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Abstract: We discuss formal analogies between a nonlinear Schrédinger equation derived by the
author from the theory of scale relativity and the equations of Brownian theory. By using the
Madelung transformation, the nonlinear Schrodinger equation takes the form of hydrodynamic
equations involving a friction force, an effective thermal pressure, a pressure due to the self-interaction,
and a quantum potential. These hydrodynamic equations have a form similar to the damped Euler
equations obtained for self-interacting Brownian particles in the theory of simple liquids. In that case,
the temperature is due to thermal motion and the pressure arises from spatial correlations between
the particles. More generally, the correlations can be accounted for by using the dynamical density
functional theory. We determine the excess free energy of Brownian particles that reproduces the
standard quantum potential. We then consider a more general form of excess free energy functionals
and propose a new class of generalized Schrodinger equations. For a certain form of excess free energy,
we recover the generalized Schrodinger equation associated with the Tsallis entropy considered in a
previous paper.

Keywords: kinetic theory; quantum mechanics; Brownian motion

1. Introduction

The theory of Brownian motion and the quantum theory were two great revolutions
in physics at the beginning of the twentieth century.

Brownian motion was discovered by the Scottish botanist Robert Brown [1] in 1827
by observing the erratic motion of small grains of pollen suspended in a fluid. It was
explained by Einstein [2,3] in 1905 who understood that the motion of small particles
suspended in a solvent was caused by thermal fluctuations due to the molecular movement
of the liquid'. He showed that a Brownian particle has a diffusive motion and proposed
a probabilistic derivation of the diffusion equation based on microscopic processes”. He
solved the diffusion equation, finding a self-similar Gaussian distribution, and showed
that the mean square displacement of the Brownian particle is given by x2 = 2Dt. He
also obtained a relation between the diffusion coefficient D, the mobility of the particle
u =1/(¢m), and the temperature T:

p— kel
ém

This is the celebrated Einstein relation. To obtain this relation he used heuristic argu-
ments based on a hydrodynamic approach. He considered a Brownian particle submitted
to an external force and wrote the equilibrium condition in two different manners: one
describing the balance between the external force and the osmotic pressure (hydrostatic
equilibrium) and the other describing the balance between the drift due to the external force
and the diffusion current. Actually, the Einstein relation had been previously derived in
an even more general form by Sutherland [20] using a direct method that does not require
the introduction of an external force, by simply equating the friction force (Stokes law)

(1)
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and the osmotic pressure force. Smoluchowski [21] also obtained a similar relation with,
however, a different prefactor by using a random walk approach®. The Einstein relation
was later rederived by Langevin [27] from a stochastic differential equation (generalizing
Newton’s equation) incorporating a random noise term modeling the collisions between the
Brownian particles and the molecules of the surrounding fluid. The validity of the Einstein
relation and the reality of the atoms were experimentally confirmed by Perrin [28,29] in
1909. The case of a Brownian particle moving in an external potential was considered
by Smoluchowski [30] who derived a drift-diffusion equation for the probability density
of finding the particle in r at time ¢. The Smoluchowski equation can be viewed as a
Fokker—Planck equation in position space. It relaxes towards the Boltzmann distribution.
The theories of Einstein and Smoluchowski are valid for Brownian particles in the strong
friction limit { — +oo (overdamped motion). The case of inertial Brownian particles
moving in an external potential was considered by Klein [11], Kramers [12], and Chan-
drasekhar [13] who derived a Fokker-Planck equation in phase space involving a linear
friction. This is the so-called Kramers equation. It relaxes towards the Maxwell-Boltzmann
distribution®. If we take the moments of the Kramers equation and close the hierarchy of
hydrodynamic equations with a local thermodynamic equilibrium (LTE) condition, we
obtain the damped Euler equation including a pressure force associated with the ideal
equation of state P,y = pkpT /m and a friction force —¢u proportional and opposite to the
velocity [32]. In the strong friction limit { — +o0, we recover the Smoluchowski equation
and the Einstein relation’. The equations of Brownian theory were later used in the theory
of simple liquids [33]. In that case, one has to take into account nontrivial correlations
between the particles due to their self-interactions. This can be done by introducing an
excess free energy Fex[p]. The excess free energy can be calculated at equilibrium by using
the density functional theory (DFT) [34]. It is then assumed that the same functional can
be used out-of-equilibrium in the kinetic equations. This is the so-called dynamic density
functional theory (DDFT) [35]. In certain cases, the excess free energy accounts for an
excess pressure Pey. For systems with long-range interactions, the correlations between the
particles can be neglected in the large N limit, implying that the mean field approximation
becomes exact in a proper thermodynamic limit N — +oco [36]. If the Brownian particles
have both short-range and long-range interactions [37], the damped Euler equations take
the form

dp _
§+V~(pu)—0, )
Jdu _ kgTo  OFex B 7
0 [at + (u- V)u} = Vo —pV 5 PV P — pVPeyt — Epu, (3)
D(r, t) = /uLR(\r— v )o(¥,t)dr. 4)
In the strong friction limit ¢ — +oo, they reduce to the Smoluchowski equation
p ksT OFex
Ca =V <mVp—|—pV 5 +pV<I>+pV<I>ext>. (5)

These equations describe a system of self-interacting Brownian particles in contact with
a heat bath fixing the temperature. They decrease the free energy F monotonically and, if
the free energy is bounded from below, relax towards an equilibrium state, which minimizes
the free energy at fixed mass. This provides an H-theorem in the canonical ensemble. As
discussed in [17,38], these equations can describe Brownian charges that interact through the
repulsive electric force (Nernst-Planck and Debye-Hiickel models of electrolytes) [39-43], the
chemotaxis of bacterial populations (Keller-Segel model) [44], self-gravitating Brownian
particles (Smoluchowski-Poisson equations) [45], colloid particles at a fluid interface [46],
superconductors of type II [47], nucleation of colloids and macromolecules in solution [48],
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two-dimensional Brownian point vortices [49], the Brownian mean field (BMF) model [50],
and other systems.

Wave mechanics started with the pioneering work of de Broglie [51] who proposed
associating a wave to a particle through the correspondences E = fiw and p = fik (wave—
particle duality). Schrodinger [52-55] developed the ideas of de Broglie about matter waves.
He introduced an equation (the celebrated Schrodinger equation) for a complex wave
function ¢ (r, t) and showed that its solution can account for the energy spectrum of the
hydrogen atom in the nonrelativistic limit, thereby recovering and enlarging the results of
the planetary Bohr [56,57] model®. Madelung [63] showed that the Schrédinger equation
for the electron could be formally transformed into fluid equations similar to the continuity
equation and the pressureless Euler equation but involving an additional quantum potential
proportional to 7?. These results were rediscovered later by Bohm [64,65] in his theory of
“hidden” variables. Nonlinear Schrodinger equations including a self-interaction potential
were introduced in relation to particle physics (solitons) [66], nonlinear optics (e.g., the
Townes soliton) [67], or superfluidity and Bose-Einstein condensates (BECs) [68-72]. They
have the form of Gross-Pitaevskii (GP) or generalized GP equations’. If we perform the
Madelung transformation on these equations, we obtain a quantum Euler equation including, in
addition to the quantum potential, a pressure force determined by the self-interaction potential.

In a recent paper [74], we derived a nonlinear Schrédinger equation by extending the
formalism of Nottale’s theory of scale relativity [75] to the case of dissipative systems. This
equation involves a logarithmic nonlinearity with a complex friction coefficient. When
transformed into fluid equations, the complex logarithmic potential gives rise to a linear
friction force and an effective thermal pressure force. These two terms arise simultaneously
from the complex nature of the friction coefficient (they are “twins”). We generalized this
equation further by introducing a self-interaction potential (taking into account short-range
interactions) and a long-range potential of interaction [76]. This leads to a generalized GP
equation of the form

) h? AVin
zha—‘f = —%A¢+mq>¢+m¢ext¢+md|w;¢
+2kpTIn || ¢ — igg {m(l;”) — <ln<$> >] P, (6)
O(c,t) = [u(le—¢IgP, 1 ar. )

This equation incorporates an arbitrary nonlinearity, an effective temperature, and a
source of dissipation. As discussed in [76,77], this equation can describe dark matter ha-
los made of self-gravitating bosons or self-gravitating fermions [78-80]°, the fermionic and
bosonic Hamiltonian mean field (HMF) models [106,107], fermions and bosons with electro-
static interaction [77,108], etc. Interestingly, if we perform the Madelung transformation on this
equation, we obtain fluid equations, which are similar to the damped Euler Equations (2)—(4)
obtained in the case of Brownian particles in interaction. This analogy between generalized
quantum equations and generalized Brownian equations was mentioned in our previous
works [76,77] and is here reviewed with some amplification. It is not clear if this analogy
is purely formal or if it bears more physical significance than is apparent at first sight.
We determine the excess free energy of Brownian particles that reproduces the standard
quantum potential. We then consider a more general form of excess free energy functionals
and propose a new class of generalized Schrodinger equations. For a certain form of excess
free energy, we recover the generalized Schrodinger equation associated with the Tsallis
entropy considered in a previous paper [16].

The paper is organized as follows. In Section 2, we derive a generalized Schrédinger
equation from the theory of scale relativity by considering dissipative systems. In Section 3,
we introduce a self-interaction term in that equation and obtain a generalized GP equation
governing the evolution of a dissipative BEC. In Section 4, we develop an effective ther-
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modynamical formalism associated with the generalized GP equation. We then consider a
system of classical Brownian particles in interaction. We discuss their statistical equilibrium
state in Section 5 and their kinetic theory in Section 6. In Section 7, we explain how one can
close the equations of the kinetic theory by using the DDFT. In Section 8, we show that the
hydrodynamic equations of classical Brownian particles in interaction are similar to the hy-
drodynamic equations obtained from the generalized GP equation. The quantum potential
corresponds to a special form of excess free energy (i.e., to a special form of correlations).
We can thus derive an equation similar to the Schrédinger equation from the hydrodynamic
equations of Brownian particles in interaction. We then propose a generalized class of
Schrodinger equations associated with other forms of excess free energy. The general case is
treated in Section 9 where we introduce a generalized Schrodinger equation incorporating
an arbitrary excess free energy in addition to the usual quantum terms.

2. Derivation of a Generalized Schrédinger Equation from the Theory of Scale Relativity

In this section, we recall the derivation of the generalized Schrodinger equation obtained
in ref. [74] by extending the theory of scale relativity [75] to the case of dissipative systems.

2.1. Basics Results in the Theory of Scale Relativity

The theory of scale relativity elaborated by Nottale [75] assumes that the trajectories of
the particles are intrinsically nondifferentiable. The nondifferentiable nature of space-time
gives rise to quantum mechanics. When a trajectory is nondifferentiable, the derivative
dr/dt is not defined (contrary to classical mechanics) and one has to introduce two velocities:
u, (r(t),t) and u_(x(t),t), defined from t — dt to t for u_ and from ¢ to t + dt for uy. The
breaking of the symmetry dt <+ —dt leading to the two-valuedness character of the velocity
is at the origin of complex numbers in quantum mechanics. The elementary displacement
dr4 for both processes has a differential part dr4+ = u4 dt and a nondifferentiable part
db, which can be described by a stochastic variable of zero mean (db+) = 0. It can be
interpreted as a scale-dependent fractal fluctuation. Quantum mechanics has a fractal
dimension Dp = 2 [109,110] similar to that of Brownian motion or more generally to
Markov processes. Therefore, we can write

dry = ugdt+dby ®)

with
<dbi> =0, <dbildbij> = :EZD(Sl]dt, 9)

where D is the quantum diffusion coefficient measuring the covariance of the noise. It
characterizes the amplitude of the fractal fluctuations. We can also introduce two classical
derivative operators d. /dt and d_ /dt, which yield the twin classical velocities when they
are applied to the position vector r, namely,

der _

dr_
a4 dt

=u_. (10)

It is convenient to replace the twin velocities (uy, u_) with the couple (u, ug) where

_uy tu_ _uy —u_
u= — ug = — (11)
With these two velocities, we can form a complex velocity
U=u-iug (12)

The velocity u can be interpreted as the classical velocity and the velocity ug as
the quantum velocity. In the classical limit, where the trajectories of the particles are
differentiable, we have u; = u_ = u and ug = 0. The quantum velocity is at the origin



Symmetry 2023, 15, 2195

5 of 65

of the complex number 7 in the equations of quantum mechanics. We can also define a
complex derivative operator

D _di+d _di—d

Dt 2dt 2dt 13)
in terms of which D
r
Dr_ o 14
i = Y (14)
The total derivative with respect to the time of a function f(x(t), t) of fractal dimension
Dg = 2 reads
df  of dr 1 02f dxdx;
22 o4z . 1
R TR A TR )Y dxox; dt (15

Using Equation (9), we find that the classical (differentiable) part of this expression is

def _ of

— == -Vf £ DAf. 1

dr o T VSEDA 16)

Substituting Equation (16) into Equation (13), we obtain the expression of the complex
time derivative operator [75]:

D d .

The fundamental postulate of Nottale’s theory of scale relativity [75] is that the equa-
tions of quantum mechanics (where the trajectories of the particles are nondifferentiable)
can be obtained from the equations of classical mechanics (where the trajectories of the
particles are differentiable) by replacing the standard velocity u with the complex velocity
U and the standard time derivative d/dt with the complex time derivative D/ Dt. In other
words, D/ Dt plays the role of a “covariant derivative operator”. It is assumed that, when
expressed in terms of this derivative operator, the fundamental equations of physics keep
the same form in the classical and quantum regimes. This is similar to the principle of
covariance in Einstein’s theory of relativity according to which the form of the equations of
physics should be preserved under a change of coordinates.

2.2. Generalized Schrodinger Equation

Nottale [75] showed that the standard Schrodinger equation could be derived from
Newton’s law of motion by using the principle of scale covariance. Below, we extend
this procedure to the case of dissipative systems and derive a generalized Schrodinger
equation [74].

In classical mechanics, the equation of motion of a damped particle submitted to an

external potential ®ey reads

dv
— = —V®ey — (v, (18)
dt
where we assume a linear friction force —¢v. Following Nottale’s method of quantization,
we transpose the equation of motion (18) into

DU

ﬁt - _v¢ext - Re('YU), (19)

where U(r, t) and D/ Dt are the complex velocity and the covariant derivative operator defined
above and 7y is a complex friction coefficient. As explained in [74], it is necessary to take the real
part of the complex friction force in Equation (19) in order to guarantee the local conservation of
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the normalization condition. Using the expression (17) of the covariant derivative, Equation (19)
can be rewritten as a damped complex viscous Burgers equation

ou .

o5 +(U-V)U =iDAU — V¢ — Re(yU) (20)
with an imaginary viscosity v = iD. From the Lagrangian formalism, it can be shown [75]
that the complex velocity field U, or more precisely the impulse P = mU, can be written as

the gradient of a complex action:

VS
u=-". (21)

This defines a potential flow. As a consequence, the flow is irrotational: V x U = 0. Us-
ing the well-known identities of fluid mechanics (U - V)U = V(U?/2) — U x (V x U) and
AU = V(V-U) -V x (V x U), which reduce to (U-V)U = V(U?/2) and
AU = V(V - U) for an irrotational flow, and using the identity V- U = AS/m result-
ing from Equation (21), we find that Equation (20) is equivalent to the complex quantum
Hamilton-Jacobi (or Bernoulli) equation

9 1

ETf + %(VS)2 — iDAS + mPext + V(t) + Re(yS) =0, (22)
where V(t) is a “constant” of integration that may depend on time. By analogy with the
Burgers equation in hydrodynamics, we introduce a complex function 9 (r, t) through the

Cole-Hopf transformation’
S =-2imDIny. (23)

This equation can be rewritten in a form equivalent to the WKB formula in quantum
mechanics '
P =e'S/h (24)

provided that we make the identification

D = —. 2
o (25)
Therefore, the complex function ¢ (r, t) represents the wave function of the particle.
The relation (25) between the diffusion coefficient D and the mass m of the particle is
sometimes called the Nelson [111] relation'’. Substituting Equation (23) into Equation (22),
and using the identity

Ay 1 2
Allny) = —F — = (Vy)7, (26)
(Iny) " (V)
we obtain the nonlinear wave equation [74]
L0y h?
ih 5 = ——At,b—l—mq)extlp—i—Vt,b—i—hIm('ylnlp)lp (27)

When v = 0, we recover the standard Schrodinger equation. Writing v = yr + iy,
where R is the classical friction coefficient and - is the quantum friction coefficient, and
using the identity

m(ytng) = 7rinly] ~ givein( L), 28)

we can rewrite Equation (27) in the equivalent form

2
m%‘f - _imﬂm@extw Vi + by In|y| p — lz“m ln(l;f) 2 (29)
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Introducing the notations
2kgT
=8 M= (30)
the generalized Schrodinger Equation (29) becomes
9 n i
zha—lf = —%Agb + MmPexip + Vp + 2kpTIn || ¢p — 12§1n<1;f;> P. (31)

As shown in [74] (see also Section 3.2), ¢ plays the role of an ordinary friction coefficient,
while T plays the role of an effective temperature. Since the temperature is effective, it can
be positive or negative. Finally, we choose the function V(t) so that the average value of
the friction term proportional to ¢ is equal to zero. This gives

V(t) = iZg<1n<lZ’*> > (32)

where (X) = [ pXdris a spatial average. Then, the generalized Schrodinger Equation (31)
takes the form [74]

oy K N P P
When T = 0, we recover the nonlinear wave equation introduced by Kostin [118], and
when ¢ = 0 and kpT = —b < 0, we recover the nonlinear wave equation introduced by

Bialynicki-Birula and Mycielski [119]. The nonlinear wave Equation (33) is equivalent to the
equation of motion (19). It is interesting to note that the complex nature of the friction coefficient

.2kgT
Yy=¢+i ;13

(34)

leads to a generalized Schrodinger equation simultaneously exhibiting a friction term ¢
and an effective temperature term kgT. They correspond to the real and imaginary parts
of 7. In this sense, they are twins. This may be viewed as a new form of fluctuation—
dissipation theorem. As a result, the generalized Schrodinger Equation (33) connects
the generalized Schrodinger equation introduced by Kostin [118] and the generalized
Schrodinger equation introduced by Bialynicki-Birula and Mycielski [119]. Remarkably;,
the generalized Schrodinger Equation (33) can be obtained from a unique equation of
motion, Equation (19), by using the formalism of scale relativity [75].

Remark 1. If we equate the Einstein relation (1) and the Nelson relation (25), we obtain
¢ = 2kgT/h, which corresponds to the quantum friction coefficient . It is not clear if this
relation is just a result of dimensional analysis or if it bears a deeper significance.

3. Generalized Gross—Pitaevskii Equation for Bose-Einstein Condensates
3.1. Generalized Gross—Pitaevskii Equation

We now introduce additional nonlinearities in the generalized Schrodinger Equation (33)
and consider a generalized GP equation of the form [76]

) 1 in
zhaif = —mep+m[<1>+ d|¢|£ +<I>ext]1,v
+2kBTln|¢|¢—iZ§[ln($> — <1n<$> >]¢ (35)

with
B(r,t) = /u(|r— ), 1) dr. (36)
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This generalized GP equation governs the evolution of BECs at zero thermodynamic
temperature (Tihermo = 0), where all the bosons are in the same quantum state described by
a single wavefunction ¢(r, t). The spatial density of the bosons is p(r, t) = |¢(r, t)|?. The
generalized GP equation conserves the mass M = [ |¢|? dr. Here, Vi (||?) represents the
self-interaction potential of the bosons (taking into account short-range interactions) and
u(|r — r'|) represents a long-range potential of interaction between the bosons (e.g., the
gravitational interaction for cosmic BECs [96,97]). Equation (35) with § = T = 0 is the stan-
dard GP equation extended here to an arbitrary nonlinearity. When coupled to an attractive
long-range potential of interaction (like the gravitational potential), this equation exhibits
a complicated process of gravitational cooling [120,121] and violent relaxation [122,123].
This process is fundamental to understanding the structure of dark matter halos made of
BECs. As discussed in [77], the generalized GP Equation (35) with a friction ¢ > 0 and
an effective temperature T > 0 could provide a heuristic parametrization of the process
of violent relaxation and gravitational cooling on a coarse-grained scale'!. It leads to
equilibrium states with a core—envelope structure, namely, a quantum core surrounded
by an isothermal envelope [77-79]. The quantum core (soliton) corresponds to the ground
state of the GP equation and the (isothermal) envelope accounts for quantum interferences
of excited states. This core—envelope structure has been evidenced in numerical simulations
of the Schrodinger-Poisson equations [93,94,98-105] and is consistent with the structure
of dark matter halos (see the reviews [81-89] on this topic). The quantum core may solve
the core—cusp problem [124] of the cold dark matter (CDM) model and the isothermal
envelope, which is similar to a Navarro-Frenk-White (NFW) profile [125], accounts for the
flat rotation curves of the galaxies. The generalized GP Equation (35) can, therefore, find
applications in the context of BEC dark matter.

If we introduce the total potential V = Viq + Vint, where

kgT
V() = 2|y (n |y - 1) (37)

is the effective thermal potential of an ideal gas (see Section 2) and Viy is the self-interaction
potential of the bosons, we can rewrite the generalized GP Equation (35) as

oy K av Bl [y P\
zhg = —%Alp +m|d+ W +<1>ext} P — ZEC _ln(lp*> — <ln<¢*> > . (38)

The generalized GP equation can also be written as

oy K ) Bl [ ¥\ \]
where the function h(|y|?) is related to the potential V(|y|?) by
av .
WlpP) = o5 de, h(p) =V'(p). (40)
4
It can be decomposed into I = hjq + hjnt with
/ kgT /
hia(p) = Vig(p) = = ~Inp and  hine(p) = Vine(p)- (41)

Remark 2. For a standard BEC [126], the self-interaction potential Vine and the function hin are

47msh2
3

27tash?
i 9P, “2)

Vint(|9]?) = Y, ne((9f?) =
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where as is the scattering length of the bosons (when as > 0, the self-interaction is repulsive, and
when as < 0, the self-interaction is attractive). In that case, the generalized GP Equation (35) takes
the form

P n? 4magh®
zhg = —%Alp+m<b4)+ 2 [P]7 9 + mPext

s2kaTinlylp -3¢ in( £) = (L))o w3)

3.2. Madelung Transformation

We use the Madelung [63] transformation to rewrite the generalized GP Equation (39)
in the form of hydrodynamic equations. We write the wave function as

Y(rt) = y/p(x, 1) ST/ (44)

where p(r, t) is the density and S(r, t) is the real action. They are given in terms of the wave
function by

o=y and S= iZh(&i). (45)
We note that the dissipative term in the GP Equation (39) can be written as ¢(S — (S) ).
Following Madelung, we introduce the velocity field

_vs
v

u (46)

Since the velocity is potential, the flow is irrotational: V x u = 0. Substituting
Equation (44) into Equation (39) and separating the real and imaginary parts, we obtain

dp _
5 V- (pw) =0, (47)
s 1 5
o 3 (VS 4 m[® 4+ h(p) + Pou] + Q+ (S~ (5)) =0, (48)
where 2 A 5 )
__ AP fAp  1(Vp)
Q= 2m \Jp 4m{p 2 p? } 49)

is the quantum potential, which takes into account the Heisenberg uncertainty principle
(the kinetic term in the GP equation)'?. The first equation is similar to the equation of
continuity in hydrodynamics. It accounts for the local conservation of mass M = [ pdr.
The second equation has a form similar to the classical Hamilton—Jacobi equation with an
additional quantum potential and a source of dissipation. It can also be interpreted as a
generalized Bernoulli equation for a potential flow. Taking the gradient of Equation (48)
and using the well-known identity of vector analysis (u- V)u = V(u?/2) —u x (V x u),
which reduces to (u - V)u = V(u?/2) for an irrotational flow, we obtain an equation
similar to the Euler equation with a linear friction and a quantum force

1
%—‘t’+(u-V)u: ~Vh = VP~ Ve — -VQ —Cu. (50)

We can also write Equation (50) in the form

ou 1 1
§+(u-V)u— —EVP—VCID—VCDext—%VQ—Cu, (51)
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where P(r,t) is a pressure. Since h(r,t) = h[p(r,t)], the pressure P(r,t) = P[p(r,t)] is a
function of the density, i.e., the flow is barotropic. The equation of state P(p) is determined
by the function /(p) through the relation

Wip) = 212, 62)
P
Equation (52) can be integrated into
: vip)]'
P(p) = ph(p) — V(p) = pV'(p) = V(p) = ¢ [;p)} , (53)

where V is a primitive of k. It actually corresponds to the total potential V(|i|?) in the GP
Equation (38) (see Equation (40)). We have the relation

hp) = P(p)ZV(p)' (54)

Equation (53) determines the equation of state P(p) for a given potential V(p). Con-
versely, for a given equation of state, the potential is given by

Vip) =p / Pp(f) dp. (55)

We can add a term of the form Ap in the potential without changing the pressure. The
squared speed of sound is given by

c;="P(p) =pV"(p). (56)

In conclusion, the generalized GPP equations are equivalent to the hydrodynamic
equations'’

9 _
o5 + V- (pu) =0, (57)
9 1 1
a—‘;—f—(u-V)u: VP V- Voo~ VO - Cu (58)
D(rt) = /u(|r —Y|)o(r, 1) dr. (59)

The total pressure can be written as P = P,q + Py with

kpT
Pia = pVia(p) = Via(p) = p=— and  Piox = pVir(p) — Vine(p)- (60)

The first term is the equation of state P,y = kgTp/m of a perfect gas. In the noninter-
acting (ideal) case, where Pip¢ = 0, the quantum Euler equation reduces to

J kT 1
a—‘t‘+(u-V)u: ~ ¥ Inp = VO — Ve — --VQ — fu. (61)

We shall refer to Equations (57)—(59) as the quantum damped Euler equations [76].
We note that these hydrodynamic equations do not involve viscous terms since they are
equivalent to the GP equation. As a result, they describe a superfluid. When the quantum
potential can be neglected (Q = 0), we recover the classical damped Euler equations. For
dissipationless systems (¢ = 0), they reduce to the quantum and classical Euler equations.

Remark 3. As shown in Appendix A, the self-interaction potential V coincides with the density
of internal energy u and the function h = V'(p) = (P + V)/p coincides with the enthalpy
h = (P+u)/pofacold gas (Tiermo = 0). The enthalpy is equal to the local chemical potential by



Symmetry 2023, 15, 2195

11 of 65

unit of mass (h = y/m). This is one component of the total chemical potential (see Equation (110)
below). Equations (52) and (53) can be written dP = pdh = ndu (where n = p/m is the
numerical density) and d(u/p) = —Pd(1/p). They correspond to the local Gibbs—Duhem relation
and the local first law of thermodynamics for a barotropic gas at Tygermo = 0. For a given self-
interaction potential V(p), the enthalpy h(p) and the pressure P(p) are completely determined
by Equations (40) and (53). Explzczt results for the standard BEC are given in Appendix A. In
particular, Pyy = (2mash® /m®)p?. Together with the isothermal term, this leads to an equation of state
of the form P = pkpT/m + (2mtash® /m®)0?, which can describe the structure of dark matter halos [79].

3.3. Generalized Quantum Smoluchowski Equation
Using the continuity Equation (57), the quantum Euler Equation (58) can be rewritten as

9
< (0w) + V(pu @ u) = —VP — pVP — pV eyt — %VQ — Zpu. (62)

In the overdamped limit { — 400, we can formally neglect the inertia of the particles
in Equation (62) and write

Fu ~ —;vp — VD — Ve — %VQ. (63)

Substituting this relation into the continuity Equation (57), we obtain the quantum
barotropic Smoluchowski equation [76,128]:

9o _ P
¢ =V (vp +pVD + pV Doyt + %VQ). (64)

When the quantum potential can be neglected, we recover the classical barotropic Smolu-
chowski equation. Finally, if we neglect the advection term V (pu ® u) in Equation (62), but re-
tain the term J(pu)/dt and combine the resulting expression with the continuity
Equation (57), we obtain the quantum barotropic telegraph equation

0%p

p
=5+ g (vp + VD + pV Dyt + EVQ)' (65)

It can be seen as a generalization of the quantum barotropic Smoluchowski Equation (64)
taking inertial (or memory) effects into account [76].

In the noninteracting (ideal) case, where P;; = 0, the quantum Smoluchowski equation
and the telegraph equation reduce to

d kgT
e2 =9 (M2Tvp+ o0+ pven + £v0) (66)
and 52 '
T
P <va+pv<p+pvq>ext+ VQ) (67)

The classical diffusion coefficient is given by the Einstein relation (1).

3.4. Quantum Force

The quantum potential (49) first appeared in the work of Madelung [63] and was
rediscovered later by Bohm [64,65]. For that reason, it is sometimes called “the Bohm
potential”. The quantum force by unit of mass reads

Fo = —%VQ. (68)
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It can be written in the form
1 1
(Fo)i = *EaiQ = *Eajpij, (69)
where P;; is a tensor defined by
2 2
1 h o h 1
Pij = —Wp ala] 11’1p = W (pazpa]p — ala]p (70)
or )
@) h 1

This tensor is manifestly symmetric: P;; = Pj;. It is called the quantum stress (or
pressure) tensor [129]. Equation (69) shows that the quantum force —V Q is equivalent to
the force produced by an anisotropic pressure tensor P;;. In comparison, the force —mVh
due to the self-interaction is equivalent to the force produced by an isotropic pressure P(p).

3.5. Time-Independent GP Equation

A wave function of the form
p(r,t) = p(r)e H, (72)

where ¢(r) = /p(r) and E are real, is a stationary solution of the GP Equation (39).
Substituting Equation (72) into Equations (36) and (39), we obtain the time-independent
GP equation

2
—;—mA4>+m(CI>+h(p) + Oext )9 = Ep (73)

with
®(r) = /u(\r— Y |)g2(x') dr'. (74)

Equations (73) and (74) define a nonlinear eigenvalue problem for the wave function
¢(r), where the eigenvalue E is the energy (eigenenergy). Dividing Equation (73) by ¢(r)
and recalling that p = ¢?, we obtain

m® + mh(p) + mPext + Q = E. (75)

This relation can also be derived from the quantum damped Hamilton—Jacobi Equation (48)
by writing S = —Et.

3.6. Hydrostatic Equilibrium

The time-independent GP Equation (75) can also be obtained from the quantum
damped barotropic Euler Equation (51) since it is equivalent to the generalized
GP Equation (39). The equilibrium state of the quantum damped barotropic Euler
Equation (51), obtained by taking d; = 0 and u = 0, satisfies the condition of quantum
hydrostatic equilibrium

VP + pV® + pV ey + %VQ = 0. (76)

Equation (76) describes the balance between the pressure due to effective thermal
effects (quantum interferences of excited states) and self-interaction (scattering), the long-
range potential, the external potential, and the quantum potential arising from the Heisen-
berg uncertainty principle. This equation is equivalent to Equation (75). Indeed, integrating
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Equation (76) using Equation (52), we obtain Equation (75), where the eigenenergy E
appears as a constant of integration.

4. Generalized Thermodynamics

In this section, we develop a thermodynamical formalism associated with the gen-
eralized GP Equations (35) and (36). We stress from the start that this thermodynamical
formalism is effective since we are basically considering a boson gas at zero thermodynamic
temperature (Tipermo = 0). However, a deep analogy with thermodynamics arises from the
presence of the nonlinear term in the generalized GP Equation (35) giving rise to a pressure
force in the quantum Euler Equation (58). We must keep in mind that this pressure does
not have a true thermal origin. In particular, the temperature T, which occurs in the ideal
equation of state P,y = pkpT/m, should be considered as an effective temperature Teg,
not as the true thermodynamical temperature (see [76,77] for a more detailed discussion
on that point). As we shall see, this thermodynamical formalism is closely related to the
one developed in refs. [17,37,38,130,131] in connection with nonlinear Fokker—Planck
equations [132] and the theory of simple liquids [33].

4.1. Free Energy

The free energy associated with the generalized GP Equations (35) and (36), or equivalently
with the quantum damped barotropic Euler Equations (57)-(59), can be written as

Ftot = ®c+®Q+u+W+Wext- (77)

The first two terms in Equation (77) correspond to the total kinetic energy

o= hz/|v 12 dr (78)
T 2m? ¥ ’

Using the Madelung transformation, the kinetic energy ©® = @, + ®¢ can be decom-
posed into the classical kinetic energy

2
0. — / o dr (79)

and the quantum kinetic energy (or the von Weizsacker [133] functional)

K (V)P 1
®wa/ ; drf%/der. (80)

The third term in Equation (77) is the internal energy

u=[vipyar=[p [

Using Equation (37), it can be decomposed into U = Uiq + Ujn: with

/

/
PFS‘OZ ) do’ dr. (81)

-

kgT
d = %/p(lnp— 1)dr and Ui = /Vint(p) dr. (82)
The first term is the ideal (Boltzmann) internal energy and the second term is the

internal energy associated with the self-interaction'*. The fourth term in Equation (77) is
the potential energy of long-range interactions

W= % / o dr. (83)
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The fifth term in Equation (77) is the external potential energy

Wext = / P Pext dr. (84)

Regrouping all these terms, the total free energy can be explicitly written as

n? 1
Fot= 53 | [V9Pdr+ [V(IpPydet 5 [1pPodr+ [ [pPoedr (85)

or, in terms of hydrodynamic variables, as

Fot = /p‘;2 dr + % /der + / V(o) dr + % /pq>dr + /pfbextdr. (86)
It is convenient to write
Fiot =0+ F, (87)
where Q. is the classical kinetic energy and
F=0g+U+ W+ Wext (88)

is the sum of the quantum kinetic energy, the internal energy, the potential energy of
long-range interactions, and the external potential energy. Explicitly,

1 1
F = %/der—i—/V(p)dr+§/pd>dr+/pd>extdr. (89)

This is the free energy associated with the quantum barotropic Smoluchowski
Equation (64) since the classical kinetic energy @, which is of order O(¢~2), can be ne-
glected in the overdamped limit ¢ — +oo0.

For future reference, we also perform the decomposition

Fot =0+ F or F=0qg+F, (90)
where © is the total kinetic energy (classical + quantum) and
F=U+W+ Wext 1)

is the sum of the internal energy, the potential energy of long-range interactions, and the
external potential energy.

4.2. H-Theorem
It is shown in [76] that the time derivative of the free energy (77) satisfies the identity

Frot = —C / puldr = —270.. (92)

For dissipationless BECs (¢ = 0), the free energy is conserved: Fiot = 0. In that case, it
can be shown from general arguments [134] that a minimum of free energy at fixed mass
determines a steady state of the GP equations, or a steady state of the quantum barotropic
Euler equations, which is formally nonlinearly dynamically stable.

For dissipative BECs (¢ > 0), Equation (92) forms an H-theorem for the generalized
GP equations or for the quantum damped barotropic Euler equations: Fiot < 0. In that
case, it can be shown from Lyapunov’s direct method that the system relaxes towards a
minimum of free energy at fixed mass (provided that the free energy is bounded from
below). This equilibrium state is nonlinearly dynamically stable.
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In the strong friction limit, the H-theorem for the quantum Smoluchowski equa-
tion reads [76]

I 1(v1>+(av<1> + oV Pext + EVQ)zdr <o. (93)
¢/ op m -

4.3. Equilibrium State

According to the previous discussion, the equilibrium state of the (generalized) GP
equations, or quantum (damped) barotropic Euler equations, is the solution of the mini-
mization problem

Fot(M) = r{?liun{Ftot [oou] | M fixed}. (94)
An extremum of free energy at fixed mass is determined by the variational principle
6Fot — LoM =0, (95)

m

where p is a Lagrange multiplier taking into account the mass constraint. It can be inter-
preted as a global chemical potential. Using the results of Appendix B, this variational
principle gives u = 0 (the equilibrium state is static) and the relation

m® + mPey + mh(p) + Q = . (96)

This relation can be interpreted as a quantum Gibbs condition expressing the fact that
the gravitational potential ® plus the external potential ®ey plus the enthalpy h = V’(p)
plus the quantum potential Q/m is a constant equal to the global chemical potential by unit
of mass y/m. In this sense, the enthalpy & can be interpreted as a local chemical potential
h = uoc(p)/m. Taking the gradient of Equation (96) and using Equation (52), we recover
the condition of quantum hydrostatic equilibrium (76). Equation (96) is also equivalent to
the time-independent GP Equation (75) provided that we make the identification

u=E. (97)

This shows that the Lagrange multiplier u (the global chemical potential) in the
variational principle (95) associated with the minimization problem (94) can be identified
with the eigenenergy E. Conversely, the eigenenergy E may be interpreted as a chemical
potential. To determine the stability of the equilibrium state (if it is a minimum of the free
energy at fixed mass), we can study the sign of 6°F or linearize the equations of motion
about the equilibrium state and investigate the sign of the squared pulsation w?. These
methods require one to solve a rather complicated eigenvalue equation. Alternatively,
the stability of an equilibrium state can be settled more directly by plotting the series
of equilibria and using the Poincaré criterion (see ref. [76] for more details about these
different methods).

4.4. Functional Derivatives in Terms of the Hydrodynamic Variables

In this section, we show that the hydrodynamic equations associated with the gener-
alized GP equation can be expressed in terms of functional derivatives of the free energy.
Taking the functional derivative of the free energy (89) with respect to p, and using the
relations in Appendix B, we obtain

6F Q
% —q>+h(p)+q)ext+a (98)
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Taking the gradient of this relation and using Equation (52), we obtain
OF 1 1
V- () =VO®+ —VP+ Vet + —VQ. (99)
ép 0 m
According to Equation (95), the equilibrium state is determined by the Gibbs condition

SF

T _H
o " m (100)

where y is a constant. Using Equation (98), we recover Equation (96). Taking the gradient
of Equation (100), we obtain
OF
V- <> = 0. (101)

op
Using Equation (99), we recover the condition of quantum hydrostatic equilibrium (76).
On the other hand, the hydrodynamic Equations (57) and (58) can be written as

%4V (pu) =0, (102)
Jdu OF
g-i—(u-V)uf —V((SP) —Zu. (103)
In the strong friction limit { — +o00, we can make the approximation
OF
fu~ -V <5P) (104)
Substituting Equation (104) into Equation (102), we obtain
oo OF
S5 =V~ (pvép), (105)

which corresponds to the quantum barotropic Smoluchowski Equation (64). The H-
theorems for Equations (102) and (103) and for Equation (105) are derived in Appendix C.
These equations relax towards a stable equilibrium state, which minimizes the free energy
at fixed mass. It is determined by Equation (100).

Remark 4. Since the flow is irrotational, we have (u - V)u = V(u?/2). Using 6@./dp = u?/2,
Equation (103) can also be written as

Ju _ (5Ft0t .
= = v( = ) fu. (106)

The out-of-equilibrium energy is defined by

F
E(rt) = m’ 5;)0t (107)
and the out-of-equilibrium chemical potential is defined by
u(rt) = m(;l; (108)

We can then write the foregoing equations in terms of E(r,t) and u(r, t) instead of Fiot/ 6p
and OF /6p. Using the relations in Appendix B, we have

E(rt) = %mu2 + m® + mh(p) + mPext + Q (109)
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and
u(r,t) = m® + mh(p) + mPext + Q, (110)
so that ;
E(r,t) = Emu2 + u(r,t). (111)
Comparing Equation (109) with Equation (48), we obtain
E(rt) = 52 —E(5— (5)) (12)
For dissipationless systems, this equation reduces to E(r,t) = —dS/ot. At equilibrium,

u(r,t) = pand E(x,t) = E are constant and E = p.

4.5. Functional Derivatives in Terms of the Wave Function

The generalized GP Equation (35) can also be written in terms of the functional
derivative of a free energy. For example, it can be written as

0P Shot T 4 ¥
N S

where Fiot is defined by Equation (85). From Equations (85) and (113), we easily obtain the
identity (see Appendix C)
Vin ( i* >
2

which coincides with the H-theorem from Equation (92). We can also write the generalized
GP Equation (35) as

oy K oF T ¥ ¥
5 = a0 gt it o) (o)l o

where F is defined by Equation (91).

2

. K2
ot = —g/mmz dr, (114)

5. Statistical Equilibrium State of a System of Classical Brownian Particles
5.1. Gibbs Canonical Equilibrium

We consider a system of N classical Brownian particles with identical mass m interact-
ing via a potential U(ry, ..., ry). We assume that the potential is of the form

U(ry,...,en) = m? Y urr(lr — 1)) +m? Y usr(|ti — xj]) +m Y Pext(17), (116)
i<j i<j i

where u1R is a long-range binary potential, ugg is a short-range binary potential, and ®Pext
is an external potential. The Hamiltonian is

—

N
H=Y -mv?+U(ry,...,1n), (117)
i=1

N

where the first term is the kinetic energy K and the second the potential energy U. These
Brownian particles are in contact with a heat bath fixing the temperature T. Accordingly,
they are described by the canonical ensemble. The statistical equilibrium state is given by
the Gibbs canonical distribution

2
1 eiﬁ [2& m 44U (xy,1N)

Zer(B) , (118)

Pn(ry, vy, ..., 1N, VN) =
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where B = 1/ (kgT) is the inverse temperature. The N-body distribution Py/(r1, vy, ..., N, VN)
gives the probability density that the first particle is at position r; with velocity v;, the
second particle at position r, with velocity v, etc. The normalization condition given by
[ Pydrydvy ...drydvy = 1 determines the partition function Zot(8) = [ e PHTT; dridv;. We
introduce the free energy functional

Fiot[Pn] = Etot[Pn] — TStot[Pn], (119)
where
Ewt = (H) = / PyHdrydvy ... drydvy (120)
is the average energy and
Stot = ks [ PyInPydridvy ... drydvy (121)

is the entropy. The canonical N-body distribution (118) minimizes the free energy Fiot[Pn]
under the normalization constraint. Furthermore, the value of the free energy at equilib-
rium, obtained by substituting the Gibbs distribution (118) into Equations (120) and (121),
is Fiot(B) = —(1/B) In Ziot(B). The average energy at equilibrium can be obtained from
the relation Eot(8) = —dIn Ziot/dB. The fluctuations of energy are given by ((AE)?) =
C/(k3ﬁ2), where C = dEiot/dT = —kBledEtot/d,B is the specific heat. This relation was
first established by Gibbs and Einstein. It shows that the specific heat is always positive in
the canonical ensemble [135].

From Equation (118), we see that the velocity dependence of the N-body distribution
is Gaussian. Therefore, the average kinetic energy is (K) = dNkgT/2 (where d is the
dimension of space) like for a noninteracting gas. In the following, we shall mainly focus
on the configurational part of the distribution function

1
Pyn(r1,...,tN) = e PU(rrN)

Z(p) '
which contains the nontrivial information on the system. The normalization condition given by
[ Pydry ...dry = 1 determines the configurational partition function Z(8) = [ e PUT]; dr;.
Due to the Gaussian nature of the velocity distribution, we have

(122)

PN(I'1, Vi,.. .,I'N,VN) = (271_) 6_'521':11”713]\[(1'1, .. .,I'N). (123)

Comparing Equations (118), (122) and (123), we find that Z(8) = (27t/ Bm)*N/2Z(B).
We introduce the configurational free energy

F[Pn] = E[Py] — TS[PN], (124)
where
E=(U)= /PNUdrl...drN (125)
is the average potential energy and
S— —kg / PylnPydry ... dry (126)
is the configurational entropy. These expressions can be obtained by substituting Equation (123)

into Equations (120) and (121). This yields additional constant terms (d/2)NkgT and (d/2)
NkpIn(27tkg T /m) + (d/2)Nkp in Equations (125) and (126), which we have not written [38].



Symmetry 2023, 15, 2195

19 of 65

The canonical N-body distribution (122) minimizes F[Py] under the normalization con-
straint. Furthermore, the value of the free energy at equilibrium, obtained by substi-
tuting Equation (122) into Equations (125) and (126), is F(8) = —(1/B)InZ(B). The
average energy and the fluctuations of energy are given by E(f) = —dInZ/dp and
((AE)?) = C/(kpp?), where C = dE/dT = —kpB?dE /dp is the specific heat.

5.2. Yvon—Born—Green (YBG) Hierarchy

From the Gibbs distribution (122), we can obtain a hierarchy of equations for the reduced
probability distributions (see Equation (13) in [37]). This is the so-called Yvon-Born-Green
(YBG) hierarchy [136-138]. The first equation of this hierarchy can be written as

kBWTVp(r) =— /pz(r, Y )Vu(r —t']) dr’ — p(r) V®ext (1), (127)

where p(r) = NmPy(r) is the spatial density (one-body probability density) and px(r, ') =
N(N — 1)m?Py(x,1’) is the two-body density (two-body probability density). This equation
determines the equilibrium density profile p(r) when the two-body density is known. Since
the velocity distribution is Gaussian, the equilibrium distribution function in phase space
f(r,v) = NmPy(r,v) is given by

d/2 .
flev) = (ﬁ’”) p(e)ePmE. (128)

27T

Equation (127) can be written as a condition of hydrostatic equilibrium
VPa(r) + [ pale, ) Vu(le —v')) Y + p(r) Vuni(r) = 0, (129)

where P, is the ideal pressure given by the isothermal equation of state

ke
T

Pig(r) = p(r) (130)

This is the equation of state of a noninteracting perfect gas. The ideal pressure corre-
sponds to the kinetic pressure defined by

Pale) = Punlx) = 5 [ fePdv. (131)

We note that the YBG hierarchy is not closed since the equation for p(r) involves the
equation for pp(r,t’) and so on. In the following sections, we explain how one can close the
YBG hierarchy by making a mean field approximation for long-range interactions or by
using the DFT for short-range interactions.

5.3. Long-Range Interactions: Mean Field Approximation

For long-range interactions, it has been established rigorously [139] that, in a proper
thermodynamic limit N — +oco with m ~ 1/N, the mean field approximation is exact: the
N-body distribution function is a product of N one-body distribution functions. In particular,

p2(r,1') = p(r)p(r). (132)

Therefore, in the mean field approximation, we have

[ p2(e ) Vurk(r =) e’ = p(©)V [ p(tyurg(|r —¢') dr'. (133)
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This equation can be written as
[ P2l ) Vui(fe = ) d = p(r)Ve(r), (134)
where
(r) = [ p(t)uw(fr — ') ar (135)

is the mean field potential produced by the smooth distribution of particles.
For a binary potential of interaction, the average potential energy (125) can be written as

W:%/m@wwh—ﬂMMﬂ (136)

For long-range interactions, we can make the mean field approximation from
Equation (132) and we obtain

W= %/pz(r, urr(|r — v'|) drdr’ = %/p(r)p(r/)uLRﬂr —1/|) drdr’. (137)

Introducing the mean field potential from Equation (135), we can rewrite the potential
energy as

Wio] = % / pdr. (138)

On the other hand, the configurational entropy from Equation (126) becomes
S— —kg / L0 Lar, (139)
m- - m

5.4. Short-Range Interactions: Density Functional Theory

We now consider a system of Brownian particles with long-range and short-range
interactions. A central result in the theory of fluids [33,34] is that, even if there exist
nontrivial correlations between the particles, the equilibrium density profile p(r) minimizes
a free energy functional F|p] at fixed mass. This free energy can be written as

Flp] = / pPeyedr + % / p®dr + kyT / L in L ar 4 Flp]. (140)

The first term is the potential energy associated with the external potential. The
second term is the mean field potential energy associated with the long-range potential of
interaction (see Section 5.3). The third term is the Boltzmann free energy of the ideal gas,
i.e., in the absence of correlations. Finally, the fourth term is the excess free energy Fex|p].
This is a nontrivial functional of the density determined by the short-range interactions.
All the difficulty in the theory of fluids is to find some approximate forms of this functional.
Once this functional is known, the spatial density, and all the n-point correlation functions,
can be obtained via functional differentiation. Inversely, the excess free energy is often
obtained from the study of the correlation functions. The excess free energy Fex is only known
exactly for some simple systems, such as hard rods in one dimension [140], but very good
approximations can be devised in more general cases (see [33] for some standard methods).

The fact that the spatial density minimizes a free energy functional at fixed mass
implies that its first constrained variations vanish. Writing

sF— Esm—=o, (141)
m
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where 1 (global chemical potential) is a Lagrange multiplier taking into account the conser-
vation of mass, we obtain the Gibbs condition

0F u
5 m (142)

where y is a constant'®. With the decomposition from Equation (140) and the identities in
Appendix B, the Gibbs condition (142) can be written as

kpT OF
1+ In(p/m)] + @+ Dexe + T;X = % (143)

The equilibrium density profile is then determined by the equation

SFex
p=Ae " (O+@et 25 (144)

We stress that the r.h.s. of this equation depends on p(r) itself through ® and Fey, so
that Equation (144) is a complicated integrodifferential equation.
Taking the gradient of Equation (142), we obtain the condition of hydrostatic equilibrium

OF
\% ( fSP) =0. (145)
With the decomposition from Equation (140), it reads
kB?TVp + oV 55;* 4+ oV® 4 pV eyt = 0. (146)

On the other hand, the first equation of the YBG hierarchy (see Equation (127)) includ-
ing long-range and short-range interactions reads

WVP = — /pg(r, v )Vusg(|r — v'|) dt' — pV® — pVDeyt, (147)

where we used Equation (134) to evaluate the long-range interaction term. Comparing
Equations (146) and (147), we find that

OFuy
op

[ P2l x) Vusg(jx ) e’ = p(x) V% (1)) (148)

This relation is exact at statistical equilibrium and is a central result in the theory of
fluids [33,34]. It relates the two-body density to the excess free energy functional. Then,
Equation (147) can be viewed as an integrodifferential equation (equivalent to Equation (144))
determining the equilibrium density profile once the excess free energy is known.

5.5. Excess Free Energy Functional for a Barotropic Gas

For an excess free energy of the form (see Appendix D)

Foo= [ futo)tr= [ [" Pe;,(f,) dp' dr, (149)

where Pey is the excess pressure, the total free energy (140) becomes

1
Flp] = / oot + / p®dr + kyT / B in Lt / fox(p) dr. (150)
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Introducing the total density of free energy f = fiq + fex, where
k B T 1Y
. = 2" poln— 151
fialp) = = —pln (151)

is the ideal density of free energy and fex is the excess density of free energy, we can rewrite
Equation (150) as

g 1 g
Flp] = /p@exterr 5 /pCDdr+/f(p) dr. (152)
The Gibbs condition (142) takes the form
kgT / _ K
ELH  In(p/m)] + @+ P + flx(p) = (153)

where hex(p) = fli(p) can be interpreted as an excess enthalpy (see Appendix D). The
equilibrium density profile is determined by the equation

o= AePm[®+Pexttfex (p)]. (154)

where the r.h.s. depends on p through ® and fex. Using the identity (see Equation (A67))

OFex

pV 5

= VPex, (155)
the condition of hydrostatic equilibrium (145) takes the form

kgT

7Vp + VPex + pVD + pV Dyt = 0, (156)

where the excess pressure Pex (p) is determined from fex(p) by (see Equation (A60))

d(fex/p) 2<feX>/ 1
Pex = T AN - = PJex — Jex . (157)
0)= =70 ~F 7 ) =rlelo) = fexlp)
If we introduce the total pressure
P =Pq+Pex = p—kﬁf + Pex, (158)

the condition of hydrostatic equilibrium can be written as
VP +pVP + pVPey = 0. (159)

Remark 5. For a system with long-range and short-range interactions, the first equation of the
YBG hierarchy (see Equation (127)) reads

’%Tv,) + [ ool x') Vs (e = ¢1) e + [ pa(e,¢ ) Furg (e = ¥ dr' + pVPexs = 0. (160)
Comparing Equations (156) and (160), we see that the long-range interactions create a mean
field force —pN ®, while the short-range interactions create an excess pressure Pex (r) in addition
to the ideal pressure Pig(r) = p(x)kgT/m. Long-range and short-range interactions, therefore,
have a very different effect on the system. According to Equations (156) and (160), or according to
Equations (148) and (155), we have

VP = [ pale,t) Vusg (e — ) d' (161)
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This equation relates the two-body density to the excess pressure. Introducing the total pressure
P = P4 + Pex, we obtain

kgT
VP = %Ver /pz(r,r/)VMSRﬂr— r'[)dr’. (162)

Taking the scalar product of this relation with r, integrating over the entire domain and
integrating by parts (assuming that boundary terms can be neglected), we find that

/Pdr = NkgT — % /pz(r,r’)r - Vusg(|r —1'|) drdr’. (163)

For a spatially uniform fluid, we recover the virial equation [33]:

P _

n

Sag [T / d 4
L=254Pm ), 8(8)usr(£)5” dg, (164)
where n = p/m = N/V is the number density and g(&) is the radial correlation function defined
by pa(r,x') = n?g(|r —x'|).
5.6. Free Energy in Phase Space

The free energy in phase space can be written as follows'© :

2 1
Fiot = / £ drav + / pPexedr + / p®dr +kyT / % In % drdv + Felp].  (165)

The first term is the kinetic energy. The second term is the potential energy associated
with the external potential. The third term is the mean field potential energy associated
with the long-range potential of interaction (see Section 5.3). The fourth term is the free
energy of the ideal gas, i.e., in the absence of correlations. Finally, the fifth term is the excess
free energy Fex[p]. The free energy can be written as Fyot = E — TS, where

2 1
E— / fo drdv+ 5 / 0® dr + / PDext dr + Fox ] (166)
is the energy including the effect of correlations and
S = —kg / S in L drav (167)
m m
is the Boltzmann entropy.

The equilibrium distribution function minimizes the free energy (165) at fixed mass.
Writing the variational principle for the first variations as

6Feot — ”}:t M =0, (168)
where ptot (the global chemical potential) is a Lagrange multiplier taking into account the
conservation of mass, we obtain the Gibbs condition

O0Fot Mot

5 m (169)

where ot is a constant. With the decomposition from Equation (165), the Gibbs condi-
tion (169) can be written as

2
v kgT
T LDt Doy + B
2 m

(n(f/m)+1] + 5(st = % (170)
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The equilibrium distribution function is then determined by the equation

o2 SFex
f = Ao Pr(Frordect ) (171)

The velocity distribution is Maxwellian in agreement with the general result from
Section 5.1. Integrating over the velocities, we recover the spatial density from
Equation (144).

Taking the spatial and velocity gradients of Equation (169), we obtain

d (SFtot o (SFtot _
av<(5f>_0 and V<5f>—0. (172)

With the decomposition from Equation (165), these equations take the form

kT Of
and
kT f Fex
fVCD +fv(bext "‘ 7& +fV 5p =0. (174)

The first equation implies that the velocity distribution is Maxwellian. The second
equation implies, after integration over v, the condition of hydrostatic equilibrium (146)
and the spatial density (144). The combination of these results returns the expression of the equi-
librium distribution function from Equation (171), which is in agreement with Equation (128).

For an excess free energy of the form of Equation (149), the total free energy (165)
becomes

? 1
Fot = /f% drdv—|—E/p@dr—i—/pcbextdr—i—kBT/%m%drdv—i—/fex(p) dr. (175)

The Gibbs condition from Equation (169) takes the form

2 kgT
5 O Pt o [in(f/m) +1] + fi(p) = B, (176)
leading to the equilibrium distribution function
112 4
f — A/e_/gm [7+®+¢)9Xt+fex (P)] ) (177)

Repeating the above calculations, we recover the spatial density from Equation (154)
and the condition of hydrostatic equilibrium from Equation (159).

6. Kinetic Theory of Brownian Particles in Interaction
6.1. N-Body Langevin Equations

We consider N Brownian particles in interaction described by the coupled stochastic
Langevin equations [37,141]:

dr;

v, (178)
dVZ' 1
ﬁ = *CVI'* %Viu(r1,...,r]\])+ VZDRZ(t), (179)

where —{v; is a friction force, D is the diffusion coefficient in velocity space, and R;(t) is
a Gaussian white noise such that (R;(¢)) = 0 and (R’;‘(t)R}S(t’» = 0;j0apd(t — t'). Here,
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i =1,...,N label the particles and « = 1,...,d the coordinates of space. The diffusion
coefficient in velocity space D is related to the friction coefficient ¢, the particle mass m,

and the temperature T by the Einstein relation'”
kgT
D= 573 (180)

This system is described by the canonical ensemble where the temperature T measures
the strength of the stochastic force (since D ~ T). The stochastic processes (178) and (179)
extend the standard Brownian model [142] to the case of particles in interaction. In this
context, the friction force is due to the presence of an inert fluid in which the particles move
and the stochastic force is due to Brownian motion, turbulence, or any other stochastic
effect. The friction and the noise can also mimic the overall influence of an external medium
with which the particles interact. This is the notion of “thermal bath”.

6.2. N-Body Kramers Equation

The evolution of the N-body distribution function Py (r1, vy, ..., N, VN, t) is governed
by the N-body Fokker—Planck equation

ory X 9PN aPN _ kT OPy
at+i;<"l'ar,«+ Czav, "oV,

) (181)

where F; = — % ViU(ry, ..., ry) is the force by unit of mass acting on the i-th particle. This
particular Fokker-Planck equation is called the N-body Kramers equation. For { = D = 0,
it reduces to the Liouville equation, which governs the evolution of an isolated Hamiltonian
system in the microcanonical ensemble [141]. The N-body Kramers equation monotonically
dissipates the free energy (119). Indeed, a direct calculation yields the canonical H-theorem:

2
Fiot = 2 / (kBTaP N ) dridvy ... drndvy < 0. (182)

For a steady state, Fot = 0, the term in parenthesis in Equation (182), which is the
diffusion current in the Kramers Equation (181), vanishes. Since d/dt = 0, the advection
term (Lh.s.) in Equation (181) must also vanish independently. From these two require-
ments, we find that the stationary solution of the N-body Fokker-Planck equation is the
Gibbs canonical distribution (118). Therefore, the Brownian gas described by the stochastic
Equations (178) and (179) automatically relaxes towards the Gibbs distribution (provided
that the free energy is bounded from below).

6.3. BBGKY-like Hierarchy and Kramers Equation

From the N-body Kramers Equation (181), we can obtain a hierarchy of equations for
the reduced distribution functions (see Equation (79) in [37]). This is the equivalent of the
BBGKY hierarchy for Hamiltonian systems'®. The first equation of this hierarchy can be
written as

a]t(+ ai;—— /f2 r,v, Y, Vv, ) Vu(|r —t'|) dr/dv' — VDeys - g{
o [(kgTof
“ v (m 8V+f> (183)

where f(r,v,t) = NmP(r,v,t) is the distribution function and f>(r,v,v,v') = N(N —
1)m?Py(x,v, v/, V') is the two-body distribution function. This is the exact Kramers equation.
We note that the BBGKY-like hierarchy is not closed since the equation for f(r, v, t) involves
the equation for f,(r, v, r/,v’), and so on. In Section 7, we explain how one can close the
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BBGKY hierarchy by making a mean field approximation for long-range interactions and
by using the DDFT for short-range interactions.

Remark 6. If we make the approximation

for,v, v/ Vv, t) = f(r,v,t)f(¥,V, t)m, (184)

which assumes that there are no correlations in velocity space (see note 16), the Kramers
Equation (183) becomes

g—i-v-?;—p(:’t) {/Pz(rll‘/rt)v“(1‘—1‘/|)dr’] o — Vet - gj‘j

Sy (kBTaf f) (185)

T Cov m ov

We will use this approximate equation in Sections 7.2 and 8.6. However, the results obtained
in the other sections rely only on the exact Kramers Equation (183).

6.4. Damped Jeans Equations

We now develop a hydrodynamic theory of Brownian particles with long- and short-
range interactions. Taking the zeroth and first hydrodynamic moments of the exact Kramers
Equation (183) and proceeding as in [37], we obtain the exact equations

g‘t’ LV (pu) =0, (186)

0 oP;
o [ E;tl (u-V)u ] 8; — /pz(r, v, ) Vu(jr —1'|) dr' — pV®ext — Epu, (187)
]

where p(r,t) = [ fdvisthe density, u(r,t) = (1/p) [ fvdvis thelocal velocity, w = v — u(r, t)
is the relatlve velocity, and P;j = [ fw;w;dv is the kinetic pressure tensor. We also recall
that the kinetic pressure is defined by Pun(r,t) = 1 [ fw?dv. For ¢ = 0, and in the
absence of short-range interactions, Equations (186) and (187) reduce to the so-called
Jeans equations [144,145]%. Equations (186) and (187) will be called the damped Jeans
equations [37]. Using the equation of continuity (186), we obtain the identity

Ju d 0
|5+ (e V)] = 5w+ 52 ). (189
ot ot x; "
Therefore, the damped Jeans Equation (187) can also be written as
d
ﬁ(puﬂ—V(pu@u) - — /pz r, v, H)Vu(|r —1'|) dr’ — pV®ext — Cou.  (189)

By taking the higher-order moments of the exact Kramers Equation (183), we can
construct a hierarchy of hydrodynamic equations. This Jeans-like hierarchy is not closed
since the equation for the moment of order k involves the moment of order k + 1, and so on.
Below, we explain how one can close the hierarchy of Jeans-like equations by considering
the strong friction limit or by making an LTE approximation.
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6.5. Strong Friction Limit: Smoluchowski Equation

The exact Smoluchowski equation can be derived from the exact Kramers Equation (183)
in the strong friction limit ¢ — +o0. Considering the rh.s. of Equation (183), we note that, for
¢ — oo, the term in parenthesis must vanish so that the velocity distribution is Maxwellian:

d/2 ,
f(r,v,t) = <§:Z) p(r, e Pz L O(E ). (190)

This implies that u = O(1/¢), P;; = (pkgT/m)é;; + O(1/¢) and Py, = pkpT/m +
O(1/¢). Therefore, to leadmg order in 1/¢, the damped Jeans Equation (187) reduces to

pu ~ — C<kBTVp+/p2(r v, ) Vu(r —r'|)dr’ +pV(Dext) (191)

Inserting Equation (191) into the continuity Equation (186), we obtain the exact Smolu-
chowski equation

(X -v.

kpT
ot

Vp+/p2 r, v, t)Vu(|r —1'|)dr +pV<I>ext] (192)

We note that the diffusion coefficient in position space is given by the usual Einstein
relation from Equation (1). This approach shows that, for { — 4-00, the velocity distribution
is Maxwellian and the evolution of the spatial density p(r, t) is governed by the exact
Smoluchowski Equation (192). The steady state of this equation returns the first YBG
Equation (127).

Remark 7. We can take the strong friction limit directly in the N-body Langevin Equations (178)
and (179) as detailed in Section 3 of [37]. The N-body Smoluchowski equation and the exact
one-body Smoluchowski equation can then be obtained from this formalism.

6.6. Local Thermodynamic Equilibrium Approximation: Damped Euler Equation

The damped Jeans Equation (187) is not closed since the pressure tensor depends on
the next order moment of the velocity. Following [37,143], we propose to close the hierarchy
by making an LTE approximation:

/2
fire(n v, t) = @:) p(r, t)e~ 2Prlv—ulrt)?, (193)

The distribution function (193) minimizes the free energy (165) for a given value of the
density p(r, t) and local velocity u(r, t). With the LTE approximation, the pressure tensor
takes the form

kgT
Pj = p(r, t)%‘szj- (194)

The kinetic pressure is given by Py, (r, ) = p(r, t)kgT /m. Substituting this result into
Equation (187), we obtain the damped Euler equation

p[?—)ltl (u-V) } kB?TVP*/‘Pz(ffl"/t)W(lr*r’l)dr’fpvcbextfgpu. (195)

For ¢ — +00, we can formally neglect the advection term (Lh.s.) in Equation (195) and
we obtain

ou ~ §<kBTV +/p2 r,, ) Vu(|r—1'|)dr +pV<Dext) (196)
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Inserting Equation (196) into the continuity Equation (186), we recover the exact
Smoluchowski Equation (192). However, we stress that this procedure cannot be considered
as a derivation (even formal) of the exact Smoluchowski equation, unlike the derivation
in Section 6.5, because the damped Euler Equation (195) is heuristic. Indeed, there is no
rigorous justification of the LTE approximation (193) [32]*°. Accordingly, it does not appear
possible to rigorously derive the damped Euler Equation (195) from the exact Kramers
Equation (183).

Remark 8. We closed the hierarchy of hydrodynamic equations at the level of the momentum
equation (187) by using the LTE approximation (193) involving the (constant) temperature of the
bath T. We can more generally derive a system of hydrodynamic equations for the density p(r, t),
the local velocity u(x, t), and the kinetic temperature Ty, (x,t) of the Brownian particles by closing
the hierarchy of hydrodynamic equations at the level of the energy equation, as detailed in Appendix
D of [37].

6.7. Cattaneo Equation
Using the identity (188), the damped Euler Equation (195) can be rewritten as

%(pu) +V(puou) = —]CB?TVP — /pz(r, v, ) Vu(|t —t'|) dr’ — pV®ex — Zpu. (197)

This equation is hyperbolic. If we neglect the inertial term (Lh.s.) in Equation (197) and
substitute the resulting expression for pu in the continuity Equation (186), we obtain the
exact Smoluchowski Equation (192), which is parabolic (this is valid in the strong friction
limit { — +o0). The Smoluchowski equation neglects memory effects and leads to infinite
speed propagation. Following [37,143], we can obtain a simplified hyperbolic model taking
into account memory effects and having a finite speed propagation. Indeed, if we only
neglect the nonlinear term V (pu ® u) in Equation (197), we obtain

d kgT :
S (0w) = =22Vp — [ 035, )Vu(lr — ¥]) d' — pVbexs — Epu (198)
This approximation is exact in the linear regime close to equilibrium where |u| —
0 [143]. Taking the time derivative of Equation (186) and substituting Equation (198) into
the resulting expression, we find that
azp d9p kgT / / /
= + 55 —V. (mVp + /pz(r,r D Vu(lr—1']) dr +pV<Dext). (199)
This equation, which is second order in time, is analogous to the Cattaneo equa-
tion [147], or to the telegraph equation, which generalizes the diffusion equation by intro-
ducing memory effects and a finite speed propagation.

7. Dynamic Density Functional Theory

The hydrodynamic equations discussed previously are not closed because they involve
the two-body density p,(r, ¥/, t), which is not explicitly known?!. In the following, we
explain how one can close these equations by using the DDFT.

7.1. Long- and Short-Range Interactions

For systems with long-range interactions, the mean field approximation py(r, r’, t) =
p(r, t)p(r', ) is exact in a proper thermodynamic limit N — —+oco with m ~ 1/N. Therefore,
all the results in Section 5.3 remain valid out-of-equilibrium. In particular, we have

/pz(r, v, )Vurr(Jr — ¥'|) dr’ = p(r, ) VO(r,t), (200)
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where ®(r, t) is the mean field potential produced by the smooth distribution of particles
p(r, t) (see Equation (135)).

For systems with short-range interactions, we can use the DDFT of fluids. In this
approach, the hierarchy of kinetic equations is closed by making the approximation [35]:

5Fex
op

[ pae ) Vus (e =¥ dr’ = p(r,) V= p(x, ), o1)

where Fex[p] is the excess free energy calculated at equilibrium. This relation is exact at equi-
librium (see Section 5.4) and the approximation consists in extending it out-of-equilibrium
with the actual density p(r, t) calculated at each time ¢. This closure is equivalent to as-
suming that the two-body dynamic correlations are the same as those in an equilibrium
fluid with the same one-body density profile. Although it is not possible to ascertain the
validity of this approximation in the general case, it has been observed for the systems
considered that this approximation gives remarkable agreement with direct Brownian
N-body simulations.

In the following, we consider the general case where the potential of interaction is the
sum of a long-range interaction and a short-range interaction: # = urg + usg. We treat the
long-range interaction in the mean field approximation (200) and the short-range interaction
with the approximation (201) of the DDFT. We note that Equation (200) can also be obtained
from Equation (201) with the mean field energy functional W from Equation (138). In that case,
Equation (201) with Fox = W is exact for N > 1.

7.2. Kramers Equation
The Kramers Equation (185) can be closed by using the DDFT, yielding

of | of _0Fe Of of .0 kBTaf

If the excess free energy is of the form of Equation (149), using the relation (155), we obtain

af 9of VP df of .90 kBTaf
ot TV o T T o V(@ F e o =G0 (S ey HIY (203)
We can write the Kramers Equation (202) in the form
of _ .0 [, 0 [OFot

where
S5F 6G
[F,G] = /f{(sf 5f} (205)

is the noncanonical Poisson bracket [148] and {f, g} = Vif - Vvg — Vyf - Vg is the usual
Poisson bracket. In Equation (204), E denotes the energy functional (166) and Fi,t denotes
the free energy functional (165). We have the H-theorem (see Appendix C.3)

: SFot\]?
Fo=- [ ¢ f{ ( )] drdv < 0. (206)
It can be explicitly written as
2
Fiot = — / ch (kle of +fV) drdv < 0. (207)



Symmetry 2023, 15, 2195

30 of 65

The Kramers Equation (202) relaxes towards a stable equilibrium state, which mini-
mizes the free energy at fixed mass (assuming that the free energy is bounded from below).
This equilibrium state is determined by Equation (171).

Remark 9. For purely long-range interactions (usg = 0), the mean field approximation
fa(x,v, ¥/, v/, t) = f(xr,v,t)f(x', v/, t) is exact in the limit N — oo with m ~ 1/N. This
corresponds to the regime where the “collisions” between the particles can be neglected. In that case,
Equation (183) reduces to the mean field Kramers equation
of of of .0 [(kgTof
g—FV'g—V(CD-FCDeXt)'E— g Wg‘i‘fv . (208)
This equation can also be obtained from Equation (202) in the ideal case where Fex = 0. For
¢ = D = 0, we recover the Vlasov equation, which describes Hamiltonian systems with long-range
interactions in the collisionless limit N — 4-oco with m ~ 1/N [141].

7.3. Damped Jeans Equations
The damped Jeans Equations (186) and (187) can be closed by using the DDFT, yielding

9
£ +V- (pu) =0, (209)
0 oP;; SF
p [al: + (u- V)u] = ax’( —pV 5;>< —pVP — pV Dyt — Cpu. (210)
]

If the excess free energy is of the form of Equation (149), using the relation (155), we obtain

du oP;j
o5 +(u-Vu| =— ox; VPex — pV® — pV eyt — Cpu. (211)
i

Remark 10. In the ideal case (Fox = usg = 0), i.e., for purely long-range interactions, Equation (210)
reduces to the mean field damped Jeans equation

du oP;;
pl=+(u-V)u| = — — pV® — pV ey — Cpu. (212)
ot aX]

For ¢ = 0, we recover the usual Jeans equation issued from the Vlasov equation, which
describes Hamiltonian systems with long-range interactions in the collisionless limit N — 400

withm ~ 1/N [141].

7.4. Smoluchowski Equation

The Smoluchowski Equation (192), which is valid in the strong friction limit { — +oo,
can be closed by using the DDFT, yielding

dp 1(kgT OFex
Fr \Y Lf <mVp+pV 5 +de>+pV<I>ext>} (213)

For an excess free energy of the form of Equation (149), using the relation (155) and
introducing the total pressure from Equation (158), we obtain

% —-V. [é(VP—}—de)—i—pV(Dm)]. (214)
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We can write the generalized Smoluchowski Equation (213) in the form

o 1 _JF
w7 .
with the free energy functional (140). We have the H-theorem (see Appendix C.1)
. 1 oF
F=- [+ (v >dr<0 216
'\ Vo (216)
It can be explicitly written as
. kT )2
F=—< |- dr <0. 217
C ( ptp p = (217)

For the free energy (152), it becomes

3 é L(VP 4+ pV® + pUPex)? dr < 0. 218)

The Smoluchowski equation relaxes towards a stable equilibrium state, which mini-
mizes the free energy at fixed mass (assuming that the free energy is bounded from below).
This equilibrium state is determined by Equation (144).

Remark 11. In the ideal case (Fex = usgr = 0), i.e., for purely long-range interactions, Equation (213)
reduces to the mean field Smoluchowski equation

%

g81%

kgT
=V ( B Vo+poVe+ pvq>ext> (219)

7.5. Damped Euler Equation
The damped Euler Equation (195) can be closed by using the DDFT, yielding

|5+ V)u] -

ext — CPU (220)

For an excess free energy of the form of Equation (149), using the relation (155) and
introducing the total pressure from Equation (158), we obtain

0
Y L;; + (u- V)u] = —VP —pVD — pVdey — Cpu. (221)

We can write the damped Euler Equation (220) in the form

P} OF
) H (. v)u} = PV~ 2pu (222)

with the free energy functional (140). We have the H-theorem (see Appendix C.2)
Fo = — [ gpuPdr <0 (223)
with

Fotlp, u / L / pDexedr + / p®dr + kyT / BinLirs Folol.  (229)
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The damped Euler equation relaxes towards a stable equilibrium state, which mini-
mizes the free energy at fixed mass (assuming that the free energy is bounded from below).
This equilibrium state is determined by Equation (144).

In the strong friction limit { — +oo, the preceding equations reduce formally to those
obtained in Section 7.4. However, as we have already indicated in Section 6.6, this is not
the correct way to justify the generalized Smoluchowski equation since the damped Euler
Equation (220) is based on an LTE approximation, which has no rigorous foundation.

Remark 12. In the ideal case (Fex = usgr = 0), i.e., for purely long-range interactions, Equation (220)
reduces to the mean field damped Euler equation

|5+ (u V)| = ~*ELVp — oV — pV ey — Epu (225)

7.6. Cattaneo Equation
The Cattaneo Equation (199) can be closed by using the DDFT, yielding

0%p ap kgT
9 T T (

For an excess free energy of the form of Equation (149), using the relation (155) and
introducing the total pressure from Equation (158), we obtain

) (226)

82p

9J
SZ+ gait’ = V- (VP +pV® + pVPeyy). (227)

We can write the Cattaneo Equation (226) in the form

0%p SF
S +§ : <pV5p> (228)

with the free energy functional (140).

Remark 13. In the ideal case (Fex = usgr = 0), i.e., for purely long-range interactions, Equation (226)
reduces to the mean field Cattaneo equation

82p kBT
Tl + C . (mVp + VO + pVCDext> . (229)

7.7. Stochastic Kinetic Equations

The previous equations ignore fluctuations. We can take fluctuations into account by
introducing a noise term in these equations in order to satisfy the fluctuation—dissipation
theorem (see [17,38,143])22. This procedure transforms deterministic partial differential
equations into stochastic partial differential equations. It is then easy from these stochas-
tic equations to construct the corresponding Onsager—-Machlup action functional, which
describes the probability density of the different paths [17,150].

The stochastic Kramers equation reads

a{—i— 87{_7 /fz r,v, v, v, )Vu(jr — ¥'|) dr'dv’ — VDey - g{,
0 kgT o
~Yov (51 a£+f> V'(\/WQ(LVJ)), (230)

where Q(r, v, t) is Gaussian white noise, satisfying the conditions (Q(r,v,t)) = 0 and

(Qi(r,v,H)Q;(r', v/, t')) = 8(x —1')o(v — v')d(t = t).
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The stochastic damped Jeans equation reads

5 aP;
p[£+(u.v)u] N *axl; 7/Pz(r,r’,t)w(lrfr’l)dr’*PWDext*é‘P“

—/2CkpTp R(x, 1), (231)

where R(r,t) is Gaussian white noise satisfying (R(r,t)) = 0 and (R;(r,t)R;(r',t')) =
9;j6(r —1')d(t —t'). We note that the continuity Equation (186) is not affected by the noise
term. Using the DDFT, Equation (231) becomes

p[altl+(u~V)u]: LAY

_ OFex
aJCj )

0 - pVCD - pv(bext - gP u-— ngBTp R(r, t)- (232)
In the strong friction limit { — 400, we obtain the stochastic Smoluchowski equation

ap OF
L =V- — : 2¢kpToR 2
X v <pv5p)+v (v/2EksToR), (233)
where F[p] is the free energy functional (140). We note that the noise is multiplicative since
it depends on the density p(r, t).

If we make the LTE approximation, Equation (232) leads to the stochastic damped
Euler equation

d OF
Y {altl + (u- V)u} = —pva —¢pu—+/2CkpTpR(x, ). (234)
Finally, the stochastic Cattaneo equation reads

82p do oF

When the system admits several equilibrium states, i.e., when there exist stable states
(global minima of free energy) and metastable states (local minima of free energy), and
when the number N of particles is not too large (or if we are close to a critical point),
the fluctuations are important and can induce random transitions from one (meta)stable
state to another [151]. These random transitions can be studied with the stochastic kinetic
equations discussed above.

Remark 14. The stochastic damped Euler, Cattaneo, and Smoluchowski Equations (233)—(235) also
apply to the quantum systems of Sections 3 and 4 by using the free energy functional from Equation (89),
taking into account the quantum potential (see the analogy between Brownian and quantum systems in
the following section).

8. Back to the Generalized Schrédinger Equation

By considering a system of Brownian particles in interaction, by using the DDFT, and
by making an LTE approximation, we derived a generalized damped Euler equation of the
form (see Equation (220)):

OFex
op

P {?}ltl +(u- V)“} = _kB?TVP —pV —pV® — pV®eyt — Gpu. (236)

It involves an ideal thermal pressure P,y = pkgT/m and an effective potential 6 Fex /p
arising from the correlations between the particles. On the other hand, by starting from the
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generalized Schrodinger Equation (35) and by performing the Madelung transformation, we
derived a generalized quantum damped Euler equation of the form (see Equation (58)):

P [aaltl + (u- V)u} = —kBWTVp — VPt — pVP — pV Dyt — %VQ —Gpu. (237)

It involves an effective thermal pressure P,y = pkpT /m, an isotropic pressure Py due
to the self-interaction of the bosons, and a quantum potential Q/m, which is equivalent
to an anisotropic quantum pressure P;; (see Equation (69)). We show below that we can
derive Equation (237) from Equation (236) by choosing an appropriate form of excess free
energy functional in Equation (236). This functional can be decomposed into

Foo = ES) + FQ, (238)

where the first term accounts for the self-interaction of the bosons and the second term
accounts for the quantum effects. Since the quantum damped Euler Equation (58) is
equivalent to the generalized Schrodinger Equation (35), our procedure shows that we
can derive the generalized Schrédinger Equation (35) by considering a classical system
of Brownian particles in interaction with a special form of correlations. This suggests
that the quantum kinetic energy may be interpreted as an excess free energy functional
in the physics of simple liquids. This interpretation may be difficult (if not impossible)
to justify for a single quantum particle like an electron, except if it can be treated as a
“fluid” of subquantum particles as suggested by the Madelung hydrodynamic picture.
The hydrodynamic interpretation of the quantum potential may be more relevant for a
BEC made of many bosons in the same quantum state. In any case, there is an interesting
mapping between a classical Brownian gas with a special form of correlations and the
generalized Schrodinger equation. Whether this mapping is just formal or has a deeper
interpretation remains a question for future investigations.

Remark 15. There is an important difference between a quantum system described by the generalized
Schrodinger Equation (35), and hence by the quantum damped Euler Equation (237), and a classical system
of Brownian particles in interaction described by the damped Euler Equation (236). For quantum systems,
the velocity field defined by Equation (46) is potential and irrotational (it characterizes a superfluid), while
this is not necessarily the case for Brownian particles. The assumption of a potential flow is necessary
to derive the generalized Schrodinger Equation (35) from the damped Euler Equation (236) by the
inverse Madelung transformation (see also the quantization condition from note 13). In the following,
we shall assume that the flow produced by the Brownian particles is potential but we must keep in mind
that this may not always be the case. There is also another difference. For Brownian systems, the damped
Euler Equation (236) is approximate since it relies on the LTE approximation, which is not rigorously
justified (except in the strong friction limit), while for quantum systems the damped Euler Equation (237)
is exact since it is obtained from the generalized Schrodinger Equation (35) without approximation.

8.1. Self-Interaction Pressure

We first focus on the self-interaction term. If we consider a functional of the form of
Equation (149) and use the relation (155), we can rewrite Equation (236) as

? kgT
0 {a‘; + (u- V)u} = —%Vp — VP — pV® — pV ¢yt — Epu. (239)

It involves an ideal thermal pressure P,y = pkpT/m and an isotropic excess pressure
Pex due to the correlations of the particles. This term is similar to the self-interaction
pressure Pint, which occurs in the r.h.s. of Equation (237). The two terms coincide if we take
the following?*:

Pex(P) = Pint(P)r fex(P) = Vint(P)- (240)
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Therefore, the self-interaction between the particles can be described by an excess free
energy of the form

FY = Uy = / Vint(p) dr. (241)

As in Sections 3 and 5, we can combine the thermal pressure and the self-interaction
(or excess) pressure into a total pressure P = P,q + Pint (or P = P,q + Pex). This corresponds
to a total potential V' = Vj4q + Vin¢ (or a total free energy density f = fig + fex)-

8.2. Generalized Landau Free Energy Functional

We now account for the quantum potential. For that purpose, we consider a functional
of the form

Falpl = [ | K@) (V0 + Vi) e, (22)

where K(p) is a function of the density. Equation (242) can be viewed as a generalized
Landau free energy functional (the Landau free energy functional is recovered for K(p) =
K = cst). The first term takes into account quantum effects, possibly in a generalized sense
(see below). The second term takes into account the self-interaction of the particles as
discussed in the previous section. As detailed in Appendix E, we have

0Fex 1

50— 2K (P)(Ve)* —Klp)ap + Viu(p), (243)

where we recall that Vi ,(p) = hint(p) is the enthalpy (see Section 3). Substituting this
relation into Equation (236), we obtain

aa—‘t‘ +(u-V)u= —;VP — V®@et — VO + V[K(p)Ap] + %V [K’(p)Wp)z} —¢u, (249)

where P = P,y + P If we introduce the K-potential (see Appendix E)
1
Qi = —mK(p)dp — 5mK'(0)(Vp)?, (245)

we can rewrite Equation (244) as

Ju

1 1
5 T Vu= —EVP—VCI)ext—VCD— —VQx - fu. (246)

In the strong friction limit, we obtain the K-generalized Smoluchowski equation

9 _ 4
¢ =V (vp + PV Dext + PV + %VQO (247)
or, more explicitly,
ap _ 1 / 2
3 = Vo VP 4+ pV@ex +pV O —pV[K(p)Ap] = 5pV [K (0)(Vp) } : (248)

Remark 16. If p varies slowly, we can obtain the expression (242) of the excess free energy by a
systematic expansion of a general functional Fex[p] in powers of the inhomogeneity. In that case, we
can explicitly relate the function K(p) to the direct correlation function ¢®)(|r — ¥'|, p). One finds
that K(p) = % [ ¢ (0,9)q% dq [34] (see Appendix F.4). However, in the following, we shall not
necessarily assume that p varies slowly.
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8.3. Quantum Potential

We see that the K-potential (245) appearing in Equation (246) coincides with the
quantum potential (49) in Equation (237) provided that we take

hz
K(p) = iy (249)
Indeed, in that case, we have
n? K(p)
/ _ - _

K'(o) = prers , (250)

and 5 )

__ W TAp 1(Vp)
QK——M[ID—Z el b (251)

Therefore, with this choice of the function K(p), the K-potential from Equation (245)
coincides with the quantum potential from Equation (49) and the K-functional (A73) ap-
pearing in the excess free energy (242) coincides with the quantum kinetic energy from
Equation (80):

Qk=Q  ©f=0q (252)

We, thus, recovered the generalized quantum damped Euler Equation (237), which,
together with the continuity Equation (209) and the assumption that the flow is potential
(see the Remark at the beginning of Section 8), is equivalent through the inverse Madelung
transformation to the generalized Schrodinger equation

oY n? h ¥ 4
n 2 ,wam@wde'zwm@extw g[m(lP ) <1n(¢*)>}¢. (253)

8.4. K-Generalized Schridinger Equation

By considering an arbitrary function K(p), we can construct a more general Schrodinger
equation. Performing the inverse Madelung transformation, we can see that Equation (246),
together with the continuity Equation (209) and the assumption that the flow is potential,

is equivalent to a generalized Schrodinger equation of the following form?*:
ap h2
ih— 5% = om 1,L7 QY + QY + mPexip + mdPyP + md|¢|21,b

) ()

We shall call it the K-generalized Schrédinger equation. Using Equations (49) and (245)
with p = [1p[?, it can be written as

) " 1,
2 =2t o My k(P60 I (9P (TP

av I P P
+MPexih + mdY + m w—zg{ln(*) — <ln(*) >]lp (255)
o dyP” 27 \y ¥
Let us give some examples:
(i) The classical case corresponds to K = 0 (no “quantum” correlation) leading to

Qk=0, ©§=0, (256)
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1
E;]: + ( V)u - *EVP - VcDext - V(I) - (:u/ (257)

oy hz Aly|
lhat lp+— ] Y+ mdPyP+m

dwjvl”

A G@

In the strong friction limit, we obtain the generalized classical Smoluchowski equation

9
%’ =V - (VP + pV®ext + pV D).

(259)
(ii) The ordinary Landau functional corresponds to K = cst leading to
KA oF = 1k [(vp)2d 260
Qk = —mKAp, Q= 5K [(Vp)“dr, (260)
%—1; +(u-Vi)u= —EVP — Vet — V@ + KV (Ap) — Cu (261)
o h2 Aly] 2
haf - lp+2m |1,l7| l/)— KA(|¢| )1/J+m(pextl/)

oy on () ()

In the strong friction limit, we obtain the generalized Smoluchowski equation

9
ai; = V- [VP + pVPexi + pVP — KoV (Ap)].

(263)
(iii) The standard quantum case corresponds to
12
K(p) = —— 264
(p) iy’ (264)
leading to

n? r(Vp)? " Q
K _ — =~ —
0 Q O=g / p o / 0o A1 = O, (269)
) 1 1
ait‘ +(u-V)u —EVP — Ve = VO — —VQ —Cu, (266)
a > d

thPIP - iié{m(&ﬁ) - <1n<$> >]¢ (267)

In the strong friction limit, we obtain the quantum Smoluchowski equation

% _ P
(3 =V- (vp + PV Dexi + pV P + %VQ). (268)
(iv) An example of the K-generalized Schrodinger equation was introduced and
studied in [16] in connection with Tsallis generalized thermodynamics. It corresponds to

_ hz qu,

(269)
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leading to

i Al(p/ po)"? "12 [ Alp/po) 1 [V (p/po)?
__" - 22— ) LAPZPOT 270
< 2m (p/po)t=1/2 (0/p0)*4 —2279) (0/p0)>~1 @0)

n [ gy Q
O = p20 - / p=K ar, (271)
du V)u = — VP — Vo — VO — LV 272
§+(u' )u—_E - ext — o Qk —¢u, (272)
LY hz WAl W A[(WJI/%) ]

D e

An interest of this nonlinear Schrodinger equation is that it admits exact self-similar
solutions with a Tsallis invariant profile when the self-interaction potential is of the form
V(|y)?) = % |$|?7 (corresponding to a polytropic equation of state P = Kp7) and when
the coefficients g and v are related to each other by the relation 4 = 2y — 1 [16]. For
q = 1, we recover the generalized Schrodinger Equation (267). It admits exact self-similar
solutions with a Gaussian invariant profile when the self-interaction potential is of the form
V(jy)?) = kBWT [ (In [1p|* — 1) (corresponding to an isothermal equation of state P = pkT /m).
In the strong friction limit, we obtain the generalized Smoluchowski equation

dp

(X =v. (VP+pVCI>ext+pVCI>+ %VQK). (274)

8.5. Another Generalization

We can propose an even more general Schrodinger equation without specifying the
form of the excess free energy Fex. Consider the classical damped Euler equation

8 = YO — 0T e — Gpu 75)

p[aal;%—(u-V)u] =—-VP—pV

Adding and subtracting —(1/m)VQ in the rh.s. of Equation (275) and performing the
inverse Madelung transformation, we obtain a generalized Schrodinger equation of the form

o h2
ih—- 5

T
2t () - (o35
I§ 1 . 276
2 5[“(1/)* "y ) /1Y 270
Using Equation (49) with p = [¢p|?, it can be written as

W _ h2 n Ay OFex
ih—
at = 2m™ T 2m Tyl VT "oy d|¢|2"J

() () e

P+ mPexip + mPYP +m
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The excess free energy Fex may take into account nontrivial correlations that can be of
quantum or nonquantum origin. We can write the generalized Schrodinger Equation (277)

in the form
6F j/ i ¥
s 285 = (o(3) o @

where F = Fex + Wext + W + U is the total free energy. When Fex = @g, we recover the
generalized Schrodinger Equation (253).

oy n Aly|

8.6. Vlasov—Bohm—Kramers Equation

By making the approximation from Equation (184) and by using the DDFT, we ob-
tained the generalized Kramers equation (see Equation (202))

of |, 9f gOFex Of of _ -0 (keTof
ot TV o TV gy V(®HPe) o =Can- (S V) @)

If we consider an excess free energy functional of the form of Equation (242), using
the identities

OF, OF
o _ K Ly (o), v

1 1
50 o o %VQK + Evpintr (280)

obtained from Equation (A78), we can rewrite Equation (279) as

b of 1 of 1 0 J
f_|_v.f_VQK~f—pvpint-a{,—V(q)"‘q)ext)'f

ot Jar m v v
o (kBTaf—Ffv) (281)

m ov

=i
If we ignore the dissipative term (¢ = 0) and take Pipt = @Pext = 0 and Qg = Q, we
obtain the Vlasov-Bohm equation (see Appendix F of [77])

of | Of 1o of af _
in which quantum effects are included in the Bohm quantum potential. The Vlasov-Bohm
equation may be viewed as an approximate, or simplified, version of the Wigner equation,
which is the correct quantum generalization of the Vlasov equation [152]. If we account for
dissipative effects, we obtain the Vlasov—-Bohm-Kramers equation

of of 1 of of .9 [kpTof

which can be viewed as an approximate or simplified version of the Wigner—Kramers
equation. The Wigner-Kramers equation and the Vlasov—-Bohm-Kramers equation were
introduced in [77] in the context of the violent relaxation of quantum systems with long-
range interactions. If we use Qg instead of Q, we obtain a K-generalization of the Vlasov—-
Bohm-Kramers equation. If we use an arbitrary excess free energy functional Fe[p], we
obtain an even more general form of Vlasov-Bohm-Kramers equation.

Remark 17. By taking the hydrodynamic moments of the Viasov—Bohm—Kramers Equation (283)
and by closing the hierarchy of equations with the LTE approximation (193), we obtain the continuity
Equation (209) and the quantum Euler Equation (237), which are equivalent to the generalized GP
Equation (35). The same equations are obtained from the Wigner—Kramers equation when some
additional approximations are implemented (see [77] for details). The Wigner—Kramers—Poisson
equations can be derived, on the coarse-grained scale, from the theory of violent relaxation of
self-gravitating BECs [77]. This may be a manner to justify the generalized GP Equation (35).
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9. General Case

By combining the results derived in the previous sections, we can propose a general-
ized Schrodinger equation of the form

o _ h2 8 Fex
Mot = "am™ TS d|¢|2"’

) (o)}l

We have included in the equations of Section 3 an excess free energy Fex[p], which
can take into account nontrivial correlations between the quantum particles (and is more
general than a self-interaction potential V) like in the equations in Section 7 for Brownian
particles in interaction?”. This term could be justified on a microscopic basis by developing
a quantum N-body theory for a gas of bosons in interaction. This is similar in spirit to
the Kohn-Sham DDFT [153] except that, in the present case, we are dealing with just
one wavefunction §(r,t) instead of a multistate system”*. Performing the Madelung
transformation, we obtain a quantum damped Euler equation of the form

P+ mPexiPp + mdPY 4+ m

0F ex

p[au+(u-V) ]:—vp PV

= — VO — pVex — VO —Zpu.  (289)

If we define Fex = Fex + ©Og + Ujn, we obtain an equation equivalent the damped
Euler Equation (236). Conversely, if we consider an excess free energy of the form
Fex = Fex + Og + Uiy in Equation (236) and assume that the velocity field is poten-
tial (see the remark at the end of Section 8), we obtain the Euler Equation (285) leading
to the generalized Schrodinger Equation (284). In the strong friction limit, we obtain the
generalized Smoluchowski equation

d 5 Fex
gai; -V (vp HOVI A PVE 4 pT D + VQ) (286)

These equations can also be obtained from the generalized Vlasov-Bohm-Kramers
equation (see Section 8.6)

of A 0Fe f 1__ of 1 af of
TV o Vo v m ey v it gy T V(T Red) 5y
9 (ksTaf
av< - +f ) (287)

If we define F = Fex + U + W + Wex (this functional does not include the quantum
potential), we can write the generalized Schrodinger Equation (284) as

o5 =gy () () ew

the damped Euler Equation (285) as

oF

p{au + (u-V)u} =—pV 5

0
- —-VQ—pu, (289)

and the generalized Smoluchowski Equation (286) as

o _ o O0F L P
65 =V (pV 5% VQ) (290)

If we define F = F + @, we recover the structure of the damped Euler Equation (103)
and the structure of the Smoluchowski Equation (105). On the other hand, Equation (288) is
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structurally equivalent to the Schrodinger Equation (115). If we define Fiot = ©@ + F = O, + F,
we recover Equation (113). If we define Fy = Fex + Uint + W + Wex (this functional does not
include the quantum potential nor the thermal free energy), the foregoing equations can be
obtained from the generalized Vlasov—Bohm-Kramers equation

of of 6Fy of 1 of .9 [(kgTof
at V or v o ov m Ve v Cov Umav ™ fv)- (@91)
Alternatively, we could account for quantum effects through the exact Wigner advec-

tion operator instead of the heuristic Vlasov-Bohm advection operator (see Section 8.6).

Remark 18. We can introduce a noise term in the previous equations in order to take into account
fluctuations (arising from finite N effects or finite temperature effects) as discussed in Section 7.7.

10. Conclusions

In this paper, we introduced generalized equations in quantum mechanics and Brown-
ian theory and we discussed their formal analogies.

By using the formalism of scale relativity, and taking into account dissipative effects, we
first derived a generalized GP equation (see Equation (33)), including a temperature term
and a friction term. We then completed this equation by introducing an arbitrary potential
of self-interaction and a long-range potential of interaction (see Equation (35)). By using the
Madelung transformation, we wrote this equation in the form of hydrodynamic equations called
the quantum damped Euler equations (see Equations (57) and (58)). In the strong friction limit,
they reduce to the quantum Smoluchowski equation (see Equation (64)).

We then considered a system of classical Brownian particles with long-range and short-
range interactions. Starting from the N-body Kramers equation (see Equation (181)), we
obtained the exact one-body Kramers equation including the two-body correlation function
(see Equation (183)). Long-range interactions can be treated with the mean field approxima-
tion (for N > 1) while short-range interactions can be treated with the DDFT. By taking
the moments of the Kramers equation, we obtained the damped Jeans equations (see
Equations (209) and (210)). By making the LTE approximation, this hierarchy of equations
can be closed leading to the damped Euler equations (see Equations (209) and (220)). In
the strong friction limit, they reduce to the Smoluchowski equation (see Equation (213)).
When the excess free energy has an adequate form, these equations coincide with those
obtained from the generalized GP Equation (35)?. In addition, the generalized Kramers
Equation (202) coincides with the Vlasov—Bohm-Kramers Equation (283). We then consid-
ered more general forms of excess free energy and obtained generalized quantum equations
(see Sections 8 and 9). We finally indicated how fluctuations can be taken into account in our
formalism (see Section 7.7).

It is interesting to compare these results with those obtained in [77]. In that paper, we
first recalled that the Schrodinger equation (see Equation (10) of [77]) can be transformed
into the Wigner equation (see Equation (44) of [77]). When coupled to a long-range potential
of interaction (like gravity), we argued that the quantum system undergoes a process of
violent relaxation (or gravitational cooling) and that the relevant equation to consider is
the Wigner—Kramers equation describing the evolution of the coarse-grained distribution
function (see Equation (46) of [77]). Quantum effects are taken into account in the advection
(Wigner) term and thermal effects are taken into account in the effective collision (Kramers)
term. We also proposed a heuristic Vlasov—-Bohm—-Kramers equation (see Equation (F2)
of [77]). By taking the moments of these equations, we obtained the damped quantum Jeans
equations (see Equations (56) and (57) of [77]). By making the LTE approximation, this
hierarchy of equations can be closed, leading to the damped quantum Euler equations (see
Equations (72) and (73) of [77])?®. In the strong friction limit, they reduce to the quantum
Smoluchowski equation (see Equation (81) of [77]). By performing the inverse Madelung
transformation, we obtained the generalized GP equation (see Equation (92) of [77]), which
coincides with Equation (35). When applied to self-gravitating BECs, this equation leads
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to equilibrium states with a core—envelope structure. This core—envelope structure, made
of a quantum core (soliton) surrounded by an isothermal envelope, is consistent with the
structure of dark matter halos [77-79]. We refer the reader to the reviews [81-89] for more
details on this topic.

Our work also suggests an interesting and original interpretation of generalized ther-
modynamics [154]. Complex systems are sometimes described by generalized entropies or
generalized free energies [131,132,155]. In the interpretation given in the present paper, these
generalized free energies correspond to what is called excess free energies in the physics of
liquids and in the DFT and DDEFT [33-35]. They take into account correlations between the
particles arising from short-range interactions. This interpretation may demystify the notion of
generalized thermodynamics. Actually, we must distinguish two different situations:

(i) Inthis paper, we assumed that the evolution of the N-body distribution of the Brow-
nian system is governed by the ordinary Kramers equation (see Equation (181)). At
equilibrium, we obtain the ordinary Gibbs distribution (see Equation (118)). This im-
plies that the velocity distribution is Maxwellian. In this sense, we are fundamentally
using ordinary thermodynamics for the N-body system. However, when we consider
the one-body distribution in configuration space p(r, t), we have to take into account
the correlation p,(r,1’) between the particles due to short-range interactions. As a
result, the free energy in configuration space F[p] differs from the ideal Boltzmann free
energy F4q[p]. In the DFT and DDFT, the correlations are taken into account through an
excess free energy Fex[p] in configuration space, which can be interpreted as a general-
ized free energy. In certain cases, this excess free energy can be related to the Tsallis
free energy (see Equation (A71)) but this is not universally true. In the strong friction
limit, the evolution of the density p(r, t) is governed by a generalized Smoluchowski
equation (see Equation (214)), including a nonlinear barotropic pressure P(p), which is
due to the spatial correlations encapsulated in the excess free energy Fex[p]. This equation
can be viewed as a generalized Fokker—Planck equation in configuration space. In the
absence of correlations, we recover the ordinary Smoluchowski Equation (219) with an
isothermal (linear) equation of state associated with the Boltzmann free energy F4|p]-

(if) If we come back to the foundations of generalized thermodynamics [154,155], we
should modify the Kramers equation and the Gibbs distribution function for the
N-body system. Developing the corresponding formalism represents, however, a
formidable task. Another, more tractable, possibility is to modify the Kramers equa-
tion for the one-body distribution function f(r, v, t) [131,132]. This leads to the notion
of generalized Fokker—Planck equations in phase space associated with a general-
ized free energy F|f] (see Section 4 of [131] and Section 6.2 of [37]). In that case, the
equilibrium velocity distribution is not Maxwellian. In the strong friction limit, the gen-
eralized Kramers equation leads to a generalized Smoluchowski equation including a
nonlinear barotropic pressure P(p) determined by the generalized free energy F|[f].
This equation can be derived rigorously from a Chapman-Enskog expansion [156].
The equation of state P(p) is different from the isothermal (linear) equation of state
even in the absence of correlations in configuration space. If there are correlations in
configuration space, the pressure is due both to these correlations (as in (i)) and to the
non-Boltzmannian nature of the distribution function.

Although the nonlinear Fokker-Planck equations in configuration space (the gen-
eralized Smoluchowski equation) are structurally similar in the two situations, they are
derived in a completely different manner. This shows that the notion of generalized en-
tropies and nonlinear Fokker-Planck equations may have different origins. In the theory
of fluids [33,34], the distribution function is Boltzmannian and the nonlinear pressure is
due to the two-body correlation function originating from short-range interactions ugg. In
the generalized thermodynamics approach [131,132], the nonlinear pressure arises from
the non-Boltzmannian nature of the distribution function in phase space due to the bias in
the transition probabilities from one state to the other. The hydrodynamic (macroscopic)
equations coincide even though the microscopic models are fundamentally different [37].
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The classical Brownian equations discussed in our paper have been used in the theory
of simple liquids [33-35] and in the context of generalized thermodynamics and nonlinear
Fokker—-Planck equations [17,37,38,130-132,155]. When coupled to the Poisson equation,
they describe a system of self-gravitating Brownian particles [45], which may find ap-
plications in the context of planet formation [157]. They also describe the chemotaxis of
bacterial populations within the Keller-Segel model [44]. There is a vast literature on these
equations and their generalizations (see, e.g., [151] and references therein). The quantum
equations discussed in our paper have been used in the context of DM made of BECs
(see the reviews [81-89] on this subject). They lead to DM halos with a core—envelope
structure, including a quantum core and an isothermal envelope. The quantum core may
solve the core—cusp problem of the CDM model and the isothermal envelope accounts
for the flat rotation curves of the galaxies. The friction term provides an H-theorem and
ensures that the system converges towards this core-envelope structure. Therefore, they
could provide a parametrization of the GPP equations. This is explained in detail in [77].
A predictive model of bosonic DM halos based on these equations was developed in [79].
The generalized quantum equations that we obtained in the present paper, based on the
analogy between quantum and Brownian equations, could provide generalized models
of DM. Since the nature of DM is still uncertain, it is always interesting to consider gen-
eralizations of the standard equations of physics in order to see if they can account for
the observations. Conversely, this generalization may tell us to which extent the standard
equations of physics are specific in describing the objects that we observe in nature.
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Appendix A. Thermodynamical Identities for a Cold Gas

In this Appendix, we regroup useful thermodynamical identities valid for a cold gas
likea BECat T = 0.

Appendix A.1. First Principle of Thermodynamics and Gibbs—Duhem Relation

The first principle of thermodynamics can be written in a local form as

o(2)- ) o)

where u is the density of internal energy, p is the mass density, P is the pressure, T
is the temperature, and s is the entropy density. We also recall the local integrated
Gibbs-Duhem relation

u=—P+Ts+ %p, (A2)

where y is the local chemical potential.

Let us consider the situation appropriate to a cold gas such as a BEC at T = 0 described
by the generalized GP Equation (35)%°. If T = 0, the first principle of thermodynamics from
Equation (A1) can be written as

(3)- ) o

If we introduce the enthalpy density

h:P—i—u’ (Ad)

Y
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then we obtain the relations

du = hdp and dh = d; (A5)
On the other hand, the local integrated Gibbs—Duhem relation (A2) reduces to
— _py M
u=—-P+ e (A6)
Comparing Equations (A4) and (A6), we find that
n=FE. (A7)

m

Therefore, the enthalpy h(r) coincides with the local chemical potential y(r) by unit of
mass: h(r) = u(r)/m.

Appendix A.2. Barotropic Equation of State

For a general barotropic equation of state of the form P = P(p), the foregoing relations
lead to the identities

u\_ P(p) _ P(p) +u(p)
<p> o2 "e) o 55)
o =w'(e) ) =T, (a9)
P(p) = phlp) — ule) = pi'(p) — u(p) = (2 ) (A10)
P'(p) = pu" (p). (A11)

The first principle of thermodynamics for a cold gas (see Equation (A3)) provides a
general relation between the density of internal energy u(p) and the pressure P(p). If we
know the internal energy density u = u(p), we can obtain the pressure by

d(u/p) 2 (u ) ' /
P(p) = — = — | =pu —u(p). (A12)
0)==Ga70) =P \5) =relo)—ulp)
Conversely, if we know the equation of state P = P(p), we can obtain the internal
energy density by
P P(p
(o) = p/ ;/’;) do'. (A13)

This is the solution of the differential equation

P, ~ 1) = P(p). (Al4)
We also note that the enthalpy is given by

0 P/ /
he) = [ ff” dp. (A15)
Appendix A.3. Internal Energy Functional

For a barotropic gas, using Equation (A13), the internal energy functional is

u= /u(p) dr = /p/p P;g’) dp’ dr. (Al6)
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We have
U _ iy peoy— [P0
5 V0 =) = [T = (A17)
and
ou r’
Voo = u"(p)Vp =1 (p)Vp = ff’) Vp. (A18)
Therefore,
ou
V— =VP. (A19)
P 3p
We also note the identity
VP
i u"(p)Vp =1'(p)Vp = Vh. (A20)

Appendix A.4. Polytropic Equation of State

For a polytropic equation of state of the form P = Kp7 with v = 1+ 1/#n, using
Equation (A13), we find that the density of internal energy is given by

K P
= T = — nP = nKolt1/n A21
H= et = g =P = ket (A21)

where we set the constant of integration to zero. We can also write the density of internal
energy in the form

K
u= ﬁ(ﬂ7 —p) (A22)

by taking the constant of integration equal to —K/(y — 1). In that case, the internal
energy functional

K r
U=-"9 /(P7 —p)dr (A23)

takes a form similar to the Tsallis free energy with an index y and a generalized temperature K.

Appendix A.5. Self-Interaction Potential

Comparing Equations (40), (52)—(54) and (56) with Equations (A8)—(A11), we see that
the potential V(p) that occurs in the generalized GP Equation (38) represents the density of
internal energy. We, therefore, have

u(p) =V(p). (A24)
This justifies the expression of the internal energy in Equation (81).

Appendix A.6. Standard BEC

For the standard BEC with the self-interaction potential from Equation (42), we obtain

2mash’ 2magh’
veu= 02 u= T [, (A25)
Artagh? 2rash?
h= ”n‘;;h o, P= ”ﬂigh 2, (A26)

The equation of state corresponds to a polytrope of index y = 2 (i.e,, n = 1).
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Appendix B. Variation of the Energies Functionals

In this appendix, we detail the first-order variations of the different functionals that
compose the free energy (77). The details of the derivation are given in Appendix C of [76].
The first-order variations of the classical kinetic energy (79) are

2
50, = / Sépdr+ / ou - Sudr. (A27)

The first-order variations of the quantum kinetic energy (80) are

500 = % / Qép dr. (A28)
The first-order variations of the internal energy (81) are
sU = / h(p)ép dr. (A29)
The first-order variations of the potential energy of long-range interactions (83) are
SW = / Pop dr. (A30)
The first-order variations of the external potential energy (84) are

SWoxt = / Dexedp dr. (A31)

Appendix C. H-Theorems

In this Appendix, we derive the H-theorems for the generalized Smoluchowski,
damped Euler and Kramers equations. We use a functional derivative approach. We
refer to [17,37,38,130,131] for a more detailed discussion of the properties of nonlinear
Fokker-Planck equations [132].

Appendix C.1. Smoluchowski Equation

The Smoluchowski equation can be written as

do 1 _JOF
2oy (wve), (A32)

where F[p] is the free energy. The quantum Smoluchowski Equation (64) corresponds to
Equation (A32) with the functional from Equation (89), the generalized Smoluchowski
Equation (213) corresponds to Equation (A32) with the functional from Equation (140),
and the generalized Smoluchowski Equation (214) corresponds to Equation (A32) with
the functional from Equation (150). The Smoluchowski Equation (A32) monotonically
dissipates the free energy functional, which plays the role of a Lyapunov functional. Indeed,
a straightforward calculation leads to the H-theorem appropriate to the canonical ensemble:

0Fdp . [OF_ (1 _[1 [_6F
500 =] 5,7 <€pV(SP>d —/(:p(vép> dr < 0. (A33)

For a steady state, F = 0, the last term in parenthesis, which is proportional to the
diffusion current in the Smoluchowski Equation (A32), vanishes so that 6F /dp is uniform:

O0F u
% = (A34)
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This returns the Gibbs condition from Equation (100) for quantum systems and the
Gibbs condition from Equation (142) for Brownian systems. Therefore, a density profile
p(r) is a steady state of the Smoluchowski Equation (A32) if, and only if, it is an extremum
of free energy F at fixed mass. Furthermore, it can be shown that a steady state is linearly
dynamically stable with respect to the Smoluchowski Equation (A32) if, and only if, it
is a (local) minimum of free energy F at fixed mass [131,132]. This is consistent with the
condition of thermodynamic equilibrium in the canonical ensemble (see Section 5). If F is
bounded from below’, we know from Lyapunov’s direct method that the system will relax
towards a (local) minimum of F at fixed mass M for t — +o0. If several (local) minima exist
(metastable states), the choice of the selected equilibrium will depend on a complicated notion
of basin of attraction.

Remark A1. The Smoluchowski Equation (A32) can be justified in a phenomenological manner
from the linear thermodynamics of Onsager [160,161] if we interpret it as a continuity equation
oo+ V-] =0withacurrent ] = —(p/&)V (6F /ép) proportional to the gradient of a (chemical)
potential u(r)/m = 6F /Sp that is uniform at equilibrium. We note the resemblances between
the Smoluchowski Equation (A32), the Ginzburg—Landau Equation (A97) and the Cahn—Hilliard
Equation (A98). There are also crucial differences between these equations. For example, in the
Cahn—Hilliard Equation (A98), the current is proportional to NV (6F / 8p), whereas it is proportional
to pV (6F /dp) in the Smoluchowski Equation (A32).

Appendix C.2. Damped Euler Equations

The damped Euler equations can be written as

%4V (pu) =0, (A35)
Ju OF
|5+ (V)] = =95 ~dou, (A36)

where F|[p] is the free energy. The quantum damped Euler Equation (58) corresponds to
Equation (A36) with the functional from Equation (89), the generalized damped Euler
Equation (220) corresponds to Equation (A36) with the functional from Equation (140),
and the generalized damped Euler Equation (221) corresponds to Equation (A36) with the
functional from Equation (150). The damped Euler Equations (A35) and (A36) satisfy an
H-theorem for the total free energy Fiot[u, p] = (1/2) [ pu®dr + F[p]. Indeed, using the
well-known identity of vector analysis (u - V)u = V(u?/2) —u x (V x u), we can write
the damped Euler equations in the form

aP o 0 Fiot
L-—v ( v ) (A37)
ou 0 Fiot

~ fu. (A38)

Then, using the fact that u x (V x u) is orthogonal to u, we find that

. _ 0Fot 0p
Foe = 5p ot It | S

- 6Fiot S Fiot 0Fot — 0Fwot " 6Fot
— 55V (5u>dr /(5u Vs g/ o wdr. (A39)

(SFtot Ju
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Since the first two terms in the second equality of Equation (A39) vanish after an
integration by parts, we finally obtain

Frot = — / couldr < 0. (A40)

For a steady state, Fot = 0, the velocity vanishes (u = 0). Then, Equation (A36)
implies that 6F /dp is uniform leading to Equation (A34). As a result, a density profile p(r)
is a steady state of the damped Euler Equations (A35) and (A36) if, and only if, it is an
extremum of free energy F at fixed mass. Furthermore, it is dynamically stable if, and only
if, it is a (local) minimum of F at fixed mass M. More generally, the same results as those
described in Appendix C.1 apply to the present situation.

Appendix C.3. Kramers Equation

The Kramers equation can be written as

L ora-a e (%) (ad1)

where E([f] is the energy and Fiot[f] = E[f] — TS[f] is the free energy (S[f] is the entropy).
The generalized Kramers Equation (202) corresponds to Equation (A41) with the functional
F from Equation (165) and the functional E from Equation (166), and the generalized Kramers
Equation (203) corresponds to Equation (A41) with the functional F from Equation (175) and
the functional E from Equation (166). The Vlasov—Bohm—Kramers Equation (283) is a particular
case of Equation (202) with Fex = ©g.

The left-hand side of the Kramers equation (advection term) conserves the energy E
and the entropy S individually. Therefore, it conserves the free energy Fiot = E — TS. On
the other hand, the right-hand side of the Kramers equation (diffusion term) monotonically
dissipates the free energy Fit, which plays the role of a Lyapunov functional. Indeed, a
straightforward calculation leads to the H-theorem appropriate to the canonical ensemble

- [ O6Fotof [ 6Ft 0 0 (0Ft
Foo = [ 7 i = [ e [ (i) v

:_/gf[aav<5§;gt>rdrdvgo. (A22)

For a steady state, Fot = 0, the last term in brackets in Equation (A42), which is
proportional to the diffusion current in the Kramers Equation (A41), vanishes so that
0Fiot/df is independent of v. We then have 6E/df — TdS/df = C(r), implying that f(r, v)
is a function of 6E /6 f — C(r). Since the right-hand side of Equation (A41) vanishes, the left-
hand side must also vanish independently. Since 0/9t = 0, we obtain [f, E] = 0, implying
that f(r,v) is a function of SE/¢ f alone. From these two requirements, we conclude that
C(r) is a constant; hence, 6Fo/Jf is a constant:

6Fot Htot
= —. A4

This returns the Gibbs condition from Equation (169). Therefore, a distribution func-
tion f(r, v) is a steady state of the Kramers Equation (A41) if, and only if, it is an extremum
of free energy Fiot at fixed mass. Furthermore, it can be shown that a steady state is lin-
early dynamically stable with respect to the Kramers Equation (A41) if, and only if, it is
a (local) minimum of free energy Fiot at fixed mass [131,132]. This is consistent with the
condition of thermodynamic equilibrium in the canonical ensemble (see Section 5). If Fi is
bounded from below, we know from Lyapunov’s direct method that the system will relax
towards a (local) minimum of F at fixed mass M for ¢ — +o0. If several (local) minima exist
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(metastable states), the choice of the selected equilibrium will depend on a complicated
notion of basin of attraction.

Remark A2. The free enerqy Fot|p, u| associated with the damped Euler Equation (A36) can
be deduced from the free energy Fyot|f] associated with the Kramers Equation (A41) by perform-
ing the LTE approximation; in addition, the free energy F|p] associated with the Smoluchowski
Equation (A32) can be deduced from the free energy Frot[p, ] associated with the damped Euler
equation by neglecting the kinetic term (this is valid when { — +o0).

Appendix C.4. Generalized GP Equation
The generalized GP Equation (35) can be written as

200 OFor T P 4
el () ()

where Fiot[(p, *] is the free energy from Equation (85). The generalized GP Equation (A44)
monotonically dissipates the free energy functional, which plays the role of a Lyapunov
functional. Indeed, a straightforward calculation leads to an H-theorem appropriate to the
canonical ensemble. We have

ot 0 | +c.c. (A45)

Ftot: 51’0 ot

Substituting Equation (A44) into Equation (A45), we obtain

. 6Fot 0Fo 6Fo
o= [ 5y g e 28 [ Gyt ()~ () ) Jper e ae0

Using the fact that
Fiot 1 ) .
55 = a0 [HP) + @+ ey, (A47)

and recalling that In(¢p/¢*) is purely imaginary, we see that many terms vanish by symme-
try with their complex conjugate. There remains

2
Fiot = ZLW(;’/AI/J* [ln(l;i) - <ln(l;’f;) >]lpdr+c.c. (A48)

Integrating by parts and again discarding the terms that vanish as a result of symmetry
with their complex conjugate, we find that

2
Fiot = —fﬁé;/(lpvw* —¢*Vy) -V [ln(tzj*ﬂ dr, (A49)

w) 2
2\VIn| -
“(w*

This expression coincides with the H-theorem from Equation (A40).

which can be written as

Frot = dr < 0. (A50)

Appendix D. Thermodynamical Identities for Brownian Particles in Contact with a
Heat Bath

In this appendix, we regroup useful thermodynamical identities valid for Brownian
particles in contact with a heat bath fixing the temperature (T = cst).
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Appendix D.1. First Principle of Thermodynamics and Gibbs—Duhem Relation

If T = cst (canonical ensemble), introducing the density of free energy f = u — Ts, the
first principle of thermodynamics from Equation (A1) can be written as follows>':

(L) = —ra() = e (A51)

If we introduce the enthalpy density

h=—-, (A52)
0
we obtain the relations ip

df =hdp and dh = ? (A53)

On the other hand, the local Gibbs—-Duhem relation (A2) reduces to

M
=—-P+ —p. Ab4
f + P (A54)
Comparing Equations (A52) and (A54), we find that

h=FE (A55)

m

Therefore, the enthalpy h(r) coincides with the local chemical potential y(r) by unit of
mass: h(r) = u(r)/m.

Appendix D.2. Barotropic Equation of State

In a fluid, the local pressure is of the form P = P(p, T). Since the temperature T is
fixed in the case of Brownian particles (canonical description), the pressure is barotropic
and we shall simply write P = P(p). For a general barotropic equation of state of the form
P = P(p), the foregoing relations lead to the identities

£\ _ Pl _ P(p) +£(p)
(p> e o) o (A%6)
o =r), wip) =L, (A57)
(o) = phlp) — 1) = o' (0) ~ £(0) =*(L ) (A58)
P'(0) = pf" (p). (A59)

The first principle of thermodynamics for a system of Brownian particles in contact
with a heat bath (see Equation (A51)) provides a general relation between the density of
free energy f(p) and the pressure P(p). If we know the free energy density f = f(p), we
can obtain the pressure by

P(e) = =558 = (L) = or o)~ slo) (A60)

Conversely, if we know the equation of state P = P(p), we can obtain the free energy
density by

flo)=p /P pr,i') dp’. (A61)
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This is the solution of the differential equation
d
pdl — fp) = P(p)- (A62)
P
We also note that the enthalpy is given by
0 P/ /
he) = [ ff” dp. (A63)
Appendix D.3. Free Energy Functional
For a barotropic gas, using Equation (A61), the free energy functional is
PP
F= /f(p) dr = /p/ FE,Pz) do’ dr. (A64)
We have
OF _ ey —nioy— [P0 5
5 =0 =hie) = [ = dp (A65)
and
OF P’
Vo = f"(e)Ve=H(p)Vp = ;P)Vp (A66)
Therefore,
OF
V% = VP. (A67)
We also note the identity
v; = f"(p)Vp =1 (p)Vp = Vh. (A68)

Appendix D.4. Polytropic Equation of State

For a polytropic equation of state of the form P = Kp7 with v = 1+ 1/#n, using

Equation (A61), we find that the density of free energy is given by

K P
= ’)/:
f P Vv

= nP = nKpl+l/n’

(A69)

where we set the constant of integration to zero. We can also write the density of free energy

in the form

f= %W—p)

(A70)

by taking the constant of integration equal to —K/(y —1). In that case, the free

energy functional

K
- Y _
F 7_1/(P p) dr

(A71)

takes a form similar to the Tsallis free energy with an index y and a generalized temperature K.
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Appendix D.5. Connection with Cold Gases like BECs (T = 0)

Let us now consider the situation appropriate to a cold gas such as a BECat T = 0
described by the generalized GP Equation (35). The previous results remain valid with

f—u F=L (A72)
In other words, the free energy coincides with the internal energy.

Remark A3. According to Equations (A24) and (A72), we see that the free energy f(p), which
determines the pressure in the Brownian model, coincides with the potential V (p) that appears in
the generalized GP Equation (35). This is why the two models present analogies. However, these
analogies are purely formal since the quantum system is at Typermo = 0, while the Brownian model
is at Thermo 7 0. In other words, the temperature T and the free energy F that appear in the
quantum model are effective temperature and effective free energy.

Appendix E. K-Functional

In this appendix, we give a few properties of the K-functional
"1
0 = [ SK(p)(Vp)*dr (A73)

introduced in Section 8. A more general discussion containing additional results and details
of calculations will be given in a forthcoming paper [162].

Appendix E.1. K-Potential

For a small perturbation of the form p + Jp with §p < p, we can make the expansion

Olo+dp] = /%K(p+5p)(vp+wp)2dr
_ /%[K(p) +K )6+ [(Vp)2 +2Vp- Vép+ .. [ dr. (A7)

The first-order variations of the K-functional are

1
50K / K(o)Vp- Vopdr+ o / K (0)(Vp)28p dr

=~ [ VIKe)Velpdr+ 5 [ K (o)(Vo)bpdn

1
= - / K(p)Apspdr — 2 / K'(0)(Vp)*6p dr. (A75)
Its functional derivative is, therefore,
SOK 1
& = 5K (p)(Vp)> ~K(p)Bp. (A76)
0 2
If we define the K-potential by
1
Q = —mK(p)Ap — SmK'(0)(Vp)?, (A77)
we obtain .
00
50K = [ Lspqr  and -2 = 8K (A78)
m ép m

Remark A4. For the usual quantum potential, we recover Equation (A28).
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Appendix E.2. K-Pressure Tensor
We define the K-force by

1
K _ _—~
Fj, = . VQk. (A79)
Using Equation (A77), we find that
1 1
——-0iQi = K'(0)2ipAp + K'(0)3;00j0 + 5K (0)2ip(Vo)? + K(0)2ip.  (A8D)

By proceeding as in Appendix C.4 of [16], we can show that the K-force can be written
as

1 1
()i = =, 2iQx = — 3Py, (A81)

K = .
where P; j 1s a K-pressure tensor given by

P = A(0)di0dj0 + B(p)Ap 8ij + Cp)d;0 + D(0) (V) i (A82)

with coefficients

L ey 1KY

A=S(K=pK)=—5p (p>, (A83)
1

B=C=-3pK, D=0 (A84)

Other equivalent expressions of the K-pressure tensor are given in [162].
Let us give some examples:

(i) The classical case corresponds to K = 0 (no “quantum” correlation), implying
p{; =0. (A85)
(if) The ordinary Landau functional corresponds to K = cst, implying
< 1 1 1
P = EKaipajp - EKpAp dij — EKpai]'p. (A86)
(iii) The standard quantum case corresponds to K(p) = %/ (4m2p), implying

W1 1 1
PZI; = o) (palpa]p - EAP (51‘]‘ - 281]p> . (A87)

We recover the expression (70) of the quantum pressure tensor up to a term of the
form x;; = 0;jAp — 0;0;p satisfying d;x;; = 0.

(iv) For the function K(p) = qthéfq / (4m?p?~17) associated with the Tsallis entropy [16],
we obtain

oo 1 1 1 1 1
K _ q
P = 329P0 (3—4q) pz—_qaipajp - MFAP dij — ﬂﬁaﬁp . (A88)

For g = 1, we recover the expression from Equation (A87).
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Appendix F. Expansion of the Mean Field Potential for Weak Inhomogeneity

In this appendix, we expand the mean field potential ®(r,t) = [u(|r —r'|)o(r', ) dr’ fora
sufficiently weak inhomogeneity of the system with respect to the range of the interaction.

Appendix F.1. Pseudo-Potential

We first assume that the interaction between the particles corresponds to binary colli-
sions that can be modeled by the effective (or pseudo-) potential u = ¢é(r — r’) [163,164].
This is a pair contact potential. In the case of BECs, the coupling constant g is related to the
s-wave scattering length a; of the bosons by g = 47rash? /m® [126]. Under these conditions,
the mean field potential ®(r,t) = [u(|r —r'|)p(¥, t) dr’ is given by [69-72]

(1, t) = gp(r t). (A89)
The associated energy is
W= %g / 2 dr. (A90)

This corresponds to a self-interaction potential V and a pressure P given by
Equations (A25) and (A26) characterizing a standard BEC described by the GP Equation (43).

Appendix F.2. Square Gradient Functional

More generally, the relation from Equation (A89) represents the leading term in an expan-
sion of the mean field potential in powers of the inhomogeneity. Below, we consider the next
order term in this expansion. Setting q = r’ — r and writing the mean field potential as

®(x,t) = [u(@p(r+q,t)dq, (A91)

we can Taylor expand p(r + q, t) to the second order in q to obtain
_ dp 1 P
p(r+q,t) = p(r,t) +Zj;a—xiqz+ igmq%. (A92)

Substituting this expansion into ®(r,t) = [u(|r — r'|)p(r’, t) dr’, we obtain

D(r,t) = —ap(r,t) — KAp(r, t) (A93)

witha = —471 f0+°° u(q)q?dgand K = —2% 0+°° u(q)q* dgq. The case a, K > 0 corresponds
to an attractive self-interaction and the case 4,K < 0 corresponds to a repulsive self-
interaction. We note that [ = (K / a)l/ 2 has the dimension of a length. As mentioned above,
the term —ap can be incorporated in the self-interaction potential V(p) or in the pressure

P(p). Therefore, we shall focus below on the term —KAp. We write it as
P (r,t) = —KAp(r, t). (A94)

This term is associated with the square gradient energy functional
Wy = %K / (Vp)? dr. (A95)
This expression can be obtained by substituting Equation (A94) into Equation (83) and

integrating by parts. The total free energy, including the internal energy (81) and the square
gradient energy (A95), is

F— /[;K(Vp)z + V(p)] dr. (A96)
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It has the form of a Landau free energy functional. This type of functionals appears in
the Ginzburg-Landau equation [165]

do _(LF . /
€§ = KAp+V'(p) (A97)

and in the Cahn-Hilliard equation [166]

%P _AF_

v 5 A[KAp +V'(p)], (A98)

where the potential V (p) usually has a double-well shape of the form V(p) = A(c? — p?)?
leading to phase separation™.

Remark A5. We note that the Landau free energy defined in Equation (A96) is a particular case
of the excess free energy from Equation (242) with K = cst. In that case, the K-potential Qg /m
from Equation (245) coincides with the potential @k from Equation (A94), i.e., it corresponds to the
Laplacian term in the expansion (A93) of the mean field potential ® for weak inhomogeneity. This
yields Equations (260)—(263) of Section 8.4. They can be viewed as generalized Cahn—Hilliard
or generalized Ginzburg—Landau equations with the crucial differences mentioned at the end of
Appendix C.1.

Appendix F.3. Van der Waals Equation of State

Let us illustrate our formalism with the example of the van der Waals equation of
state [167]. As in Section 7, we assume that the particles experience short-range and long-
range interactions of microscopic origin. We write the total potential as u = ugg + urR,
where ugp refers to short-range interactions and uy r refers to long-range interactions.

Long-range interactions can be treated with the mean field approximation (for N > 1).
Assuming that the density varies weakly with the position (on the scale of the micro-
scopic interactions), we can make the approximation ®r(r, ) = —ap(r,t) with a =
—4m f0+°° urr(q)q? dq (see Appendix F.2). We then have

1
W=-—3a / o dr. (A99)
This corresponds to a free energy density fir(p) = —(1/2)ap? giving a pressure
(see Equation (A60))
1 -
Pir = —Eap . (AlOO)

For an attractive long-range interaction, one has a > 0, so the pressure P is negative
(see Appendix F.2).

Short-range interactions can be treated with an excess free energy Fex in addition
to the ideal free energy F4. The total free energy Fy + Fex can be written as —TS where
S = —kp [ C(p) dris a generalized entropy taking into account microscopic constraints [130].
In principle, it can be obtained from a combinatorial analysis (see Section 2.4 of [38]). As
reported by van Kampen [168], it was first shown by Ornstein [169] in 1908 that the
generalized entropy associated with the van der Waals gas is given by

S = —kg / Pln<P) dr. (A101)
m\pe—p
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This is probably the first example of generalized entropy being introduced into physics. It
corresponds to a free energy density for(p) = kgTC(p) giving a pressure (see Equation (A60))
kgT

__ P ksl
Psg = 1= o/px m (A102)

The term in the denominator takes into account excluded volume effects due to the
finite size of the molecules. The gas cannot be compressed indefinitely so that the pressure
diverges when p — p..

If we now add the pressure Psg due to short-range interactions and the pressure P g
due to long-range interactions, we obtain the celebrated van der Waals equation of state

p k B T

_ 2
1= p/p. m ap°”. (A103)

1
2

This is the local form of the usual formula (P +a/V?)(V — b) = RT. The first term
corresponds to the ideal equation of state P,y = pkpT /m modified by repulsive short-range
interactions (hard sphere effects), and the second term represents the effect of attractive
long-range interactions between the molecules. The van der Waals equation of state is
associated to a free energy

_ 1 2 14 P
Fovaw = 2a/p dr+kBT/mln(p*_p)dr. (A104)

If we use it in Equation (38), we obtain a generalized GP equation of the form

in2¥ - —h—2A¢+mq>1p — am| Y2 + mPeyitp
ot 2m ext

|y[? P T ¥ ¥
it in( s )+ e gem() - (m () caros

In a more complete model, one should include the term coming from the square gradient
energy functional defined in Equation (A96) like in Appendix F.2 (see Equation (262)).

Remark A6. One could also consider the Fermi—Dirac entropy in position space leading to another
form of exclusion constraint [170]. In that case, the free energy reads

F:kBTp*/{plnp—l—(l—p)ln(l—p>}dr. (A106)
It leads to the equation of state
p= —kfnTp*ln( - P). (A107)

If we use it in Equation (38), we obtain a generalized GP equation of the form

.0 1
zha—lf = —%Al[) + mPY + mPext P
2
(S Jo-iaen () - (m() )l

Appendix F.4. Weakly Inhomogeneous Systems

In Section 5.5, we gave a first simplified expression of the excess free energy, which
applies to a barotropic gas. Here, we shall briefly mention another simplified expression
that has been extensively used in the physics of liquids (see, e.g., Refs. [34,171,172]). If the
density distribution varies slowly and exhibits small departures relative to some reference
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density p, we can expand the functional Fex[p] to the second order in |p(r,t) — p| < p,
thereby obtaining

Folp) = =5k [0 =) (1,0 (1r — ¥, ) (0 ), 1) e (A109)

where c¢(?) (r, p) denotes the Ornstein-Zernike [173] direct correlation function in the homo-
geneous reference system

P (r—1],p) = —ﬁL‘“,. (A110)
dp(r)op(r')
If we introduce the one-body direct correlation function
_ O Fex x(r, 0
R (A1)
we find that
c(t,p) = [ @ (e —r|,p) (0 —p)(x) " (A112)

There are several methods in the physics of liquids to obtain useful approximations of
the direct correlation function [33], and hence of the functional (A109). Interestingly, we
note that the functional (A109) has the same form (up to a shift in density) as the mean
field free energy functional (138) with Equation (135), provided that we view the direct
correlation function as an effective binary potential of interaction

et ([t —']) = —kpTc® (jr — 1|, ). (A113)

This relation first appeared in a work of Zwanzig [174]. The direct correlation func-
tion ¢ (|r — r'|) can be obtained experimentally or theoretically. One can use, for ex-
ample, the Percus—Yevick [175] integral equation. Its solution is known exactly for the
special case of a fluid of hard spheres [176—178] but approximate expressions can be ob-
tained in more general situations. It then determines the effective potential of interaction
Uest(|r — r'|) through Equation (A113) and the excess free energy through Equation (A109).
We see that the results obtained for systems with long-range interactions in the mean field
approximation can be applied to simple liquids provided that the potential of interaction
urr(|r — r'|) is replaced by the effective potential of interaction uqg(|r — t'|). Similarly,
the one-body direct correlation function c(r, p) plays the role of an effective mean field
potential @ (r) through the relation

DQesi(r) = —kpTc(r, p). (A114)

This makes it possible to apply the results obtained for mean field potentials to
correlated systems with short-range interactions by using the correspondences from
Equations (A113) and (A114).

Remark A7. Since the density varies slowly, we can expand the excess free energy from Equation (A109)
as in Appendix F.2. This yields the square gradient energy functional Fox = %K [(Vp)? dr with a coeffi-
cient K = —% [ uesi(q)q* dq determined by the effective binary potential. Using Equation (A113),
it can be rewritten as K = tkpT [ ) (q,p)q% dq, which is in agreement with the result quoted at
the end of Section 8.2.
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Appendix G. Generalized Dispersion Relations

In this appendix, we consider a system described by the generalized GP Equation (284)
with ®eyt = 0 or by the generalized Vlasov-Bohm Equation (287) with ®ext = P = ¢ = 0.
We discuss the dispersion relation characterizing the evolution of a small perturbation in
an infinite homogeneous background. To be specific, we assume that the excess free energy
Fex corresponds to the K-functional from Equation (A73). The following results apply
either to quantum systems (when 71 # 0) or to classical systems (when fi = 0).

Appendix G.1. Generalized Schrodinger Equation

The generalized GP Equation (284) is equivalent to the continuity equation and the
generalized damped quantum Euler Equation (285). Considering a small perturbation with
respect to an infinite homogeneous distribution and using standard methods [76,107,179],
we obtain the generalized dispersion relation

24
w? +ifw = % + pK(p)k* 4 c2k> + (2m) % (k) pk?, (A115)
where ¢ = P/(p) is the squared speed of sound. The condition of marginal stability
(w = 0) reads
Wkt
s oK (p)k* + c2k? 4 (2r) (k) pk? = 0. (A116)
We see that the K-potential has the same effect as the quantum potential with a
pseudo-Planck constant

hpseudo =2m PK(P) (A117)

We can, therefore, define an effective Planck constant by

Tege = \/ 1% + 4m2pK(p). (A118)

The quantum potential always has a repulsive effect. When K > 0, the K-potential

increases the effective Planck constant, and hence augments the repulsion. When K < 0,
the K-potential decreases the effective Planck constant, and hence reduces the repulsion.
The K-potential counteracts the quantum potential at the critical density p. such that
%+ 4m2p.K(p.) = 0 (provided that K < 0). When 1% + 4m2pK(p) < 0, the effective Planck
constant is imaginary, meaning that the total interaction (quantum potential + K-potential)
is attractive.
Remark A8. For a weak inhomogeneity, Equation (A94) can be Fourier transformed into ®yx = Kk2p.
Compared with the relation & = (271)411(k)p obtained from Equation (A91), this corresponds to a self-
interaction potential (27t)% i (k) = Kk, which is the first-order term in the expansion of the potential
it(k) for small k (long wavelengths). In that case, the interaction term (271)%0(k)ok?> = pKk* in the
dispersion relation (A115) becomes equivalent to the K-potential term pKk*, which is itself analogous to
the quantum potential h*k* / 4m? with the correspondence K = h* / (4m?0) as discussed above.

Appendix G.2. Generalized Vlasov—Bohm Equation

We now consider the generalized Vlasov—Bohm Equation (287). Performing a small
perturbation with respect to an infinite homogeneous distribution and using standard
methods [180-182], we obtain the generalized dispersion relation

272 /
1— | (2n)%a(k) + fmﬁp + K(p)k2] / % dv = 0. (A119)
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For a homogeneous distribution, we established the general identity [180-182]

2

B
T

where ¢? is the squared speed of sound in the corresponding barotropic gas. Using
Equation (A120), we see that the condition of marginal stability (w = 0) from
Equation (A119) coincides with Equation (A116). Therefore, the condition of marginal
stability is the same for the Vlasov-Bohm equation and for the GP equation (or for the
quantum Euler equation). However, this equivalence is lost if we use the more rigorous
Wigner equation instead of the Vlasov—Bohm equation [107]. In that case, the dispersion
relation reads (for K = 0) [107]:

1+ (2n)dﬁ(k)r;ll/f(v+ ) (0~ &) dv = 0. (A121)

The condition of marginal stability

1—(27r)dﬁ(k)g;{/f<v+%> ;f(v_ D) do =0 (A122)

is generally different from Equations (A116) and (A119), except in the classical limit 7z — 0,
where the Wigner equation reduces to the Vlasov equation [180-182].

Notes

1

In his first paper [2], Einstein was not sure that his theory applied to Brownian motion. But in his second paper [3], he mentioned
that Siedentopf informed him that he and other physicists, notably Gouy [4], had been convinced by direct observations that
Brownian motion was caused by the irregular thermal movements of the molecules of the liquid. The order of magnitude of
the paths described by the particles (in particular the dependence of the intensity of motion on the particle size and on the
temperature) were in agreement with Einstein’s theory.

Fick [5,6] introduced the diffusion equation phenomenologically in 1855 by analogy with Fourier’s law of heat conduction
and Ohm’s law of charge transport. He considered the diffusion of salts in water and did not mention the connection with
Brownian motion. The probabilistic derivation proposed by Einstein [2], which relies on the Taylor expansion of a Master
equation, is essentially the same as the one used later by Fokker [7-9], Planck [10], Klein [11], Kramers [12], Chandrasekhar [13]
and Moyal [14] to derive the Fokker-Planck equation through the Kramers-Moyal expansion. Actually, this method of expansion
was first introduced by Lord Rayleigh [15] as early as 1891 long before all the classic works on Brownian theory. He considered
the kinetic theory of massive particles bombarded by numerous small projectiles. Although Lord Rayleigh did not explicitly refer
to Brownian motion, his paper can be seen as a precursor of the theory of Brownian motion that is usually considered to start
with the seminal work of Einstein [2,3]. There is, however, an important difference. Lord Rayleigh [15] considered the velocity
distribution f (v, t) of homogeneously distributed particles while Einstein [2] considered the spatial density p(r, ) of Brownian
particles in the strong friction limit & — +oo (or, equivalently, for large times ¢ > ¢~ 1). See Refs. [16-19] for additional comments
about the paper of Lord Rayleigh in connection to the history of Brownian motion.

The random walk approach was pioneered by Lord Rayleigh [22,23] (see [13,24-26]).

This equation, without the advection term, was first derived by Lord Rayleigh [15] for a spatially homogeneous distribution of
particles bombarded by numerous small projectiles (see additional comments in Refs. [16-19]). This equation was further studied
by Uhlenbeck and Ornstein [31].

This moment approach [32] can be seen as a formalization of the Sutherland-Einstein hydrodynamic approach [2,20]. For a finite
value of the friction coefficient {, the LTE condition is not rigorously justified. Therefore, the damped Euler equation is at most
approximate. One can show [32] that the LTE approximation becomes exact in the limit { — +co. As a result, the Smoluchowski
equation is rigorously justified in the strong friction limit.

The Bohr model was extended in special relativity by Sommerfeld [58,59] who could explain the fine structure of the hydrogen
spectrum. In unpublished notes, Schrodinger first derived a relativistic wave equation (now known as the Klein-Gordon equation)
but did not recover the fine structure of the hydrogen spectrum because this equation does not account for the spin of the electron
(this problem was solved later by the Dirac [60,61] equation). This is why he restricted himself to the nonrelativistic limit in his
first communications [52-54] (he published the Klein-Gordon equation in his fourth communication [55] with the largest reserve).
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See the introduction of Ref. [62] for a short account of the early history of wave mechanics (Schrodinger, Klein-Gordon and Dirac
equations) and an exhaustive list of references.

In the relativistic regime they have the form of nonlinear Klein-Gordon equations (see the introduction of Ref. [73] for a review).

There is a vast literature on these equations in the case T = ¢ = 0 (see the reviews [81-89]). For bosons without self-interaction,
we get the Schrodinger-Poisson equations [90]. This leads to the fuzzy dark matter (FDM) model [91] which is also called
the scalar field dark matter (SFDM) model [92] or the Bose-Einstein condensate dark matter (BECDM) model [93,94]. For self-
interacting bosons, we get the Gross-Pitaevskii-Poisson (GPP) equations [95-97]. These equations have been solved numerically
in Refs. [93,94,98-105].

To our knowledge, the interpretation of Equation (23) in terms of a Cole-Hopf transformation was not mentioned by Nottale [75].

This relation was noted by many authors [112-117] in the early years of quantum mechanics due to the formal analogy between
the Schrodinger equation and the diffusion equation with an imaginary diffusion coefficient (or an imaginary time). This relation
also appeared in the work of Nelson [111] who first proposed a derivation of the Schrédinger equation from Newtonian mechanics
by using an entirely classical stochastic approach.

The justification of Equation (35) given in Ref. [77] based on an extension of the theory of violent relaxation [122,123] to a
self-gravitating boson gas (leading to a form of Wigner-Kramers equation) is physically different from the justification given
in Refs. [74,78] and in Section 2 based on an extension of the theory of scale relativity [75] to the case of dissipative quantum
systems. It is not clear at that point if the two approaches are related to each other.

The quantum potential Q is directly related to the imaginary part ug of the complex velocity U in the theory of scale relativity
by Equation (E.12) of [74]. The imaginary part of the velocity can also be interpreted as an “osmotic” velocity in the sense of
Nelson [111] (see the discussion in Appendix E.4 of [74]).

Actually, the Madelung hydrodynamic equations are not fully equivalent to the Schrodinger equation [127]. To achieve
equivalence, we must assume that the velocity is equal to a gradient. Furthermore, we must add by hand a quantization condition
f u - dl = n2mth/m, where n is an integer, as in the old quantum theory. This ensures that the wave function is single valued.

The free energy can be written in the usual form Fiot = E — TS where E = O + O + Ujnt + W + Wext is the total energy and S =
—kg [(p/m)(Inp — 1) dr is the Boltzmann entropy in configuration space. We recall, however, that T is an effective temperature.

If we define the out-of-equilibrium chemical potential by

OF
p(rt) = m%,

the Gibbs condition means that y(r, f) = y is uniform at equilibrium.

This expression results from Equation (119) by assuming that there are no correlations in velocity space. This is valid for N > 1.
This relation ensures that the Gibbs canonical distribution (118) of statistical equilibrium is the stationary solution of the N-body
Kramers Equation (181). Note that the Einstein relation (180) differs from the original Einstein relation (1) since we are considering
inertial Brownian particles instead of overdamped Brownian particles.

One could also start from the Dean equation in phase space which governs the evolution of the exact DF f;(r,v,t) = Y; 6(r —
r;(+))d(v — v;(t)) [143]. This is the equivalent of the Klimontovich equation for Hamiltonian systems.

These equations were first derived by Maxwell in his theory of gases [146].

The LTE approximation is rigorously justified only for { — +o0. It may provide a good approximation when ¢ is sufficiently
large or when the system is sufficiently close to equilibrium (i.e. t > ¢~1).

This closure problem is distinct from the closure of the hierarchy of damped Jeans equations considered previously.

As shown in [38,143] the expression of the noise term can be obtained from the fluctuating hydrodynamics of Landau and
Lifshitz [149].

This equivalence is rather obvious since we can consider that the self-interaction between the bosons corresponds to the
correlations that arise from short-range interactions.

To obtain Equation (254) we have added and subtracted —(1/m)V Q in the r.h.s. of Equation (246). This introduces a potential
Q — Qg in the standard Schrodinger equation.

When Fex = Fex — @@, we recover the equations of Section 8.5.

This is related to the fact that the bosons are all condensed in the same quantum state.

We can relate the temperature and the friction in the generalized GP equation to the temperature and the friction of a gas of
Brownian particles. We also questioned whether it is possible to interpret the self-interaction and the quantum potential in
the GP equation in terms of fluid correlations described by an appropriate excess free energy. Although there is an interesting
correspondance between generalized quantum equations and Brownian equations, it is not clear if this correspondance is just a
formal analogy or it if has a more profound interpretation.
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28 If we take the hydrodynamic moments of the Wigner equation, we find that the quantum pressure P; [see
Equation (69)] can be written in the form Pj; = [ fw(v — u);(v —u);dv, where fy(r,v,t) is the Wigner distribution func-
tion [77]. The quantum pressure can therefore be related to the correlations of the velocity fluctuations of “particles” like in an
ordinary fluid. On the other hand, in the Vlasov-Bohm equation, the quantum potential is introduced in an ad hoc manner in the
advection term. In the interpretation that we have suggested here, it can be related to the excess free energy Fex of a fluid, hence
to the spatial correlation function of its constitutive particles.

2 We recall that the temperature T in Equation (35) is an effective temperature which is different from the true thermodynamical
temperature T = Tipermo considered here.

30 This is not always the case. For example, the free energy associated with the Smoluchowski-Poisson equations describing
self-gravitating Brownian particles is not bounded from below [158]. In that case, the system can experience an isothermal
collapse. However, at sufficiently high temperatures, there exist long-lived metastable states (local minima of free energy at fixed
mass) on which the system can settle [159].

3l The system evolves at fixed temperature but P # pkpT /m because of the presence of correlations among the particles.

32 In the work of Cahn and Hilliard [166], the general free energy functional F = [ f(p, Vp, Ap, ...) dr is expanded in a Taylor series
about fy(p) leading to a free energy of the form F = [[fo(p) + x(Vp)?] dr equivalent to Equation (A96). See also the Remark at
the end of Section 8.2.
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