
3ε√

9ε2−8
+1

)2

. (B.6)

In other words, λc(ε) denotes the value of the angular momentum for which the radial potential
at the local maximum is equal to ε2. It turns out to be particularly useful in classifying different
types of timelike trajectories.

There are three main types of orbits: radial, bound, and unbound. They can be characterized
as follows.

• Type I (radial orbits). This class consists of trajectories for which λ2 = 0. Test particles
move radially.

• Type II (bound orbits). Bound orbits never reach ξ = ∞. They can be divided into the
following sub-types:

∗ Inner orbits. This is a class of bound orbits with at least one of the endpoints
beneath the black hole horizon. Forλ2 < 12, this is the only type of bound orbits.
The energy associated with such orbits is limited by ε2 < 1 for λ2 < 16 and
ε2 � Uλ(ξmax) for 16 � λ2. Forλ2 � 12, there are limiting cases with λ = λc(ε),
in which the orbits can spiral asymptotically towards ξ = ξmax.

∗ Outer orbits. These are trajectories trapped in a potential well, which can exist for
3 < ξmax � ξ. In the generic case of outer bound orbits, the equation ε2 = Uλ(ξ)
has three positive roots ξ1, ξ2, ξ3, satisfying ξ1 < ξmax < ξ2 < ξmin < ξ3, and the
particle oscillates between ξ2 and ξ3. Thus outer bound orbits exist for 12 � λ2.
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For 12 � λ2 < 16, the energy ε is bounded by Uλ(ξmin) � ε2 � Uλ(ξmax) < 1.
For 16 � λ2, the energy ε satisfies Uλ(ξmin) � ε2 < 1.

Alternatively, the phase space occupied by outer bound orbits can be charac-
terized by

ε̃min � ε < 1, λc(ε) � λ � λmax(ε, ξ), (B.7)

where

ε̃min =

⎧⎪⎪⎨
⎪⎪⎩
∞ ξ � 3,√(

1 − 2
ξ

)(
1 +

1
ξ − 3

)
3 < ξ,

(B.8)

and

λmax (ε, ξ) = ξ

√
ε2

1 − 2
ξ

− 1 (B.9)

(see, e.g. [23]). Note that circular orbits with either ξ = ξmax (stable) or ξ =
ξmin (unstable) belong to this class. There are also limiting cases with λ = λc(ε),
similar to the limiting cases of type IIa and type IIIc.

• Type III (unbound orbits). In this case ε � 1. Unbound trajectories are divided
into the following two sub-types:

∗ Absorbed orbits. These trajectories originate at ξ = ∞ and end beneath
the black hole horizon. The angular momentum associated with
absorbed trajectories satisfies λ < λc(ε).

∗ Scattered orbits. Both endpoints of scattered trajectories reach infinity.
The particles never reach below ξ = 3, i.e., below the photon sphere.
Their energy is bounded from below by

εmin =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ ξ � 3,√(
1 − 2

ξ

)(
1 +

1
ξ − 3

)
3 < ξ < 4,

1 ξ � 4.

(B.10)

The total angular momentum of a scattered particle is limited from
above, i.e., λc(ε) < λ � λmax (ε, ξ).

∗ A limiting case with λ = λc(ε). The particle travels from infinity and
spirals asymptotically to ξ = ξmax.

A comprehensive discussion of the classification of orbits can be found in [10, 39, 54].
Figure B1 shows the radial effective potential Uλ(ξ) corresponding to different types of orbits
listed above.

25



Class. Quantum Grav. 39 (2022) 225003 A Cieślik and P Mach

Figure B1. The effective potential Uλ(ξ) (equation (27)) for λ = 4.2 (left) and λ = 3.8
(right). The properties of the orbit depend on the energy of the particle and the location
with respect to the local maximum of Uλ(ξ). Different types of orbits (IIa, IIb, IIIa, IIIb)
are marked with separate colors.

B.2. Null trajectories

The classification of null trajectories is similar to that of timelike orbits, but it is in many
respects much simpler. The dimensionless radial potential Uλ(ξ), defined by equation (28),
has a single maximum at ξmax = 3. The value of the potential at the maximum reads

Uλ(ξmax) =
λ2

27
. (B.11)

Consequently, the equivalent of the function λc(ε), defined in equation (B.5), reads

λc(ε) =
√

27ε. (B.12)

The orbits are divided into the following classes.

• Type I (radial orbits). As for timelike geodesics, this class consists of orbits with λ = 0.
• Type II (bound orbits). Null bound orbits exist for ξ � 3 and ε2 � λ2/27. This type

includes (as a limiting case) the circular photon orbit with the radius ξ = 3.
• Type III (unbound orbits). As for timelike trajectories, unbound orbits can be divided into

two following types.
∗ Absorbed orbits. In this case ε2 > 0 and λ < λc(ε).
∗ Scattered orbits. For scattered orbits λc(ε) < λ � λmax (ε, ξ), where

λmax(ε, ξ) =
εξ√
1 − 2

ξ

. (B.13)

These orbits exist only for ξ > 3.
∗ A limiting case with λ = λc(ε).
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Appendix C. Elliptic expressions for ψ(ξ)

In this appendix we derive expressions for

X(ξ0) =
∫ ∞

ξ0

dξ√
f (ξ)

(C.1)

and

Y(ξ0; ξ̃) =
∫ ξ̃

ξ0

dξ√
f (ξ)

(C.2)

in terms of Legendre elliptic integrals. Of course, X(ξ0) = Y(ξ0; ∞). Substitutions given in this
appendix are known, and they are used e.g. in [39]. They can be introduced quite generally,
both for timelike and null orbits.

Let us start with a more general elliptic integral

I =
∫ b

a

dξ√
f (ξ)

, (C.3)

where f (ξ) = a0ξ
4 + 4a1ξ

3 + 6a2ξ
2 + 4a3ξ + a4. Let e be a zero of f . Substituting ξ = e + 1

x ,
we get

I = −
∫ 1

b−e

1
a−e

dx√
A0 + 4A1x + 6A2x2 + 4A3x3

, (C.4)

where A0 = a0, A1 = a1 + a0e, A2 = a2 + 2a1e + a0e2, A3 = a3 + 3a2e + 3a1e2 + a0e3. The
transformation ξ = e + 1

x maps the zero ξ = e to infinity, removing one factor (ξ − e) from
the factorization of f (ξ). The remaining zeros of f (ξ) are mapped into zeros of A0 + 4A1x +

6A2x2 + 4A3x3. Next, another substitution x =
y− 1

2 A2
A3

, brings the above integral to the Weier-
strass form

I = − sgn(A3)
∫ A2

2 +
A3

b−e

A2
2 +

A3
a−e

dy√
4y3 − g2y − g3

, (C.5)

where g2 and g3 are given by (A.16).
Further reduction to Legendre integrals requires a control of the integration range with

respect to zeros of the polynomial 4y3 − g2y − g3, provided that one wants to have explic-
itly real expressions. We start by computing the integral X(ξ0), assuming a scattered unbound
orbit. In this case, f (ξ) has four real zeros, one of which is simply ξ = 0. This can be seen
as follows. We have f (ξ) = ξ4(ε2 − Uλ(ξ)). The expression ε2 − Uλ(ξ) has three real zeros:
two of them are positive, as follows from the discussion concerning the centrifugal barrier. The
third one is negative. For timelike trajectories this fact can be seen by noting that

ε2 − Uλ(ξ) = ε2 − 1 +
1
ξ3

(
2ξ2 − λ2ξ + 2λ2

)
. (C.6)

Conesequently, ε2 − Uλ(ξ) tends to −∞ for ξ → 0−, and ε2 − Uλ(ξ) → ε2 − 1 > 0,
for ξ →−∞. Hence, ε2 − Uλ(ξ) changes its sign for ξ < 0. For null trajectories the reasoning
is analogous, but this time
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ε2 − Uλ(ξ) = ε2 −
(

1 − 2
ξ

)
λ2

ξ2
. (C.7)

Consequently, ε2 − Uλ(ξ) → ε2 > 0, for ξ →−∞. In both cases (timelike and null) we will
denote the zeros of f (ξ) as ξ1 < 0 < ξ3 < ξ2.

In the substitution ξ = e + 1
x leading to equation (C.4), we now choose e = 0. This yields

A0 = a0, A1 = a1, A2 = a2, A3 = a3. Note that a2 = −1/6, a3 = 1/2, both for timelike and
null trajectories. Hence, X(ξ0) can be written as

X(ξ0) =
∫ − 1

12+
1

2ξ0

− 1
12

dy√
4y3 − g2y − g3

. (C.8)

The substitution y = − 1
12 + 1

2ξ maps the zeros ξ1, ξ2, ξ3 of f (ξ) to y1, y2, y3, respectively, but
this time y1 < y2 < y3. The original integration range of ξ, ξ2 � ξ0 � ξ < ∞, is mapped into
the segment: y1 < −1/12 < y � y2.

We now make a substitution

y = y2 − μ2 cos2 χ, μ2 = y2 − y1, k2 =
y2 − y1

y3 − y1
, 0 � χ � π

2
. (C.9)

Thus y = y1 for χ = 0, and y = y2 for χ = π/2. This yields∫
dy√

4(y − y1)(y − y2)(y − y3)
=

k
μ

∫
dχ√

1 − k2 sin2 χ
, (C.10)

where k/μ = 1/
√

y3 − y1. Consequently,

X(ξ0) =
1√

y3 − y1

⎡
⎣F

⎛
⎝arccos

√
y2 +

1
12 − 1

2ξ0

y2 − y1
, k

⎞
⎠− F

⎛
⎝arccos

√
y2 +

1
12

y2 − y1
, k

⎞
⎠
⎤
⎦, (C.11)

where

F(φ, k) =
∫ φ

0

dχ√
1 − k2 sin2 χ

, −π

2
< φ <

π

2
. (C.12)

For generic unbound absorbed orbits, the situation is slightly different. In this case the
polynomial 4y3 − g2y − g3 has only one real zero y1 < −1/12. We write: 4y3 − g2y − g3 =
4(y − y1) (y2 + py + q), where p2 − 4q < 0 and thus y2 + py + q > 0. The substitution which
turns equation (C.8) into the Legendre form reads now

y = y1 + μ tan2 χ

2
, μ =

√
y2

1 + py1 + q, 0 � χ <
π

2
. (C.13)

We have y = y1 for χ = 0 and y →∞ for χ→ π/2. A straightforward algebraic calculation
yields now ∫

dy√
4(y − y1)(y2 + py + q)

=
1

2
√
μ

∫
dχ√

1 − k2 sin2 χ
, (C.14)

where

k2 =
1
2

(
1 − y1 + p/2

μ

)
. (C.15)
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Note that k2 is real and positive. This fact follows directly from the inequality p2 − 4q < 0,
which ensures that(

y1 + p/2
μ

)2

=
y2

1 + py1 +
p2

4

y2
1 + py1 + q

< 1. (C.16)

As a consequence, X(ξ0) can be written as

X(ξ0) =
1

2
√
μ

⎡
⎣F

⎛
⎝2 arctan

√
− 1

12 + 1
2ξ0

− y1

μ
, k

⎞
⎠− F

⎛
⎝2 arctan

√
− 1

12 − y1

μ
, k

⎞
⎠
⎤
⎦.

(C.17)

For generic timelike outer bound orbits the expression ε2 − Uλ(ξ) has three real positive
roots ξ3 < ξ2 < ξ1, which are also the zeros of f (ξ) (the fourth root being ξ4 = 0). The motion
is allowed in the range ξ2 � ξ � ξ1. The transformation y = − 1

12 + 1
2ξ maps the zeros ξ3, ξ2,

ξ1 into y1 < y2 < y3 (the zeros of 4y3 − g2y − g3). Explicitly real expressions for Y(ξ0, ξ̃) can
be obtained with substitutions (C.9). We get

Y(ξ0; ξ̃) =
1√

y3 − y1

⎡
⎣F

⎛
⎝arccos

√
y2 +

1
12 − 1

2ξ0

y2 − y1
, k

⎞
⎠− F

⎛
⎝arccos

√
y2 +

1
12 − 1

2ξ̃

y2 − y1
, k

⎞
⎠
⎤
⎦,

(C.18)

The case of inner bound orbits is more complex, since, depending on the values of ε and λ,
they correspond either to a case with three real zeros of 4y3 − g2y − g3 or to a case in which
this polynomial has just one real zero and two complex ones. Here again, substitutions (C.9)
and (C.13) work, but one has to adjust the details (carefully select the roots y1, y2, and y3).
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[51] Panotopoulos G, Rincón Á and Lopes I 2021 Orbits of light rays in scale-dependent gravity: exact

analytical solutions to the null geodesic equations Phys. Rev. D 103 104040
[52] Reynolds M J 1989 An exact solution in non-linear oscillations J. Phys. A: Math. Gen. 22 L723–6
[53] Rioseco P and Sarbach O 2017 Spherical steady-state accretion of a relativistic collisionless gas into

a Schwarzschild black hole J. Phys.: Conf. Ser. 831 012009
[54] Rioseco P and Sarbach O 2017 Accretion of a relativistic, collisionless kinetic gas into a

Schwarzschild black hole Class. Quantum Grav. 34 095007
[55] Rodríguez C M 1987 Orbits in general relativity: the Jacobian elliptic functions Nuovo Cimento B

98 87–96
[56] Rosales-Vera M 2018 Asymptotic description of a test particle around a Schwarzschild black hole

Eur. J. Phys. 39 025602
[57] Scharf G 2011 Schwarzschild geodesics in terms of elliptic functions and the related red shift

J. Mod. Phys. 02 274–83
[58] Semerák O 2015 Approximating light rays in the Schwarzschild field Astrophys. J. 800 77
[59] Sharp N A 1979 Geodesics in black hole space-times Gen. Relativ. Gravit. 10 659–70
[60] Slezakova G 2006 Geodesic Geometry of Black Holes (Hamilton: The University of Waikato)
[61] Soroushfar S, Saffari R, Kunz J and Lämmerzahl C 2015 Analytical solutions of the geodesic

equation in the spacetime of a black hole in f (R) gravity Phys. Rev. D 92 044010
[62] Synge J L 1960 Relativity: The General Theory (Amsterdam: North-Holland)
[63] Tsupko O Y 2014 Unbound motion of massive particles in the Schwarzschild metric: analytical

description in case of strong deflection Phys. Rev. D 89 084075
[64] Virbhadra K S and Ellis G F R 2000 Schwarzschild black hole lensing Phys. Rev. D 62 084003
[65] Whittaker E T and Watson G N 1927 A Course of Modern Analysis (Cambridge: Cambridge

University Press)

31

https://doi.org/10.1016/j.physleta.2009.02.070
https://doi.org/10.1016/j.physleta.2009.02.070
https://doi.org/10.1016/j.physleta.2009.02.070
https://doi.org/10.1016/j.physleta.2009.02.070
https://doi.org/10.1007/s10714-012-1328-5
https://doi.org/10.1007/s10714-012-1328-5
https://doi.org/10.1007/s10714-012-1328-5
https://doi.org/10.1007/s10714-012-1328-5
https://doi.org/10.1088/0264-9381/20/22/007
https://doi.org/10.1088/0264-9381/20/22/007
https://doi.org/10.1088/0264-9381/20/22/007
https://doi.org/10.1088/0264-9381/20/22/007
https://doi.org/10.1088/0264-9381/33/17/175014
https://doi.org/10.1088/0264-9381/33/17/175014
https://doi.org/10.5506/aphyspolbsupp.15.1-a7
https://doi.org/10.5506/aphyspolbsupp.15.1-a7
https://doi.org/10.5506/aphyspolbsupp.15.1-a7
https://doi.org/10.5506/aphyspolbsupp.15.1-a7
https://doi.org/10.1103/physrevd.103.024044
https://doi.org/10.1103/physrevd.103.024044
https://doi.org/10.1103/physrevlett.126.101104
https://doi.org/10.1103/physrevlett.126.101104
https://doi.org/10.1063/1.1704050
https://doi.org/10.1063/1.1704050
https://doi.org/10.1063/1.1704050
https://doi.org/10.1063/1.1704050
https://doi.org/10.1103/physrevd.67.084027
https://doi.org/10.1103/physrevd.67.084027
https://doi.org/10.1080/14786442108633793
https://doi.org/10.1080/14786442108633793
https://doi.org/10.1080/14786442108633793
https://doi.org/10.1080/14786442108633793
https://doi.org/10.1119/1.4866274
https://doi.org/10.1119/1.4866274
https://doi.org/10.1119/1.4866274
https://doi.org/10.1119/1.4866274
https://doi.org/10.1103/physrevd.103.104040
https://doi.org/10.1103/physrevd.103.104040
https://doi.org/10.1088/0305-4470/22/15/001
https://doi.org/10.1088/0305-4470/22/15/001
https://doi.org/10.1088/0305-4470/22/15/001
https://doi.org/10.1088/0305-4470/22/15/001
https://doi.org/10.1088/1742-6596/831/1/012009
https://doi.org/10.1088/1742-6596/831/1/012009
https://doi.org/10.1088/1361-6382/aa65fa
https://doi.org/10.1088/1361-6382/aa65fa
https://doi.org/10.1007/bf02721459
https://doi.org/10.1007/bf02721459
https://doi.org/10.1007/bf02721459
https://doi.org/10.1007/bf02721459
https://doi.org/10.1088/1361-6404/aa9688
https://doi.org/10.1088/1361-6404/aa9688
https://doi.org/10.4236/jmp.2011.24036
https://doi.org/10.4236/jmp.2011.24036
https://doi.org/10.4236/jmp.2011.24036
https://doi.org/10.4236/jmp.2011.24036
https://doi.org/10.1088/0004-637x/800/1/77
https://doi.org/10.1088/0004-637x/800/1/77
https://doi.org/10.1007/bf00756902
https://doi.org/10.1007/bf00756902
https://doi.org/10.1007/bf00756902
https://doi.org/10.1007/bf00756902
https://doi.org/10.1103/physrevd.92.044010
https://doi.org/10.1103/physrevd.92.044010
https://doi.org/10.1103/physrevd.89.084075
https://doi.org/10.1103/physrevd.89.084075
https://doi.org/10.1103/physrevd.62.084003
https://doi.org/10.1103/physrevd.62.084003

	Revisiting timelike and null geodesics in the Schwarzschild spacetime: general expressions in terms of Weierstrass elliptic functions
	1.  Introduction
	2.  Horizon-penetrating coordinates
	3.  Geodesic motion
	4.  Solution of equations of motion
	4.1.  Timelike geodesics
	4.2.  Null geodesics

	5.  The range of tnqx3c8;
	6.  Affine parameter (proper time)
	7.  Coordinate time
	8.  Summary
	Data availability statement

	Appendix A.  Biermann–Weierstrass theorem
	Appendix A. 
	B.1.  Timelike trajectories

	B.1. Classification of trajectories
	B.2.  Null trajectories


	Appendix C.  Elliptic expressions for tnqx3c8;(tnqx3be;)
	Appendix C. 
	References


