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Ĺınea de Investigación:
F́ısica de part́ıculas

Grupo de Investigación:
Grupo de F́ısica de altas enerǵıas

Universidad Nacional de Colombia
Facultad de Ciencias, Departamento de F́ısica
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Resumen
En el siguiente trabajo, se realiza la construcción general de la teoŕıa supersimétrica dándose
por conocidos los fundamentos en teoŕıa de grupos en relación a grupo de Poincaré y por lo
tanto se inicia desde las propiedades más generales de los espinores. Se desarrolla la teoŕıa a
partir de su formalismo de álgebras graduadas, construyéndose el grupo de Super-Poincaré y
a partir del manejo de variables de Grassmann se construye la teoŕıa supersimétrica desde el
formalismo de Supercampos y generándose los Lagrangianos escalares, vectoriales (abelianos
y no abelianos) y mixtos más generales permitidos por la condición de renormalizabilidad.
Finalmente los desarrollos de esta teoŕıa se implementan en el modelo estándar, donde se
encuentran todas las matrices de masa en relación a las Super-part́ıculas, los escalares y
fermiones del modelo estándar. Adicionalmente, se construye un modelo supersimétrico al
incluir una simetŕıa U(1)X adicional al MSSM de modo que sea libre de anomalias quirales
e incluyendo las tres familias de fermiones y algunos fermiones exóticos. A partir de la
asignación de cargas X se construye el superpotencial más general permitido por el criterio
de renormalización, se contruye el potencial escalar asociado y se obtienen las condiciones
que permiten recrear la masa del boson de Higgs observado, el cual en este escenario puede
explicar de forma natural la masa de 125GeV . Finalmente, se obtienen expresiones anaĺıticas
para la masa de los fermiones y en particular se calcula la masa de los más ligeros (e, u,
d y s) a nivel de un loop teniendo en cuenta las contribuciones debido a part́ıculas y sus
respectivos supercompañeros.

Abstract
In the following work, it is realized the general construction of the supersymmetric the-
ory where the fundamentals in group theory is considered as known in relation to Poincaré
group. Thus it begins from the most general properties of spinors. The theory is devel-
oped from its graded algebras formalism constructing then the super-Poincaré group, and
with the use of Grassmann variables the supersymmetric theory is built from the superfield
formalism generating then the most general scalar, vectorial (abelian and non abelian) and
mixed Lagrangians allowed by the renormalization condition. Finally the developments of
this theory are applied to the standard model, where it has been found all the mass matrices
related with superparticles, scalars and standard model fermions. Additionally, it is build a
supersymemtric model by including an additional U(1)X symmetry to the MSSM in such a
way that it is chiral anomaly free and including all three fermions families and some exotic
fermions. From the X charge assignation the most general renormalizable superpotential
is written, the associated scalar potential is consequently obtained and the condition for
reproducing the SM Higgs boson , which can explain naturally ira 125GeV mass. Finally,
analytic expression for scalars and fermions are given where all 1-loop contributions due to
particles and superparticles are considered for the lightests fermions masses (e, u, d y s).

Keywords: Supersymmetry, Standard Model, Superfields, Graded Algebras, Sparti-

cles masses, Higgs boson, neutrino masses, CKM matrix, PMNS matrix.
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1 Introduction

Despite in the ancient Greece there was a notion of atoms given by Democritus as the
fundamental component of the universe, none of our ancestors could have imagined how
mysterious, huge and non predictable our universe turns out to be. We have discovered
so many interesting phenomena against the common sense that new physics has become a
problem of discovering rather than predict or modeling. Even when the notion of an atom
was confirmed in experiments and ideas from Jhon Dalton we can in a certain way affirm
that there is something even more fundamental. Now that atom looks like a giant object
from the eyes of particle physics and its components nature transcends the understanding of
matter composition and behaviour to reach the most fundamental and philosophical ques-
tions about the origin of the universe.

It all starts from the atom nuclei, where particles with the same electric charge remain very
close with a stability that has lived on a time close to the universe age. Nowadays, we
understand that there is more interactions rather than the electromagnetic forces being the
first one a result of a SU(3) symmetry among particles that we can not see easily but makes
our universe possible. Furthermore, the notion of a force as the consequence of a certain
field that fills the entire space has been broken by the discovery of gauge bosons; quantum
couriers that communicate particles how to behave under the presence of other particles.
But not everything is as stable and perfect as we want idealize, sometimes it happens that
an atom expels and electron that it was not there before, technically known as β decay. It is
neither an electrical effect nor due to the nuclei interactions. It is a new interaction among
particles that respects a SU(2) × U(1) symmetry and teach us that every particle has two
counterparts, chirality, because it only affects to one of them.

The standard model of particles put together the previously mentioned interactions. The first
one is called the strong interaction and the second one is electroweak interaction summed up
in a SU(3)C × SU(2)L×U(1)Y invariant theory. It exposes a theory of interacting massless
particles until the universe temperature decreased enough to leave a certain particle field, the
Higgs boson, in a minimum non zero value, whose interaction with other particles provides
mass and breaks the original symmetry into a lower one. To date, this model describes very
accurately most of the subatomic processes that we observe in colliders at CERN but still
there are many unresolved questions indicating more physics beyond the standard model.
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For instance, how can fermions like the electron and the top quark to have a mass with a
difference of 6 order of magnitude if they interact a priori with the same Higgs bosons?.
That seems unnatural and it is called the Fermion Mass Hierarchy problem (FMH), which
opens the possibility of having more particles than observed and that’s the starting point
of several proposals. Theories with additional Higgs bosons can be found such as the two
Higgs doublet model (2HDM) or more elaborate extension with three, four or even more
scalar particles that can be doublets or singlets under SU(2). In this way, fermions can
have different masses by interacting with different scalar particles acquiring a vacuum ex-
pectation value. Even more, higher symmetry groups can be considered in such a way that
eventually breaks into the standard model one such as U(1) extensions, the 331 models,
the left − right symmetric models among others in order to explain the existence of addi-
tional particles by the proposal of a new interaction that generates processes yet unobserved.

Another possibility comes by the assumption of heavy fermion states, that explain the small
mass values thanks to the seesaw mechanism [37], a mathematical property of matrices with
a sector much bigger than others. However, this mechanism has more relevance in the case
of neutrinos. According to the standard model, they should be massless but the discovery
of neutrino oscillations points to the opposite, and if it was not enough, they do not acquire
mass with the same mechanism of the rest of particles so both the seesaw and heavy particles
are being considered until nature shows its reality in the experiments.

Supersymmetry was one of the most promising scenarios because it provides an explanations
for a lot of unresolved questions such as the theoretical Higgs boson mass, the FMH, grand
unification among other. It comes from our idealized view of a symmetric universe that the
idea of having equal number of fermions and bosons related by pairs, fermion-boson super-
symmetric partners, that brings to live the SUSY theory. Unfortunately, it has not been
observed in experiments but it is still alive under the theoretical promise of string theories
which locates the exotic particles at an unreachable energy scale at the same time that makes
a proposal for quantum gravity.

The present work, exposes a proposal for solving the FHM problem by considering a U(1)
extension to the Minimal Supersymmetric Standard Model (MSSM) that can recreate all
the standard model blackground without implying unobserved particles at energies already
explored. It is based on the particle and charge assignation of its non-SUSY counterpart
found in [44] and it is developed under the requirement of reproducing a 125.3GeV scalar
particle as the lightest one, the correct gauge boson masses and the correct values for the
Cabibbo-Kobayashi-Maskawa (CKM) and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
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matrices that parametrizes the flavor changing interactions between fermion mass eigen-
states. Additionally, the extension has a non-universal charge assignations which opens the
possibility of flavor changing neutral currents that in the SM are highly suppressed by the
GIM mechanism but in the SM extensions represents hidden physics that may occur at
higher energies.

Thus, the first chapter is devoted to the fundamentals of supersymmetry and some basic
of particle physics like Lorentz invariance, the action functional, spontaneous symmetry
breaking and chiral anomalies based taken from the cited bibliographic material. The second
chapter describes the general features of the MSSM prior to present the U(1)X extension
in chapter 3 as an extension of the MSSM. The last chapter closed this work with a short
discussion and conclusions about the model and possible future prospects.



2 Supersymmetry

Supersymmetry (SUSY) rather than an extension of a theory, is a generalization via a
higher symmetry among Fermions and Bosons. Unfortunately, such a symmetry can not
be described with a Lie algebra so Graded Lie algebras might be introduced as well as new
Grassmaniann coordinates that makes the supersymmetric theory consistent with Lorentz
invariance and guarantees a supersymmetric invariance. In this chapter, the foundations of
supersymmetry are described from the definition of spinors [53] and the action functional to
the development of gauge-invariant supersymmetric lagrangians [53][36][61].

2.1 Spinors and the Poincaré Group

Spinors can be defined as two-component objects that transform in the fundamental repre-
sentation of the SL(2, C) group, which is a double cover of the Lorentz group. Moreover,
spinors are considered anticommuting objects which operate ina very specific way. In this
section, a brief introduction of spinor algebra is done on the basis of the SL(2, C) group.

2.1.1 The fundamental representation

In the fundamental representation, SL(2, C) transformations are 2 × 2 matrices M of unit
determinant acting on a complex-valued 2-dimensional object ψα better known as left-handed
Weyl spinor. Then the transformation rule is defined by:

ψα → ψ′α = M β
α ψβ (2-1)

where the position of indices is of big importance. In this case, left-handed spinor indices
are contracted from upper-left to lower-right.

Now, we must define the dual representation given by the transformations M−1T where T
represents a transpose operation. However, there exist a similarity transformation connecting
M and M−1T which makes the dual representation equivalent the fundamental one. [16][10]
This representation acts on the dual spinor ψα which consequently transform as:

ψα → ψα = (M−1T )αβψ
β = ψβ(M−1) αβ (2-2)
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Moreover, it allows to define a SL(2, C) invariant inner product by:

< φ,ψ >≡ φαψα (2-3)

Since the fundamental and its dual representation are equivalent, spinors are related as well
by a SU(2, C) invariant tensor ε which lowers or raises indices. such tensor is fixed by the
relation [55]:

εβγεγα = δβα εαβ = −iσ2 =

(
0 1
−1 0

)
εαβ = (εαβ)T = (εαβ)−1 = iσ2 =

(
0 −1
1 0

)
(2-4)

where σ2 is a Pauli matrix and δβα = diag(+,+) is a trivial invariant tensor such that
δ βα ψβ = ψα.
Now, the contraction ψβεβα transforms as:

ψβεβα → (M−1T )βηψ
ηM γ

β M
δ
α εγδ = ψηδ γε M

δ
α εγδ = M δ

α ψ
γεγδ (2-5)

so it transforms as a spinor, so the relationship between spinors and dual spinors is given
by:

ψα ≡ ψβεβα ψα ≡ εαβψβ (2-6)

2.1.2 The antifundamental representation

The fundamental and its dual representation were equivalent because there is a similarity
transformation that connects both transformations. Nevertheless, the complex conjugate of
the transformations cannot be justified by a similarity transformation. Thus, the antifunda-
mental representation of the SL(2, C) group are the complex conjugate matrices:

M̄ β̇
α̇ := (M β

α )∗ (2-7)

where the index contraction goes from lower left to upper right. The dotted indices are
nothing but a mnemonic way of distinguish the fundamental and antifundamental represen-
tations and avoid index contraction between the both. Likewise, its dual is defined by M̄−1T

and such transformations act on right-handed Weyl spinors as:

ψ̄α̇ → ψ̄′α̇ = ψ̄β̇(M †)β̇α̇ ψ̄α̇ → ψ̄′α̇ = (M †−1)α̇
β̇
ψ̄α̇ (2-8)

By comparing with the fundamental representation and its dual we can identify then:

ψ̄α̇ = (ψα)∗ (2-9)
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and the antifundamental and its dual representation are connected by the epsilon tensor[55]:

(εαβ)∗ = ε̄α̇β̇ = εα̇β̇ (2-10)

However, we must take into account how indices are contracted in this representation. Then
we can write:

ψ̄α̇ = −εα̇β̇ψ̄β̇ ψ̄α̇ = −ψ̄β̇εβ̇α̇ ψ̄α̇ = ψ̄β̇δ
β̇
α̇ (2-11)

2.1.3 The Lorentz and Poincaré groups

The Lorentz group SO(1, 3) can be understood as the subgroup of matrices Λ of the general
linear group GL(4, R) with unit determinant that leave invariant the Minkowski metric:

ΛTηΛ = η (2-12)

being ηµν = diag(+,−,−,−). Such group has six generators: three hemitian generators
associated to space rotations, Ji; and three antihermitian related to Boost ,Ki, for i = 1, 2, 3
that satisfy:

[Ji, Jj] = iεijkJk [Ji, Kj] = iεijkKk [Ki, Kj] = −iεijkJk (2-13)

though the linear combination J±i = 1
2
(Ji ± iKi) is introduced to identify the equivalence to

SU(2) algebras by satisfying:

[J±i , J
±
j ] = iεJijkJ

±
k [J±i , J

∓
j ] = 0. (2-14)

However, for a more compact notation, the generators are written in terms of an anti-
symmetric tensor Mµν with four-vector indices defined as:

M0i = Ki Mij = εijkJk (2-15)

and can be rewrittena as[53]:

Mµν = i(xµ∂ν − xν∂µ) + Sµν (2-16)

= Lµν + Sµν (2-17)

where Lµν are the angualr momentum generators, Sµν the spin generators and µ, ν = 0, 1, 2, 3.
It can be proven that Lorentz group is homeomorphic to SL(2, C) which means that for any
matrix A ∈ SL(2, C) there exists an associated Lorentz matrix Λ such that:

Λ(A)Λ(B) = Λ(AB) (2-18)
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being A and B SL(2, C) matrices, the relationship between transformations can be proven
to be [10]:

Λµ
ν(A) =

1

2
Tr[σµAσνA

†] (2-19)

where σµ = (I, ~σ) leading to the relationship between spinors and four-vectors and A acts
on the structure X = xµσµ in the adjoint representation. However, we would like to write
the vector as a direct product of spinors X = ξξ† so X ′ = AXA′ = Aξξ† = (Aξ)(Aξ)† = ξ′ξ′†

so a Lorentz transform Lambda on a vector corresponds with the matrix A on a spinor [64].
The importance of this results lies in the fact that there exists an Homeomorphism between
the Lorentz group and the SL(2,C) group [52], where the latter can be decomposed into
two subgroups. On the one hand there are unitary matrices (Boost) while on the other hand
there are Hermitian ones (Rotations).
Finally, the Poincaré Group is the same Lorentz group augmented by translations, so its
algebra is given satisfy:

[Pµ, Pν ] = 0 (2-20)

[Mµν ,Mρ,σ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ (2-21)

[Mµν , Pρ] = −iηρµPν + iηρνPµ (2-22)

2.2 The action functional

In classical mechanics a detailed description of the action, the equations of motion and the
Noether theorem is performed [34]. Nevertheless, in a field theory they arise more properly
by considering Lorentz invariance. This action functional contains all the information of the
physical system under considerations and that is where its importance lies. The functional
depends on the trajectory over the phase space being the classical path the case where the
functional is an extremal. Despite we are interested in a Quantum Field Theory (QFT), in
practice is needed first to perform a classical treatment prior to quantize and look for the
new implications. In this section the conditions required to the construction of a suitable
action are discussed.

2.2.1 Behavior of the fields under the Poincare Group

The Scalar Field

If we consider a general infinitesimal Lorentz transformation Λµ
ν = δµν + εµν we find εµν to be

antisymmetric due to the invariance of the metric tensor:
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(ΛT )µνη
ν
ρΛ

ρ
σ = ηµσ (2-23)

Λ µ
ν η

ν
ρΛ

ρ
σ = ηµσ (2-24)

(δ µν + ε µν )ηνρ(δ
ρ
σ + ερσ) = ηµσ (2-25)

ηµρε
ρ
σ + ε µν η

ν
σ ≈ 0 (2-26)

εµσ = −ε µσ (2-27)

where only linear terms in ε are considered. Then, for the case of a scalar field which is a
scalar function of the coordinates that must acquire the same value on different reference
frames related by a Lorentz transformation we have the relation δφ = φ′(x′) − φ(x) =
δ0φ + δxµ∂µφ = 0, being δ0φ = φ′(x) − φ(x) a transformation that does not change the
coordinates and it is assumed in an approximate form that ∂µφ

′ = ∂µφ. As a consequence,
the scalar field transforms as:

δ0φ = −δxµ∂µφ
= −εµρxρ∂µφ

= − i
2
εµρLµρφ (2-28)

which depends only on the orbital angular momentum generators Lµρ = i(xµ∂ρ − xρ∂µ) and
δxµ = Λµρxρ−xµ ≈ εµρxρ, if we apply the general Lorentz transformation δ0φ = − i

2
ερσMρσφ

being M the generator of Lorentz group introduced in Eq. 2-16, we conclude that the Spin
operator vanishes which means that the scalar field describes a spin zero particle.

The Vector Field

A non trivial Sρσ spin operator can be built by considering a construction involving ∂µφ which
is invariant under translations, representing in fact a vector field, whose transformations are
given by applying the infinitesimal transformation and 2-16:

δ∂µφ = −ενµ∂νφ δ0(∂µφ) = − i
2

(ερσSρσ)νµ∂νφ−
i

2
ερσLρσ∂µφ (2-29)

with the spin operator defined as (Sρσ)νµ = gρµg
ν
σ − gσµgνρ . In a similar fashion a tensor field

transforms as (2-29) and the spin operator acting on the field would be a sum of the defined
(Sρσ)νµ for each index. For instance, for a rank 2 tensor it is [53]:

(SρσB)µν = −i(gσµBρν + gρνBσµ + gσνBρµ − gρµBσν) (2-30)

It is worth to notice that the contraction between indices µ and ν lead to the scalar case
Sρσ = 0.
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However, there is another representation of vector fields as invariant determinant hermitian
matrices since transform according to the representation (1

2
, 1

2
) of the Lorentz group, such

matrix generate invariants as:

A =

(
A0 + A3 A1 + iA2

A1 − iA2 A0 − A3

)
AµA

µ ∂µAν∂
µAν ∂µAν∂

νAµ ∂µAµ

The spinor field

Spinor fields are going to be described in the Weyl representation, where a 4-component field
is described by two chiral 2-component fields ψL ∈ (1

2
, 0) and ψR ∈ (0, 1

2
) being the spinor

representations (1
2
, 0) ⊕ (0, 1

2
). In this case, the Lorentz group is isomorphic to SU(2) so

rotation generators are given by Pauli matrices. On the contrary, Boost transformations are
not hermitian so they cannot be represented unitarily. Nevertheless, ~k = − i

2
~σ can be con-

sidered as Boost generators since they satisfy the commutation relations. As a consequence,
the most general Lorentz transformation for left-handed Weyl spinors is given by:

ΛL = exp

[
~σ

2
· (~ω − i~ν)

]
where ~ω and ~ν are the transformation parameters for rotations and Boost respectively and
~σ Pauli matrices. On the other hand, since left and right representations are conjugate, they
are related by a parity transformation that only changes the Boost generators sign in the
Lorentz transformation:

ΛR = exp

[
~σ

2
· (~ω + i~ν)

]
As a result, these two kind of transformations fulfill properties as:

Λ−1
L = Λ†R ΛT

L = σ2Λ−1
L σ2 σ2ΛT

Lσ
2ΛL = 1 ΛT

Lσ
2ΛL = σ2

It is from those properties that it can be proven that a spinor ψL transforming as (1
2
, 0) can

build a spinor σ2ψ∗L transforming as (0, 1
2
) and vice versa.

In addition, recalling the anticommuting nature of spinor fields, we can build invariant
scalars as χTLσ

2ψL = −iχL1ψL2 +iχL2ψL1 and 4-vectors such as iψ†Lσ
µψL and iψ†Rσ̄

µψR which
together with the operator ∂µ that provides translation invariance we get in the easiest case
complex Lorentz invariants, or real ones if we consider linear combinations:

1

2
ψ†Lσ

µ∂µψL −
1

2
∂µψ

†
Lσ

µψL ≡
1

2
ψ†Lσ

µ
↔
∂µψL (2-31)
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In a similar fashion it is done for ψR and σ̄µ. Since a trivial solution is found by equaling
ψL and σ2ψ∗L a four-component spinor is built in the Dirac basis by introducing the Pauli
adjoint ψ̄γ0.

ψ†RψR + ψ†LψL = ψ†γ0ψ
1

2

(
ψ†Lσ

µ
↔
∂µψL +

1

2
ψ†Rσ̄

µ
↔
∂µψR

)
=

1

2
ψ̄γµ

↔
∂µψ

≡ ψ̄ψ

Besides, a charge conjugation operation can be defined leading to the definition of a Majorana
spinor

ψc ≡
(
σ2ψ∗R
−σ2ψ∗L

)
(ψc)c = ψ ψM ≡

(
ψL
−σ2ψ∗L

)
⇒ Majorana Spinor

2.2.2 Lorentz Invariant actions for the fields

General properties

Despite we have built some Poincare invariant expressions with well defined transformations,
we have to turn them into actions describing reasonable physical theories. The main features
of a correct action, S, are:

1. S must be real: In classical mechanics, a complex potential lead to absorption,
implying that matter suddenly disappears.

2. S must involve second derivatives: SS must lead to the correct equations of
motion which can be achieved only with second order derivatites. Besides, higher
order derivatides usually present problems with causality such as the Abraham-Lorentz
equation [40]

3. Poincaré group invariance: when the equations of motion are a eigenvalue condition
of the operator ∂µ∂

µ it is said taht we are dealing with a free field since it can be
identified as a group casimir with the equations of motion restricted to the free particle
representation.

4. Units: The action has units of angular momentum, equivalently in natural units it is
dimensionless so the lagrangian density must have units of [L−4]

5. Canonical transformations invariance: In general, the action in invariant under
transformations like L′ = L + ∂µΛµ being Λµ an arbitrary function. In classical me-
chanics it represents a canonical transformation leaving the action invariant since the
surface term does not change the equations of motion.
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Scalar and spinor field action

On the one hand, the most general lagrangian density for a free real scalar field is given by:

L =
1

2
∂µφ(x)∂µφ(x)− V [φ(x)]⇒ ∂µ∂

µφ(x) +
∂V [φ(x)]

∂φ(x)
= 0 (2-32)

on the other hand, for a weyl spinor field the kinetic term takes the form:

LL =
1

2
ψ†Lσ

µ
↔
∂µψL LR =

1

2
ψ†Rσ̄

µ
↔
∂µψR LDirac = LL + LR =

1

2
ψ†γµ

↔
∂µψ (2-33)

where the Dirac lagrangian arises if parity is of interest. In the case when ψR = −σ2ψL,
LR is equivalent to LL up to a total divergence, making of ψ a Majorana spinor whose
lagrangian is the same LL. It is common to find the Dirac kinetic term with the operator ∂µ
acting only to the right and without the 1

2
factor. However, this distinction is irrelevant as

long as gravity coupling is not studied. Additionally, these kinetic terms are invariant under
conformal transformations, global phase shift and chiral transformations.

ψ → eiδψ ψ → eiβγ5ψ

where the respective conserved currents are:

jµ = iψ̄γµψ = iψ†Lσ
µψL + iψ†Rσ̄

µψR

jµ5 = iψ̄γµγ5ψ = iψ†Lσ
µψL − iψ†Rσ̄µψR

Another invariant quadratic non kinetic terms can be build for Majorana and Dirac spinors:

LmL =
im

2
(ψTLσ

2ψL + ψ†Lσ̄
2ψ∗L) LmL5 =

m

2
(ψTLσ

2ψL − ψ†Lσ̄2ψ∗L)

= −im
2
ψ̄MψM = −m

2
ψ̄Mγ5ψM

LmD = imψ̄MψM LmD5 = imψ̄Mγ
5ψM

= im(ψ†LψR + ψ†RψL) = −m(ψ†LψR − ψ†RψL)

where m is a mass dimentions parameter. These terms are not chiral invariant but we can
still build a chiral invariant from a linear combination:

σ(x)LmD + iπ(x)LmD5 = imψ̄M [σ(x) + iγ5π(x)]ψM

where σ y π must transform as δσ = 2βπ(x) and δπ = −2βσ(x) leaving σ2 + π2 invariant.
As a result, if we include kinetic terms for σ and π and a potential, the chiral invariant
lagrangian is:

Lf =
1

2
ψ†γµ

↔
∂µψ + i~ψ̄M [σ(x) + iγ5π(x)]ψM +

1

2
∂µσ∂

µσ +
1

2
∂µπ∂

µπ − V (σ2 + π2)

It is also invariant under global phase shifts and a parity transformation, being σ(x) a scalar
field and π(x) a pseudo-scalar field.
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2.2.3 Spontaneous symmetry breaking

To introduce the systematics of Spontaneous Symmmetry Breaking (SSB) we can consider
the non-linear sigma model [50] involving a set of N real scalar fields φi(x) with lagrangian:

L =
1

2
(∂µφ

i(x))2 +
1

2
µ2(φi(x))2 − λ

4
(φi)4 (2-34)

This lagrangian is invariant under a rotation of the fields φi → Rijφj represented by the
orthogonal group O(N). In general, the potential V (φ) = −1

2
µ2(φi(x))2 + λ

4
(φi)4 is bounded

from bellow since λ > 0 and it has a minimum depending on the value of µ2. If µ2 < 0 there
is a trivial minimum at (φi)2 = 0 contrary to the case where µ2 > 0 where the minimum of

the potential is reached for any field that satisfies (φi)2 = µ2

λ
≡ (φi0)2. This condition only

give us the magnitude of the vector φio but not its direction. So, it is convenient to choose

coordinates such that φi0 points to the N−th direction φi0 = (0, 0, ..., 0, v) (v = µ2

λ
) so now we

define a set of shifted fields as perturbations from the minimum as φi = (π1, π2, ..., πN−1, v+σ)
so the lagrangian takes the form:

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 − 1

2
(2µ2)σ2 −

√
λµσ3 −

√
λµ(πk)2σ − λ

4
σ4 − λ

2
(πk)2σ2 − λ

4
(πk)4

(2-35)

which describe a massive σ field and a set of N − 1 massless πk fields which are invariant
under rotations of the O(N − 1) group rather than O(N) which is no longer a symmetry of
the lagrangian. All in all, this means that when a field φi acquires a Vaccuum Expectation
Value (VEV) v, the original symmetry O(N) is broken into O(N − 1) and N − 1 massless
bosons arise. This results is not a particularity of the model, it comes out from the so called
Goldstone Theorem [35].

2.2.4 Goldstone Theorem

It is a general result that massless states arise when a continuous symmetry has been bro-
ken, this massless particles are known as Goldstone Bosons. Particularly, the O(N) group

represent rotations on any of the N(N−1)
2

planes (which equally represents the number of

symmetries), while O(N − 1) has only (N−1)(N−2)
2

symmetries so the number of broken sym-
metries (planes where there is no invariance) is N − 1.Goldstone theorem states that for
every spontaneously broken symmetry there must be a massless particle.

Refering to the previous potential, we can see that the massless πk fields represents per-
turbations along the tangential directions of the potential while σ is a perturbation in the
transversal direction. In the general case, the massless states represent perturbations along
the tangential direction of the potential and are associated with the broken generators of the
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symmetry group which do not left the vacuum invariant. On the contrary, massive states are
perturbations on the transversal directions and the unbroken generators do left the vaccum
invariant [50].

It is worth to notice that there will not be any Goldstone bosons if the broken symmetry is
discrete, but in the case of continuous symmetries it can be global or local. In the latter,
there is an additional result. Local symmetries involves gauge bosons which enter into the
lagrangian with the covariant derivative. When the symmetry has been broken, N massless
Goldstone bosons appear but at the same timeN gauge bosons acquire a finite mass value. So
for each Goldstone boson there is a massive gauge boson and for each massive particle there
is a massless gauge boson. However, the systematics of the gauge boson mass generation
will be presented in later.

2.2.5 Chiral anomalies

Let’s consider a gauge theory with massless fermions, the lagrangian reads:

L = −1

4
F a
µνF

aµν + iψ̄ /Dψ (2-36)

= −1

4
F a
µνF

aµν + Lmatter (2-37)

where the lagrangian is invariant under global chiral transformations and local transforma-
tions of a certain gauge group represented by a gauge boson field Vµ that enters into the
covariant derivative Dµ. The classical equations of motions imply:

(DµF
µν)a = −Jaνmatter (2-38)

where Jaνmatter = ∂Lmatter
∂V aµ

is the classical matter current which is conserved if the field equations

of motion are satisfied i.e. DνJ
ν
matter = 0 being a consequence of gauge invariance. However,

it is not true at the quantum level, Dν < Jνmatter >6= 0. Let’s consider a chiral transformation:

ψ → Uψ = eiε
a(x)Taγ5 ψ̄ → ψ̄Ū = ψ̄iγ0e−iε

a(x)Taγ5iγ0 (2-39)

since Ū 6= Ū−1 due to the anticommutation of gamma matrices, it makes a contribution in
the path integral measure given by:
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Z =

∫
DψDψ̄eiSmatter[ψ,ψ̄,Vµ]

=

∫
Dψ′Dψ̄′eiSmatter[ψ′,ψ̄′,Vµ]

=

∫
DψDψ̄ei

∫
d4xε(x)a(x)eiSmatter[ψ,ψ̄,Vµ]+i

∫
d4xε(x)∂µJ

µ
5 (x) (2-40)

=

∫
DψDψ̄eiSmatter[ψ,ψ̄,Vµ]

[
1 + i

∫
d4xε(x)(a(x) + ∂µJ

µ
5 (x))) +O(ε2)

]
(2-41)

where

aα(x) = − 1

16π2
εµνρσtr[tαFµνFρσ] (2-42)

where a(x) is the anomaly arising from the integration measure and Jµ5 is the classical
conserved current arising from the transormation of the matter lagrangian [9][12] and the
trace is over the representation of the group generators. This result from manipulating the
ill defined expression for Det(U)−2 which need to be regulated[9].

if we perform a local chiral transformations, we can associate a conserved current when the
fields satisfy equations of motion by:

δS =

∫
d4x(−Jµa (x))∂µε

a(x) =

∫
d4x(∂µJ

µ
a (x))εa(x) (2-43)

In this case the variation must be zero for every ε leading to a conserved current ∂µJ
µ
a (x) = 0.

If we compare this with equation (2-41) we conclude that at a quantum level the current is
not conserved. It satisfies:

−∂µ < Jµa (x) >A = − 1

16π2
εµνρσtr[tαFµνFρσ] (2-44)

where the vacuum expectation value is done in a fixed Aµ background, and a(x) is known
as the anomaly. The latter result comes from the consideration of an abelian group and it
means that at a quantum level we can not have always gauge invariance and chiral invariance
at the same time. Its presence changes the ward identities of the model and induces new
phenomena. In the case of the SU(3) quark model, it explain the decay of the π0 meson
into two photons by generating an anomalos Ward identity for the 3-point vertex function
< T Jµα(x)Jνβ (y)Jργ (z) >= Γµνραβγ(x, y, z) depicted in the triangle diagrams shown in figure 2-1
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G

G′ G′′

π0

γ γ

Figure 2-1: anomalous triangle diagram that generates the decay π0 → γγ in a) and the gen-
eral triangle diagram coupling to different gauge bosons G, G′ an G′′ belonging
in general to different symmetry groups in b)

In the general case of a non-abelian group with chiral fermions in the triangle it becomes:

−(Dµ < Jµ(x) >)α = AL/Rα (x) (2-45)

AL/Rα = ∓ 1

24π2
εµνρσ∂µ(V β

ν ∂ρV
γ
σ −

i

4
V β
ν [Vρ, Vσ]γ)Cαβγ Cαβγ = tr[tα{tβ, tγ}] (2-46)

where {...} represents the anticomutator and Tα is the generator of the symmetry group and
the trace is over the representations i.e. over the particles under considerations, implying
that left and right handed fermions contribute with different signs to the anomaly but bosons
do not. Additionally, for a theory invariant under several symmetry groups, the generators
in Cαβγ mix among them so the gauge boson in each triangle corner can be different as
shown in figure 2-1-b. The anomaly caused by the triangular diagrams with fermions in-
side is what we call the chiral anomaly but it is worth to mention that there are some safe
groups where Cαβγ vanishes like SU(2), SO(2N + 1), SO(4N), E(6) etc. Nevertheless, it
might happen another kind of anomaly, the gravitational anomaly generated by local Lorentz
transformations when we have a U(1) factor, presenting a SO(4)− SO(4)− U(1) anomaly.
They correspond to a triangle diagram with fermions coupling to one U(1) gauge field and
two gravitons as shown in figure 2-2.

Since all particles are expected to couple universally to gravity, the coefficient Cαβγ reduces

to Cαβγ = tr[tt
SO(4)
A t

SO(4)
B ] ∼ δABtr[t] which is nothing but the sum of all U(1) charges.

This anomaly must cancel in order to consistently couple gravity to matter under the U(1).
Furthermore, it is important to mention that there are no pure gravitational anomalies
(SO(4)− SO(4)− SO(4)) in four dimensions.

When we build a theory we want to avoid anomalies, and one way of achieving it is by having
a correct charge assignations for a U(1)X symmetry. In the case of the standard model in
we might have anomalies for:
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Vµ

hρσhλκ

Figure 2-2: U(1) − SO(4) − SO(4) triangle diagram responsible of the U(1)-gravitational
anomaly.

• SU(3)× SU(3)× SU(3)

• SU(3)× SU(3)× U(1)

• SU(2)× SU(2)× SU(2)

• U(1)× U(1)× U(1)

• U(1)-Gravitational

but the hypercharge assignation for particles makes that all posibilities vanish [12].

2.3 Super Poincaré algebra

Graded Lie algebras

In general, the symmetries of a field theory are represented by the Lie algebra of a symmetry
group. However, we need a generalization since a symmetry between bosons and fermions
via spinorial parameters can not be represented with a Lie algebra. The Coleman-Mandula
[43] and Haag [24] theorems demand this generalized group as a direct sum of Poincaré group
with the additional symmetries. Therefore, it is needed to generalize this Lie group concept,
which is done by generalizing its algebra.

Lie algebra

A Lie algebra consist in a vector space defined over a field, where a composition rule denoted
by ”◦ : L× L→ L” is defined and must accomplish the following properties:

1. Closure: v1 ◦ v2 ∈ L
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2. Linearity: v1 ◦ (v2 + v3) = (v1 ◦ v2) + (v1 ◦ v3)

3. Antisymmetry: v1 ◦ v2 = −v2 ◦ v1

4. Jacobi identity: v1 ◦ (v2 ◦ v3) + v3 ◦ (v1 ◦ v2) + v2 ◦ (v3 ◦ v1) = 0

Graded Lie algebra

A graded algebra ZN+1 [20] consist in a total subspace L =
⊕N

k=0 Lk as the direct sum of
N + 1 vector subspaces Lk with a composition rule ◦ : L× L → L that fulfill the following
properties:

1. Closure

2. Linearity

3. Grading: ∀xi ∈ Li → xi ◦ xj ∈ Li+jmod(2)

4. Supersymetrization: xi ◦ xj = −(−1)ijxj◦i
5. Generalized Jacobi identity:

(xk ◦ (xl ◦ xm))(−1)km + (xm ◦ (xk ◦ xl))(−1)lk + (xl ◦ (xm ◦ xk))(−1)ml = 0

A general graded algebra only need the first 3 conditions, while the remaining two makes of
it a graded Lie algebra. We are interested in a Z2 (L = L0 + L1), being L0 associated with
Poincare algebra and L1 with the supersymmetric transformations. Let Ei ∈ L0 y Qa ∈ L1,
then the product among elements in the different subspaces must obey supersymmetrization
and is given by:

Product Supersimetrization Definition

Ei ◦ Ej ∈ L0 Antisymmetric [Ei, Ej]

Ei ◦Qa ∈ L1 Antisymmetric [Ei, Qa]

Qa ◦Qb ∈ L0 Symmetric {Qa, Qb}

Table 2-1: Z2 graded Lie algebra products

In analogy to the spin-statistic theorem, we define the space L0 as the bosonic sector and L1

as the fermionic sector. It can be seen that the subspace L0 satisfy by itself the conditions
for a Lie algebra.
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Super-Poincaré Algebra

The Poincaré algebra is given by [41]:

[Pµ, Pν ] = 0 (2-47)

[Mµν , Pλ] = i(gνλPµ − gµλPν) (2-48)

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) (2-49)

where the generators Mµν y Pµ generate a 10 dimensional vector space denoted by L0.
Then, the L0 × L1 product shown in table 2-1 must have a matrix representation in L0 but
with dimensions of L1. Therefore, let’s consider a 4-dimensional L1, so there are four base
elements (Qa, a = 1, 2, 3, 4. ). A grading must be defined and it is done in the most trivial
way possible, done first by Wess and Zumino, the result is the super-Poincaré algebra which
is given by [66]:

[Pµ, Pν ] = 0 (2-50)

[Mµν , Pλ] = i(gνλPµ − gµλPν) (2-51)

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) (2-52)

[Pµ, Qa] = 0 (2-53)

[Mµν , Qa] = −(σµν)abQ
b (2-54)

{Qa, Qb} = a(γµC)abPµ (2-55)

{Qa, Q̄b} = −a(γµC)abPµ (2-56)

{Q̄a, Q̄b} = −a(C−1γµ)abPµ (2-57)

With this choice, most terms in the Jacobi identities vanish trivially. Besides, Qa are Majo-
rana spinors that must commute with momentum so it becomes a symmetry of the system
since it commutes with the Hamiltonian as well.

Haag theorem allows the presence of an internal symmetry with generators Bl and the
Coleman-Mandula theorem implies that they must commute with Pµ and Mµν so it becomes
necessary to introduce a set of N spinorial (central) charges Qα

a in such a way that the
algebra closes in subspace L1 with the products:

[Qα
a , Bl] = iSαlβQ

β
a

[Bl, Bm] = icklmBk

where Sαlβ is a representation of the internal symmetry group algebra, so it is done the
extension:

{Qα
a , Q

β
b } = 2δαβ(γµ)abPµ.



2.4 Superspace and Superfields 21

However,we are interested in N = 1 supersymmetry and the states are labeled through the
Casimir operators denoting its mass and super-spin, a generalization of the spin since the
Pauli-Lubansky vector does not make a Casimir operator now.

2.4 Superspace and Superfields

In general, the more symmetries a theory have the bigger dimensional space is. For instance,
in classical mechanics, a 3D space is invariant under Galilean transformations, but it requires
to be extended to four dimensions if a Lorentz invariant theory wants to be constructed. Like-
wise, to construct a SUSY invariant theory let’s consider a 4-dimensional space plus another
4 grassmannian (anticomuting) directions {θA}A=1,2, {θ̇Ḃ}Ḃ=1̇,2̇ [36] which together make up

what we call the superspace. In the Weyl formalism, θ and θ̇ are SL(2, C) transforming Weyl
spinors in the adjoint representation and allow to turn the graded algebra into a Lie algebra
as follows:

[θQ, θ̄Q̄] = 2(θσµθ̄)Pµ (2-58)

[θQ, θQ] = [θAQA, θ
BQB] = 0 (2-59)

[θ̄Q̄, θ̄Q̄] = [θ̄ȦQ̄
Ȧ, θ̄ḂQ̄

Ḃ] = 0 (2-60)

Furthermore, the supersymmetry generators can be represented through a translation in
these anticommuting coordinates plus a traslation in normal coordinates via a spinorial
parameter [36]:

QA = −i(∂A − iσµAḂ θ̄
Ḃ∂µ)

Q̄Ȧ = −i(∂̄Ȧ − i(σ̄µ)ȦBθB∂µ)

(2-61)

(2-62)

A superfield Φ is an operator defined over the superspace that must be understood in terms
of its power series, which turns out to be finite thanks to the anticommuting coordinates
which allow up to quadratic terms in θ or θ̄, it can be written as:

Φ(x, θ, θ̄) = f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ + (θθ)m(x) + (θ̄θ̄)n(x) + (θσµθ̄)Vµ(x)

+ (θθ)θ̄Ȧλ̄
Ā(x) + (θ̄θ̄)θAψA(x) + (θθ)(θ̄θ̄)d(x). (2-63)

The properties of the component fields are given by their lorentz transformations so:

• f(x), m(x), n(x) are complex scalar or pseudoscalar fields.

• ψ(x), φ(x) are left handed Weyl spinors.

• χ̄(x), λ̄(x) are right handed Weyl spinors.
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• Vµ(x) is a four-vector.

• d(x) is a scalar field.

Under a supersymmetric transformation given by δsΦ = [iαAQA + iᾱȦQ̄
Ȧ]Φ(x, θ, θ̄) , the

component fields transform as shown bellow being of big importance the θθθ̄θ̄ component
which transform as a total derivative, so inside an action it is invariant under SUSY trans-
formations [36].

δsf(x) = α(x)φ(x) + ᾱχ̄(x) (2-64)

δsφA(x) = 2αA(x)m(x) + (σµᾱ)A(i∂µf(x) + Vµ(x)) (2-65)

δsχ̄
Ȧ(x) = 2ᾱȦn(x) + (ασµε)Ȧ(i∂µf(x)− Vµ(x)) (2-66)

δsm(x) = ᾱλ̄(x)− i

2
∂µφ(x)σµᾱ (2-67)

δsn(x) = αψ(x) +
i

2
ασµ∂µχ̄(x) (2-68)

δsVµ(x) = ασµλ̄(x) + ψ(x)σµᾱ +
i

2
α∂µφ(x)− i

2
∂µχ̄(x)ᾱ (2-69)

δsλ̄
Ȧ(x) = 2ᾱȦd(x) +

i

2
ᾱȦ∂µVµ(x) + i(ασµε)Ȧ∂µm(x) (2-70)

δsψA(x) = 2αAd(x)− i

2
αA∂

µVµ(x) + i(σµᾱ)A∂µn(x) (2-71)

δsd(x) =
i

2
∂µψ(x)σµᾱ− i

2
∂µλ̄(x)σ̄µα (2-72)

Nevertheless, we can reduce the number of fields by imposing covariant restrictions by con-
sidering the covariant derivatives D̄Ȧ = −∂̄Ȧ − i(θσµ)Ȧ∂µ and DA = ∂A + i(σµθ̄)A∂µ with
lead to the definition of chiral superfields:

D̄ȦΦ(x, θ, θ̄) = 0 Right-handed superfield (2-73)

DAΦ†(x, θ, θ̄) = 0 Left-handed superfield (2-74)

whose field content now is restricted to:

ΦL(y, θ) = A(y) +
√

2θψ(y) + (θθ)F (y) yµ = xµ + iθσµθ̄ (2-75)

ΦR(z, θ) = A∗(z) +
√

2θ̄ψ̄(z) + (θ̄θ̄)F ∗(z) zµ = xµ − iθσµθ̄ (2-76)

where A(x) and F (x) are complex scalar fields with no defined parity but the first one
represents a scalar field whose superpartner is ψ(x) while the second is an auxiliary field
that closes the algebra off-shell called the F-term. It is however also important to consider
superfield products which are easy to calculate since there cannot be powers of θ and θ̄
greater than 2. The product of two and three superfields becomes:
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ΦiΦk = AiAk +
√

2θ[Aiψk + ψiAk] + (θθ)[AiFk + FiAK − ψiψk] (2-77)

ΦlΦiΦk = AlAiAk +
√

2θ[AlAiψk + AlψiAk + ψlAiAk] + ...

...+ (θθ)[AlAiFk + AlFiAk + FlAiAk − ψlψkAi − ψlψiAk − Alψiψk] (2-78)

So the product of superfields is also a superfield. However, when considering the product of
a left handed with a right-hanede superfield one gets:

Φ†iΦj = [A∗i +
√

2θ̄ψ∗i + (θ̄θ̄)F ∗i ][Aj +
√

2θψj + (θθ)Fj]

= A∗i (x)Aj(x) + 2θ̄ψ̄i(x)θψj(x)

+
√

2θ[ψj(x)A∗i (x)]

+
√

2θ̄[ψ̄i(x)Aj(x)]

+ (θθ)[A∗i (x)Fj(x)]

+ (θ̄θ̄)[F ∗i (x)Aj(x)]

+ i(θσµθ̄)[(∂µAj(x))A∗i (x)− (∂µA
∗
i (x))Aj(x)]

−
√

2(θθ)θ̄Ȧ

[
i

2
σµ
AḂ
εḂȦ(ψAj (x)∂µA

∗
i (x)− A∗i∂µψAj (x)) + ψ̄Ȧi Fj(x)

]
+
√

2(θ̄θ̄)θA
[
− i

2
σµ
AȦ

(ψ̄Ȧi (x)∂µAj(x)− Aj(x)∂µψ̄
Ȧ
i (x)) + ψjA(x)F ∗i (x)

]
+ (θθ)(θ̄θ̄)

[
− A∗i�Ai + i(∂µψ̄i)σ̄

µψi + F ∗i (x)Fi(x) + total derivatives

]
(2-79)

As a result, the highest component of the product contains the kinetic terms for the scalar
field and a Majorana spinor field, plus a term for the non-propagating auxiliary field which
in addition to the invariance under SUSY transformations represents the simplest SUSY
lagrangian.

Scalar superfields contain the information about scalar and fermion fields. However, to
introduce gauge fields we need to introduce vector superfields, defined by the reality condition
V (x, θ, θ̄) = V †(x, θ, θ̄) leading to the general field expansion:

V (x, θ, θ̄) = C(x) + θφ+ θ̄φ̄+ (θθ)M + (θ̄θ̄)M∗ + θσµθ̄Vµ + (θθ)θ̄λ̄+ (θ̄θ̄)θλ+ (θθ)(θ̄θ̄)D
(2-80)

with C(x), M(x) and D(x) scalar fields, φ and λ spinor fields and Vµ a vector field. There
are also any other possible vector superfields, in fact, Φ†Φ satisfies the reality condition as
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well as Φ + Φ†, being Φ a chiral field. Expressing the latter in x-coordinates we get:

Φ + Φ† = A+ A∗ +
√

2θψ +
√

2θ̄ψ̄ + (θθ)F + (θ̄θ̄)F ∗ + i(θσµθ̄)∂µ[A− A∗]− ...

...− i√
2

(θθ)θ̄σ̄µ∂µψ −
i√
2

(θ̄θ̄)θσµ∂µψ̄ −
1

4
(θθ)(θ̄θ̄)�[A+ A∗] (2-81)

Now then, we can do the substitution:

λ(x)→ λ(x)− i

2
σµ∂µφ̄(x)

D(x)→ D(x)− 1

4
�C(x)

V (x, θ, θ̄) = C(x) + θφ+ θ̄φ̄+ (θθ)M + (θ̄θ̄)M∗ + θσµθ̄Vµ + ...

...+ (θθ)θ̄

(
λ̄− i

2
σ̄µ∂µφ(x)

)
+ (θ̄θ̄)θ

(
λ− i

2
σµ∂µφ̄(x)

)
+ (θθ)(θ̄θ̄)D (2-82)

so now the vector superfield is invariant under the transformation:

V (x, θ, θ̄)→ V ′(x, θ, θ̄) = V (x, θ, θ̄) + Φ(x, θ, θ̄) + Φ†(x, θ, θ̄)

= C(x) + A(x) + A∗(x)

+ θ[φ(x) +
√

2ψ(x)]

+ θ̄[φ̄(x) +
√

2ψ̄(x)]

+ (θθ)[M(x) + F (x)]

+ (θ̄θ̄)[M∗(x) + F ∗(x)]

+ θσµθ̄[Vµ(x) + i∂µ(A(x)− A∗(x))]

+ (θθ)θ̄

(
λ̄(x)− i

2
σ̄µ∂µ(φ(x) +

√
2ψ(x))

)
+ (θ̄θ̄)θ

(
λ(x)− i

2
σµ∂µ(φ̄(x) +

√
2ψ̄(x))

)
+ (θθ)(θ̄θ̄)

(
D(x)− 1

4
�(C(x) + A(x) + A∗(x))

)
(2-83)

which generalizes gauge invariance through the transformation of component fields:

C(x)→ C ′(x) = C(x) + A(x) + A∗(x) φ(x)→ φ′(x) = φ(x) +
√

2ψ(x)

M(x)→M ′(x) = M(x) + F (x) Vµ(x)→ V ′µ(x) = Vµ(x) + i∂µ(A(x)− A∗(x))

λ(x)→ λ′(x) = λ(x) D(x)→ D′(x) = D(x)

Under this choice, λ and D are invariant as well as Vµ which shows the well known abelian
transformation leading to a super-gauge invariant Fµν = ∂µVν−∂νVµ. This generalized gauge



2.5 Supersymmetric Lagrangians 25

freedom let us chose a gauge where C ′, φ′ and M ′ vanish, better known as the Wess-Zumino
gauge where vector superfields reduces to:

VWZ(x, θ, θ̄) = θσµθ̄[Vµ(x) + i∂µ(A(x)− A∗(x))] + (θθ)θ̄λ̄+ (θ̄θ̄)θλ+ (θθ)(θ̄θ̄)D(x) (2-84)

where Vµ(x) is a gauge field, λ its fermionic superpartner, a gaugino, and D(x) an auxiliary
field. Unfortunately, the Wess-Zumino gauge breaks supersymmetry in the sence that a
SUSY variation of φA(x) and M(x) violates the gauge condition C(x) = φA(x) = M(x) = 0.
The latter means that the Wess-Zumino gauge is not covariant but it reduces the degrees of
freedom from 16 to just 8. Anyway, together with vector superfields a supersymmetric field
strenght is defined as:

WA = −1

4
D̄D̄e−VDAe

V W̄A = −1

4
DDe−V D̄Ȧe

V (2-85)

Vij = V a(Ta)ij in the adjoint representation

WA = λA(y) + 2θAD(y) + (σµνθ)AFµν − i(θθ)σµAḂDµλ̄
Ḃ(y) (2-86)

W̄Ȧ = λ̄Ȧ(z) + 2D(z)θ̄Ȧ − εȦḂ(σ̄µν θ̄)ḂFµν + i(θ̄θ̄)(Dµλ(z)σµ)Ȧ (2-87)

being Fµν the general non-abelian field strenght and Dµ the covariant derivative both defined
as follows:

Fµν = F abelian
µν − i

2
[Vµ, Vν ] Dµλ̄ = ∂µλ̄−

i

2
[Vµ, λ̄] (2-88)

= ∂µVν − ∂νVµ −
i

2
[Vµ, Vν ]

2.5 Supersymmetric Lagrangians

Since now we are considering an 8-dimensional space, the action functional must integrate
over all of them. However, Grassmann number have interesting properties and one of them
is that integration works identically as differentiation [14], so

∫
d2θθA =

∫
d2θ = 0 and the

highest products of θ and θ̄ work as delta functions:∫
d2θf(θ)δ2(θ) = f(0) δ2(θ) = θθ (2-89)

In this way, the integration over a general superfield projects to the component (θθ)(θ̄θ̄)
which we already know is invariant under supersymmetric transformations and in the case
of Φ†Φ generates the kinetic terms for a lagrangian. We still however need to introduce gauge
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invariant kinetic terms. It is done by introducing the Käller potential, which is a function
of the vector fields entering in the kinetic part of the lagrangian as:

L = Φ†K(V )Φ

it has interesting mathematical properties but we are interested in the canonical Käller
potential K(V ) = eV with V = V aTa, which after integration gives the kinetic terms for the
scalar and fermion fields with covariant derivatives Dµφ = ∂µφ − i

2
Vµφ, two terms for the

auxiliary fields and the allowed interactions between the scalar field, the fermion field and
gauginos:∫

d4θΦ†eV Φ = DµA
∗DµA− iψ̄σ̄µDµψ + |F |2 + |A|2D +

1√
2
Aψ̄λ̄+

1√
2
A∗ψλ (2-90)

it is still missing the Yang-Mills term for gauge fields, which arises from the super-field
strength tensor. After integration one obtains the Yang-Mills term for the gauge field, a
kinetic term for the gaugino and a term for the non-propagating auxiliary field D(x):

A =

∫
d4x

∫
d4θ[WAWAδ

2(θ̄) + W̄ȦW̄
Ȧδ2(θ)]

=

∫
d4[8D2(x)− FµνF µν − 4iλσµ∂µλ̄] (2-91)

so the most general gauge invariant action is:

S =

∫
d4x

[∫
d4θ

1

2
Φ†eV Φ +

∫
d2θTr[WAWA] +

∫
d2θTr[W [Φ]] +H.C.

]
(2-92)

=

∫
d4x
[
DµA

∗DµA− iψ̄σ̄µDµψ + |F |2 + |A|2D +
1√
2
Aψ̄λ̄+

1√
2
A∗ψλ (2-93)

+ 8D2(x)− FµνF µν − 4iλσµ∂µλ̄+ V (A,ψ, F )
]

where we have included a superpotential W [Φ] =
(
giΦi + 1

2
mijΦiΦj + 1

3
λijkΦiΦjΦk

)
δ2(θ̄) +

H.C. which in the most general renormalizable case may include the product of up to 3
superfields which after integration only survives the θθ component of equations in (2-77).
In order to be consistent with the literature convention, we are going to rescale the fields as:

Vµ → 2gVµ λ→ 2igλ D → gd, (2-94)

leading to our final version of the lagrangian:

L = DµA
∗DµA− iψ̄σ̄µDµψ + ...

...+ F ∗F +
1

2
d2 + gA∗Ad− ig

√
2Aψ̄λ̄+ ig

√
2A∗ψλ+ ...

...− 1

4
Tr[FµνF

µν ]− iλσµDµλ̄+ V (2-95)



3 Minimal Supersymmetric Standard
Model (MSSM)

3.1 Gauge Symmetries and Lagrangian

In general, any theory can be extended to have supersymmetry invariance just by promoting
the fields to superfields. As shown before, it produces the right kinetic terms, the correspond-
ing interactions involving gauginos and the auxiliary field terms. In principle, it represents
a free theory but the equations of motion for D and F become non-trivial when we include
a superpotential, which in fact is what characterises the theory.

The immediate supersymmetric generalization of the SM is the collection of the lagrangian
of 16 superfields which leads to the particle content of 32 particles shown in figure 3-1 being
all of the right hand side expected to be found in accelerators in the near future.

Figure 3-1: SM SUSY extension particle content [1]

This particle content turns out to be invariant under certain symmetry groups. On the one
hand, Quarks may interact among them by exchanging gluons, this follows from a SU(3)C
invariance where the subscript C stands for a Color invariance though in the sense of Quan-
tum Chromodynamics (QCD). On the other hand, fermions have both chiral counterparts,
left and right handed (with the exception of neutrinos which only are left handed), where
the left ones organizes in three SU(2) doublets while the right handed fermions are singlets
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under the same group leading to a SU(2)L invariance of the lagrangian responsible of part
of the electroweak interactions [33]. Additionally, an additional quantum number called hy-
percharge (Y) responds to a U(1)Y invariance of the lagrangian [65]. The inclusion of such a
quantum number forbids non-observed interaction and provides the correct electrical charge
of particles according to the Hell-Mann-Nishihima relation [18] besides completing the elec-
troweak theory. All in all, the theory is SU(3)C ⊗SU(2)L⊗U(1)Y invariant [56], as a result
of the work of Glashow, Salam and Weinberg [33][56][65]. The hypercharge assignation of
superfields can be seen in table 3-1.

Consequently, the most general superpotential that can be considered is:

WSM = ŪyuQHu − d̄ydQHd − ēyeLHd + µHuHd

+ εij[λLL̂
iL̂jÊ + λLL̂

iQ̂jD̂ − µ′L̂iHj
2 + λBÛD̂D̂] (3-1)

where the first line respects R-Symmetry [45] and the second does not. It can be seen
that the interaction of the model are family universal i.e. the interaction is the same for
all three families and the second line may lead to Lepton/Baryon number violating terms
which in principle are relevant for leptogenesis or Baryogenesis theories [39][58] but they are
forbidden if R-Symmetry is included. Furthermore, since the product of left handed and
right handed superfields produce terms involving derivatives, the superpotential must be a
holomorphic function of superfields i.e. there are not conjugate superfields. However, this
impass can be surpassed by considering the Majorana notation, where right handed fields are
just conjugate left handed ones. As a result, when imposing supersymmetry to any theory,
only holomorphic interactions should be considered before promoting fields into superfields.

The particle content shown in figure 3-1 correspond to just extending the standard model
to a SUSY invariance. Although the SM is anomaly free this extension is not, chiral U(1)
anomalies are induced by Higgsinos. To avoid this problem, a second Higgs doublet with
opposite hypercharge is considered making the final piece of the Minimal Supersymmetric
Standard Model (MSSM).
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Table 3-1: Particle content of the MSSM with hypercharge assignation, the indices k, p run
over family memebers.

Left-
Handed
Fermions

Right-
Handed
FermionsY Y

SM Quarks

Q̂k =

(
ûk

d̂k

)
L

≡
(
û

d̂

)
L

,

(
ĉ
ŝ

)
L

,

(
t̂

b̂

)
L

+ 1/3
Ûk ≡ ûk cL
D̂k ≡ d̂k cL

4/3
− 2/3

SM Leptons

L̂p =

(
ν̂p

êp

)
L

≡
(
ν̂e

ê

)
L

,

(
ν̂µ

µ̂

)
L

,

(
ν̂τ

τ̂

)
L

−1 Êp ≡ êp cL −2

Higgs doublets

Ĥ1 =

(
Ĥ0

1

Ĥ−1

)
−1 Ĥ2 =

(
Ĥ+

2

Ĥ0
2

)
+1

3.2 Interactions

3.2.1 Self-Interactions

From the standard theory we know that covariant derivatives include the interactions with
gauge bosons. Now, it also will contain the interactions involving gauginos which become
relevant for the construction of gaugino-Higgsino mixing matrix. Let’s consider a fermion
field ψ with its scalar superpartner A with a gauge interaction via a Vµ gauge boson and its
respective gaugino λa. The covariant derivatives take the following form:

DµA = ∂µA+ igV a
µ T

aA (3-2)

Dµψ = ∂µψ + igV a
µ T

aψ (3-3)

Dµλ
a = ∂µλ

a + gfabcV b
µλ

c (3-4)

From the kinetic term for the field λ, Lkin−λ = −iλ̄σ̄µDµλ, a Yukawa-like interaction between
gauge boson and gaugino arises, Lint = ig

2
λ̄aγµλ

bV c
µf

abc, as shown in figure 3-2-e. The latter
implies that a high energy photon migh decay into a fotino-antifotino pair. However, if we
consider the kinetic term for the scalar and fermion field and preserve only the interaction
terms we get:
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Lint−Aψ = igV a
µ T

a
ijA
∗
j

↔
∂
µ

Ai − g2V a
µ (V µ)b(T aT b)ijA

∗
jAk

+ gV a
µ T

a
ijψ̄iγµPLψj +

√
2gfaji(A

∗
iλ

aPLψj + Aiψ̄jPRλ
a) (3-5)

These are nothing but the interactions of the scalar field with the gauge boson via a three
and four leg vertices, the Yukawa interaction between the fermion and the gauge boson and
a fermion-boson-gaugino interaction, all of them shown in figure 3-2. The last of those inter-
actions imply that boson/fermion can decay into its respective fermion/boson superpartner
by emmitting a gaugino. This process imply that atoms might decay, making them unstable.
In order to this proccess to be unreachable by the atomic energy scale, we conclude that
supersymmetry must be broken. This will be further discussed in the next sections.

Vµ

AA ψ ψ

Vµ

VµVν

AA

ψ

λA

Vµ

λλ

a) b)
c)

d)
e)

Figure 3-2: Interactions between scalar-fermion superpartners and gauge bosons/fermions

The latter interaction would apply to particles who are not singlets under the symemtry
group under consideration, so all doublets in table 3-1 may interaction with Winos, Binos
and Gluinos in the case of quarks.

3.2.2 Superpotential: Fermions and F-Term potential

In equation 3-1 we stated the most general superpotential as the product of up to three
superfields. However, we know that becase the product of three superfields leads to up
to quartic interaction which is the limit for renormalizability. If we impose lepton/baryon
number conservation the superpotential reduces to:

WSM = Û iyiju Q̂
jĤ2 − D̂iyijd Q̂

jĤ1 − Êiyije L
jH1 + µH1H2 +H.C. (3-6)
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where the indices i, j = 1, 2, 3 run over family members while the product between superfield
doublets is mediated by the Levi-Civita pseudotensor εij as will be shown next. By using
Eq. 2-77 for the superfield product and projecting to the θθθ̄θ̄ component we get (omitting
family indices):

εmnÛQ̂
mĤn

2

∣∣∣∣
θθ

= Û(ûLĤ
0
2 − d̂LĤ+

2 )

∣∣∣∣
θθ

= H0
2 ũ
∗
RFuL + ũLũ

∗
RFH20 +H0

2 ũLFuR − H̃0
2uLũ

∗
R − H̃0

2u
C
L ũL − uLuCLH0

2

−H+
2 ũ
∗
RFdL − d̃Lũ∗RFH2+ −H+

2 d̃LFuR + H̃+
2 dLũ

∗
R + H̃+

2 u
C
L d̃L + dLu

C
LH

+
2

εmnD̂Q̂
mĤn

1

∣∣∣∣
θθ

= H−1 d̃
∗
RFuL + ũLd̃

∗
RFH1− +H−1 ũLFdR − H̃−1 uLd̃∗R − H̃−1 dCL ũL − uLdCLH−1

−H0
1 d̃
∗
RFdL − d̃Ld̃∗RFH10 −H0

1 d̃LFdR + H̃0
1dLd̃

∗
R + H̃0

1d
C
L d̃L + dLd

C
LH

0
1

εmnÊL̂
mĤn

1

∣∣∣∣
θθ

= H−1 ẽ
+
RFνL + ν̃Lẽ

+
RFH1− +H−1 ν̃LFeR − H̃−1LνLẽ+

R −H−1LeCL ν̃L − νLeCLH−1

−H0
1 ẽ

+
RFeL − ẽ−L ẽ+

RFH10 −H0
1 ẽ
−
LFeR + H̃0

1Le
−
L ẽ

+
R + H̃1Le

C
L ẽ
−
L + e−l e

C
LH

0
1

εmnĤ
m
1 Ĥ

n
2

∣∣∣∣
θθ

= H0
1FH20 + FH10H

0
2 − H̃0

1LH̃
0
2L −H−1 FH2+ − FH1−H

+
2 + H̃−1LH̃

+
2L

Since this interaction terms now are F-term dependent, we can see that their equation of
motion is no longer trivial. They enter into the lagrangian as a F-term potential V(F) given
by:

V (F ) = −
∑
k

F ∗kFk F ∗k = −∂ŴSM |θθθ̄θ̄
∂Fk

(3-7)

and in our case the F-terms acquire the form:

−F ∗H10 = yτ ẽ
−
L ẽ

+
R + ybd̃Ld̃

∗
R − µH0

2 −F ∗H1− = −yτ ν̃Lẽ+
R − ybũLd̃∗R + µH+

2 (3-8)

−F ∗H20 = ytũLũ
∗
R − µH0

1 −F ∗H2+ = −ytd̃Lũ∗R + µH−1 (3-9)

−F ∗eL = yτH
0
1 ẽ

+
R −F ∗eR = yτ (H

0
1 ẽ
−
L −H−1 ν̃L) (3-10)

−F ∗uL = −ybH−1 d̃∗R + ytH
0
2 ũ
∗
R −F ∗uR = −yt(H+

2 d̃L −H0
2 ũL) (3-11)

−F ∗dL = ybH
0
1 d̃
∗
R − ytH+

2 ũ
∗
R −F ∗dR = yb(H

0
1 d̃L −H−1 ũL) (3-12)

−F ∗νL = −yτH−1 ẽ+
R (3-13)

we can see that this potential only involves scalar interactions among the scalar superpartners
yet unobserved. Besides containing all possible interactions allowed by symmetries, they can
contribute to the sparticles mass matrices after implementing the spontaneous symmetry
breaking. All in all, the superpotential contribution is given by:
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W |θθ = V (F )− yuH̃0
2uLũ

∗
R − yuH̃0

2u
C
L ũL − ydH̃0

1dLd̃
∗
R − ydH̃0

1d
C
L d̃L − yeH̃0

1Le
−
L ẽ

+
R

− yeH̃1Le
C
L ẽ
−
L + yuH̃

+
2 dLũ

∗
R + yuH̃

+
2 u

C
L d̃L + yudLu

C
LH

+
2 + ydH̃

−
1 uLd̃

∗
R

+ ydH̃
−
1 d

C
L ũL + yduLd

C
LH

−
1 + yeH̃

−
1LνLẽ

+
R + yeH

−
1Le

C
L ν̃L + yeνLe

C
LH

−
1

− yuuLuCLH0
2 − yddLdCLH0

1 − yee−l eCLH0
1 − µH̃0

1LH̃
0
2L + µH̃−1LH̃

+
2L (3-14)

3.2.3 D-Term Potential

From equation 2-95 we see that the part of the lagrangian involving the auxiliary D-term is:

LD =
1

2
dada + gdaA∗iT

a
ijAj (3-15)

being T aij the generators of the symmetry group. By applying their equation of motion a
D-term potential arises as VD = −1

2

∑
k d
∗
kdk with da = −gT aijA∗iAj. In our case, we have

two contributions, one from the SU(2) symmetry with interaction g and another from the
U(1)Y with interaction g′ leading to:

Da =
g

2

[
Hm∗

1 τamnH
n
1 +Hm∗

2 τamnH
n
2 + Q̃k∗

m τ
a
mnQ̃

k
n + L̃p∗mτ

a
mnL̃

p
n

]
(3-16)

D′ =
g′

2

[
Hm∗

2 Hm
2 −H i∗

1 H
m
1 +

1

3
Q̃mk∗Q̃mk − 4

3
ũk∗R ũ

k
R +

2

3
d̃k∗R d̃

k
R − L̃mp∗L̃mp + 2ẽp cL ẽ

+
R

]

VD = −g
2

8

[
(Hm∗

1 Hm
1 )2 + (Hm∗

2 Hm
2 )2 + (Q̃mk∗Q̃mk)2 + (L̃pk∗L̃pk)2

− 2(Hm∗
1 Hm

1 )(Q̃nk∗Q̃nk) + 4|Hm∗
2 Q̃mk|2 − 2(Hm∗

1 Hm
1 )(L̃np∗L̃np) + 4|Hm∗

1 L̃mp|2

− 2(Hm∗
2 Hm

2 )(Q̃nk∗Q̃nk) + 4|Q̃mk∗L̃mk|2 − 2(Hm∗
2 Hm

2 )(L̃np∗L̃np) + 4|Hm∗
2 L̃mp|2

− 2(Q̃mk∗Q̃mk)(L̃np∗L̃np) + 4|Hm∗
1 Q̃mk|2 − 2(Hm∗

1 Hm
1 )(Hn∗

2 Hn
2 ) + 4|Hm∗

1 Hm
2 |2
]

− g′2

8

[
Hm∗

2 Hm
2 −Hm∗

1 Hm
1 +

1

3
Q̃mk∗Q̃mk − 4

3
ũk∗R ũ

k
R +

2

3
d̃k∗R d̃

k
R − L̃mp∗L̃mp + 2ẽpC∗L ẽpCL

]2

.

(3-17)

where the indices m,n = 1, 2 are SU(2) indices and k, p = 1, 2, 3 are family indices. Similar
to the F −Term potential, it only contains interactions among scalar particles. In this way,
sparticles does not need a superpotential to interact among them or to acquire a mass value
after symmetry breaking. However, the resulting mass matrix will be consistent with the
fact that particles and sparticles have the same mass, and since no supersymmetric particle
has been observed we need to consider supersymmetry breaking.
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3.2.4 Soft-Breaking potential

As mentioned before, if supersymmetry is a symmetry of nature it must be broken because
sparticles with the same mass of their partners have not been observed and because some
interaction have not been observed neither. Now, we do not really know how must be
broken. Spontaneous supersymmetry breaking is not an option because it would produce
a Goldstino (massless goldstone fermion)[7] and we know that such a fermion does not
exist. As a consequence, it must be explicitly broken. We add a soft breaking potential [45]
to the lagrangian, where the soft recalls that these new terms do not introduce quadratic
divergences so it is restricted to bilinear and trilinear couplings allowed by gauge symmetries
as long as it does not involve any gauge singlet [31]. These soft-breaking interactions affect
the mass matrices indeed, so they must involve only the unobserved particles to provide a
mass value far beyond the electroweak scale, being a scalar potential too. The potential is
written without writing the family index explicitly as:

VSoft = (m2
Q̃u

)klũ∗kL ũ
l
L + (m2

Ũ
)klũC∗kL ũClL −

√
2(muAt)

kl

v2

εijH
i
2ũ

k∗
L ũ

Cl
L

+ (m2
Q̃d

)kld̃k∗L d̃
l
L + (m2

D̃
)kld̃C∗kL d̃ClL −

√
2(mdAb)

kl

v1

εijH
i
1d̃
∗k
L d̃

Cl
L

+ (m2
l̃e

)klẽ∗kL ẽ
l
L + (m2

ẽ)
klẽC∗kL ẽClL −

√
2(m`Aτ )

kl

v1

εijH
i
1ẽ
k∗
L ẽ

Cl
L

+ (m2
l̃ν

)klν̃∗kL ν̃
l
L +M2W̃

−W̃+ +
M1

2
¯̃BB̃ +

M2

2
¯̃W3W̃3

+m2
1|H1|2 +m2

2|H2|2 −m2
12εij(H

i∗
1 H

j
2) +H.C. (3-18)

where mα, α = u, d, ` correspond to the up-like quarks, down-like quarks and charged lepton
mass matrices respectively. The potential is made of diagonal terms for all sparticles, mass
terms for gauginos and left-right mixing terms. Since this potential break supersymmetry,
we expect that all m’s have a value in the SUSY breaking scale, hopefully in the TeV scale.

3.3 Mass matrices

Now that we have written the most general SU(2)L⊗U(1)Y potential without lepton/baryon
number violation. A spontanous symmetry breaking is implemented by the replacement:

H1 =

(
H0

1

H−1

)
=

(v1+h1+iη1√
2

H−1

)
H2 =

(
H+

2

H0
2

)
=

(
H+

2
v2+h2+iη2√

2

)
(3-19)

with v1, v2 the vacuum expectation value (VEV) of the respective scalar fields. Additionally,
h1, h2 are CP-even fields while η1, η2 are CP-odd. Instead of working with v1 and v2, we
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define a general VEV v and a mixing angle β all of them related by the triangle in figure
(3-3).

Figure 3-3: Relationship among VEV’s and mixing angle

First, when considering the kinetic terms for the scalar doublets, the covariant derivative
takes the form Dµ = ∂µ− igW a

µTa− ig′ Y2Bµ, being Ta = σa
2

the SU(2) generators and Y the
hypercharge, so the symmetry breaking results in mass terms for the gauge bosons coming
from the, kinetic terms DµΦ1D

µΦ1 and DµΦ2D
µΦ2 similar to the second term in Eq. (3-5).

They are made out of a mixing between W 3
µ and Bµ gauge bosons given by M2

o and a mass
term for the charged W bosons.

M2
0 =

1

4

(
g2v2 −gg′v2

−gg′v2 g′2v2

)
, mω =

gv

2
(3-20)

Since the mass matrix has null determinant the two mass eigenvalues are mγ = 0 (photon)

and mz = (g2+g′2)
2

v2 = m2
ω

cos2(θw)
(Z-boson) being θw the Weinberg angle [65] which relates the

coupling constants g and g′ through tan θw = g′

g
.

In the case of fermions, the last line on Eq. (3-14) generates bilinear mass terms for fermions
identical to the SM mass matrices but with two different VEV for different isospin states.

mu =
v2√

2

y11
u y12

u y13
u

y21
u y22

u y23
u

y31
u y32

u y33
u

 md =
v1√

2

y11
d y12

d y13
d

y21
d y22

d y23
d

y31
d y32

d y33
d

 m` =
v1√

2

y11
e y12

e y13
e

y21
e y22

e y23
e

y31
e y32

e y33
e


(3-21)

On the one hand, fermion mass eigenvalues are determined exclusively by a fine-tunning
problem, which is what we want to avoid for generaing a Fermion Mass Hiearchy (FMH).
On the other hand, since no right-handed neutrino is included in the SM, no right-handed
neutrino superfield is included as well so in the MSSM neutrinos remain massless too. There
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is however another kind of fermions on this theory, the higgsinos and gauginos.
If we consider the interaction terms in the Higgs kinetic terms indicated in Eq. (3-5) for
the SM symmetry groups, a gaugino-higgsino mixing arises afer SSB, which together with
the two last terms in Eq. (3-14) constitutes the charged-Higgsinos mass matrix and the
gaugino-higgsino mass matrix in the basis (B̃, W̃3, H̃

0
1 , H̃

0
2 ) as given by:

(
W̃− H̃−1

)( m2

√
2mωsin(β)√

2mωcos(β) µ2

)(
W̃+

H̃+
2

)
(3-22)

MChar =

(
m2

√
2mωsin(β)√

2mωcos(β) µ2

)
(3-23)

M′
Neut =


m1 0 −mzcos(β)sin(θw) mzsin(β)sin(θw)
0 m2 mzcos(β)cos(θw) −mzsin(β)cos(θw)

−mzcos(β)sin(θw) mzcos(β)cos(θw) 0 −µ
mzsin(β)sin(θw) −mzsin(β)cos(θw) −µ 0


(3-24)

The mass eigenstates of the charged Higgsino matrix are known as Charginos while on the
neutral Higgsino matrix are called Neutralinos, being the lightest of then the ideal Dark
Matter candidate [27]. On the side of superpartners the following general mass matrices are
obtained in 3× 3 blocks:

Up− Squarks

Mt =

(
m2
Q̃u

+m2
u +m2

zcos(2β)
(

1
2 − 2

3sin
2(θw)

)
I mu

2 (At − µcot(β)I)
mt
2 (At − µcot(β)I) m2

Ũ
+m2

u + 2
3m

2
zcos(2β)sin2(θw)I

)
(3-25)

Down− Squarks

Mb =

(
m2
Q̃d

+m2
d +m2

zcos(2β)
(

1
2 − 1

3sin
2(θw)

)
I mb

2 (Ab − µtan(β)I)
mb
2 (Ab − µtan(β)I) m2

D̃
+m2

d + 1
3m

2
zcos(2β)sin2(θw)I

)
(3-26)

ChargedSleptons

Ml̃ =

(
m2
l̃e

+m2
` − 1

2m
2
zcos(2β)cos(2θw)I mτ

2 (Aτ − µtan(β)I)
mτ
2 (Aτ − µtan(β)I) m2

ẽ +m2
` −m2

zcos(2β)sin2(θw)I

)
(3-27)

I the 3 × 3 identity matrix. To date, no sparticle has been observed so, if exist, they have
to have a mass in the TeV scale making the electroweak contribution negligible. It results
in mass eigenstates fully dominated by the soft-breaking parameters and degenerate high-
values masses. Usually the family mixing is neglected [21], so the mass matrix is a 2 × 2
family independent one which mixes the left and right counterparts of each sparticle.
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However, the scalar doublets describe three mass matrices: one of the CP-even (h) and
another one the CP-odd (η) counterparts together with a charged scalar mass matrix, which
are given by:

Mh =
1

2

(
m2

12tan(β) +m2
zcos

2(β) −m2
zsin(β)cos(β)−m2

12

−m2
zsin(β)cos(β)−m2

12 m2
12cot(β) +m2

zsin
2(β)

)
(3-28)

Mη =
1

2

(
m2

12Tan(β) −m2
12

−m2
12 m2

12Cot(β)

)
MCH =

(
m12

v2
v1

+
g2v22

4
m2

12 + g2

4
v1v2

m2
12 + g2

4
v1v2 m12

v1
v2

+
g2v21

4

)
(3-29)

On the one hand,the masses of the CP-even scalars are obtained by direct diagonalization of

the mass matrix resulting in mh1/2 = 1
2

[
m2
A +m2

z ±
√
m4
A +m4

z − 2m2
Am

2
zcos(4β)

]
. On the

other hand, there is one massless CP-odd scalar and one massless charged scalar, which are
identified as the Goldstone bosons arising from the symmetry breaking SU(2)L ⊗ U(1)Y ⇒
U(1)Q and provide a finite mass value to the Z and W gauge bosons respectively as indicates
the Goldstone theorem revisited in section (2.2.3). In addition, the massive states are given

by m2
η =

2m2
12

sin(2β)
and m2

CH = m2
12

(
v1
v2

+ v2
v1

)
+m2

w

3.4 Family mixing

Now we can consider the third term on Eq. (3-5), which came from fermion kinetic terms,
applied to the SM symmetry groups, it can be written explicitely as [32]:

Lc = −1

2
ψ†L

((
g /W

3
+ g′Y /B g( /W

1 − i /W 2
)

g( /W
1

+ i /W
2
) −g /W 3

+ g′Y /B

))
ψL − g′Y ψCL /BψCL (3-30)

where ψ can be any fermion with hypercharge Y , we define then the charged W± bosons
as W± ≡ W 1∓W 2

√
2

, with mass gv
2

found previously. Similarly the W 3 and B bosons can be

rotated into the physical fields (photon and Z-boson) by a rotation of θw, which in fact is
the angle that diagonalizes the gauge boson matrix, the result is:

Lc = −ψ†L

((
(gZL )1 /Z + (gAL )1 /A g /W

+

g /W
−

(gZL )2 /Z + (gAL )2 /A

))
ψL − gZRY ψCL /ZψCL − gARY ψCL /AψCL

(3-31)

with

2(gZL )1 = g cos θw − g′Y sin θw 2(gZL )2 = −g cos θw − g′Y sin θw (3-32)

2(gAL )1 = g sin θw + g′Y cos θw 2(gAL )2 = g sin θw − g′Y cos θw (3-33)

gZR = −g′Y sin θw gAR = −g′Y cos θw (3-34)
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ψ gZL gAL gZR gAR
νe , νµ, ντ

g
2 cos θw

(
1
2

)
0 0 0

e, µ, τ g
2 cos θw

(
−1

2
+ sin2 θw

)
e g

2 cos θw

(
sin2 θw

)
e

u, c, t g
2 cos θw

(
1
2
− 2

3
sin2 θw

)
−2

3
e g

2 cos θw

(
−2

3
sin2 θw

)
−2

3
e

d, s, b g
2 cos θw

(
−1

2
+ 1

3
sin2 θw

)
1
3
e g

2 cos θw

(
1
3

sin2 θw
)

1
3
e

Table 3-2: Current coupling constant for fermions

where the numerical superscript indicates the isospin component, the numerical specific
coupling for each kind of fermion is shown in table (3-2). In this way, the interaction can
be splited into a neutral current and a charged current depending of the electrical charge of
the gauge boson the fermion is coupling with.

LNC = −(gZL )1(ψ†L)1 /Z(ψ†L)1 − (gZR)1(ψC†L )1 /Z(ψ†L)1 − (gAL )1(ψ†L)1 /A(ψ†L)1 − (gAR)1(ψC†L )1 /A(ψ†L)1

= −jµZZµ − jµAAµ
= LZNC + LANC (3-35)

LCC = − g

2
√

2
((ψ†L)1)γµ(1− γ5)(ψL)2W+

µ +H.C. (3-36)

The interaction with the photon actually makes the QED lagrangian, so regarding neutral
currents it is of our interest just the interaction with the Z-boson. Since the hypercharge
is family universal, the −(gZL )k coupling is the same for all three generations, so we can
promote the neutral interactions to three generations as:

LZNC = −
(
f 1†
L f 2†

L f 3†
L

)gZL (f1) 0 0
0 gZL (f2) 0
0 0 gZL (f3)

 /Z

f 1
L

f 2
L

f 3
L

 (3-37)

where the superscript indicates the family and no isospin index is written since the inter-
action is between equal isospin particles. Since the coefficient matrix is proportional to the
identity (gZL (fi) is the same for all three families), we get the same equation in the mass
eigenbasis, forbidding interactions that change flavor, i.e. change between generations (
τ → Ze ) by the emission of a neutral boson (Z or A). Nevertheless, it can be possible if a
new non-universal interaction is included, so the coefficient matrix would not be proportional
to identity. This result is known as the Glashow-Iliopoulos-Maiani (GIM) mechanism [42]
which guarantees the absence of Flavor Changing Neutral Currents (FCNC) in the SM, or at
least its suppression. To present, there is no observed event consistent with a FCNC being
a success of the SM, so any Beyond the SM theory must predict such a supression [49].
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In the case of the charged currents, it is hypercharge independent but the interacting fermions
have opposite isospin. Let’s consider the case with quarks if we rotate to the mass eigenbasis,
in that case we would get:

LCC = − g

2
√

2

(
u c t

)1 0 0
0 1 0
0 0 1

 /W

ds
b

+H.C. (3-38)

= − g

2
√

2

(
u1 u2 u3

)
Vu

1 0 0
0 1 0
0 0 1

 /WV †d

d1

d2

d3

+H.C. (3-39)

= − g

2
√

2

(
u1 u2 u3

)
VCKM /W

d1

d2

d3

+H.C. (3-40)

It turns out that up-like quarks and down-like quarks does not have a common basis, so
the product of their rotations is not the identity (VuV

†
d 6= I) the product of them is the

Cabibbo-Kobayashi-Maskawa matrix (CKM) which represent the relative rotation between
mass eigenbasis of quarks and in general allows flavor changing interactions i.e. a second
generation quark can decay into a first generation one by changing its isospin. That matrix
parametrize most of quark interactions and it is well measured, to present it takes the form
[63]:

VCKM =

0.97420± 0.00021 0.2243± 0.0005 (3.94± 0.36)× 10−3

0.218± 0.004 0.997± 0.017 (42.2± 0.8)× 10−3

(8.1± 0.5)× 10−3 (39.4± 2.3)× 10−3 1.019± 0.025

 (3-41)

In general, this matrix can be parametrized using three angles and one CP phase. However,
since the quark mixing angles turns out to be small, a different parametrization can be used
by introducing the Wolfenstein parameters, so it reads:

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) Aλ2 1

 (3-42)

where according to the last results[63] are A = 0.836 ± 0.015, λ = 0.22453 ± 0.00044,
ρ = 0.122+0.018

−0.017 and η = 0.355+0.012
−0.011.

In the case of lepton-neutrino mixing happens a similar fashion due to hypercharge universal-
ity. In that case, the relative rotation between lepton and neutrino mass eigenstates is known
as the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS) which is given analogously by
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VPMNS = UlU
†
ν . There is however an important phenomenological difference.

Despite the CKM and PMNS matrices are mathematically analogous, the neutrino mass
matrix entries are much smaller than the quark matrix entries, since experimentally it is
known that neutrinos must have a very small mass. Consequently, the oscillations between
quarks in the flavor basis happens in small times, corresponding to a length scale of the
nuclear radius while neutrino oscillations require hundreds of kilometres as pointed out in
the solar neutrino problem [6] together with the time dilation due to the relativistic speed of
them. As a result, the flavor changes are highly suppressed (lα → lβ < 10−54) [17] so neutrino
mass eigenstates as well as leptonic flavor changes are not often considered in discussions.
To present, the PMNS matrix has the following values [25] at 3σ confidence level:

VPMNS =

0.797→ 0.842 0.518→ 0.585 0.143→ 0.156
0.243→ 0.490 0.473→ 0.674 0.651→ 0.772
0.295→ 0.525 0.493→ 0.688 0.618→ 0.744

 (3-43)

NO IO
∆m2

21

10−5eV 2 7.39+0.21
−0.20 7.39+0.21

−0.20
∆m2

3`

10−3eV 2 +2.5230.032
−0.030 −2.509+0.032

−0.030

θ12/
◦ 33.82+0.78

−0.76 33.56+0.77
−0.75

θ23/
◦ 48.3+1.1

−1.9 48.6+1.1
−1.5

θ13/
◦ 8.61+0.13

−0.13 8.65+0.13
−0.12

δ/◦ 222+38
−28 285+24

−26

Table 3-3: Neutrino mixing parameters [25]

The elements of the PMNS matrix are determined mainly from neutrino oscillation exper-
iments, by studying the three main sources of neutrinos (solar, atmospheric and reactor
neutrinos) they get the mixing angles and the CP phase, given in table 3-3. Nevertheless,
they only provide mass differences instead of information about each mass eigenstate leaving
as an unresolved questions the mass hierarchy of neutrinos. In general, two schemes are
considered: the normal ordering (NO) ( m1 < m2 < m3) and the inverse ordering (IO)
(m3 < m1 < m2). To conclude this section, it is important to mention the mixing matrices
standard parametrization in terms of 4 mixing angles and 1 CP phase, it reads:

U =

1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 cos θ13 0 sin θ13e
−iδCP

0 1 0
− sin θ13e

iδCP 0 cos θ13

 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


(3-44)



4 The U(1)X Extension

4.1 General remarks

Although the main motivations lies in string theory, extra dimension grand unification among
others, most of the theories predict a new gauge boson called Z ′. In the most promising
scenarios this particle exist from a U(1) additional symmetry breaking [38], as part of a
non-abelian higher symmetry (SU(2)R, 331 models) [51], from Kaluza-Klein excitations in
extra dimensions [8] or as a string resonance [26]. In the first two scenarios, the need of a
higher symmetry group that breaks into an additional U(1) gauge symmetry provides also a
solution to the fermion mass hierarchy i.e. a natural explanation of the fermion masses. A
new non-universal U(1)X interaction together with a Z2 parity are included into the MSSM
based on the non-supersymmetric version of the model [44] which provides an scenario for
solving the FMH problem based on the existence of two Higgs doublets and two scalar sin-
glets, leaving the hiearchy understood partially from the VEV hierarchy. However, in the
fermionic sector, a exotic up-like quark (T ), two down-like quarks (J a, a = 1, 2), two exotic
leptons (E, E), three right handed neutrinos (νCL ) and three heavy Majorana neutrinos (NR)
all of them interacting via the scalar singlets and generating a mass matrix texture compat-
ible with a natural realization of FMH without inducing anomalies.

When a new symmetry is included in a theory, there is always the risk of inducing anomalies
as shown in section 2.2.5. The inclusion of a new U(1) symmetry leads to the following
equations that are required to vanish.
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Table 4-1: Scalar content of the model, non-universal X quantum number, Z2 parity and
hypercharge

Higgs
Scalar
Doublets

Higgs
Scalar
SingletsX± Y X± Y

Φ̂1 =

(
φ̂+

1
ĥ1+v1+iη̂1√

2

)
+ 2/3+ +1 χ̂ = ξ̂χ+vχ+iζ̂χ√

2
− 1/3+ 0

Φ̂2 =

(
φ̂+

2
ĥ2+v2+iη̂2√

2

)
+ 1/3− +1 σ = ξ̂σ+iζ̂σ√

2
− 1/3− 0

Φ̂′1 =

(
ĥ′1+v′1+iη̂′1√

2

φ̂−′1

)
− 2/3+ −1 χ̂′ =

ξ̂′χ+v′χ+iζ̂′χ√
2

+ 1/3+ 0

Φ̂′2 =

(
ĥ′2+v′2+iη̂′2√

2

φ̂−′2

)
− 1/3− −1 σ′ = ξ̂′σ+iζ̂′σ√

2
+ 1/3− 0

[SU(3)C ]2 U(1)X → AC =
∑
Q

XQL −
∑
Q

XQR (4-1)

[SU(2)L]2 U(1)X → AL =
∑
`

X`L + 3
∑
Q

XQL (4-2)

[U(1)Y ]2 U(1)X → AY 2 =
∑
`,Q

[
Y 2
`L
X`L + 3Y 2

QL
XQL

]
−
∑
`,Q

[
Y 2
`R
XLR + 3Y 2

QR
XQR

]
(4-3)

U(1)Y [U(1)X ]2 → AY =
∑
`,Q

[
Y`LX

2
`L

+ 3YQLX
2
QL

]
−
∑
`,Q

[
Y`RX

2
`R

+ 3YQRX
2
QR

]
(4-4)

[U(1)X ]3 → AX =
∑
`,Q

[
X3
`L

+ 3X3
QL

]
−
∑
`,Q

[
X3
`R

+ 3X3
QR

]
(4-5)

[Grav]2 U(1)X → AG =
∑
`,Q

[X`L + 3XQL ]−
∑
`,Q

[X`R + 3XQR ] . (4-6)

Although in the non-susersymmetric model these equations are satisfied when supersymme-
try is imposed they are not because of the precense of Higgsinos in the fermion content. The
simplest way of avoiding this problem is by doubling the scalar content, so the new scalar
fields would behave as the conjugate ones. The final particle content of the model is shown
in tables 4-2 and 4-1
The scalar singlets σ and σ′ do not acquire VEV. Therefore, they contribute to the generation
of the lightest fermions masses at one loop level. However, the scalar singlets χ, χ′ acquire a
VEV at the TeV scale which breaks the U(1)X symmetry leading to the following spontaneous
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Table 4-2: Fermion content of the abelian extension, non-universal X quantum number and
parity Z2.

Left-
Handed
Fermions

Right-
Handed
FermionsX± X±

SM Quarks

q̂1
L =

(
û1

d̂1

)
L

q̂2
L =

(
û2

d̂2

)
L

q̂3
L =

(
û3

d̂3

)
L

+ 1/3+

0−

0+

û1 c
L

û2 c
L

û3 c
L

d̂1 c
L

d̂2 c
L

d̂3 c
L

− 2/3+

− 2/3−

− 2/3+

+ 1/3−

+ 1/3−

+ 1/3−

SM Leptons

ˆ̀e
L =

(
ν̂e

êe

)
L

ˆ̀µ
L =

(
ν̂µ

µ̂µ

)
L

ˆ̀τ
L =

(
ν̂τ

τ̂ τ

)
L

0+

0+

−1+

ν̂e cL
ν̂µ cL
ν̂τ cL
êe cL
êµ cL
êτ cL

− 1/3−

− 1/3−

− 1/3−

+ 4/3−

+ 1/3−

+ 4/3−

Non-SM Quarks

T̂L

J 1
L

J 2
L

+ 1/3−

0+

0+

T̂ cL

Ĵ c 1
L

Ĵ c 2
L

− 2/3−

+ 1/3+

+ 1/3+

Non-SM Leptons

ÊL
ÊL

−1+

− 2/3+
Êc
L

ÊcL
+ 2/3+

+1+

Majorana Fermions N 1,2,3
R 0−
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symmetry breaking chain:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X
χ−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y

Φ−→ SU(3)C ⊗ U(1)Q.

In the context of the supersymmetric theory, the gauge groups induce a D−Term potential
shown in Eq. (4-7) and the superpotential given in Eq. (4-8) divided into scalar (Wφ), quark
(WQ) and lepton (WL) parts shown in Eqs. (4-9-4-11)

VD =
g2

2

[
|Φ†1Φ2|2 + |Φ′†1 Φ′2|2 + |Φ′†1 Φ1|2 + |Φ′†1 Φ2|2 + |Φ′†2 Φ1|2 + |Φ′†2 Φ2|2

− |Φ1|2|Φ2|2 − |Φ′1|2|Φ′2|2
]

+
g2 + g′2

8
(Φ†1Φ1 + Φ†2Φ2 − Φ′†1 Φ′1 − Φ′†2 Φ′2)2

+
g2
X

2

[
2

3
(Φ†1Φ1 − Φ′†1 Φ′1) +

1

3
(Φ†2Φ2 − Φ′†2 Φ′2)− 1

3
(χ∗χ− χ′∗χ′)− 1

3
(σ∗σ − σ′∗σ′)

]2

(4-7)

W [Φ] = Wφ +WQ +WL (4-8)

It is worth to mention that only the terms involving interactions among Higgs particles
has been considered in the VD potential since we are not interested in the sparticles mass
generation. The full D-Term potential also include interactions among squarks, sleptons
and Higgs particles which are not gauge singlets, leaving the Majorana sneutrinos as non
interacting.

Wφ = −µ1Φ̂′1Φ̂1 − µ2Φ̂′2Φ̂2 − µχχ̂′χ̂− µσσ̂′σ̂ + λ1Φ̂′1Φ̂2σ̂
′ + λ2Φ̂′2Φ̂1σ (4-9)

WQ = q̂1
LΦ̂2h

12
2uû

2 c
L + q̂2

LΦ̂1h
22
1uû

2 c
L + q̂3

LΦ̂1h
3k
1uû

k c
L − q̂3

LΦ̂′2h
3j
2dd̂

j c
L + q̂1

LΦ̂2h
1
2T T̂ cL

+ q̂2
LΦ̂1h

2
1T T̂ cL − q̂1

LΦ̂′1h
1a
1J Ĵ a c

L − q̂2
LΦ̂′2h

2a
2J Ĵ a c

L + T̂Lχ̂′hTχ′ T̂ cL − Ĵ a
L χ̂h

Jab
χ Ĵ b c

L

+ T̂Lχ̂′h2
χ′uû

2 c
L + Ĵ a

L σ̂h
Jaj
σ d̂jcL + T̂Lσ̂′hTkσ′ ûkcL (4-10)

WL = ˆ̀p
LΦ̂2h

pq
2ν ν̂

q c
L − ˆ̀p

LΦ̂′2h
pµ
2e ê

µ c
L − ˆ̀τ

LΦ̂′2h
τr
2e ê

r c
L − ˆ̀p

LΦ̂′1h
p
1EÊ

c
L + ÊLχ̂′gχ′EÊ

c
L

− ÊLµEÊcL + ÊLχ̂gχE ÊcL − ÊLµEÊc
L + ν̂m c

L χ̂′h′N mn
χ N̂n c

L +
1

2
N̂m c
L MmnN̂

n c
L

+ ÊLσ̂h
ecp
σ êcrL + ÊLσ̂′he

cµ
σ′ ê

µc
L , (4-11)

where j = 1, 2, 3 labels the down type singlet quarks, k = 1, 3 labels the first and third quark
doublets, a = 1, 2 is the index of the exotic J a

L and J ca
L quarks, p = e, µ , q = e, µ, τ , r = e, τ

and m,n label the right handed and Majorana neutrinos. Finally, a soft breaking potential
in included, since we are not interested in sparticle masses let’s consider soft breaking terms
for the scalar particles, gauginos and Higgsinos as shown in Eq. (4-12).
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Vsoft = m2
1Φ†1Φ1 +m′21 Φ′†1 Φ′1 +m2

2Φ†2Φ2 +m′22 Φ′†2 Φ′2 +m2
χχ
†χ+m′2χχ

′†χ′ +m2
σσ
†σ

+m′2σ σ
′†σ′ −

[
µ2

11εij(Φ
′i
1 Φj

1)− µ2
22εij(Φ

′i
2 Φj

2)− µ2
χχ(χχ′) + µ2

σσ(σσ′) + λ̃1Φ′†1 Φ2σ
′

+ λ̃2Φ′†2 Φ1σ −
2
√

2

9
(k1Φ†1Φ2χ

′ − k2Φ†1Φ2χ
∗ + k3Φ′1

†Φ′2χ− k4Φ′1
†Φ′2χ

′∗) + h.c.

]
+MB̃B̃B̃

† +MB̃′B̃
′B̃′† +MW̃±W̃

±B̃±† +MW̃ W̃3W̃
†
3 (4-12)

where the last terms, proportional to the coupling constants named k1, k2, k3 and k4, also
breaks softly parity symmetry. This feature is required to avoid massless scalar particles as
will be shown later. Althoug F − term potential codifies mainly all sparticles interactions
and off diagonal sparticle mass terms we can take only the associated with Higgs particles:

VF = µ2
1(Φ†1Φ1 + Φ′†1 Φ′1) + µ2

2(Φ†2Φ2 + Φ′†2 Φ′2) + µ2
χ(χ∗χ+ χ′∗χ′) + +µ2

σ(σ∗σ + σ′∗σ′)

+
(
λ2

1|εijΦ′i1 Φj
2|2 + λ2

2|εijΦ′i2 Φj
1|2 + λ2

1(Φ†2Φ2 + Φ′†1 Φ′1σ
′∗σ′ + λ2

2(Φ†1Φ1 + Φ′†2 Φ′2)σ∗σ

− λ1µ1Φ†1Φ2σ
′ − λ1µ2Φ′†2 Φ′1σ

′ − λ2µ1Φ′†1 Φ′2σ − λ2µ2Φ†2Φ1σ − λ1µσεijΦ
′i
1 Φj

2

− λ2µσεijΦ
′i
2 Φj

1 + h.c.
)

(4-13)

4.2 Scalar and gauge boson masses

Prior to develop the fermion sector of the model, it is required to check the model consistency
with the most relevant results such as the correct gauge boson masses and the compatibility
of the lightest scalar with the observed 125.3GeV one [3]. First, we get the gauge boson
mass matrix by considering the scalar particles kinetic terms as stated in section 3.3. Now,
there is another contribution due to the U(1)X symmetry so the covariant derivative reads:

Dµ = ∂µ − igW a
µTa − ig′

Y

2
Bµ − igXXB′µ. (4-14)

so the kinetic terms for the fields Φ1, Φ2, Φ′1, Φ′2, χ and χ′ after SSB generates the following
mass matrix for the neutral bosons in the basis (W 3

µ , Bµ, B
′
µ):
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M2
0 =

1

4

g2v2 −gg′v2 −2
3
ggXv

2(1 + cos2 β)
∗ g′2v2 2

3
g′gXv

2(1 + cos2 β)
∗ ∗ 4

9
g2
X

[
V 2
χ + (1 + 3 cos2 β)v2

]
 , (4-15)

where we have done the following definitions

v2 = v2
1 + v2

2 + v′21 + v′22 (4-16)

tan β =

√
v2

2 + v′22√
v2

1 + v′21
≡ V2

V1

(4-17)

V 2
χ ≡ v2

χ + v′2χ (4-18)

Moreover, the charged gauge bosons W± acquire a SM-like mass term given by mω = gv
2

with v defined in Eq. (4-16). Since we already know that these bosons have a 80.4GeV/c2

mass we have a constraint for the doublet VEV’s given by:

v2 = v2
1 + v2

2 + v′21 + v′22 = (246.3GeV )2 (4-19)

However, the neutral gauge bosons mass matrix in Eq. (4-15) has null determinant, which
implies that one particle is massless. It is identified as the photon. The other two mass eigen-
states corresponds to the Z and Z ′ bosons whose masses are given in a first approximation
by:

MZ ≈
gv

2 cos θW
, (4-20)

MZ′ ≈
gXVχ

3
, (4-21)

beign θw the Weinberg angle defined as tan θw = g′

g
. We can see that the model reproduces

the correct masses for the gauge bosons and ensures a yet unobservable Z ′ boson since it
comes from the breaking of the U(1)X symmetry at the TeV scale and provides a constraint
for the electroweak VEV’s.

4.2.1 Cp-even scalar particles

Now, let’s consider the scalar potential that arise from Eqs. (4-7)-(4-13), it is given by:
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Vs =
g2

2

[
|Φ†1Φ2|2 + |Φ′†1 Φ′2|2 + |Φ′†1 Φ1|2 + |Φ′†1 Φ2|2 + |Φ′†2 Φ1|2 + |Φ′†2 Φ2|2

− |Φ1|2|Φ2|2 − |Φ′1|2|Φ′2|2
]

+
g2 + g′2

8
(Φ†1Φ1 + Φ†2Φ2 − Φ′†1 Φ′1 − Φ′†2 Φ′2)2

+
g2
X

2

[
2

3
(Φ†1Φ1 − Φ′†1 Φ′1) +

1

3
(Φ†2Φ2 − Φ′†2 Φ′2)− 1

3
(χ∗χ− χ′∗χ′)− 1

3
(σ∗σ − σ′∗σ′)

]2

+ µ2
1(Φ†1Φ1 + Φ′†1 Φ′1) + µ2

2(Φ†2Φ2 + Φ′†2 Φ′2) + µ2
χ(χ∗χ+ χ′∗χ′) + +µ2

σ(σ∗σ + σ′∗σ′)

+
(
λ2

1|εijΦ′i1 Φj
2|2 + λ2

2|εijΦ′i2 Φj
1|2 + λ2

1(Φ†2Φ2 + Φ′†1 Φ′1)σ′∗σ′ + λ2
2(Φ†1Φ1 + Φ′†2 Φ′2)σ∗σ

− λ1µ1Φ†1Φ2σ
′ − λ1µ2Φ′†2 Φ′1σ

′ − λ2µ1Φ′†1 Φ′2σ − λ2µ2Φ†2Φ1σ − λ1µσεijΦ
′i
1 Φj

2

− λ2µσεijΦ
′i
2 Φj

1 + h.c.
)

+m2
1Φ†1Φ1 +m′21 Φ′†1 Φ′1 +m2

2Φ†2Φ2 +m′22 Φ′†2 Φ′2 +m2
χχ
†χ+m′2χχ

′†χ′

+m2
σσ
†σ +m′2σ σ

′†σ′ −
[
µ2

11εij(Φ
′i
1 Φj

1)− µ2
22εij(Φ

′i
2 Φj

2) + µ2
χχ(χχ′) + µ2

σσ(σσ′) + λ̃1Φ′†1 Φ2σ
′

+ λ̃2Φ′†2 Φ1σ −
2
√

2

9
(k1Φ†1Φ2χ

′ − k2Φ†1Φ2χ
∗ + k3Φ′1

†Φ′2χ− k4Φ′1
†Φ′2χ

′∗) + h.c.

]
(4-22)

the coefficients have to fullfill the following conditions in order to have a non trivial minimum
of the potential:

g2 + 2λ2
1 + 2λ2

2 >0 (4-23)

9b2 >32ac (4-24)

where

a = g2 + 2λ2
1 + 2λ2

2 (4-25)

b = −2(λ1(µ1 + µ2) + λ2(µ1 + µ2)− λ̃1 − λ̃2 +
2
√

2

9
(k1 − k2 + k3 − k4)) (4-26)

c = 2µ2
1 + 2µ2

2 + 2µ2
χ + 2µ2

σ +m2
1 +m2

2 +m′21 +m′22 +m2
χ +m′2χ +m2

σ +m′2σ

− 2µ2
11 − 2µ2

22 − 2µ2
χχ − 2µ2

σσ − 2λ1µσ − 2λ2µσ (4-27)

the first condition ensures that the potential is bounded from bellow in the equal field
direction, i.e. when all scalar fields are equal, while the second guaranties the existence of
a non trivial minimum as shown in figure (4-1). It is common to find the scalar potential
with trilinear interactions in models that involve scalar singlets as noted in [45]. However, in
most cases those couplings are highly suppressed due to the restrictions on the mass matrix
and because of the potential. The cubic terms, represented by the constant b , generates
asymetries on the potential as shown in figure (4-1b). Nevertheless, since these couplings
are small (b ≈ 0) the asymmetry is supressed so the potential has a mexican hat shape
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(a) Symmetric quartic potential repre-
sentation .

(b) Effect of cubic terms in a quartic
potential.

Figure 4-1: Quartic potential graph, without cubic terms (a) and with asymmetries due to
cubic terms (b)

approximately as shown in figure (4-1a). As will be shown later, the ki couplings are needed
in order to ensure unobserved heavy scalar states, being the only not suppressed trilinear
couplings. We might still think that their values are close enough to be supressed in the
differences since it is an interaction in a much higher energy scale. Due to the small character
of b, the second condition is true if the constant c becomes negative, implying:

m2
H1 +m′2H1 +m2

H2 +m′2H2 +m2
Hχ +m′2Hχ +m2

Hσ +m′2Hσ < 2(µ2
11 + µ2

22 + µ2
χχ + µ2

σσ)

where we have defined m
(′)2
Hα = m

(′)2
α + µ2

α with α = 1, 2, χ, σ. Despite the latter restriction,

the mass spectrum turns out to be independent of m
(′)2
Hα thanks to the minima conditions

that come off the potential:

m2
H1 +

1

8
(g2 + g′2)CEW +

g2
X

9
cX − µ11

v′1
v1

+
λ2

2

2
v′22 = 0

m′2H1 −
1

8
(g2 + g′2)CEW −

g2
X

9
cX − µ11

v1

v′1
+
λ2

1

2
v′21 = 0

m2
H2 +

1

8
(g2 + g′2)CEW +

g2
X

18
cX − µ22

v′2
v2

+
λ2

1

2
v2

2 = 0

m′2H2 −
1

8
(g2 + g′2)CEW −

g2
X

18
cX − µ22

v2

v′2
+
λ2

2

2
v2

1 = 0

M2
χ −

g2
X

18
cX − µχχ

v′χ
vχ

= 0

M ′2
χ +

g2
X

18
cX − µχχ

vχ
v′χ

= 0, (4-28)
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with the definitions CEW = v2
1 + v2

2 − v′21 − v′22 and CX = 2v2
1 + v2

2 − 2v′21 − v′22 + v′2χ − v2
χ.

The latter conditions are obtained by taking the derivative of the potential with respect to
each scalar field and then by replacing the fields by their respective VEV. In this way, the
minima condition of the singlets σ and σ′ do not provide any simplification but gives the
following restrictions over the coupling constants:

v1(v′2λ̃2 − v2λ2µ2) = v′1(v′2λ2µ1 + v2λ1µσ) (4-29)

v2(v′1λ̃1 − v1λ1µ1) = v′2(v′1λ1µ2 + v1λ2µσ) (4-30)

By implementing a spontaneous symmetry breaking on the U(1)X symmetry and the elec-
troweak symmetry by rewriting the scalar fields as perturbations from the VEV as shown in
table 4-1, mass terms arise. They can be written in the following matrix for the CP-even
scalar particles in the basis (h1, h

′
1, h2, h

′
2, ξχ, ξ

′
χ, ξσ, ξ

′
σ)

1

2
M2

h =

(
Mhh Mhξ

MT
hξ Mξξ

)
. (4-31)

Mhh is a 4× 4 matrix containing the mixing of the h fields, related with the scalar doublets
of the model. It can be written as:

Mhh =
f4gv

2
1 − v2f1k

9v1
+

v′1µ
2
11

2v1
−f4gv1v′1 − µ2

11

2 f2gv1v2 + f1k
9 −f2gv1v′2 + 1

2λ
2
2v1v

′
2

∗ f4gv
′
1
2 − v′2f2k

9v′1
+

v1µ
2
11

2v′1
−f2gv′1v2 + 1

2λ
2
1v2v

′
1 f2gv

′
1v
′
2 + f2k

9

∗ ∗ f1gv
2
2 − v1f1k

9v2
+

v′2µ
2
22

2v2
−f1gv2v′2 − µ2

22

2

∗ ∗ ∗ f1gv
′
2
2 − v′1f2k

9v′2
+

v2µ
2
22

2v′2


(4-32)

It can be seen that the latter mixing matrix does not depend on the m
(′)
Hα masses, they do

not appear explicitly due to the minimum conditions stated above. As a consequence, the
mixing is determined mainly by the µii couplings, coming from the soft breaking potential
rather than the superpotential parameters. However, the mixings between scalar doublets
and singlets are written in the 4× 4 Mhξ matrix and it is given by:

Mhξ =
1
9 (k2v2 − g2Xv1vχ) 1

9 (−k1v2 + g2Xv1v
′
χ) 1

2
√
2
(λ̃2v

′
2 − λ2µ2v2) − 1

2
√
2
(λ1µ1v2 + λ2µσv

′
2)

1
9 (−k3v′2 + g2Xv

′
1vχ) 1

9 (k4v
′
2 − g2Xv′1v′χ) − 1

2
√
2
(λ2µ1v

′
2 + λ1µσv2) 1

2
√
2
(λ̃1v2 − λ1µ2v

′
2)

1
9 (k2v1 − 1

2g
2
Xv2vχ) 1

9 (−k1v1 + 1
2g

2
Xv2v

′
χ) − 1

2
√
2
(λ2µ2v1 + λ1µσv

′
1) 1

2
√
2
(λ̃1v

′
1 − λ1µ1v1)

1
9 (−k3v′1 + 1

2g
2
Xv
′
2vχ) 1

9 (k4v
′
1 − 1

2g
2
Xv
′
2v
′
χ) 1

2
√
2
(λ̃2v1 − λ2µ1v

′
1) − 1

2
√
2
(λ1µ2v

′
1 + λ2µσv1)


(4-33)
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We can see that the mixing between these two sectors, both expected at a different energy
scale, is governed by the trilinear couplings of the soft breaking potential. It implies that
at the SUSY scale, scalar singlets and doublets are completely decoupled. Then, the SUSY
breaking provides interactions between them and so the possibility of being observed at the
right energy. Last but not least, the mixing matrix between Higgs singlets, Mξξ, reads:

Mξξ =


g2X
18 v

2
χ +

v′χµ
2
χχ

2vχ
− k23

9vχ
− g

2
X

18 vχv
′
χ −

µ2
χχ

2 0 0

∗ g2X
18 v
′
χ
2 +

vχµ
2
χχ

2v′χ
− k14

9v′χ
0 0

∗ ∗ M2
σ +

λ2
2

4 (v21 + v′22 ) −µσσ2
∗ ∗ ∗ M ′2σ +

λ2
1

4 (v22 + v′21 )

 (4-34)

The following definitions have been done to give shorter expressions:

fng =
g2 + g′2

8
+

n

18
g2
X f1k = k2vχ − k1v

′
χ f2k = −k3vχ + k4v

′
χ (4-35)

k23 = k2v1v2 − k3v
′
1v
′
2 k14 = −k1v1v2 + k4v

′
1v
′
2 (4-36)

Mσ =
1

2
(µ2

σ +m2
σ)− g2

X

36
(2v2

1 + v2
2 − 2v′21 − v′22 − v2

χ + v′2χ ) (4-37)

M ′
σ =

1

2
(µ2

σ +m′2σ ) +
g2
X

36
(2v2

1 + v2
2 − 2v′21 − v′22 − v2

χ + v′2χ ) (4-38)

The high energy decoupling of the doublet and singlet sectors lead us to assume the hierarchy
µχχ, µσσ,Mσ,M

′
σ � µ11, µ22 � kivj � g2

Xvχvj, g
2
Xv
′
χvj, g

2
Xvχv

′
j, g

2
Xv
′
χv
′
j, λ

2
i viv

(′)
j , where i =

1, 2, 3, 4 and j = 1, 2. Besides, no singlet has been observed so the U(1)X is expected at
a much higher energy scale, implying that vχ and v′χ should be at least at the TeV scale.
Thus, they satisfy vχ, v

′
χ � vj, v

′
j, where j = 1, 2 . It implies for the mixing matrices

O(Mξξ) � O(Mhξ) � O(Mhh) which is a favorable scenario to implement a type I seesaw
mechanism [37], with a rotation matrix V , leading to a block-diagonal form of the matrix
represented by M̃2

h .

1

2
M̃2

h = V
1

2
M2

hV
† ≈

(
M̃hh 0

0 Mξξ

)
, V =

(
I MhξM

−1
ξξ

−(MhξM
−1
ξξ )T I

)
The matrix rank for the Mhh submatrix is 4, which means that the four lightest eigenstates
are massive and acquire their tree level mass from its mixings. Consequently, the seesaw
contribution MhξM

−1
ξξ M

T
hξ enters as small corrections to the tree level mass and can be

neglected because of the order of magnitude of the involved parameters in each submmatrix.
Thus, we can assume M̃hh ≈Mhh and the block diagonal mass matrix takes the form:

1

2
M̃2

h ≈
(
M̃hh 0

0 Mξξ

)
(4-39)
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In fact, all mass eigenstates are certainly massive since the mass matrix has rank 8 before
and after the seesaw rotation as well as after the assumption of M̃hh.

It is straightforward to get the scalar singlet masses since its 4 × 4 submatrix has a block
diagonal form. In this model the χ, χ′ scalars do not mix with σ and σ′. The resulting mass
eigenvalues are:

m2
h8/7 = (M2

σ +M ′2
σ ) +

1

4
[λ2

2(v2
1 + v′22 ) + λ2

1(v2
2 + v′21 )]

±
√
µ4
σσ −

(
(M2

σ +M ′2
σ ) +

1

4
[λ2

2(v2
1 + v′22 )− λ2

1(v2
2 + v′21 )]

)2

, (4-40)

= (M2
σ +M ′2

σ )±
√
µ4
σσ − (M2

σ +M ′2
σ )2, (4-41)

m2
h6 ≈ µ2

χχ

v2
χ + v′χ

2

vχv′χ
,

m2
h5 ≈

g2
X

9
(v2
χ + v′χ

2)− 2

9

v1v2(k2v
′
χ − k1vχ) + v′1v

′
2(k4vχ − k3v

′
χ)

vχv′χ
, (4-42)

mh5 and mh6 comes from the χ − χ′ submatrix and in general they would have an expres-
sion similar to the mh8/7 masses. However, the latter expression are obtained due to our
hierarchy choice among our parameters (µχχ is the biggest parameter in the equation) so
only the biggest eigenvalue must depend on it. The lightest one (mh5) must depend mainly
on the VEV’s and the trilinear parameters which are expected to be much smaller than
µχχ together with the condition that they must reconstruct the trace. On the contrary,
no assumption is made on the parameters involving the σ and σ′ masses so the general
formula is stated just by neglecting the electroweak contributions. In fact, due to the null
VEV of these singlets there are no minimum condition relating Mσ, M ′

σ and µσσ so there
is more freedom for a hierarchy choice among them. Anyway, they are expected to be at
an unreachable energy scale for current experiments and do not represent the main focus
of this work. Although they allow mass generation for some fermions as it will be shown later.

for obtaining the remaining four eigenvalues coming from the Mhh submatrix we consider
that the heavy eigenstates must be function of the soft-SUSY breaking parameters µ11, µ22

and ki while the lightest eigenvalue must depend only on the VEV’s since it must be identified
with the SM Higgs particle. On the one hand, the heavy eigenstates are obtained by taking
a small VEV approximation with the limit v1, v2, v

′
1, v
′
2 → 0 on aditive terms. It causes the

matrix rank to decrease to 3, verifying the hypothesis of a electroweak dependent lightest
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eigenvalue. From this approximation the two heavy states arise from the reduced matrix:

Mhh(vi, v
′
i → 0) =


µ211
2

v′1
v1
−µ211

2
0 0

∗ µ211
2
v1
v′1

0 0

∗ ∗ µ222
2

v′2
v2
−µ222

2

∗ ∗ ∗ µ222
2
v2
v′2

 (4-43)

giving as a result the tree level eigenvalues:

m2
h3 ≈ µ2

11

v2
1 + v′21
v1v′1

, m2
h4 ≈ µ2

22

v2
2 + v′22
v2v′2

. (4-44)

The next eigenvalue comes from approximating the exact solution of the matrix quartic order
characteristic function, given by Ferrari’s method [48] in order to get a leading term for its
mass. If the characteristic polynomial has the form Ax4 + Bx3 + Cx + D it can be proven
that the leading contribution arising from the formula for the second eigenvalue is given by
x2 ≈ −C

B
thanks to the chosen hierarchy among parameters. Considering only the terms

proportional to µ2
11µ

2
22 the eigenvalue becomes fully dependent on the parity violating terms,

it reads:

m2
h2 ≈

2v2(v1v2(k1v
′
χ − k2vχ) + v′1v

′
2(k3vχ − k4v

′
χ))

9(v2
1 + v′21 )(v2

2 + v′22 )
. (4-45)

It is worth to notice that the two heaviest eigenvalues can also be reproduced from the
Ferrari’s formula with the same stated assumptions. On the other hand, Ferrari’s method
provide an equation for the lightest eigenvalue which is identified as the SM Higgs particle.
However, the resulting expression becomes too complicated even for thinking in approxi-
mations. Nevertheless, a different approach is used by considering the determinant. All
previous eigenvalues were obtained in a tree level approximation by looking their depen-
dence on µ2

11µ
2
22. Likewise, if we consider the determinant dominant term it can be written

as:

Det(M̃hh) ≈ µ2
11µ

2
22

2592

[
(k3vχ − k4v′χ)

(
(9(g2 + g′2) + 16g2X)

(v21 − v′21 )2

v1v2
+ (9(g2 + g′2) + 4g2X)

(v22 − v′22 )2

v1v2

+ 2(9(g2 + g′2) + 8g2X)
(v21 − v′21 )(v22 − v′22 )

v1v2

)
+ (k1v

′
χ − k2vχ)

(
(9(g2 + g′2) + 16g2X)

(v21 − v′21 )2

v′1v
′
2

+ (9(g2 + g′2) + 4g2X)
(v22 − v′22 )2

v′1v
′
2

+ 2(9(g2 + g′2) + 8g2X)
(v21 − v′21 )(v22 − v′22 )

v′1v
′
2

)]
(4-46)

The lightest Higgs mass eigenvalue is found by dividing this expression by the tree heavy
eigenstates (4-44)-(4-45). After doing some algebra, the result is:
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m2
h1 ≈

g2
X(2v2

1 + v2
2 − 2v′21 − v′22 )2

9(v2
1 + v2

2 + v′21 + v′22 )
+

(g2 + g′2)(v2
1 + v2

2 − v′21 − v′22 )2

4(v2
1 + v2

2 + v′21 + v′22 )
(4-47)

Let’s define the angles tan2 β̃ =
v21+v22
v′21 +v′22

, tan β1 = v1
v′1

and tan β2 = v2
v′2

so Eq. (4-47) is rewritten
as:

m2
h1 = m2

Z

(
cos22β̃ +

4

9

g2
X

g2 + g′2
(cos2β1 + cos 2β2)2

)
≈ m2

Z cos2 2β̃ + ∆m2
h (4-48)

The first thing to notice is that it depends only on the electroweak VEV’s and the coupling
constants as expected as well as there is no dependence on the new physics’ energy scale
implied by vχ and v′χ nor soft susy breaking parameters like µ11 and µ22 which in general
dominate the mass spectrum in SUSY theories. In fact, the theory with additional scalar
singlets and D-terms due to supersymmetry, the correction term ∆m2

h might be at the same
tree level order but its experimental value is compatible with the NMSSM and USSM models.
Supporting our assumptions and approximations, a small program in C++ with the use of
the Armadillo package [57] was written to explore the parameter space and find the region
in which a 125(GeV) value match the lightest eigenvalue and the others, including CP-odd
and charged scalars, lie on the TeV scale. It was found that:

ki ∼ 103 0 < λi, λ̃i < 103 (4-49)

µ11, µ22 > 104 µχχ, µσσ,Mσ,M
′
σ > 108 (4-50)

vχ, v
′
χ > 103, (4-51)

which in fact satisfy the considered parameter hierarchy. Besides, the difference between the
numerical obtained eigenvalues and the tree level expressions stated above is no greater than
0.5%. Additionally, the singlet VEV’s lower bound were fixed in such a way that guarantees
the lightest eigenvalue to come mainly from a scalar doublets mixture. All in all, it can be
seen that the tree level masses do not have a λi and λ̃i dependence, they would enter in
higher order corrections which in fact is confirmed numerically. Consequently , the trilineal
couplings λi, λ̃i have a negligible effect on the mass spectrum so we can consider values as
small as required by phenomenology, being out parameter region compatible with the highly
suppressed trilineal couplings assumption.

Furthermore, equation (4-47) provides restrictions for the gX coupling if we consider that
is must match a 125 GeV value. For instance, it is found that a 125 GeV Higgs boson
can be reached for values of gX = 1.06 g, and a large list of possible values for vi and v′i.
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For example considering v1 = 195, v2 = 138, v′1 = 52, v′2 = 20 and gX = 0.71 a 125 GeV
Higgs boson is found. More generally, in figure (4-2) we plot v′1 vs gX by using the same
equation at 95% of C.L. with 125.3±0.4 GeV. v1 is considered proportional to the top quark
mass, v′2 at an intermediate value between the bottom quark and tau lepton masses, and
v2 =

√
v2 − v2

1 − v2′
1 − v′22 . The result is written as a function of v′1 since it is not restricted

directly by fermion mass hierarchy (FMH), as will be shown in the next section. To address
FMH, the v1 and v′2 domains were [170GeV, 200GeV] and [3GeV, 7GeV] respectively while
v2 has a wide range of allowed values since it is related with neutrino masses. Finally, the
v′1 VEV is determined by the restriction (4-19), (v′1 =

√
v2 − v2

1 − v2
2 − v′22 ), so in principle

v2 lies on the 0 < v2 < 246GeV interval. Last by not least, the coupling parameter gX was
explored for the interval [0, 1] where a perturbative regime for the interaction is allowed.
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Figure 4-2: Region in the parameter space v′1 vs gX with a Higgs mass of 125.3 ± 0.4 GeV
at 95% of C.L.[5]

With this, an interesting fact arises. The possibility of having a null VEV for v′1 is allowed
in the model, opening the possibility of having a inert doublet as a dark matter candidate
for a future work. Anyway, a similar plot is shown in the figure (4-3), where the parameter
space of v2 vs gX is now explored within the experimental constraints at 95% of confidence
level. All in all, the conditions for a 125.3GeV scalar particle exist and there are infinite
ways for achieving it. The only condition is for gX to be equal or greater than 0.63.
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Figure 4-3: Region in the parameter space v2 vs gX with a Higgs mass of 125.3 ± 0.4 GeV
at 95% of C.L.[5]

4.3 Fermion Masses

Now that we have checked the model consistency with a unique observed scalar particle,
Higgs boson, an unobserved Z ′ gauge boson and the correct gauge boson masses. We are
ready to introduce ourselves in the fermion sector, being of special interest the proposal of
solving the FMH problem.

4.3.1 Charginos and Neutralinos

Let’s consider first the sector of Majorana fermions which are characteristic of supersymmetry
due to the promise of a Dark Matter candidate. It begins with the gaugino-higgsino mixing
matrix that arise from their kinetic terms as was pointed out in section 3.3. The interaction
terms in Eq.(3-5) √

2gfaji(A
∗
iλ

aPLψj + Aiψ̄jPRλ
a)
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require A and ψ to be superpartners and λ a gaugino. Considering the eight scalar particles
and superpartners with the associated five gauginos, one relative to each gauge boson, right
after SSB we get the following matrix for the neutral fermionic fields:

M χ̃0 =

MB̃ 0 0 g′v1
2

−g′v′1
2

g′v2
2

−g′v′2
2

0 0 0 0

0 MW̃ 0 −gv1
2

gv′1
2

−gv2
2

gv′2
2

0 0 0 0

0 0 MB̃′
2gXv1

3
−2gXv

′
1

3
gXv2

3
−gXv

′
2

3
−gXvχ

3

gXv
′
χ

3
0 0

g′v1
2

−gv1
2

2gXv1
3

0 −µ1 0 0 0 0
λ2v′2√

2
0

−g′v′1
2

gv′1
2

−2gXv
′
1

3
−µ1 0 0 0 0 0 0 λ1v2√

2
g′v2

2
−gv2

2
gXv2

3
0 0 0 −µ2 0 0 0

λ1v′1√
2

−g′v′2
2

gv′2
2

−gXv
′
2

3
0 0 −µ2 0 0 0 λ2v1√

2
0

0 0 −gXvχ
3

0 0 0 0 0 −µχ 0 0

0 0
gXv

′
χ

3
0 0 0 0 −µχ 0 0 0

0 0 0
λ2v′2√

2
0 0 λ2v1√

2
0 0 0 −µσ

0 0 0 0 λ1v2√
2

λ1v′1√
2

0 0 0 −µσ 0


(4-52)

where Mχ̃0 is in the basis (B̃, W̃3, B̃
′, h̃1, h̃

′
1, h̃2, h̃

′
2, ξχ, ξ

′
χ, ξσ, ξ

′
σ). All terms that are not

proportional to a coupling constant g comes from the soft breaking potential, like lambda
terms, or from the superpotential, µ terms. The first thing to notice is the presence of the
trilinear couplings λ1 and λ2 which are highly suppressed parameters that in principle can
be neglected together with all electroweak contributions since mass eigenvalues are expected
at a much higher energy scale. Secondly, in the case of scalar particles the terms µi coming
from the superpotential were absorbed by the VEV conditions, playing an irrelevant role in
mass generation. However, in the case of higgsinos these terms have a crucial role for their
masses since are the only parameter who can be at a similar or greater scale than vχ and v′χ.
In fact, these parameters provide the tree level eigenvalues, they are given by:

mχ̃0
1

= MB̃ mχ̃0
2

= MW̃ (4-53)

mχ̃0
3

= µ1 mχ̃0
4

= −µ1 (4-54)

mχ̃0
5

= µ2 mχ̃0
6

= −µ2 (4-55)

mχ̃0
10

= µσ mχ̃0
11

= −µσ. (4-56)

The resulting mass eigenstates are called ”Neutralinos” and in general no assumption is
made for the parameters which means that any eigenvalues can be the lightest one. In the
case of mχ̃0

7
, mχ̃0

8
and mχ̃0

9
, they are the roots of the polynomial µχ

(
9MB̃′µχ − 2vχv

′
χg

2
X

)
−
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λ
(
g2
X

(
v2
χ + v′2χ

)
+ 9µ2

χ

)
− 9λ2MB̃′ + 9λ3 = 0. Additionally, the MSSM gauginos seem to be

decoupled due to its mass but they receive negligible electroweak corrections that couple
them to Higgsinos. Nevertheless, in the case of charged particles, the resulting mass matrix
in the basis (W̃+, H̃+

1 , H̃
+
2 ) from the right and (W̃−, H̃ ′−1 , H̃ ′−2 ) from the left, the matrix

reads:

Mχ̃± =

MW̃±
gv1√

2

gv2√
2

gv′1√
2

µ1 0
gv′2√

2
0 µ2

 (4-57)

In this case the mass eigenvalues comes from the solution of a cubic polynomial, and since
we do not have any estimate about their hierarchy no assumptions are made and the matrix
is left stated. One interesting thing is the appearance of negative mass states in the Neu-
tralino sector but it can be removed by a redefinition of the fields as pointed out in [11].
Consequently, the Neutralino sector presents degenerate masses at tree level.

4.3.2 Quark Masses at Tree Level

Let’s consider the quark contribution of the superpotential shown in Eq. (4-10), it reads:

WQ = q̂1
LΦ̂2h

12
2uû

2 c
L + q̂2

LΦ̂1h
22
1uû

2 c
L + q̂3

LΦ̂1h
3k
1uû

k c
L − q̂3

LΦ̂′2h
3j
2dd̂

j c
L + q̂1

LΦ̂2h
1
2T T̂ cL

+ q̂2
LΦ̂1h

2
1T T̂ cL − q̂1

LΦ̂′1h
1a
1J Ĵ a c

L − q̂2
LΦ̂′2h

2a
2J Ĵ a c

L + T̂Lχ̂′hTχ′ T̂ cL − Ĵ a
L χ̂h

Jab
χ Ĵ b c

L

+ T̂Lχ̂′h2
χ′uû

2 c
L + Ĵ a

L σ̂h
Jaj
σ d̂jcL + T̂Lσ̂′hTkσ′ ûkcL (4-58)

where j = 1, 2, 3 labels the down type singlet quarks, k = 1, 3 labels the first and third
generation quark doublets, and a = 1, 2 is the exotic J a

L and J ca
L quarks index. It is worth

to notice that this superpotential is identical in the non-supersymmetric case [44], the main
difference lies on the existence of a pair of new scalars superfields Φ′1 and Φ′2 playing the role
of conjugate fields Φ̃i = iσ2Φ∗i . Consequently, it is expected for mass matrices to have an
identical structure although mass spectrum might have slight differences due to the existencof
three additional VEVs, in this way FMH can be explain due to a VEV hiearchy rather than
a general Yukawa coupling values assignation. However, if we perform the superfield product
and take only the fermion interactions non involving sparticles, the potential would read the
same but using fields. Then, SSB produces bilinear terms that can be arranged in a mass
matrix, in the case of up-like quarks it reads:

MU =

(
MU MUT

MTU MT

)
(4-59)
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where

MU =
1√
2

 0 h12
2uv2 0

0 h22
1uv1 0

h31
1uv1 0 h33

1uv1

 MUT =
1√
2

h1
2Tv2

h2
1Tv1

0

 (4-60)

MTU =
v′χ√

2

(
0 h2

χ′u 0
)

MT =
v′χ√

2
gχ′T , (4-61)

For obtaining the mass spectrum we need to diagonalize the squared mass matrix M2
U =

MUM
†
U , which in this case provide the rotation matrices for the left-handed fermions, it

reads:

M2
U =

1

2


v22

((
h122u

)2
+
(
h12T

)2)
v1v2

(
h122uh

22
1u + h12T h

2
1T

)
0 v2v′χ

(
h122uh

2
χ′u + h12T gχ′T

)
v1v2

(
h122uh

22
1u + h12T h

2
1T

)
v21

((
h221u

)2
+
(
h21T

)2)
0 v1v′χ

(
h221uh

2
χ′u + h21T gχ′T

)
0 0 v21

((
h311u

)2
+
(
h331u

)2)
0

v2v′χ

(
h122uh

2
χ′u + h22T gχ′T

)
v1v′χ

(
h221uh

2
χ′u + h21T gχ′T

)
0 v′2χ

((
h2
χ′u

)2
+
(
gχ′T

)2)


(4-62)

The diagonalization comes straightforward by using seesaw mechanism, all because the exotic
quark T is expected to be much heavier than the already known quarks. Thus, the rotated
mass matrix takes the form:

M2
U1 = V1M

2
UV
†

1 (4-63)

≈ 1

2


v2

2r
2
1 v1v2r1r2 0 0

v1v2r1r2 v2
1r

2
2 0 0

0 0 v2
1

(
(h31

1u)
2

+ (h33
1u)

2
)

0

0 0 0 v′2χ

((
h2
χ′u

)2
+ (gχ′T )2

)
 (4-64)

Where

V1 =


1 0 0 − v2

v′χ
r2
χ1

0 1 0 − v1
v′χ
r2
χ2

0 0 1 0
v2
v′χ
r2
χ1

v1
v′χ
r2
χ2 0 1

 (4-65)

r2
1 =

(
h1

2Th
2
χ′u − h12

2ugχ′T
)2(

h2
χ′u

)2
+ (gχ′T )2

r2
χ1 =

h12
2uh

2
χ′u + h1

2Tgχ′T(
h2
χ′u

)2
+ (gχ′T )2

(4-66)

r2
2 =

(
h2

1Th
2
χ′u − h22

1ugχ′T
)

2(
h2
χ′u

)2
+ (gχ′T )2

r2
χ2 =

h22
1uh

2
χ′u + h2

1Tgχ′T(
h2
χ′u

)2
+ (gχ′T )2

(4-67)
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Now we have two isolated mass eigenstates identified with a heavy quark singlet and the top
quark. However, the 2×2 submatrix has null determinant implying that the up-quark turns
out to be massless and the charm mass coincide with the matrix trace. Resulting in:

m2
u ≈ 0 m2

c =
1

2
(v2

2r
2
1 + v2

1r
2
2),

m2
t =

1

2
v2

1

[
(h31

1u)
2 + (h33

1u)
2
]
, m2

T =
1

2
v′χ

2
[
(gχ′T )2 + (h2

χ′u)
2
]
. (4-68)

In the case of down-like quarks the mass matrix takes the form:

MD =

(
MD MDJ

MJD MJ

)
(4-69)

where

MD =
v′2√

2

 0 0 0
0 0 0
h31

2d h32
2d h33

2d

 MDJ =
1√
2

h11
1Jv
′
1 h12

1Jv
′
1

h21
2Jv
′
2 h22

2Jv
′
2

0 0


MJD =

(
0 0 0
0 0 0

)
MJ =

vχ√
2

(
g11
χJ g12

χJ

g21
χJ g22

χJ

)
. (4-70)

Likewise, we diagonalize the squared mass matrixMDMD
† to get the unitary transformation

for left handed fields. It reads:

MD
2 =

1

2

(
MD MDJ

MJD MJJ

)
(4-71)

where

MD =

 v′21 ((h11
1J)2 + (h12

1J)2) v′1v
′
2 (h11

1Jh
21
2J + h12

1Jh
22
2J) 0

v′1v
′
2 (h11

1Jh
21
2J + h12

1Jh
22
2J) v′22 ((h21

2J)2 + (h22
2J)2) 0

0 0 v′22 ((h31
2d)

2 + (h32
2d)

2 + (h33
2d)

2)


(4-72)

MDJ =

−v′1vχ (h11
1Jg

11
χJ + h12

1Jg
12
χJ

)
−v′1vχ

(
h11

1Jg
21
χJ + h12

1Jg
22
χJ

)
−v′2vχ

(
h21

2Jg
11
χJ + h22

2Jg
12
χJ

)
−v′2vχ

(
h21

2Jg
21
χJ + h22

2Jg
22
χJ

)
0 0

 = MT
JD (4-73)

MJJ =

(
v2
χ

(
(g11
χJ)2 + (g12

χJ)2
)

v2
χ

(
g11
χJg

21
χJ + g12

χJg
22
χJ

)
v2
χ

(
g11
χJg

21
χJ + g12

χJg
22
χJ

)
v2
χ

(
(g21
χJ)2 + (g22

χJ)2
) ) (4-74)
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It can be seen that the exotic couple of quarks J a depends on vχ which is a high energy
parameter. Thus, they make up a 2× 2 heavy submatrix, allowing a straightforward block
diagonalization via seesaw rotation U1

M2
D2 = U1MD2U †1 (4-75)

≈ 1

2

(
MD −MDJM

−1
JJMJD 0

0 MJJ

)
(4-76)

=


0 0 0 0 0
0 0 0 0 0
0 0 v′22

(
(h31

2d)
2 + (h32

2d)
2 + (h33

2d)
2
)

0 0

0 0 0 v2
χ

(
(g11
χJ)2 + (g12

χJ)2
)

v2
χ

(
g11
χJg

21
χJ + g12

χJg
22
χJ

)
0 0 0 v2

χ

(
g11
χJg

21
χJ + g12

χJg
22
χJ

)
v2
χ

(
(g21
χJ)2 + (g22

χJ)2
)


(4-77)

where

U1 =


1 0 0 − v′1

vχ
n1 − v′1

vχ
n2

0 1 0 − v′2
vχ
n3 − v′2

vχ
n4

0 0 1 0 0
v′1
vχ
n1

v′2
vχ
n3 0 1 0

v′1
vχ
n2

v′2
vχ
n4 0 0 1

 (4-78)

n1 =
g11

1Jg
22
χJ − g12

1Jg
21
χJ

g21
χJg

12
χJ − g11

χJg
22
χJ

n2 =
g12

1Jg
11
χJ − g11

1Jg
12
χJ

g21
χJg

12
χJ − g11

χJg
22
χJ

(4-79)

n3 =
g21

1Jg
22
χJ − g22

1Jg
21
χJ

g21
χJg

12
χJ − g11

χJg
22
χJ

n4 =
g22

1Jg
11
χJ − g21

1Jg
12
χJ

g21
χJg

12
χJ − g11

χJg
22
χJ

(4-80)

Due to the high energy scale in which the exotic quarks live, we can consider in a first
approximations their mixing as negligible. All in all, we can see from the mass matrix in
Eq. (4-75) that the down and strange quarks turns out to be massless whereas the other 3
quarks have a mass given by :

m2
b =

1

2
v′22
(
(h31

2d)
2 + (h32

2d)
2 + (h33

2d)
2
)

m2
J1 =

1

2
v2
χ(g11

χJ)2 m2
J2 =

1

2
v2
χ(g22

χJ)2 (4-81)

m2
d ≈ 0 m2

s ≈ 0 (4-82)

To sum up, the X quantum number restrictions over the potential makes up-like quarks
to acquire mass from Φi Higgs fields while down-like quarks do it from Φ′i fields and the
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diagonalization procedure comes from its non-SUSY counterpart [44] with the only difference
on the VEVs. Despite we have three massless quarks, they can be obtained from radiative
corrections as will be shown in the next section. Moreover, from mass expressions we have
a hierarchy among VEVs by assuming v1 ≈ mt and v′2 ≈ mb leaving the difference between
charm and top quarks fully dependent on the Yukawa values, which in this case is more
restricted than in the general SM scenario. In contrast, the exotic sector exist and have large
masses thank to their coupling to heavy scalar singlets, giving them mass values expected
at least in the TeV scale in consistence with recent experimental results that exclude exotic
quarks with masses bellow 800GeV [60].

4.3.3 Quark masses at one loop level

It was found before that the lightest fermions, electron, up, down and strange quarks are
tree level massless. However, it is in agreement with the model energy scale since their mass
is considerably small in comparison. Nevertheless, they acquire a finite mass value through
VEV insertions and σ and σ′ mediated loop corrections thanks to the fact that these scalar
do not acquire a VEV. The corrections have been calculated in [44] but now in this model
shows up a second contribution coming from superpartners. In the case of the up-quark the
one diagram is shown in figure 4-4

Figure 4-4: One loop corrections to the quark up due to scalar singlets, exotic quarks,
squarks and Higgsinos.

The interactions that makes possible the diagram belong to the superpotential and the soft
breaking terms which in particular are:

WQ ⇒ T̂Lσ̂′hTjσ′ ûkcL + q̂1
LΦ̂2h

1
2T T̂ cL + T̂Lχ̂′hTχ′ T̂ cL (4-83)

Vsoft ⇒ λ̃1Φ′†1 Φ2σ
′ + h.c. Wφ ⇒ λ1φ̂

′
1φ̂2σ̂

′ + µχχ̂χ̂
′

The first diagram in figure 4-4 represents the non-SUSY contribution. The T quark is
characterized by a small mixing with SM particles in agreement with the seesaw rotation
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that allowed the diagonalization. As a consequence, the exotic up-like quark is approximately
the same in both flavor and mass basis. Then, the VEV insertion can be replaced by the
mass eigenstate interacting with the two chiral up quarks instead of the infinite series of mass
insertions as pointed out in [22]. However, it is more convenient to work with the scalars in
the flavor basis resulting is a 3-point correction which reads:

v′1ΣNS
1k (p2 = 0) =

−1

16π2

v′1√
2

λ̃1h
Tk
σ′ h

1
2T

MT

C0

(
m′h2

MT

,
m′σ
MT

)
(4-84)

where MT is the T exotic quark mass, m′h2 is the (4, 4) element of Mhh (Eq. 4-32), mσ′ is
the (4, 4) element of Mξξ and C0 is the Passarino-Veltmann function evaluated for p = 0
shown in equation (4-86) [15]. The second diagram in 4-4 represents the SUSY contributions
due to superpartners, the scalar line is rotated to the mass eigenbasis. Thus, the diagram
becomes to a 3-point correction where all 8 up-squarks mass eigenstates can run into the
loop. Higgsinos are not rotated for simplicity. The final expression reads:

v′1ΣS
1k(p

2 = 0) =

− 1

32π2

v′1√
2

8∑
m=1

Z8m
U Z4m

U λ1h
Tk
σ′ h

1
2T× (4-85)

×
[

(m̃′σ + m̃′h2)2

M̃2
Tm

C0

(
m̃′h1

M̃Tm

,
m̃′σ
M̃Tm

)
+ m̃′2h2B0(0, m̃′σ, M̃Tm) + m̃′2σB0(0, m̃′h2, M̃Tm)

]

C0(m̂1, m̂2) =
1

(1− m̂2
1)(1− m̂2

2)(m2
1 − m̂2

2)

[
m̂2

1m̂
2
2Ln

(
m̂2

1

m̂2
2

)
+ m̂2

2Ln(m̂2
2)− m̂2

1Ln(m̂2
1)

]
,

(4-86)

where m̃′σ is the (11, 11) element of the neutralino mass matrix, m̃′h1 the (6, 6) element of
the neutralino mass matrix, M̃2

Tm
m = 1, .., 8. are the up-squark mass eigenvalues. T̃m are

the squark mass eigenstates and ZU the associated rotation matrix which relates the states
T̃L and T̃ cL with the mass eigenstates. We assume the squak mass matrix basis in similar
preserving the order of its fermion counterpart. The double fermion propagator makes that
the diagram has a term proportional to the PV-Function C00[54] that can be decomposed in
terms of the scalar integrals C0 and B0[62].
taking into account these matrix elements, the up-quarks matrix at one-loop level, after the
initial seesaw rotation (Eq. 4-63) reads:

M2
U2 = V1M

2
UV
†

1 (4-87)

≈ 1

2

 v′21 (Σ2
11 + Σ2

13) + v2
2r

2
1 v1v2r1r2 v1v

′
1(Σ11h

31
1u + Σ13h

33
1u)

v1v2r1r2 v2
1r

2
2 0

v1v
′
1(Σ11h

31
1u + Σ13h

33
1u) 0 v2

1

(
(h31

1u)
2

+ (h33
1u)

2
)
 (4-88)
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where Σik = ΣS
ik+ΣNS

ik resumes the two kind of contributions. Now, a second seesaw rotation
can be implemented since the top quark mass has much bigger mass in comparison with up
and charm quarks resulting in:

M2
U3 = V2M

2
U2V

†
2 (4-89)

≈ 1

2


v2

1v
′2
1

r24
2m2

t
+ v2

2r
2
1 v1v2r1r2 0

v1v2r1r2 v2
1r

2
2 0

0 0 v2
1

(
(h31

1u)
2

+ (h33
1u)

2
)
 (4-90)

V2 =


1 0 −v1v

′
1r3 0

0 1 0 0
v1v
′
1r3 0 1 0

0 0 0 1

 r3 =
(Σ11h

31
1u + Σ13h

33
1u)

2m2
t

(4-91)

r4 = (Σ13h
31
1u − Σ11h

33
1u) (4-92)

If we consider the tree level charm mass in Eq. (4-68), by reconstructing the trace we can
write in a good approximation the up quark mass as the new term in the (1, 1) entry, so the
quark spectrum reads:

m2
u ≈

r2
2r

2
4v
′2
1 v

4
1

8m2
cm

2
t

m2
c ≈

1

2

(
v2

1r
2
2 + v2

2r
2
1

)
m2
t =

1

2
v2

1

[
(h31

1u)
2 + (h33

1u)
2
]
, m2

T =
1

2
v′χ

2
[
(gχ′T )2 + (h2

χ′u)
2
]
. (4-93)

Last but not least, we are interested in the rotation matrix. For a general symmetric 2× 2

matrix in the form

(
a c
c b

)
with eigenvalues λ1 and λ2 the diagonalization can be performed

by a rotation at an angle tan(2θ) = 2c
a−b [13]. However, the diagonalized matrix might not be

ordered in ascending order depending on the relative sign of the denominator. Considering
that a < b and doing some algebra we can prove that:

V3 =


cos θuc sin θuc 0 0
− sin θuc cos θuc 0 0

0 0 1 0
0 0 0 1

 sin θuc = − −b+ λ2

c
√

(λ2−b
c

)2 + 1
= − a− λ1

c
√

(a−λ1
c

)2 + 1
(4-94)

= − 2m2
c − r2

2v
2
1

r1r2v1v2

√(
r22v

2
1−2m2

c

r1r2v1v2

)2

+ 1

(4-95)
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−r22v
2
1+2m2

c

r1r2v1v2

1

θuc

Figure 4-5: triangle representation of the up-charm mixing

In the case of down quarks, we have four diagrams shown in 4-6 which contribute to the
down and strange quarks. They are possible thanks to the following superpotential and soft
breaking terms:

WQ ⇒ Ĵ a
L σ̂h

Jaj
σ d̂jcL + q̂1

LΦ̂′1h
1a
1J Ĵ a c

L + q̂2
Lφ̂
′
2h

2a
2J Ĵ a c

L − Ĵ a
L χ̂h

Jab
χ Ĵ b c

L (4-96)

Wφ ⇒ λ1Φ̂′1Φ̂2σ̂
′ + λ2Φ̂′2Φ̂1σ̂ − µσσ̂′σ̂ − µχχ̂′χ̂ (4-97)

Vsoft ⇒ λ̃2Φ′2Φ1σ (4-98)

Similar to the case of up quarks, the contribution to down and strange quarks can be written
as:

v′2Σ1j = v′2ΣNS
1j + v′2ΣS

1j

=
−1

16π2

v2√
2

2∑
a=1

λ1h
Jaj
σ h1a

1J

MJa
C0

(
m′h1

MJa
,
mσ

Ma
J

)

− 1

32π2

v2√
2

2∑
a=1

10∑
q=1

11∑
l=1

Z
(8+a)q
D Z

(4+a)q
D Z7l

h̃
Z8l
h̃
µσλ1h

Jaj
σ hlalJ× (4-99)

×
[

(m̃Hl + m̃′h1)2

M̃2
Dq

C0

(
m̃′h1

M̃Dq

,
m̃Hl

M̃Dq

)
+ m̃2

h2B0(0, m̃Hl, M̃Dq) + m̃2
HlB0(0, m̃h2 , M̃Dq)

]

v′1Σ2j = v′1ΣNS
2j + v′1ΣS

2j

=
−1

16π2

v1√
2

2∑
a=1

λ̃2h
Jaj
σ h1a

1J

MJa
C0

(
m′h2

MJa
,
mσ

Ma
J

)
− 1

32π2

v1√
2

2∑
a=1

10∑
q=1

Z
(8+a)q
D Z

(4+a)q
D µσλ2h

Jaj
σ hlalJ

×
[

(m̃σ + m̃′h1)2

M̃2
Dq

C0

(
m̃′h2

M̃Dq

,
m̃σ

M̃Dq

)
+ m̃2

h1B0(0, m̃σ, M̃Dq) + m̃2
σB0(0, m̃h1 , M̃Dq)

]
(4-100)

where M̃Dq is the qth squark mass eigenvalue with q = 1, .., 10., m̃Hl is the lth neutralino
mass eigenvalues with l = 1, .., 11. and all other mass terms correspond to the diagonal entry
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in their respective mass matrix, por instance m′h1 is the (2, 2) element in Mhh and m̃σ is
the (10, 10) entry in the neutralino mass matrix. Finally, the index a = 1, 2. labels the
exotic quarks. These new entries enters into the squared mass matrix after the initial seesaw
rotation shown in Eq. (4-75) as:

Figure 4-6: One loop corrections to the quarks down and strange due to scalar singlets,
exotic quarks, squarks and Higgsinos.

MD −MDJM
−1
JJMJD ≡MD−SM

=
v′22
2


(
Σ2

11 + Σ2
12 + Σ2

13

) v′1
v′2

(Σ11Σ21 + Σ12Σ22 + Σ13Σ23)
(
Σ11h312d + Σ12h322d + Σ13h332d

)
v′1
v′2

(Σ11Σ21 + Σ12Σ22 + Σ13Σ23)
v′21
v′22

(
Σ2

21 + Σ2
22 + Σ2

23

) v′1
v′2

(
Σ21h312d + Σ22h322d + Σ23h332d

)
(
Σ11h312d + Σ12h322d + Σ13h332d

) v′1
v′2

(
Σ21h312d + Σ22h322d + Σ23h332d

) (
(h312d)2 + (h322d)2 + (h332d)2

)

(4-101)

Due to the high bottom-quark mass, we perform a second seesaw rotations U2 shown in Eq.
(4-102) reducing the problem to the following decoupled 2× 2 matrix:
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U2 =


1 0 −v′22 l1

2
0 0

0 1 −v′1v
′
2l2

2
0 0

v′22 l1
2

v′1v
′
2l2

2
1 0 0

0 0 0 1 0
0 0 0 0 1

 MD−ds =
1

4m2
b

(
t11v

′4
2 t12v

′
1v
′3
2

t12v
′
1v
′3
2 t22v

′2
1 v
′2
2

)
(4-102)

l1 =
(Σ11h

31
2d + Σ12h

32
2d + Σ13h

33
2d)

m2
b

l2 =
(Σ21h

31
2d + Σ22h

32
2d + Σ23h

33
2d)

m2
b

(4-103)

t11 =
2m2

b

v′22

(
Σ2

11 + Σ2
12 + Σ2

13

)
− l21 (4-104)

t22 =
2m2

b

v′22

(
Σ2

21 + Σ2
22 + Σ2

23

)
− l22 (4-105)

t12 = (Σ11Σ21 + Σ12Σ22 + Σ13Σ23)
(
(h31

2d)
2 + (h32

2d)
2 + (h33

2d)
2
)

−
(
Σ11h

31
2d + Σ12h

32
2d + Σ13h

33
2d

) (
Σ21h

31
2d + Σ22h

32
2d + Σ23h

33
2d

)
= (Σ11Σ21 + Σ12Σ22 + Σ13Σ23)

2m2
b

v′22
− l1l2m4

b (4-106)

in the special case when the mixing t12 vanishes, the down and strange masses would match
the diagonal entries of the matrix as pointed out in [44]. However, from the eigenvalues
general form we can approximate the masses by considering that the matrix determinant is
much smaller than the square of the trace:

m2
d ≈

v′21 v
′4
2 (t11t22 − t212)

m2
b(t11v′22 + t22v′21 )

m2
s ≈

t11v
′4
2 + t22v

′2
1 v
′2
2

2m2
b

(4-107)

where the mixing angle is given by eq. (4-94)with the rotation matrix given by:

U3 =


cos θds − sin θds 0 0
sin θds cos θds 0 0

0 0 1 0
0 0 0 1

 sin θds = − 4m2
bm

2
s − t22v

′2
1 v
′2
2

t12v′1v
′3
2

√(
4m2

bm
2
s−t22v′21 v′22
t12v′1v

′3
2

)
)2 + 1

(4-108)



66 4 The U(1)X Extension

Figure 4-7: triangle representation of the down-strange mixing.

Finally, putting all the results together the down-quark spectrum is:

m2
d ≈

v′21 v
′4
2 (t11t22 − t212)

m2
b(t11v′22 + t22v′21 )

m2
s ≈

t11v
′4
2 + t22v

′2
1 v
′2
2

2m2
b

(4-109)

m2
b =

1

2
v′22
(
(h31

2d)
2 + (h32

2d)
2 + (h33

2d)
2
)

m2
J1 =

1

2
v2
χ(g11

χJ)2 (4-110)

m2
J2 =

1

2
v2
χ(g22

χJ)2 (4-111)

4.3.4 Lepton sector

Just as happened in the quark sector, the lepton superpotential comes from promoting fields
into superfields in the non-SUSY counterpart potential [44]. Generating the same mass
structure but with slight differences on the VEVs. It reads:

WL = ˆ̀p
LΦ̂2h

pq
2ν ν̂

q c
L − ˆ̀p

LΦ̂′2h
pµ
2e ê

µ c
L − ˆ̀τ

LΦ̂′2h
τr
2e ê

r c
L − ˆ̀p

LΦ̂′1h
p
1EÊ

c
L + ÊLχ̂′gχ′EÊ

c
L

− ÊLµEÊcL + ÊLχ̂gχE ÊcL − ÊLµEÊc
L + ν̂j cL χ̂′h′N ij

χ N̂ i c
L +

1

2
N̂ i c
L MijN̂

j c
L

+ ÊLσ̂h
ecp
σ êcrL + ÊLσ̂′he

cµ
σ′ ê

µc
L , (4-112)

where p = e, µ , q = e, µ, τ , r = e, τ and i, j label the right handed and Majorana neutrinos.

Charged lepton masses and 1-loop corrections

Once SSB takes place we can write the most general mass matrix as:

ME =
1√
2


0 heµ2ev

′
2 0 hE1ev

′
1 0

0 hµµ2e v
′
2 0 hE1µv

′
1 0

hτe2ev
′
2 0 hττ2ev

′
2 0 0

0 0 0 gχ′Ev
′
χ −µE

0 0 0 −µE gχEvχ

 (4-113)



4.3 Fermion Masses 67

In the leptonic sector, we have two exotic singlets coupled by µE but the E fermion does
not couple with any of the SM particles directly so it can be decoupled. The resulting 4× 4
submatrix has almost exactly the same structure that up quarks masses. The difference
lies in the absence of a coupling in the (4, 2) entry. As a consequence, rotations and mass
eigenvalues can be obtained directly by comparison with the up-quark masses. Additionally,
this tells us before hand that the electron turns out to be massless, so radiative corrections
must be taken into account in this matrix. In figure 4-8 is shown the diagrams that contribute
to the electron mass at one loop level

Figure 4-8: One loop corrections to the leptons due to exotic fermions, sfermions and Hig-
gsinos.

so the mass matrix preserves its similarity with up quarks mass matrix

M1−Loop
E =

1√
2


v2Σ11 heµ2ev

′
2 v2Σ13 hE1ev

′
1 0

0 hµµ2e v
′
2 0 hE1µv

′
1 0

hτe2ev
′
2 0 hττ2ev

′
2 0 0

0 0 0 gχ′Ev
′
χ −µE

0 0 0 −µE gχEvχ

 (4-114)

The radiative corrections can be done thanks to the interactions terms given by:

Wφ ⇒ λ1Φ′1Φ2σ
′ − µσσ̂′σ̂ − µχχ̂′χ̂ WL ⇒ ÊLσ̂h

ecr
σ êrcL + ˆ̀e

LΦ̂′1h
e
1EÊ

c
L + ÊLχ̂′gχ′EÊ

c
L,

(4-115)

where r = e, τ , the couplings λ1, he
ck
σ and he1E are dimensionless Yukawa coupling constants

and µχ and µσ are mass unit parameters from the scalar potential. The first diagram in
figure 4-8 illustrates the non-SUSY contribution which is given by:
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v2ΣNS
11(13) =

−1

16π2

v2√
2

λ1µσh
ece(τ)
σ he1E
ME

C0

(
m′h1

ME

,
m′σ
ME

)
. (4-116)

where ME is the exotic charged fermion mass, m′h1 is the corresponding mass of the h′1
field in flavor basis just like m′σ is for the σ field and C0 is the Veltmann-Passarino function
evaluated for p2 = 0 given by eq. (4-86). We recall that in this contribution a transformation
to the mass eigenstate for the exotic fermion is not done because small mixing angles with
SM particles are considered, making of this sector approximately decoupled. Furthermore,
the SUSY contribution is given by:

v2ΣS
11(13)(p

2 = 0) = − 1

32π2

v2√
2

10∑
n=1

2∑
k=1

Z9n
L Z4n

L Z10k
h̃

Z11k
h̃

λ1µσh
ece(τ)
σ he1E× (4-117)

×
[

(m̃σk + m̃′h1)2

M̃2
Ln

C0

(
m̃′h1

M̃Ln

,
m̃σk

M̃Ln

)
+ m̃′2h1B0(0, m̃′σ, M̃Ln) + m̃2

σkB0(0, m̃′h1, M̃Ln)

]

where M̃Ln are the charged sleptons mass eigenvalues, Zh̃ is the rotation matrix that connects
σ̃ (σ̃′) with its mass eigenstates with eigenvalues m̃hk which are running inside the loop. ZL
is the rotation matrix that connects the exotic sleptons their respective eigenstates L̃n inside
the loop. Mass terms without an index correspond to masses in the flavor basis i.e. the
corresponding field diagonal element in the mass matrix. The resulting mass spectrum can
be obtained by simply comparing it is given as follows:

m2
e =

1

2
v2

2v
′2
2

t23
2m2

τ

m2
µ =

1

2
v′2

2
[
(heµ2e)

2 + (hµµ2e )2
]
, (4-118)

m2
τ =

1

2
v′2

2
[
(hτe2e)

2 + (hττ2e )2
]

m2
E =

1

2
g2
χ′E v

′
χ

2 (4-119)

m2
E =

1

2
g2
χE v

2
χ (4-120)

with the associated rotation matrices given by:

V `
1 =



1 0 0 − gχEh
E
1evχv

′
1

gχEgχEvχv′χ−µEµE
− hE1eµEv

′
1

µEµE−gχEgχEvχv′χ

0 1 0 − gχEh
E
1µvχv

′
1

gχEgχEvχv′χ−µEµE
− hE1µµEv

′
1

µEµE−gχEgχEvχv′χ
0 0 1 0 0

gχEh
E
1evχv

′
1

gχEgχEvχv′χ−µEµE
gχEh

E
1µvχv

′
1

gχEgχEvχv′χ−µEµE
0 1 0

hE1eµEv
′
1

µEµE−gχEgχEvχv′χ
hE1µµEv

′
1

µEµE−gχEgχEvχv′χ
0 0 1


(4-121)
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V `
2 =


1 0 − m2

e

t3v2v′2
0 0

0 1 0 0 0
m2
e

t3v2v′2
0 1 0 0

0 0 0 1 0
0 0 0 0 1

 t3 = Σ11h
τe
2e + Σ33h

ττ
2e (4-122)

V `
3 =


cos θeµ − sin θeµ 0 0
sin θeµ cos θeµ 0 0

0 0 1 0
0 0 0 1

 sin θeµ = − 2m2
µ − v′22 (hµµ2e )2

heµ2eh
µµ
2e v
′2
2

√(
v′22 (hµµ2e )2−2m2

µ

heµ2eh
µµ
2e v
′2
2

)2

+ 1

(4-123)

Despite v′2 it is suppressed by the adimensional factor Σij so it can give mass the bottom
quark, the electron and at tree level the µ and τ leptons. A estimate of some couplings can
be done by considering the physical mass ratio of µ and τ masses which is approximately
0.14, then:

0.14 ≈
√

(heµ2e)
2 + (hµµ2e )2√

(hτe2e)
2 + (hττ2e )2

(4-124)

Neutrino masses at tree level

Although charged leptons have a similar structure as for up-like quarks, neutrinos do not
behave like down quarks. It is because, neutrino oscillations have proven for neutrinos to
have mass while theory indicates a massless character. To date, many solutions have been
raised to explain not only the existence but their very small value with the problem of not
knowing if it is a Dirac or Majorana mass. Their small mass value and the absence of an
observed right handed counterpart forces us to think in particles beyond actual observations
that provide masses via (inverse)seesaw mechanism. In this scenario, both right handed
and Majorana neutrinos are considered in the model arranged in a mass matrix in the basis
(νqL, ν

q
L
C , N i

L
C), such matrix reads:

Mν =

 0 mT
D 0

mD 0 MT
D

0 MD MM

 , (4-125)

where the block matrices are given by:

mD =
v2√

2

hee2ν heµ2ν heτ2ν
heµ2ν hµµ2ν hµτ2ν

0 0 0

 , (MD)ij =
v′χ√

2
(h′νχ )ij, (MM)ij =

1

2
Mij. (4-126)

The Inverse SeeSaw mechanism (ISS) works under the assumption of small Majorana cou-
pling constants, MM � mD � MD [23]. Therefore, block diagonalization is done by a
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rotation matrix VSS giving as a result a light and heavy majorana mass matrix in a block
diagonal form:

VSSMνV†SS ≈
(
mlight 0

0 mheavy

)
VSS =

(
I −Θν

ΘT
ν I

)
(4-127)

Θν =

(
0 MT

D

MD MM

)−1(
mD

0

)
, (4-128)

where mlight = mT
D(MT

D)−1MM(MD)−1mD is the 3× 3 mass matrix for the light left handed
neutrinos and encodes the information of the PMNS matrix and mheavy matrix involves the
mixings of right handed and Majorana neutrinos, which is given by:

mheavy ≈
(

0 MT
D

MD MM

)
. (4-129)

This structures are exactly the same as for the non-SUSY model and in a similar fashion
we are going to consider the same scenario for neutrino masses. Even though, a different
approach for the PMNS matrix reproduction will be shown in a further section. For simplicity
and thinking in exotic neutrinos whose mass is big enough to be indistinguishable for us, we
can take the particular case where MD is diagonal and MM is proportional to the identity
to explore one of the possible scenarios of the model.

MD =
vχ√

2

hNχ1 0 0
0 hNχ2 0
0 0 hχN3

 MM = µNI3×3. (4-130)

in this way, the light neutrino mass matrix takes the form

mlight =
µNv

2
2

hNχ1
2v2
χ

 (hνe2e)
2 +

(
hνe2µ

)2
ρ2 hνe2e h

νµ
2e + hνe2µ h

νµ
2µρ

2 hνe2e h
ντ
2e + hνe2µ h

ντ
2µρ

2

hνe2e h
νµ
2e + hνe2µ h

νµ
2µρ

2 (hνµ2e )2 +
(
hνµ2µ

)2
ρ2 hνµ2e h

ντ
2e + hνµ2µ h

ντ
2µρ

2

hνe2e h
ντ
2e + hνe2µ h

ντ
2µρ

2 hνµ2e h
ντ
2e + hνµ2µ h

ντ
2µρ

2 (hντ2e )2 +
(
hντ2µ

)2
ρ2

 ,

(4-131)
where ρ = hNχ1/hNχ2. The same notation has been used for simplicity and facilitating
the relationship between the non-SUSY and the current work. It turns out that the latter
matrix mlight has zero determinant for every possible choice of MD and MM since mD has null
determinant, obtaining at least, one massless neutrino. Then, the diagonalization procedure
comes from its singular value decomposition, providing a diagonal form whose entries are
the positive square roots of the matrix mlightm

†
light which in general do not coincide with

the mlight eigenvalues. From the characteristic polynomial for mlightm
†
light we can get an

expression for the squared mass eigenvalues.
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m2
ν1

= 0 m2
ν2

= µ2
ν

A−
√
A2 − 4B

2
m2
ν3

= µ2
ν

A+
√
A2 − 4B

2
(4-132)

m2
ν1

= µ2
ν

A+
√
A2 − 4B

2
m2
ν2

= µ2
ν

A−
√
A2 − 4B

2
m2
ν3

= 0 (4-133)

where

A =2|h2e
νeh2e

νµ + ρ2h2µ
νeh2µ

νµ|2 + 2|h2e
νeh2e

ντ + ρ2h2µ
νeh2µ

ντ |2
+ | (h2e

νe) 2 + ρ2 (h2µ
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ντ ) 2 + ρ2 (h2µ

ντ ) 2|2
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ντ
(
hντ∗2e

(
hνe

2µh
νe∗
2µ + h2µ

νµhνµ∗2µ

)
− h2µ

ντ∗ (hνe∗
2e h

νe
2µ + hνµ∗2e h

νµ
2µ

))
+ hνe

2e

(
h2µ

νµ
(
hνe∗

2e h
νµ∗
2µ − hνµ∗2e h

νe∗
2µ

)
+ hντ2µ

(
hνe∗

2e h
ντ∗
2µ − hντ∗2e h

νe∗
2µ

))
+ hνµ2e

(
hνe

2µ

(
hνµ∗2e h

νe∗
2µ − hνe∗

2e h
νµ∗
2µ

)
+ hντ2µ

(
hνµ∗2e h

ντ∗
2µ − hντ∗2e h

νµ∗
2µ

))
)2 (4-134)

where µν =
µNv

2
2

hNχ1
2v2χ

. The mass spectrum has been written twice because the first line

corresponds to normal ordering while the second line to inverse ordering which are pictorically
shown in figure 4-3. Despite we do not know the exact mass values, they must be in
accordance with the squared mass difference shown in table 3-3. Since the squared mass
difference m3` is approximately the same for ` = 1, 2, we can conclude that mν2 has a very
small value in comparison with mν3 in the case of normal ordering implying A2 � 4B. Thus,
we can perform a Taylor series expansion resulting in the masses shown in Eq. (4-135). In
the case of inverse ordering, the m3` means A2 − 4B ≈ 0 so mν1 ≈ mν2 ≈ A

2
both with a

correction ∆ =
√
A2 − 4B resulting in the masses shown in Eq. (4-136). Finally, the squared

mass differences are stated in table 4-3
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Figure 4-9: Diagram for the neutrino mass eigenvalues hierarchy [2]

NO m2
ν1

= 0 m2
ν2
≈ µ2

ν

B

A
m2
ν3
≈ µ2

νA (4-135)

IO m2
ν1

= µ2
ν

A−∆

2
m2
ν2

= µ2
ν

A+ ∆

2
m2
ν3

= 0 (4-136)

Normal Ordering Inverse Ordering
∆m2

21

10−5eV 2 µ2
ν
B
A

= 7.39+0.21
−0.20 µ2

ν∆ ≈ 7.39+0.21
−0.20

∆m2
3`

10−3eV 2 µ2
ν

(
A− B

A

)
≈ +2.5230.032

−0.030 −µ2νA
2
≈ −2.509+0.032

−0.030

Table 4-3: Conditions for reproducing the neutrino squared mass differences for normal and
inverse ordering

4.4 Family mixing

In the previous section the fermion mass spectrum was determined analytically considering
the observed physical masses hierarchy. Nevertheless, the yukawa couplings must also ensure
the CKM and PMNS matrices reproduction which is not a trivial question despite the amount
of parameters. There have been some works on fermion mass structures in order to determine
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the cases in which masses can be reproduced [28][29] or when the CKM and PMNS can [47]
[46]. In the present work the problem of massless tree level particles is overcome thanks to
the radiative corrections induced by the σ and σ′ scalars and fermions these correction terms
must be considered for an appropriate reproduction.

4.4.1 CKM matrix

In sections 4.3.2 and 4.3.3 mass diagonalization was done by specifying the rotation matrices,
given in equations (4-65), (4-91) and (4-94) for up-like quarks and in equation (4-78), (4-102)
and (4-108) for down-like quarks, then the final rotation matrices reads:

V = V3V2V1

=


cos θuc sin θuc cos θucr3v1v

′
1 −v2 cos θucr2χ1+sin θucr2χ2v1

v′χ

− sin θuc cos θuc − sin θucr3v1v
′
1

sin θucr2χ1v2−cos θucr2χ2v1

v′χ

−r3v1v
′
1 0 1

r3r2χ1v1v
′
1v2

v′χ
r2χ1v2

v′χ

r2χ2v1

v′χ
0 1

 (4-137)

U = U3U2U1

=



cos θds sin θds − 1
2v
′
2 (sin θdsl2v

′
1 + l1v

′
2 cos θds) − sin θdsn3v

′
2+n1v

′
1 cos θds

vχ
− sin θdsn4v

′
2+n2v

′
1 cos θds

vχ

− sin θds cos θds
1
2v
′
2 (sin θdsl1v

′
2 − cos θdsl2v

′
1)

sin θdsn1v
′
1−cos θdsn3v

′
2

vχ

sin θdsn2v
′
1−cos θdsn4v

′
2

vχ
l1v

′2
2

2
l2v

′
1v

′
2

2 1 − (l1n1+l2n3)v
′
1v

′2
2

2vχ
− (l1n2+l2n4)v

′
1v

′2
2

2vχ
n1v

′
1

vχ

n3v
′
2

vχ
0 1 0

n2v
′
1

vχ

n4v
′
2

vχ
0 0 1


(4-138)

Despite these rotation matrices have different dimensions, the product can be done if V is
extended by one row and one column full of zeros. By performing that product, taking only
the first three rows and columns the theoretical CKM matrix reads:

V CKM = V U † (4-139)

=

 cos(θds − θuc) sin(θds − θuc) V13

− sin(θds − θuc) cos(θds − θuc) 1
2

cos θucl2v
′
1v
′
2 − 1

2
sin θucl1v

′2
2

V31
1
2
v′2 (sin θdsl1v

′
2 − cos θdsl2v

′
1) 1


V13 =

1

2
l1 cos θucv

′2
2 +

1

2
sin θucl2v

′
1v
′
2 − r3v1v

′
1 cos θuc

V31 = cos θdsr3v1v
′
1 −

1

2
v′2(sin θdsl2v

′
1 + l1v

′
2 cos θds)
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where V13 and V31 have been defined for shortening the expression. We neglect the contribu-
tions proportional to ni, i = 1, 2, 3, 4 and rχj, j = 1, 2. because they are related with factor
of v−1

χ and v′−1
χ which are highly suppressed. Moreover, since r3 is a factor dependent on

the radiative corrections it has a small value which can be neglected in entries 11, 12, 21, 22
and 33. Finally, the smallness of the CKM angles leads to the Wolfenstein parametrization
shown in Eq. (3-42) so the r3 contribution in the entries 23 and 32 is neglected as well to
be consistent with it. Now, we are going to present the conditions over the parameters that
reproduces the CKM matrix and quark masses.

From mass eigenstates, we choose the following parameters as random to parametrize the
matrix:

0 < h2
χ′u, gχ′T , h

1
2T , h

2
1T , h

33
1u < 1 (4-140)

h1
2Th

2
χ′u −

√
2m2

c(g
2
χ′T + (h2

χ′u)
2)

v2
2

< h12
2ugχ′T < h1

2Th
2
χ′u +

√
2m2

c(g
2
χ′T + (h2

χ′u)
2)

v2
2

(4-141)

where the second condition comes from the requirement of getting only real parameters.
Given those parameters, then the other up-quarks parameters are fully determined by:

h22
1u =

1

gχ′T

√2m2
c(g

2
χ′T + (h2

χ′u)
2)− v2

2(h1
2Th

2
χ′u − h12

2ugχ′T )2

v2
1

+ h2
1Th

2
χ′u

 (4-142)

h31
1u =

√
2m2

t

v2
1

− (h33
1u)

2 (4-143)

sin θuc =
1√

(r22v21−2m2
u)2

r21r
2
2v

2
1v

2
2

+ 1

(4-144)

Then, by imposing r3 to recreate the imaginary part in CKM matrix entries 13 and 31 it
can be written:

r3 =
i2Aηλ3

v1 (cos θds + cos θuc) v′1
(4-145)

r3 also enters in the up quark mass so the radiative contributions Σ1 and Σ3 are complex
numbers that must satisfy the following set of equations in order to avoid an imaginary mass:

Im[Σ1]h31
1u + Im[Σ3]h33

1u = 2m2
t r3 Re[Σ1]h31

1u +Re[Σ3]h33
1u = 0 (4-146)

Im[Σ3]h31
1u − Im[Σ1]h33

1u = 0 Re[Σ3]h31
1u −Re[Σ1]h33

1u =
2
√
m2
tm

2
u

√
2m2

u − r2
1v

2
2 − r2

2v
2
1

v1v′1
√

2m2
u − r2

2v
2
1
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The equation system always have a solution and as a consequence fully determines r4 defined
in Eq. (4-92) that ensures the correct up quark mass. It is also worth to mention that the
up quark sector can be parametrized by using only the eigenvalues and r4 but we recall that
first the Yukawa couplings must ensure the mass eigenvalues. Next, the imposition of the 11
of the CKM matrix provides a relationship between θuc and θds which read (and is shown in
figure 4-10)s:

sinθds = sin θucV
CKM

11 ±
√

sin2 θucV CKM 2
11 − V CKM 2

11 − sin2 θuc + 1 (4-147)
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Figure 4-10: Relationship between θuc and θds with V CKM
11 = 0.97420 ± 0.00021 [63]. 5σ

region is very small to be observed.

In the case of down-like quarks, it can be parametrized by using only the mass eigenvalues
and the parameter t22 defined in Eq. (4-105), the latter, t11 and t12 which can be rewritten
as:

t22 =
4
(
m2
bm

2
d sin2 θds −m2

bm
2
s sin2 θds +m2

bm
2
s

)
v′21 v

′2
2

(4-148)

t11 =
4m2

bm
2
d + 4m2

bm
2
s − v′21 v′22 t22

v′42
(4-149)

t12 =

√
t22v′21 v

′2
2 − 4m2

bm
2
d

√
4m2

bm
2
s − t22v′21 v

′2
2

v′1v
′3
2

(4-150)
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Since the latter values become uniquely determined, they represent a system of three equa-
tions for the radiative corrections:

2m2
b

v′22
(Σ2

21 + Σ2
22 + Σ2

23)− l22m2
b = t22 (4-151)

2m2
b

v′22
(Σ2

11 + Σ2
12 + Σ2

13)− l21m2
b = t11 (4-152)

(Σ11Σ21 + Σ12Σ22)
2m2

b

v′22
− l1l2m2

b (4-153)

where l1 and l2 are determined from of entries 13 and 23 giving:

l1 =
2(V CKM

23 ) sin θuc −Re[V CKM
13 ] cos θuc

v′22
l2 =

2(Re[V CKM
13 ]) sin θuc − V CKM

23 cos θuc
v′1v
′
2

(4-154)

In order to solve the 3× 3 equation we choose three parameters whose value can be random,
particulary we choose Σ13, Σ23 and Σ22. However, the equation system has solution only
when these parameters are in the interval:

0 < Σ13,Σ23,Σ22 < 10−4 (4-155)

The equation system is solved numerically since the analytical results are quite long to be
presented, with these results, we can now solve the equations related with l1, l2 and the
bottom mass, which reads:

m2
b =

v′22
2

((h31
2d)

2 + (h32
2d)

2 + (h33
2d)

2) (4-156)

l1 =
(Σ11h

31
2d + Σ12h

32
2d + Σ13h

33
2d)

m2
b

(4-157)

l2 =
(Σ21h

31
2d + Σ22h

32
2d + Σ23h

33
2d)

m2
b

(4-158)

These equation system now provides the values of h31
2d, h

32
2d and h33

2d.
The latter conditions and procedure ensures the correct reproduction of the CKM matrix,
leaving all other parameters to run freely. In this case they are:

0 <h11
1J , h

12
1J , h

21
2J , h

22
2J , g

11
χJ , g

12
χJ , g

21
χJ , g

22
χJ < 1 (4-159)

However, small values of there parameters are recommended in order to ensure small cor-
rections due to the first seesaw rotation U1. All in all, from 27 different non zero entries in
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quark mass matrices, only 1 turns out to be complex, and 17 can be random numbers, which
in general parametrizes the theoretical CKM matrix, mainly from the interactions with the
exotic quarks. This result is nothing to be surprised since the number of variables and
constrains tell us that before hand but in general provides an analytical approach that can
be simplified to the case where less than 6 VEVs are considered. furthermore, the previous
development was implemented in a small program on Mathematica 11, both numerically and
theoretical. In both cases the CKM matrix was reproduced with exact values confirming our
assumptions and developments.

4.4.2 PMNS Matrix

Now, in this section the procedure that describes the relationship among Yukawa couplings
and PMNS parameters is described. First we focus our attention on the charged leptons,
from the exact mass eigenvalues expressions we have the following restrictions:

h2e
ττ =

√
2m2

τ

v′22
− (h2e

τe) 2 (4-160)

h2e
eµ =

√
4m2

τm
2
µ − r2

4v
2
2v
′2
2

√
2m2

µ −
8m2

em
2
τm

2
µ

r24v
2
2v
′2
2

2
√
m2
τm

2
µv
′
2

(4-161)

h2e
µµ =

2
√

2m2
em

2
τm

2
µ

r4v2v′22
(4-162)

so in general they can be parametrized in terms of two parameters, r4 and hτe2e, which means
that couplings regarding interactions with exotic fermions can take a random value, which
in general was considered as:

0 < gχE, h
E
1e, h

E
1µ,µE, µE , gχE < 1 (4-163)

Consequently, the electron-muon mixing angle is parametrized by r4 as well by rewriting Eq.
(4-123) in terms of the electron mass as:

sin θeµ = − 1√√√√( (h2eµµ)2− 2m2
e

v′22
h2eeµh2eµµ

)
2 + 1

(4-164)

This implies a restriction for the r4 in order to being able of recreating all possible angles, a
graph is shown in figure 4-11. Consequently, r4 is taken as a random value in the interval.
In a similar fashion, Σ1 is taken as a random number which together with r4 determines
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uniquely Σ3 and r3 as follows:

2
√
m2
e

√
m2
τ

v2v′2
< r4 <

2
√
m2
µ

√
m2
τ

v2v′2
0 < Σ1 < 10−4 (4-165)

Σ3 =
Σ1h2e

ττ + r4

h2e
τe

r3 =
Σ1h2e

τe + Σ3h2e
ττ

2m2
τ

(4-166)
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Figure 4-11: sin θeµ as a function of r4

In the case of hτe2e it is taken as a random number in the interval 0 < hτe2e < 0.1 for preventing
hττ2e to become imaginary. Then, by giving a random value to 9 parameters, where six are
related to exotic fermions, we can reproduce the mass spectrum and generate all possible
mixing angles for the eletron and muon particles. Leaving completelly determined the rota-
tion matrix V ` = V `

3 V
`

2 V
`

1 . However, In section 4.3.4 the rotations matrices that diagonalizes
the mass matrix via two seesaw rotations and a electron-muon mixing angle are given in Eqs.
(4-121), (4-122) and (4-123). So the total rotation matrix reads:
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V ` = V `3 V
`
2 V

`
1

=


cos θeµ sin θeµ − cos θeµr3v2v

′
2 − sin θeµreχ3 + reχ1 (− cos θeµ) − sin θeµreχ4 − reχ2 cos θeµ

− sin θeµ cos θeµ sin θeµr3v2v
′
2 sin θeµreχ1 − cos θeµreχ3 sin θeµreχ2 − cos θeµreχ4

r3v2v
′
2 0 1 −r3reχ1v2v′2 −r3reχ2v2v′2

reχ1 reχ3 0 1 0
reχ2 reχ4 0 0 1


(4-167)

where reχk, k = 1, 2, 3, 4 are the entries in the matrix V `
1 which are proportional to v

(′)−1
χ

which makes these contributions negligible. In contrast, the light neutrino mass matrix does
not have a definite rotation matrix since we can not assume a hierarchy among parame-
ters. Furthermore, since we are dealing with a Majorana mass matrix the diagonalization
procedure slightly changes.
In section 3.4 we saw that PMNS matrix can be written as VPMNS = V `V †ν where V †ν is a
unitary transformation that diagonalices the Majorana mass matrix mlight according to

mdiag
light = V ∗ν mlightV

†
ν (4-168)

the latter transformation is different because the mass matrix is in general complex and
symmetric, but non hermitian. Thus, its diagonalization is done by considering its singular
values mk which are defined as the eigenvalues positive square root of the matrix mlightm

†
light

[19] and coincide with the mlight eigenvalues iff the matrix is real.
Nevertheless, a general unitary PMNS parametrization can be written as

V ′PMNS = V `V †ν ≡ P`UP (4-169)

where

P` =

eeφe 0 0
0 eiφµ 0
0 0 eiφτ

 P =

1 0 0
0 eiφ2 0
0 0 ei(φ3+δCP )

 ;

eiα1 0 0
0 eiα2 0
0 0 1

 (4-170)

being P a Majorana phase matrix [30], shown with two parametrizations, and U is the PMNS
matrix in the standard parametrization shown in Eq. (3-44). In a very stringent scenario,
the maximum number of independent parameters that might be present in an unitary ma-
trix is 9. However, since we can rephase charged leptons (and neutral leptons in the case of
Dirac masses) we can reduce the number of independent parameters to 6 (4) thanks to the
fact that only phase differences are physical. Therefore, equation (4-169) indicates that the
PMNS matrix is defined as a V `V †ν matrix in the original basis that we choose to paramet-
rice as P`UP . Consequently, the problem lies on determining the number of independent
parameters present in V `V †ν to know the true number of parameters contained in V ′PMNS.
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In fact, we do not truly know what is the real number of parameters present in the PMNS
matrix, mainly because the phases in P` are unphysical but their exact value has to be known
to perform the diagonalization. In general, we can consider a PMNS matrix who is dependent
on 6 parameters (3 mixing angles, 1 CP phase and 2 Majorana phases) so a rephasing in
the charged leptons eigenbasis is not needed which is the usual assumption. Nevertheless, in
the most general case we can rephase them (i.e. a basis change) to get rid of P`. Although
mass terms in the mass basis are invariant under a phase shift (which is not the case in the
flavor basis since it introduces complex phases into the mass matrix and consequently makes
no longer true the already mentioned diagonalization procedure) it doesn’t leave invariant
the V ′PMNS matrix but introduces a basis in which only the physical parameters are present
despite the diagonalization must be done in the original basis as noted in [67]. In this new
basis the PMNS matrix is reduced to:

VPMNS = P`V
′
PMNS = UP = P`V

`V †ν (4-171)

In seems that we have introduced 3 new parameters in the right side of the equation. How-
ever, we need to remember that P` was a convenient parametrization, so before considering
the exact form of the right hand side we need to know the values of the phases present in
P`, which is not an easy task. In fact, we cannot remove completely the unphysical charged
leptons phases because charged leptons are not diagonal in the flavor basis. Now, we can
consider Vν = V ′†PMNSV

` which imply that the PMNS matrix diagonalices the rotated neu-
trino mass matrix V `∗mlightV

`† and represents the relative rotation between neutrinos and
charged leptons mass eigenstates. Taking it into account, the scheme goes from the diagonal
form to the flavor basis matrix.

Consider the diagonalized mass matrix mdiag
light, where mk can be the real or complex (if we

include input Majorana phases) we unrotate this matrix by applying the PMNS matrix with
the experimental values and then the inverse rotation of V ` resulting in a numerical matrix
Mν which must be equal to mlight shown in Eq. (4-131)

Mν = V `TP T
` U

∗mdiag
lightU

†P`V
`

=

Mν
11 Mν

12 Mν
13

∗ Mν
22 Mν

23

∗ ∗ Mν
33


=

µNv
2
2

hNχ1
2v2
χ

 (hνe2e)
2 +

(
hνe2µ

)2
ρ2 hνe2e h

νµ
2e + hνe2µ h

νµ
2µρ

2 hνe2e h
ντ
2e + hνe2µ h

ντ
2µρ

2

hνe2e h
νµ
2e + hνe2µ h

νµ
2µρ

2 (hνµ2e )2 +
(
hνµ2µ

)2
ρ2 hνµ2e h

ντ
2e + hνµ2µ h

ντ
2µρ

2

hνe2e h
ντ
2e + hνe2µ h

ντ
2µρ

2 hνµ2e h
ντ
2e + hνµ2µ h

ντ
2µρ

2 (hντ2e )2 +
(
hντ2µ

)2
ρ2

 ,

≡

 (hνe2e)
2 +

(
hνe2µ

)2
ρ2 hνe2e h

νµ
2e + hνe2µ h

νµ
2µρ

2 hνe2e h
ντ
2e + hνe2µ h

ντ
2µρ

2

hνe2e h
νµ
2e + hνe2µ h

νµ
2µρ

2 (hνµ2e )2 +
(
hνµ2µ

)2
ρ2 hνµ2e h

ντ
2e + hνµ2µ h

ντ
2µρ

2

hνe2e h
ντ
2e + hνe2µ h

ντ
2µρ

2 hνµ2e h
ντ
2e + hνµ2µ h

ντ
2µρ

2 (hντ2e )2 +
(
hντ2µ

)2
ρ2

 , (4-172)
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where mdiag
light = diag(0,m2e

2iφ2 ,m3e
2i(φ3+δCP )) for normal ordering and

mdiag
light = diag(m1e

2iα1 ,m2e
2iα2 , 0) for inverse ordering, the factors

µNv
2
2

hNχ1
2v2χ

and ρ2 were re-

moved by a redefinition of the coupling constants and we consider that the parameters can
be complex in general in order to reproduce the PMNS matrix.

The above matrix Mν is complex in all their entries whether Majorana phases are present
or not. For that reason, at least 3 parameters must be complex, one in each column of
mD. The general purpose is to show that the model is able to reproduce the PMNS matrix,
and for that reason we are going to consider this minimal case just like the CKM matrix
where we were interested in the minimum number of complex parameters, for that reason
we are going to consider this minimal scenario for a PMNS matrix that can be parametrized
with 4 parameters i.e. there are no charged lepton phases. Writing the matrix in terms of
magnitudes and phases it reads:

M ≡

 (hνe2e)
2e2iα + (hνe2µ)2 hνe2e h

νµ
2e e

i(α+β) + hνe2µ h
νµ
2µ hνe2e h

ντ
2e e

i(α+γ) + hνe2µ h
ντ
2µ

hνe2e h
νµ
2e e

i(α+β) + hνe2µ h
νµ
2µ (hνµ2e )2e2iβ + (hνµ2µ)2 hνµ2e h

ντ
2e e

i(β+γ) + hνµ2µ h
ντ
2µ

hνe2e h
ντ
2e e

i(α+γ) + hνe2µ h
ντ
2µ hνµ2e h

ντ
2e e

i(β+γ) + hνµ2µ h
ντ
2µ (hντ2e )2e2iγ + (hντ2µ)2

 ,

(4-173)

where the first row of mD is made of complex numbers. Nevertheless, even if all parameters in
mD are complex it can always be rewritten as the above matrix by doing some new definitions,
which only adds more algebra. However, the problem lies in solving the following system of
equations

(hνe2eh
νµ
2e )2 = (Re[Mν

12]− hνe2µh
νµ
2µ)2 + Im[Mν

12]2 (4-174)

(hνe2eh
ντ
2e )2 = (Re[Mν

13]− hνe2µh
ντ
2µ)2 + Im[Mν

13]2 (4-175)

(hνµ2e h
ντ
2e )2 = (Re[Mν

23]− hνµ2µh
ντ
2µ)2 + Im[Mν

23]2 (4-176)

(hνe2e)
4 = (Re[Mν

11]− (hνe2µ)2)2 + Im[Mν
11]2 (4-177)

(hνµ2e )4 = (Re[Mν
22]− (hνµ2µ)2)2 + Im[Mν

22]2 (4-178)

(hντ2e )4 = (Re[Mν
33]− (hντ2µ)2)2 + Im[Mν

33]2 (4-179)

which provides several solutions for the real magnitude values. Unfortunately Mathematica
was unable of solving the system of 6 equations so the last three were replaced in the first
three, becoming a 3× 3 system that the software was able to solve. additionally, the phases
are obtained by:
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tan(2α) =
Im[Mν

11]

Re[Mν
11]− (hνe2µ)2

(4-180)

tan(2β) =
Im[Mν

22]

Re[Mν
22]− (hνµ2µ)2

(4-181)

tan(2γ) =
Im[Mν

33]

Re[Mν
33]− (hντ2µ)2

(4-182)

so the parameters can be found given a diagonal form for the mass matrix. Regarding the
diagonal matrix, we only know mass differences and m2

32 ≈ m2
31 ≡ m2

3l which means there are
two possibilities for the mass eigenvalues since we do not know exactly which mass difference
m2

3l really is, then the possible mass eigenvalues are shown in table 4-4.

m1 m2 m3

NO 0
√
m2

21

√
m2

3l

NO 0
√
m2

21

√
m2

3l +m2
21

IO
√
−m2

3l

√
m2

21 −m2
3l 0

IO
√
−m2

3l −m2
21

√
−m2

3l 0

Table 4-4: Neutrino mass eigenvalues for Normal and Inverse Ordering for a theory with one
massless neutrino

The system of equations were solved by implementing a Mathematica routine which showed
many solutions to the system of equations. In general all six real parameters are of order
∼ 10−6. Then, the smallness of the couplings can be justified by the Majorana masses and
the high energy breaking scale. Since a redefinition of the Yukawa coupling constants was
made in Eq. (4-172), we can consider all dimensionless Yukawa couplings or order 1 while
µNv

2
2

hNχ1
2v2χ
∼ 10−12GeV which in general can be accomplished by the high energy breaking

scale of the U(1)X symmetry together with a high right-handed neutrino mass. For a mod-
erate value of vχ ∼ 103 it means µN ∼ 10−10h2

Nχ1
showing that in general right handed

neutrinos are much heavier than Majorana neutrinos as we assumed before. However, this
allows to have a Majorana mass in the KeV scale and right-handed neutrinos with a mass
with order ∼ 105GeV . Furthermore, since all parameters are of the same order implies that
the ρ = hNχ1/hNχ2 parameter has to be of order 1 (ρ ∼ 1) implying that there are two
right handed neutrinos with similar masses. A graph representing the general behaviour of
Yukawa couplings and phases is shown in figure 4-12 and 4-13. We can see that in general
de τ couplings tends to be around a fixed value, that is why an additional graph showing a
more detailed view of hνe2e and γ is shown. On the one hand, normal ordering scheme allows
all parameters to be either positive or negative although figures 4-12a and 4-13a present
its absolute value. On the other hand, in for an Inverse Ordering scheme either hνµ2µ or hνe2µ
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and hντ2µ must be negative, but the same sign for all three couplings is not allowed. Again,
in figure 4-13a is shown its absolute value. The r4 interval have been chosen in accordance
with 4-11 so a general scan over the θeµ is done.

All in all, we have shown that given the neutrino mass eigenvalues and the Majorana phases,
there is always a set of dimensionless Yukawa couplings which recreate the PMNS matrix.
In this case, three complex parameters and three real parameters are the minimal set which
reproduce the PMNS parameters with no additional Majorana phases. Nevertheless, general
Majorana phases and charged lepton like phases can be included in the parametrization which
consequently provides an appropriate set of parameters since the number of free parameters
in the SM sector increases. It is also important to notice that the contributions due to exotic
particles becomes negligible as a consequence of its dependence with the U(1)X scale. Finally,
the relationship among Yukawa couplings and mixing angles has been already studied, and
the relationship is neither trivial nor short, they can be seen however in [67]
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(a) hνe2e(red), hνµ2e (black) and hντ2e (blue)
as a function of r4. (b) hντ2e (blue) as a function of r4.

(c) hνe2µ(red), hνµ2µ(black) and hντ2µ(blue)
as a function of r4.

(d) α(red), β(black) and γ (blue) as a
function of r4.

(e) γ phase as a function of r4

Figure 4-12: Neutrino Yukawa couplings and phases values as a function of r4 for a Normal
Ordering Scheme for µE = 0.451771, Σ1 = 4.482762 × 10−6, gχE = 0.885898,
gχE = 0.478386, µE = 0.975823, hE1e = 0.324576, hE1µ = 0.171557, hτe2e =
0.0971024, hττ2e = 0.0740497 (in general random numbers)
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(a) hνe2e(red), hνµ2e (black) and hντ2e (blue)
as a function of r4. (b) hντ2e (blue) as a function of r4.

(c) hνe2µ(red), hνµ2µ(black) and hντ2µ(blue)
as a function of r4.

(d) α(red), β(black) and γ (blue) as a
function of r4.

(e) γ phase as a function of r4

Figure 4-13: Neutrino Yukawa couplings and phases values as a function of r4 for a In-
verse Ordering Scheme for µE = 0.451771, Σ1 = 4.482762 × 10−6, gχE =
0.885898, gχE = 0.478386, µE = 0.975823, hE1e = 0.324576, hE1µ = 0.171557,
hτe2e = 0.0971024, hττ2e = 0.0740497 (in general random numbers)



5 Concluding Remarks and Outlook

To date, it is a fact how successful the Standard Model of particle physics has been being
with its original formulation being unchanged. On the one hand, it has a general scenario
that can explain all observed phenomena by just adjusting the value of some model parame-
ters which for some people is just how the universe is. On the other hand, some other people
believe that the patters present in nature is not just a chaotic coincidence rather a mani-
festation of physics beyond the standard model. Of course, it is the case of Fermion Mass
Hierachy. Aimed in giving a suitable explanation, a U(1)X extension has been proposed in
such a way that avoids all kind of chiral anomalies due to the existence of opposite charged
particles under the new symmetry group. Thus, it is consequent the presence of four Higgs
doublets and four Higgs singlets as a response of the model non-SUSY counterpart which
has half scalar particles.

The scalar sector is proved to be consistent with the observed Higgs boson and the absence
of yet unobserved additional scalar particles consequence of the high energy breaking scale of
the U(1)X symmetry which is mediated by the Vacuum Expectation Value acquired by the
scalar singlets χ and χ′ which are model free parameters while doublet VEVs are restricted
by the charged W boson mass by v2

1 + v′21 + v2
2 + v′22 = 243.32 GeV 2. The latter restriction

allows to W and Z gauge bosons to have the correct mass while the Z ′ boson is proportional
to vχ and v′χ which can explain its theorized elevated mass. However, the W mass restriction
opens an infinite number of choice possibilities for each VEV although it is reduced to just
one free parameter (v′1) if we address Fermion Mass Hiearchy to be thank to multiple Higgs
VEV rather than Yukawa couplings values. Additionally, the parameter region allowed by
the observed Higgs boson includes the possibility of H ′1 to be an inert doublet but it cannot
be ensured until the consequences on fermion and sparticles masses will be studied prior to
think in the scalar particle as a Dark Matter candidate. It is not studied in this work but it
is left as a future development.

Moreover, the model is provided with a Z2 symmetry which has to be broken, in this case by
soft breaking terms, to prevent scalar particles lighter than the Higgs boson. In fact, without
these soft breaking terms the seesaw mechanism is no longer valid on the scalar sector and a
different approach has to be considered. Nevertheless, in the considered framework the light-
est scalar particle, identified as the Higgs boson, receive additional contributions from the
D-terms which explain more naturally its 125.3GeV mass. In fact, its mass is proportional
to the Z-boson mass plus a correction term of the same order in agreement with NMSSM
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and USSM models. The latter analogous to a 1-loop radiative correction to the Higgs mass
due to stop particles, whose tree level order is unnatural but it is consistent with the elevated
µkk, k = 1, 2, χσ terms that prevents a large electroweak symmetry breaking.

Regarding the fermion sector, which is the main interest of the work, the SM fermion masses
are reproduced successfully with approximately exact analytical formulas based in the ap-
plication of concurrent seesaw mechanism due to the absence of observed exotic fermions,
which naturally leads to the assumption being considerably heavy particles, even though
they depend on vχ and v′chi in the flavor basis which supports the assumption. Likewise,
we can explain heavy fermion masses by choosing VEV at a scale near its masses, which
is the case of v1 with the top quark and v′2 with bottom quark and tau lepton, leading
to restriction among Yukawa couplings and to an unconstrained v′1 VEV. Nevertheless, the
lightest fermions are massless at tree level, but at one loop level they are massive thanks to
the coupling among exotic fermions and the inert scalar singlets σ and σ′. It is only at this
level that v′1 makes presence with the down and strange quarks. Furthermore, the different
mass structure obeys a phenomenological texture in which the third generation fermion has
a small coupling with first generation fermions and negligible coupling with the second one.
However, charginos and Neutralinos are of special interest in SUSY models and as expected,
there are governed by supoerpotential parameters and leads to degenerate masses and the
contributions proportional to eletroweak VEVs turns out to be negligible to the TeV scale
in which these particles are expected to exist.

Last but not least, the model is consistent with CKM and PMNS matrices without affecting
the fermion physical masses. In the first case, all Yukawa couplings can be taken to be real,
being the CP phase coming from the radiative corrections although a more general scenario
can be considered. In the case of the PMNS matrix, no radiative corrections are needed but
at least three parameters must be complex in order to reproduce the CP-violating phase
and the Majorana phases which under this approach are considered input parameters. This
model implies that the observed neutrinos are Majorana like thanks to the existence of a
light Majorana neutrino and heavy right handed neutrinos which make possible neutrino
masses via an inverse-seesaw mechanism. Moreover, the non-universal X-charge assignation
leads to the presence of Z ′ mediated flavor changing neutral currents which is also left for a
future work principally because of the high computational requirements of a supersymmetric
non-universal model implementation of packages like Feynrules [4] or Lanhep [59]
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