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available at the end of the article this study, we delve into the security of block ciphers against quantum threats,

particularly investigating their susceptibility to cryptanalysis techniques, notably
exploring quantum adaptations of differential cryptanalysis. Initially, we introduce a
BV-based quantum algorithm for identifying linear structures with a complexity of
O(n), where n denotes the number of bits in the function. Subsequently, we illustrate
the application of this algorithm in devising quantum differential cryptanalysis
techniques, including quantum differential cryptanalysis, quantum small probability
differential cryptanalysis, and quantum impossible differential cryptanalysis,
demonstrating polynomial acceleration compared to prior approaches. By treating
the encryption function as a unified entity, our algorithm circumvents the traditional
challenge of extending differential paths in differential cryptanalysis.

Keywords: Block cipher; Differential cryptanalysis; Quantum cryptanalysis; BV
algorithm

1 Introduction

Modern cryptography relies on the concept of computational security, and the level of se-
curity provided by a cryptographic system can be expressed as the amount of computing
resources required to break it. However, based on the assumption of computational com-
plexity, it is difficult for people to break existing cryptographic algorithms within a limited
time under the current computing power. This is the cornerstone of the security of the
classical cryptosystem. However, due to the existence of quantum algorithms [1-4], the
security of this cryptographic system has been dramatically affected. For example, Shor’s
algorithm [1] will greatly impact the currently widely used RSA cryptographic systems [5],
and Grover’s algorithm [2] provides quadratic acceleration for exhaustive key search (the
key length is reduced by half). Therefore, it is of great significance to the development
of cryptography to evaluate the specific threats of quantum computing to various cryp-
tographic systems and provide a reference for the design and analysis of cryptographic
algorithms that can resist quantum attacks.
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Quantum attacks against symmetric crypto primitives The influence of large-scale uni-
versal quantum computers is apparent in many public-key schemes, whereas the impact
on symmetric cryptography seems less significant. Since symmetric cryptographic al-
gorithms do not depend on trapdoor functions, they appear capable of evading the ex-
ponential speedup of quantum computers compared to classical algorithms for an ex-
tended period. Initially, it was widely believed that only Grover’s algorithm [2], offering
a quadratic acceleration of the exhaustive search problem, could leverage quantum re-
sources to target symmetric cryptosystems. This change occurred following the introduc-
tion of Simon-based attacks proposed by Kuwakado and Morii. [6, 7]. They demonstrated
that Even-Mansour and 3-round Feistel constructions could be broken in polynomial time.
Subsequently, various generic constructions were also found to be vulnerable to different
quantum algorithms [8—16]. These included attacks based on the Simon algorithm [17],
the Grover-meets-Simon algorithm [18], and the Bernstein-Vazirani (BV) algorithm [19],

among others.

Quantum differential cryptanalysis Differential cryptanalysis [20] is pivotal in penetrat-
ing modern cryptosystems, particularly block ciphers, manifesting in various forms like
truncated differential attacks and impossible differentials. Concurrently, quantum com-
puting, grounded in quantum mechanics, has emerged, showcasing superior acceleration
over classical computing in certain domains. Consequently, the application potentials of
quantum algorithms in differential cryptanalysis become conceivable. In the preliminary
phase of differential cryptanalysis, Yang et al. [21, 22] introduced methodologies based
on the BV algorithm for discovering diverse differences: quantum differential cryptanaly-
sis, quantum small probability differential cryptanalysis, quantum impossible differential
cryptanalysis, and quantum truncated differential cryptanalysis. These approaches can
identify desired differences within time O(poly(w)) (@ denotes the length of the round
key). For the subsequent stage of differential cryptanalysis, i.e., deriving the key from the
known difference, Zhou et al. [23] proposed a corresponding quantum version based on
quantum search and quantum counting algorithms, achieving a quadratic speedup. In
2017, Kaplan et al. [24] showed that it is usually possible to use quantum computations
to obtain a quadratic speedup for these attack techniques, but the situation must be nu-
anced: they cannot get a quadratic speedup for all variants of the attacks, such as truncated

differential cryptanalysis.

Our contributions In this paper, we reassess the BV algorithm and investigate methods
to streamline the complexity of BV-based quantum differential attacks on block ciphers.
Our focus is on addressing two unresolved inquiries posed by Xie et al. [22].

1. Can an alternative method be employed to directly identify the linear structure of
the vector function, bypassing the step of searching linear structures for each
component function and then intersecting them, as done by Xie et al.?

We introduce a novel BV-based quantum algorithm for identifying linear
structures of a vector function. This algorithm can efficiently pinpoint approximate
linear structures of the vector function with just O(n) quantum queries. Compared
to the previous quantum linear structure finding algorithm [22], our approach
achieves a quadratic acceleration.
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2. How can we further streamline the complexity of quantum differential attacks while
maintaining the probability of success?

We improve three applications of the quantum linear structure finding algorithm
in the realm of differential cryptanalysis [22], encompassing quantum differential
cryptanalysis, quantum small probability differential cryptanalysis, and quantum
impossible differential cryptanalysis. Our BV-based attacks yield a polynomial
acceleration compared to some relevant findings, reducing the complexity from
O(n°q*(m) log(m))/ O(n* P (m)q*(n))/ O(n*) to O(q*(m))/ O(nl*(n)g*(n))/ O(n),
respectively.

Organization The paper follows this structure: Sect. 2 introduces essential notations,
definitions, and key technical lemmas. In Sect. 3, we present a novel quantum algorithm
for identifying approximate linear structures of a vector function. Section 4 outlines three
methodologies for conducting quantum differential cryptanalysis. Finally, conclusions are
drawn in Sect. 5.

2 Preliminaries

We define F; as the prime field with elements 0 and 1, denoted {0, 1}. The #-dimensional
vector space over F, is represented as F}, equivalent to {0,1}". The collection of all func-
tions mapping Fy* to Fy is denoted by C,, ,. For n = 1, this set is denoted by B,,. The sym-
bol “@” signifies XOR (addition in F7}), while “-” denotes the scalar product of bit-strings
viewed as n-bit vectors.

2.1 Linear structure
Below, we define the concept of linear structures for a mapping F from {0, 1} to {0, 1}".

Definition 1 ([25]) Given a function F € C,,,, the linear structure is a vector a € {0, 1}""
satisfying the equation:

Fx®a)® F(x) = i, for all x € {0,1}" (1)

where i € {0,1}" is a constant vector. Let Ur represent the set of all linear structures of
function F, and U} be defined as:

UL ={aecF}'|F(x®a)® F(x) =i, forall x € {0,1}"} 2)

And, U = |J, UL. Given any a € {0,1}" and i € {0,1}", define:

Vi - |{x € F}'|F(x fma) @ F(x) = i}| 3)

This parameter quantifies the deviation of 4 from a linear structure of the function F. We
then introduce the following definition.

Definition 2 ([22, 26, 27]) For a given function F € C,,,,, the e-approximate linear struc-
ture is a vector a € {0, 1} satisfying:

|{x € F}'|F(x ® a) & F(x) = i}| S

o 1-¢ (4)
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Figure 1 BV algorithm |0>®n
F
=)

[

where € is a negligible parameter.

Definition 3 ([22, 26, 27]) The Walsh spectrum of a Boolean function f : F}* — F; is
defined as the function Sy : F}' — Z by:

1
§7(@) = o Bery (1) )

where the dot product - x = w1x1 @ Wax2 B - - - D WXy, is defined for any w = (w1, ..., W)
and x = (X1,...,%).

Let’s denote the support of Sy as supp(Sy), defined as supp(Sy) = {@ € Fy’|Sf(w) # 0}.
Then, Lemma 1 [28] elucidates how the Walsh spectrum enables the determination of
linear structures within a Boolean function.

Lemma 1 ([28]) Given a function f € B,,. For Vi € {0, 1}, we have that
U ={a e F}'la-w=i,Yo € supp(Sy)} (6)

Lemma 1 demonstrates that with a sufficiently large subset W of supp(Sy), linear struc-

tures of f can be obtained by solving the linear equations {a - w = ilw € W}.

2.2 Bernstein-Vazirani algorithm

In 1993, Bernstein and Vazirani [19] proposed a quantum algorithm for determining the
slope of an affine function (BV problem). Utilizing quantum superposition of queries, rep-
resented as Xy Ay, [X)|y) > Zyyhay %) |y S (%)), the BV algorithm exhibits linear speedup
in query complexity compared to classical methods. Concretely, the BV problem is defined
as follows:

Bernstein-Vazirani problem [19]: Given a oracle O;' : {0,1}" — {0,1} defined by
f(x)=a-xmod 2 for some hidden a € {0, 1}", the objective is to determine a.

The BV algorithm (see Fig. 1) addresses the abovementioned problem using the follow-
ing four quantum steps.
1. Prepare quantum state |1/) = |0)®"|1), apply H®"+D

1
¥ fx)]-) 7)

Y1) = o ey

N-1
Here, H®"|0)®" = [ (|0) + [1))]®" = = ZO |x).

1\While we can input x to the oracle and request the computation of f(x), the internal computation process remains inac-
cessible.
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2. Apply oracle O

[Y2) =

1
~1Y 9 x) |- 8
T et Y *x)1-) 8)

For function f(x) € {0, 1}, the impact of oracle access operation
Uy : |x)|y) — %) |y + £ (%)) on |x)|-): Urlx)(|0) — 1)) = (-1)/®|x)(|0) — [1)). Easily
verifiable, the conditions hold true when f(x) equals 0 or 1.

3. Apply Hadamard operation H®" (erase the last qubit)

1
=H”"— 3 (D)%
V) N YOlx)
1 1

by
V2" [ 27 xyef0,1)"

1
= 3 [= 3 (1Y@

- ye(o,1)r 2" xe{0,1)"

= | Sr»ly) &)

y€{0,1}"*

Pl = (1P
xe{0,1}"

4. Measure state, output a

1 _ 1 _
== ¥ YO"*P=[— ¥ ()P =s,, (10)
2" xefo,1}" 2" xefo,1}"

Clearly, 8,, = \/% Exepg(—l)f(")*y"‘ = S¢(y), where 8, = 1 if a = y and 0 otherwise.
Then, the probability of obtaining a after measurement is 1.
The classical time complexity for solving this problem optimally is O(n). However, the
BV algorithm [19] achieves significant acceleration with a complexity of only O(1). We
refer to [29] for a qgiskit implementation with a small example. Thus, it serves as an efficient

tool for identifying linear structures within a vector function.

3 Quantum linear structure finding algorithm

In this section, we introduce a novel quantum linear structure search algorithm, leveraging
the BV algorithm as a subroutine. In our subsequent applications, the accessible functions
no longer adhere to the BV problem, meaning they are not of the specific form of f(x) =
a - x. In this scenario, the problem condition, represented by the linear function f(x) =
a - x, is relaxed to the general form of a Boolean function f(x) : {0,1}" — {0,1}. Based
on the Eq. (9) above, applying the BV algorithm to the mentioned function at this stage

results in a probability sz(y) of obtaining vector y, indicating it consistently returns vector

y € supp(Sy).

New observations We now turn to the vector function. Given the BV algorithm’s exclu-
sive operation on Boolean functions, we construct the following function for the vector
function F = (fi,f2,...,fn):

P=LPLD - Dfy (11)
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Algorithm 1 FindStruct
Input: Function F = (fi,f2,...,fu) € Cpus ¢ :=f1 B f2 B - - - ® fy; Initialize W as empty
Output: Return (a,i)

1: Repeat cn times
2:  Run the BV algorithm on ¢ >y
3 Set W=WU/{y}

4: EndRepeat

5. if {y-a=iyly € W,ig € {0,1}} has no solution then

6: return “failure”

7: else

8 return the nonzero solution 4 and calculate i = F(x ® a) & F(x) >(a, i)
9: end if

At this stage, ¢ € B, represents a Boolean function. It’s apparent that when function F
exhibits a linear structure, the newly formulated function ¢ also inherits a linear structure

and is equivalent. Then, we have the following proposition.

Proposition 1 Ifthere exists a function ¢ such that ¢ :=fi ®f, ® - - - @ f,, then a being the
linear structure of vector function F = (fi,fs,...,f,) is both necessary and sufficient for a to

be the linear structure of ¢.

Proof Function F has a linear structure a.

& Fx®a)® F(x)=i,Yx €{0,1}"
S filx@a)®fix)=i,j=12,...,n
SHEDA)BAX) D Bfuix P a) B fu(x)=ip,ig=i1 D Diy,

S PpxDa)®ox) =iy, ip €{0,1} (12)
Then, function ¢ has a linear structure a. O

Proposition 1 suggests that solving the linear structure problem of the vector function
F can be reduced to solving the linear structure problem of Boolean functions ¢. When
the BV algorithm is applied to the given function ¢, it consistently yields a vector y €
supp(Sg). Lemma 1 establishes the algebraic connection between this output and the linear
structure a ({y - a = iy liy € {0,1}}), facilitating the reconstruction of the vector function’s
linear structure. The above process can be summarized as Algorithm 1.

Using the proposed algorithm, we can polynomially solve the approximate linear struc-
ture problem of vector functions. In our subsequent cryptographic analysis applications,
collisions beyond the function’s linear structure will impact the algorithm’s success rate.
Therefore, before drawing conclusions, we must first define the parameter (the maximum

collision ratio)

1
e(F,a)= — max max max |{x € F}|Fj(x ®t) ® Fj(x) = ij}| (13)
2" 1<j<nteFi\Uy ij€F>



Xu et al. EPJ Quantum Technology (2024) 11:83 Page 7 of 19

This parameter ¢(F,a) < 1 quantifies the proximity between collisions and linear struc-
tures in the vector function. As it increases, collisions in the function approach the lin-
ear structure, exert a greater impact on the algorithm; conversely, the impact diminishes.
Specifically, we provide the following two theorems to illustrate this (see Appendix for the

proof).

Theorem 1 Ife(F,a) < po < 1, Algorithm 1, after cn quantum queries, can still successfully

recover the linear structure (a,i) with a probability of at least 1 — (2pg)".

Theorem 1 suggests that with a small parameter ¢(F,a), increasing the number of
queries can mitigate the effect of collisions on the algorithm’s success probability. In
essence, when the parameter c is adequately large (usually, selecting ¢ >log,,27" is ade-
quate), the algorithm’s success probability exponentially converges to 1 as # grows. At this
point, the proposed algorithm can find the linear structure (including periods) of the vec-

tor function in O(n) time.

Theorem 2 When Algorithm 1 is executed on the vector function F = (f1,f,...,f,) for cn

times, if Algorithm 1 returns vector (a, i), then for any € (0 < € < 1), we have

l{x € F}|F(x ® a) ® F(x) = i}| S

—2cne?
T l-€]>1-e (14)

Pr|

Theorem 2 suggests that when the collision ratio is high, Algorithm 1 will output the

approximate linear structure of the function, denoted as €-approximate linear structure.

Truncate outputs of quantum oracles 'We begin by constructing quantum oracle capable
of implementing each component functionf; : {0,1}" — {0,1} (1 <j < n) within the vector
function F = (f1,f,...,f»)- This process allows us to build a quantum oracle for the function
¢. This necessitates employing quantum truncation techniques [30]. In the following, we
will outline specific construction methods.

Given the function F, we can efficiently access the quantum encryption oracle Of :
|x)|y) = |x)|y @ Or(x)). Now, we need to use this oracle to simulate the quantum or-
acle of the component functions f;. To do this, we define the unitary operation OJ’;, =
I, ® H®V @ I ® H®"). 0 - (I, ® H®™D ® I @ H®"). Specifically, we have:

Oj;lx>|0>|0>|0> =, @ H® D @I ®@ H®" ). Of
(I, ® HBY @ I @ H®"7))|x)|0)(0)|0)
= (I, @ H®™V @ I @ H®" 7). Op|x)|+)|0)|+)

. . 1
=, @ H® DV @I @ H®" ) |x)[—= T, |u & O, (x
( )| >[ﬁ | ) ()]

1
105 -5 Z v® O, (x))]

=, @ H®" D QI @ H®"D)|x)|+) - - - |0 (%)) - -+ |+)

= [%)10)|05(x))[0) (15)
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Therefore, we can simulate Oy : |x)[0) — [x)|Oy, ® Op, @ -+ & O,) with the complete
encryption oracle O using ancilla qubits:

Or.
%)10) = 1%)101,)10p) - - - 10y, )10)

= [%)0)10p) - 105 )05 ® Op, & -~ & Op,)

Of,
= [x)|0)|Oy, ® Op, & -+~ ® Oy,) (16)

Related work  The first approach to trying to find linear structures with the BV algorithm
was proposed by Li and Yang [26]. Later, Xie and Yang [22] extended the aforementioned
algorithm to the case of vector functions, while also providing some cryptographic anal-
ysis applications, including differential analysis, related-key analysis, and others. Specifi-
cally, considering that the BV algorithm only operates on Boolean functions, they needed
to determine the linear structures of each component function to derive the linear struc-
ture of the vector function (with O(#?)). In contrast, we constructed a Boolean function
based on the vector function and analyzed the algebraic relationships between function
linear structures, thereby providing a solution to the problem. This significantly reduces
the complexity of solving the problem, achieving quadratic acceleration.

4 Quantum differential cryptanalysis

In this section, we show how our proposed algorithms significantly decrease the query
complexity of classical differential analysis. Compared to the method by Xie and Yang [22],
our attacks, including quantum differential attacks, small-probability differential attacks,
and impossible differential attacks, achieve polynomial acceleration. Notably, the query
complexity of our differential attacks decreases from O(n3g*(n)log(n))/O(n*?(n)g*(n))/
O(n*) to O(g*(m))/ O(nl*(m)q*(m))/ O(n).

4.1 Applications to the quantum differential cryptanalysis
Differential Cryptanalysis [20] is a cryptographic analysis technique used to compromise
encryption algorithms’ security. It analyzes the output differences resulting from small
input data variations to infer the key or other encryption parameters. Typically, this tech-
nique observes input differences and deduces key information from them. It can be applied
to attack numerous symmetric-key encryption algorithms, including DES and AES.

Differential cryptanalysis is a chosen-plaintext attack that relies exclusively on the re-
sulting ciphertexts. Here, we analyze the encryption function E : {0,1}" — {0,1}" of an
iterated design with r rounds, and we use £ to denote a reduced version with r rounds
(ie, E:= EM). Let E,((r_l) be the encryption function of the first » — 1 rounds, and k denotes
the key involved in these rounds. Differential cryptanalysis consists of the following two
steps:

1. Analyze the target encryption algorithm E"~V to identify differential characteristics;

2. Utilizing these identified characteristics, attackers endeavor to deduce the key or

other critical information of the target encryption algorithm.

In this study, we explore quantum versions of differential cryptanalysis, and introduce

the described function:

F:{0,1}" x {0,1}% — {0,1}"
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Algorithm 2 Improved FindStruct

Input: Encryption function F = (fi,f,...,f1) € Curam @) :=f1 ®fo @ - - - @ f,; Initialize
the set W as empty

Output: Return (a,i)

1: Repeat cn times

2:  Run the BV algorithm on ¢ DY =91Y2 " YuVn+l " Vned
3 Set W=WU{y1y2yu}

4: EndRepeat

5. if {y-a=iyly € W,igs € {0,1}} has no solution then

6: return “failure”

7: else

8: return the nonzero solution @ and calculate i = F(x ® a) & F(x) >(a, i)
9: end if

(m, k) > E{ D (m) (17)

Based on the above Eq. (17), we can regard the target encryption algorithm as a function F.
Specifically, since we cannot access the key information of the target encryption algorithm,
we need to input both the key and the plaintext m as the function’s parameters. In other
words, under the key k € {0,1}?, the target encryption algorithm maps the plaintext m
to the ciphertext ¢ = E,(:_D(m), denoted as F. In this scenario, if we apply Algorithm 1 to
function F and manage to find an approximate linear structure of function F, then this
linear structure corresponds to a high probability differential characteristic of the target
encryption algorithm.

The identified linear structure in the aforementioned process corresponds to a differ-
ential characteristic under the related-key condition. In general, we need to identify a dif-
ferential characteristic under the same key (i.e., the correct key of the target encryption
algorithm). In this case, we only need to set the last d bits of the function input (corre-
sponding to the key part) to 0. Concretely, we give Algorithm 2.

Using Algorithm 2, we can identify the linear structure of function F with a query com-
plexity of O(n). The recovered linear structure (a, i) then undergoes validation using multi-
ple sets of inputs x and x @ a. If validation fails, Algorithm 2 is rerun until the correct linear
structure is found. This process aligns with a differential attack on the target encryption
algorithm E¢Y. Specifically, Algorithm 2 can efficiently find the differential characteristic
of the target encryption algorithm (for most keys) in polynomial time, as summarized in
the following theorem.

Theorem 3 When Algorithm 2 runs on the encryption function F = (fi,f,...,f.) for cn
iterations, yielding vector (a, i), and for key k € K’ where K' C K and |K'|/|K| > 1 - ﬁ, we
have

lx € FYIE"V(x @ a) ® E"D(x) = i —2cne?

2}‘1
Pr[ o >l-€]l>1—-ea® (18)

where q(n) is any polynomial in n, representing the block length.

Proof In Algorithm 2, we set the differentials of the key part to 0 to identify the differ-
ential characteristics of the target encryption algorithm under the same key. That is, we
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implicitly assume that (@[|0) - (y192 - -  Yusa) = b, i€, a- (y1y2 - - - ¥u) = i. When we regard the
limited («]|0) as the output, Algorithm 2 degenerates into Algorithm 1. Then, from the
above Theorem 2, it follows that

lx € Fy*4|F(x @ a|0) ® F(x) = i
Pr[ on+d >

1 - €] (19)
holds with the probability greater than 1 — e~2m<G  Let

lix e FIE{ V@ a) @ EY V(%) = i}
2}1

Vi(k) = (20)

Equation (19) indicates that if we consider V(k) as a variable, then for any k € {0, 1}, we
have Ex(V(k)) > 1 — €. Consequently, for any g(#), we have

Pri[V(k)>1-g(n)eg] >1 - 1 (21)
q(n)

The above Eq. (21) indicates that for the majority of keys (with (1 — ﬁ) of keys, denoted
as K’), we can find a high-probability differential characteristic of the target encryption
algorithm. In other words, for any k € K’, we have

PriV(k) > 1 - q(meg] > 1 — e72"% (22)

Moreover for € = g(n)€y, we have

(S FVI E(V—l) E(V—l) =1 —2cne?
P lx € F}| (% 63:1)69 (%) =i Sle]>1—edo (23)
This concludes the proof. d

After cn = %c%qz(n)ln(cz) steps of Algorithm 2, we can obtain the differential of E,((r_l).
Then, from the above Theorem 3, it follows that there exist constants c;, ¢, that satisfy

€ Fj|E"-D ED(x) = igiy -+ iy 1 1
Pr[lx BB x®a)® () = iia l|>1__]>1__ (24)
Vi C1 Cy

for k € K'. We show that with this strategy, the adversary can obtain the differential of
E,(:*l) with complexity O(q%(n)). Afterward, it is likely that classical attacks that recover
the subkey in the last round. Our algorithm is applied in the first phase. Considering the
known best quantum differential algorithm [22], our algorithm is a polynomial speedup
with complexity dropping from O(#3g?(n) In(n)) to O(g*(n)).

In traditional differential analysis, as the number of rounds increases, the number of
active S-boxes also increases, significantly reducing the likelihood of high-probability dif-
ferential paths. The resulting complexity in the encryption function further complicates
the identification of these high-probability paths, limiting the feasible number of attack
rounds. With quantum algorithms, however, the target encryption can be treated as a
black box, enabling the use of the BV algorithm to partially mitigate the complexity intro-
duced by additional rounds.
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Notably, our algorithm currently applies only to partial keys. Determining whether high-
probability differential characteristics applicable to all keys can be identified remains a key
challenge [22]. Under related-key conditions, the proposed attack may identify differential
features valid for all keys, as the final bit of the linear structure generated by Algorithm 2
aligns with the key’s algebraic structure. However, caution is required in practical analysis,
as specific encryption algorithms have unique key scheduling. For an attacker to succeed,
quantum queries on two related-key black boxes would be necessary, and the key schedule
may not yield round keys matching this requirement.

Our approach provides a general framework for attacking symmetric cryptosystems,
with its effectiveness largely determined by the differential distribution of the target algo-
rithm. The core of the quantum differential algorithm lies in exploiting the algebraic struc-
ture of the target encryption algorithm. Specifically, the attacker constructs a linear struc-
ture function and employs Algorithm 1 to recover its linear characteristics for conducting
the attack. For example, for the Even-Mansour construction Enc(m) = P(m ® k) ® ko, we
can consider the function f(x) = P(x & k) & ky & P(x), this correspond to a high order
differential. The complexity of Algorithm 2 primarily depends on the number of Oracle
calls in step 2, specifically the need for set W to include n — 1 independent vectors. For
n = 12, finding such # — 1 independent vectors requires an expected 12.613 calls to the
BV algorithm subroutine [31]. Then, the complexity of the proposed quantum differential
algorithm is O(n). This study offers insights into the application of quantum algorithms
to differential analysis and supports the exploration of block cipher design principles in
quantum computing contexts.

4.2 Applications to the quantum small probability differential cryptanalysis
Differential cryptanalysis using small-probability differentials was introduced in Ref.
[32, 33], examining the propagation of input differences within the encryption function
and their impact on output differences. This approach, as described in Ref. [32, 33], can
be utilized similarly to general differentials for conducting a differential attack. Xie and
Yang [22] have proposed the feasibility of executing quantum small-probability differen-
tial cryptanalysis by analyzing each component function of the encryption function in-
dividually. Hereafter, we illustrate a more efficient method to uncover small-probability
differential characteristics of the target encryption algorithm using Algorithm 2, intro-
ducing the corresponding function:

F:{0,1}" x {0,1}* — {0,1}"

(m, k) — E{™D(m) (25)

Using the mentioned function F, Algorithm 1 identifies small-probability differential char-
acteristics (referred to as (Ax, Ay)) of the target encryption algorithm E,(:_l). Subsequently,
these characteristics are employed to validate the correctness of the guessed key and re-
cover the accurate key of the target encryption algorithm. Our quantum small-probability
differential attack mainly involves two processes (quantum part and classical part):
1. Find differential characteristic:
Given the target encryption algorithm E~, we define the function
F(m, k) = E,(:*D. After attackers execute Algorithm 2 nl?(n)q*(n) times, they are
highly likely to obtain the linear structure (4, i), where g(n) and I(n) represent any
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two polynomials about 7. Then we set b = (i1iy - - - i,,), where Z =i; ® 1. Thus, this
process demonstrates that we can find a small-probability differential characteristic
(a, b) of the target encryption algorithm in polynomial time.
2. Construct key-recovery attack:
Using the identified small-probability differential characteristics, we can conduct
a key-recovery attack on the target encryption algorithm. The attacker selects /?(n)
plaintext differential pairs based on these characteristics and obtains corresponding
ciphertext differential pairs Ay®, Ay®, ..., Ay through encryption (for all
possible keys), where Ay® = (Ay?, AyY, ..., AyD), i =1,2,...,12(n). Concurrently,
all input pairs and their corresponding output differentials are logged. In essence, by
analyzing the statistical distribution of output differentials and recording the
occurrences of specific differentials (Ay; =b;,j=1,2,...,n) as (Cy), attempts are
made to deduce the key of the target encryption algorithm. Keys associated with
lower ratio A = Cs/nl?(n) may indicate potential correctness.
We can identify small-probability differential characteristics of the target encryption
algorithm for most keys, as mentioned earlier. Under related-key conditions, such char-
acteristics are accessible for any key. To be precise, the following theorem holds.

Theorem 4 For most keys (with 1 — ﬁ of keys, denoted as K') in the first (r — 1) rounds of
the target encryption algorithm, we have

1
Prlrs > —] <3¢

I(m)

where s represents the correct key in the final round of the target encryption algorithm and
{(n) is any polynomial in n.

Proof By applying the above Theorem 2, it follows that

Pr| lx € FI*9|F(x Q;ﬂm) @& F(x) = b| e

1 (26)
holds with the probability greater than 1 — exp(—2cne?). Clearly, we have

l{x € FJIEY " (x @ a) ® E{"(x) = b}

V(k) = T

(27)

Equation (27) indicates that if we consider V/(k) as a variable, then for any k € {0, 1}%, we
have Ex(V(k)) < €. Consequently, for any polynomial g(n) of n, we have

PrIVK) < qnye] = 1 —— (28)
q(n)

The above Eq. (28) indicates that for the majority of keys (with (1 — ﬁ) of keys, denoted
as K’), we can find a small-probability differential characteristic of the target encryption
algorithm. In other words, for any k € K’, we have

ke FIE{ P x@a)® EY V() = bl
Pr| o

< q(n)e] (29)
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holds with the probability greater than 1 — exp(—2cne?). Let € = STongan? €1 = nl?(n)g*(n),

2l(n)q(n
we have

|x eFIE " x®a)®E P (x) = bl _ 1
2" 2[(n)

] (30)

holds with the probability greater than 1 — exp(—n/2). Then,

1
PriE; M x@a) @ () = bl < (31)
21(n)
holds for all j = 1,2,...,n. Next, we let Y be a random variable
1, Ay =b
Y=Y s 32
(”)!O A(‘);«!b (32)

For every i = 1,2,...,12(n), Eq. (31) indicates E(Y) <
Then, using Hoeffding’s inequality, we have that

12 () €xcept a negligible probability.

%Y 20,752
L s1<2 —2nl*(n)8 -n/2 33
"2 = 210n TS e (33)

Moreover for § = %Y /nl*(n) = A, we have

1
2l(n)’
1 —n/2
Pr()s > m] <3e (34)

which completes the proof of Theorem 4. d

According to Theorem 4, A < ﬁ for the correct key s. It’s important to verify the re-
covered key and attempt to decrypt other ciphertexts for confirmation. If verification fails,
restart the attack process. Our quantum small-probability differential attack requires only
nl*(n)q*(n) quantum queries. Compared to Xie and Yang’s algorithm [22], ours achieves a

polynomial speedup, reducing complexity from n*%2(n)q?(n) to nl(n)q*(n).

4.3 Applications to the quantum impossible differential cryptanalysis

Impossible differential analysis extends cryptographic differential analysis to overcome
limitations and enhance attack efficacy for certain cryptographic algorithms, particularly
block ciphers. It capitalizes on the property where certain input pair differences are un-
likely to transform into specific output differences, even after several encryption rounds.
That is, for an impossible differential characteristic (Ax, Ay) of the target encryption al-
gorithm E,(:_l) :{0,1}* — {0,1}*, we have

El P x @ Ax) + E{ 7V (0) # Ay, Vx € F} (35)
Similar to differential analysis, impossible differential analysis is also divided into two

steps. Firstly, we identify an impossible differential characteristic (Ax, Ay) based on the
target encryption algorithm E,(:_l), preventing the derivation of output difference Ay from



Xu et al. EPJ Quantum Technology (2024) 11:83 Page 14 of 19

Algorithm 3 Quantum Impossible Differential Cryptanalysis
Input: Function F = (fi,f2,...,fn) € Cusam ¢x):=fi ®fo ® - -+ @ f,; Initialize W as empty
Output: Return (a,ijis-- Z <o dy)

1: Repeat cn times

2:  Run the BV algorithm on ¢ DY = Y192 YnVnel - VYed
32 SetW=WU{y1y2---yu}

4: EndRepeat

5. if if {y-a=igly € W,ig € {0,1}} has no solution then

6

7

8

9

return “failure”

. else
: return the nonzero solution A% for iy €{0,1} >Ale
. end if

10: Find a*, and calculate iy - - - i, = E""P(x ® a) ® E"V(x) >(a', i)

11: Generate a random j € {1,2,...,n} such that iy ® i @ --- & Z ®---Di, = g

>(a,iriy - ij- - iy)

input difference Ax during the encryption process. Secondly, leveraging the identified im-
possible differential characteristic, we attempt to deduce the correct key s for the target
encryption algorithm.

Our attack primarily targets the initial phase of impossible differential analysis, aim-
ing to identify the impossible differential characteristic of the target encryption algorithm

efficiently. Based on the target encryption algorithm, we construct a function

F:{0,1}" x {0,1}¥ — {0,1}"

(m, k) > E{ ™D (m) (36)

We can find the impossible linear structure of the above function using Algorithm 1. This
structure corresponds to the impossible differential characteristics of the target encryp-
tion algorithm. We encapsulate this attack process in Algorithm 3.

According to Theorem 1, for e(F,a) < pg < 1, if Algorithm 3 returns vector (a, i1i; - - Z
---i,) after O(n) queries, then (a, i1i; - - Z -+ - iy) corresponds to an impossible linear struc-

ture of function F, where &(F,a) := max &(f;,a). This corresponds to an impossible differ-
<j<n

ential attack, where (a, x x -+ ;- - x) represents a characteristic of the target encryption
algorithm, with “x” denotes either bit can be 0 or 1. Specifically, we state the following
theorem.

Theorem 5 Given a vector function F with e(F,a) < py < 1 for some constant py, if Al-
gorithm 3 returns vector (a,iriy---i;---i,) after cn queries, for any key k € {0,1} and
il s ij—lij+1 s in (S] {0, 1}, we have

F(x® all0) ® F(x) #iria---i;- - in, Y € Fy™ (37)

except for a negligible probability. This indicates (a,iriz -+ -ij - - i,) as an improbable dif-
ferential characteristic of the target encryption algorithm.
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Proof Based on Theorem 1, it follows that Pr[a € L[}] >1-(2p§)". Thus Pr[F(x @ a|0) &
F(x) #irig -0+ in, Y € F¥*9] > 1 - (2p5)". This indicates for all k € {0,1}4,

PrIE" V@ a)®E " V(x) Firip- -+ in,Vx € Fy]> 1 - (295)" (38)
Then, the conclusion holds. O

Theorem 5 demonstrates that Algorithm 3 effectively identifies the impossible differen-
tial characteristics of the target encryption algorithm E¢~Y, Compared with the approach
of Xie and Yang [22], our algorithm achieves a quadratic speedup. Unlike previously dis-
cussed methods, this impossible differential path applies to all keys, whereas high/small-
probability differential paths are partial-key.

It is important to note that Algorithm 3 is designed to find impossible differentials fo-
cused on specific bits. Although its application scope is restricted to particular impossible
differential paths, the algorithm introduces a novel perspective for impossible differential
analysis. Traditional impossible differential analysis faces the challenge of extending the
differential path, limiting the attackable rounds. By considering the initial » — 1 rounds as
a single unit, our approach successfully bypasses this limitation.

5 Conclusion

This paper introduces a novel quantum algorithm for finding approximate linear struc-
tures of vector functions. Furthermore, recognizing that the linear structures within an
encryption function often correspond to high-probability differentials, we improve three
methodologies for conducting differential cryptanalysis. Note that, all three approaches
leverage quantum algorithms with polynomial time complexity. Future research should
focus on advancing quantum algorithms for differential and low-probability differential
cryptanalysis to comprehensively cover the entire key space while simplifying implemen-
tation, such as through circuit optimization. Achieving practical applicability in the near
term remains an open challenge.

Appendix A: Proof of Theorem 1
Theorem 1 Ife(F,a) < pg < 1, Algorithm 1, after cn quantum queries, can still successfully
recover the linear structure (a,i) with a probability of at least 1 — (2pg)".

Proof Before proving Theorem 1, first we will review a lemma.

Lemma 2 ([28]) For a given Boolean function f € B, and any a € {0,1}", i € {0, 1}, we have

3 SHw) = {x € Fjlf(x®a) ®f(x) = i}

= (A1)

w-a=i

Based on the lemma provided, when executing algorithm subroutine (step 2) for the
constructed function ¢, the probability of obtaining the vector y satisfying the condition
y-a=isis

{x € Fylop(x @ a) @ ¢(x) = iy}
2}'[

Priy-a=igl= Y S} = (A2)

y-u=i¢
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For convenience in our subsequent proof, we set y - a = 0. The parameter ¢(F,a) <po <1

implies (¢, a) < po < 1. More precisely:

1
— max |{x € F)|px®t) D p(x) =0}
2" teF\Us

e(¢,a)

1
< —max max |[{x e F)|i(x®t) ®fix)=0}|
2" 1sjsnteF)\Us

=¢&(F,a)
<po (A3)

In the subroutine of Algorithm 1 (step 2), running the BV algorithm on function ¢ initially
yields a vector y; orthogonal to a, and subsequent runs yield another vector y, orthogonal
to a. Repeating this step cu times, with high probability, yields n — 1 orthogonal and inde-
pendent vectors y1,¥,...,¥s-1 € {0,1}"”, thus obtaining a unique non-zero solution. More

precisely:

Prait = Pr(3t e F)\{O,a}s.t,y1 - t=ys-t=---=yz-t=0]
< Zerjoalrlyr-t=y2-t=-+-=yen-t=0]
< Zerp\0a)(Priyr - =01 Prly, - t=0]----- Pr(ye, -t =0])

<2" max (Prly-¢]=0)"
teFI\{0,a}

= (2pp)” (A4)
After cn queries, Algorithm 1 has a probability of success
Psuce = 1 _pfail > 1- (pr))n (AS)

in recovering the linear structure a of function ¢, as shown in Eq. (A4). After successfully
recovering the linear structure 4, (4, i) can be obtained through simple calculations, where
i=F(x @ a)® F(x). Thus, the conclusion holds. O

Appendix B: Proof of Theorem 2
Theorem 2 When Algorithm 1 is executed on the vector function F = (f1,f,...,fy) for cn
times, if Algorithm 1 returns vector (a, i), then for any € (0 < € < 1), we have

l{x € F}|F(x ® a) ® F(x) = i}| .

—2cne?
o l-€]>1-e" (B1)

Pr{

Proof Before proving Theorem 2, first we will review Hoeffding’s inequality.

Hoeffding’s inequality [34] The empirical expectation X of a set of independent and
identically distributed random variables X; € [a;,b;], i = 1,2,..., n, satisfies the inequality

2n2¢2

P(X -E[X]| = t) <e Zialia? (B2)
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where ¢ > 0 denotes the deviation between the sum of random variables and its expecta-
tion.

According to Lemma 2, in the execution of the algorithm subroutine (step 2) on the
function ¢, the probability of obtaining a vector y satisfying y - a = iy is

e BpEea @@ =il _

Priy-a=ig] o (B3)
Then
Priy-a-ip) EEBIREOOOI@=T) | -

2}’1

where p, g € [0, 1] represent the corresponding probability. Next, we set X be a variable

0, y-a=ig

X() = (B5)

L, y-a=i
The expectation of this variable is E(X) =1-¢q =g =1 — p, as evident from the formula
above. In the subroutine of Algorithm 1 (step 2), a vector y; is obtained in the first execu-
tion. By repeating this step cn times, cu vectors y1, %2, ...,y are obtained, corresponding

to cn independent and identically distributed random variables X3, X5, ..., X.,. Then, from

Hoeffding’s inequality [34], we can get Pr[g > €] < e2m* More precisely:
1 cn —2cne?
Prig-— ZhXizel<e (B6)

Algorithm 1 cannot output vector (a,i) when Y; =1 (I =1,2,...,n), implying ﬁ MY =0.
Therefore, the above Eq. (B6) can be simply rewritten as

Prlgz el <e (B7)
From Eq. (B7), it follows
Prll-p<el=Pr(l-e<p=<1)> 1 e %ne (B8)

Thus the probability that

_xeFloa®a) & o) =ip}l

Priy-a=i,) >

1-¢ (B9)

holds is greater than 1 — e~2¢* Thus the conclusion holds. O
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