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Introduction:  

In recent years, our knowledge on atomic masses 

far from the valley of stability has been increased 

due to the advent of new measuring techniques. 

Application of these masses, e.g. for astrophysical 

calculations, requires data for even far more 

unstable isotopes which are generally derived from 

global mass models. In the absence of experimental 

data the values of the unknown nuclear masses are 

obtained through theoretical predictions but, 

unfortunately, there is a lack of consensus and most 

predictions differ drastically from each other, 

especially in the region of large neutron excess 

[1,2]. Local interpolations or extrapolations of the 

experimental mass values have been tried as an 

alternative and more plausible way to reach the 

nuclides far from the valley of stability.  

Methods:  

i) Isobaric Multiplet Mass Equation: The Isobaric 

Multiplet Mass Equation (IMME) is a powerful 

interpolation/extrapolation method for lighter 

nuclei. Mass values derived from IMME had been 

included in older mass evaluations and the recent 

high-precision mass measurements have led to a 

renewed interest in this technique [3].  

ii)Way-Wood Diagrams: Way and Wood [4] 

derived graphical presentations of nuclear decay 

data on the basis of the semi-empirical Bethe-

Weizsacker [5,6] mass formula. Under the 

assumption that the atomic masses are smoothly 

varying functions of N and Z (as the semi empirical 

mass formula) the lines were extrapolated to 

unmeasured nuclei.  

iii)Garvey and Kelson Relations: In 1966 Garvey 

and Kelson presented a relation based on an 

independent particle model of the nucleus [7] : 

M(N+2, Z−2)−M(N, Z)+M(N, Z−1)−M(N+1, 

Z−2)+M(N+1, Z)−M(N+2, Z−1) = 0 This equation 

relates six nuclides. With five known masses, a 

sixth unknown one can be predicted. These global 

mass formulas, however, will in general be too 

approximate to make predictions to a sufficient 

degree of accuracy.   

iv)Interactive graphical program: Audi-Wapstra 

successfully employed a local extrapolation method 

[8] based on the systematics and smoothness of the 

mass surface and its derivatives. They used an 

interactive graphical program to make estimates for 

unknown masses from the trends in the mass 

surfaces. However, this procedure encompasses a 

“subjective” component in the form of individual 

judgments. 

v)Weighted Slope Method: A point-to-point local 

extrapolation to systematically take into account 

the local variation in the trends that are observed in 

the derivative sheets. The local trend was 

quantified in terms of the value of the slopes 

connecting one isotope to the next. The 

extrapolated slope for the prediction was obtained 

by averaging the slopes of three of the immediate 

neighbors. A weighted average of the three slopes 

is used, with higher weightage placed on the slope 

closest to the one to be found. The extrapolated 

slope value was used to find the unknown value of 

the derivative. Since this extrapolation method is 

based on systematic local extrapolation, the method 

is very effective in following local variations in 

trends present in the derivative sheets. 

Results and Discussion:  

A humble attempt is made in Table 1 where we 

have considered a typical region of As, Se, Br, Kr, 

Rb, Sr and Y and compared our predictions [9] 

with two available extrapolations and one of the 

most recent mass models WS4 [10], we could see 

the deviations are well within the uncertainties 

demonstrating the usefulness of the weighted slope 

method.
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Table 1: Comparison of the present extrapolated mass excess values with the corresponding values  

from two other extrapolation methods and the most recent theoretical mass model values. 

A Z N Nuclide 

Mass Excess (keV) Deviations (keV) 

WS4[10] P.W.[9] AME16[8] G.K[7] ∆PW−WS4 ∆PW−AME ∆PW−G.K 

84 31 53 Ga -43930 -44034 100 -44094 -44069 104 -60 -35 

85 31 54 Ga -39732 -39832 30 -39744 -39908 100 88 -76 

86 31 55 Ga -33392 -33721 400 -34080 -33961 329 -359 -240 

87 31 56 Ga -28314 -28836 500 -29250 -29345 522 -414 -509 

87 32 55 Ge -43272 -43826 150 -44080 -43832 554 -254 -6 

88 32 56 Ge -40055 -40310 300 -40140 -40021 255 170 289 

89 32 57 Ge -33557 -33531 500 -33730 -33526 -26 -199 5 

90 32 58 Ge -28658 -29496 600 -29220 -29037 838 276 459 

88 33 55 As -50428 -50514 50 -50720 -50626 86 -206 -112 

89 33 56 As -46473 -46556 70 -46800 -46816 83 -244 -260 

90 33 57 As -40718 -40938 250 -41330 -40955 220 -392 -17 

91 33 58 As -36173 -37047 300 -36900 -36763 874 147 284 

92 33 59 As -29818 -30743 400 -30980 -30739 925 -237 4 

91 34 57 Se -50307 -50426 140 -50580 -50238 119 -154 188 

92 34 58 Se -46620 -46573 170 -46720 -46734 -47 -147 -161 

93 34 59 Se -40542 -40570 280 -40720 -40951 28 -159 -381 

94 34 60 Se -36304 -36971 350 -36800 -37104 667 171 -133 

95 34 61 Se -29803 -29589 450 -30460 -30761 -214 

 

-1172 

94 35 59 Br -47686 -47543 150 -46800 -47662 -143 743 -119 

95 35 60 Br -43846 -43798 250 -43770 -43934 -48 28 -136 

96 35 61 Br -38132 -38621 270 -38160 -38240 489 461 381 

97 35 62 Br -33527 -33616 400 -34060 -33386 89 -444 230 

98 35 63 Br -28879 -28590 500 -28250 -27987 -289 340 603 

98 36 62 Kr -44013 -44588 200 -44310 -44025 575 278 563 

99 36 63 Kr -38132 -38948 300 -38760 -38913 816 188 35 

100 36 64 Kr -35470 -35730 300 -35050 -34921 260 680 809 

100 37 63 Rb -46143 -46150 150 -46290 -46524 7 -140 -374 

101 37 64 Rb -42445 -42920 190 -42558 -42948 475 362 -28 

102 37 65 Rb -36852 -37830 250 -37253 -37402 978 577 428 

103 37 66 Rb -32348 -32983 350 -33610 -32348 635 627 635 

103 38 65 Sr -47053 -47308 120 -47420 -47299 255 -112 9 

104 39 65 Y -53670 -54047 70 -54060 -54021 377 -13 26 
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