
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Cloud Environment Automation: from infrastructure
deployment to application monitoring
To cite this article: C. Aiftimiei et al 2017 J. Phys.: Conf. Ser. 898 082016

View the article online for updates and enhancements.

Related content
Abstracting application deployment on
Cloud infrastructures
D C Aiftimiei, E Fattibene, R Gargana et
al.

-

Monitoring of IaaS and scientific
applications on the Cloud using the
Elasticsearch ecosystem
S Bagnasco, D Berzano, A Guarise et al.

-

Towards Cloud-based Asynchronous
Elasticity for Iterative HPC Applications
Rodrigo da Rosa Righi, Vinicius Facco
Rodrigues, Cristiano André da Costa et al.

-

This content was downloaded from IP address 131.169.5.251 on 03/12/2017 at 21:08

https://doi.org/10.1088/1742-6596/898/8/082016
http://iopscience.iop.org/article/10.1088/1742-6596/898/8/082053
http://iopscience.iop.org/article/10.1088/1742-6596/898/8/082053
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012016
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012016
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012016
http://iopscience.iop.org/article/10.1088/1742-6596/649/1/012006
http://iopscience.iop.org/article/10.1088/1742-6596/649/1/012006

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

Cloud Environment Automation: from infrastructure

deployment to application monitoring

C. Aiftimiei1,2, A. Costantini1, R. Bucchi1, A. Italiano3,
D. Michelotto1, M. Panella1, M. Pergolesi4, M. Saletta5, S. Traldi6,
C. Vistoli1, G. Zizzi1 and D. Salomoni1

1INFN CNAF, Bologna, Italy
2IFIN - ”Horia Hulubei”, Bucharest - Magurele, Romania
3INFN Bari, Bari, Italy
4INFN Perugia, Perugia, Italy
5INFN Torino, Torino, Italy
6INFN Padova, Padova, Italy

E-mail: cristina.aiftimiei@cnaf.infn.it, alessandro.costantini@cnaf.infn.it

Abstract. The potential offered by the cloud paradigm is often limited by technical issues,
rules and regulations. In particular, the activities related to the design and deployment of the
Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for
the infrastructure maintainers. In this paper the research activity, carried out during the Open
City Platform (OCP) research project [1], aimed at designing and developing an automatic tool
for cloud-based IaaS deployment is presented. Open City Platform is an industrial research
project funded by the Italian Ministry of University and Research (MIUR), started in 2014.
It intends to research, develop and test new technological solutions open, interoperable and
usable on-demand in the field of Cloud Computing, along with new sustainable organizational
models that can be deployed for and adopted by the Public Administrations (PA). The presented
work and the related outcomes are aimed at simplifying the deployment and maintenance of a
complete IaaS cloud-based infrastructure.

1. Introduction
Cloud computing is a way to provide and enable the use of distributed computing, storage
resources and services that have been developed, thoroughly tested and adopted by industry,
science and government. For these actors, however, the acceptance of the models offered by the
Cloud, even if they represents a strong opportunity, is often limited both by technical-scientific
issues and by rules and regulations that impose specific behaviurs to protect providers and
consumers of public services (citizen or company).

On such premises, the Open City Platform (OCP) project [1] intends to research, develop
and test new technological solutions that are open, interoperable and usable on-demand on the
Cloud, as well as innovative organizational models that can be sustainable over time. The aim
of the project is to innovate, with scientific results and new standards, the delivery of services by
Local Government Administrations (LGA) and Regional Administrations to citizens, Companies
and other Public Administrations (PA). Therefore the main areas of research conducted by the
OCP are related to:

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

(i) scientific and technological challenges:

• Federated management of heterogeneous cloud platforms
• Integrated monitoring and support to billing systems
• Design and reengineering of Cloud applications
• Disaster recovery as a Service
• Integration of PaaS components in particular PaaS for eGov
• Open data and the Open Service and integration into business models
• Federated identity management and its trust relationship

(ii) legal, organizational, functional challenges and new business models that are necessary to
ensure a concrete feasibility within government scope of the results achieved by the project:

• Define new organizational models and public governance where regions have the role
of infrastructure intermediaries

• Decouple the exercise of administrative functions (public role) from the Information
and Communications Technology (ICT) instrument (private role) on which the function
is performed

• Adherence to new models regulations
• Accountability and attribution of precise responsibilities ensuring mutual protection

among those involved in the chain of service

The OCP architecture has been designed as a scalable, multilayer and interoperable platform
which consists of the following main components (see Figure 1 for details):

• Infrastructure as a Service (IaaS) platform based on OpenStack, suitably configured by
capitalizing on the pioneering experiences made in-house on the INFN Cloud-infrastructure
[2] as well as from previous cloud-related projects [3, 4].

• Platform as a Service (PaaS) platform that allows to use heterogeneous IaaS sites and easily
manage the deployment and execution of new applications in a cloud environment.

• Software as a Service (SaaS) platform that consists of an Application Store and a set of
new services that allow customers to choose the application of interest, to configure it, to
suit their needs and execute it on cloud-infrastructures.

Besides the aforementioned components, there are other layers aimed to create a complete
integration between the different Cloud services:

• The OCP Platform engine module, able to implement business logic. It provides support
for the automation of process workflows and complex services composition based on the
orchestration of simple services with reference to specific activities.

• Identity management module, that represents an authentication framework for the
management of digital identities, giving the ability to control and manage the access to
the infrastructure and related layers and services made avilable in the cloud environment.

• Open Data and Open Service Engine aimed at providing a full support to the generation
and use of data from homogeneous data sources.

• A marketplace where cloud-based services and components provided by the Public
Administations and made available through the cloud and offered to citizens and providers
to interact with the PA the first and provide innovative services to the community the
latter.

After the initial development and integration of the main components of the OCP platform,
including Iaas, PaaS and SaaS services, we had to cope with an increasing number of requests
to deploy new testbeds at the LGAs interested to use the OCP platform, starting from the IaaS
level. In this contribution we present in particular the solution developed in through the OCP

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

Figure 1. OCP platform architecture and main components.

project for the automatization and standardization of installation and configuration procedures
for the IaaS layer.

The paper is organized as follow. In Section 2 the common installation methods for IaaS and
their limits are described. In Section 3 the new semi-automatic installation method is proposed
and the developed features are highlighted. Finally, Section 4 concludes the paper presenting
directions to future work.

2. IaaS and installation scenarios
The Open City Platform project makes available a Cloud Computing platform open source,
flexible, scalable and compliant to international standards that consists of a set of components
organized in different layers, fully integrated with each other, that can already be installed
and used for activation of on demand services and access data in the Data Centers where
the experimentation take place. The platform is continuously maintained and updated with
additional components developed through the project in order to progressively meet the various
specific needs of PA. In its first phase, the project made available the services related to the
IaaS platform layer by evaluating two different installation methods already available during the
experimenting phase:

• manual installation and configuration (’hardcore’).

• fully-automated installation via Graphical User Interface (GUI) using Fuel [5].

2.1. Manual Installation and Configuration
This method consists of different steps aimed at (i) installing the OpenStack middleware based
on the use of the package manager and the repositories available for the chosen distribution
of the Operating System; (ii) tuning the configuration of the individual services by editing
the corresponding configuration files; (iii) verifying the installation and configuration steps by
checking the state of the processes involved, the status of the connections between related
services, the messages collected in the logs, etc.

In the case of deploying multi-node in High Availability environment (HA), services are first
installed in standalone mode and then clustered. With respect to this approach some advantages
were identified:

• better understanding of OpenStack dependencies between components, of the possible
choices in the deployment of services

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

• improved control over configurations, the possibility to enable advanced functionalities like:
multi-region support, SSL support, Identity management service and so on.

On the other hand, the following disadvantages were also identified:

• advanced knowledge of Linux OS, bash and network configuration is required

• error-prone - the method is subject to typo errors in particular for multi-node HA
deployments

• time-consuming, many of the operations are repetitive

This method is widely used in many cloud infrastructures both for pre-production as well
as for test and production environments. Moreover, the greater flexibility and control in the
choice of configuration are the main strengths. On the opposit side, instead, the method requires
additional effort to keep aligned configurations on more servers, expecially in the case of HA
multi-node deployments.

2.2. Fully-automatic installation using Fuel
The other method evaluated for the OCP project is a full automatic installation and
configuration method using Fuel [5]. Fuel is a framework for the installation and management
of an OpenStack-based infrastructure. It allows to perform the installation and configuration of
one or more OpenStack environments through both a Web-GUI interface or a classical Command
Line Interface (CLI). Fuel comes with a series of interesting functionalities such as (i) the
automatic host (physical or virtual) discovery; the presence of a step-by-step wizzard for an
easy installation; (iii) the adoption of different roles that can be assigned to each node; (iv) the
possibility to consult via a GUI the logs of the installation and configuration, providing also
control of their verbosity; (v) offers the possibility to perform tests regarding the health of the
services and the correctness of network configuration.

As for the previous method, also in this case some advantages have been identified:

• Easy installation through its GUI

• It enables new deployments and subsequent (limited) modifications on running
infrastructures (modifing services and add or remove nodes)

On the contrary, the following disadvantages have been singled out:

• The initial configuration cannot be changed (eg. move from a simple to a high-availability
setup)

• The OpenStack regions are not yet supported.

• The various components of the Cloud Controller (eg. Keystone, Glance, Horizon, Neutron)
are installed on the same node

• Custom configuration cannot be applied.

Among the already mentioned disadvantages we have to stress the fact that, at the time of
the tests, the latest OpenStack version supported for Fuel was Icehouse [6] on Centos 6.5 and
on Ubuntu 12.04.4. Specifications that were in contrast with the OCP project requirements
advertised to provide a full support to OpenStack version Juno [7] on Ubuntu 14.04 LTS [8].

3. The AutomaticOCP IaaS deployment tool
The investigated methods already described in the above Section present some important
drawbacks that are here recapped:

• The manual installation and configuration method can be time-consuming for the
infrastructure maintainers due to the repetitive operations they have to perform in order
to keep configurations correctly aligned among different servers and nodes.

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

• The automatic installation method based on Fuel tool [5], even if it solves many of the
disadvantages identified in the manual method, does not permit a full tuning of the
infrastructure being not flexible enough to cope with the architectural requirements of
the PA.

For the above mentioned reasons, a semi-automatic installation and configuration tool
(hereafter called AutomaticOCP) has been designed. The AutomaticOCP tool is able to take
the advantages of the methods presented in the previous Section, including the use of a Web-
GUI, and, in the same time, be flexible enough to meet the architectural requirements of the
OCP project (advertised to use OpenStack version Juno [7] on Ubuntu 14.04 LTS [8]) as well
as the ones of the Data Center where the OpenStack Infrastructure will be deployed.

The solution proposed is leveraging two of the most popular open source automation tools,
namely Foreman [9] and Puppet [10], making use as much as possible of the official OpenStack
Puppet modules [11], as well as of other community supported Puppet modules for services like
MySQL/Percona [12], Ceph [13], and others.

3.1. The Puppet method: Roles and Profiles
According to the Puppet documentation [14], the use of roles and profiles method is the most
reliable way to build reusable, configurable, and refactorable system configurations. Following
this model, we developed our Puppet code in three main layers:

• Component modules: these are the normal modules that configure specific pieces of
technology (like apache, mysql, etc)

• Profiles: Wrapper classes that use multiple component modules to configure a technology
(like Wordpress, Jenkins, etc)

• Roles: Wrapper classes that use multiple profiles to build a complete system configuration.
In our case the Roles moduels contain the variables that have to be set in order to deploy
the OCP Infrastructure.

In the present work the Component modules are those available in the official Puppet repos
and provided by the community members. Unfortunately, some of them, like the ones for Ceph
and Percona/MySQL have been slightly modified (due to some missing features), and have been
provided as internal OCP modules, made available via the INFN Gitlab repository [15].

Roles and profiles for the different services have been developed to make the whole
infrastructure flexible enough and to cope with the technical and architectural requirements
to which the Data Center have to comply with.

An overview of the infrastructure architecture can be seen in Figure 2 where all the main
components and services are present and here briefly described:

• Master Node: it hosts the configuration management services, like Foreman and Puppet,
used to install and configure the whole OCP-IaaS. At present, the configuration management
tools have to be manually configured. The same node can eventually host a Zabbix [16]
monitoring server for resources and application monitoring. The Zabbix server configuration
has been implemented through a Puppet Role named monit server. In the same way,
the Zabbix agents configuration on the OCP-IaaS nodes has been implemented through a
Puppet Role named monit agent.

• RHMK Nodes: they provide external OpenStack services such as: (i) database cluster
services (Percona/Mysql [12] and MongoDB [17]); (ii) a messaging system implementing the
AMQP protocol to let the Openstack services to connect and horizontally scale in case of
an increase of demands (RabbitMq [18]) and (iii) a set of services for the High Availability
and Load Balancing (HAproxy [19], Zookeeper [20] and Keepalived [21]). All the RHMK

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

services configurations have been identified in Puppet with a Role named rhmk, while the
configuration of each individual mentioned service is represented by a Profile.

• Storage Nodes: Ceph, version Hammer [22], has been chosen as a distributed block storage
platform whereby a minimum of three nodes are configured to ensure data replication. To
cope with the project requirements, Ceph was also chosen as object storage for the PaaS
layer by configuring the Ceph Object Gateway [23]. Ceph Object Gateway is an object
storage interface built on top of librados to provide applications with a RESTful gateway to
Ceph Storage Clusters. In particular Ceph makes use of the RADOSGW daemon, a FastCGI
module that provides interfaces compatible with OpenStack Swift [24] and Amazon S3 [25].
The Ceph storage service has been configured through a Puppet Role named Storage.

• Controller and Network Nodes: they contain some common OpenStack services which
are defined as Puppet Profiles. The configuration variables are hosted in the Puppet Role
named Controller&Network. The service is designed to run in a High Availability setup
but it can be deployed on a single node also. Controller and Network services can be
split in different nodes if required by architectural needs and each service is designed to
run as single server as well as part of a HA cluster. OCP Network currently support the
network configuration as from the OpenStack documentation [26].

• Compute Node: it contains the Nova services which are configured throught Puppet
Profiles. The configuration variables are hosted in the Puppet Role named Compute that
permits to deploy the node and add it to the OpenStack infrastructure at any time.

Figure 2. Overview of the OCP Infrastructure architecture and related Services.

3.2. Infrastructure deployment with Foreman GUI
As already mentioned, the proposed solution is leveraging on the Foreman [9] automation
software used to provide a Web-GUI for the IaaS installation and configuration processes.
Foreman is an open source complete life cycle systems management tool for provisioning,
configuring and monitoring of physical and virtual servers. Foreman has deep integration with
configuration management software like Puppet to automate tasks and application deployment.

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

Foreman provides a web user interface, API, for an easy interaction but also a CLI, for more
experienced users.

The version of Foreman available and suitable for the project purposes was the 1.10.1.
Foreman has been used as it is, leveraging on its native features. In particular there has been a
massive use of the HostGroups, a collection of user-selected classes and parameters needed for
the installation and configuration of the OCP IaaS. As shown in Figure 3, a main Host Group
called OCP-BASE has beed defined associating to it only those Puppet classes used by all the
Roles. Starting from the OCP-BASE Host Group, a set of sub-Host Group has been defined
(one for each Puppet Role) and the related class parameters have been assigned and populated.

Figure 3. Foreman Web-GUI: OCP Host Group definition.

After the OCP-IaaS installation and configuration process finished and all the services are up
and running on the related hosts, Foreman can be used to control and maintain the configuration
status of the nodes as shown in Figure 4. Moreover, Foreman can be used also to reconfigure a
selected node in case of errors due to misconfiguration, including therein the worst case where
a complete reinstallation is needed.

Figure 4. Foreman Web-GUI: A way to control hosts configuration status.

4. Future work
In the present paper a new semi-automatic installation method for IaaS has been presented. The
method has proved to be flexible enough to meet the architectural requirements dicted by the
OCP project as well as of the Data Center where the OpenStack Infrastructure will be deployed.

8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 082016 doi :10.1088/1742-6596/898/8/082016

With our solution we tried to address the different requirements and realities that we met
during the collaboration with PAs, including, among others (i) the configuration of multiple
external networks; (ii) full management of the configuration of the network layer giving the
ability to merge or split the configuration of the various OpenStack networks (management,
data, public and external); (iii) use of Ceph both as block and object storage backend by
configuring the Ceph Object Gateway in order to expose Swift APIs; (iv) fine grained variable
configuration through the use of the Foreman GUI allowing site-admins to specify the values of
all service specific parameters.

The positive results obtained and the experience gained during the testing phase, led us to
investigate new semi-automatic procedures able to install and configure a complete OCP-IaaS
providing also a full support to the OpenStack Identity API v3 [27]. As a challenge, we are
now designing the semi-automatic tool to be used for performing the upgrade of the OCP-
IaaS layer to a new OpenStack version. Moreover, automated tools devoted to the installation
and configuration of the PaaS layer (the so called CloudFormation as a Service) are under
investigation and will be part of future enhancements.

References
[1] OpenCityPlatform Project, http://www.opencityplatform.eu/
[2] C. Aiftimiei, R. Bucchi, A. Costantini, D. Michelotto, M.Panella, D. Salomoni and G. Zizzi: Cloud@CNAF

- the road to Juno. INFN-CNAF Annual Report 2015, pp 134.139 (2016) ISSN 2283-5490
[3] PRISMA project,http://www.ponsmartcities-prisma.it/
[4] MCloud project,http://www.ecommunity.marche.it/AgendaDigitale/MCLoud/Obiettivi/tabid/206/Default.aspx
[5] Fuel framework, https://www.mirantis.com/products/mirantis-openstack-software/
[6] OpenStack Icehouse, https://www.OpenStack.org/software/icehouse/
[7] OpenStack Juno, https://www.OpenStack.org/software/juno/
[8] Canonical, https://wiki.ubuntu.com/TrustyTahr/ReleaseNotes/14.04
[9] Foreman framework, http://theforeman.org/

[10] Puppet, https://puppetlabs.com/
[11] OpenStack Puppet, https://wiki.openstack.org/wiki/Puppet
[12] Percona cluster, https://www.percona.com/software/mysql-database/percona-server
[13] Ceph storage platform, http://ceph.com/releases/v0-94-hammer-released/
[14] Puppet Documentation, https://docs.puppet.com/pe/2016.2/r n p intro.html
[15] OCP Internal Repository, https://baltig.infn.it/groups/ocp-tools
[16] Zabbix monitoring service, http://www.zabbix.com/
[17] MongoDB no SQL database, https://www.mongodb.com/
[18] RabbitMQ messaging service, https://www.rabbitmq.com
[19] Haproxy TCP/HTTP Load Balancer, www.haproxy.org
[20] Apache ZooKeeper, https://zookeeper.apache.org/
[21] Keepalived, www.keepalived.org/
[22] Ceph V0.94 (Hammer), http://ceph.com/releases/v0-94-hammer-released/
[23] Ceph object storage, http://docs.ceph.com/docs/master/radosgw/
[24] OpenStack Swift, https://wiki.openstack.org/wiki/ReleaseNotes/Juno#OpenStack Object Storage .28Swift.29
[25] Amazon Simple Storage Service, https://aws.amazon.com/it/s3/
[26] OpenStack Networking documentation, http://docs.openstack.org/security-

guide/networking/architecture.html
[27] OpenStack API v3, http://developer.openstack.org/api-ref/identity/v3/

