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Abstract

In sufficiently low energies, that is, at the infrared (IR) fixed point, quantum field theories
are expected to be scale invariant. Such a scale-invariant theory would be described by a
conformal field theory (CFT). If a quantum field theory gives rise to a nontrivial CFT at
the IR fixed point, the original theory is called the Landau–Ginzburg (LG) description of
the CFT, or the LG model. In particular, as an example of the supersymmetric LG model,
it is believed that the two-dimensional N = (2, 2) Wess–Zumino (2D N = 2 WZ) model
corresponds to the 2D N = 2 superconformal field theory (SCFT). This conjecture of the LG
description has been theoretically analyzed from various aspects. It is, however, difficult to
prove this theoretical conjecture directly, since the coupling constant becomes strong at the
IR region. Moreover, because this is the lower-dimensional massless system, the perturbation
theory possesses severe IR divergences. For these reasons, the LG description is a remarkable
non-perturbative phenomenon.

This issue is closely related to superstring theory. Superstring theory is expected to de-
scribe quantum gravity, and provide a candidate for a theory of everything, which unifies all
fundamental forces. In superstring theory, we observe a four-dimensional spacetime, while
there exists an extra six-dimensional space, which is compactified into the Calabi–Yau (CY)
manifold. Then, scattering amplitudes in a superstring theory with the CY compactifica-
tion can be computed from an N = 2 SCFT, by which the world sheet theory is described.
However to pursue this strategy is quite difficult because such a SCFT is in general not a
solvable minimal model. Thus, it is hard to carry out any computation for a general CY
manifold and to treat phenomena relating to the dynamics of spacetime. The LG description,
on the other hand, realizes a strongly-interacting Lagrangian with the superpotential corre-
sponding to the geometry of the CY manifold; we can deform the geometry of the superstring
compactification by manipulating the superpotential. Therefore, if we can analyze such a
strongly-interacting field theory directly, the study of the LG model would be a new approach
to look into superstring theory.

An useful approach to this issue may be provided by a non-perturbative calculational
method such as the lattice field theory. A quantum field theory is defined as a discretized
theory on a spacetime lattice. Implementation of such a lattice formulation on the computer
enables us to calculate physical quantities from first principles. As is well recognized, how-
ever, the spacetime lattice is generally incompatible with spacetime symmetries such as the
supersymmetry (SUSY). Although those symmetries are expected to restore in the continuum
limit, this is an obstacle to the lattice study on supersymmetric field theories. Despite this
difficulty, there are some recent numerical studies for the WZ model with the cubic superpo-
tential; the scaling dimension and the central charge in the corresponding A2 minimal model
were measured. These numerical studies achieved a triumph of the lattice field theory, and
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provides a non-perturbative evidence of the WZ/minimal-model correspondence.
In this thesis, we numerically study the 2D N = 2 WZ model, by using the formulation

by Kamata and Suzuki. This formulation is based on the Nicolai map and the momentum
cutoff regularization; allowing the action to be non-local, the theory preserves the full set
of SUSY even with a finite cutoff, as well as the translational invariance. We focus on the
following three numerical studies: (A) the numerical simulation of the ADE-type theories
and verification of the theoretical conjecture; (B) the continuum limit analysis of the scaling
dimension based on the finite-size scaling; (C) the application to the torus compactification
of superstring theory.

(A) We apply the SUSY-preserving formulation to the following various ADE-type the-
ories: the A2, A3, D3, D4, E6 (∼= A2 ⊗ A3), and E7 models. In some aspects, we extend
and improve the theoretical and numerical analyses in the preceding works. First, to study
the DE minimal models and further applications, the method is generalized to one with mul-
tiple superfields and more complicated superpotentials. Second, for the A2 minimal model,
numerical accuracy is quite improved. Third, we numerically measure the scaling dimen-
sion, by using the two-point function of the scalar field in the momentum space. Also we
numerically measure the central charge, by using the two-point function of the supercurrent
and that of the energy-momentum tensor. Our results are consistent with the conjectured
WZ/minimal-model correspondence.

(B) We develop an extrapolation method to take the continuum and infinite-volume limit,
while any extrapolation has been not done in the preceding numerical studies. Then, we
perform a precision measurement of the scaling dimension in the A2-type theory. This result
implies the restoration of the locality in the continuum limit.

(C) We apply the above method to non-minimal SCFTs. For simplicity we consider the
complex one-dimensional torus compactification. This theory may be simply described by
the A2 ⊗A2 ⊗A2 minimal model. To deform the geometry of the compactification, we add a
would-be marginal operator to the superpotential; then, the central charge is believed not to
depend on this deformation. We numerically observe the central charge being constant under
this deformation, which provides the non-perturbative evidence of the conjecture.

These studies show a coherence picture which is consistent with the conjecture of the LG
description of SCFT, and support the validity of our formulation. This kind of numerical
approach, when further developed, will come in useful to study superstring theory.

This thesis is based on the following papers:
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“Numerical study of the N = 2 Landau–Ginzburg model with two superfields,”
JHEP 12 (2018) 045, arXiv:1810.02519 [hep-lat].

• O. Morikawa,
“Continuum limit in numerical simulations of the N = 2 Landau–Ginzburg model,”
PTEP 2019 no.10, (2019) 103B03, arXiv:1906.00653 [hep-lat].
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Chapter 1

Introduction

1.1 Landau–Ginzburg description of the conformal field
theory

The dynamics of elementary particles is described by a theoretical framework, quantum field
theory. Its microscopic structure at short distances or in high energies effects long-distance or
low-energy physics in a complicated way because of quantum radiations. An effective way to
analyze this has been developed by renormalization group (RG) transformation [1]. The flow
of RG transformations, which is called the RG flow, governs the behavior of a quantum field
theory under some rigid scale transformations, which act as the “coarse-graining” between
different scales.

In an extremely low-energy scale, that is, at the infrared (IR) fixed point of the RG flow,
any quantum field theory is expected to possess the scale invariance, while all massive modes
are decoupled. Such a scale-invariant theory would be described by a conformal field theory
(CFT) [2]. If a quantum field theory gives rise to a nontrivial CFT at the IR fixed point, the
original field theory is called the Landau–Ginzburg (LG) description of the CFT [3], or the
LG model. The LG description thus provides a Lagrangian-level realization of CFT, and is
characterized by a nontrivial critical behavior under the RG flow. Originally, this idea of the
LG model was introduced as a phenomenological model to describe superconductivity [4]; in
this context, we use the free energy instead of the Lagrangian. Such critical phenomena are
of great interest in a wide range of physics.

Although the existence of such a Lagrangian is not always obvious, if we know it, tech-
niques developed in quantum field theory provide a quite important tool to clarify conformally
invariant systems. As another famous example, the Feigin–Fuks (integral) representation [5,6]
gives a free-field Lagrangian on curved spacetime. Feigin and Fuks employed this to explore
the unitary representation of the Virasoro algebra, and proved the Kac determinant formula
in an elegant way (see Chap. 2). Analyses of the Lagrangian such as their technique have come
in useful [7, 8] for performing many computations explicitly and understanding the systems
intuitively.

It is also important to consider the fermionic extension of the conformal symmetry by the
supersymmetry (SUSY) [9–11], which is a symmetry under swapping bosons and fermions.
This extended symmetry, superconformal symmetry, is realized in the two-dimensional (2D)
world sheet theory of superstring theory, which is expected to describe quantum gravity [12–
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2 CHAPTER 1. INTRODUCTION

14], and provide a candidate for a theory of everything unifying all fundamental forces.1 In
superstring theory, because of the consistency of the theory, we observe a four-dimensional
spacetime, while there exists an extra six-dimensional space [17–23]. Requiring the SUSY
on the four-dimensional spacetime, the extra dimensions are considered to be compactified
into the Calabi–Yau (CY) manifold [24,25]. Then, we have a 2D N = 2 superconformal field
theory (SCFT) on the world sheet.2 Scattering amplitudes in a superstring theory with the CY
compactification can be computed from this SCFT. We can pursue this strategy if such a SCFT
is a solvable minimal model or a tensor product of minimal models (Gepner model [26, 27]),
but it is in general not the case. Thus, it is hard to carry out any computation for a general
CY manifold, and treat phenomena which relate to the dynamics of the compactification.

Now, an alternative approach may be provided by the LG description of SCFT, while a
2D N = 2 LG model becomes a N = 2 SCFT at infrared criticality. It is believed [26–37]
that an example of this is given by the 2D N = 2 massless Wess–Zumino (WZ) model with a
quasi-homogeneous superpotential, which can be obtained by the dimensional reduction of the
four-dimensional WZ model [38]. It is known that the structure of the superpotential is closely
related to the geometry of the CY manifold [39–42]. One can easily change the superpotential,
which causes the deformation of the geometry of the superstring compactification.

The above theoretical conjecture of the LG description has been studied from various
aspects, which support this correspondence [39, 43–52]. For example, Refs. [43, 46, 48] argue
the RG flow for the WZ model with the monomial superpotential, W (Φ) ∝ Φn+1, which
corresponds to the An minimal model of the N = 2 SCFT; the correspondence between the
superpotential and the ADE minimal model is classified in Ref. [44]. See Refs. [53, 54] for
reviews. It is, however, difficult to prove this theoretical conjecture directly, since the 2D
N = 2 massless WZ model is strongly coupled at low energies. Moreover, because this is the
lower-dimensional massless system, the perturbation theory suffers from IR divergences. The
LG description is thus truly a non-perturbative phenomenon.

1.2 Lattice field theory and the numerical approaches

A non-perturbative calculational method may be provided by the lattice field theory [55].
The lattice field theory is the most well-developed framework to study non-perturbative phe-
nomena in quantum field theories; it provides the lattice regularization that the continuum
spacetime is discretized as the set of points called the lattice. Then, a quantum field theory is
defined as a discretized theory on the spacetime lattice with finite degrees of freedom. Imple-
mentation of such a formulation on the lattice (lattice formulation) on a computer enables us
to calculate physical quantities of interest from first principles. As is well recognized, however,
the lattice formulation is in general not compatible with the SUSY, because the SUSY is one
of spacetime symmetries; schematically

{Q, Q̄} ∼ ∂, (1.1)

where Q (Q̄) is the charge associated with the SUSY (supercharge), and the derivative ∂
denotes the translation. (We will discuss this anti-commutation relation in Chap. 3.) While

1The original string theory was considered as a theory of hadrons mainly from 1968 to 1975. For these
studies, see Ref. [15] for a review. For developments in 1980s, Ref. [16] gives a detailed review.

2Here, we consider the 2D N = (2, 2) supersymmetry, and not N = (2, 0). For more details, see Chap. 3.
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the SUSY must be a crucial element to study the above LG description, as a usual way,
lattice parameters should be fine-tuned so that the lattice formulation yields the target SUSY-
invariant theory in the continuum limit; this fact complicates actual numerical studies [56–
59].3

Despite this difficulty, recently, the authors of Ref. [61] studied the case of a cubic superpo-
tential W = Φ3, which is considered to correspond the A2 minimal model; they measured the
scaling dimension of the scalar field in the IR limit by using a lattice formulation of Ref. [62].4

In Ref. [61], one can observe good agreement of the scaling dimension with that of the A2

minimal model. The formulation of Ref. [62] exactly preserves one nilpotent SUSY at finite
lattice spacing (not full SUSY)5, and the vacuum energy is canceled even on the lattice thanks
to the existence of the so-called Nicolai or Nicolai–Parisi–Sourlas map [69–72]. Because of
this preserved SUSY, and since this lower-dimensional theory is super-renormalizable, it can
be argued, to all orders of perturbation theory, that the full set of the SUSY is automatically
restored in the continuum limit [73,74]. The study of Ref. [61] thus achieved a triumph of the
lattice field theory, and paved the way for the numerical investigation of the LG model.

Somewhat later, the authors of Ref. [75] examined the same A2-type WZ model with a
cubic superpotential by using the formulation from Ref. [76]; they measured not only the
scaling dimension but also the central charge. The formulation in Ref. [76] is based on
the Nicolai map and a momentum cutoff regularization. A remarkable feature is that the
formulation preserves the full SUSY as well as the translational invariance even with a finite
cutoff. Owing to this fact, it is straightforward to construct the Noether current associated
with spacetime symmetries, for instance the supercurrent for the SUSY.6 Then, from the
numerical simulation of the two-point function of the supercurrent, the central charge was
observed, which is fairly consistent with the A2 minimal model.

The latter formulation is (almost) identical to the dimensional reduction of the lattice
formulation [77] of the 4D N = 1 WZ model on the basis of the SLAC derivative [78, 79].
Although this formulation exactly preserves SUSY, it is well recognized that it breaks the
locality because of the SLAC derivative. For the 2D massive N = 2 WZ model, because
of the exactly preserved SUSY and because this theory is super-renormalizable, it can be
argued [76], to all orders of perturbation theory, that the locality is automatically restored
in the continuum limit. Although, strictly speaking, the theoretical basis of the formulation
for the massless WZ model is not obvious, the above numerical results support the validity
of the formulation, and the restoration of the locality. This is an interesting observation left
as a future problem.

1.3 Numerical study of the 2D N = 2 WZ model

In this thesis, following on from the study of Ref. [75], we numerical study the 2D N = 2 WZ
model by employing the SUSY-invariant formulation of Ref. [76]. We extend and improve the

3Ref. [60] is a recent review of the SUSY on the lattice, which refers to lattice formulations of the 2D N = 2
WZ model.

4References [63–67] are preceding studies on the 2D massive N = 2 WZ model.
5This feature is common to the lattice formulation studied in Ref. [68].
6In a lattice formulation such as that in Ref. [61,62], the explicit expression of the Noether current associated

with spacetime symmetries is quite nontrivial because the regularization breaks such symmetries and the
Noether’s theorem cannot work well.
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theoretical and numerical analyses in Ref. [75] in several aspects.

To obtain further support for the conjectured LG correspondence and the validity of the
formulation, we study the following higher critical models: the A3, D3, D4, E6

∼= A2⊗A3, E7

models, as well as the A2 model [80,81]. First, the method in Ref. [75] is then generalized to
the WZ model with multiple superfields and more complicated superpotentials. Second, the
numerical accuracy and the effective number of configurations in the Monte Carlo simulation
are quite improved. Third, for the scaling dimension, we use the two-point function of the
scalar field in the momentum space instead of the susceptibility of Ref. [75]. We also measure
the central charge by using the two-point function not only of the supercurrent but also of the
energy–momentum tensor (EMT). In Ref. [75], it was found that the EMT correlation function
was too noisy to extract the central charge; in this thesis, we settle this problem by using SUSY
Ward–Takahashi relations. It turns out that our prescription for the correlation function of
the EMT is rather useful to measure the central charge. We also calculate the “effective
central charge” as in Ref. [75] that is an analogue of the Zamolodchikov C-function [82, 83].
All these results for typical ADE-type theories show a coherence picture, which is consistent
with the conjectured WZ/minimal-model correspondence.

In this thesis, we also consider an extrapolation method to take the continuum limit [84].
Although the SCFT is defined as the continuum theory with the infinite volume, the results
of the preceding works and ours above are not extrapolated to the continuum/infinite-volume
limits. Moreover, one can find that the computation of the scaling dimension in Ref. [75] is
quite sensitive to a ultraviolet (UV) ambiguity because of the locality breaking. To justify
numerical studies based on the formulation, it should be observed that such a UV ambiguity
disappear in the continuum/infinite-volume limit. We develop the finite-size scaling analysis
in Refs. [61, 75] into a continuum-limit extrapolation method. The extrapolation also carries
out the infinite volume limit. We then apply this extrapolation method to the above numerical
approach. We study the A2-type WZ model with the cubic superpotential, and perform a
precision measurement of the scaling dimension by using this extrapolation method. This is
a more reliable result, and is rather consistent with the conjectured A2-type correspondence.

Finally, we apply the present numerical approach to the SCFT which is not a minimal
model. For simplicity the complex one-dimensional torus compactification is studied. In a
simple way, this theory is described by the Gepner model, A2 ⊗ A2 ⊗ A2, which corresponds
to the superpotential of the form x3 + y3 + z3. If we add a term xyz to the superpotential,
which does not correspond a Gepner model but is still quasi-homogeneous, the geometry of
the compactification is deformed. This term xyz is believed to be a marginal operator, and
so the central charge would not depend on this deformation. As mentioned above, however it
is difficult to treat such deformations in the compactification in usual analyses of superstring
theory; this is an interesting non-perturbative problem. We numerically simulate the WZ
model with this superpotential, while the deformation parameter is varied; the central charge
is directly measured. From our result we see the central charge being constant under this
deformation, which provides the non-perturbative evidence of the conjecture.

All these studies are consistent with the theoretical conjecture of the LG/SCFT corre-
spondence, and support the validity of the formulation of Ref. [76]. In view of the LG/CY
correspondence [39–42], we hope that this kind of numerical method, when further developed,
will eventually provide a computation method for scattering amplitudes in a superstring the-
ory, whose world sheet theory is not necessarily a Gepner model.
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1.4 Organization of the thesis

This thesis is organized as follows: In Chap. 2, we give a review of 2D CFT to introduce
the necessary ideas we will use later. We also review the SUSY and the superconformal
symmetry in Chap. 3, by using explicit computations in the 2D WZ model. Especially,
we derive the explicit form of the important Noether currents: the supercurrent, the EMT,
and the U(1) current; we show that those currents form the superconformal multiplet in
the massless free WZ model. In Chap. 4, we discuss the RG, and the LG description of
CFT together with the LG/CY correspondence. We then introduce the Zamolodchikov’s c-
theorem and its SUSY-analogue. In Chap. 5, we examine the SUSY-invariant formulation
studied in Ref. [76]. To provide consistency checks of the simulation based on this, we show
that the Witten index and some SUSY WT relations are reproduced. Chapter 6 is the main
part of this thesis; we investigate the WZ model at IR criticality and give our numerical
results. In the first two sections, we focus on the ADE-type WZ model, which corresponds to
the minimal model of SCFT. We measure the scaling dimension from the scalar correlator and
the central charge from the two-point functions of the above Noether currents. In Sect. 6.3,
we develop the continuum-limit analysis, and perform precision measurement of the scaling
dimension. Finally, in Sect. 6.4, we measure the central charge under the deformation of the
torus compactification. Chapter 7 is devoted to the conclusions. In Appendix A, we present
a fast algorithm for the practical numerical computation.





Chapter 2

Conformal field theory

2.1 Conformal transformation

Let us briefly introduce basic ideas of the conformal field theory (CFT) [2]. The most part
in this chapter is based on the discussion in Ref. [53, 85]. In what follows, in d-dimensions,
Green indices, µ, ν, . . . run over 0, 1, . . . , d− 1; repeated indices are not summed over.

If for manifolds M and M ′ a differentiable mapping ϕ : M →M ′ is a one-to-one mapping
and the inverse ϕ−1 is differentiable, then ϕ is called a diffeomorphism. Given a Riemann
metric ds2 =

∑
µ,ν gµν(x)dxµdxν on the manifold M , a diffeomorphism from M to M

gµν(x)→ g′µν(x′) = eω(x)gµν(x) (2.1)

is known as a conformal transformation, where ω(x) is an arbitrary real function. The set
of all conformal transformations forms the conformal group. As usual, a Killing vector vµ is
given as an infinitesimal generator of the isometry group, such that the metric is invariant

δgµν(x) = 0 (2.2)

under an infinitesimal transformation xµ → xµ + δxµ = xµ + εvµ(x). Now, from Eq. (2.1),
let us consider an infinitesimal coordinate transformation, under which the mapped Riemann
metric is conformally equivalent to the original one:

δgµν(x) ∝ gµν(x). (2.3)

In other words, the metric is invariant under a coordinate transformation xµ → xµ + εvµ(x)
and a local rescaling of the metric known as the Weyl transformation [86,87]

gµν(x)→ g′µν(x) = eω(x)gµν(x). (2.4)

Then, vµ is called a conformal Killing vector, and is an infinitesimal generator of the conformal
group.

If a field theory has the conformal symmetry, which is a invariance under conformal trans-
formations, the theory is called a conformal field theory. Since any conformal transformation
induces the Weyl transformation, conformal field theories on curved spacetime is invariant
under Weyl transformations; this is the Weyl symmetry.

7
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vµ

translation aµ

rotation
∑

ν ω
µ
νx

ν (ωµν = −ωνµ)
scaling transformation (dilatation) λxµ

special conformal transformation |x|2bµ − 2(b · x)xµ

Table 2.1: Infinitesimal conformal transformation in d-dimensional Euclidean space (d > 2)

In the d-dimensional Euclidean space, we obtain the conformal Killing equation as

∂µvν(x) + ∂νvµ(x) =
2

d

∑
ρ

∂ρv
ρ(x)δµν . (2.5)

Table 2.1 shows the set of the Killing vectors in the d-dimensional Euclidean spacetime
with d > 2. We note that, for d > 2, there exists a finite number of generators. On the
other hand, if we set d = 2, the conformal Killing equation reduces to

∂̄vz = 0, (2.6)

where we have introduced the complex coordinate z = x0 + ix1, and

vz ≡ v0 + iv1, vz̄ ≡ v0 − iv1, (2.7)

∂ ≡ ∂

∂z
=

1

2
(∂0 − i∂1), ∂̄ ≡ ∂

∂z̄
=

1

2
(∂0 + i∂1). (2.8)

Therefore vz is a holomorphic function, and vz̄ is an anti-holomorphic function; the number
of generators is infinite. From the infinitesimal transformations for d = 2, a finite conformal
transformation is given by

z → z′ = f(z), (2.9)

where f(z) is holomorphic. In what follows, mainly, we will consider a CFT on the 2D Euclid
space.

2.2 Primary fields and correlation functions

It is convenient to introduce a conformal weight, which characterize under conformal trans-
formations the behavior of local operators, and to define an important class of local operators
called a primary field. The conformal weight is defined as follows: There exists a local oper-
ator O such that, under the rigid transformation

z′ = ζz, ζ ∈ C, (2.10)

it behaves as

O′(z′, z̄′) = ζ−hζ̄−h̄O(z, z̄). (2.11)
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Then, (h, h̄) are called the conformal weights of O. Local operators like O (2.11) are the
eigenstates under Eq. (2.10), and form a basis of local operators. Especially, for a rotation
ζ = eiθ with θ ∈ R,

O′(z′, z̄′) = e−iθ(h−h̄)O(z, z̄), (2.12)

and for a scaling transformation ζ = λ ∈ R,

O′(z′, z̄′) = λ−(h+h̄)O(z, z̄). (2.13)

Thus, h− h̄ is known as a spin, and h+ h̄ is a scaling dimension. A local operator O is known
as a primary field if it transforms as

O′(z′, z̄′) = (∂z′)−h(∂̄z̄′)−h̄O(z, z̄) (2.14)

under a general conformal transformation z → z′ = z′(z).
Next, let us consider an N -point function of basis vectors Oi in the vector space spanned

by local operators:

〈Oi1(z1, z̄1) . . .OiN (zN , z̄N )〉. (2.15)

When (z1, z̄1) gets close to (z2, z̄2) rather than (zn, z̄n) with n ≥ 3, the product, Oi1Oi2 ,
is approximately given as a local operator; Oi1 and Oi2 “fuse” together. The fused operator
can be expanded by an arbitrary basis of local operators. Then, schematically, we have the
so-called fusion rule as

[Oi]× [Oj ] =
∑
k

Nk
ij [Ok], (2.16)

where Nk
ij = 0 or 1. This rule implies that, if Nk

ij = 0, Ok cannot contribute the fusion of
Oi and Oj . More concretely, one may expand this product as

Oi(z1, z̄1)Oj(z2, z̄2) =
∑
k

ckij(z1 − z2, z̄1 − z̄2)Ok(z2, z̄2). (2.17)

This expansion is termed the operator product expansion (OPE). Of course, if Nk
ij = 0, then

ckij = 0. It is now simple to take the basis of local operators (2.11). Straightforwardly, we
can obtain

ckij(z, z̄) = zhk−hi−hj z̄h̄k−h̄i−h̄jCkij . (2.18)

Here Ckij is a constant. We will often focus on a dominant part in OPE at short distance,
that is, singular terms with hk − hi − hj < 0 or h̄k − h̄i − h̄j < 0. We then use “∼” in place
of “=,” which implies “=” up to non-singular terms.

2.3 Energy–momentum tensor

In what follows, let us focus on the energy–momentum tensor (EMT), which is a Noether
current associated with the translation. On a curved spacetime, one define the EMT by the
variation of the metric δgµν ,

δ〈O(x)〉 = − 1

4π

∫
d2y

√
g(y)

∑
µ,ν

δgµν(y)〈Tµν(y)O(x)〉, (2.19)
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where g(x) = det gµν(x); the Weyl transformation δgµν = 2δωgµν gives rise to

δ〈O(x)〉 = − 1

2π

∫
d2y

√
g(y) δω(y)

∑
µ

〈Tµµ(y)O(x)〉. (2.20)

Thus the Weyl invariance implies that the EMT should be traceless,∑
µ

Tµµ = 0. (2.21)

In the complex coordinates, we note that

Tzz =
1

4
(T11 − iT12 − iT21 − T22), (2.22)

Tzz̄ =
1

4
(T11 + iT12 − iT21 + T22), (2.23)

Tz̄z =
1

4
(T11 − iT12 + iT21 + T22), (2.24)

Tz̄z̄ =
1

4
(T11 + iT12 + iT21 − T22). (2.25)

From the fact that the EMT is a traceless symmetric tensor, Tµν = Tνµ and Eq. (2.21), we
have the traceless condition in the complex coordinates,

Tzz̄ = Tz̄z = 0. (2.26)

Thus, the conservation law,
∑

µ ∂µTµν = 0, is rewritten by

∂̄Tzz = 0, ∂Tz̄z̄ = 0. (2.27)

These imply that we have the holomorphic part Tzz = T (z), and anti-holomorphic one Tz̄z̄ =
T̄ (z̄).

Naively, since Tµν is a tensor field, one may consider T (T̄ ) is a primary field, which is a
generalization of tensor. On a curved background, however, because of the scalar curvature R,
the conformal symmetry (or the traceless condition) is broken by quantum effects,∑

µ

Tµµ = − c

12
R. (2.28)

This is called the trace anomaly or Weyl anomaly, and c is the central charge [88, 89].1 This
anomalous effect lead to the fact that the EMT is not a primary field. To see this, let us
examine the OPE between the local operator and T .

First, given a continuum symmetry and its associated Noether current jµ, we have the
Ward–Takahashi (WT) relation [91,92] as∑

µ

∂

∂xµ
〈jµ(x)O(y)〉 =

1

iε
〈δO(y)δd(x− y)〉, (2.29)

1For a historical review, see Ref. [90].
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where δO is the variation of O under the corresponding infinitesimal transformation, and ε
is a small parameter. The EMT with T and T̄ generates the infinitesimal transformation
xµ → xµ + εvµ; then

Resz→0 iv
z(z)T (z)O(0, 0) + Resz̄→0(−i)vz̄(z̄)T̄ (z̄)O(0, 0) =

1

iε
δO(0, 0). (2.30)

This is the integral representation of the conformal WT relation [93]. Here Res and Res mean
residues, which is the coefficients of 1/z and 1/z̄, respectively. For a local operator O with
the conformal weights (h, h̄), from the behavior under the global transformation (2.11) and
the translation δO = −

∑
µ εvµ∂µO, the OPE between O and T is given by

T (z)O(0, 0) ∼ · · ·+ h

z2
O(0, 0) +

1

z
∂O(0, 0). (2.31)

Especially, when O is a primary field, from Eq. (2.14), we have

T (z)O(0, 0) ∼ h

z2
O(0, 0) +

1

z
∂O(0, 0). (2.32)

The OPE between O and T̄ is clear by now.
Similarly, the OPE of T itself is given by

T (z)T (0) ∼ c

2z4
+

2

z2
T (0) +

1

z
∂T (0), (2.33)

and for T̄

T̄ (z̄)T̄ (0) ∼ c̄

2z̄4
+

2

z̄2
T̄ (0) +

1

z̄
∂̄T̄ (0). (2.34)

T (z)T̄ (0) is non-singular. Usually, we assume c̄ = c.2 Equation (2.33) is not identical
to Eq. (2.32), and hence, we find that T and T̄ with c 6= 0 are not primary fields. The
first term proportional to the central charge c comes from the trace anomaly (2.28). This can
be seen roughly as follows: From the conservation law,

∂̄Tzz + ∂Tzz̄ = 0, (2.35)

we have the OPE of ∂Tzz̄ as

∂Tzz̄(z1, z̄1)∂Tzz̄(z2, z̄2) = ∂̄Tzz(z1, z̄1)∂Tzz̄(z2, z̄2)

= ∂z̄1∂z̄2

[
c

2(z1 − z2)4
+ . . .

]
(2.36)

=
cπ

6
∂2
z1∂z2∂z̄2δ(z1 − z2, z̄1 − z̄2) + . . . , (2.37)

where we have used

∂̄∂ ln |z|2 = ∂̄
1

z
= 2πδ2(z, z̄), (2.38)

2If c 6= c̄, the gravitation anomaly exists. Thus, by quantum effects, the invariance under coordinate
transformations is broken.
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and δ2(z, z̄) = 1
2δ(x0)δ(x1). Therefore we estimate

Tzz̄(z1, z̄1)Tzz̄(z2, z̄2) ∼ cπ

6
∂z1∂z̄2δ(z1 − z2, z̄1 − z̄2) + . . . (2.39)

Inserting the operator
∑

µ Tµµ into Eq. (2.20), we have∑
µ

δ〈Tµµ(x)〉 = − 1

2π

∫
d2y

√
g(y) δω(y)

∑
µ,ν

〈Tµµ(y)Tνν(x)〉 (2.40)

=
c

6

∫
d2y

√
g(y) δω(y)

∑
µ

∂yµ∂
y
µδ(y0 − x0)δ(y1 − x1) (2.41)

=
c

6

∑
µ

∂µ∂µδω(x). (2.42)

In the conformal gauge gµν = e2ωδµν , on the other hand, the scalar curvature is give by

R = −2e−2ω
∑
µ

∂µ∂µω. (2.43)

Then, we finally obtain ∑
µ

δ〈Tµµ(x)〉 = − c

12
δR. (2.44)

This is identical to the trace anomaly (2.28).

2.4 Virasoro algebra

In this section, we consider the holomorphic part T (z) only, while one can discuss the anti-
holomorphic part in the same way. Our goal here is to obtain the minimal series of CFT. Let
us consider the Laurent expansion for T (z) about z = 0,

T (z) =
∑
n∈Z

Ln
zn+2

. (2.45)

The coefficient Ln is termed the Virasoro generator. Inversely, the Virasoro generator can be
written in terms of T (z) by

Ln =
1

2πi

∮
dz zn+1T (z). (2.46)

From the OPE of T itself (2.33), the Virasoro generator satisfies the following commutation
relation:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (2.47)

This is the Virasoro algebra [94], which is the central extension of the Witt algebra with
c = 0. The expansion of T (z)T (0) gives a representation of the Virasoro algebra in terms of
the OPE.
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Because of the invariance of 〈0|0〉 under coordinate transformations, the vacuum expecta-
tion value of T (z) should vanish,

〈0|T (z)|0〉 = 0, (2.48)

that is, for ∀n ∈ Z,

〈0|Ln|0〉 = 0. (2.49)

It is, however, inconsistent with the Virasoro algebra that we assume Ln|0〉 = 0 for all n when
c 6= 0. Now, noting that the Hermiticity of the EMT (or unitarity of the theory) leads to

L†n = L−n, (2.50)

it is sufficient to impose that

Ln|0〉 = 0 (n ≥ 0) (2.51)

It is important to consider the behavior of the Virasoro generator acting on the primary state,
which is defined by

|c, h〉 = lim
z→0
O(z)|0〉, (2.52)

where O is a primary field with (h, 0). By using the OPE between the primary field and
T (2.32), the Virasoro generator acts on the primary state as

Ln|c, h〉 = 0 (n ≥ 1), (2.53)

L0|c, h〉 = h|c, h〉. (2.54)

Such a state is also called the highest weight state.
From the above relation, Ln (n > 0) is a lowering (annihilation) operator, and L−n = L†n

is a raising (creation) operator. n in L−n is the level of the excitation. An eigenstate of L0

that Virasoro raising operators act on the primary state

L−n1L−n2 . . . L−nr |c, h〉 (2.55)

is called the descendant with the level N =
∑

i ni and the weight h+N . The Verma module
V (c, h) [95, 96] is then defined by a vector space spanned by the primary state |c, h〉 and its
descendants. All states with the level N in V (c, h) span the subspace VN (c, h). The dimension
of VN (c, h), p(N) ≡ dimVN (c, h), is the number of integer partitions of N , and hence,

∞∑
N=0

p(N)qN =
∞∏
k=1

1

1− qk
(2.56)

= 1 + q + 2q2 + 3q3 + . . . (2.57)

We now take the basis of VN (c, h) as Eq. (2.55) with n1 ≥ n2 ≥ · · · ≥ nr > 0. Let us define
the p(N)× p(N) Gram matrix, MN (c, h)

MN (c, h) =


〈c, h|LN1

〈c, h|LN−2
1 L2
...

〈c, h|LN

(LN−1|c, h〉 L−2L
N−2
−1 |c, h〉 . . . L−N |c, h〉

)
. (2.58)
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detMN (c, h) is called the Kac determinant. If the Verma module is unitary, MN (c, h) is
positive definite.

A descendant |χ〉 ∈ VN (c, h) (N > 0), such that

Ln|χ〉 = 0 (n > 0), (2.59)

is the null vector. This state is orthogonal to any state |v〉 ∈ V (c, h), that is, 〈χ|v〉 = 0.
Especially, 〈χ|χ〉 = 0. When a null vector in VN (c, h) exists, a raw/column vector inMN (c, h)
vanishes identically; then detMN (c, h) = 0. Generally, if detMN (c, h) = 0, there exists a
null vector with the level N in the Verma module. Since a physical state |ψ〉 vanishes by
acting with the Virasoro lowering operator, (〈ψ|+ 〈χ|)(|ψ〉+ |χ〉) = 〈ψ|ψ〉. We identify these
two states as

|ψ〉 ∼= |ψ〉+ |χ〉. (2.60)

The Hilbert space obtained from physical states, Hphys, includes the extra degrees of free-
dom Hnull because of the existence of null vectors. Hnull indicates the gauge symmetry, and
the identification (2.60) corresponds to the gauge transformation.

The explicit form of the Kac determinant is given in Refs. [5, 6, 97], by

detMN (c, h) = KN

∏
1≤rs≤N

(h− hr,s)p(N−rs), (2.61)

KN =
∏

1≤rs≤N
[(2r)ss!]p(N−rs)−p(N−r(s+1)), (2.62)

hr,s =
c− 1

24
+

1

4
(rα+ + sσ−)2, (2.63)

α± =
1√
24

(
√

1− c±
√

25− c). (2.64)

Using the central charge c ∈ C in terms of the parameter µ ∈ C,

c = 1− 6

µ(µ+ 1)
, (2.65)

we can rewrite as

α+ =

√
2(µ+ 1)

µ
, α− = −

√
2µ

µ+ 1
, (2.66)

hr,s =
[(µ+ 1)r − µs]2 − 1

4µ(µ+ 1)
. (2.67)

If the conformal weight h is identical to hr,s, there exists a null vector with the level N = rs.
When 0 ≤ c < 1, let us take c and h as

c = cp,p′ = 1− 6(p− p′)2

pp′
, (2.68)

α+ =

√
2p′

p
, α− = −

√
2p

p′
, (2.69)

hr,s = hp−r,p′−s =
(p′r − ps)2 − (p′ − p)2

4pp′
, (2.70)
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where the integers p and p′ are coprime, and 1 ≤ r ≤ p− 1, 1 ≤ s ≤ p′ − 1. In this case, the
Kac determinant has zero points. The OPEs between the set of primary fields with {hr,s} are
closed; the number of the primary fields is given by the finite number (p − 1)(p′ − 1). This
theory with the finite number of the primary fields is called the minimal model.

Unitary representations of CFT can exists for c ≥ 1 and h ≥ 0, or in the minimal model
with p = m, p′ = m + 1 (p′ − p = 1); the central charge and the conformal weights in the
unitary minimal model is given by

c = 1− 6

m(m+ 1)
, m = 2, 3, . . . , (2.71)

hr,s =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
, (2.72)

where 1 ≤ r ≤ m − 1, 1 ≤ s ≤ m. Note that hr,s = hm−r,m+1−s. There are many statistical
systems, which provide the minimal model at criticality:

• m = 3, c = 1/2: Ising model,

• m = 4, c = 7/10: Tricritical Ising model,

• m = 5, c = 4/5: 3-state Potts model.

Such statistical systems exist for all unitary minimal models [98,99].





Chapter 3

Supersymmetry and
superconformal multiplet

3.1 Supersymmetry and the WZ model

As already mentioned, it is believed that the LG description of 2D N = 2 SCFT is provided
by the 2D N = 2 WZ model [38]. This model is invariant under supersymmetry (SUSY),
which is a symmetry under swapping bosons and fermions. Supersymmetric theories possess
a fermionic extension of Poincarè symmetry (and internal symmetries); SUSY is a type of
spacetime symmetries. Superconforml symmetry is a SUSY-extension of the conformal sym-
metry. In this chapter, utilizing the WZ model we will give a review of the SUSY and the
superconformal symmetry.

3.1.1 4D N = 1 supersymmetry

To obtain the 2D N = 2 WZ action, it is convenient to consider the dimensional reduction of
the 4D N = 1 WZ model. Let A be a complex scalar, ψα a left-handed Weyl spinor, and F
an auxiliary field. The term “N = 1” means that there exists a single supercharge Qα (Q̄α̇),
which swaps A, ψ and F as

(A,A∗)↔ (ψα, ψ̄α̇)↔ (F, F ∗). (3.1)

We note that the 2-component Weyl spinor is an irreducible representation of the Lorentz
group in four dimensions. By introducing Grassmann coordinates θα and θ̄α̇, we can define
the WZ model in the so-called superspace (x, θ, θ̄), whose action is given by

S =

∫
d4x d4θ Φ̄Φ−

∫
d4x d2θW (Φ)−

∫
d4x d2θ̄ W (Φ̄). (3.2)

Here Φ is the chiral superfield

Φ(x, θ, θ̄) = A(y) +
√

2

2∑
α=1

θαψα(y) +

2∑
α=1

θαθαF (y), (3.3)

17
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and the coordinate y is given by

yM = xM + i
2∑

α=1

2̇∑
α̇=1̇

θασMαα̇θ̄
α̇ for M = 0, 1, 2, 3, (3.4)

where σ0 is the unit matrix and σ1,2,3 the Pauli matrices; W (Φ) or W (Φ̄) in Eq. (3.2) is the
superpotential assumed to be a polynomial of the superfield Φ or Φ̄.

The above action (3.2) is invariant under the SUSY transformation

δξΦ =
2∑

α=1

ξαQαΦ−
2̇∑

α̇=1̇

ξ̄α̇Q̄α̇Φ, (3.5)

where ξ (ξ̄) is a Grassmann parameter, and

Qα =
∂

∂θα
+
∑
µ

2̇∑
β̇=1̇

iσµ
αβ̇
θ̄β̇∂µ, Q̄α̇ = − ∂

∂θ̄α̇
−
∑
µ

2∑
β=1

iθβσµβα̇∂µ. (3.6)

For the component fields (A, ψ, F ), the transformation is rewritten by

δξA =

2∑
β=1

ξβ
√

2ψβ, (3.7)

δξψα =

2∑
β

ξβ
√

2εβαF −
2̇∑

β̇=1̇

ξ̄β̇
∑
µ

(−i
√

2)σµ
αβ̇
∂µA, (3.8)

δξF = −
2̇∑

β̇=1̇

ξ̄β̇
∑
µ

2∑
γ=1

i
√

2∂µψ
γσµ

γβ̇
, (3.9)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0. These SUSY transformations fulfill the following
anti-commutation relations:

{Qα, Q̄β̇} =
∑
µ

(−2i)σµ
αβ̇
∂µ, (3.10)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0. (3.11)

In the first line, two SUSY transformations lead to the translation. We can see that the
supercharge and the generators of the Poincarè group fulfill the simplest SUSY-extension of
the Poincarè algebra. From the second line, the supercharge Q (Q̄) is nilpotent.

One of the most important quantities in supersymmetric field theories is the Witten in-
dex [100,101], which is a topological invariant relating to the vacuum structure of the theory.
The Witten index is defined by the difference between the numbers of bosonic states nb and
fermionic states nf :

∆ ≡ nb − nf . (3.12)
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In supersymmetric theories, the number of non-zero energy bosonic states is identical to that
of non-zero energy fermionic states. Thus, the Witten index is the difference between the
numbers of bosonic and fermionic vacua. By using the fermion number operator F , which act
on a bosonic state as F = 0 and on a fermionic state as F = 1, we can formally define the
Witten index as

∆ = Tr(−1)Fe−βH , (3.13)

where H is the Hamiltonian, and β is the inverse temperature; in terms of the path integral,

∆ =

∫
[dΦ] e−S[Φ], (3.14)

where we impose periodic boundary conditions for bosons and fermions. It is known that the
Witten index has the following properties:

1. ∆ ≥ 0.

2. ∆ = 1 in a massive free theory.

3. If ∆ 6= 0 the SUSY cannot be broken.

4. If ∆ does not depend on β and the physical box size, it can be computed in the limit
that configurations are constant, where β and the box can vanish (ultralocal limit).

5. In general ∆ is not an integer, but still remains as the topological index.

6. If not mass gap exist, ∆ can be ill-defined or infinite.

3.1.2 2D N = 2 WZ model

Let us consider the dimensional reduction of the above 4D WZ action. We then identify the
two coordinates x0 and x1 with the 2D ones, and eliminate the dependence on x2 and x3.
In two dimensions, a minimal spinor representation is a 1-component Majorana–Weyl spinor.
The 4D Weyl representation ψα consists of two 2D Weyl spinors, ψ1 (ψ̄1̇) and ψ2 (ψ̄2̇), each
of which can decompose two Majorana–Weyl spinors. Then, there are two supercharges, Q1

and Q̄1̇, and two ones, Q2 and Q̄2̇, respectively. This is called the N = (2, 2) supersymmetry;
we will abbreviate it as the N = 2 SUSY.

We define a 2D Dirac fermion by

ψ ≡
(
ψ1

ψ̄2̇

)
, ψ̄γ0 ≡ (ψ̄1̇, ψ2), (3.15)

and the 2D Dirac matrices by

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 i
−i 0

)
. (3.16)

In terms of the complex coordinates, these are written by

γz =

(
0 1
0 0

)
, γz̄ =

(
0 0
1 0

)
. (3.17)
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The Euclidean action of the 2D N = 2 WZ model is given by1

S =

∫
d2x

[
4∂A∗∂̄A− F ∗F − F ∗W (A)∗

∂A∗
− F W (A)

∂A

+ ψ̄γ0

(
2∂ ∂2W (A)

∂(A∗)2

∂2W (A)
∂A2 2∂̄

)
ψ

]
. (3.18)

As we will see later, we need to construct the WZ model with multiple superfields. Let the
WZ model contain NΦ superfields, {ΦI}I=1,...,NΦ

. The 4D action in the superspace (3.2) is
generalized to

S =

∫
d4x d4θ

∑
I

Φ̄IΦI −
∫
d4x d2θW ({Φ})−

∫
d4x d2θ̄ W ({Φ̄}), (3.19)

and the 2D WZ action (3.18) to

S =

∫
d2x

∑
I

[
4∂A∗I ∂̄AI − F ∗I FI − F ∗I

W ({A})∗

∂A∗I
− FI

W ({A})
∂AI

+ (ψ̄γ0)I
∑
J

(
2δIJ∂

∂2W ({A})
∂A∗I∂A

∗
J

∂2W ({A})
∂AI∂AJ

2δIJ ∂̄

)
ψJ

]
. (3.20)

The superpotential W ({Φ}) (W ({Φ̄})) is a multi-variable polynomial of {ΦI} ({Φ̄I}).
The SUSY transformation in the 2D N = 2 WZ model in Eq. (3.18) or (3.20) is given by

δξϕ(x) =
2∑

α=1

ξαQαϕ(x)−
2̇∑

α̇=1̇

ξ̄α̇Q̄α̇ϕ(x), (3.21)

where ϕ stands for A, ψ, or F (or a generic field). Here, omitting the factor of root-two
in Eqs. (3.7)–(3.9), Qα (α = 1, 2) is defined by

Q1ψ̄1̇(x) = −2∂̄A∗(x), Q1A
∗(x) = 0, (3.22)

Q1F
∗(x) = 2∂̄ψ̄2̇(x), Q1ψ̄2̇(x) = 0, (3.23)

Q1A(x) = ψ1(x), Q1ψ1(x) = 0, (3.24)

Q1ψ2(x) = F (x), Q1F (x) = 0, (3.25)

and

Q2ψ̄2̇(x) = −2∂A∗(x), Q2A
∗(x) = 0, (3.26)

Q2F
∗(x) = −2∂ψ̄1̇(x), Q2ψ̄1̇(x) = 0, (3.27)

Q2A(x) = ψ2(x), Q2ψ2(x) = 0, (3.28)

Q2ψ1(x) = −F (x), Q2F (x) = 0. (3.29)

1The Euclidean action of the auxiliary field in the WZ model has the “wrong sign”, that is, the sign
is opposite to the Gaussian one. In this sense, the functional integral containing the Euclidean action of the
auxiliary field is merely a formal expression. We understand that the auxiliary field is always expressed by using
the equation of motion. The functional integral then becomes perfectly well defined under this understanding.
Our computation below is based on such a well-defined functional integral.
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On the other hand, Q̄α̇ (α̇ = 1̇, 2̇) is defined by

Q̄1̇ψ1(x) = −2∂̄A(x), Q̄1̇A(x) = 0, (3.30)

Q̄1̇F (x) = −2∂̄ψ2(x), Q̄1̇ψ2(x) = 0, (3.31)

Q̄1̇A
∗(x) = ψ̄1̇(x), Q̄1̇ψ̄1̇(x) = 0, (3.32)

Q̄1̇ψ̄2̇(x) = −F ∗(x), Q̄1̇F
∗(x) = 0, (3.33)

and

Q̄2̇ψ2(x) = −2∂A(x), Q̄2̇A(x) = 0, (3.34)

Q̄2̇F (x) = 2∂ψ1(x), Q̄2̇ψ1(x) = 0, (3.35)

Q̄2̇A
∗(x) = ψ̄2̇(x), Q̄2̇ψ̄2̇(x) = 0, (3.36)

Q̄2̇ψ̄1̇(x) = F ∗(x), Q̄2̇F
∗(x) = 0. (3.37)

These transformations obey anti-commutation relations,

{Q1, Q̄1̇} = −2∂̄, (3.38)

{Q2, Q̄2̇} = −2∂, (3.39)

{Q1, Q̄2̇} = {Q2, Q̄1̇} = 0, (3.40)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0. (3.41)

The WZ model above is also invariant under two U(1) transformations. The first one is
the following transformation (γ ∈ R),

δγA(x) = 0, δγF (x) = 0, (3.42)

δγψ(x) = δγ

(
ψ1

ψ̄2̇

)
(x) = iγ

(
ψ1

ψ̄2̇

)
(x), δγ(ψ̄γ0)T (x) = δγ

(
ψ̄1̇

ψ2

)
(x) = −iγ

(
ψ̄1̇

ψ2

)
(x). (3.43)

We assign the U(1) charge +1 to ψ, and −1 to ψ̄. It will turn out that the associated U(1)
current together with the supercurrent and the EMT forms the superconformal multiplet.
The other one is the so-called R-symmetry. In the case of NΦ = 1 and W (Φ) = λΦn/n, the
U(1)R transformation is given by

A(x)→ exp [iγ/n]A(x), (3.44)

ψα(x)→ exp [−iγ(n− 2)/2n]ψα(x), (3.45)

ψ̄α̇(x)→ exp [iγ(n− 2)/2n] ψ̄α̇(x), (3.46)

F (x)→ exp [−iγ(n− 1)/n]F (x). (3.47)

Note that, even in the free-field limit λ → 0, the U(1)R current can be neither holomorphic
nor anti-holomorphic; it is not a member of the expected superconformal multiplet.

3.2 Spacetime symmetries and the Noether currents

We consider the basic spacetime symmetries of the 2D N = 2 WZ model: SUSY, the transla-
tion, and the U(1) symmetry. Our goal in this section is to derive the associated Noether cur-
rents: the supercurrent, the EMT, and the U(1) current. In general, a Noether current is ob-
tained as follows: Suppose that there exists a symmetry transformation ϕ(x)→ ϕ(x)+δϕ(x).
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Then under the localized transformation

ϕ(x)→ ϕ(x) + ρ(x)δϕ(x), (3.48)

the action changes as

δS = − i

2π

∫
d2x

∑
µ

jµ(x)∂µρ(x). (3.49)

Here jµ(x) is the expected Noether current, which satisfies the conservation law∑
µ

∂µjµ(x) = 0. (3.50)

From this derivation, we can obtain the Noether currents associated with the SUSY trans-
formation δξ (3.21), the translation

δvϕ(x) = −
∑
µ

vµ∂µϕ(x), (3.51)

and the U(1) transformation δγ (3.43). It is convenient to define

jµ(x) =


− i
(
ξ1S̄+

µ (x) + ξ2S−µ (x) + ξ̄1̇S̄−µ (x) + ξ̄2̇S+
µ (x)

)
,

i
∑
ν

vνTµν(x),

γJµ(x).

(3.52)

Here S±µ and S̄±µ denote the supercurrents, Tµν is the EMT, and Jµ is the U(1) current. The
superscripts ± of the supercurrent denote the U(1) charge ±1.

Now we can derive the explicit form of the Noether currents. That of the supercurrent and
the EMT, however, is ambiguous. This is because we have freedom to add a term Xµ, which
is divergence-free

∑
µ ∂µXµ and/or is proportional to the equation of motion. To remove this

ambiguity it is natural to consider the N = 2 superconformal multiplet in the massless free
WZ model, which is an N = 2 SCFT with c = 3. The multiplet formed by the above Noether
currents fulfills the N = 2 super-Virasoro algebra, as we will see in the next section. We then
impose that the EMT is traceless, ∑

µ

Tµµ = 0, (3.53)

that is,

Tzz̄ = Tz̄z = 0, (3.54)

and the supercurrent is gamma-traceless,∑
µ

γµ

(
S̄±µ
S±µ

)
= 0, (3.55)
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that is,

S±z̄ = S̄±z = 0, (3.56)

for the massless free case, W = 0.
It is, however, still ambiguous to obtain the explicit form of EMT. Because of this, it is

difficult to find the desired EMT, starting from the canonical EMT obtained by the varia-
tion δv (3.51). A better strategy is the following: We note that the Noether current obtained
under the infinitesimal conformal transformation z → z + vz(z) (z̄ → z̄ + vz̄(z̄)) must be
related to the traceless EMT. This transformation is an exact symmetry of the massless free
WZ model. We now consider the infinitesimal transformation

δ′vA(x) = −
∑
µ

vµ∂µA(x), (3.57)

δ′vψ1(x) = −
∑
µ

vµ∂µψ1(x)− 1

2
(∂̄vz̄)ψ1(x), (3.58)

δ′vψ̄1̇(x) = −
∑
µ

vµ∂µψ̄1̇(x)− 1

2
(∂̄vz̄)ψ̄1̇(x), (3.59)

δ′vψ2(x) = −
∑
µ

vµ∂µψ2(x)− 1

2
(∂vz)ψ2(x), (3.60)

δ′vψ̄2̇(x) = −
∑
µ

vµ∂µψ̄2̇(x)− 1

2
(∂vz)ψ̄2̇(x), (3.61)

δ′vF (x) = −
∑
µ

vµ∂µF (x). (3.62)

If vz = vz(z) and vz̄ = vz̄(z̄) in the massless free WZ model, these transformations coincide
with the conformal transformation, where the conformal weights are (0, 0) for A and F , (0,
1/2) for ψ1 and ψ̄1̇, and (1/2, 0) for ψ2 and ψ̄2̇; this gives rise to the traceless EMT for the free
field case. When vµ is constant, this is just the translation δ′v = δv (3.51). When vµ ∝ εµνxν ,
this is the infinitesimal Lorentz transformation. Since these transformation is a symmetry
of the WZ model, the variation of the action with the localized parameter vµ(x) gives rise
to a conserved Noether current, which is a combination of the canonical EMT, the Lorentz
current, and the equation of motion. In this way, we can obtain the EMT which fulfills the
above requirements.

Following the above definition, we have the supercurrent [75]

S+ ≡ S+
z =

∑
I

4πψ̄2̇I∂AI , S+
z̄ =

∑
I

2πψ1I
∂W ({A})
∂AI

, (3.63)

S− ≡ S−z =
∑
I

(−4π)ψ2I∂A
∗
I , S−z̄ =

∑
I

2πψ̄1̇I

∂W ({A})∗

∂A∗I
, (3.64)

S̄+
z =

∑
I

(−2π)ψ̄2̇I

∂W ({A})∗

∂A∗I
, S̄+ ≡ S̄+

z̄ =
∑
I

(−4π)ψ1I ∂̄A
∗
I , (3.65)

S̄−z =
∑
I

(−2π)ψ2I
∂W ({A})
∂AI

, S̄− ≡ S̄−z̄ =
∑
I

4πψ̄1̇I ∂̄AI , (3.66)
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and the EMT

Tµν =
∑
I

{
−2π∂µA

∗
I∂νAI − 2π∂νA

∗
I∂µAI

+ πδµν

[
2
∑
ρ

∂ρA
∗
I∂ρAI − 2F ∗I FI − 2F ∗I

∂W ({A})∗

∂A∗I
− 2FI

∂W ({A})
∂AI

+
∑
J

(
∂2W ({A})∗

∂A∗I∂A
∗
J

ψ̄1̇I ψ̄2̇J +
∂2W ({A})
∂AI∂AJ

ψ2Iψ1J

)]
− π(δ0µ − iδ1µ)(δ0ν − iδ1ν)

(
ψ̄1̇I ∂̄ψ1I − ∂̄ψ̄1̇Iψ1I

)
− π(δ0µ + iδ1µ)(δ0ν + iδ1ν)

(
ψ2I∂ψ̄2̇I − ∂ψ2I ψ̄2̇I

)}
. (3.67)

The explicit form of the U(1) current is given by

J ≡ Jz =
∑
I

2πψ̄2̇Iψ2I , (3.68)

J̄ ≡ Jz̄ =
∑
I

2πψ1I ψ̄1̇I . (3.69)

The EMT can be written in the complex coordinates as

T ≡ Tzz =
∑
I

(
−4π∂A∗I∂AI − πψ2I∂ψ̄2̇I + π∂ψ2I ψ̄2̇I

)
, (3.70)

T̄ ≡ Tz̄z̄ =
∑
I

(
−4π∂̄A∗I ∂̄A

∗
I − πψ̄1̇I ∂̄ψ1I + π∂̄ψ̄1̇Iψ1I

)
, (3.71)

Tzz̄ = Tz̄z =
∑
I

[
−πF ∗I FI − πF ∗I

∂W ({A})∗

∂A∗I
− πFI

∂W ({A})
∂AI

+
∑
J

(
π

2

∂2W ({A})∗

∂A∗I∂A
∗
J

ψ̄1̇I ψ̄2̇J +
π

2

∂2W ({A})
∂AI∂AJ

ψ2Iψ1J

)]
. (3.72)

Noting that FI = −∂W ∗/∂A∗I under the equation of motion, when W = 0, the (gamma-)
traceless condition is satisfied clearly.

It can be confirmed that the above expressions of the supercurrent, the EMT, and the
U(1) current are related by the SUSY transformation. For instance, S±, T , and J , satisfies

T =
1

4
Q2S

± − 1

4
Q̄2̇S

±, (3.73)

S+ = Q̄2̇J, S− = Q2J (3.74)

This fact also provides support for the above Noether currents.
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3.3 N = 2 super-Virasoro algebra

3.3.1 OPEs of the superconformal multiplet

We focus on the massless free WZ model with W (Φ) = 0,

S =

∫
d2x

[
4∂A∗∂̄A+ 2ψ̄1̇∂ψ1 + 2ψ2∂̄ψ̄2̇

]
. (3.75)

Here we have eliminated the auxiliary field F . This would be a free N = 2 SCFT. In this
section, let us confirm that the above Noether currents satisfy the N = 2 super-Virasoro
algebra as expected.

We immediately find that from equations of motion,

∂̄∂A = 0, (3.76)

∂ψ1 = 0, ∂ψ̄1̇ = 0, (3.77)

∂̄ψ2 = 0, ∂̄ψ̄2̇ = 0, (3.78)

A should be a sum of holomorphic and anti-holomorphic functions, (ψ1, ψ̄1̇) is anti-holomorphic,
and (ψ2, ψ̄2̇) holomorphic. Under the conformal transformation z → z′, we have

A′(z′, z̄′) = A(z, z̄), (3.79)

ψ′1(z̄′) = (∂̄z̄′)−1/2ψ1(z̄), ψ̄′
1̇
(z̄′) = (∂̄z̄′)−1/2ψ̄1̇(z̄), (3.80)

ψ′2(z′) = (∂z′)−1/2ψ2(z), ψ̄′
2̇
(z′) = (∂z′)−1/2ψ̄2̇(z). (3.81)

The SUSY transformation given in Eqs. (3.22)–(3.37) is now called the superconformal trans-
formation. Since the conformal (superconformal) transformation does not mix holomorphic
and anti-holomorphic functions, transformations by Q1 (3.22)–(3.25) and Q̄1̇ (3.26)–(3.29) are
holomorphic, those by Q2 (3.30)–(3.33) and Q̄2̇ (3.34)–(3.37) are anti-holomorphic. Noting
that

∂̄∂ ln |z|2 = πδ(x0)δ(x1), (3.82)

The OPEs between the component fields are given by2

A(z, z̄)A∗(0, 0) ∼ − 1

4π
ln |z|2, (3.83)

ψ1(z̄)ψ̄1̇(0) ∼ 1

2π

1

z̄
, (3.84)

ψ̄2̇(z)ψ2(0) ∼ 1

2π

1

z
, (3.85)

(otherwise) ∼ 0. (3.86)

2In string theory, the following normalization is conventional: ϕ → (1/
√

2π)ϕ. Then we see the overall
factor 1/2π in the action (3.75), while coefficients of the OPEs (3.83)–(3.85) are simplified.
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We summarize explicit expressions for the Noether currents in the massless free limit. In
the holomorphic sector the supercurrent, the EMT and the U(1) current are

S+(z) = 4πψ̄2̇(z)∂A(z), (3.87)

S−(z) = −4πψ2(z)∂A∗(z), (3.88)

T (z) = −4π∂A∗(z)∂A(z)− πψ2(z)∂ψ̄2̇(z) + π∂ψ2(z)ψ̄2̇(z), (3.89)

J(z) = 2πψ̄2̇(z)ψ2(z), (3.90)

and in the anti-holomorphic sector,

S̄+(z̄) = −4πψ1(z̄)∂̄A∗(z̄), (3.91)

S̄−(z̄) = 4πψ̄1̇(z̄)∂̄A(z̄), (3.92)

T̄ (z̄) = −4π∂̄A∗(z̄)∂̄A(z̄)− πψ̄1̇(z̄)∂̄ψ1(z̄) + π∂̄ψ̄1̇(z̄)ψ1(z̄), (3.93)

J̄(z̄) = 2πψ1(z̄)ψ̄1̇(z̄). (3.94)

Using these, we find that the holomorphic Noether currents fulfill the OPEs of the N = 2
super-Virasoro algebra,

T (z)T (0) ∼ c

2z4
+

2

z2
T (0) +

1

z
∂T (0), (3.95)

T (z)S±(0) ∼ 3

2z2
S±(0) +

1

z
∂S±(0), (3.96)

T (z)J(0) ∼ 1

z2
J(0) +

1

z
∂J(0), (3.97)

S±(z)S±(0) ∼ 0, (3.98)

S+(z)S−(0) ∼ 2c

3z3
+

2

z2
J(0) +

2

z
T (0) +

1

z
∂J(0), (3.99)

J(z)S±(0) ∼ ±1

z
S±(0), (3.100)

J(z)J(0) ∼ c

3z2
, (3.101)

where the central charge is c = 3 corresponding to a free N = 2 SCFT.

3.3.2 N = 2 minimal model

Finally, the minimal series of the SCFT is discussed. We should remark that there are two
chooses of boundary conditions for the fermion [17–19]; for instance,

Neveu–Schwarz (NS) sector : ψ2(e2πiz) = +ψ2(z), (3.102)

Ramond (R) sector : ψ2(e2πiz) = −ψ2(z). (3.103)

Noting that ψ has the conformal weight h = 1/2, its Laurent expansion is given by

ψ2(z) =
∑
r

ψ2,r

zr+
1
2

, (3.104)
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where r ∈ Z + 1
2 in the NS sector, and r ∈ Z in the R sector. There exist minimal models of

N = 2 SCFT at c < 3, while non-SUSY minimal models at c < 1. Unitary representations
can exist for c ≥ 3, or in unitary minimal models [102]

ĉ =
c

3
=

k

k + 2
, for k = 1, 2, . . . (3.105)

In the NS sector, the conformal weights and U(1) charges are

h`,m =
`(`+ 2)−m2

4(k + 2)
, (3.106)

Q`,m =
m

k + 2
, (3.107)

and in the R sector, on the other hand,

h`,m =
`(`+ 2)− (m± 1)2

4(k + 2)
+

1

8
, (3.108)

Q`,m =
m± 1

k + 2
∓ 1

2
. (3.109)

Here ` and m are integers, such that

0 ≤ ` ≤ k, −` ≤ m ≤ `. (3.110)





Chapter 4

Renormalization group and
Landau–Ginzburg description

4.1 Renormalization group

So far, we have took into account (S)CFTs, which includes the invariance under scale trans-
formations. In this section, we discuss the scaling behavior of more general quantum field
theories, which is governed by the renormalization group (RG). The most part of this chapter
is based on Ref. [53].

To see the behavior under scaling transformations of a d-dimensional quantum field theory,
suppose that a complete set of local operators Oi(x) behaves as

δOi(x) = −
∑
j

∆i
jOj(x) (4.1)

under an infinitesimal scale transformation. Then, the scaling transformation for a correlation
function is given by

δ

〈∏
m

Om(xm)

〉
= − 1

2π

∫
ddx

〈∑
µ

Tµµ(x)
∏
m

Om(xm)

〉

−
∑
j,k

∆k
j

〈
Oj(xk)

∏
m 6=k
Om(xm)

〉
. (4.2)

The first term on the right hand side comes from the variation of the action under the scaling.
The trace of the EMT can be expanded in terms of the complete set {Oi},∫

ddx
∑
µ

Tµµ = −2π
∑
i

′
∫
ddxβi(g)Oi(x). (4.3)

Here
∑′

i is the summation over operators with dimension less than or equal to d. Writing a
general renormalizable action

S =
∑
i

′
gi
∫
ddxOi(x), (4.4)

29
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where gi is a coupling constant, we obtain the RG equation as

δ

〈∏
m

Om(xm)

〉
= −

∑
i

′
βi(g)

∂

∂gi

〈∏
m

Om(xm)

〉

−
∑
j,k

∆k
j

〈
Oj(xk)

∏
m 6=k
Om(xm)

〉
. (4.5)

It can be absorbed into the definition of ∆i
j that contact terms between the trace of the EMT

and other local operators, and gi-derivatives acting on local operators. We find that the RG
equation states

Scaling transformation = Running of couplings + Mixing of local operators. (4.6)

Even if the classical action is scale invariant, the total quantum system can possess non-
trivial dependence on the scale. We mean by the “scale invariance” that the theory is invariant
under RG transformations. This scale invariance may be realized in the quantum field the-
ory with a fixed parameter of the coupling, gi = gi∗; it is a fixed point under the RG flow,
where the coupling is truly constant. Sufficiently low-energy physics is expected to be at
the IR fixed point, while all massive modes are decoupled. The similarity between the scale
invariance and conformal symmetry appears to imply that such a scale-invariant theory would
be described by a CFT. Especially, any 2D unitary scale-invariant theory has the conformal
symmetry [82,103]. It is, however, not the case for all field theories [104].

4.2 Zamolodchikov’s c-theorem

In a 2D theory without conformal symmetry, the traceless condition is not satisfied; Tzz̄ does
not vanish, and Tzz (Tz̄z̄) is not (anti-) holomorphic. We cannot define the central charge in
the Virasoro algebra. However, we can generalize the idea of the central charge in such a field
theory. First, noting that the two-point function of Tzz in a CFT is given by

〈Tzz(z)Tzz(0)〉 =
c

2z4
(4.7)

because of rotational invariance, we can define a function F (τ) with τ = ln zz̄ such that [103,
105]

〈Tzz(z, z̄)Tzz(0, 0)〉 =
F (τ)

z4
. (4.8)

At the fixed point of RG transformations, where the theory has the conformal invariance,
2F is identical to the central charge c itself. The discussion in the previous section leads to
the fact that 2F (τ) → c in an extremely low-energy region, τ → ∞. Second, we also define
G and H by

〈Tzz(z, z̄)Tzz̄(0, 0)〉 =
G(τ)

4z3z̄
, (4.9)

〈Tzz̄(z, z̄)Tzz̄(0, 0)〉 =
H(τ)

z2z̄2
, (4.10)
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where G and H are the functions of τ because of rotational invariance [103, 105]. From the
conservation law ∂̄Tzz + ∂Tzz̄ = 0, one obtains

4
dF

dτ
+
dG

dτ
− 3G = 0, (4.11)

4
dG

dτ
− 4G+

dH

dτ
− 2H = 0. (4.12)

Then we can find

d

dτ

(
2F −G− 3

8
H

)
= −3

4
H. (4.13)

The form in the parentheses of the left hand side is called the Zamolodchikov C-function [82]:

C ≡ 2F −G− 3

8
H. (4.14)

The unitarity (or the reflection positivity) indicates that H is non-negative [106, 107]. Thus
C(τ) is a monotonically decreasing function of τ . At τ →∞, C(τ) is stationary and identical
to c because Tzz̄ = 0.

There also exists the supersymmetric version of the Zamolodchikov C-function in terms
of the supercurrent, instead of the EMT [83]. We discuss this in the 2D N = 2 WZ model.
The supercurrent (3.63)–(3.66),

S+
z = 4πψ̄2̇∂A, S+

z̄ = 2πψ1W
′(A), (4.15)

S−z = −4πψ2∂A
∗, S−z̄ = 2πψ̄1̇W

′(A)∗, (4.16)

satisfies the conservation law

∂̄S±z + ∂S±z̄ = 0. (4.17)

For a superconformal system, S±z̄ = 0 and〈
S±z (z)S±z (0)

〉
= 0, (4.18)〈

S+
z (z)S−z (0)

〉
=

2c

3z3
. (4.19)

Now, introducing w and q by

w(z, z̄) ≡ S+
z (z, z̄) + S−z (z, z̄), q(z, z̄) ≡ −S+

z̄ (z, z̄)− S−z̄ (z, z̄), (4.20)

we define general forms as

〈w(z, z̄)w(0, 0)〉 =
f(τ)

z3
, (4.21)

〈w(z, z̄)q(0, 0)〉 = 〈q(z, z̄)w(0, 0)〉 =
g(τ)

z2z̄
, (4.22)

〈q(z, z̄)q(0, 0)〉 =
h(τ)

zz̄2
(4.23)
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Here owing to rotational invariance, f , g, and h are functions of τ only. From Eq. (4.17), we
can obtain

df

dτ
− dg

dτ
+ 2g = 0, (4.24)

dg

dτ
− dh

dτ
− g + h = 0, (4.25)

and

d

dτ
(f + g − 2h) = −2h. (4.26)

Thus we again see that the SUSY-analogue of the Zamolodchikov C-function,

χ ≡ 3

4
(f + g − 2h) , (4.27)

is a monotonically decreasing function of τ because h(τ) is non-negative. As τ → ∞, we
observe S±z̄ = 0 and χ = c.

4.3 Landau–Ginzburg description

In this section, we introduce the Landau–Ginzburg (LG) model. Originally, the so-called
Ginzburg–Landau theory is considered to describe superconductivity [4]. This is realized
by introducing a complex order parameter, on the basis of the mean field approximation to
second-order phase transitions. We first consider an order parameter η ∈ R, such that η = 0
for the ordered phase, and η 6= 0 for the disordered phase. Suppose that the free energy,
F (T, η) at a temperature T can be expanded by the order parameter η, and is symmetric
under η → −η. Then we obtain

F (T, η) = F (T, 0) + C2(T )η2 + C4(T )η4 + · · · . (4.28)

Now we regard η as a type of “wave function,” ψ ∈ C. and replace η with ψ, and η2 with
|ψ|2; then the free energy is rewritten by

F (T, ψ) = F (T, 0) + C2(T )|ψ|2 + C4(T )|ψ|4 + · · · . (4.29)

When the wave function ψ depends on positions in the space, the kinetic term

− ~2

2m
|∇ψ|2 (4.30)

is supposed to add to the free energy. To minimize F under variations of ψ leads to the
Ginzburg–Landau equation.

In the context of field theory, we consider the (Euclidean) Lagrangian, instead of the free
energy. For example,

L =
1

2
(∂φ)2 + λ1φ

2 + λ2φ
4. (4.31)
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In the IR limit, tuning λ1 to zero (massless), this model becomes the critical theory that is
the m = 3 minimal model in Chap 2. (That is, this model belongs to the same universality
class as the Ising model.) Similarly, the model with φ2m−2, instead of φ4, corresponds to the
mth minimal model [3]. Such a (strongly-interacting) Lagrangian realization of CFT is the
LG description of CFT and the LG model. This provides a intuitive picture of its operator
content; a primary field Or,s with the conformal weight hr,s given in Chap. 2 is identified with

φn = On+1,n+1, (0 ≤ n ≤ m− 2). (4.32)

Let us take into account the 2D N = 2 SUSY. Especially, the 2D N = 2 WZ model (3.18)

S =

∫
d2x

[
4∂A∗∂̄A− F ∗F − F ∗W ′(A)∗ − FW ′(A)

+
(
ψ̄1̇, ψ2

)( 2∂ W ′′(A)∗

W ′′(A) 2∂̄

)(
ψ1

ψ̄2̇

)]
(4.33)

with the superpotential

W (Φ) =
λ

k + 2
Φk+2 for k = 1, 2, . . . , (4.34)

is believed to provide the LG description of the kth N = 2 unitary minimal model in Chap. 3.
For example, in Ref. [52], an evidence is provided by the analysis of a generalization of the
Witten index,

Z(q, q̄, γL, γR) = Tr(−1)F qHL q̄HR exp (iγLJ0,L + iγRJ0,R) , (4.35)

where H is the Hamiltonian, and J0 is the U(1) charge, the subscript L denote the left-mover
part, and R does the right-mover part; q, q̄, and γL,R are arbitrary constants. Although this
can be computed in the N = 2 minimal model, it is difficult in the WZ model. Now, for the
case of γR = 0, we define the elliptic genus by

Z(q, q̄, γL, 0) = tr(−1)F qHL q̄HR exp (iγLJ0,L) . (4.36)

In the WZ model, this partition function implies that the boundary condition along time is
twisted by exp(iγLJ0,L). The most salient feature is that the elliptic genus is invariant under
W (Φ) → εW (Φ) with ε ≥ 0, so it is a topological number; in the free-field limit ε → 0, this
becomes computable. It turns out [52] that the elliptic genus in the minimal model is identical
to that in the WZ model.

For the WZ model with multiple superfields (3.20), the superpotential W ({ΦI}) should
be quasi-homogeneous,

W ({ΛωIΦI}) = ΛW ({ΦI}). (4.37)

We can see this as follows: Suppose that W = Φm + Φn (m < n) for simplicity. Rescaling the
metric induces

∫
d2z d2θ → λ

∫
d2z d2θ, and hence, we have∫

d2z d2θW (Φ) = λ

∫
d2z d2θ (Φm + Φn) . (4.38)
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We can absorb the overall factor λ into the redefinition of the superfield as Φ→ λ−1/mΦ, and
consider the IR limit, which indicates the strong-coupling limit λ→∞. Then we see∫

d2z d2θW (Φ) =

∫
d2z d2θ

(
Φm + λ−n/mΦn

)
(4.39)

λ→∞→
∫
d2z d2θΦm. (m < n) (4.40)

The IR behavior thus is governed by the quasi-homogeneous part of the superpotential with
the lowest weight.1 The explicit WZ/minimal-model correspondence is tabulated in Table. 4.1,
where the quasi-homogeneous superpotential is classified [44].

Algebra Superpotential Central charge

An xn+1, n = 1 3− 6/(n+ 1)
Dn xn−1 + xy2, n = 3 3− 6/2(n− 1)
E6 x3 + y4 3− 6/12
E7 x3 + xy3 3− 6/18
E8 x3 + y5 3− 6/30

Table 4.1: ADE classification

4.4 Gepner model and Calabi–Yau compactification

A low-energy effective theory of the heterotic superstring theory is given by a ten-dimensional
N = 1 supergravity, which includes the graviton together with its superpartner, gravitino. We
now assume that the N = 1 SUSY remains in the flat four-dimensional spacetime, while the
extra six-dimensions are compactified. Then, the compactified space should be a Calabi–Yau
(CY) manifold. In this last section, let us consider the relation between the LG model and
the CY compactification of the superstring theory.

In superstring theory, the compactification into a complex d-dimensional CY manifold
can be described by an N = 2 SCFT with ĉ = c/3 = d. Such a theory may be a product of
minimal models, MN=2

ki
with m = ki (i = 1, 2, . . . , N),

⊗MN=2
ki

, ĉ =

N∑
i

ki
ki + 2

= 3. (4.41)

This is called the Gepner model.2 For simplicity, we consider the Gepner model with ki = k
for ∀i,

Nk

k + 2
= 3. (4.42)

1Thanks to the non-renormalization theorem [108–110], the superpotential is expected to receive no modifi-
cations under quantum radiations. It is, however, not clear that the perturbative non-renormalization theorem
can apply to the present model, because the perturbation theory suffers from the IR divergences.

2This definition is not yet a superstring theory itself, but consistent with the type II or heterotic superstring.
The consistency with the spacetime SUSY requires that the U(1) charge takes only integers.
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and then we have

(k,N) = (1, 9), (2, 6), (3, 5), (6, 4). (4.43)

For example, if (k,N) = (3, 5), the CY manifold is the quintic in CP 4,

G(z) = z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0. (4.44)

On the other hand, the LG description of the k = 3 minimal is provided by the WZ model
with W = Φ5. The LG model corresponding to (4.44) has the superpotential

W ({Φ}) = Φ5
1 + Φ5

2 + Φ5
3 + Φ5

4 + Φ5
5. (4.45)

Note that the forms of Eqs. (4.44) and (4.45) are identical.
A simple way to see this correspondence is as follows: At the IR fixed point, the critical

theory is determined by the form of the superpotential; then we consider the partition function
as

Z =

∫ ∏
I

[dΦI ] e
∫
d2z d2θW ({Φ})+h.c.. (4.46)

Because W is quasi-homogeneous as in Eq. (4.37), we can change the variables from {Φ} to
{X}, such that W (Φ1,Φ2, . . . ,ΦN ) = X1W (1, X2, . . . , XN ). Integrating over X1, we have

Z ∼
∫ ∏

I>1

[dXI ] δ(W (1, X2, . . . , XN )). (4.47)

Possible configurations are thus constrained to be on the hypersurface defined by W = 0,
which forms the CY manifold.

As another example of the LG/CY correspondence, we show that the non-linear sigma
model on the CY manifold and the LG model are related each other through a phase tran-
sition [42, 53]. By the dimensional reduction of a four-dimensional N = 1 supersymmetric
theory, we construct a 2D N = 2 theory. Let V be a U(1) vector superfield, P and ΦI (I = 1,
2, . . . , 5) chiral superfields with the superpotential

W = PG(Φ). (4.48)

Here G is identical to the form of Eq. (4.45). We assign the U(1) charge qΦ = 1 to ΦI and
qP = −5 to P . Especially, we can add the Fayet–Iliopoulos term [111]

−r
∫
d2x

∫
d4θ V, (4.49)

to the action, where r is the Fayet–Iliopoulos parameter. The dimensional reduction of the
above setup induces the potential

U = |G(φ)|2 + |p|2
∑
I

∣∣∣∣ ∂G∂φI
∣∣∣∣2 +

e2

2

(
r + 5|p|2 −

∑
I

|φI |2
)2

+2(A2
2 +A2

3)

(∑
I

|φI |2 + 25|p|2
)
, (4.50)
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where e denote the gauge coupling, A2 and A3 are the scalar fields coming from the gauge
field in four dimensions. The scalar component of each superfield is written as its lower case
letter. For a smoothness condition, we impose that the five equations,

∂G

∂φI
= 0, (4.51)

have only one simultaneous solution, φI = 0 for ∀i.
Let us consider configurations of the fields, which minimize the potential. First, when

r > 0, the second term in the potential (4.50) vanishes if p = 0 or φI = 0. The cancellation
condition of the third term is

p = 0,
∑
I

|φI |2 = r. (4.52)

From the fourth term, we have σ = 0. As a consequence, we obtain

G(φ) = 0. (4.53)

The fields {φi} are regarded as the coordinates on the manifold defined by Eq. (4.53), which
is called the target space. When we consider a curved target space, the theory is a non-linear
sigma model.

Second, we focus on the case of r < 0. From the second and third terms, we see

|p|2 =
r

5
, φI = 0, (4.54)

and from the fourth term σ = 0. Fluctuations of p are massive, while those of φI leads to the
LG model with the massless superpotential

W = 〈p〉G(Φ). (4.55)

We find that, for a same theory, there exist the CY phase for r > 0, and the LG phase for
r < 0.3

As mentioned in Introduction, if the world sheet theory is described by a Gepner model,
scattering amplitudes in the superstring theory can be computed from the the SCFT, but it
is in general not the case. Thus, it is quite difficult to carry out computations for a general
CY manifold, and treat the deformation of the compactification. On the other hand, the
superpotential W (Φ) of the LG model can be arbitrary changed, while the CY manifold is
deformed in the same way as we discussed in this section. Recall again, however, that the LG
description is a strongly-interacting field theory (and perturbation techniques is hindered by
the IR divergences).

3Although r = 0 is a singular point, we can perform analytical continuation through r = 0 by adding

i
θ

2π

∫
Fµνdx

µ ∧ dxν , (4.56)

if θ is non-zero at r = 0.



Chapter 5

Numerical approach based on the
Nicolai map

5.1 Formulation

5.1.1 Momentum cutoff regularization

In this and next chapters, as an alternative approach to study the LG model, we attempt
studying a non-perturbative numerical method on the basis of the lattice field theory. To
quantize the 2DN = 2 WZ action in Eq. (3.20), we employ the formulation studied in Ref. [76],
which is based on a momentum cutoff regularization and the Nicolai mapping. First of all,
suppose that the system we consider is defined in a 2D Euclidean box of physical size L0×L1.
The Fourier mode of a generic field ϕ(x) is then defined by

ϕ(x) =
1

L0L1

∑
p

eipxϕ(p), ϕ(p) =

∫
d2x e−ipxϕ(x), (5.1)

where the momentum is discretized as

pµ =
2π

Lµ
nµ, for nµ ∈ Z. (5.2)

Note that

ϕ∗(p) = ϕ(−p)∗. (5.3)

The WZ action in the momentum space is given by

S =
1

L0L1

∑
p

∑
I

[
4pzA

∗
I(−p)pz̄AI(p)− F ∗I (−p)FI(p)

− FI(−p)
∂W ({A})
∂AI

(p)− F ∗I (−p)∂W ({A})∗

∂A∗I
(p)

+ (ψ̄γ0)I(−p)
∑
J

(
2δIJpz

∂2W ({A})∗
∂A∗I∂A

∗
J
∗

∂2W ({A})
∂AI∂AJ

∗ 2δIJpz̄

)
ψJ(p)

]
, (5.4)
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where

pz ≡
1

2
(p0 − ip1), pz̄ ≡

1

2
(p0 + ip1), (5.5)

and “∗” denotes the convolution

(ϕ1 ∗ ϕ2)(p) ≡ 1

L0L1

∑
q

ϕ1(q)ϕ2(p− q), (5.6)

It is understood that the field products in ∂W ({A})/∂AI and ∂W ({A})/∂AI∂AJ are defined
by this convolution. After eliminating F by the equation of motion, the action yields

S = SB +
1

L0L1

∑
p

∑
I,J

(ψ̄γ0)I(−p)

(
2iδIJpz

∂2W ({A})∗
∂A∗I∂A

∗
J
∗

∂2W ({A})
∂AI∂AJ

∗ 2iδIJpz̄

)
ψJ(p), (5.7)

where SB is the bosonic part of the total action

SB =
1

L0L1

∑
p

∑
I

N∗I (−p)NI(p), (5.8)

and the new variables {N(p)} is defined by

NI(p) ≡ 2ipzAI(p) +
∂W ({A})∗

∂A∗I
(p). (5.9)

This new variables NI(p) specify the so-called Nicolai map [69–72]; the change of variables
from {A} to {N} simplifies the weight of the functional integral drastically, as we will see
soon.

To define the functional integral of this system, we now introduce the momentum cutoff Λ
as

|pµ| ≤ Λ for µ = 0 and 1, (5.10)

and the “lattice spacing” a as

Λ ≡ π

a
. (5.11)

All dimensionful quantities are then measured in units of a. Although an underlying “lattice
space” is not always assumed here, we will use the parameter a to take the “continuum limit”
a → 0, which removes the UV cutoff, Λ → ∞. If Lµ/a is an even integer, the discretized
momentum is given by

pµ =
2π

Lµ
nµ for nµ = 0, ±1, . . . , ±Lµ

2a
. (5.12)

Then we define the partition function by

Z =

∫ ∏
|pµ|≤π/a

∏
I

dAI(p)dA∗I(p) 2∏
α=1

dψαI(p)

2̇∏
α̇=1̇

dψ̄α̇I(p)

 e−S . (5.13)
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When the integers Lµ/a are odd, the spacetime lattice is imposed by periodic boundary
conditions; then, this formulation is nothing but the dimensional reduction of the lattice
formulation of the 4D N = 1 WZ model [77], which is based on the SLAC derivative [78,79].

The original classical action in the coordinate space is invariant under SUSY transforma-
tions, translations, U(1) transformations. These transformations, δξ (3.21), δv (3.57)–(3.62),
and δγ (3.43), act on field variables linearly and do not mix different momenta. Hence, the
restriction on the Fourier modes in Eq. (5.10) is preserved. As the consequence, the above
formulation in Eq. (5.13) manifestly preserves these spacetime symmetries [76]. This fact
enables us to use the explicit form of the supercurrent given in Eqs. (3.63)–(3.66), the EMT
in Eq. (3.67), the U(1) current in Eqs. (3.68) and (3.69) in numerical simulations.

We note that this regularization sacrifices the locality of the theory. Unfortunately, it is
well recognized that the SLAC derivative in general plagued by some pathology [112–114];
the locality is not automatically restored in the continuum limit in four dimensions. See
Ref. [115] for an analysis of the issue of the exactly preserved SUSY and the locality. For
the massive 2D N = 2 WZ model, on the other hand, the authors of Ref. [76] argue, thanks
to the preserved SUSY, that the locality is automatically restored in the continuum limit
to all orders of perturbation theory. For the massless case, however, because perturbation
techniques are hindered by the IR divergences, it is not clear whether the restoration of the
locality is automatically accomplished. Strictly speaking, the theoretical basis of the numerical
simulation below is not quite obvious. Nevertheless, the numerical results of Ref. [75] and ours
below suggest the validity of the formulation. We leave understanding this observed validity
as a future problem.

5.1.2 Nicolai map

The above definition of the regularized partition function of the 2D N = 2 WZ model allows
the Nicolai or Nicolai–Parisi–Sourlas map [69–72], which renders the path-integral weight
Gaussian [76].1 The point is that the Dirac determinant in Eq. (5.7) coincides with the
Jacobian of the transformation (AI , A

∗
I)→ (NI , N

∗
I ) defined in Eq. (5.9), up to the sign:

det

(
2iδIJpz

∂2W ({A})∗
∂A∗I∂A

∗
J
∗

∂2W ({A})
∂AI∂AJ

∗ 2iδIJpz̄

)
= det

∂({N}, {N∗})
∂({A}, {A∗})

. (5.14)

Hence, integrating over the fermion fields, the partition function is represented as

Z =

∫ ∏
|pµ|≤π/a

∏
I

[dAI(p)dA
∗
I(p)] e

−SB det
∂({N}, {N∗})
∂({A}, {A∗})

=

∫ ∏
|pµ|≤π/a

∏
I

[dNI(p)dN
∗
I (p)] e−SB

∑
k

sign det
∂({N}, {N∗})
∂({A}, {A∗})

∣∣∣∣
{A}={A}k

. (5.15)

where {A}k (k = 1, 2, . . . ) is a set of solutions of the equations

2ipzAI(p) +
∂W ({A})∗

∂A∗I
(p)−NI(p) = 0, pµ =

2π

Lµ
nν , |nµ| ≤

Lµ
2
, (5.16)

1This is the common feature to the lattice formulation in Refs. [61, 62].
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Note that e−SB (5.8) is Gaussian in terms of the variables (NI , N
∗
I ).

From the representation in Eq. (5.15), we can carry out the following simulation algo-
rithm [63] (see also Ref. [116]):

1. Generate complex random numbers NI(p) for each pµ and I, whose real and imaginary
parts obey the Gaussian distribution.

2. Solve numerically the multi-variable algebraic equations (5.16) with respect to {A} and
(ideally) find all the solutions {A}k (k = 1, 2, . . . ).

3. Calculate the following sums over k:∑
k

sign det
∂({N}, {N∗})
∂({A}, {A∗})

∣∣∣∣
{A}={A}k

, (5.17)

∑
k

sign det
∂({N}, {N∗})
∂({A}, {A∗})

O(A,A∗)

∣∣∣∣
{A}={A}k

, (5.18)

where O is an observable of interest. In Appendix A, we present a fast algorithm for
the computation of the Jacobian.

4. Repeat steps (1)–(3) and compute the averages over {NI(p)}:

∆ ≡

〈∑
i

sign det
∂({N}, {N∗})
∂({A}, {A∗})

∣∣∣∣
{A}={A}k

〉
, (5.19)

〈O〉 =
1

∆

〈∑
i

sign det
∂({N}, {N∗})
∂({A}, {A∗})

O(A,A∗)

∣∣∣∣
{A}={A}k

〉
. (5.20)

Here, ∆ is the correctly normalized partition function, that is, the Witten index, tr(−1)F ,
discussed in Chap. 3.2 The Witten index counts the number of vacua; for instance, if W ({A})
is a polynomial of degree n+1, we should have ∆ = n; we see ∆ = n for An, Dn, and En-type
theories. We find that, in practical numerical simulations, the statistical error of ∆ is much
smaller than that of the numerator in Eq. (5.20). Hence, one can estimate the statistical error
of the average 〈O〉 by a simple error-propagation rule in the ratio.

One can generate Gaussian random numbers easily without any undesired autocorrelation.
A remarkable feature is that this algorithm is completely free from any notable autocorrelation
and the critical slowing down. Also, although sign det ∂({N},{N∗})

∂({A},{A∗}) ± 1, this signs do not cause

any sign problem, at least for ∆ > 0. This is because the distribution of sign det ∂({N},{N∗})
∂({A},{A∗})

is well-biased to a positive number to reproduce ∆ > 0; we will see this behavior in the
numerical simulation below.

2If there exists the inverse of the Nicolai map locally, then the Witten index is nothing but the winding
number of the Nicolai map, that is, the (almost) number of distinct configurations of A for a fixed N [72]. Also
for the WZ model with multiple superfield, if the condition

det
∂2W

∂AI∂AJ
6= 0 (5.21)

satisfies almost everywhere, the Nicolai map is surjective and the Witten index is well-defined.
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Unfortunately, in step (2), for a given NI , we do not know a priori how many solutions AI,k
of Eq. (5.16) exist. Therefore, it is quit difficult to judge whether all the solutions are found
or not. The best thing we can do is to increase the possible number of initial trial solutions in
the solver algorithm; the stability of the number of solutions under the increase of trial ones
provides a consistency check. Other consistency checks can be provided by the observation
of ∆ and SUSY WT relations. Any physical quantities we compute cannot be free from
the systematic error coming from “undiscovered solutions.” It is difficult to estimate this
systematic error at this time, and the quoted values of the numerical results should be taken
with this reservation.

5.2 Simulation setup and classification of configurations

Let us consider the ADE-type WZ model of Eq. (5.7) with the quasi-homogeneous superpo-
tential given in Table 4.1

W (Φ) =
λ

n
Φn for An with n = 2, 3, (5.22)

which sometimes be written in the abbreviated forms as W = Φ3 and W = Φ4, respectively,
and

W ({Φ}) =
λ1

n
Φn

1 +
λ2

2
Φ1Φ2

2 for Dn with n = 3, 4, (5.23)

W ({Φ}) =
λ1

3
Φ3

1 +
λ2

3
Φ1Φ3

2 for E7. (5.24)

We set the coupling constants

aλ = aλ1 = aλ2 = 0.3, (5.25)

which is identical to those in Refs. [61,75]. For any forms of the superpotential, for simplicity,
the box size

L ≡ L0 = L1, (5.26)

is supposed to be even integers. We generate 640 configurations of {N} obeying the Gaussian
distribution e−SB . The size of L is taken as even integers from 8 to 36 for A2, from 8 to 30
for A3 [80]; 8, 16, 24, 32, 40, and 44 for D3; 8, 16, 24, 32, 36, 40 and 42 for D4; 8, 16, and 24
for E7 [81].

Given a configuration of NI , we numerically solve the algebraic equation (5.16) with
respect to AI by employing the Newton–Raphson (NR) method.3 We then generate the
initial value of the real and imaginary parts of AI(p) by the Gaussian random number with
unit variance as in Ref. [75]. We set the convergence threshold as√√√√∑p

∣∣2ipzAI(p) + (∂W ({A})∗/∂A∗I)(p)−NI(p)
∣∣2∑

q |NI(q)|2
< 10−14, (5.27)

3For the generation of the configurations of NI and AI and sign det ∂(N,N∗)
∂(A,A∗)

, we used a C++ library

Eigen [117]. In particular, we extensively used the class PartialPivLU.
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for all obtained configurations, while the authors in Ref. [75] set this upper bound 10−13. By
this norm of the residue, we estimate the quality of the obtained configuration AI .

For a fixed configuration of NI , we increase the number of initial trial configurations of AI
until we obtain convergent 100 solutions for AI allowing repetition of identical solutions. A
initial configuration, which is generated randomly, does not necessarily converge to a solution
along iterations in the NR method, so sometimes it diverges and does not provide any solution.
In Ref. [75], the number of initial trial configurations is kept fixed to 100 but this choice
sometimes misses some solutions, especially for A3, Dn, and En. This setup is another
improvement compared to the setup of Ref. [75]. Two solutions AI,1 and AI,2 are regarded
as identical if the norm of the difference of those satisfies√√√√∑p |AI,1(p)−AI,2(p)|2∑

q |AI,1(q)|2
<

{
10−13 for An,

10−11 for Dn, En,
(5.28)

while the upper bound is equal to 10−11 in Ref. [75].
We tabulate the classification of configurations we obtained in Tables 5.1–5.3 for A2

(W = Φ3); in Tables 5.4–5.6 for A3 (W = Φ4); in Tables 5.7 and 5.8 for D3; in Tables 5.9
and 5.10 for D4; in Table 5.11 for E7. The symbol (n+, n−)n+−n− implies the following: For
a configuration {N(p)}, we find (n+ + n−) solutions, {A(p)}k (k = 1, . . . , n+ + n−); the n+

solutions take sign det ∂(N,N∗)i
∂(A,A∗)j

= +1 and the n− solutions take −1. The subscript n+ − n−
stands for the contribution of that configuration of NI to ∆ in Eq. (5.19). In these tables,
the number of obtained configurations for each setup is shown. Table 5.3, for example, shows
that for L = 36 we had 13 configurations of N with (3, 1)2 out of 640 configurations.

In the tables, to indicate the quality of the obtained configurations, we list the numerical
results of ∆ defined in Eq. (5.19), which should reproduce the Witten index: ∆ = n for
A2, Dn, En. For A2 and D3, our simulation gives ∆ = 2 and 3 exactly for all box sizes,
respectively. For the other models, ∆ deviates from the expected Witten index but only
slightly; from this, one might roughly estimate that the systematic error from the solution
search, that is, the possibility that some solutions are missed, is less than 1% even for E7.

For the same purpose, we also list the numerical results of the one-point function,

δ ≡ 〈SB〉
(L0/a+ 1)(L1/a+ 1)

− 1, (5.29)

where SB is the bosonic part of the action defined in Eq. (5.8). The one-point function δ
should identically vanish if the SUSY is preserved [64,75].4

We also show the computation time in core · hour on an Intel Xeon E5 2.0 GHz for A2,
A3, D3 and D4 with L/a = 8, . . . , 32, 40; an Intel Xeon Gold 3.0 GHz for D4 with L/a = 36,
42 and E7.

The hot spot in our computation is the LU decomposition carried out in the NR iteration,
whose computational time scales as ∝ N3 for a matrix of size N . Thus, we expect that
the computational time scales as ∝ (L/a)6 as a function of the lattice size L/a. The actual
computational time for A2 and A3 is depicted in Fig. 5.1; this is fairly well explained by this
theoretical expectation.

4For the calculation of δ and succeeding numerical analyses, we used the programming language Julia [118–
120].
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Table 5.1: Classification of configurations for A2 (W = Φ3).

L/a 8 10 12 14 16

(2, 0)2 640 640 640 639 639
(3, 1)2 0 0 0 1 1

∆ 2 2 2 2 2
δ 0.0070(44) −0.0046(36) 0.0019(30) −0.0020(25) −0.0003(23)

core · hour [h] 0.77 2.23 5.5 12.37 25.62

Table 5.2: Classification of configurations for A2 (W = Φ3) (continued).

L/a 18 20 22 24 26

(2, 0)2 634 636 634 637 635
(3, 1)2 6 4 6 3 5

∆ 2 2 2 2 2
δ −0.0000(20) −0.0015(19) −0.0006(17) 0.0001(16) −0.0026(15)

core · hour [h] 48.97 87.03 143.83 236.62 405.28

Table 5.3: Classification of configurations for A2 (W = Φ3) (continued).

L/a 28 30 32 34 36

(2, 0)2 634 626 633 628 627
(3, 1)2 6 14 7 12 13

∆ 2 2 2 2 2
δ −0.0002(13) 0.0000(13) 0.0014(12) 0.0008(11) 0.0007(11)

core · hour [h] 649.78 963.93 1382.07 1936.52 2699.42

Table 5.4: Classification of configurations for A3 (W = Φ4).

L/a 8 10 12 14

(3, 0)3 638 638 638 638
(4, 1)3 2 2 2 2
(5, 2)3 0 0 0 0
(4, 0)4 0 0 0 0
(5, 1)4 0 0 0 0
(2, 0)2 0 0 0 0

∆ 3 3 3 3
δ 0.0003(45) 0.0035(36) 0.0001(30) −0.0015(26)

core · hour [h] 3.73 12.8 36.1 89.55
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Table 5.5: Classification of configurations for A3 (W = Φ4) (continued).

L/a 16 18 20 22

(3, 0)3 634 635 632 627
(4, 1)3 6 5 6 13
(5, 2)3 0 0 2 0
(4, 0)4 0 0 0 0
(5, 1)4 0 0 0 0
(2, 0)2 0 0 0 0

∆ 3 3 3 3
δ 0.0006(25) 0.0014(20) 0.0024(20) 0.0023(18)

core · hour [h] 202.65 425.23 872.03 1661.22

Table 5.6: Classification of configurations for A3 (W = Φ4) (continued).

L/a 24 26 28 30

(3, 0)3 625 616 614 615
(4, 1)3 15 23 20 22
(5, 2)3 0 0 2 0
(4, 0)4 0 1 3 2
(5, 1)4 0 0 1 0
(2, 0)2 0 0 0 1

∆ 3 3.002(2) 3.006(3) 3.002(3)
δ 0.0000(16) 0.0004(16) 0.0023(17) −0.0010(15)

core · hour [h] 2917.48 5004.37 8273.47 12905.13

Table 5.7: Classification of configurations for D3.

L/a 8 16 24

(3, 0)3 640 640 638
(4, 1)3 0 0 2
(5, 2)3 0 0 0

∆ 3 3 3
δ 0.0016(30) 0.0015(16) −0.0007(11)

core·hour [h] 1.60 63.78 649.73
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Table 5.8: Classification of configurations for D3 (continued).

L/a 32 40 44

(3, 0)3 639 633 632
(4, 1)3 1 7 7
(5, 2)3 0 0 1

∆ 3 3 3
δ 0.00019(85) −0.00078(69) −0.00092(63)

core·hour [h] 3440.33 13426.08 25623.00

Table 5.9: Classification of configurations for D4.

L/a 8 16 24 32

(4, 0)4 640 638 629 626
(5, 1)4 0 2 9 13
(6, 2)4 0 0 2 1
(7, 3)4 0 0 0 0
(4, 1)3 0 0 0 0
(5, 0)5 0 0 0 0
(10, 6)4 0 0 0 0

∆ 4 4 4 4
δ −0.0028(31) 0.0018(17) −0.0020(11) −0.00095(84)

core·hour [h] 1.73 72.28 847.83 5220.60

Table 5.10: Classification of configurations for D4 (continued).

L/a 36 40 42

(4, 0)4 604 606 603
(5, 1)4 23 24 35
(6, 2)4 12 8 9
(7, 3)4 1 0 0
(4, 1)3 0 1 0
(5, 0)5 0 1 0
(10, 6)4 0 0 1

∆ 4 4.000(2) 4
δ −0.00008(73) −0.00025(87) 0.00019(64)

core·hour [h] 4328.58 22264.12 12272.93
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Table 5.11: Classification of configurations for E7.

L/a 8 16 24

(7, 0)7 639 628 582
(8, 1)7 1 10 20
(6, 0)6 0 2 27
(7, 1)6 0 0 5
(8, 0)8 0 0 3
(8, 2)6 0 0 2
(9, 2)7 0 0 1

∆ 7 6.997(2) 6.952(9)
δ −0.0013(32) −0.0004(16) 0.0009(17)

core·hour [h] 1.30 60.28 750.92

 0

 500

 1000

 1500

 2000

 2500

 3000

 10  15  20  25  30  35

T
im

e
 [

h
]

L/a

L
5

L
6

(a) A2.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10  15  20  25  30

T
im

e
 [

h
]

L/a

L
6

L
7

(b) A3.

Figure 5.1: Computational time as a function of the lattice size.



5.3. SUSY WARD–TAKAHASHI RELATION 47

5.3 SUSY Ward–Takahashi relation

As mentioned above, our formulation exactly preserves SUSY even with a finite cutoff. Thus,
barring the statistical error and the systematic error associated with the solution search,
SUSY WT relations should hold exactly for any parameter. The observation of these relations
thus provides a useful check of our simulation and gives a rough idea of the magnitude of the
statistical and systematic errors.

The simplest SUSY WT relation is δ = 0 for δ in Eq. (5.29), and in Tables 5.1–5.11 we
have observed that this relation is reproduced quite well in our simulation. In this section, we
present results on two further SUSY WT relations on two-point correlation functions which
follow from the identities [75]5 〈

Q1(A(p)ψ̄1̇(−p))
〉

= 0, (5.30)

〈Q2(F ∗(p)ψ1(−p))〉 = 0, (5.31)

where the explicit form of the SUSY transformation is given in Chapter 3.
First, Eq. (5.30) yields

2ipz̄ 〈A(p)A∗(−p)〉 = −
〈
ψ1(p)ψ̄1̇(−p)

〉
, (5.32)

whose real and imaginary parts are

p1 〈A(p)A∗(−p)〉 = Re
〈
ψ1(p)ψ̄1̇(−p)

〉
, (5.33)

p0 〈A(p)A∗(−p)〉 = − Im
〈
ψ1(p)ψ̄1̇(−p)

〉
. (5.34)

In Figs. 5.2–5.5 we plot correlation functions in these relations as functions of −π ≤ ap0 ≤ π.
The box size is the maximal one, that is, L/a = 36 for A2 and L/a = 30 for A3. The spatial
momentum p1 is fixed to be p1 = π/a (the largest positive value) or p1 = 2π/L (the smallest
positive value). In the figures, the left panel corresponds to the real part relation of Eq. (5.33)
and the right one to the imaginary part of Eq. (5.34). In the plots, “bosonic” implies the
correlation function on the left-hand side of the WT relation and “fermionic” implies the
correlation function on the right-hand side. Errors are statistical only.

Next, Eq. (5.31) gives the relation

〈F (p)F ∗(−p)〉 = −2ipz
〈
ψ1(p)ψ̄1̇(−p)

〉
, (5.35)

and the real and imaginary parts are given by

〈F (p)F ∗(−p)〉 = −p1 Re
〈
ψ1(p)ψ̄1̇(−p)

〉
+ p0 Im

〈
ψ1(p)ψ̄1̇(−p)

〉
, (5.36)

0 = −p0 Re
〈
ψ1(p)ψ̄1̇(−p)

〉
− p1 Im

〈
ψ1(p)ψ̄1̇(−p)

〉
. (5.37)

In Figs. 5.6–5.9 we plot correlation functions in the real part relation of Eq. (5.36); the other
conditions and conventions are the same as above. For the computation of the left-hand side
of Eq. (5.36) we have used the representation6

〈F (p)F ∗(−p)〉 =
〈
W ′(A)∗(p)W ′(A)(−p)

〉
− L0L1

=
〈
|N(p)− (ip0 + p1)A(p)|2

〉
− L0L1. (5.41)

5In the present system, SUSY cannot be spontaneously broken because of the non-zero Witten index.
6A way to derive this relation is to introduce the source term for the auxiliary field:

SJ =
1

L0L1

∑
p

[F ∗(−p)J(p) + J∗(−p)F (p)] . (5.38)
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Figure 5.2: SUSY WT relation of Eq. (5.32) for A2, L/a = 36, and ap1 = π.
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Figure 5.3: SUSY WT relation of Eq. (5.32) for A2, L/a = 36, and ap1 = π/18.

If the WT relations hold exactly, the “bosonic” points and the “fermionic” points in the
plots should coincide with each other. Overall, we observe good agreements within 1σ, as

Then, after a (formal) Gaussian integration over the auxiliary field, this term changes to

SJ →
1

L0L1

∑
p

[
−W ′(A)(−p)J(p)− J∗(−p)W ′(A)∗(p) + J∗(−p)J(p)

]
. (5.39)

Therefore,

〈F ∗(−p)F (p)〉

= (L0L1)2 δ

δJ(p)

δ

δJ∗(−p)

×

〈
exp

{
1

L0L1

∑
q

[
W ′(A)(−q)J∗(q) + J(−q)W ′(A)∗(q)− J(−q)J∗(q)

]}〉∣∣∣∣∣
J=0,J∗=0

=
〈
W ′(A)∗(p)W ′(A)(−p)

〉
− L0L1. (5.40)



5.3. SUSY WARD–TAKAHASHI RELATION 49

-320

-300

-280

-260

-240

-220

-200

-180

-160

-140

-120

-4 -3 -2 -1  0  1  2  3  4

ap0

bosonic
fermionic

(a) Real part (5.33).

-200

-150

-100

-50

 0

 50

 100

 150

 200

-4 -3 -2 -1  0  1  2  3  4

ap0

bosonic
fermionic

(b) Imaginary part (5.34).

Figure 5.4: SUSY WT relation of Eq. (5.32) for A3, L/a = 30, and ap1 = π.
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Figure 5.5: SUSY WT relation of Eq. (5.32) for A3, L/a = 30, and ap1 = π/15.

expected. However, there still exist some deviations of order 2σ, especially in the real-part
WT relations at the largest spatial momentum ap1 = π. To argue that these deviations are a
result of statistical fluctuations and not due to the omission of some solutions in our solution
search, we carried out the measurements corresponding to the left panels of Figs. 5.2 and 5.6,
respectively but for L/a = 8, by changing the number of configurations by four times, that
is, 640 and 2560. The results are shown in Figs. 5.10 and 5.11. We see that although for 640
configurations there exist some discrepancies between the “bosonic” and “fermionic” ones of
order 2σ, when we increase the number of configurations by four times, the statistical error is
halved and the discrepancies of the central values actually decrease. From this behavior, we
think that the observed discrepancies in the WT relations are due to statistical fluctuations
and they eventually disappear as the number of configurations is increased sufficiently.

Finally, we mention a general tendency of the statistical error in the correlation functions
we found through the numerical simulation. Particularly in the high momentum region, the
correlation functions of the scalar field suffer from larger statistical fluctuations than those of
the fermion field (as seen in the left panel of Fig. 5.2). Actually, because of this problem we
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Figure 5.9: SUSY WT relation
of Eq. (5.36) for A3, L/a = 30,
and ap1 = π/15.

could not directly examine four-point SUSY WT relations including a four-point correlation
function of A and A∗. On the other hand, if we assume the validity of SUSY WT relations, we
can use them to rewrite some noisy correlation functions into less noisy ones. This technique
will be employed frequently in the following sections.
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Figure 5.10: SUSY WT relation of Eq. (5.33) for A2, L/a = 8 and ap1 = π.
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Figure 5.11: SUSY WT relation of Eq. (5.36) for A2, L/a = 8 and ap1 = π.





Chapter 6

Numerical simulation of correlation
functions

6.1 Scaling dimension

In this section, we measure the scaling dimension of the scalar field in the IR limit from the
two-point correlation function [80]. If the expected LG correspondence for the WZ model
with W = Φn holds, the chiral superfield is identified with the chiral primary field in the
An−1 minimal model with the conformal dimension

h = h̄ =
1

2n
. (6.1)

Thus the two-point function of the scalar field is expected to behave as

〈A(x)A∗(0)〉 ∝ 1

z2hz̄2h̄
, (6.2)

for large |z|. To obtain the value of the scaling dimension h + h̄, in Ref. [75], the authors
computed the susceptibility

χφ ≡
1

a2

∫
L0L1

d2x 〈A(x)A∗(0)〉 . (6.3)

To avoid the UV ambiguity at the contact point x ∼ 0, a small region around x = 0 was
excised [61]. Then, for the scaling dimension, they obtained

1− h− h̄ = 0.616(25)(13). (6.4)

The expected value is 1 − h − h̄ = 2/3 = 0.666 . . . for the A2 minimal model. It turns
out, however, that the susceptibility in Eq. (6.3) is quite sensitive to the size of the excised
region with the formulation of Ref. [75]; Section 6.3 addresses this issue in the context of the
continuum limit.

Here, we instead directly study the correlation function in the momentum space 〈A(p)A∗(−p)〉.
The Fourier transformation of Eq. (6.2) reads (assuming h = h̄)

〈A(p)A∗(−p)〉 ∝ 1

(p2)1−h−h̄
, (6.5)

53



54 CHAPTER 6. NUMERICAL SIMULATION OF CORRELATION FUNCTIONS

 4

 5

 6

 7

 8

 9

 10

 11

-4 -3 -2 -1  0  1  2  3

ln
<

|A
(p

)|
2
>

ln(ap)
2

UV
IR

(a) A2, L/a = 36.

 3

 4

 5

 6

 7

 8

 9

 10

-4 -3 -2 -1  0  1  2  3

ln
<

|A
(p

)|
2
>

ln(ap)
2

UV
IR

(b) A3, L/a = 30.

Figure 6.1: ln〈A(p)A∗(−p)〉 as a function of ln(ap)2 for A2 and A3. The broken and solid
lines are linear fits in the UV and IR regions, respectively.

Table 6.1: Scaling dimensions obtained for A2 and A3 from the linear fit in the IR region 2π
L ≤

|p| < 4π
L .

Algebra L/a χ2/d.o.f. 1− h− h̄ Expected value

A2 36 0.506 0.682(10)(7) 0.666. . .
A3 30 0.358 0.747(11)(12) 0.75

for |p| small.

Also since the SUSY WT relation of Eq. (5.32) shows that〈
ψ1(p)ψ̄1̇(−p)

〉
= −2ipz̄ 〈A(p)A∗(−p)〉 (6.6)

instead of the two-point function of the scalar field, we may use the two-point function of the
fermion field, which is less noisy, as already mentioned.

Figure 6.1 shows ln〈A(p)A∗(−p)〉 as a function of ln(ap)2 in the case of the maximal box
size, that is, L/a = 36 for A2 and L/a = 30 for A3, respectively. We also show the fitting lines
in the UV region π√

2
≤ a|p| < π and in the IR region 2π

L ≤ |p| <
4π
L . Table 6.1 summarizes

the scaling dimension obtained from the linear fit in the IR region, which is one of our main
results in this section. Recall, however, that those numbers may contain the systematic error
associated with the solutions undiscovered by the NR method.

It may be of some interest to see how the values are changed if we do not include a few
percent of “strange solutions” in Tables 5.1–5.6, such as (3, 1)2 in Table 5.1. Thus, we have
computed the scaling dimension 1 − h − h̄ by using only the (2, 0)2-type solutions for A2

(L/a = 36) and the (3, 0)3-type solutions for A3 (L/a = 30). The result is:

1− h− h̄ = 0.6716(82) for A2, (6.7)

1− h− h̄ = 0.7364(83) for A3. (6.8)
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Figure 6.2: Scaling dimensions obtained for A2 and A3 with various box sizes.

We also plotted in Fig. 6.2 the scaling dimension obtained by the above method but with
different box sizes L/a. Two horizontal lines show the expected values of 1− h− h̄ from the
LG correspondence: 1 − h − h̄ = 0.666 . . . for A2 and 1 − h − h̄ = 0.75 for A3. We clearly
see the tendency that the measured scaling dimension approaches the expected value as L/a
increases. The approach appears not quite smooth, however, so we do not try any fitting of
this plot to extract the L→∞ value; we suspect that this non-smoothness is due to statistical
fluctuations as we observed for the SUSY WT relation in the previous section.

From the 1−h− h̄ case presented in Fig. 6.2, we estimated the systematic error associated
with the finite-volume effect. We estimate it by the maximum deviation of the central values
at the three largest volumes; the values obtained in this way are presented in the second
parentheses of 1− h− h̄ in Table 6.1.

It is also interesting to see the “effective scaling dimension” that is obtained from the
fitting in some restricted intermediate region of the momentum norm |p|. This is shown
in Fig. 6.3. In both panels, the “effective scaling dimension” smoothly changes from that in
the IR region (which is summarized in Table 6.1) and approaches 1 − h − h̄ → 1 in the UV
limit. This behavior is consistent with the expectation that the 2D N = 2 WZ models become
the free N = 2 SCFT in the UV limit, in which the chiral multiplet should have the scaling
dimension 1− h− h̄ = 1.

6.2 Central charge

In this section we consider the measurement of the central charge c, an important quantity
that characterizes CFT. This appears, in the first place, in the operator product expansion
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Figure 6.3: Scaling dimensions obtained for A2 and A3 from the linear fitting in various
momentum regions from IR to UV, 2π

L n ≤ |p| <
2π
L (n+ 1), for n ∈ Z+.

(OPE) of the energy–momentum tensor (EMT) in Eqs. (2.33) and (3.95),1

T (z)T (0) ∼ c

2z4
+

2

z2
T (0) +

1

z
∂T (0), (6.9)

where “∼” implies “=” up to non-singular terms. The central charge of the An minimal model
is

c =
3(n− 2)

n
= 1, 1.5, 1.8, . . . , (6.10)

for n = 3, 4, 5, . . . .

From Eq. (6.9), assuming rotational invariance,

〈T (z)T (0)〉 =
c

2z4
. (6.11)

Similarly, in N = 2 SCFT, the two-point functions of the supercurrent S± (3.99) and the U(1)
current J (3.101) are given by

〈S+(z)S−(0)〉 =
2c

3z3
, (6.12)

〈J(z)J(0)〉 =
c

3z2
. (6.13)

Thus, the central charge may also be obtained by computing these two-point functions.

To find the appropriate expression for the supercurrent, the EMT , and the U(1) current
such that they form the superconformal multiplet in N = 2 SCFT is itself an intriguing
problem, because in our system the N = 2 superconformal symmetry is expected to emerge
only in the IR limit. As explained in Chapter 3, we adopt the expressions of the former two
which become (gamma-) traceless for the free massless WZ model, W = 0. It appears that
those expressions work as expected (see also Ref. [75]).

1In this chapter we follow the convention of Refs. [53,85]; this convention is different from that of Ref. [75].
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As in the previous section, we numerically compute the correlation function in the momen-
tum space. We consider the two-point functions of the supercurrent, the EMT, and the U(1)
current. As we explained in Chapter 3, these Noether currents are related to each other by
SUSY, which is an exact symmetry of our formulation. Using this fact, the computation of
the whole correlation function can be reduced to that for the supercurrent correlator.

6.2.1 Central charge in A-type theories

Central charge from the supercurrent correlator

We first focus on the A2 and A3-type WZ model, and measure the central charge from the
supercurrent, the EMT, the U(1) current in turn [80]. The argument in Chapter 3 gives the
supercurrent in the momentum space,

S+(p) = S+
z (p) =

4π

L0L1

∑
q

i(p− q)zA(p− q)ψ̄2̇(q), (6.14)

S−(p) = S−z (p) = − 4π

L0L1

∑
q

i(p− q)zA∗(p− q)ψ2(q). (6.15)

We thus compute the two-point function 〈S+(p)S−(−p)〉. The Fourier transformation of Eq. (6.12)
is, on the other hand,〈

S+(p)S−(−p)
〉

= L0L1

∫
L0L1

d2x e−ipx
〈
S+(x)S−(0)

〉
= L0L1

∫
L0L1

d2x e−ipx
2cz̄3

3(x2 + δ2)3

= L0L1
−iπc

6

∂3

∂p3
z̄

(
|p|
δ

)2

K2(|p|δ), (6.16)

where we have introduced a regulator δ to tame the singularity at x = 0; K2 is the modified
Bessel function of the second kind. Since we are interested in the IR limit, taking the limit
|p|δ → 0, we have 〈

S+(p)S−(−p)
〉
→ L0L1

iπc

3

p2
z

pz̄
. (6.17)

We fit the measured two-point function 〈S+(p)S−(−p)〉 in the IR region by this function.
We plot the two-point function 〈S+(p)S−(−p)〉 in Figs. 6.4 and 6.5 for the maximal box

size, that is, L/a = 36 for A2 and L/a = 30 for A3. In each figure, the left panel is the
real part of the correlation function and the right one is the imaginary part. The spatial
momentum p1 is fixed to the positive minimal value, p1 = 2π/L. In these figures we also show
the function on the right-hand side of Eq. (6.17) with the central charge c obtained from the
fit in the IR region 2π

L ≤ |p| <
4π
L ; the central charges obtained in this way are tabulated

in Table 6.2.
Compared to the result of Ref. [75] for A2,

c = 1.09(14)(31), (6.18)

the central charge we obtained is somewhat closer to the expected value with the smaller
statistical error.
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Figure 6.4: 〈S+(p)S−(−p)〉 for A2, L/a = 36, and ap1 = π/18. The fitting curves
from Eq. (6.17) are also depicted.
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Figure 6.5: 〈S+(p)S−(−p)〉 for A3, L/a = 30, and ap1 = π/15. The fitting curves
from Eq. (6.17) are also depicted.

In Fig. 6.6 we have plotted how the fitted central charge changes as a function of the
box size L/a. From the central charge c presented in Fig. 6.6, we estimated the systematic
error associated with the finite-volume effect. We estimate it by the maximum deviation of
central values at the largest three volumes; the values obtained in this way are presented in
the second parentheses for c in Table 6.2.

As for Fig. 6.3 in the previous section, it is interesting to see how the central charge
obtained by the fit changes as a function of the fitted momentum region [75]. The result
is shown in Fig. 6.7. This “effective central charge” depending on the momentum region is
analogous to the supersymmetric version of the Zamolodchikov C-function given in Eq. (4.27).
As expected, the “effective central charge” changes from the IR value to c = 3 in the UV limit
in which the system is expected to become a free N = 2 SCFT.
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Table 6.2: The central charges for A2 and A3 obtained from the fit of the supercurrent
correlator. The fitting momentum region is 2π

L ≤ |p| <
4π
L .

Algebra L/a χ2/d.o.f. c Expected value

A2 36 0.928 1.087(68)(56) 1
A3 30 4.606 1.413(65)(31) 1.5
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Figure 6.6: Central charges obtained by the fit for A2 (W = Φ3) and A3 (W = Φ4) as a
function of the box size L/a = 8–36.

Central charge from the EMT correlator

As discussed in Chapter 3, the EMT T = Tzz, which is expected to be consistent with the
conformal symmetry, is given in the momentum space by

T (p) =
π

L0L1

∑
q

[
4(p− q)zqzA∗(p− q)A(q)

− iqzψ2(p− q)ψ̄2̇(q) + i(p− q)zψ2(p− q)ψ̄2̇(q)
]
. (6.19)

It turns out that this expression as it stands leads to a very noisy two-point correlation
function. Fortunately, as discussed in Chapter 3, noting the fact that the EMT of Eq. (6.19)
is the SUSY transformation of the supercurrent in Eqs. (6.14) and (6.15),

T (p) =
1

4
Q2S

+(p)− 1

4
Q̄2̇S

−(p), (6.20)

where the SUSY transformation is given in Chapter 3, we can express the two-point function
of the EMT by a linear combination of two-point functions of the supercurrent which are less
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L n ≤ |p| <
2π
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Table 6.3: The central charges for A2 and A3 obtained from the fit of the EMT correlator.
The fitting momentum region is 2π

L ≤ |p| <
4π
L .

Algebra L χ2/d.o.f. c Expected value

A2 36 1.017 1.061(36)(34) 1
A3 30 0.916 1.415(36)(36) 1.5

noisy:

〈T (p)T (−p)〉 = −2ipz
16

〈
S+(p)S−(−p) + S−(p)S+(−p)

〉
. (6.21)

Note that this relation holds exactly in our formulation that preserves SUSY.

The Fourier transformation of Eq. (6.11) is, by the same procedure as Eqs. (6.16) and (6.17),

〈T (p)T (−p)〉 = L0L1
πc

2 · 4!

∂4

∂p4
z̄

(
|p|
δ

)3

K3(|p|δ)

→ L0L1
πc

12

p3
z

pz̄
. (6.22)

We plot the two-point function 〈T (p)T (−p)〉 of Eq. (6.21) in Figs. 6.8 and 6.9 for the
maximal box size, that is, L/a = 36 for A2 and L/a = 30 for A3. In each figure, the left
panel is the real part of the correlation function and the right one is the imaginary part. The
spatial momentum ap1 is fixed to the positive minimal value, p1 = 2π/L. In these figures we
also show the function in Eq. (6.22) with the central charge c obtained from the fit in the IR
region 2π

L ≤ |p| <
4π
L . The central charges obtained in this way are tabulated in Table 6.3;

this is one of the main results of this section.

We repeated the computation of the central charge c by using only the (2, 0)2-type solutions
for A2 (L/a = 36) and the (3, 0)3-type solutions for A3 (L/a = 30), to see how the values are
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Figure 6.8: 〈T (p)T (−p)〉 for A2, L/a = 36, and ap1 = π/18. The fitting curve of Eq. (6.22) is
also depicted.
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Figure 6.9: 〈T (p)T (−p)〉 for A3, L/a = 36, and ap1 = π/15. The fitting curve by Eq. (6.22)
is also depicted.

changed if we do not include a few percent “strange solutions.” The results are:

c = 1.057(34) for A2, (6.23)

c = 1.288(28) for A3. (6.24)

One may note that the fit in Table 6.3 is better than that in Table 6.2, in the sense that
χ2/d.o.f. is very close to 1 in the former. This is due to the fact that the real and imagi-
nary parts of the two-point correlation function of Eq. (6.21) are exactly (anti-)symmetric
under p→ −p, while the numerical data of 〈S+(p)S−(−p)〉 itself does not possess this prop-
erty.2 The number of data points is thus effectively doubled.

2This (anti-)symmetry under p → −p is fulfilled within the margin of the statistical error; one may also
(anti-)symmetrize the two-point function 〈S+(p)S−(−p)〉 by hand.
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Figure 6.10: Central charges obtained by the fit for A2 (W = Φ3) and A3 (W = Φ4) as a
function of the box size L/a = 8–36.

In Fig. 6.10, we plotted how the fitted central charge changes as a function of the box
size L. From c presented in Fig. 6.10, we again estimated the systematic error associated
with the finite-volume effect. The values obtained in this way are presented in the second
parentheses for c in Table 6.3.

Also, in Fig. 6.11 the “effective central charge” obtained from the fit in various momentum
regions is depicted; from IR to UV, it again shows the expected behavior analogously to the
Zamolodchikov C-function (4.14).

Central charge from the U(1) current correlator

Finally, we consider the U(1) current correlator. As discussed in Chapter 3, the U(1) current
is given by

J(p) =
2π

L0L1

∑
q

ψ̄2̇(p− q)ψ2(q). (6.25)

The two-point function of this current is expected to behave in the IR limit as

〈J(p)J(−p)〉 = L0L1
−πc

3

∂2

∂p2
z̄

|p|
δ
K1(|p|δ)

→ L0L1
−πc

3

pz
pz̄
. (6.26)

We note that the supercurrent S± can be rewritten as the SUSY transformation of J ,

S+(p) = Q̄2̇J(p), S−(p) = Q2J(p). (6.27)
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Figure 6.11: “Effective central charge” obtained by the fit for A2 and A3 in various momentum
regions, 2π

L n ≤ |p| <
2π
L (n+ 1) (n ∈ Z+).

Therefore, 〈
S+(p)S−(−p) + S−(p)S+(−p)

〉
= −2ipz 〈J(p)J(−p)〉 . (6.28)

This shows that the computation of the U(1) current correlator is identical to the EMT
correlator of Eq. (6.21) up to a proportionality factor. We expect that we would obtain
almost the same results as the previous subsection, so we do not carry out the analysis on
this correlator.

6.2.2 Central charge in DE-type theories

Let us show the result of the numerical determination of the central charge for the D3, D4,
and E7 models [81]. We plot the correlation function 〈T (p)T (−p)〉 in Figs. 6.12–6.14 for the
maximal box size with the fitting curve (6.22); the central charge c is obtained from the fit in
the IR region 2π

L ≤ |p| <
4π
L . The left panel in each figure is devoted to the real part of the

two-point function and the right one is the imaginary part. The horizontal axis indicates the
momentum ap0, and the momentum ap1 is fixed to the positive minimal value p1 = 2π/L.
In Table 6.4, we tabulate the numerical results of the central charge for all box sizes in the D3,
D4, and E7 models.

The central charge for the maximal box size in Table 6.4 reads

c = 1.595(31)(41) for D3, (6.29)

c = 2.172(48)(39) for D4, (6.30)

c = 2.638(47)(59) for E7. (6.31)

This is the last main result in this section. Here, a number in the second parentheses indicates
the systematic error associated with the finite-volume effect. In Eqs. (6.29) and (6.31), we
estimate this as follows: We pick out the largest three volumes for each minimal model;
from the central values at two smaller ones, we extrapolate to the larger L/a regime as a
linear function of the inverse volume 1/(L/a)2, and then, obtain an extrapolated value at the
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Figure 6.12: 〈T (p)T (−p)〉 for D3, L/a = 44, and ap1 = π/22. The fitting curve (6.22) is
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Figure 6.13: 〈T (p)T (−p)〉 for D4, L/a = 42, and ap1 = π/21. The fitting curve (6.22) is
depicted at once.

maximal volume (see Fig. 6.15); the systematic error is identified with the deviation between
this and the central value in Eqs. (6.29) and (6.31).3 In Eq. (6.30), since we have more than
two would-be convergent results at large L, the systematic error is estimated by the maximum
deviation of the central values at the three largest volumes. Eqs. (6.29)–(6.31) are consistent
with the expected values, 1.5 for D3 within ∼ 1.3σ, 2 for D4 within 2σ, and 2.666 . . . for E7

within the numerical errors; the standard deviations are evaluated by the sum of the statistical
and systematic errors.

As mentioned already, it is interesting to plot the “effective central charge,” which is

3The fit function ∝ 1/L2 is a possible choice, but there would be no theoretical evidence to support this
choice. Because the behavior of the L→∞ limit appears not quite smooth as in Fig. 6.15, we do not attempt
to extrapolate to the infinite volume limit.



6.2. CENTRAL CHARGE 65

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

-4 -3 -2 -1  0  1  2  3  4

ap0

(a) Real part

-800

-600

-400

-200

 0

 200

 400

 600

 800

-4 -3 -2 -1  0  1  2  3  4

ap0

(b) Imaginary part

Figure 6.14: 〈T (p)T (−p)〉 for E7, L/a = 24, and ap1 = π/12. The fitting curve (6.22) is
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Table 6.4: The central charge for D3, D4 and E7 obtained from the fit of the EMT correlator.
The fitted momentum range is 2π

L ≤ |p| <
4π
L .

Algebra L/a χ2/d.o.f. c Expected value

D3 8 6.056 2.786(34) 1.5
16 5.496 2.141(31)
24 3.122 1.867(28)
32 2.682 1.711(29)
40 0.476 1.591(32)
44 3.598 1.595(31)

D4 8 3.216 2.907(36) 2
16 3.738 2.509(34)
24 1.946 2.466(42)
32 2.832 2.202(40)
36 1.109 2.211(70)
40 2.276 2.175(48)
42 1.177 2.172(48)

E7 8 2.220 2.964(36) 2.666. . .
16 1.800 2.639(35)
24 1.364 2.638(47)

analogous to the Zamolodchikov’s C-function (4.14). This is obtained from the fit in a variety
of momentum regions from IR to UV; we take the fitted momentum regions as 2π

L n ≤ |p| <
2π
L (n + 1) for n ∈ Z+. Then Fig. 6.16 shows that the “effective central charge” connects the
IR central charge to an UV value c ≈ 6. This number is consistent with the central charge c =
3NΦ in the expected free N = 2 SCFT. Recall that NΦ is the number of supermultiplets in
the free N = 2 WZ model, and we have set NΦ = 2 here.
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6.3 Continuum limit analysis for the scaling dimension

In this section the finite-size scaling analysis given in Refs. [61,75] is developed into an anal-
ysis method with continuum-limit extrapolation [84]. The extrapolation also carries out the
thermodynamic limit. Then, we numerically simulate the IR behavior of a scalar correlator
for the A2-type WZ model, extrapolate it to the continuum limit, and perform a precision
measurement of the scaling dimension [84].

For simplicity, we study a single superfield with the superpotential

W (Φ) =
λ

n+ 1
Φn+1, (6.32)

which corresponds to the An minimal model, and the system is defined in the box L0 × L1,
Here, the coupling constant λ is a dimensionful parameter and characterizes the mass scale
in this theory.

6.3.1 Continuum limit of the susceptibility of the scalar field

To numerically determine the scaling dimension, we first explain the finite-size scaling analysis
in Refs. [61,75], which is compatible with the continuum limit as we will develop later. Recall
that the susceptibility of the scalar field A is defined by

χ(Lµ) =
1

a2

∫
L0L1

d2x 〈A(x)A∗(0)〉 =
1

a2L0L1

〈
|A(p = 0)|2

〉
. (6.33)

In the IR limit, the scalar field is expected to behave as a chiral primary field with the
conformal dimensions (h, h̄); the two-point function of A behaves as

〈A(x)A∗(0)〉 =
1

z2hz̄2h̄
, (6.34)

for large |x| =
√
x2. Note that the field A is spinless, h = h̄. Then, we observe the finite-

volume scaling of the scalar susceptibility for large Lµ, as

χ ∝ (L0L1)1−h−h̄. (6.35)

Numerically simulating the scalar correlator for some different volumes but the same value
of the coupling, one can read the exponent, 1− h− h̄, from the slope of lnχ(Lµ) as a linear
function of ln(L0L1). In what follows, for simplicity, we take into account the case of the
physical box size L = L0 = L1.

As already announced, we consider the thermodynamic and continuum limits, a/L → 0.
No extrapolation has been done in the preceding numerical studies. In Sect. 6.1 and 6.2
(and Refs. [61,75]), the grid size L/a is expected to be taken as sufficiently large values, while
the coupling λ in the superpotential (6.32) is fixed by aλ = 0.3; good agreement of the scaling
dimension with those of the A2 and A3 minimal models was observed. Unlike in the case of
QCD, however, the present model does not possess any dynamical scale, so the “sufficiently
small” scale of a is not obvious. In fact, we will find that the susceptibility, χ(L), takes a
slow approach to a/L = 0. To obtain precise and reliable results, we should extend the above
finite-size scaling analysis in order to treat the thermodynamic and continuum limits.
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We have also recognized the pathology of the locality in the lattice formulation that is
based on the SLAC derivative; the computation of lnχ(L) with finite L/a is quite sensitive to
this problem [75,80] (see also Sect. 6.3.3). A proposal given in Sect. 6.1 is to directly study the
correlation function in the momentum space, 〈A(p)A∗(−p)〉. Although the measured scaling
dimension with the fixed coupling tends to approach expected values as the grid size L/a
increases, the approach to the L/a → ∞ limit appears not quite smooth.4 We would need
a more systematic method for the infinite-volume and continuum limits, while the locality
should be restored in the limits.

Our strategy for the continuum limit is very similar to that in Ref. [121]. We regard lnχ(L)
as the same kind of running coupling ḡ2(L) defined on a lattice. To take the continuum
limit, various sizes of the lattice spacing {ai} (i = 1, 2, . . . ) are required; we first prepare
various momentum-grid sizes {L/ai}, while the lattice parameter aiλ is tuned so that lnχ(L)
(or ḡ2(L)) is kept fixed; we denote u = lnχ(L). A system with a different grid size L′/a′ 6= L/ai
and the same parameter a′λ′ = aiλ possesses the physical box size L′×L′ with a′ = ai. Then,
we compute lnχ(L′) (ḡ2(L′)) for L′/ai and aiλ; we observe the a-dependence of lnχ(L′)|a
(ḡ2(L′)|a), and attempt to extrapolate this in the continuum limit, lima→0 lnχ(L′)|a.

To be more specific, we introduce the scaling function Σ as

Σ(s, u, a/L) = lnχ(sL)|a. (6.36)

The statistical error of Σ would be given by the square root of the sum of squared errors
of lnχ(L) and lnχ(sL), owing to the long-distance behavior in Eq. (6.35). As a consequence of
the continuum limit with a to-be-determined fit function, we can obtain the scaling dimension

1− h− h̄ =
1

ln s2

[
lim
a→0

Σ(s, u, a/L)− u
]
. (6.37)

The cutoff dependence will be determined from numerical results. Note that the unique
mass scale λ in this model should be sufficiently larger than 1/L to study the conformal
behavior [61], hence λL → ∞ as the continuum limit. This indicates that the extrapolation
carries out the thermodynamic limit at the same time. We can apply our extrapolation
method to the continuum limit to other non-perturbative formulations, for example the lattice
formulation in Ref. [61].

6.3.2 Precision measurement of the scaling dimension

In this subsection, we perform precision measurement of the scaling dimension for the A2-
type theory with the cubic superpotential Φ3 by using the above continuum-limit analysis.
We first summarize the numerical setup we use in this section; the most part of our setup is
identical in Chapter 5. L/a is taken as even integers in the interval [10, 52]. We employ the
Newton–Raphson method with the convergence threshold as√∑

p |2ipzA(p) +W ′(A)∗(p)−N(p)|2∑
q |N(q)|2

<

{
10−14 for L < 52a

10−13 for L = 52a.
(6.38)

4In Sect. 6.2, the central charge appears to possess a higher convergence speed than the scaling dimension,
though the approach to L/a→∞ is also not quite smooth.
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Table 6.5: Classification of the configurations obtained for the A2-type theory with tuned λ.

L/a aλ Nconf (2, 0) (3, 1) (4, 2) (1, 0) (2, 1) (3, 2) (3, 0) (4, 1)

10 0.1780 7680 7680 0 0 0 0 0 0 0
12 0.2135 5120 5119 1 0 0 0 0 0 0
14 0.2538 5120 5119 1 0 0 0 0 0 0
16 0.3000 5120 5112 8 0 0 0 0 0 0
18 0.3420 5120 5093 27 0 0 0 0 0 0
20 0.3888 5120 5070 50 0 0 0 0 0 0
22 0.4500 5120 5023 97 0 0 0 0 0 0
24 0.5100 5120 4961 156 3 0 0 0 0 0
26 0.5705 5120 4909 204 6 0 0 0 1 0

20 0.1780 5120 5117 3 0 0 0 0 0 0
24 0.2135 5120 5104 16 0 0 0 0 0 0
28 0.2538 5120 5075 44 1 0 0 0 0 0
32 0.3000 4320 4236 83 1 0 0 0 0 0
36 0.3420 2592 2514 77 1 0 0 0 0 0
40 0.3888 2592 2472 118 0 0 1 1 0 0
44 0.4500 2592 2458 131 2 0 0 0 0 1
48 0.5100 2592 2433 157 2 0 0 0 0 0
52 0.5705 1512 1392 107 4 1 1 1 6 0

In the case of L = 52a, which is the most numerically demanding one in this section, the
threshold is less accurate (and also the number of obtained configurations is not relatively
high). For a fixed configuration N(p), we randomly generate initial trial configurations of A(p)
so that we obtain 200 solutions for L < 52a, allowing repetition of identical solutions, and
120 solutions for L = 52a. Two solutions A1 and A2 are regarded as identical if√∑

p |A1(p)−A2(p)|2∑
q |A1(q)|2

<

{
10−11 for L < 52a

10−10 for L = 52a.
(6.39)

We tabulate the classification of the configurations obtained in Table 6.5, where the cou-
pling aλ has already been tuned in accordance with the above strategy. Nconf denotes the
total number of configurations for each setup. In the upper half of the table, the number of
configurations for L is shown; in the lower half, that for L′ = 2L is shown. In Table 6.6,
we list the numerical results of ∆ in Eq. (5.19), which should be identical the Witten index
2; the one-point SUSY Ward–Takahashi identity in Eq. (5.29), which should vanish in the
SUSY-invariant system. Whether ∆ and δ are correctly reproduced indicates the quality of
our configurations. Note that, for L′ = 52a, the quality of the configurations obtained is
poorer due to the computational cost.

We tabulate the numerical results of the scalar susceptibility with the various box sizes of L
and L′ = 2L in Table 6.7. The third column is devoted to the tuned values of the coupling,
aλ, so that lnχ(L) in the fourth column is kept almost fixed. The results of Σ(u, a/L) are
shown in the last column, where we have omitted the first argument s = 2 of Σ(s, u, a/L),



6.3. CONTINUUM LIMIT ANALYSIS FOR THE SCALING DIMENSION 71

Table 6.6: Quality of the configurations obtained for the A2-type theory with tuned λ.

L/a L′/a aλ ∆(L) ∆(L′) δ(L) δ(L′)

10 20 0.1780 2 2 −0.00099(104) −0.00005(67)
12 24 0.2135 2 2 −0.00063(107) +0.00046(56)
14 28 0.2538 2 2 −0.00019(94) −0.00030(48)
16 32 0.3000 2 2 −0.00024(81) −0.00004(46)
18 36 0.3420 2 2 −0.00109(74) +0.00020(52)
20 40 0.3888 2 1.9992(5) −0.00078(67) +0.00053(55)
22 44 0.4500 2 2.0004(4) −0.00005(62) +0.00031(48)
24 48 0.5100 2 2 +0.00041(56) +0.00000(41)
26 52 0.5705 2.0002(2) 2.002(2) −0.00058(52) +0.00073(110)

Table 6.7: Scalar susceptibility with u = 3.9175.

L/a L′/a aλ lnχ(L) lnχ(L′) Σ(u, a/L)

10 20 0.1780 3.9174(59) 4.6338(72) 4.6338(93)
12 24 0.2135 3.9175(73) 4.6642(69) 4.6642(100)
14 28 0.2538 3.9193(70) 4.6844(66) 4.6844(97)
16 32 0.3000 3.9171(69) 4.6913(68) 4.6913(97)
18 36 0.3420 3.9166(68) 4.7223(83) 4.7223(107)
20 40 0.3888 3.9215(65) 4.7251(81) 4.7251(104)
22 44 0.4500 3.9162(62) 4.7400(76) 4.7400(97)
24 48 0.5100 3.9186(60) 4.7610(70) 4.7610(93)
26 52 0.5705 3.9175(56) 4.7823(91) 4.7823(107)

Table 6.8: Scaling dimension measured at finite volumes. The results in the last two rows
are obtained by reading the slope of lnχ for (L/a, L′/a) = (24, 48) or (L/a, L′/a) = (26, 52)
in Table 6.7.

Fit range of L aλ 1− h− h̄

Kamata–Suzuki [75] From 24 to 36 0.3000 0.603(19)
From 26 to 36 0.3000 0.609(25)

From 24 to 48 0.5100 0.6076(66)
From 26 to 52 0.5705 0.6238(77)

while we set u = lnχ(L) as 3.9175. The error of Σ(u, a/L) is given by the square root of the
sum of the squared errors of lnχ(L) and lnχ(L′).

In Ref. [75] the scaling dimension was obtained from the slope of the susceptibility in the
formulation by using data for 24 ≤ L/a ≤ 36 or 26 ≤ L/a ≤ 36 with a fixed coupling; we
have a similar slope of lnχ for (L/a, L′/a) = (24, 48), though we have used different values
of aλ (see Table 6.8). We will find a significant difference between such numerical results at
a finite cutoff and our result below at a/L = 0.
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Figure 6.17: Σ(u, a/L)-(a/L) plot with u = 3.9175. The fitting line of Eq. (6.40) is also
depicted.

Now we have enough data to clarify the (a/L)-dependence of Σ(u, a/L). Figure 6.17
shows Σ(u, a/L) as a function of a/L given in Table 6.7. From the plot, we simply apply a
linear function of a/L in order to take the continuum limit; then we have

Σ(3.9175, a/L) = −0.0850(64)× 26a

L
+ 4.8461(107), (6.40)

with χ2/d.o.f. = 1.417. From Eq. (6.37), the scaling dimension is given by

1− h− h̄ = 0.6699(77). (6.41)

This result is consistent with the expected exact value 1 − h − h̄ = 2/3 = 0.6666 . . . within
the statistical error.

Because the quality of configurations with L/a = 52 is poorer due to the computational
cost, the computation of lnχ could be less accurate. In fact, the above result in Fig. 6.17
implies that there is a discrepancy between the central values of lnχ(L) and the fit function
at L/a = 52. To make sure that this discrepancy comes from statistical fluctuations, we show
the behavior of lnχ(L) for L/a = 52 when the number of configurations varies in Table 6.9;
the deviation of the central values decreases.

To estimate the systematic error, we may omit the configurations for L/a = 52; that is,

Σ(3.9175, a/L)|L/a<52 = −0.0791(69)× 26a

L
+ 4.8341(120), (6.42)

with χ2/d.o.f. = 0.807; we obtain

1− h− h̄ = 0.6612(86). (6.43)
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Table 6.9: lnχ(L′) with u = 3.9175 and L/a = 52 when the number of configurations, Nconf,
varies.

Nconf lnχ(L′)

1512 4.7823(91)
756 4.7950(133)
378 4.8087(193)

The main result of the scaling dimension in this section is given by

1− h− h̄ = 0.6699(77)(87). (6.44)

Here, the number in the second parentheses indicates the systematic error defined by the
deviation between the central values of Eq. (6.41) and Eq. (6.43). This result of the scaling
dimension is rather consistent with the conjectured WZ/SCFT correspondence.

As shown in Table 6.8 and Fig. 6.17, we observed a significant difference between our
net result and the ones at any finite L/a. The scalar susceptibility takes a slow approach to
the a/L = 0 limit, at least in the present formulation. By using our extrapolation analysis,
we can get down to the target SUSY continuum theory with the infinite volume; from a
numerical simulation based on the formulation by Kadoh and Suzuki, we obtained the limiting
value for the simplest A2 theory. This result not only has a smaller margin of error in the
numerical value, but also would be much more reliable than those of preceding studies, which
were computed at finite L/a; it shows a coherence picture being quite consistent with the
theoretical conjecture.

6.3.3 Discussion on the fit function

We found that a linear fit of Σ(s, u, a/L) with respect to a/L would be good within the numer-
ical error. To convince ourselves of this fact, let us introduce a slightly modified extrapolation
method, by which we obtain another result for the scaling dimension from same data. If the
two results are similar, our extrapolation method (or fit function) to the continuum limit
works well.

The new method is based on the excision of a small region around the contact point of
the integrand 〈A(x)A(0)〉 in lnχ(L) in Eq. (6.33) [61]. The modified scalar susceptibility χ̃ is
defined by

χ̃(L) =
1

a2

∫
|x|≥λ−1

d2x 〈A(x)A∗(0)〉 . (6.45)

The coupling λ is the unique mass scale in the WZ model with the superpotential in Eq. (6.32),
and the correlations at short lengths ∼ λ−1 would not affect the scaling in Eq. (6.35) of χ(L)
in low-energy regions. Note that the shape of the excised space is slightly different from
those in Refs. [61,75], but the susceptibility should not be sensitive to such UV details in the
continuum limit ; if the grid size L/a is not sufficiently large (i.e. L/a is finite), we suffer from
sensitivity to the excised space size; this is the problem that the susceptibility in Ref. [75] is
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quite sensitive to the UV ambiguity. In terms of the Fourier modes of A, we have

χ̃(L) =
1

a2L2

〈
|A(p = 0)|2

〉
− 1

a2L4

∑
p

2πλ−1

|p|
J1(λ−1|p|)

〈
|A(p)|2

〉
, (6.46)

where |p| =
√
p2 and J1 is the Bessel function of the first kind.

The parameter tuning above indicates that the dimensionless coupling aλ becomes large as
L/a→∞, while lnχ(L) is kept fixed. That is, in the small-a limit, the volume of the excised
space becomes smaller and smaller; we must have completely the same result of the scaling
dimension as in the method of Eq. (6.37), at least analytically. In numerical simulations,
however, it is not known a priori what function we should apply to take the continuum limit.
Thus, attempting to extrapolate results of ln χ̃(L) and to determine the fit function, one
can justify the numerical determination of the scaling dimension from Σ. In the same way
as lnχ(L), we define the new scaling function Σ̃ by

Σ̃(s, u, a/L) = ln χ̃(sL). (6.47)

Here, u is given by the fixed number lnχ(L), which is identical to the value of ln χ̃(L) in
the continuum limit, that is, λ−1 → 0. Similarly, one can measure the scaling dimension
by Eq. (6.37) with Σ̃ and another to-be-determined fit function.

From the Σ̃(u, a/L)-(a/L) plot in Fig. 6.18 we obtain the fitted quadratic curves

Σ̃(3.9175, a/L) = −0.091(14)×
(

26a

L

)2

+ 0.031(52)× 26a

L
+ 4.8062(425) (6.48)

with χ2/d.o.f. = 1.600, or

Σ̃(3.9175, a/L) = −0.0823(19)×
(

26a

L

)2

+ 4.8317(62) (6.49)

with χ2/d.o.f. = 1.423. These fitting results give the scaling dimension as

1− h− h̄ = 0.641(31), 1− h− h̄ = 0.6594(45), (6.50)

respectively. These two results are consistent with our previous result in Eq. (6.44). We have
obtained the precise and reliable result in Eq. (6.44) through the finite-size scaling with the
continuum-limit extrapolation.

Our result seems to support the restoration of the locality in the continuum limit. The
UV ambiguity in χ(L) with finite L/a, that is, the sensitivity to the excised space size ∼ λ−1

around the contact point, has disappeared because λ−1 → 0 in the limit. We indeed found
that the results in Eq. (6.50) based on the excision prescription are consistent with Eq. (6.44)
without the excision. Also, in addition to the earlier numerical simulations based on the
present formulation, it would be exemplified by good agreement between Eq. (6.44) and the
expected value that the momentum-cutoff regularization in the 2D theory works quite well.
However, the theoretical background of our computational approach is still not clear, so we
should observe the locality restoration more carefully; this is a future problem.
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Figure 6.18: Σ̃(u, a/L)-(a/L) plot with u = 3.9175. The fitting curve of Eq. (6.48) is also
depicted.

6.4 Torus compactification of superstring theory

Finally, we attempt to apply our numerical approach to the superstring compactification in a
simple way. The most simplest case would be given by the compactification into the complex
one-dimensional torus. Such a theory can be described by the Gepner model, A2 ⊗A2 ⊗A2,
with the central charge c = 3. We now consider theNΦ = 3 WZ model with the superpotential,

W ({Φ}) = λ

(
1

3

3∑
I=1

Φ3
I + βΦ1Φ2Φ3

)
, (6.51)

where the cubic terms correspond to the A2 minimal model, and the last term is the defor-
mation of the torus, which is not included in the ADE classification in Table 4.1. Such a
operator bringing about the deformation is believed to be marginal; the central charge would
be unchanged under this deformation.

To see this, we numerically simulate the WZ model with the superpotential (6.51), while
the deformation parameter β is varied. We set the coupling aλ to 0.3, and generate 320
configurations of {N} for β = 0.1, 1280 ones for β = 1, and 160 ones for β = 10. L/a is
taken as 16, 24, 32, and 40 for β = 0.1; 16, 24, 32, and 36 for β = 1; 16 for β = 10. The
other simulation setup is identical to that for the DE-type theories in Sect. 5. We tabulate
the classification of obtained configurations in Tables 6.10–6.12. Note that the Witten index
is given by ∆ = 8 = (23).

As one of the main result of this section, Tables 6.13–6.15 summarize the scaling dimension
we obtained in the same way in Sect. 6.1 for each superfield. Also, in the same way in Sect. 6.2,
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Table 6.10: Classification of configurations for Eq. (6.51) with β = 0.1

L/a 16 24 32 40

(8, 0)8 319 305 286 276
(9, 1)8 0 6 12 12
(10, 2)8 1 5 11 13
(11, 3)8 0 2 5 7
(12, 4)8 0 0 1 9
(16, 8)8 0 0 0 1
(9, 0)9 0 0 1 0
(10, 1)9 0 0 2 1
(11, 2)9 0 1 0 0
(12, 3)9 0 1 0 1
(14, 5)9 0 0 1 0
(10, 0)10 0 0 1 0

∆ 8 8.006(4) 8.019(9) 8.006(4)
δ 0.0026(19) 0.0032(14) −0.0002(14) 0.00039(90)

Table 6.11: Classification of configurations for Eq. (6.51) with β = 1

L/a 16 24 32 36

(8, 0)8 1247 1155 1056 497
(9, 1)8 27 102 158 102
(10, 2)8 6 18 49 23
(11, 3)8 0 4 9 5
(12, 4)8 0 1 2 5
(13, 5)8 0 0 0 1
(15, 7)8 0 0 1 0
(8, 1)7 0 0 0 1
(9, 0)9 0 0 3 2
(13, 4)9 0 0 1 2
(11, 2)9 0 0 1 1
(10, 1)9 0 0 0 1

∆ 8 8 8.004(2) 8.008(4)
δ 0.00158(94) −0.00020(64) 0.00043(55) 0.00047(80)

the central charge obtained is tabulated in Table 6.16; this is another main result here.
Recall again that these numbers in the tables could contain the systematic error from missed
solutions, especially for β = 10. For any cases of β, we see the tendency that the measured
scaling dimension approaches the expected value 0.666 . . . as L/a becomes large, and also the
measured central charge does 3. Therefore, we end up with the conclusion that Φ1Φ2Φ3 is a
marginal operator in a non-perturbative sense.
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Table 6.12: Classification of configurations for Eq. (6.51) with β = 10

L/a 16

(8, 0)8 52
(9, 1)8 29
(10, 2)8 9
(11, 3)8 4
(12, 4)8 1
(8, 4)4 1
(6, 0)6 2
(7, 1)6 2
(8, 2)6 2
(7, 0)7 6
(8, 1)7 7
(9, 2)7 6
(10, 3)7 1
(9, 0)9 9
(10, 1)9 7
(11, 2)9 8
(12, 3)9 2
(13, 4)9 1
(10, 0)10 6
(13, 3)10 1
(11, 0)11 1
(12, 1)11 1
(14, 2)12 1
(14, 1)13 1

∆ 8.13(8)
δ 0.002(10)
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Table 6.13: The scaling dimension obtained from the fit of 〈A1A1〉 for Eq. (6.51) with various
values of β. The fitted momentum range is 2π

L ≤ |p| <
4π
L .

AI L/a β χ2/d.o.f. 1− h− h̄ Expected value

A1 16 0.1 0.043 0.8006(66) 0.666. . .
24 0.1 0.178 0.7270(89)
32 0.1 0.851 0.703(12)
40 0.1 0.165 0.663(13)

16 1 0.134 0.7615(21)
24 1 1.125 0.7096(30)
32 1 0.423 0.6678(37)
36 1 0.319 0.6566(66)

16 10 0.728 0.666(33)

Table 6.14: The scaling dimension obtained from the fit of 〈A2A2〉 for Eq. (6.51) with various
values of β. The fitted momentum range is 2π

L ≤ |p| <
4π
L .

AI L/a β χ2/d.o.f. 1− h− h̄ Expected value

A2 16 0.1 0.060 0.7963(63) 0.666. . .
24 0.1 0.052 0.7422(88)
32 0.1 0.308 0.696(11)
40 0.1 0.725 0.663(12)

16 1 0.062 0.7612(21)
24 1 0.705 0.7100(29)
32 1 0.273 0.6719(35)
36 1 0.338 0.6616(62)

16 10 0.755 0.618(32)

Table 6.15: The scaling dimension obtained from the fit of 〈A3A3〉 for Eq. (6.51) with various
values of β. The fitted momentum range is 2π

L ≤ |p| <
4π
L .

AI L/a β χ2/d.o.f. 1− h− h̄ Expected value

A3 16 0.1 0.086 0.7979(63) 0.666. . .
24 0.1 0.094 0.7460(89)
32 0.1 0.299 0.706(14)
40 0.1 0.269 0.665(13)

16 1 0.201 0.7620(23)
24 1 0.941 0.7087(28)
32 1 0.269 0.6691(36)
36 1 0.403 0.6545(57)

16 10 0.531 0.618(23)
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Table 6.16: The central charge obtained from the fit of the EMT correlator for Eq. (6.51)
with various values of β. The fitted momentum range is 2π

L ≤ |p| <
4π
L .

L/a β χ2/d.o.f. c Expected value

16 0.1 2.176 3.725(62) 3
24 0.1 1.437 3.503(65)
32 0.1 0.753 3.391(80)
40 0.1 0.630 2.860(76)

16 1 7.789 3.642(33)
24 1 1.514 3.439(35)
32 1 0.741 3.238(37)
36 1 0.668 3.203(59)

16 10 1.068 2.84(23)





Chapter 7

Conclusions

In this thesis, we numerically studied the 2D N = 2 Wess–Zumino (WZ) model, which is
believed to provide the Landau–Ginzburg (LG) description of an N = 2 superconformal field
theory (SCFT). We employed the exactly supersymmetric formulation [75] on the basis of the
momentum cutoff regularization and the Nicolai map. This formulation allows a straightfor-
ward construction of the Noether currents, that is, the supercurrent, the energy-momentum
tensor, and the U(1) current.

First, the ADE-type WZ model with one or two superfields was focused [80, 81], which
corresponds to the minimal model at the IR fixed point. Then, we observed that the Witten
index is reproduced and some SUSY WT relations hold non-perturbatively. From the IR
behavior of the two-point functions in the momentum space, we numerically measured the
scaling dimension h+h̄ and the central charge c (Table 7.1); for the measurement of the central
charge, we directly computed the energy-momentum tensor Tzz. These results, together with
the flow of the “effective central charges,” are consistent with the theoretical conjecture of the
WZ/minimal-model correspondence. We have the numerical evidences for the various typical
minimal models: the A2, A3, D3, D4, E6 (∼= A2 ⊗A3), and E7 models.

Table 7.1: The scaling dimensions and the central charges obtained.

Algebra 1− h− h̄ Expected value c Expected value

A2 0.682(10)(7) 0.666. . . 1.061(36)(34) 1
A3 0.747(11)(12) 0.75 1.415(36)(36) 1.5
D3 1.595(31)(41) 1.5
D4 2.172(48)(39) 2
E7 2.638(47)(59) 2.666. . .

Second, we considered the continuum limit analysis for the scaling dimension [84]. We
developed the extrapolation method to take the continuum/infinite-volume limit, a/L → 0,
based on the finite-size scaling. Then, we performed precision measurement of h + h̄ in
the A2-type theory, and obtained

1− h− h̄ = 0.6699(77)(87). (7.1)

This result is quit consistent with the expected value of the A2 minimal model. Our discussion
there supports the restoration of the locality in the continuum limit.

81
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Third, we apply the above method to the non-minimal SCFT associated with the torus
compactification of superstring theory. We deformed the geometry of the torus compactifi-
cation that from the A2 ⊗ A2 ⊗ A2 Gepner model. To do this, we added the operator xyz
to the superpotential x3 + y3 + z3. It is believed that this operator is marginal, and so, the
central charge c is identically equal to 3 under this deformation. We numerically observed
this fact, and provided the non-perturbative evidence of the conjecture that the operator xyz
is marginal.

All these studies show a coherence picture which is consistent with the conjectured LG
description of SCFT. Although the theoretical basis of this numerical approach is not obvious
because of the non-locality, our investigations support the validity of the formulation. Of
course, it is important to confirm further the theoretical validity of the formulation, that is,
the restoration of the locality of the theory. We hope that the numerical approaches, when
further developed, will be useful to study dynamics of the superstring compactification via
the LG/CY correspondence.

For a possible application to the CY compactification, a simulation of the A4-type theory
with the superpotential W = Φ5 will be an important starting point. This is because a CY
manifold is given by the tensor product of the five A4 minimal models. A related issue with
the continuum-limit analysis is to consider the continuum limit for the central charge. It is
also interesting to compute the Zamolodchikov’s C-function directly. These could be analyzed
by the gradient-flow method [116,122] in a lattice formulation such as that in Ref. [61, 62].1.

1By employing the gradient-flow method, one can construct a regularization-independent form of the
Noether current associated spacetime symmetries [123–127]. There also are various analyses for the relation
between the gradient flow and the renormalization group flow [128–138]



Appendix A

A fast algorithm for the Jacobian
computation

A.1 Jacobian in the NΦ = 1 WZ model

We can accelerate the computation of sign det ∂(N,N∗)
∂(A,A∗) by effectively halving the size of the

matrix,

∂(N,N∗)

∂(A,A∗)
=

(
2ipz W ′′(A)∗∗

W ′′(A)∗ 2ipz̄

)
, (A.1)

whose p, q element is

[
∂(N,N∗)

∂(A,A∗)

]
p,q

=

(
2ipzδp,q

1
L0L1

W ′′(A)(q − p)∗
1

L0L1
W ′′(A)(p− q) 2ipz̄δp,q

)
=

(
2ipzδp,q

1
L0L1

W ′′(A)(p− q)†
1

L0L1
W ′′(A)(p− q) 2ipz̄δp,q

)
. (A.2)

Note that Eq. (A.2) is a [2(N0 +1)(N1 +1)]× [2(N0 +1)(N1 +1)] matrix when the momentum
takes the values

pµ =
2π

Lµ
nµ, nµ = 0,±1, . . . ,±Nµ

2a
, (A.3)

where we have assumed that both integers N0 and N1 are even,

We write the matrix in Eq. (A.2) as

∂(N,N∗)

∂(A,A∗)
≡
(
iP W †

W iP †

)
. (A.4)

It should be noted that the diagonal matrix P , whose p, q element is 2pzδp,q, does not have
an inverse because it has zero at p = 0; what we want to do is to remove this zero.
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Considering the case that P and W are 3× 3 matrices for simplicity, we can confirm that
the determinant of the matrix in Eq. (A.4) can be deformed as

det



λ1

0 W †

λ2

W11 W12 W13 λ3

W21 W22 W23 0
W31 W32 W33 λ4

 = −|W22|2 det


λ1 W̃ ∗11 W̃ ∗31

λ2 W̃ ∗13 W̃ ∗33

W̃11 W̃13 λ3

W̃31 W̃33 λ4

 , (A.5)

where

W̃ij ≡
1

W22
det

(
Wij Wi2

W2j W22

)
. (A.6)

In an analogous way, we can write, for the general case,

det

(
iP W †

W iP †

)
= −|W0,0|2 det′

(
iP W̃ †

W̃ iP †

)
, (A.7)

where W0,0 is the component at (p, q) = (0, 0), det′ is the determinant in the subspace in
which the components with p = 0 or q = 0 are omitted, and

W̃p,q =
1

W0,0
det

(
Wp,q Wp,0

W0,q W0,0

)
. (A.8)

Note that this is simply the determinant of a 2× 2 matrix.

Since the right-hand side of Eq. (A.7) refers to the subspace in which P has an inverse,
the Jacobian can be expressed as

det

(
iP W †

W iP †

)
= −|W0,0|2 det′

(
iP 0

W̃ I

)
det′

(
I (−i)P−1W̃ †

0 iP † − W̃ (−i)P−1W̃ †

)
(A.9)

= −|W0,0|2 det′
(
−PP † − PW̃P−1W̃ †

)
. (A.10)

Here, the inverse of P is given by

(
P−1

)
p,q

=
1

2pz
δp,q =

pz̄
2|pz|2

δp,q. (A.11)

Thus, substituting the matrix elements in Eq. (A.2), we have

det

(
iP W †

W iP †

)
= −det′(−1)

∣∣∣∣ 1

L0L1
W ′′(A)(0)

∣∣∣∣2
× det′

4|pz|2δp,q +

(
1

L0L1

)2∑
l 6=0

pz
lz
W̃ ′′(A)(p− l)W̃ ′′(A)(l − q)†

 ,
(A.12)
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where for p 6= 0,

W̃ ′′(A)(p− l) ≡ 1

W ′′(A)(0)
det

(
W ′′(A)(p− l) W ′′(A)(p− 0)
W ′′(A)(0− l) W ′′(A)(0− 0)

)
=

1

W ′′(A)(0)

[
W ′′(A)(p− l)W ′′(A)(0)−W ′′(A)(pW ′′(A)(−l)

]
. (A.13)

Here, the factor det′(−1) is

det′(−1) = (−1)(N0+1)(N1+1)−1 = +1, (A.14)

for N0 and N1 are even.
Thus, finally, the sign of the Jacobian is given by the sign of the determinant of a matrix

with smaller dimensions [(N0 + 1)(N1 + 1)− 1]× [(N0 + 1)(N1 + 1)− 1], as

sign det

(
iP W †

W iP †

)

= −det′(−1) sign det′

4|pz|2δp,q +

(
1

L0L1

)2∑
l 6=0

pz
lz
W̃ ′′(A)(p− l)W̃ ′′(A)(q − l)∗

 . (A.15)

Since the computational cost required for the matrix determinant is O(N3) for a matrix of
size N , this representation reduces the cost by ∼ 1/8.

It turns out that the above sign is mainly negative for most of configurations of A(p).

Since the overall sign of sign det ∂(N,N∗)
∂(A,A∗) is irrelevant in the expectation value of Eq. (5.20),

we regard Eq. (A.15) as1

− sign det
∂(N,N∗)

∂(A,A∗)
. (A.16)

A.2 Jacobian in the NΦ = 2, 3 WZ model

For the WZ model with multiple superfields, we write the Jacobian as

det
∂({N}, {N∗})
∂({A}, {A∗})

= det

(
2iδIJpzδp,q

1
L0L1

∂I∂JW (A)(p− q)†
1

L0L1
∂I∂JW (A)(p− q) 2iδIJpz̄δp,q

)
(A.17)

≡ det


iP W †11 0 W †12 . . .
W11 iP † W12 0 . . .

0 W †21 iP W †22 . . .
W21 0 W22 iP † . . .

...
...

...
...

. . .

 , (A.18)

where I, J run over 1, 2, . . . , NΦ, and ∂I ≡ ∂/∂AI This Jacobian is the determinant of a
[2NΦ(N0 + 1)(N1 + 1)]× [2NΦ(N0 + 1)(N1 + 1)] matrix and the momentum takes the values
given in (A.3)

1Or we may simply say that the partition function (5.15) is defined with another negative sign.
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Note the for the determinant of invertible block matrices Mij ,

det

(
M11 M12

M21 M22

)
= detM22 det

(
M11 −M12M

−2
22 M21

)
, (A.19)

and

det

M11 M12 M13

M21 M22 M23

M31 M32 M33


= detM33 det

(
M22 −M23M

−1
33 M32

)
× det

[(
M11 −M13M

−1
33 M31

)
−
(
M12 −M13M

−1
33 M32

) (
M22 −M23M

−1
33 M32

)−1 (
M21 −M23M

−1
33 M31

)]
. (A.20)

Thus, we have the Jacobian as the determinant of a matrix with smaller dimensions [2(NΦ −
1)(N0 + 1)(N1 + 1)]× [2(NΦ − 1)(N0 + 1)(N1 + 1)] for NΦ = 2,

det
∂({N}, {N∗})
∂({A}, {A∗})

= (−1)2 det


W11 iP † W12 0

iP W †11 0 W †12

W21 0 W22 iP †

0 W †21 iP W †22

 (A.21)

= det


W21 0 W22 iP †

0 W †21 iP W †22

W11 iP † W12 0

iP W †11 0 W †12

 (A.22)

= | detW12|2

× det

[(
W21

W †21

)
−
(
W22 iP †

iP W †22

)(
(W12)−1

(W †12)−1

)(
W11 iP †

iP W †11

)]
, (A.23)
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and for NΦ = 3,

det
∂({N}, {N∗})
∂({A}, {A∗})

= (−1)3 det



W21 0 W22 iP † W23 0

0 W †21 iP W †22 0 W †23

W11 iP † W12 0 W13 0

iP W †11 0 W †12 0 W †13

W31 0 W32 0 W33 iP †

0 W †31 0 W †32 iP W †33


(A.24)

= (−1)3| detW21|2

× det



W12 0 W13 0

0 W †12 0 W †13

W32 0 W33 iP †

0 W †32 iP W †33



−


W11 iP †

iP W †11

W31 0

0 W †31

((W21)−1

(W †21)−1

)(
W22 iP † W23 0

iP W †22 0 W †23

) . (A.25)
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