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I. INTRODUCTION 

Particle accelerators are the basic experimental tool used by high 
energy physicists in testing current understanding of the laws of nature. 
The number of existing high energy facilities in the world numbers in the 
single digits and it is expected that this situation will remain unchanged 
in the foreseeable future. The purpose of these lectures is to convey to 
you, a group of young theoretical physicists, an understanding of how 
these machines work, and why they look the way they do. The approach 
taken will be physically intuitive rather than mathematically rigorous. It is 
hoped that you will develop a feeling as to what determines the scale of 
eixisting and proposed accelerators, as well as some insight into the 
fundamental limitations of these machines. 

The emphasis will be on the description of proton circular 
accelerators and colliders. Linear accelerators (linacs) will be mentioned 
only in passing as sources of protons for higher energy rings. Electron 
accelerators/storage rings and antiproton sources will be discussed only by 
way of brief descriptions of the features which distinguish them from 
proton accelerators. 

The first lecture will be devoted to explaining the basics of how 
generic accelerators work. The discussion will focus on descriptions of 
what sets the overall scale, single particle dynamics and stability, and 
descriptions of the phase space of the particle beam. In the second 
lecture we will use what we have learned to design a Superconducting 
Super Collider (SSC). 

II. OVERVIEW 

Let us first look at Fermilab as being prototypical of a modern 
proton accelerator. At Fermilab protons pass through four distinct 
accelerators on their way to the peak energy of 900 GeV. The series of 
steps by which the protons are accelerated is shown in Figure 1. The 
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Figure 1. The Fermilab Acceleration String 
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protons originate in a Hydrogen gas bottle. They are accelerated to a 
kinetic energy of 200 MeV in a linac of length 150 meters. (For reasons 
which time does not allow us to discuss, the protons are actually 
accelerated with two electrons attached to form H- ions.) Bare protons are 
then transferred into a circular accelerator of circumference 475 meters, 

called the Booster, where they attain an energy of 8 GeV. This is 
followed by a 6300 meter circumference ring called the Main Ring (the old 
400 GeV accelerator) where their energy increases to 150 GeV. Finally, the 
protons are injected into the new superconducting accelerator, the 
Tevatron where they reach their ultimate energy of 900 GeV. Between 1 
to 2x1013 protons can be accelerated at once and the entire acceleration 
process takes about 60 seconds to complete. (A little arithmetic shows that 
a single gram of Hydrogen gas is sufficient for operating Fermilab for 
thousands of years.) Once the protons are at 900 GeV they can be used 
for a least two purposes: l)They can be extracted from the Tevatron and 
sent through beamlines to collide with stationary targets for the benefit of 
experimenters doing “fixed-target” physics; or 2)They can be made to 
collide with 900 GeV antiprotons counter-circulating in the Tevatron to be 
observed by experimenters doing “collider” physics. 

You should be starting to wonder at this point why this particular 
scheme has been concocted. In particular you might ask: v Why are 
circular accelerators used almost exclusively rather than linear 
accelerators?“; “How are the protons accelerated?“; and “Why are a series 
of accelerators used rather than just one?“. We discuss below the answers 
to these questions. A word of warning however--Please keep in mind that 
the arguments given below are really only appropriate to a discussion of 
proton accelerators. The phenomonon of synchrotron radiation completely 
distorts the arguments once one tries to design an electron accelerator or 
storage ring. A short discussion of electron accelerators will be included at 
the end of these lectures. 

II.1 Why Circular Accelerators? 
All accelerators use electric fields to accelerate charged particles. (You 

remember, of course, from Freshman Physics that a magnetic field cannot 
change the kinetic energy of a charged particle.) The most straight 
forward manner in which to accelerate a charged particle is to set up an 
electric potential difference between two points and let the particle traverse 
the space between the two points. Current techniques allow us to create 
average electric fields of about 5x10’ Volts/meter in proton linear 
accelerators. So in the case of a proton linac we have an approximate 
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relationship between the energy of the proton beam we would like to 
produce and the length of the linac, 

Energy(MeV) = 5 x Length(meters). (1) 
If we wanted to accelerate protons to 1 TeV, according to (1) we would 
need a linac 124 miles long! This is clearly an immense engineering task. I 
do not mean to imply here that linacs are useless, just that they are not 
a very efficient way to get protons to very high (>l GeV) energies. 
Linacs do indeed make excellent sources of low energy protons for injection 
into higher energy circular accelerators. 

The problem with linacs exhibited in equation (1) is that they 
represent an inefficient use of the available electric fields. If one were able 
to recirculate protons through the same electric field many times, high 
energies can be attained without producing electric fields extended over 
large regions of space. Specifically, if one can produce an electric potential 
difference, V, between two points in space, and conspire to have a charged 
particle traverse this region n times, then the energy of the paricle can be 
made quite large even if V is small, 

Energy(MeV) = V(MV) x n. PI 

As an example, in the Fermilab Tevatron a voltage, V, of about 1 MV is 
provided in a region which extends over about 20 meters in space. By 
traversing this region 850,000 times the protons are accelerated from 150 
GeV up to 1 TeV. You are probably now wondering why the Fermilab 
Tevatron needs to be 6300 meters in circumference if only 20 meters are 
used to provide the electric field necessary to accelerate the beam. The 
reason has to do with the means by which we bring the protons back 
around to recirculate through the region of electric fields. The recirculation 
is done using magnetic fields and it is our ability to create high magnetic 
fields which sets the scale of proton circular accelerators. 

Note the contrast between the design bottleneck of the proton linac 
and the proton circular accelerator. In the linac the problem is 
constructing the largest average electric field possible in order to keep the 
physical size (length) of the accelerator as small as possible. In the proton 
circular accelerator the problem becomes producing the largest possible 
magnetic field possible for recirculation, again in order to keep the 
physical size (circumference) small. As you have probably surmised, in 
practice the circular accelerator becomes the more efficient way of reaching 
very high energies. 

II.2 Confinement and Acceleration in Ciiular Accelerators 
As we said above the recirculation, or confinement, function in circular 

accelerators is provided by magnetic fields. (The use of electric fields for 
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confinement is not really technically feasible. The equivalent impulse on a 
charged particle is produced by either a 10 kGauss magnetic field or a 
300 MV/meter electric field, and the 10 kGauss magnetic field is infinitely 
easier to make.) We know that the motion of a charged particle in a 
uniform magnetic field is a circle of radius R, where R is given by, 

P (GeV/cl 
R(meters) = .OtB(kGauss) 

where P is the momentum of the particle, B is the magnetic field, and we 
assume the particle has a charge q=e. As a numerical example, for a field 
of 44 kGauss and a momentum of 1 TeV/c, the radius of curvature 
becomes 760 meters. This is comparable to the radius of the Fermilab 
Tevatron, 1000 meters, with the difference accounted for by the regions of 
the circumference of the accelerator which are not filled with a uniform 
magnetic field. In the earliest circular accelerators (cyclotrons) particles 
were accelerated in a region of fixed magnetic field, so that the radius of 
the orbit of a particle increased with its momentum. All modern high 
energy proton accelerators are synchrotrons. In the synchrotron the 
magnetic field is increased proportionally to the momentum so that the 
particle orbits always stay in the same place. This allows us to build 
accelerators which have a circumference of 3.9 miles (such as Fermilab) 
without having to cover 850 acres with magnetic field. 

Acceleration in a circular accelerator is provided by radio frequency 
(RF) electric fields. The use of DC fields to accelerate the beam is 
precluded by Maxwell’s Equations. (See if you can guess which one.) 
Radio frequencies (i.e. those in the 1 MHz to 1 GHz range) are used for 
a number of reasons. First, it is easier to get high electric fields at high 
frequencies. And second, very high frequencies (>l GHs) are generally 
precluded (in the case of protons) because the inverse relation between the 
RF wavelength and the charge density produced tends to limit the beam 
intensity one can produce due to beam instabilities. At Fermilab 
acceleration is provided by electric fields which oscillate at 53 MHz. 

Let me reiterate what I said earlier with regard to the scale of proton 
accelerators. The realer of all proton aceeleratorr in czirtcnce today, ar well 
(u there contemplated in the remainder of the twentieth century, are ret by 
the mazimum magnetic field that we can create to make the beam po 
around in a circle. 

II.3 Why are Accelerators Cascaded? 
In Figure 1 we showed an acceleration process which was completed 

in steps using different accelerators. You might wonder why we don’t save 
some money and effort by simply injecting the 200 MeV protons coming 
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out of the Fermilab Linac directly into the Tevatron for acceleration to 
900 GeV. We don’t do this for two reasons. First, since there is a certain 
range of magnetic fields over which we feel comfortable operating, we 
don’t like to build accelerators where the ratio ~,,~/p~k is too large. And 
second, the behavior of the phase space of accelerated proton beams 
results in a much more efficient use of aperture in a cascaded system. 

In general it becomes difficult to operate accelerators built with 
conventional iron core/copper conductor magnets at magnetic fields of less 
than a few hundred Gauss. The reason is that the residual magnetization, 
or remnant fields, in the iron result in a deterioration in the field quality 
of the magnet at low fields. Since the highest magnetic field we are able 
to create in a conventional magnet is somwhere between 15 and 20 
kGauss, the result is that conventional accelerators tend to have ratios 

%uth in the range 10-40. 
An analogous effect occurs in superconducting magnets although the 

physical mechanism is different. Eddy currents are induced in the 
superconductor itself during the process of accelerating the beam and 
reducing the magnetic fields back to the value correpsonding to the 
injection momentum. Since the superconductor offers no resistance to these 
currents they persist for long periods of time, whence the name persistent 
currents, and create contributions to the magnetic field which adversely 
affect the magnetic field quality at low fields. The size of the effect is 
related to the physical dimensions of the superconducting filaments. In the 
Fermilab Tevatron this effect becomes important at fields below about 6 
kGauss, while at the SSC (with its smaller filament size) it is expected 
that the effect will become important below 3 kGauss. Since the maximum 
field currently obtainable in superconducting accelerator magnets is about 
60 kGauss this effectively constrains the ratio of pcUt/pin to lie in the 
range 10-20. 

Even in the absence of lower limits on allowable magnetic fields we 
would probably build cascaded accelerator systems in order to make 
efficient use of available aperture. An important fact of accelerator life is 
that the largest component of proton accelerator cost is in the magnets, 
and that the cost of a magnet increases very rapidly with its transverse 
size. Coupled with this is the fact that the phase space of proton beams 
behaves in such a manner that during the acceleration process the physical 
transverse beam size decreases with increasing momentum ss, 

Transverse Size a l/G . 

This means, for example, that if we were to try to inject beam into the 
Fermilab Tevatron at 8.9 GeV/c rather than at 150 GeV/c we would 
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have to be prepared to accept a beam with four times the transverse 
physical dimensions. The cost of building an accelerator to go from 8.9 
GeV/c to 150 GeV/c would probably be less than the cost of enlarging 
the Tevatron magnet aperture. (This was a moot point at Fermilab since 
the Main Ring already existed.) 

II.4 Phase Space 
We have already started talking about the phase space of the beam 

implicitly in the preceding section. Beams are made up of collections of 
particles, each of which is located at a particular point in a g-dimensional 
phase space: 

(x,x’;y,y’;LE). 
In a perfect world all particles would have phase space coordinates 
(O,O,O,O,O,O), that is all particles would be exactly where we had intended 
and would have exactly the intended momentum. In our discussion we will 
assume that the six variables can be treated as three independent sets of 
two variables. Traditionally (x,x’) are the horizontal position and angle, 
(y,y’) are the vertical position and angle, and (t,E) are the azimuthal 
position around the ring (translated to time units) and the energy relative 
to their ideal values. The total area in phase space occupied by the beam 
is called the emittance, e. Units of emittance are commonly millimeter- 
milliradians (mm-mr) for the two transverse planes and electron volt- 
seconds (eV-see) for the longitudinal plane. The phyrical dimenrionr of the 
beam MC related to the cmittancc gnJ the optical propertier of the 
accelerator. An example is shown in Figure 2 where I have shown two 
beams occupying identical areas in transverse phase space but with 
different physical extents. 

II.5 Acceleration 
We stated earlier without proof that the physical beam size in a 

proton accelerator shrinks as the energy is increased. The physical 
mechanism by which this happens is shown in Figure 3. A particle enters 
an RF cavity with some position and angle (x,x’). The angle at which the 
particle is travelling is a reflection of the ratio of its transverse to 
longitudinal momentum. After traversing the cavity its longitudinal 
momentum is increased (as part of the acceleration process) and its 
transverse momentum remains constant. Thus the angle at which the 
particle is directed is reduced. In the language of classical mechanics the 
conjugate variables which define a preserved phase space are (x,Px), not 
(x,x’). It is easy to see from the picture that the emittance as we have 
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Figure 2. Examples of two contours enclosing equal phase 
space areas, but with different physical extents. 
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Figure 3. Reduction of the angle of a particle through 
application of a longitudinal impulse. 
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defined it is proportional to l/P. For this reason we often define the 
normalized transverse emlttance as 

E N = ‘v77)rel (4) 

where p and 7 are the standard relativistic factors. The normalized 
emittance is preserved during the acceleration process. Typical values of 
eN at existing and planned proton accelerators are 20~ at Fermilab and 
6r mn-mr at the SSC. 

III. TRANSVERSE PHASE SPACE 

All modern high energy circular accelerators are alternating gradient 
synchrotmns. This means they use magnetic dipole fields for confinement 
and quadrupole fields for focusing. (A dipole field is uniform in space 
while a quadrupole field varies linearly with displacement from a particular 
axis.) The alternating 

5 
radient principle wss invented in 19252 by Courant, 

Livingston, and Snyder , and independently by Christofilos . They showed 
that stability could be obtained in both transverse planes simultaneously 
with linear focusing by alternating focusing and defocusing elements. Prior 
to this time very weak, constant gradient focusing was used to provide 
stability in accelerators. The reason the invention of the alternating 
gradient aynchrotron was so important was that it allowed one to reduce 
by orders of magnitude the physical dimensions associated with a given 
emittance. The reason that it had not been thought of before was 
presumably because of the fact that magnetic quadrupoles (Bx=B’y, 
B,,=B’x) do not focus in both transverse planes simultaneously. 

We will be discussing for the next few minutes the formalism which 
has been used for the last thirty five years to describe the phase2 space 
and optical characteristics of alternating gradient synchrotrons . The 
culmination of this discussion will be a definition of the prescription for 
relating emittances to physical beam sizes in a synchrotron. 

III.1 Single Particle Dynamics 
We begin by examining the motion of individual particles under the 

influence of the magnetic fields, both dipole and quadrupole, from which a 
synchrotron is constructed. We need a coordinate system in order to 
describe the position of a beam particle at any particular time. The 
coordinate system we are going to use is shown in Figure 4. 

We start out by defining a reference orbit. The reference orbit is 
simply defined as the trajectory which we intend an ideal particle to 
follow when we design the accelerator. In general the reference orbit is 
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Figure 4. Coordinate system tx.s viewed from above 

Figure 5. The position and angle of a particle as 
seen on consecutive turns at a fixed 
azimuth, 8. 
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made up of arcs of circles in the dipole magnets and straight line 
segments elsewhere. The reference orbit closes on itself and goes directly 
through the centers of the quadrupole magnets. To simplify the discussion 
we will assume that the reference orbit lies in a horizontal plane, that 
there is no coupling between the horizontal and vertical motion, and we 
will not consider particles whose momenta deviate in any way from the 
design momentum. The coordinate system used consists of two transverse 
coordinates, x and y, and a longitudinal coordinate, s. The convention will 
be that x is the horizontal and y is the vertical displacement relative to 
the reference orbit. We define a useful quantity called the magnetic 
rigidity, (Bp), which is the momentum of the particle (with q=e) in units 
of kGauss-meters: (Bp)(kG-m)=33.3p(GeV/c). 

The equations of motion can be written using the azimuthal 
coordinate, s, as the independent variable: 

g + yp=- K(s)lx = O (54 

s +Ksy 0 WI 

where p(s) is the local radius of curvature of the reference orbit (p=O 
except in dipole magnets), and K(s) is related to the local quadrupole 
strength, 

K(s) = - & 3 . (6) 

Equations (Sa) and (5b) are of the general form, 
d2x m + k(s)x = 0 (7) 

where k(s) is periodic with the circumference, L, of the accelerator: 
k(s+L)=k(s). Equation (7) is just the equation of motion of a harmonic 
oscillator with a periodic, time varying spring constant. You should not be 
surprised then to learn that the solution to (7) may be written as a wave 
with time varying amplitude and wavelength, 

x(s) = A Jpo co4#(4-#0) . (‘3) 

A and #u are the two arbitrary constants associated with the second order 
equation (7). Two words of warning at this point: l)p(s) is not v/c. It is 
however a single valued function of the azimuthal position, s; and 2)$(s) 
is & a single valued function of s, i.e. #(s+L)##(s). In fact # is related 
to P by 

(9) 
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The particle motion described by equation (8) is called betatron motion. 
Before we talk about how one finds p(s) and $(s) for a particular 

arrangement of magnets in an accelerator I would like to look at the 
behavior of x and x’ as a beam particle circulates in an accelerator. The 
phase space motion of a particular particle in one of the transverse planes 
is given by, 

I 

* = A 4-J cos(#-#o) 
(10) 

where we define a as a=-1/2(df3/ds). 0 ne thing we can see right away 
from (10) is that there is a constant of the motion which is analogous to 
the total energy in a simple harmonic oscillator, 

x2 + o?;‘+axP = A2 , (11) 

There is also a quantity analogous to the frequency of a simple 
harmonic oscillator called the tune. The tune is usually designated either 
Q or Y and is defined as, 

Q = P(s+yr- d(sl . (12) 

For Q#integer the transverse position of a particle is not the same on 
subsequent revolutions of the accelerator. In Figure 5 I show the phase 
space position of a beam particle at a particular azimuthal location in an 
accelerator with a non-integer tune for five subsequent circuits of the ring. 
Note that the points all lie on a circle of radius-squared pA2. The tune is 
one of the most important parameters describing an accelerator. We will 
talk a little later about how one goes about choosing a tune when 
designing an accelerator. 

III.2 Lattice Functions end the Matrix Formulation 
The quantities p, a, and # are called lattice functions. They are all 

functions of the azimuthal position, s, and specify the motion of individual 
particles as they travel around the ring according to equation (10). As I 
implied in the discussion above, the lattice functions are a reflection of the 
particular way dipole and quadrupole magnets are arranged around the 
circumference of the accelerator. I would like to describe to you here a 
means of calculating the lattice functions resulting from an arbitrary 
arrangement of magnets. The easiest way to do this is to use a transfer 
matrix formalism to represent the transport of a particle between two 
points in the accelerator. The matrix formulation takes advantage of the 
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fact that p(s) and K(s) are piecewise constant in real accelerators, and is 
only possible because the equations of motion, (5), are linear. 

Let us start by looking at the motion of a particle as it traverses a 
quadrupole. The quadrupole has a field, 

Bx = B’y 

By = B’x 

with B’ constant over the length of the quadrupole, 1. Equation (5) can 
be solved over the region of the quadrupole using the position and angle 
of the particle at the entrance of the magnet to specify the two arbitrary 
constants. The solution gives the position and angle at the exit of the 
magnet as linear combinations of the position and angle at the entrance: 

X [I I CO8 (i-Xl) j+in(Ci;l) x 
= 

-&in(Gl) CO8 (Gl) III (13) 
x’ 1 x’ 0 

where k=B’/(Bp) and B’>O. A similar expression is obtained for the 
vertical motion except the trigonometric functions are replace by hyperbolic 
functions. Several properties of the transfer matrix shown in (13) are 
worth noting: 1) The determinant of the matrix is 1. This is what results 
in the existence of the invariant quantity A in (11); 2) One plane is 
focusing (the one with cos and sin) and the other is defocusing (the one 
with cash and sinh). Which is which depends upon the sign of B’; 3) 
Dipoles and empty spaces also have transfer matrix representations; and 4) 
In the limit l+O with kl finite the transfer matrix becomes, 

You may recognize this from optics as the transfer matrix of a lens with 
focal length. 

To make the connection between transfer matrices and lattice functions 
we go back to equation (10) and complete the same exercise of writing 
the position and angle at a point s2 in terms of the position and angle at 
s. thus, 

I 

The result is, 

[ :J2 = M(1*2) [ g,. 04) 

M(1,2) = 
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where A# is the phase advance between locations sI and s . At first 
glance it does not appear that we have made much progress. ?;i, e transfer 
matrix written in terms of the lattice functions contains five unknowns. 
What it does show us however, is that if we knew the lattice functions at 
the point s1 and the transfer matrix between sl and s2 we could use (15) 
to calculate the lattice functions at ~2. The way we proceed now is to 
write down equation (15) for the special case s2=sl+L. In this case we 
know that f.11=p2, a1=q2, and A#=2rQ. So, 

I cos2rQ+asin2rQ psin2rCJ 
Y(s,s+L) = _ Il+a21sin2rp 1 w P cos2rQ-asin2rQ 

We know have a complete prescription for calculating the lattice 
functions everywhere assuming we know the arrangement of dipole and 
quadrupole magnets in the accelerator. First we calculate the single turn 
transfer matrix at some point, 8, by multiplying together the transfer 
matrices (such as given in (13)) of all the individual components of the 
accelerator. We then make the identification (16) to solve for /I(s), a(s), 
and the tune, Q. We can then use the individual transfer matrices from 
the point s to any other position in the ring to solve for the lattice 
functions everywhere! This process is relatively efficient when programmed 
on a computer and is the method by which virtually all accelerator lattice 
calculating programs work. Remember that since the transfer matrices in 
the horizontal and vertical planes are generally not the same, this process 
must be carried out independently in both planes and will lead to 
different lattice functions in the two planes. 

I leave you with one word of caution before we move on to our next 
topic. Any random arrangement of quadrupoles and dipoles in an 
accelerator will not generally result in the existence of stable orbits. If 
there is no stability in a particular arrangement the symptom is a single 
turn transfer matrix with a trace either greater than 2 or less than -2. 
We can see from (16) that if the absolute value of the trace is greater 
than 2, then the tune must be imaginary and the subsequent application 
of M(s,s+L) over many revolutions will lead to unbounded motion. 

III.3 Emittance 
So far I have shown you that the motion of individual particles is 

given by equation (10) and have told you how to calculate the lattice 
functions referred to in (10). In general the particle beam will be made up 
of a lot of particles with different A’s and $u’s. For a particular value of 
A, the motion of a particle in phase-space as viewed over many circuits of 
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the accelerator draws out the ellipse defined by equation (10) and shown 
in Figure 6. We will define the transverse emittance, e, as the area of the 
ellipse which encompasses 95% of the beam particles. One can show with 
a little work that for a Gaussian distribution of beam particles the root- 
mean-square beam size is then related to the emittance and the lattice 
function, p by, 

axp = i-E = J-G&e1 (17) 

Equation (17) displays explicitly the promised relationship between the 
physical beam size, the emittance, and optical properties of the accelerator. 
Note that since p is a function of azimuthal location around the 
accelerator ring, the beam size varies around the ring while the emittance 
is invariant. While we said that equation (10) describes the motion of 
individual particles circulating in an accelerator you might be wondering 
whether the beam as a whole undergoes the same motion. In general the 
answer is no--while the individual particle are moving around in the beam, 
the beam as a whole remains in the same place and has the same shape 
when viewed at a particular place over many revolutions. 

IV. LONGITUDINAL PHASE SPACE 

In Section III we described the motion of beam particles which were 
displaced from the reference orbit by an amount (x,x’;y,y’) and showed 
that in a well-designed accelerator the motion of these particle was stable 
and bounded. I would now like to describe the motion in the longitudinal 
phase space, (t,E). I know that in the real world the particles making up 
the beam will not all have exactly the same momenta (although the 
spread in momenta is generally smaller than 1%). So I would like to 
answer the question “What happens if a particle does not have exactly the 
momentum it needs to follow the reference orbit in the presence of the 
existing magnetic fields?” 

I told you earlier that the accelerating electric fields in modern 
accelerators are provided by Radio Frequency (RF) systems. This means 
that there is an electric field which looks like, 

V RF = Vsinwt 
where w is the frequency at which the RF system operates. The phase 
space coordinate t is thus the time at which a particle traverses the RF 
cavity. In what follows we will assume that the time required for a beam 
particle to traverse the RF cavity is very small so that we can treat the 



12a 

X’ 

X’ =A 
J 

1+cx" 
mrx P 

AREA=nA* 

Figure 6. Phase space trajectory for equation (10) 



13 

energy gain as being instantaneous. This assumption is generally valid in 
all existing circular accelerators. Let me define a few useful quantities at 
this point: 

1. T is the revolution period of the accelerator. Since the 
circumference of the accelerator is futed, T will vary as the beam 
is accelerated to the extent that the velocity of the particle 
changes with momentum. 

2. h is called the harmonic number of the RF system. It is 
equal to wT/2r and must equal an integer. 

3. Ps is the synchronous momentum. It is the momentum which 
gives a revolution period, T, satisfying wT/2r=integer for the 
magnetic field present in the accelerator. It is usually also equal 
to the design momentum of the ring and a particle with the 
synchronous momentum will follow the reference orbit. 

4. 0, is the synchronous phase. It is the angle for which Vsin$s 
is equal to the desired energy gain/turn. 

5. q is the frequency dispersion. It relates the change in 
revolution period to the change in momentum for a fixed 
maanetic field: 

r~ is a function both of the velocity of the beam particles and of 
the optics of the accelerator, i.e. it can change as the beam is 
accelerated. ‘1 can also be either greater than, less than, or equal 
to zero. We will describe how to calculate r~ later. 

Before writing down and solving the longitudinal equations of motion I 
would like to take you through a qualitative description of the longitudinal 
motion of the beam. Figure 7 shows the variation of the RF voltage with 
time and two locations in time where the energy gain/turn is the desired 
value. Let us ask what happens to a slightly off-energy particle situated at 
either these locations for the case r]>O. Near the point labelled 1, we see 
that if the energy is larger than desired it takes longer (since T]>O) than 
desired for the particle to come back around to the RF station. As a 
result the particle picks up more energy than it should and the 
discrepency between its actual and desired momentum becomes greater. 
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Near the point labelled 2 the opposite happens. The higher energy makes 
the particle again arrive late, but in this case the energy gain is less than 
desired so the initial energy error is partially corrected. So particles at 
point 1 are unstable, and particles at point 2 are potentially stable with 
respect to small perturbations. You can easily show that the situation is 
reversed if n is less than sero. 

IV.1 Single Particle Dynamics 
I can quantify the above argument by writing down and solving the 

equations of motion. Before doing so I will switch from (t,E) to a more 
convenient set of variables (#,A), where #=wt measures the phase of the 
RF wave at the arrival time of the particle and A=(p-p,)/p, is the 
relative difference between the actual momentum and the synchronous 
momentum. The equations of motion in the longitudinal plane are then, 

dA - = s(sin# - sin+& dn 8 W) 

where n is the revolution number. The top equation reflects the fact that 
the momentum error changes if the particle enters the cavity when the 
phase of the RF wave is not equal to the synchronous phase, while the 
lower equation reflects the change in the RF phase at the particle’s arrival 
time due to the correlation between momentum and revolution period. 

The equations of motion are not linear as they were in the transverse 
case (5). This means that the motion will not be bounded over the entire 
phase space. It also means that we are not able to write down a general 
analytic solution to (19). However, there is still a wealth of information 
buried in (19). 

IV.2 The Separatrix 
It is easy to show that there is a constant of the motion described 

by (19). You can work it out yourself, and what you will find is that 

I H=A2+ p 
8 

(20) 
dH_0. 
dt - 

The equations of motion, (19), also possess two fixed points. These points, 
(A,#) equals (04~~) and (0,W8), are the two points we looked at on 
Figure 7. For T]>O the first fixed point is unstable and the second is 
stable. The roles are interchanged if r/ is negative. Associated with the 
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unstable fixed point is a contour of constant H, called the separatrix. 
Phase space trajectories lying outside the area enclosed by the separatrix 
are unbounded. Thus the separatrix encompasses the stable area in phase 
space. For q>O the separatrix is defined by, 

H=A2+ (21) 

As you might guess the area enclosed by the separatrix depends on 
the RF voltage, the frequency dispersion, the harmonic number, and the 
synchronous phase. Figure 8 shows examples of two separatrices with all 
parameters from equation (21) identical with the exception of #.. As you 
can see, changing the synchronous phase from O” to 34” substantially 
reduces the stable area available. In Figure 9 you can see examples of 
phase space trajectories generated by numerical iteration of (19) for the 
same parameters as in Figure 8. In general the choice of #, in a real 
accelerator represents a compromise between the desire to accelerate the 
beam quickly (large # ), and the desire to proved a large stable area to 
accomodate the beam [small #,). 

IV.3 Synchrotron Oscillations 
For small deviations around the stable fixed point the equations (19) 

can be linearized to give harmonic motion. If we approximate, 

sin+G.n#s 2 COS#~(#-#,) 

then the equations of motion can be combined into a single second order 
differential equation thus, 

Equation (22) is just the simple harmonic oscillator equation. (Remember 
we are dealing with the case r1>0, cos#s<O.) We can read off the 
oscillation frequency, converting from revolution units to time units, 

(” T]2, _ 2rht7eVc0s~ 
2 P,BC s * (23) 

For small displacements from the stable fixed point particles undergo 
simple harmonic motion with a frequency, fls, which is called the 
synchrotron frequency. Figure 10 is a picture of particle bunches 
undergoing synchrotron motion in the Fermilab 8 GeV Booster. Time is 
progessing vertically in the picture and the history of three different 
bunches is shown. The time covered by the picture is about 1 millisecond. 

IV.4 Emittance 
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The beam in an accelerator is localized in the stable areas of the 
longitudinal phase space. There is a stable region associated with each 
stable fixed point, and since the RF voltage is a periodic function the 
number of such stable regions around the azimuth of the accelerator is 
just equal to the harmonic number, h. The beam particles contained in 
any one of these stable regions are referred to ss a bunch. The number of 
bunches in an accelerator can thus be any number up to h. (Sometimes 
some of the stable regions are left empty). 

The area of longitudinal phase space occupied by a bunch is called 
the longitudinal emittance, eL. It is defined in an analogous manner to 
the transverse emittance: You draw the contour (21) which encompasses 
95% of the beam particles and the area enclosed by this contour is eL. 
Typical values of the longitudinal emittance we deal with at Fermilab are 
0.3 eV-sec. The longitudinal emittance is preserved during acceleration. 

IV.5 Transition 
I would like to conclude our discussion of longitudinal phase space by 

telling you what I meant by my earlier comment that the quantity 7 was 
not necessarily constant during the acceleration process. As you remember 
from (18) rl relates changes in revolution period to changes in momentum 
for a fixed magnetic field. The revolution period is related to the total 
path length, L, around the accelerator and the velocity of the beam 
particle by T=L//Ic. Two distinct effects contribute to the change in 
revolution period with momentum--the change in path length with 
momentum, and the change in velocity with momentum: 

The change in path length around the accelerator is simply related to the 
fact that as the momentum of a particle increases it travels on a circle of 
larger radius. The relation is parameterized by 

d&-12&2 
L-7t P (251 

where 7t is called the transition gamma. The transition gamma is so- 
named for a reason which will become obvious shortly. It is a property of 
the optics of the accelerator and does not depend on the energy of the 
beam. I will tell you how to calculate Tt at the end of this lecture. You 
all learned how to calculate the increase in the velocity of a particle with 
momentum many years ago: 
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So we can substitute into equation (24) to get our result, 

The momentum dependence of r] is now displayed explicitly and the 
designation ‘transition g-a’ becomes apparent: For 7 less than rt r] is 
negative, while for 7 greater than rt q is positive. In many proton 
accelerators, including the Booster and Main Ring at Fermilab, the beam 
passes through transition during the acceleration process. There are two 
important consequences of passing through transition. First, the stable 
phase of the RF wave shifts from 9, to x-#~. Since the beam cannot 
move discontinuously in time, it is necessary to change the phase of the 
RF voltage as the beam passes through transition. The second effect is 
that if you were to look at the invariant of the longitudinal motion, (20), 
you would find that right at transition the momentum spread of the beam 
becomes infinite while the bunch length (i.e. the extent over #) goes to 
zero. That this cannot be allowed to happen forces one to make sure that 
the passage through transition is performed fast enough to be non- 
adiabatic. In this case transition is not really a practical problem. 

V. MACHINE ERRORS 

So far we have established a reference orbit in our accelerator, with 
individual beam particles executing stable oscillations in both the 
transverse and longitudinal planes around that reference orbit. What I 
would like to look at now are the consequences of building a non-perfect 
accelerator. We will examine three types of errors: 

1. All dipole magnets do not have exactly the same values of 
their magnetic fields. 

2. All quadrupoles are not exactly aligned with their centers on 
the reference orbit. 

3. All quadrupoles do not have exactly the same magnetic field 
gradients. 

As we shall see below, 1. & 2. lead to a distorted cloeed orbit, while 3. 
leads to tune shifts and stop-bands. 
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V.l The Closed Orbit 
We will suppose that we have a distribution of dipole fields around 

our ring, AB(s), which were not intended to be present when the 
accelerator was designed. This can happen because of either of the first 
two effects listed above. Our equation of motion, (7), then becomes, 

& + k(s)x = 

This is an inhomogenous differential equation which has a solution 
x(s)=x&s)+x,(s), where xP is a solution to the homogenous equation as 
described earlier, and xc is the particular solution to the inhomogenous 
equation with xc(s+L)=xc(s). The solution to the inhomogenous equation 

where, 

x,(s) = a(~)@$, bnein++) 

w = 1 b ein#(s) . 
n n 

Xc is called the closed orbit. It differs from the reference orbit if AB(s) 
differs from zero for any value of s. This means that in a real accelerator 
with real construction errors, the transverse motion described by equations 
(10) is really measured with respect to the closed orbit, not the reference 
orbit. The closed orbit formula can be written in a more convenient 
alternate form if the field errors are approximated by a discrete set of 
error elements, 

$f- = 2 =i 6(s-s.) . 
i @PI 1 

The index i refers to a contributing error tield at the position si. In this 
case the expression for the closed orbit can be written, 

x (8) = ga 2 *II1 imcos(l#(s)-).I-TQ) . c 4 i (BP 1 1 (27) 

Both forms of xc show that values of the tune, Q, near an integer 
need to be avoided. Equation (27) is the form in which accelerator 
designers tend to think of the closed orbit because it explicitly shows the 
effect of localized errors, and because it is easily programable. Closed orbit 
errors are inevitable in a real machine. They are typically in the range l- 
10 mm Andy are controlled by providing adjustable correction dipoles. 
Figure 11 shows a typical closed orbit measured in the Fermilab Booster. 
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Figure 11. A vertical closed orbit measured in the Fermilob Booster. 
The horizontal axis is the azimuth. s; the vertical 
axis is the orbit in mm 
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V.2 Dispersion 
Up until this point we have only obliquely referred to the effect of a 

momentum error on the transverse position of a beam particle, and the 
beam momentum spread on the transverse beam size. We did this when 
we wrote down equation (25) relating the increase in path length to the 
change in momentum. We did not specify at the time how one might 
calculate the value of 7t, a situation which we will now correct. 

I would like to start by considering the closed orbit of a particle 
whose momentum differs from the reference momentum by an amount Ap. 
To first order the particle sees reduced bending in each dipole by an 
amount, 

So the effect is exactly the same as if there were an additional error field 
at each dipole of, 

(ASl)i = (Bl)i% . 

We can substitute this expression into (27) to find the closed orbit for an 
off-momentum particle: 

Xc(S) = m ” $f$ie(I#(s)-#iI-r’4) % (28) 

xc(s) = ap(s) $ . (29) 

The index, i, in (28) runs over all dipole magnets in the accelerator. a (s) 
is called the dispersion. It is a function of azimuthal position in the r!ng, 
and for accelerators which lie in a horizontal plane is non-zero only in the 
horizontal dimension. Typical values of the dispersion in proton 
accelerators range up to 10 meters and tend to be positive. 

We now have a complete formulation for the transverse position, with 
respect to the reference orbit, of a beam particle undergoing betatron 
motion, with a momentum offset, in the presence of closed orbit errors: 

X(8) = x 
B 

(s) + Qp(S)% + xc(s) . (30) 

Note that the betatron motion diicuesed earlier, x&s), actually takes place 
relative to a momentum dependent closed orbit. We can also modify the 
expression for the physical beam size, (17), to account for any momentum 
spread present in the beam (assuming the transverse and longitudinal 
phase spaces are uncorrelated): 
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(31) 

As you might guess, the transition gamma of an accelerator has 
something to do with the dispersion throughout the accelerator. I will 
state the result here and leave verification as an exercise for the student: 

12 = ; qnp(si) . 
It 

(32) 
i 

The sum is over all dipoles in the accelerator, and 8; is the nominal 
bending angle of the ith dipole. As a rule of thumb, the transition gamma 
is approximately equal to the horizontal tune. 

V.3 Quadrupole Gradient Errors 
We want to look at the effect of a quadrupole gradient error, Akl, at 

some point in the accelerator. We will denote by M and M’ the 
unperturbed and perturbed single turn transfer matrices, (16), around the 
ring, and by Q and Q’ the unperturbed and perturbed tunes. In the limit 
that the length of the offending error is small (compared to a betatron 
wavelength), M’ may be written as, 

lA’(s,s+L) = Y(s,s+L) (-Ail if1 . 

Substituting for M from equation (16) gives us, 

y’ = [ 
cos2nQ+asin2rQ-Akl/7sin2sQ ***** 

***** cos2sQ-asin2n dl 

where I have not bothered to write the off-diagonal terms since we are 
only interested in the perturbed tune. As you remember, the tune is 
related to the trace of the single turn transfer matrix via 
2cos2rrQ=Trace(M). So the perturbed tune is given by, 

cos2rQ’ = cos2sQ - ysin2rQ . (33) 

The /3 in the expression is the lattice function at the location of the 
gradient error. The functional dependence of the perturbed tune, Q’, on 
the unperturbed tune, Q, is shown in Figure 12 for Ak1/3/4r=.05. There 
are several features of the figure I would like you to take note of: First, 
there is a region of unperturbed tunes near to Q=1/2 for which there is 
no solution for Q’. In this region the single turn transfer matrix has a 
trace less than -2 signifying the lack of stability in the transverse plane as 
we discussed earlier. The region around Q=1/2 devoid of stable orbits is 
called a stop-band. The width of the stop-band is related to the strength 
of the gradient error. Clearly, we would like to avoid designing an 
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accelerator with a tune near l/2, if we wish to minimize our susceptibility 
to having an accelerator which does not possess stable orbits. The second 
thing to notice is that for tunes not too close to l/2, and small gradient 
errors the change in tune, A& (=Q’-Q), is given by. 

The half-integer stop-band is not a problem in a well designed 
accelerator. If a problem is expected, however, adjustable correction 
quadrupole magnets can be distributed around the ring to tune it out. 

V.4 Chromaticity 
We just got through showing how a change in quadrupole strength is 

related to a change in the tune. Since the effective focusing strength of a 
quadrupole, k, depends on the momentum as (Ak/k)=(Ap/p), a beam 
particle with a momentum which differs from the reference momentum by 
an amount Ap, will have a tune, 

AQ = -1 Q$-i@i AQ . 
P 

The sum in (35) is over all quadrupoles in the accelerator and must be 
performed separately in each of the transverse planes. The proportionality 
constant relating AQ to Ap/p is called the chromaticity, e, and is defined 
by, 

I 
“$ = tx% 
WY = ty% . (36) 

The chromaticity of a machine containing only dipoles and quadrupoles is 
always negative due to the decrease in focusing with increasing momentum. 
As a rule, the chromaticity is about equal to -Q. The chromaticity 
introduces a tune spread into any beam which possesses an intrinsic 
momentum spread. This is bad because of the existence of resonances 
which need to be avoided (we will come to this in a minute). It can be 
corrected by the introduction of sextupole magnets into the ring at 
locations of non-zero dispersion. 

V.5 Resonances 
We have shown in our discussions that there are at least two sets of 

values of the tune which need to be avoided in the construction of an 
accelerator: Q=integer and 2Q=integer. The first was related to dipole and 
the second to quadrupole error fields. You might be developing the 
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suspicion that this result can be generalized to higher multipoles of the 
magnetic fields. If so, your suspicions are not unfounded. It turns out that 
if fields of the form 

B(x) a Bo~(m+n-l) 

are present, then one needs to avoid tunes satisfying, 
mQ,+nQy=k (37) 

where m, n, and k are integers. You might be thinking that this means 
there are no acceptable tunes since (37) rules out all rational numbers. 
Fortunately, in practice it turns our that avoiding resonances up to 
m+nz5 is sufficient for an accelerator and up to n+mzl2 is sufficient for 
a storage ring. 

To get a quantitative picture of what happens when close to a 
resonance with m+n>3, one has to go back and rewrite the equations of 
motion, (5), including the higher order multipole field. This gives a non- 
linear differential equation for which mankind has not yet discovered a 
general solution. We can get a picture of what is happening, however, by 
using numerical methods to look at the case m+n=3, with the field 
confined to a single azimuth. We will iterate the difference equations, 

xn+1 = (cos2rQ)xn + (sin2rQ)xf: 

x:+1 = -(sin2rQ)xn + (cos2rQ)x~ + Ax~+~ . 
(38) 

From (37) we expect some sort of anomalous behavior near Q=1/3. Figure 
13 shows the results of iterating equation (38) for two values of the tune 
near l/3, and two values of the strength of the non-linear term, A. For 
Q=.38, A=0 we get phase space trajectories which are circles, as described 
by (lo), and stable orbits exist for all regions of the phase space. For 
Q=.38, A=1 we see trajectories which are still circles near the origin, 
become distorted away from the origin, and then cease to exist if we 
move far enough away from the origin. Finally, for a tune closer to l/3, 
Q=.35, and A=1 we see a similar plot except with the stable area 
reduced relative to Q=.38. 

Figure 13 displays the most common characteristics of higher order 
(23) resonances. In the presence of higher order magnetic multipoles the 
area of the phase space over which the motion of individual beam 
particles remains stable is restricted. The size of the available stable area 
depends both on the strength and configuration of the higher order field, 
and on the difference between the tune and the resonant tune. The 
contour enclosing the stable area in phase space is called the dynamic 
aperture. Except for the case of motion near a single resonance, the 
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calculation of the separatrix defining the dynamic aperture cannot be done 
analytically. Particle accelerator designers have started using tracking codes 
to calculate dynamic apertures. As in the case of the integer and half- 
integer re*onance*, higher order resonance* can be controlled through the 
use of adjustable higher order correction elements. As far a* I know, no 
existing accelerator is limited in performance by its dynamic aperture. 

This conclude* our discussion of the basic principles of acclerator 
design and operation. We now have the knowledge required to make a 
conceptual SSC design. 

VI. DESIGNING THE SUPERCONDUCTING SUPER COLLIDER (SSC) 

We will proceed with our design of the SSC based on the principles 
illuminated in the preceding lecture along with a few practical points that 
I will introduce as needed. The design of the SSC as put together by the 
SSC Central Design Group is contained in the Conceptual Design Report4 
(CDR) published in March of 1986. AB we go through our design we will 
in many ways be approximating the thought processes which went into the 
creation of the CDR, and we will make reference to that document. 

Before we design the SSC we have to know what it is supposed to 
do. To this end the Department of Energy sets up advisory panels and 
the high energy physic* community organizes workshop* in an effort to 
develop a consensus on the specification for the machine. After years of 
wrangling everyone agrees on the need for a hadron collider meeting the 
following specification: 

1. The total energy available in the center-of-mass, E cm’ should 
be 40 TeV. 

2. The luminosity, L, should be at least 1O33 -2 cm *ec -l. 
(Luminosity is the proportionality constant relating event rates 
to cros8 sections.) 

3. On the average there should be less than 1.4 interactions per 
bunch -ing. 

4. There should be at least 1.6~10-~ sec. between bunch 
-iIlgS. 

5. We want proton-proton collisions. 
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6.There should be six interaction points available for the 
installation of experiment*. 

Within the framework of the specification the only feasible strategy is to 
build two proton storage rings with individual proton bunches brought 
into collision at the specified number of locations around the ring. 

A storage ring is simply an accelerator capable of holding a particle 
beam at a fixed energy for a long time. For collisions between counter- 
rotating beams each having N particles/bunch, with transverse rms beam 
sizes cr (assumed equal in the horizontal and vertical planes), and with 
collisions between subsequent bunches occuring at a rate f, the luminosity 
is written, 

L = & = LOf . 

L is the luminoisty and has dimensions of cm-‘see-‘, while L, is the 
luminosity per crossing with has units of cmm2. 

Specification 3. tells us what Lo the experimenters want if we know 
the total p-p cross section at 40 TeV. We will guess a(pp)=9x10-26cm2 at 
this energy. We must have L,o(pp) less than or equal to 1.4, BO 

L =1.6x10'5 cm-s. 
Specification 2. now constrai: the choice of bunch separations to give the 
total desired luminosity: f=L/L,, or 

f=62.5 MHs. 
This means that collisions between bunches occur every 16 nsec, which is 
consistent with 3. So at least we have not been handed an internally 
inconsistent specification! 

Next we need to do some work on choosing appropriate values of N 
and u to get the desired L,. What we need is, 

1.6~1O~~cm-~ = 2 [3”. (40) 

We will write u at the interaction point in terms of the normalized 
transverse emittance, which we will denote simply as E for the remaindsr 
of these lectures, and the lattice function at the interaction point, p , 
assuming we can design the lattice to give ap=O at the collision point. 
The mean-square beam size at the collision point is then, 

u”=& . 
rel 

In general we would prefer to make u small rather than making N large. 
Let us ask what a reasonable goal is. We could say that Fermilab runs 
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with r=20r mm-mr in their collider and we ought to be able to do three 
times better. So we will assume we can produce a normalized emittance of 
~~69 mm-mr. We could also say that Fermilab has built a ring with a 
p of 1 mete5 and we ought to be able to do two times better. So we 
will assume /J =0.5 meters. If you work it out you will see that this gives 
an rms beam size at the collision point of 

u=4.8x10a meters, 
and according to (40) the number of protons required per bunch is 
N=S.SxlO9. 

We have now effectively learned what beam parameters are required 
to satisfy the physicists’ specification without making wild extrapolations 
from what we know how to do now. There are several minor refinements 
to our parameters which have to be made. First, we should check that 
the parameters chosen do not violate the ‘beam-beam tune shift criterion’. 
This criterion is just a limit, based on experience, of how strong the 
macroscopic electromagnetic interactions between the colliding beams can 
become before the beams self-destruct. It turns out that we are well below 
that limit. 

The second refinement is a little more subtle, and is based on our 
desire to keep the counter-rotating proton beam separated everywhere 
except at the collision point. Because of the short (16nsec=4.8meters) 
separation between adjacent bunches it is necessary to have the proton 
beams cross through each other at an angle if a particular proton bunch 
is to avoid colliding with multiple proton bunches in the other beam as it 
passes through the interaction region--that is the collisions cannot be 
exactly head-on. This can be a problem because it can cause a significant 
decrease in the luminosity if the crossing angle times the bunch length 
becomes comparable to the transverse beam size. The problem is 
combatted in the CDR by making the bunch length short through the use 
of a higher harmonic RF system. The CDR proposes fRF=375 MHz. Since 
this is six times f(=62.5 MHz) only one out of every six RF buckets is 
filled. This system produces a bunch length of about 6 cm which, when 
coupled with the crossing angle of 7.5~10~~ radians, results in a 15% 
degradation in the luminsoity. This degradation is made up by increasing 
the total number of protons per bunch to 7.3~10’. 

Let us summarize the beam parameters we have specified in order to 
meet the collider requirements given to us by the physicists: 

1. N = 7.3~10’ protons/bunch. 

2. f = 62.5 MHs. 

3. .E = 69 mm-mr. 
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4. p* = 0.5 meters. 

5. up = 0. at the colliiion point(*). 

We now need to design an accelerator which can produce a beam with 
these characteristics. 

VI.1 General Layout of the Collider 
We are going to need two identical accelerators to accomodate the 

two proton beams required, and an associated complex to provide protons 
at a proper energy for injection into the collider rings. Generically, each 
accelerator will be made up of ‘Arcs’ and ‘Straight Sections’. The function 
of the arcs is simply transport of the beam between the straight sections. 
The bending dipoles required to bring the beam around in a circle are, for 
the most part, located in the arcs. The straight sections are the special 
purpose units of the accelerator. They provide room for the RF systems, 
for injection and abort systems, and for the collision regions. In the arcs 
we will situate the two accelerators on top of each other, while in the 
collision straight sections we must conspire to bring the two beams 
together. For logisitical reasons we will try to put the straight sections in 
close proximity to one another ss shown in Figure 14. 

The scale of the collider is set by the energy-magnetic field 
relationship, (3). If we were to use Fermilab collider style magnets (i.e. 
B=44 kGauss) then the bend radius in the dipoles would be I5066 meters. 
And if we were to assume that 80% of the total length of the rings were 
filled with dipoles, then we would be left with a collider of about 120 km 
in circumference. We would hope that modern magnet designers could 
raise the magnetic field by perhaps 50%. 

VI.2 The Ares 
We are going to make the arcs out of what are called FODO cells. 

When concatenated, FODO cells are the simplest, most efficient means of 
transporting a beam from one location to another. The generic FODO cell 
is shown in Figure 15. It consists of alternating focusing and defocusing 
(in the horizontal plane by convention) quadrupoles interspersed with 
dipole magnets. The length, L, is measured between the midpoints of the 
focusing quadrupoles. The matched lattice functions, i.e. the lattice 
functions you obtain if you were to create an entire ring out of these 
cells, can be calculated from equation (15). We give the result here 
written in terms of the length of the cell, L, and the betatron phase 
advance per cell, #. 
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PF = i&p +sinWz) I 

PD = &(l-sin(#/2)) 

“pF= 
LB (l+l/Zsin(d/Z) 

sin’()/Z) 

(41) 

apD= 
LS(l-l/Zsin(d/21 

sin’()/Z) 

where S is the bending angle in one of the dipole magnets. The F and D 
subscripts refer to locations at the center of the focusing and defocusing 
quadrupoles. The lattice functions listed are in the horizontal plane. By 
symmetry the vertical lattice functions are obtained by interchanging F 
and D indices on the p functions and setting a =0 in the absence of 
vertical bending dipoles. Also by symmetry, the lattyce function n is equal 
to zero at the midpoints of all quadrupoles. The quadrupole strength 
required in this cell is 

&f = $in(#/Z) . 

If we can define some reasonable criteria for choosing L and 4 we will 
have the FODO cell, and hence the arcs of the machine, specified. 

The choice of L will represent a compromise between two competing 
demands. First, we know from experience that the dipole magnets are 
going to be the single most costly element of the collider, and we also 
know from experience that the cost of a superconducting magnet increases 
very rapidly with the transverse aperture. This means there will be a 
premium on keeping L short to keep /s small. On the other hand we 
would like to make as few cells as possible to minimize the total number 
of discrete elements we have to produce, and to keep the dipole packing 
fraction high. This drives us toward making L long. We are going to 
compromise by using the criterion that the beam size at injection does not 
dominate the dipole aperture requirement. 

Since the physical beam size is largest at injection into the collider, 
the magnet aperture requirement arises from the need to be able to accept 
the injected beam. The aperture, however, is required to accomodate more 
than just the physical beam size. It must provide for the possiblity of 
injection errors, closed orbit errors, and other miscellaneous effects which 
are estimated to consume about 7 mm of aperture. Providing an injected 
beam size of much less than this does not gain us anything, while 
providing a much larger beam would needlessly enlarge the aperture 
requirement. We are going to specify that the injected beam size, l 4a, be 
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4 mm. This will give us a pF for the assumed normalized emittance of 6s 
mm-mr once we know the injection energy. We will anticipate a later 
discussion in stating that the injection energy into the collider will be 1 
TeV. Then, 

Choosing the phase advance per cell, #, is at some level a matter of 
personal taste. Some people prefer 90’ while others like 60”. There isn’t 
really that much to choose as far as I am concerned. In fact, over the 
range 60“ to 90” the choice of phase advance has almost no effect on the 
length L. The Central Design Group chose 60’ for the cell in the CDR. 
According to (41) this would give us L=154 meters for our choice of p, 

To determine how many cells are needed in the arcs we need to 
know what magnetic bending field we can provide. We ask the magnet 
gurus, who tell us ‘66 kGauss’. This gives us a bending radius in the 
dipoles of 10.1 km, and assuming that we can fill 90% of the length of 
the cell with dipole magnets gives a total arc length of about 67 km. The 
number of cells required is then about 67000/154, or 430. 

So we have finished designing the arcs. We show below the 
comparison between the arcs that we have designed and those designed by 
the Central Design Group. They are really very similar. 

Property US CDR 

Length of Cell 
Phase Advance 
Number of Cells 
PF 
Tune of the Arcs 

154 m 192 m 
60 degrees 60 degrees 

430 332 
267 m 325 m 

71.7 55.3 

The FODO cell from the Conceptual Design Report is shown in Figure 
16. (Note that the CDR denotes dispersion by 7x.) 

VI.3 Designii the Straight Sections 
Straight sections need to be included into the collider because the 

FODO cells do not have properties which make them useable for certain 
special purposes. For, example, we said that at the collision point we 
would like to have p =0.5 m, ap=O, and the experimenters also require 
“Lots of room for the detector”. The cell shown in Figure 16 does not 
come close to meeting any of these requirements. 



29 

In designing any special purpose straight section the trick is to design 
it in such a way that it does not disturb the natural lattice functions in 
the arcs. Creation of such a design is called matching, and a straight 
section which satisfies this requirement is called a matched insertion. In 
order to qualify as a matched insertion the straight section must satisfy 
one of two properties: 1) The transfer matrix of the insertion is the unit 
matrix; or 2) The transfer matrix has the property that it transforms, 

P(i4 + Pbt) 
yin) + yout) 
a m) + -a out) 
a ‘(in) + -a ‘(out). 

Condition 1) simply makes !he straight section invisible to the rest of the 
ring. It is a sufficient but not necessary condition for a matched insertion. 
Condition 2) is the less restrictive necessary and sufficient condition. It 
works because of the inherent symmetry of the situation in which the 
straight section is bounded on each side by identical FODO cells. 
Condition 2) is the one accelerator designers usually apply. Numerous 
computer programs have been written to calculate transfer matrices which 
satisfy 2) while at the same time providing the desired optical properties 
within the straight section. 

An example of a special purpose straight section is shown in Figure 
17, taken from the SSC CDR. It is one of the utility straight sections 
housing the RF, injection, and the abort. You can notice the FODO cells 
at both the left and right hand side of the figure, with a big empty space 
in between. The empty space in between has properties which are 
conducive to the specialized needs: moderately large f3 functions with lots 
of space for injection and extraction, and dispersion free regions for RF. 
The total length of the straight section is about a mile. 

VI.4 Designii the Interaction Region 
Designing the straight sections accomodating injection, extraction, and 

RF is generally pretty straightforward. Associated with the design of the 
straight section in which collisions are to take place are several special 
problems which makes this job a little more challenging. 

The first challenge is to bring the beams together. (I might note that 
in a proton-antiproton collider in which the beams circulate within a 
common ring this is a non-problem as long as the number of bunches is 
small.) A series of vertical bending magnets is used to bring the beam 
together as shown in Figure 18. Note that this will create a vertical 
dispersion which must be matched in order to keep it localized. 
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The more ser+ious problems are related to the optics needed to 
produce the low p required for high luminosity, while at the same time 
providing sufficient free space for the experimenters to install their 
detector. The problem arises because the p function grows quadratically 
with distance from the collision point, s, according to, 

/Y(s) = p* + $ . 

The low /3* is usually provided by a very strong quadrupole doublet 
or triplet. (A single quadrupole cannot be used because it could no& 
provide simultaneous focusing in both planes.) As s increases and/or p 
decreases (both desirable from the experimenters’ point of view), the f3 
function at the end of the quadrupole triplet grows. The situation is even 
worse than you might think because this quadrupole at the end of the 
triplet is going to defocus the beam further in one of the two plany. As 
a rule of thumb, the maximum /3 that is produced is related to p and 
the length of the free space, J, by 

p p,, = 10 12. 

This effect can be seen in Figure 19 (top) where the SSC interaction 
region is displayed. The FODO cells are on the left and the interaction 
point is at the far right of the figure. One half of the straight section is 
shown, with mirror symmetry around the interaction point. Associated with 
the /I of 0.5 meters and the free space of 20 meters is a p,,, of 8000 
meters. 

The large p,,, creates two sorts of problems. First, it makes the 
accelerator much more susceptible to machines errors (c.f. equations (27) 
and (33)). And second, it produces a very large beam in the quadrupole 
triplet during injection. In fact, the beam in the quadrupole triplet is so 
large during injection that it is impossible to contemplate building these 
quadrupoles with the required aperture. The problem is solved by using 
different optics during injection, as shown in Figure 19 (bottom), and then 
retuning the straight section after the beam has been accelerated and is 
smaller. This is not an easy maneuver to complete without killing the 
beam, but there is experience with following just such a procedure in the 
Fermilab collider. 

VI.4 The SSC Design 
We have essentially completed the optical design of the collider. With 

the addition of the straight sections shown in Figures 18 and 19 (two 
utility straights and four interaction region straights) we have increased 
the tune of the accelerator(s) to 78.3 and the circumference to 82.94 km. 
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All that remains to be done is to specify the magnet ‘good field aperture’ 
requirements for the magnet builders, and to specify the injector 
requirements to the injector builders. We have already discussed the 
magnet aperture requirements. What is needed is a good field aperture of 
10 mm. The primary injector requirement is for an accelerator complex 
capable of providing the design beam intensity and phase space density at 
an enery of 1 TeV. The injection energy is determined by the requirement 
that persistent current effects in the collider magnets be manageable as 
discussed in the previous lecture. 

We now have it!--An SSC design which is shown in Figure 20. It 
looks good on paper, so let’s hope somebody buys it. 

VII. OTHER SORTS OF ACCELERATORS 

I want to leave you with a least an inkling of the differences between 
the proton accelerators/colliders which I have been describing here and the 
other sorts of high energy accelerators used for physics research. These 
include electron storage rings, antiproton sources, and electron linear 
colliders. We turn first to electrons. 

Electron storage rings have totally different scales of energy, 
circumference, and emittance than proton accelerators. The differences are 
a reflection of the dominant role played by synchrotron radiation in 
electron machines. In completing a single revolution of an accelerator an 
electron loses energy in an amount, 

U(MeV) = .08BEk 

The most immediate consequence of (43) 
Pb) * (43) 

is that it gets very hard to pay 
the power bill as the energy goes up. For example, at the Large Electron 
Positron Collider (LEP) at Cern an 80 GeV electron will lose 600 MeV of 
energy every time it goes around the ring--energy which has to be 
replenished by the RF system! The economics connected with (43) are 
such that the circumferences of electron accelerators tend to scale as the 
Energy’ rather than with the Energy as in proton rings. This results in 
the interesting feature that the highest energy electron rings use magnets 
with the lowest magnetic fields! One attempt to defeat the consequences of 
(43) is the Stanford Linear Collider in which electrons are accelerated in a 
straight line before being brought into collision and subsequently discarded. 
It is interesting to note that protons do produce synchrotron radiation, 
but at a rate reduced from (43) by (me/m,)“. The SSC will be the first 
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proton accelerator to have measureable synchrotron radiation effects-- 
primarily an increased heat load on the magnet refrigeration system. 

A second consequence of synchrotron radiation is the presence of 
radiation damping in electron storage rings. Since the RF system is 
providing energy to the electrons even while they are not being 
accelerated, the mechanism shown in Figure 3 works to reduce the beam 
emittance even without acceleration. At the same time, the energy 
dependence of the synchrotron radiation insures that the longitudinal phase 
space is damped also. The beam emittance is shrunk to a level at which 
the damping and quantum fluctuations in the radiation process come into 
equilibrium. The result is that the emittance of an electron beam in a 
circular accelerator is an intrinsic property of the accelerator itself, i.e. it 
depends on the details of the lattice functions. While the emittance 
behaves very differently in electron and proton rings, the entire formalism 
we described for treating the transverse and longitudinal motion of 
individual particles remains unchanged. 

Antiproton sources are specialized storage rings used to provide 
antiprotons for proton-antiproton colliders. The problem they have to cope 
with is the difficulty in collecting large enough numbers of antiprotons 
into a small enough phase space to produce a decent luminosity in a 
collider. Antiprotons are produced by striking a metal target with high 
energy protons, and collecting all the negatively charged particles which 
emanate at some energy into some transverse acceptance. The yields are 
very low. At Fermilab, using 120 GeV protons, into a momentum 
acceptance of 3% at 8 GeV, and into a transverse acceptance of 20~ mm- 
mr the yield is about one antiproton for every million protons striking the 
target. 

Not only are there not very many of them, but the antiprotons are 
also widely dispersed in phase space. They are accumulated over many 
hours and simultaneously their emittance is reduced using a stochastic 
cooling system. The stochastic cooling system reduces the otherwise 
invariant emittance by sensing the position of individual antiprotons at a 
pickup located at a specified position around the ring, and then sending a 
signal to a kicker located downstream which applies a correcting impulse 
to the particle. The cooling rate is related to the bandwidth (i.e. time 
resolution) of the cooling system, W, and the total number of antiprotons 
in the ring. In a perfect cooling system the cooling time is 

In the Fermilab Antiproton Source the number of antiprotons ranges up 
to 5xlOll and the bandwidth of the cooling systems is 2 GHz. This 
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results in an optimum cooling time of 4 minutes. The highest antiproton 
accumulation rate recorded at Fermilab (or at CERN) is 1.2x101’/hour. 
At this rate several hours are needed to accumulate a useful number of 
antiprotons. You might find it interesting to calculate how many grams of 
antimatter are being produced per year at this rate. 

VIII. SUMMARY 

I hope that you come away from these lectures with an understanding 
that particle accelerators are rational devices which obey the laws of 
physics. We discovered that the macroscopic beam characteristics can be 
understood in terms of the motions of individual beam particles, which are 
in turn described by simple harmonic motion. We found that higher order 
nonlinear effects are a potential fly in the ointment which cannot always 
be ignored. And we saw how the scales of accelerators are set both for 
proton and electron accelerators. Finally, we learned enough of the jargon 
to understand that whereas the language of accelerator phyBiCiBt8 may not 
be completely understandable to the uninitiated, the underlying principles 
are simple and easily understood. 

There is a multitude of topics I did not cover here, either because of 
lack of expertise or because of time restrictions. These include linacs, 
accelerator diagnostics, injection and extraction, beamlines, limits on 
accelerator performance and beam instabilities, and further details of 
electron accelerators and antiproton sources. There are many interesting 
problems waiting to be solved in many of these areas. 
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