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Abstract Within the Friedmann–Lemaître–Robertson–
Walker (FLRW) framework, the Hubble constant H0 is an
integration constant. Thus, consistency of the model demands
observational constancy of H0. We demonstrate redshift evo-
lution of best fit �CDM parameters (H0,�m) in Pantheon+
supernove (SNe). Redshift evolution of best fit cosmological
parameters is a prerequisite to finding a statistically signifi-
cant evolution as well as identifying alternative models that
are competitive with �CDM in a Bayesian model compari-
son. To assess statistical significance, we employ three dif-
ferent methods: (i) Bayesian model comparison, (ii) mock
simulations and (iii) profile distributions. The first shows a
marginal preference for the vanilla �CDM model over an ad
hoc model with 3 additional parameters and an unphysical
jump in cosmological parameters at z = 1. From mock sim-
ulations, we estimate the statistical significance of redshift
evolution of best fit parameters and negative dark energy den-
sity (�m > 1) to be in the 1 − 2σ range, depending on the
criteria employed. Importantly, in direct comparison to the
same analysis with the earlier Pantheon sample we find that
statistical significance of redshift evolution of best fit param-
eters has increased, as expected for a physical effect. Our pro-
file distribution analysis demonstrates a shift in (H0,�m) in
excess of 95% confidence level for SNe with redshifts z > 1
and also shows that a degeneracy in MCMC posteriors is
not equivalent to a curve of constant χ2. Our findings can be
interpreted as a statistical fluctuation or unexplored systemat-
ics in Pantheon+ or �CDM model breakdown. The first two
possibilities are disfavoured by similar trends in independent
probes.

a e-mail: eoin.ocolgain@atu.ie (corresponding author)

1 Introduction

The (flat) �CDM cosmological model is an extremely suc-
cessful minimal model that returns seemingly consistent cos-
mological parameters across Type Ia supernovae (SNe) [1,2],
Cosmic Microwave Background [3] and baryon acoustic
oscillations [4]. Despite this success, comparison of early
and late Universe cosmological parameters has revealed dis-
crepancies [5–11]. The origin [12,13] and resolution [14,15]
of these anomalies is a topic of debate. We observe that the
�CDM model describes approximately 13 billion years of
evolution of the Hubble parameter H(z) in the late Universe
(conservatively redshifts z � 30) with a single fitting param-
eter, matter density today �m .1 Objectively, given the pre-
vailing belief that �m ∼ 0.3, this marks billions of years of
evolution with effectively no free parameters.

As originally pointed out [16] (see also [17]), within
the FLRW framework, any mismatch between H(z), an
unknown function inferred from Nature, and a theoretical
assumption on the effective EoS weff(z), e. g. the �CDM
model, must mathematically lead to a Hubble constant H0

that evolves with effective redshift. Simply put, a redshift-
dependent H0 is indicative of a bad model [16]. This pre-
diction can be tested in the late Universe, where the �CDM
model reduces to two fitting parameters:

H(z) = H0

√
1 − �m + �m(1 + z)3. (1)

To date, independent studies have documented decreas-
ing H0 trends within model (1) across strong lensing time
delay (SLTD) [18,19], Type Ia supernovae (SNe) [20–25]
and combinations of cosmological data sets [26–28]. More-

1 The Hubble constant H0 is merely the scale of H(z), so it does not
dictate evolution. �m is also in effect an integration constant from the
continuity equation.
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over, quasar (QSO) Hubble diagrams [29–31] show a prefer-
ence for larger than expected �m values, �m � 1 [32–35].
It was subsequently noted that �m increases with effective
redshift in SNe and QSO samples [24,36,37]. Although the
trend in any given observable is not overly significant, e. g.
� 2σ for SLTD [18,19], combining probabilities from inde-
pendent observables using Fisher’s method, the significance
increases quickly [25].

Simple binned mock �CDM data analysis [25,38] sug-
gests that evolution of (H0,�m) best fit parameters must
be expected in any data set that only provides either observa-
tional Hubble H(z) or angular diameter DA(z) or luminosity
distance DL(z) constraints.2 If true, one can expect to sepa-
rate any given sample into low and high redshift subsamples
and see discrepancies in the (H0,�m)-plane. Here, we high-
light the feature in the latest Pantheon+ SNe sample [39,40].3

The main message of this letter is that evolution of (H0,�m)

with effective redshift persists in Pantheon+ SNe. Further-
more, an increasing �m trend, evident at higher redshifts,
continues beyond �m = 1 giving rise to negative DE den-
sities at z � 1. In light of concerns highlighted in [45–47],
the Pantheon+ sample improves on redshift corrections [48].
Thus, errors in the handling of redshifts can be precluded
as the origin of the trend. It is worth stressing again that
[25,38] provide a mathematical proof that redshift evolution
of best fit �CDM parameters cannot be ruled out in mock
Planck-�CDM data. There are then two relevant questions.
Is redshift evolution of best fit �CDM parameters evident in
observed data? If so, what is its statistical significance?

In cosmology the default is to assess statistical signif-
icance with Markov Chain Monte Carlo (MCMC). The
increasing �m trend is evident in MCMC posteriors, but
as we demonstrate, the H0 posterior is subject to projec-
tion effects due to a degeneracy (banana-shaped contour) in
the 2D (H0,�m) posterior. In the literature, this is inter-
preted as the data failing to constrain the model, but as we
will show in Sect. 5, this is a misconception because it is
not supported by the χ2 (see also [49]). We overcome the
MCMC degeneracy in three complementary ways. First, we
provide a Bayesian comparison between the �CDM model
and the �CDM model with a split at redshift zsplit, where
(H0,�m) are allowed to adopt different values at low and
high redshift. Secondly, we employ a frequentist compari-
son between best fits of the observed data and mock data
that focuses on different criteria quantifying evolution in the
sample. Finally, we analyse the χ2 through profile distribu-

2 Note that DL (z) and DA(z) are not independent within FLRW setting,
since DL (z) = (1 + z)2DA(z).
3 We note that Pantheon+ is statistically poorer than the Pantheon
sample [41] at higher redshifts; 57 higher redshift SNLS [42,43] SNe
beyond z = 0.8 have been removed due to potential evolution in inferred
distances [44].

tions. For the Pantheon+ sample split at zsplit = 1 we find a
shift in the cosmological parameters that exceeds 95% confi-
dence level. Note, Pantheon+ is presented as a sample in the
redshift range 0 < z ≤ 2.26, but redshift evolution of cos-
mological parameters is evident in the �CDM model from
z = 0.7 onwards.

Hints of negative DE densities, especially at higher red-
shifts, are widespread in the literature, so our observations in
Pantheon+ may be unsurprising. Indeed, while �CDM mock
analysis in [25,38] confirms that �m > 1 best fits are pre-
cluded with low redshift data, this is no longer true at higher
redshifts. We stress again that this is a purely mathematical
feature of the �CDM model. Starting with studies incorpo-
rating Lyman-α BAO [50], one of the first observables dis-
crepant with Planck-�CDM [51–53], claims of negative DE
densities at higher redshifts, including anti-de Sitter (AdS)
vacua at high redshift [54,55] (however see [56])4 and fea-
tures in data reconstructions [62–66], have been noticeable.5

This has led to extensive attempts to model negative DE den-
sities [71–81], most simply as sign switching � models [82–
86]. Given the sparseness of SNe data beyond z = 1, claims
of negative DE densities are usually attributed to Lyman-α
BAO,6 but here we see the same feature in state of the art
Pantheon+ SNe. It is plausible that selection effects are at
play (see discussion in [20]), but if the arguments in [25,38]
hold up, then �m > 1 �CDM best fits to data in high red-
shift bins cannot be precluded. On the contrary, they can be
expected.

2 Preliminaries

Our analysis starts by following and recovering results in
[88] (see also [39]). We set the stage with a preliminary con-
sistency check. In short, we extremise the likelihood,

χ2 = �QT · (Cstat+sys)
−1 · �Q, (2)

where �Q is a 1701-dimensional vector and Cstat+sys is the
covariance matrix of the Pantheon+ sample [39]. The Pan-
theon+ sample has 1701 SN light curves, 77 of which corre-
spond to galaxies hosting Cepheids in the low redshift range

4 AdS vacua pre-recombination resolve Hubble tension without invok-
ing H0 priors [57–61].
5 One cannot get negative DE densities when one works with a
barotropic EoS wDE(z), but one may find null DE densities by sending
wDE(z) → −∞ [67,68]. More generally, one notes a preference for
wDE(z) < 0 at higher z [69,70].
6 �m > 1 best fits also appear in high redshift observational Hubble
data (OHD) [25] that incorporates historical Lyman-α BAO [50]. How-
ever, when updated to the latest Lyman-α BAO constraints [53,87], one
finds a �m < 1 best fit, admittedly one that still precludes the Planck
�m value at greater than 95% confidence level [49]. Thus, improve-
ments in data quality can remove signatures of negative DE densities
by bringing �m values back closer to Planck values.
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0.00122 ≤ z ≤ 0.01682. In order to break the degeneracy
between H0 and the absolute magnitude M of Type Ia, we
define the vector

Qi =
{
mi − M − μi , i ∈ Cepheid hosts

mi − M − μmodel(zi ), otherwise
(3)

where mi and μi ≡ mi − M denote the apparent magnitude
and distance modulus of the i th SN, respectively. The cos-
mological model, which we assume to be the �CDM model
(1), enters through the following relations:

μmodel(z) = 5 log
dL(z)

Mpc
+ 25,

dL(z) = c(1 + z)
∫ z

0

dz′

H(z′)
. (4)

Extremising the likelihood, one arrives at the best fit values,

H0 = 73.42 km/s/Mpc, �m = 0.333, M = −19.248,

(5)

which are in perfect agreement with [88]. We estimate the
1σ confidence intervals through an MCMC exploration of
the likelihood with emcee [89], finding excellent agreement
with Fisher matrix analysis [88],

H0 = 73.41+0.97
−1.00 km/s/Mpc,

�m = 0.333+0.018
−0.017, M = −19.248+0.028

−0.030.
(6)

It is interesting to compare Pantheon+ constraints on �mh2

(h := H0/100) directly with Planck. In Fig. 1 we highlight
a 3.7σ tension,7 which importantly impacts the high red-

shift behaviour of H(z) ∼ H0
√

�m(1 + z)
3
2 in the late

Universe. This is interesting, as we start to see evolution
in best fit �CDM parameters at higher redshifts. Given the
tension in the Hubble constant [5–9], our focus here is on H0

and by extension �m , since both parameters are correlated
when one fits data. Of course, if the fitting parameters H0

and �m change with effective redshift, there is no guarantee
that �mh2 is a constant. If the constancy of �mh2 can be
tested, this allows one to study the assumption that matter
is pressureless. Such studies will require data exclusively in
the matter dominated regime where DE and radiation sectors
are irrelevant. Given the sparcity of high redshift z > 1 data,
competitive studies are still a few years off.

3 Splitting Pantheon+

Having confirmed the results quoted in [88], we depart from
earlier analysis and crop the Pantheon+ covariance matrix in
order to isolate the 77 × 77-dimensional covariance matrix

7 The relevant constraints are �mh2 = 0.1430 ± 0.0014 and �mh2 =
0.18 ± 0.01 for Planck and Pantheon+, respectively.

Fig. 1 3.7σ tension between Planck and Pantheon+ for the parameter
combination that dictates the high redshift behaviour of the Hubble
parameter H(z) in the late Universe. We made use of GetDist [90]

CCepheid corresponding to SNe in Cepheid host galaxies and
define a new likelihood that is only sensitive to the absolute
magnitude M ,

χ2
Cepheid = ( �Q′)T · (CCepheid)

−1 · �Q′,
Q′

i = mi − M − μi , i ∈ Cepheid hosts. (7)

We can now split the remaining 1624 SNe into low and high
redshift samples, which we demarcate through a redshift
zsplit. One can crop the original covariance matrix accord-
ingly to get CSN for either the low or high redshift sample,
but we will primarily focus on the high redshift subsample
with z > zsplit. The reason being that SNe samples have a low
effective redshift, zeff ∼ 0.3, and it is well documented that
Planck values �m ∼ 0.3 are preferred. The hypothesis we
explore is that such results overlook evolution at higher red-
shifts, so this explains the focus on high redshift subsamples.
In summary, we study the new likelihood,

χ2 = χ2
Cepheid + χ2

SN, (8)

where we have defined,

χ2
SN = (

�̃Q)T · (CSN)−1 · �̃Q,

Q̃i = mi − M − μmodel(zi ).
(9)

The redshift range of the Pantheon+ sample [39] is 0.00122 ≤
z ≤ 2.26137, so we take zsplit in this range. In the next sec-
tion we begin the tomographic analysis of splitting the Pan-
theon+ sample into a low and high redshift subsample. We
remark that the likelihoods presented in Eqs. (2) and (8) omit
a constant normalisation. Being a constant, it plays no role
when one fits data, and is thus routinely omitted in the litera-
ture [39]. However, this term is relevant when one performs
Bayesian model comparison. We will reinstate the normali-
sation later.
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4 Analysis

It is widely recognised that confronting exclusively high red-
shift SNe data to the �CDM model, MCMC inferences are
typically impacted by degeneracies, i. e. banana-shaped pos-
teriors, in the (H0,�m)-plane. Later we confirm the impact of
projection effects on MCMC posteriors as priors are relaxed
in the presence of a degeneracy.8 We overcome the degener-
acy in MCMC marginalisation through three different prongs
of attack that only rest upon on the likelihood or χ2. Here it
is worth noting that MCMC is merely an algorithm, whereas
the χ2 is a measure or metric of how well a point in param-
eter space fits the data. First, we provide a Bayesian model
comparison based on the Akaike Information Criterion (AIC)
[91] between the �CDM model and a �CDM model allow-
ing a jump in cosmological parameters (H0,�m) at a fixed
redshift. Despite the vanilla �CDM model being preferred
by the AIC, the analysis demonstrates that an alternative
model, even a physically ad hoc model that contradicts the
basic fundamentals of FLRW, becomes more competitive if
the �CDM fitting parameters change with effective redshift
when confronted to data. Secondly, in a frequentist analy-
sis we resort to a comparison between best fits of observed
and mock data in the same redshift range with the same data
quality to ascertain the significance of evolution. Finally, later
in section 5, we employ profile distributions as a secondary
frequentist approach.

4.1 Bayesian interpretation

One may interpret the results in Table 1 as a comparison
between two models. The first is the �CDM model fitted over
the entire redshift range of the SNe, 0.00122 ≤ z ≤ 2.26137,
with three parameters (H0,�m, M), while the second is the
�CDM model with a split at redshift zsplit allowing the model
to adopt different values of (H0,�m) above and below the
split. Note that the likelihood (8) separates SNe in Cepheid
host galaxies and their only role is to constrain M . For this
reason, one is only fitting two effective parameters (H0,�m).
Furthermore, by introducing the data split, we are comparing
this effective two parameter model (H0,�m) with an effec-
tive five parameter model (H (1)

0 ,�
(1)
m , H (2)

0 ,�
(2)
m , zsplit).

Table 1 presents improvements in the χ2 without the normal-
isation corresponding to the logarithm of the determinant of
the covariance matrixCstat+sys. Since we truncate outCstat+sys

entries when we split the SNe, this increases the normalisa-

8 In the cosmology literature, it is routinely assumed that all points
within MCMC 68% credible intervals provide an equally good fit to
the data, even in the presence of a degeneracy. As demonstrated in
[49], this need not be the case; one can find settings where frequentist
confidence intervals are constrained, but MCMC credible intervals are
at best inconclusive, thereby undermining any analysis that rests only
on MCMC.

tion, thereby penalising the model with the split beyond the 3
extra parameters introduced. We will quantify this number in
turn, but only in competitive settings relative to the �CDM
model where the improvement in χ2 in Table 1 is enough to
overcome the additional parameters, i. e. �χ2 < −6.9

It should be noted that while model A is the vanilla �CDM
model, the model B that serves as a foil to �CDM is a con-
tradiction, because if H0 and �m change with effective red-
shift, this violates the mathematical requirement that both
are integration constants. For this reason, model B could
never replace �CDM. Nevertheless, the result is instructive
as Bayesian model comparison is prevalent in the cosmology
literature. That being said, the focus of this paper is perform-
ing a consistency check of the �CDM model and this does
not necessitate a model B. What the analysis here shows is
that we are getting close to a point in time where models
incorporating evolution in the fitting parameters H0 and �m

may be more competitive than �CDM, simply based on SNe
data alone.

We recall the Akaike information criterion (AIC) [91],

AIC = −2 lnLmax + 2d = ln |Cstat+sys| + χ2
min + 2d, (10)

where χ2
min is the minimum of the χ2, d is the number of

free parameters and |Cstay+sys| denotes the determinant of
the Pantheon+ covariance matrix Cstat+sys. Since the latter
is a constant, it has no bearing on the best fit parameters,
but it impacts the AIC analysis. 10 However, since Cstat+sys

is a large matrix with small numerical entries, determining
the absolute value of |Cstat+sys| within machine precision is
difficult. One can simplify the problem by noting that the 77×
77 matrix CCepheid is common to both the �CDM model and
the �CDM model with a jump in cosmological parameters,
so it contributes to both AIC values and drops out. Thus, we
only need to the study the 1624 × 1624 covariance matrix
CSN, but this is still a large matrix with small numerical
entries.

Since the �CDM model with a jump in cosmological
parameters necessitates three additional parameters, i. e.
�d = 3, this penalty can only be absorbed to give a lower
AIC if �χ2

min < −6. The results of splitting the Pantheon+
sample and fitting the �CDM model to data below and above
z = zsplit are shown in Table 1. We find that refitting the
low redshift sample typically leads to small improvements in
χ2, whereas refits of the high redshift sample lead to greater
improvements. This outcome is expected if there is evolution
across the sample; the evolution is only expected at higher

9 Whenever the covariance matrixC has large dimensionality and small
entries, it is difficult to determine its determinant |C |; beyond a cer-
tain dimensionality, one encounters |C | = 0 ⇒ ln |C | = −∞ within
machine precision. Nevertheless, when the dimensionality becomes
smaller, a finite, non-zero determinant is calculable.
10 We thank an anonymous EPJC referee for pointing this important
point out.
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Table 1 Redshift splits of the Pantheon+ sample showing the number
of SNe (excluding 77 calibrators), the best fit H0 and �m values, and
differences in χ2 in low and high redshift subsamples. Changes in χ2

are with respect to best fits for the full sample with no split (see Table 2).
M does not change as we decouple the calibrating SNe in the likelihood
(8)

zsplit # SN H0 (km/s/Mpc) �m �χ2

≤ zsplit > zsplit ≤ zsplit > zsplit ≤ zsplit > zsplit ≤ zsplit > zsplit

0.1 664 960 73.19 73.41 0.359 0.334 −0.4 0

0.2 871 753 73.19 73.27 0.388 0.341 −0.7 −0.1

0.3 1130 494 73.24 72.09 0.374 0.384 −1.3 −2.3

0.4 1316 308 73.37 72.64 0.337 0.365 0 −0.3

0.5 1414 210 73.38 76.84 0.333 0.252 −0.1 −3.0

0.6 1495 129 73.30 76.98 0.348 0.249 −0.5 −1.0

0.7 1549 75 73.30 80.29 0.348 0.190 −0.5 −2.4

0.8 1594 30 73.27 74.20 0.353 0.266 −1.1 −1.7

0.9 1597 27 73.26 60.86 0.354 0.604 −1.4 −3.2

1 1599 25 73.28 34.37 0.351 3.391 −1.0 −6.2

1.1 1604 20 73.35 34.19 0.342 3.478 −0.3 −3.3

1.2 1605 19 73.37 34.08 0.340 3.508 −0.1 −2.5

redshifts because SNe samples have a low effective redshift,
and as we have noted, SNe samples generically prefer Planck
values �m ∼ 0.3. In particular, zsplit = 1 gives rise to greatest
reduction in χ2

min with respect to the �CDM model without
the split. However, we need to make sure that differences in
ln |CSN| do not counter the improvement in χ2

min.
To that end, consider

CSN =
(

A B
BT C

)
(11)

where A, B and C are respectively 1599 × 1599, 1599 × 25
and 25 × 25-dimensional matrices. Note that the dimension-
alities are fixed by the choice of zsplit = 1. The determinant
of this block diagonal matrix is

|CSN| = |A| · |C − BT A−1B|, (12)

provided the matrix A is invertible. Note that when one intro-
duces the split at zsplit = 1, one sets B = 0. As a result, the
difference in the ln |CSN| is

� ln |Cstat+sys| = � ln |CSN|,
= ln |C | − ln |C − BT A−1B|,
= −71.49 − (−72.97) = 1.48, (13)

where ln |A| contributes equally to competing AIC values and
thus drops out. This removes the problem with machine preci-
sion leaving us a comparison of the logarithm of the determi-
nant of smaller 25×25 matrices. We are now left with an easy
calculation. The AIC changes by �AIC = � ln |Cstat+sys| +
�χ2

min + 2�d = 1.5 − 1 − 6.2 + 2(5 − 2) = 0.3, when
one replaces the vanilla �CDM model with a (contradic-
tory) �CDM model with a jump in the parameters (H0,�m)

at zsplit = 1. Thus, despite the evolution seen in (H0,�m),

Pantheon+ SNe data still has a marginal preference for the
vanilla �CDM model over a physically “ad hoc model” with
3 additional parameters.

Given that our model B is not only a contradiction, but
also has 3 additional parameters, it is not really a serious con-
tender. That being said, the take-home message is clear. If the
�CDM fitting parameters (H0,�m) change with effective
redshift in a statistically significant way (see later analysis
in Sect. 5 for confirmation), thereby failing our consistency
check for a given split into low and high redshift subsamples,
this opens the door for competing models. A physically moti-
vated minimal extension of the �CDM model evidently may
lead to a reversal in the conclusion that the �CDM model is
preferred.

We close this section with additional comments. The
change of (H0,�m)parameters with effective redshift consti-
tutes a decreasing H0/ increasing �m best fit trend with effec-
tive redshift. This is consistent with earlier analysis of the
Pantheon SNe sample [24,25]. Moreover, as is clear from Fig.
2 of [24] and Table 1, this trend begins at z = 0.7. Upgrad-
ing the Pantheon to Pantheon+ samples has not changed this
trend. A final point worth stressing is that best fits beyond
zsplit = 1 prefer a �CDM model with negative DE densities,
�m > 1. This is simply a feature of the Pantheon+ [39,40]
data set, but since Risaliti-Lusso QSOs [30,31] have a strong
preference for �m > 1 inferences in the �CDM model at
high redshifts, the observations are consistent and both data
sets warrant further study.

4.2 An illustration of MCMC bias

Having identified the split that enhances the improvement in
fit, here we fix zsplit = 1 and present MCMC posteriors for
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data above and below the split. In Fig. 2 the results of this
exercise can be seen, where we have allowed for different
uniform priors on �m . There are a number of take-home mes-
sages. First, the low redshift (H0,�m) posteriors are Gaus-
sian, as expected, whereas the high redshift (H0,�m) poste-
riors are not. Secondly, the peak of the �m posterior is found
in the �m > 1 regime, but it is robust to changes in the �m

prior. Thus, imposing �m ≤ 1 would simply cut off the peak
in the high redshift �m posterior. Thirdly, the H0 posterior is
sensitive to the �m prior. This is easy to understand as a pro-
jection effect. In short, as we relax the prior, the 2D MCMC
posterior probes more of the top left corner of the (H0,�m)-
plane. Configurations in this corner only differ appreciably
in �m , while getting projected onto more or less the same
lower value of H0. Ultimately, what one concludes from the
2D MCMC posteriors is that the data is not good enough to
constrain the model. The assumption then is that points in
parameter space along the banana-shaped contour give rise
to more or less the same values of χ2. As we shall show
later, this assumption is false (see also [49]). Of course, the
peak of the marginalised 1D H0 posterior cannot be tracking
the minimum of the χ2 as its value is unique up to machine
precision. We will now introduce two independent method-
ologies, mock simulations and profile distributions, which
track the minimum of the χ2, and we will assess the statisti-
cal significance of evolution between low and high redshift
subsamples.

4.3 Frequentist interpretation

Here we adopt the same likelihood (8), but estimate the
probability of finding a decreasing H0/increasing �m best
fit trend and negative DE densities as prominent in mock
data. It should be noted that whenever one finds an unusual
signal in cosmological data, it is standard practice to run
mock simulations to ascertain if the signal is statistically
significant or not. Here, the decreasing H0/increasing �m

trend in best fits is the unusual signal that we wish to test.
Since we search for evolution trends and one expects little
evolution at low z in mocks with good statistics, it is more
efficient to remove low redshift SNe and restrict attention to
the 210 SNe in the redshift range z > 0.5. Thus, given a
realisation of SNe data, we choose a cut-off redshift zcut-off

in the range zcut-off ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2} and
remove SNe with z ≤ zcut-off. This gives us 8 nested sub-
samples and for each subsample, we fit the �CDM model
and record the best fit (H0,�m) values. We then construct
the sums

σH0 =
∑

zcut-off

(H0 − 73.41), σ�m =
∑

zcut-off

(�m − 0.333),

(14)

Fig. 2 MCMC posteriors for low and high redshift subsamples for the
2 cosmological parameters (H0, �m) and the 1 nuisance parameter M ,
the absolute magnitude of Type Ia SN. The low redshift posteriors are
Gaussian, but the high redshift posteriors are not, in line with expecta-
tions. Extending the uniform �m prior leads to shifts in the peak of the
H0 posterior due to a projection effect. Imposing the standard �m ≤ 1
prior cuts off the peak of the �m distribution in the high redshift sub-
sample

Table 2 Input parameters for our mocks. We construct an array of
(H0, �m , M) values randomly in a normal distribution about each best
fit with standard deviation specified by the error. Errors have been esti-
mated through Fisher matrix

H0 (km/s/Mpc) �m M

73.41 ± 1.04 0.333 ± 0.018 −19.249 ± 0.030

where H0 and �m denote the best fits at each zcut-off, and
the difference is relative to the best fits of the full sample
(Table 2). See [24] for earlier analysis with the Pantheon
sample, where similar sums were employed but with a fixed
(not fitted) M . Sums close to zero correspond to realisations
of the data with no specific trend that averages to zero. As is
clear from Table 1, in Pantheon+ we see a decreasing H0 and
increasing �m trend, so we expect σH0 < 0 and σ�m > 0 in
Pantheon+ SNe; the concrete numbers are σH0 = −115.50
and σ�m = 9.27 to two decimal places. The advantage of
constructing a sum is that it places no particularly importance
on the choice of zsplit.

Our goal now is to construct Pantheon+ SNe mocks in the
redshift range z > 0.5 that are statistically consistent with
no evolution in (H0,�m). To begin, we fit the full sample
using the likelihood (8), identify best fits and 1σ confidence
intervals through the inverse of a Fisher matrix (see [88]).
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We record the result in Table 2, noting that the result agrees
almost exactly with (6), despite differences in the likelihood,
i. e. (2) versus (8). Note, we could also run an MCMC chain,
but we have already demonstrated that the errors are Gaussian
in Sect. 2, so whether one uses an MCMC chain or random
numbers generated in normal distributions from Table 2, one
does not expect a great difference.

We next generate an array of 3000 (H0,�m, M) values
randomly in normal distributions with central value corre-
sponding to the best fit value and 1σ corresponding to the
errors in Table 2. One could alternatively fix the injected
cosmological parameters to the best fits in Table 2, but our
approach here allows for greater randomness. For each entry
in this array, we construct mi = μmodel(H0,�m, zi ) + M
for the 210 SNe in the redshift range 0.5 < z ≤ 2.26137.
We then generate 210 new values of the apparent magni-
tude mi by generating a random multivariate normal with
the covariance matrix CSN in (9) truncated from the Pan-
theon+ covariance matrix Cstat+sys. This gives us one mock
realisation of the data for each entry in our (H0,�m, M)

array, which we fit back to the �CDM model for the nested
subsamples in order to identify best fit parameters and the
sums (14). Note, our mocking procedure drops correlations
between (H0,�m, M), but this is not expected to make a big
difference, since as can be seen from the yellow contour in
Fig. 2, which is representative of the full sample, none of the
parameters are strongly correlated. Moreover, we do not gen-
erate new SNe in Cepheid hosts, so M and its constraints are
the same in mock and real data. This is justifiable because
M should be insensitive to cosmology11 and here our focus
is studying evolution of (H0,�m) best fits in high redshift
cosmological data. Once this is done for all 3000 realisa-
tions, we count the number of mock realisations that give
both σH0 ≤ −115.50 and σ�m ≥ 9.27. Essentially, by rank-
ing the mocks by σH0 and σ�m , one can assign a percentile
or probability to the observed Pantheon+ sample, just as one
would do with the heights of children in a class. Note, in both
these exercises it is unimportant what the probability density
function (PDF) looks like, simply that numbers are smaller
or larger than a certain number. In Fig. 3 we show the result
of this exercise. As expected, our mock PDFs are peaked on
σH0 = σ�m = 0. From 3000 mocks, we find 240 with more
extreme values than the values we find in Pantheon+ SN.
This gives us a p-value of p = 0.08 (1.4σ for a one-sided
normal).

We next consider the likelihood of finding negative DE
densities (�m > 1), as well as the likelihood of finding �m

best fits as large as the Pantheon sample �m � 3, in the three
final entries in Table 1. This can be done by recording best fit

11 If this is not the case, then Type Ia SNe as standardisable candles
make little sense. Indeed, it should be safe to replace the 77 SNe in
Cepheid hosts with a Gaussian prior on M .

Fig. 3 Sums (14) from 3000 mocks where the input parameters were
picked in normal distributions consistent with Table 2. Red lines denote
the corresponding values from Pantheon+

�m values from mocks with zcut-off ∈ {1.0, 1.1, 1.2}. From
3000 mocks, we find 298 that maintain �m > 1 best fits
and 77 that maintain larger �m best fits than the Pantheon+
sample. This gives us probabilities of p = 0.1 (1.3σ ) and
p = 0.026 (1.9σ ), respectively. In other words, we find neg-
ative DE densities in the same redshift range one mock in 10
and larger �m best fits one mock in 38. In Fig. 4 we show a
subsample of the mock best fits.

4.4 Pantheon+ covariance matrix and zsplit = 1

Here we comment on how representative are the high redshift
best fit (H0,�m) values if one splits the sample at zsplit = 1.
We perform this particular analysis so that we can directly
compare to profile distributions in the next section. However,
in the process we find a secondary result on the covariance
matrix that is worth commenting upon. In contrast to the
earlier sums, this means that we have singled out a particular
redshift by hand and we are assessing the probability of a
more specific event. For this reason we expect a probability
less than p = 0.08. Once again we perform mock analysis,
but surprisingly find that none of best fits to 10,000 mocks
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Fig. 4 A sample of 300 mock best fits for SNe with z > zcut-off ∈
{1.0, 1.1, 1.2}. 6 mocks (blue) return �m best fits that remain above the
�m best fits in Pantheon+ (solid black), 25 (green) that remain above
�m = 1 and 269 (red) where best fits are recorded below �m = 1. We
impose the bound 0 ≤ �m ≤ 5 and some points saturate these bounds

Fig. 5 Distribution of χ2 from 10,000 mocks of z > 1 SNe data,
where input parameters are picked in normal distributions consistent
with Table 2. The red line corresponds to the value in the Pantheon+
sample. None of our mock data result in smaller χ2 values than real
data

fits the data as well as the real data. This may be partly due
to the difference in preferred cosmological parameters, but
is also expected to be due to a potential overestimation of the
Pantheon+ covariance matrix [92].

Concretely, we construct an array of 10,000 (H0,�m, M)

mock input parameters by employing the best fits and 1σ

confidence intervals in Table 2 as central values and standard
deviations for normal distributions. For each entry in this
array, we generate a new mock copy of the 25 data points in
the Pantheon+ sample above z = 1, which we then fit back
to the model and record 10,000 (H0,�m, M) best fits. Note,
we are once again constructing high redshift subsamples that
are representative of the full sample by construction. In Fig. 5
we show a comparison of the χ2 from mock data (blue PDF)
versus χ2 from real data (red line); none of our mocks lead to
lower values of χ2. Nevertheless, if one focuses on best fits,

we find both smaller values of H0 and larger values of �m in
375 cases from 10,000 simulations, giving us a probability
of p = 0.0375 of finding more extreme best fits. This cor-
responds to 1.8σ for a one-sided normal. In the next section
we will compare this statistical significance to profile distri-
butions with the same data in the same redshift range. The
key point here is that profile distributions provides a consis-
tency check of our mock simulations. In short, if our mocks
are trustworthy, we expect to see a ∼ 1.8σ discrepancy in
independent profile distribution analysis. A secondary point
is that more extreme values of the χ2 are not found, which
seems to support observations in [92] that the Pantheon+
covariance matrix is overestimated.

4.5 Restoring the covariance matrix

Earlier we truncated out an off-diagonal block from the Pan-
theon+ covariance matrix in likelihood (2) in order to decou-
ple 77 SNe in Cepheid hosts from the remaining 1624 SNe
and thus define the new likelihood (8). Since this is heavy
handed if one only wants to focus on high redshift SNe, here
we restore the off-diagonal entries in the covariance matrix.
The results are shown in Table 3, where it is evident that
the decreasing H0/increasing �m best fit trend with effective
redshift is robust beyond zsplit = 0.7. Moreover, we now find
that SNe beyond zsplit = 0.9 return best fits consistent with
negative DE density. We have relaxed the bounds on �m

in order to accommodate best fits that saturate the bounds
and the number of SNe excludes the 77 calibrating SNe. We
also record a reduction in χ2 relative to the best fit values in
Table 1, where the difference here is that we use (a trunca-
tion of) likelihood (2) and not likelihood (8). This provides
a sanity check that our best fits are finding new minima as
we change likelihood. Evidently, the re-introduction of off-
diagonal entries in the covariance matrix impacts best fits,
but not the features of interest. As noted in the previous sec-
tion, the Pantheon+ covariance matrix appears overestimated
[92].

5 Profile distributions

In this section we follow the methodology in [93], more
specifically [49], where we refer the reader for further details.
As explained in [38], removing low redshift H(z) or DL(z)
or DA(z) data pushes the (flat) �CDM model into a non-
Gaussian regime where projection effects are unavoidable.
If one wants to test the constancy of �CDM cosmologi-
cal parameters in the late Universe, and not simply resort to
adopting a working assumption, then one has to overcome
these effects. Profile distributions [93] allow one to construct
probability density functions that are properly tracking the
minimum of the χ2. The latter is by definition the point in
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Table 3 A repeat of the analysis in Table 1 that includes additional
off-diagonal terms in Cstat+sys by only truncating the general likelihood
(2) to 77 SNe in Cepheid host galaxies and SNe with redshift z > zsplit.
�χ2 is the difference between best fits in Table 1, where the likelihood
(8) was employed. We relaxed the bound �m ≤ 1 to accommodate the
best fit values

zsplit # SN H0 (km/s/Mpc) �m �χ2

0.7 75 76.94 0.250 −0.6

0.8 30 69.73 0.390 −0.9

0.9 27 51.48 1.148 −0.9

1 25 20.28 13.076 −0.7

1.1 20 26.08 7.248 −0.5

1.2 19 28.64 5.775 −0.5

model parameter space that best fits the data. As is clear from
Fig. 2, where there is a degeneracy (banana-shaped contour)
in the (H0,�m)-plane, the peak of the H0 posterior is sen-
sitive to the prior, so it evidently tells one very little about
the point in parameter space that best fits the data. Note that
profile distributions [93] are simply a variant of profile likeli-
hoods (see section 4 of Ref. [94]), where instead of optimising
one recycles the MCMC chain. As a result, the input for both
Bayesian and frequentist analysis is the information in the
MCMC chain, thereby allowing a more direct comparison
between the two approaches.

Here we focus on zsplit = 1 as both our Bayesian and
frequentist mock analysis suggests that this is the redshift
split where evolution is most significant. Note, one can of
course find sample splits with less evolution, but if one is
interested in the self-consistency of a data set within the con-
text of the �CDM model, it behoves us to focus on the most
extreme cases. Following [49,93] we fix a generous uniform
prior �m ∈ [0, 8] and run a long MCMC chain for SNe with
z > zsplit = 1. The prior has been chosen large enough so
that the expected best fit �m ∼ 3.4 from Table 1 (zsplit = 1
row) can be recovered from the resulting distribution. We
identify the minimum of the χ2, χ2

min, from the full MCMC
chain. Next we break up the H0 and �m range into bins
and record the lowest value of the χ2 in each bin, which
gives us χ2

min(H0) and χ2
min(�m), respectively. We can then

define �χ2
min(H0) := χ2

min(H0)−χ2
min for H0 and an analo-

gous �χ2
min(�m) for �m . We next construct the distributions

R(H0) = e− 1
2 �χ2

min(H0) and R(�m) = e− 1
2 �χ2

min(�m ), which
by construction are peaked at R(H0) = R(�m) = 1 in the
bin with the overall minimum of the χ2 for the full MCMC
chain.

It should be stressed that it is easy to select large enough
priors for H0 so that R(H0) decays to zero within the pri-
ors. Nevertheless, as is clear from Fig. 2, �m distributions
become broad in high redshift bins and the fall off may be
extremely gradual. However, once one switches from MCMC

Fig. 6 R(H0) and R(�m) distributions for high redshift z > 1 SNe as
a function of H0 and �m . The black lines are the best fit values of the
full Pantheon+ sample. Dashed, dotted and dashed-dotted lines denote
1σ, 2σ and 3σ , respectively

posteriors to profile distributions, we are no longer worried
about the volume of parameter space explored in MCMC
marginalisation, but simply that each bin is populated and
the minimum of the χ2 in each bin has been identified. Thus,
it is enough that the MCMC algorithm visits all bins at least
once and any empty bin we omit. Concretely, we allow for
200 bins for both H0 and �m .

In Fig. 6 we show the unnormalised R(H0) and R(�m)

distributions for high redshift SNe with z > zsplit = 1.
The first point to appreciate is that the peaks of the distribu-
tions are close to the best fits in Table 1. Note, this provides
a consistency check on the best fits, since extremising the
χ2 through gradient descent and hopping around parameter
space through MCMC marginalisation are independent. This
provides a further test of the robustness of least squares fitting
in this context (see also appendix). Secondly, as is evident
from the dots to the left of the R(H0) peak, R(H0) goes to
zero at both small and large values of H0 that are well within
our priors. In contrast, as anticipated, the R(�m) distribution
is almost constant beyond �m ∼ 2 but nevertheless shows a
gradual fall off. The fall off towards smaller values of �m is
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considerably sharper. Thirdly, note that the dots essentially
follow a curve, but some small bobbles are evident in bins.
These features can be ironed out by running a longer MCMC
chain. Finally, both R(H0) and R(�m) confirm that the best
fit for z > 1 SNe is not connected to the best fit for the full
sample (black lines) through a curve of constant χ2. Thus,
we see a degeneracy in (Bayesian) MCMC analysis, but there
is no counterpart in a frequentist treatment that involves the
χ2. We conclude that it is misconception in the literature that
a degeneracy in MCMC posteriors is equivalent to a constant
χ2 curve. We remind the reader again that the χ2 is a measure
of how well a point in parameter space fits the data.

We next turn our attention to assessing the statistical sig-
nificance. The black lines in Fig. 6 denote the best fit values
for the full sample from Table 2. Thus, these are the expected
values if there is no evolution in the sample. To assess the
evolution, we normalise the R(H0) distribution by dividing
through by the area under the full curve, which is most simply
evaluated by numerically integrating using Simpson’s rule.
We then impose a threshold κ ≤ 1 and retain only the H0 bins
with R(H0) > κ . Integrating under the curve for the retained
H0 values and normalising accordingly one gets a probabil-
ity p [49]. In Fig. 6 we use dashed, dotted and dashed-dotted
lines to denote p ∈ {0.68, 0.95, 0.997} corresponding to 1σ ,
2σ and 3σ , respectively, in a Gaussian distribution. Evidently
the best fit for the full sample (black line) is removed from the
H0 peak by a statistical significance in the 95% to 99.7% con-
fidence level range. By adjusting the threshold κ further, one
finds the area under the curve and the associated probability
that terminates at the black line. We find that the black line is
located at the 97.2% confidence level, the equivalent of 2.2σ

for a Gaussian distribution. This can be directly compared
with 1.8σ from our earlier analysis based on mock simula-
tions. We note that there is a slight difference, but it is worth
stressing that two independent techniques agree on a ∼ 2σ

discrepancy.
In principle one could repeat the analysis with R(�m),

but the distribution is broad and has been impacted by our
priors. Changing the priors is expected to change the statis-
tical significance of any inference using R(�m), so we omit
the analysis. If this is unclear, note that restricting the range
to �m ∈ [0, 4], would still allow a peak, but the dashed
and dotted lines corresponding to 68% and 95% of the area
under the curve would all shift. The robust take-away is that
the peak of the R(�m) distribution coincides with negative
DE density, �m > 1. However, there is an important dis-
tinction here with MCMC. As we see from Fig. 2, due to a
degeneracy in the 2D (H0,�m) posterior, changing the �m

priors can impact the H0 posterior, whereas with profile dis-
tributions the number of times the MCMC algorithm visits a
given H0 bin is unimportant, simply the minimum χ2 in the
H0 bin is relevant. This important difference means that pro-
file distributions are insensitive to changes in prior, modulo

the fact that by changing the prior one either extends or cuts
the distribution, but the peak does not move.

6 Discussion

The take-home message is that a decreasing H0/increasing
�m best fit trend observed in the Pantheon SNe sample [41]
at low significance ∼ 1σ [24] (see [20–22,26,27,37] for
the H0 or �m trend alone) persists in the Pantheon+ sample
[39,40] with significance ∼ 1.4σ under similar assumptions
that do not focus on a particular zsplit. Moreover, calibrated
z > 1 SNe return �m > 1 best fits, thereby signaling nega-
tive DE densities in the �CDM model. Note, this outcome is
not overly surprising, because one cannot preclude �m > 1
best fits at high redshifts even in mock Planck-�CDM data;
beyond some redshift �m > 1 best fits become probable.
This is a mathematical feature of the �CDM model [25,38].
Using profile distributions [93] (see also [49]), a technique
which allows us to correct for projection and/or volume
effects in MCMC marginalisation, we have independently
confirmed the significance at � 2σ . Similar features are evi-
dent in the literature, most notably Lyman-α BAO [50] and
QSOs standardised through fluxes in UV and X-ray [29–31].
Moreover, recent large SNe samples have led to larger �m

values that are 1.5σ [95] to 2σ [96] discrepant with Planck
[3]. From Fig. 4 of Ref. [96] it is obvious that the sample
has a high effective redshift. Note, in contrast to [96], where
the high effective redshift is an inherent property of the sam-
ple, here we deliberately increase the effective redshift of the
Pantheon+ sample by binning it.

To put these results in context we return to the generic
solution of the Friedmann equation [16],

H(z) = H0 exp

(
−3

2

∫ z

0

1 + weff(z′)
1 + z′

dz′
)

, (15)

where weff(z) is the effective EoS. We observe that evolution
of H0 (and �m) with effective redshift in the Pantheon+ sam-
ple is consistent with a disagreement between the assumed
EoS, here the �CDM model, and H(z) inferred from Nature.
These anomalies are not confined to SNe and we see related
features elsewhere [18,19,24,25]. Moreover, JWST is also
reporting anomalies that may be cosmological in origin [97–
99]; JWST anomalies may prefer a phantom DE EoS [99]
(however see [100,101]), which may be a proxy for negative
DE densities at higher redshifts. If persistent cosmological
tensions [5–11] are due to systematics, one expects no evo-
lution in H0 from (15), but this runs contrary to what we are
seeing. Our “evolution test”, which may be regarded as a con-
sistency check of the �CDM model confronted to data, hence
gives a complementary handle on establishing �CDM ten-
sions, especially H0 tension. Note, it is routine to fit data sets
in cosmology and simply assume that cosmological param-
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eters are not evolving with effective redshift. Our analysis
tests this assumption.

Admittedly, this one result may not be enough to fal-
sify �CDM. That being said, if evolution is present, as our
Bayesian model comparison shows, this opens up the door for
finding alternative models that fit the data better than vanilla
�CDM. On the contrary, without any change of (H0,�m)

with redshift across expansive Type Ia SNe samples, as is the
standard assumption in the literature, there is little hope of
finding an alternative that beats �CDM in Bayesian model
comparison. From this perspective, our consistency check
then feeds into standard Bayesian analysis. However, there
is a key difference. Physics demands that models are pre-
dictive, i. e. return the same fitting parameters at all epochs,
whereas Bayesian methods only assess the goodness of fit
and are cruder. Note also that the high redshift subsamples of
Pantheon+ we study are small, so they are prone to statistical
fluctuations. However, since we see similar trends beyond
SNe [25], this makes a statistical fluctuation interpretation
less likely. A second possibility is unexplored systematics
in z > 1 SNe identified largely through the Hubble Space
Telescope (HST) [102–105]. There is unquestionable value
in flagging these anomalies so that they can be explored. If
one can eliminate these two, the only remaining possibility
is that we must regard the trend as corroborating evidence
that �CDM tensions are physical and the model is breaking
down.

Going forward, if the next generation of SNe data [106]
increases the statistical significance of the anomaly, as we
have seen here in transitioning from Pantheon to Pantheon+,
then there are interesting implications. First, any increasing
trend in �m with effective redshift prevents one separating
H0 and S8 ∝ √

�m tensions. This is obvious. Interestingly,
sign switching � models, which perform well alleviating
H0/S8 tensions [84], fit well with our main message here,
i.e. negative DE at higher redshifts. Secondly, �CDM model
breakdown allows us to re-evaluate the longstanding obser-
vational cosmological constant problem [107]. Thirdly, and
most consequentially, it is likely that changes to the DE sec-
tor cannot prevent evolution in �m , because DE is tradition-
ally irrelevant at higher redshifts. Ultimately, if late-time DE
does not or cannot come to the rescue [108], this brings the
assumption of pressureless matter scaling as a−3 with scale
factor a into question in late Universe FLRW cosmology.
Finally, if the evolution of �CDM parameters we discussed
here is substantiated in future, it rules out the so-called early
resolutions to H0/S8 tensions [13], such as early dark energy
[109].
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Appendix A: Robustness of least squares fitting

There is concern that least squares fitting may occasion-
ally find local false minima. This issue can be addressed by
starting the χ2 minimisation algorithm from different initial
guesses (or priors) in parameter space. Here we show differ-
ences that arise in such an exercise are insignificant. Alter-
natively, as highlighted in the text, one could run an MCMC
chain and identify the point in parameter space correspond-
ing to the minimum of the χ2. If the resulting cosmological
parameters agree well with χ2 minimisation, then this pro-
vides an additional check.

We adopt uniform bounds or priors, 0 < H0 < 150 and
0 < �m < 5, which are chosen large enough so that they
never impact the best fits. As a result, the four corners of
our parameter space are (H0,�m) = (ε, ε), (H0,�m) =
(ε, 5−ε), (H0,�m) = (150−ε, ε) and (H0,�m) = (150−
ε, 5− ε), where we adopt ε = 0.001. In Table 4 we show the
differences in best fit H0,�m , andχ2 values for 77+1599 SNe

Table 4 Parameters corresponding to the minima of the χ2 (8) and
minimum χ2 value for Cepheid host SNe and SNe in the range
0.00122 ≤ z ≤ 1. The left column denotes the initial starting point
with ε = 0.001 for the algorithm at the four corners of our (H0, �m)

parameter space. As expected, differences in best fits are negligible

(H0, �m) H0 (km/s/Mpc) �m χ2

(ε, ε) 73.284288 0.35112504 1491.11810412746

(ε, 5 − ε) 73.284282 0.35112510 1491.11810412748

(150 − ε, ε) 73.284285 0.35112503 1491.11810412748

(150 − ε, 5 − ε) 73.284290 0.35112502 1491.11810412746
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Table 5 Parameters corresponding to minima of the χ2 (8) and min-
imum χ2 value for Cepheid host SNe and SNe in the range 1 <

z ≤ 2.26137. The left column denotes the initial starting point with
ε = 0.001 for the algorithm at the four corners of our (H0, �m) param-
eter space. As expected, differences in best fits are negligible

(H0, �m) H0 (km/s/Mpc) �m χ2

(ε, ε) 34.366 3.3914 68.496048154

(ε, 5 − ε) 34.365 3.3916 68.496048156

(150 − ε, ε) 34.365 3.3917 68.496048156

(150 − ε, 5 − ε) 34.365 3.3916 68.496048156

in the low redshift range 0.00122 ≤ z ≤ 1 when minimising
the likelihood (8). We truncate the resulting numbers where
differences become transparent. As explained in the text, the
parameter M decouples, but throughout we start it from its
best fit location M = −19.249. From Table 4 it is clear
that the best fit H0, �m and the corresponding χ2 for the
best fit, begin to differ at the 5th, 7th and 11th decimal place,
respectively.

In Table 5 we repeat the analysis for 77 SNe in Cepheid
hosts and 25 SNe in the redshift range 1 < z ≤ 2.26137,
where we see that differences begin at the 3rd, 4th and 9th

decimal place, respectively. We have not changed the toler-
ance in the minimisation algorithm, but we see that the best
fits in the smaller sample, where one expects less guidance
for fits, are less robust. However, any difference is still small.
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