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Abstract: In this work, we study the magnetocaloric effect (MCE) in a working substance

corresponding to a square lattice of spins with Q possible orientations, known as the “Q-

state clock model”. When the Q-state clock model has Q ≥ 5 possible configurations, it

presents the famous Berezinskii–Kosterlitz–Thouless (BKT) phase associated with vortex

states. We calculate the thermodynamic quantities using Monte Carlo simulations for even

Q numbers, ranging from Q = 2 to Q = 8 spin orientations per site in a lattice. We use

lattices of different sizes with N = L × L = 82, 162, 322, 642, and 1282 sites, considering free

boundary conditions and an external magnetic field varying between B = 0 and B = 1.0 in

natural units of the system. By obtaining the entropy, it is possible to quantify the MCE

through an isothermal process in which the external magnetic field on the spin system is

varied. In particular, we find the values of Q that maximize the MCE depending on the

lattice size and the magnetic phase transitions linked with the process. Given the broader

relevance of the Q-state clock model in areas such as percolation theory, neural networks,

and biological systems, where multi-state interactions are essential, our study provides a

robust framework in applied quantum mechanics, statistical physics, and related fields.

Keywords: entropy; Q-clock; magnetocaloric

1. Introduction

Caloric phenomena form a foundational aspect of material physics, crucial in identify-

ing viable substitutes for the toxic gases currently employed in conventional refrigeration

systems [1,2]. Significant temperature variations driven by caloric processes have been

observed in different materials following adiabatic changes in applied hydrostatic pres-

sure (barocaloric effect) [3–6], mechanical stress (elastocaloric effect) [7–11], the electric

field (electrocaloric effect) [12–15], and the external magnetic field (magnetocaloric effect,

MCE) [16–19]. Although the underlying nature and physical interpretation of each phe-

nomenon differ, they share a common objective: maximizing entropy changes in response

to variations in the control parameter governing the thermodynamic process [20–26].

Systems exhibiting phase transitions, in particular, achieve maximum entropy changes

near where these transitions are occurring [27–30]. Among these, magnetic materials stand

out due to their distinct magnetic order or ground state, which is heavily influenced by

Entropy 2025, 27, 11 https://doi.org/10.3390/e27010011

https://doi.org/10.3390/e27010011
https://doi.org/10.3390/e27010011
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3049-668X
https://orcid.org/0009-0001-6884-6067
https://orcid.org/0000-0002-7432-0707
https://orcid.org/0000-0002-1701-3030
https://orcid.org/0000-0001-9261-2394
https://orcid.org/0000-0001-9235-9747
https://doi.org/10.3390/e27010011
https://www.mdpi.com/article/10.3390/e27010011?type=check_update&version=1


Entropy 2025, 27, 11 2 of 17

the energy contributions within the material [31–33]. Here, we concentrate on magnetic

systems that undergo phase changes with increasing temperature, specifically those that

alter their magnetic phase. A notable model for exploration is the Q-state clock model,

a discrete variant of the renowned 2D XY model [34–37], widely studied for illustrating

the Berezinskii–Kosterlitz–Thouless (BKT) transition in frustrated quenched disordered

phases [38–40]. The Q-state clock model serves as a classical Heisenberg spin model with

pronounced planar anisotropy, useful in replicating material thermodynamics [41–43].

Phase transitions in the Q-clock state model can be identified via the maxima observed

in the specific heat as a function of temperature. Each maximum signifies there is a

“critical temperature”. In scenarios devoid of an external magnetic field, studies have

demonstrated [44–49] that for Q ≥ 5, the specific heat exhibits two maxima. The initial

maximum pertains to the transition from a ferromagnetic phase (FP) to a BKT phase,

followed by a transition from BKT to a paramagnetic disordered phase (PP) [36].

Due to these dual phase transitions, the Q-clock state model is particularly intriguing

for caloric phenomenon studies. This model prompts several critical questions: What is the

optimal value of Q that maximizes entropy variation and, consequently, the MCE? Which

magnetic phases enhance the effect most effectively? Are the results consistent as the lattice

size increases?

A major technical challenge with this model revolves around scaling accessible states,

which scales approximately as ∼QL2
, where N = L × L defines the lattice size with N

number of sites. Consequently, exact computations using the canonical partition function

entail substantial expenses, thus restricting exact computations to smaller lattices. Mean-

field approximation and Monte Carlo simulations allow us to address large lattice size

challenges. Monte Carlo simulations are often preferred for their accuracy in representing

systems with intricate interactions and fluctuations, which the mean-field approach may

overlook due to its averaging assumptions. Consequently, mean-field theory may not aptly

describe short-range interactions like those in the systems examined herein.

Material systems where the Q-state clock model can be directly applied are complex

due to its theoretical nature. Nonetheless, this model is useful for studying phase transition

properties that occur in two-dimensional (2D) arrays [35,50]. The type of interactions

between the discrete spin configurations in a 2D lattice plays a fundamental role in the Q-

state clock model. A scenario where one could find applications for this model corresponds

to artificial spin ice systems. In this case, the materials used are permalloys with square

lattices [51,52], which may be in direct analogy with the Q-state clock model by choosing

appropriate Q values into a Hamiltonian that includes short- and long-range interactions.

This work investigates the MCE in the Q-clock model, utilizing Monte Carlo simula-

tions to derive the model’s thermodynamic properties for large lattice sizes. The analyzed

Q values are even numbers (Q = 2, 4, 6, 8), facilitating exploration into how the spin ori-

entation given by Q numbers influences the magnetocaloric effect across variations in

thermal and magnetic conditions. We examine the magnetocaloric effect’s reliance on these

Q values, focusing on entropy, specific heat, internal energy, and magnetization responses

near phase transitions. This study elucidates optimal spin configurations to maximize the

MCE in discrete multi-state systems.

Our work is structured as follows: Section 2 introduces the Q-state clock model, de-

tailing its Hamiltonian and the relevant thermodynamic quantities. Section 3 describes the

Monte Carlo simulation techniques used to derive thermodynamic properties, including

detailed explanations of lattice sizes, boundary conditions, and sampling methodologies.

Section 4 examines the calculated thermodynamic properties, such as specific heat, internal

energy, and entropy, for various values of Q. Section 5 explores the magnetocaloric effect

and outlines the methodology for its calculation. Section 6 presents our findings, high-
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lighting the optimal conditions and Q values that maximize the effect. Finally, Section 7

summarizes the key findings of our research.

2. Spin Model

Q-State Clock Model

The system under study corresponds to the Q-states clock model on a two-dimensional

(2D) square lattice of dimensions L × L = N (with N the total number of sites in the lattice).

The local magnetic moment or “spin” S⃗i at site i can point in any of Q directions in a

given plane, see Figure 1. S⃗i is then a 2D vector, i.e., S⃗i = (cos( 2π
Q ki), sin( 2π

Q ki)), where

ki = 0, 1, . . . Q − 1, with equal probability and the index i runs over all sites of the lattice.

The magnitude of S⃗i is chosen as the unity.

(a) (b)

Figure 1. (a) Schematic representation for a square lattice of size 6 × 6 with spin orientations

corresponding to Q = 8. (b) Q-clock model for Q = 2, 4, 6, and 8 states. Orange dots indicate sites,

and blue arrows are the possible spin orientation at each site with spin vector S⃗i.

The isotropic Hamiltonian for such a system can be written as follows:

H = − ∑
⟨i,j⟩

J S⃗i · S⃗j − ∑
i

B⃗ · S⃗i , (1)

where J > 0 is the ferromagnetic exchange interaction to the nearest neighbors; the sum

runs over all pairs of nearest neighbors ⟨i, j⟩. B⃗ is an external magnetic field applied along

one of the directions of the plane. We use J = 1 in our calculations; thus, all quantities are

delivered in exchange units.

To quantify the caloric effect, the entropy from the thermodynamics of the model

must be obtained. To do that, we will analyze Monte Carlo simulations, which offer the

possibility of obtaining thermal averages within a sample of the possible configurations of

the system. The following section will detail the method employed, including the algorithm

used in our computational calculations.

3. Monte Carlo Simulations

The work presented herein will focus on numerical computations based on Monte

Carlo (MC) simulations. A square lattice of size L × L is selected, with free boundary

conditions imposed. A site is randomly chosen for visitation, and the energy cost, ∆,

associated with rotating the corresponding spin among Q possible states is calculated. If

the energy is diminished, the change in orientation is accepted; otherwise, the spin rotation
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is accepted only when exp(−∆/T) ≤ r, where r is a freshly generated random number

uniformly distributed in the range [0, 1]. This procedure conforms to the conventional

Metropolis algorithm. A Monte Carlo step (MCS) is achieved after N = L × L spin-

rotation attempts.

For each lattice size and Q value, a sequence of temperatures has been established

within the range [0.02, 4] in increments of 0.02 for each temperature. A total of 5τ MCSs are

performed: the initial τ MCSs are utilized to equilibrate the system at a fixed temperature T.

In contrast, the subsequent 4τ MCSs are employed to measure observables every 20 MCSs,

achieving a cumulative total of 2 × 105 = 200.000 measurements. From now on, τ = 106,

unless otherwise specified for the remainder of this paper, and this choice of τ yields stable

results and corresponds with the analytical expressions obtained in previous studies for

smaller lattices.

3.1. Thermal Averages

The magnetization per site M⃗ is given by

M⃗ =
1

N

N

∑
i=1

S⃗i, (2)

where S⃗i is the spin at site i at a given time, t, and N = L × L. In this case, M⃗ is a vector of

two components M⃗ = (Mx, My). Normally, this vector’s magnitude or absolute value is

calculated as |M⃗| =
√

M2
x + M2

y. Then, the thermal average of |M⃗| is < |M⃗| > given by

< |M⃗| >=
1

Nc

Nc

∑
i=1

√

M2
x + M2

y, (3)

with Nc = 2 × 105 the number of configurations used to perform thermal averages.

Energy is the main quantity the Monte Carlo method uses to reach thermal equilib-

rium. Therefore, after τ MCSs, the internal energy U can be obtained by averaging the

Nc = 2× 105 values for Ek, where k runs over the accepted configurations after the Metropo-

lis algorithm, namely,

U =< E >=
1

Nc

Nc

∑
k=1

Ek, (4)

where every spin configuration is separated from the next one by 20 MCSs. The energy per

site is then U/N.

The specific heat is then calculated as proportional to the fluctuations in the energy as

follows (we use kB = 1 for simplicity):

C =
⟨E2⟩ − ⟨E⟩2

T2
, (5)

C =
1

T2





(

1

Nc

Nc

∑
k=1

E2
k

)

−

(

1

Nc

Nc

∑
k=1

Ek

)2


. (6)

The entropy S can be calculated by numerical integration of the specific heat over T as

S(T, B) = S0 +
∫

C(T, B)

T
dT. (7)

Our analysis determines the entropy at zero temperature under zero and non-zero

magnetic field conditions by examining the energy degeneracy inherent at (T = 0). Without

a magnetic field, (Q) ferromagnetic spin configurations exist, each possessing identical
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energies, resulting in an entropy of S0 = ln Q. Consequently, the entropy at any temperature

T with a zero magnetic field is given by S(T, 0) = ln Q +
∫ C(T,0)

T dT. Conversely, when the

magnetic field (B ̸= 0), there is a unique ground state where all the spins align uniformly

with the field, leading to the constant S0 going to zero.

3.2. Selection of the Lattice Size

Because of the scaling of the system’s accessible states (∼QL2
= QN), it is necessary to

set a criterion for a representative lattice size in the thermodynamic limit, where the results

of the caloric studies are valid and closer to reality. For this purpose, we have analyzed

the convergence of the internal energy U for different values of the clock parameter Q,

and the lattice size L with temperature T as the independent variable, using Monte Carlo

simulations. For this purpose, we have analyzed the system’s internal energy, normalized

to the number of sites, U(Q, L, T)/N (or simply U/N), as a function of T. The clock

parameter Q takes the values 2, 4, 6, and 8, while the lattice sizes N = L × L are decimated,

taking values L = 8, 16, 32, 64, and 128. In addition, we consider two values for the external

magnetic field: B = 0.0 and B = 1.0.

The results are given in Figure 2. The left panel gives the normalized energy without

an external magnetic field, while the calculations reported in the right panel correspond to

an external magnetic field B = 1.0. The convergence from the upper curves (smaller lattices)

to the lower curves (larger curves) is notorious. However, to investigate the stability of the

curves for L = 128, we conduct a complementary study. For a square lattice with L × L

sites, it is convenient to plot the energy per site as a function of 1/L for the scaling analysis,

as we show in Figure 3 for two different temperatures: T∗ = 0.5 and T∗ = 3.5. Since the

results tend to coincide and overlap in the plots, we have left out the curve for the case

Q = 2, which corresponds to the well-known Ising model, thus leaving the upper Q values

in the plot.

(a) (b)

Figure 2. Normalized internal energy U/N as a function of temperature for Q = 2 and lattice sizes

8 × 8, 16 × 16, 32 × 32, 64 × 64, and 128 × 128 for an external magnetic field of (a) B = 0.0 and

(b) B = 1.0.

In Figure 3, we have also included a linear fit as straight lines: solid for B = 0.0 and

dashed for B = 1.0. This allows us to obtain the intersects for the thermodynamic limit:

U(Q, ∞, T∗)/N. Then, we can calculate the percent deviation ϵ of the L = 128 results with

respect to these limiting values, namely,

ϵ = 100 ×
U(Q, 128, T∗)− U(Q, ∞, T∗)

U(Q, 128, T∗)
. (8)

The values of this parameter are reported in a table within each panel in Figure 3,

including here the case Q = 2 that was not plotted.



Entropy 2025, 27, 11 6 of 17

The values reported for L = 128 are near what can be expected for U/N in the

thermodynamic limit. Actually, the largest deviation observed is only 1.1%. From now on,

we will analyze the results for L = 128 as a representative of the thermodynamic limit.

(a) (b)

Figure 3. Normalized internal energy U/N as a function of the inverse of the lattice size 1/L, for

different Q values, namely, 4, 6, and 8, and two values of the magnetic field B = 0.0 and B = 1.0. The

left panel (a) corresponds to a low-temperature value, T = 0.5, while the right panel (b) corresponds

to a high-temperature value of 3.5.

4. Analysis of Thermodynamic Quantities

We will begin by reviewing the thermodynamic results of the model, focusing first on

the analysis of the specific heat for a 128 × 128 lattice. This thermodynamic quantity for a

field B = 0 and field B = 1 is shown in Figure 4a,b, respectively, for Q = 2, 4, 6, 8. Here, we

observe two peaks for Q ≥ 6, indicative of a double-phase transition. It is, therefore, the

BKT phase that appears in these cases. It is also noticeable that the critical temperature of

each transition increases as B increases, and their associated peaks are less pronounced, as

we can observe when comparing Figure 4a,b. This is because the external magnetic field

favors ordered phases (FM and BKT) over disordered ones.

(a) (b)

Figure 4. Normalized specific heat C/N as a function of temperature for even Q values between

Q = 2 and Q = 8 and a 128 × 128 lattice. (a) B = 0.0; (b) B = 1.0. The shift of the peaks to the right at

B = 1.0 is clearly seen for all Q.

Following with the 128 × 128 lattice, its internal energy as a function of T is shown

in Figure 5a, where we can observe that lower values are obtained when B = 1.0 (blue

curves) than when B = 0.0 (purple curves). This is due to the Zeeman term present in the

Hamiltonian given by Equation (1), which decreases the ground-state energy compared to

the case in the absence of a magnetic field. Figure 5b shows the magnetization M of the

system for Q = 2, 4, 6, and 8 for B = 1 (blue curves) and B = 0 (purple curves). First, we

notice that all systems start saturated (in a ferromagnetic state), and then M decreases as T

increases. The cases with B = 1.0 show higher magnetization than those with B = 0.0 as T

increases for all Q displayed. It is observed that the change in magnetization as a function
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of temperature happens much faster for larger Q values. This is a direct consequence of the

degrees of freedom of the system. For example, we can think of Q = 2, where two possible

orientations for the spin are up and down. In terms of energy, generating a flip of such a

configuration is much more difficult. Therefore, the magnetization will be higher for low Q

than for higher values of Q at the same temperature.

(a) (b) (c)

Figure 5. Normalized (a) internal energy, (b) magnetization, and (c) entropy as a function of

temperature for even values of Q between Q = 2 and Q = 8 and a 128 × 128 lattice. B = 0.0 (purple

curves); B = 1.0 (blue curves).

Next, we analyze the entropy in Figure 5c. We observe that for a given Q, the entropy

is lower when B = 1 (blue curves) than for the case of B = 0 (purple curves). This is

consistent with the interpretation that the magnetic field tends to order the spin system.

Also, it is noticeable that for more spin degrees of freedom (as Q increases), the entropy is

higher as a function of temperature, which is consistent with the more significant number

of accessible states the system acquires as Q increases. These curves show that the entropy

fulfills limT→0 S(T, B ̸= 0) = 0 because, with even a very low field value, the system at

low temperature tends to have only one preferred state due to the presence of the external

field applied to the system. It is important to remember that in the case of a null field, the

entropy at low temperature has the value of limT→0 S(T, 0) = ln Q. It should be noted

that the entropy in Figure 5 is normalized to the total number of spins in the lattice, i.e.,

S(T, B)/N. This implies that the quantity S0/N is very small when the field tends to zero

(and strictly zero with B ̸= 0). In the case of the lattice size 128 × 128 displayed in Figure 5,

this number would be given by ln(Q)/16384, in which the most significant value would be

provided for Q = 8, offering a correction of the order of 10−4.

5. Magnetocaloric Phenomena

To analyze the magnetocaloric effect, we start by treating the total entropy of a material

as the sum of three entropies: electronic Se, magnetic Sm, and lattice Sl .

S(T, B) = Se(T, B) + Sm(T, B) + Sl(T, B). (9)

It is essential to mention that the latter equation presumes the separation of the

orbital, magnetic, and lattice degrees of freedom. This assumption does not always hold,

as evidenced by systems exhibiting Jahn–Teller interactions or magnetoelastic coupling,

where these degrees of freedom are intertwined [53–56].

Magnetic entropy (Sm) strongly depends on the magnetic field. Conversely, it is

typically observed that many materials’ electronic and lattice entropies are mainly in-

dependent of the magnetic field. However, this is not universally applicable; notably,

in low-temperature regimes (approximately below 10 K), some studies suggest that the

electronic entropy may exhibit nonlinear dependence on the magnetic field [57].

In this study, we consider a more conventional system where the magnetic field does

not influence the lattice and electronic entropies, allowing us to reformulate Equation (9) as
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S(T, B) ≃ Se(T) + Sm(T, B) + Sl(T). (10)

The quantification of the caloric phenomenon is associated with a thermodynamic

refrigerator cycle, where we can take two paths to quantify the effect: (i) an adiabatic

trajectory and (ii) an isothermal trajectory. The temperature variation that suffers the

systems along the isentropic process is ∆Tad and is given by

∆Tad = −
∫ B f

Bi

T

CB

(

∂S

∂B

)

T

dB, (11)

where we use CB =
(

∂U
∂T

)

B
= T

(

∂S
∂T

)

B
that corresponds to specific heat at constant B.

In the case of quantifying the effect employing an isothermal trajectory, we obtain an

entropy variation at constant temperature, ∆S, given by

∆S =
∫ B2

B1

(

∂S

∂B

)

T

dB. (12)

The quantity
(

∂S
∂B

)

T
that appears in the last two equations can be rewritten in terms of

the magnetization of the system via Maxwell’s relationship
(

∂S
∂B

)

T
=
(

∂M
∂T

)

B
.

If we look at Equations (11) and (12), we can find a relationship between these quan-

tities. It is found that −∆S ∝ ∆Tad. Consequently, it is essential to note that when one

has a case in which −∆S > 0, we call this kind of response a direct type. The system will

heat up, while when the response is −∆S < 0 type, we call this an inverse-type response,

and consequently, the system will cool down. Therefore, we expect in a direct response a

∆Tad > 0, and for the case of an inverse response, we expect a ∆Tad < 0 for the final result

of the caloric phenomena.

For the case of the entropy variation at constant temperature T, the magnetocaloric

expression can be given by the difference in the entropy at the initial and final point of the

process as

−∆S ≃ −∆Sm ≃ Sm(T, B0)− Sm(T, B), (13)

where the contributions of Sl and Se seen in Equation (10) vanish due to their dependence

only on temperature, and consequently, in an isothermal process (as the one we analyze here),

they do not have associated variations as B changes. Equation (13) generates a graph of −∆S

as a function of T for a given B0 and final B that quantifies the magnetocaloric phenomena.

For the temperature and magnetic field ranges we use in our calculations, we fix the

zero value of temperature at T = 0.01, while the smallest field we work is B = 0.0. On the

other hand, the maximum temperature corresponds to T = 4.02, and the magnetic field of

B = 1.0, all in J units.

6. Results

6.1. Direct or Indirect Caloric Response?

To understand the caloric response of the system, let us start the analysis with a simple

example for Q = 2, the top left panel in Figure 1b, and lattices increasing in size from 8 × 8

to 128 × 128. The entropy difference that quantifies the MCE in Equation (13) is given by

−∆S = S(T, 0)− S(T, B), where we have selected B0 = 0. This entropy difference is plotted

for different final magnetic fields of B = 0.2 and B = 1.0 as a function of the temperature T

at which the process occurs, as shown in Figure 6a. We note that the response of the effect

is positive for both presented cases of different B, which indicates a direct-type behavior for

the MCE. It is also observed that for a lattice of 128 × 128, and below T ∼ 1.3, the thermal
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response of the effect for B = 0.2 and B = 1.0 is the same. The latter also occurs for smaller

lattices but for lower temperatures than 1.3.

(a) (b)

Figure 6. Normalized entropy difference −∆S = S(T, B0 = 0)− S(T, B) as a function of temperature

for lattices sizes from 8 × 8 to 128 × 128 sites, and B = 0.2 (lower curves) and B = 1.0 (upper curves).

(a) Q = 2; (b) Q = 8.

As the temperature increases after T ∼ 1.3, it is observed that the case for B = 1.0 is

notably different from the one with B = 0.2, as the peaks for B = 1.0 are larger and shifted

to higher T for all the lattice sizes. The explanation of this phenomenon is relatively simple.

The system prefers to be in a ferromagnetic configuration (i.e., in a single configuration

state) in an external magnetic field up until it reaches a maximum in −∆S. Removing the

spin ordering from this state requires a considerable temperature increase in energy. This is

reflected in the entropy for Q = 2 and a 128 × 128 lattice for B = 0 and B = 1, where both

entropies are equal up to T ∼ 1.3, and then they separate as T increases, see the two lower

curves in Figure 5c.

Using the same criteria previously discussed, we will obtain similar behavior associ-

ated with the sign of −∆S for different Q values. That is to say, we will obtain a response

of the direct type −∆S > 0 for Q = 8 even independent of the lattice size, as can be

appreciated in Figure 6b. This is because the entropy without an external magnetic field is

always greater than the entropy for any non-zero magnetic field value for any value of Q,

as we can see for the lattice of 128 × 128 sites in Figure 5c.

In addition, we observe by comparing both panels (a) and (b) of Figure 6 that the

maxima for −∆S/N with 32 × 32 and 128 × 128 lattice sites do not present significant

variations, either in the magnitude or T value where they are located along the horizontal

axis. This statement is even more noticeable in the case of Q = 8 in Figure 6b, indicating

that as the lattice size and Q increase, the entropy change curves tend to be similar for

the T range and B values we are considering in these calculations. It is also important to

emphasize that an inverse effect −∆S < 0 can be obtained in an isothermal process, starting

from a higher magnetic field and going to a lower magnetic field. Still, it is much more

natural to have a system without a magnetic field and activate an external field on the spin

system afterward.

For the larger Q value, we are considering Q = 8 in Figure 6b; it is observed that the

MCE is more significant for the second transition in all the presented lattice sizes, as seen

by the larger maxima in the temperature range from T = 1 to T = 1.5. This applies to

large lattices constructed with Monte Carlo simulations and mean-field theory. However,

using an exact formulation performed on the canonical ensemble, the opposite is true for

small lattices (e.g., a 3 × 3 lattice, see Figure A1b for Q = 8). Since we are focusing on the

thermodynamic limit, we will not delve further into the effect of small lattices in the main

text of our work. However, to complement this study, we have added a full Appendix A

on exact and mean-field calculations for small systems.
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6.2. What Q Value Has the Better Magnetocaloric Response?

We have to consider two temperature regimes to answer which value of Q maximizes

the magnetocaloric effect. Since, in our model, the temperature is in units of J , it is

convenient to think of two temperature regimes, the first one for 0 < T < 1 and the second

one for T > 1.

From Figure 7, we observe the magnetocaloric response for the 128 × 128 lattice with

even Q values. Due to the double-phase transition in the model for Q > 5, both Q = 6 and

Q = 8 (circle symbols) display two distinct maxima in the caloric effect as a function of T.

The first maximum (from left to right in T) is associated with an FP-BKT phase transition and

the second maxima with a BKT-PP transition. For both Q = 6 and Q = 8, at temperatures

T < 1, the magnitudes of −∆S are nearly the same, but the first maximum occurs for Q = 8,

reaching its peak at a lower temperature than Q = 6. This trend aligns with the expected

behavior of our model, where increasing the spin degrees of freedom Q allows for similar

caloric responses at progressively lower temperatures. As Q increases, the temperature

at which the FP-BKT transition occurs shifts leftward, approaching zero in the theoretical

limit as Q tends to infinity. In the higher temperature region T > 1, we observe that the

caloric effect for Q = 8 slightly surpasses that of Q = 6, particularly near the BKT-PP

transition. This suggests that, for Q > 5, the BKT-PP transition becomes more pronounced

with increasing spin degrees of freedom Q, amplifying the caloric response as Q grows.

Figure 7. Normalized magnetocaloric effect for a 128 × 128 lattice using Monte Carlo simulations for

the case of Q = 2 up to Q = 8 and external B = 1.0.

If we only focus on the maximum magnitude of the MCE and not its location in

temperature, this is given for Q = 4 for any lattice size. This is due to the sharp peak

observed in the specific heat for Q = 4 without an external magnetic field, as seen in

Figure 4a. If we compare this peak with the one obtained when B = 1.0 (Figure 4b), the

magnitude peak decreases almost by half, the most remarkable decrease in all the peaks

observed for all the Q studied. This will generate significant entropic differences and a

higher associated caloric effect, as shown in Figure 7. Opposite is the case for Q = 2, which

has the lowest caloric effect, with its maximum at a higher temperature, thus being the least

advantageous for the caloric phenomenology.

As a final comment, we need to clarify the role of the Berezinskii–Kosterlitz–Thouless

(BKT) phase in our study. For Q ≥ 5, the system exhibits an intermediate phase charac-

terized by the quasi-long-range order, where spin correlations decay algebraically due to

the presence of vortex–antivortex pairs. In a zero magnetic field, this phase is associated

with zero magnetization, as the order parameter is non-local. However, in the presence

of a non-zero external magnetic field, the Zeeman term in the Hamiltonian breaks the

symmetry and induces a finite magnetization, even in the BKT phase. This external field
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modifies the behavior of the BKT transition, while retaining its essential features, such as

power-law spin correlations. The appearance of a double peak in the specific heat for Q ≥ 5

highlights this phase transition, leading to a “shoulder” in the entropy that enhances the

magnetocaloric effect near the temperature of the first specific heat peak.

7. Conclusions

This study investigated the magnetocaloric effect (MCE) in a Q-state clock model on

a square lattice using Monte Carlo simulations, focusing on spin systems with varying Q

orientations. By examining Q values from 2 to 8 across different lattice sizes under free

boundary conditions, we quantified the MCE through isothermal changes in the external

magnetic field, using system entropy as a key metric.

Our results demonstrate that the magnetocaloric effect can be significantly enhanced

through the precise control of the spin degrees of freedom. Specifically, for Q ≥ 5, the

system undergoes a double-phase transition characterized by two distinct peaks in specific

heat, which correlate with an enhanced caloric response. At lower temperatures (T < 1 ),

systems with Q = 6 and Q = 8 exhibit a notable caloric effect driven by the ferromagnetic

(FP)-to-Berezinskii–Kosterlitz–Thouless (BKT) transition. Although this transition occurs

at different temperatures for each Q value, the resulting caloric response remains nearly

identical, indicating that increasing the spin orientations shifts the transition temperature

while preserving the effect’s magnitude.

The behavior observed for Q = 4 is particularly noteworthy, as it presents a single,

pronounced peak in the specific heat, maximizing the MCE at a single critical temperature.

Unlike higher Q systems, which involve more complex double-phase transitions, the Q = 4

case offers an efficient entropy change with simplified thermal control, suggesting its

potential utility in applications where streamlined caloric responses are advantageous.

In summary, this study provides a deeper understanding of how spin orientations

within the Q-state clock model influence the magnetocaloric effect (MCE), offering critical

insights for optimizing caloric responses in magnetic refrigeration and other thermody-

namic systems. These findings not only advance the theoretical comprehension of phase

transitions in multi-state systems but also reveal practical strategies for harnessing these

phenomena across diverse domains of statistical physics, such as neural networks, biologi-

cal systems, and percolation theory. The framework established here opens new pathways

for future research into optimizing thermodynamic efficiency in spin-based materials, with

promising implications for a range of applied technologies.
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Appendix A. Exact and Mean-Field Approximation

In this section, we analyze two cases where the MCE calculation comes from an

entropy that can be derived directly from a canonical partition function (Z). The first

corresponds to an exact calculation of all the accessible microstates of the system for a 3 × 3

lattice for Q = 2, 4, 6, and 8. In this framework, it is then possible to obtain Z analytically,

and hence, all the thermodynamic quantities can be derived from it.

The second corresponds to the mean-field theory that assumes that the fluctuations

around the average value of the order parameter, in this case, the magnetization per site

m⃗ = M⃗/N, are so small that they can be neglected. The first term of the Hamiltonian of

Equation (1) that corresponds to the interaction term between the spin of the lattice in

different sites is modified by performing the following approximations.

We can write the spin term as follows:

S⃗j = m⃗ + δS⃗j, (A1)

where m⃗ is the average thermodynamic spin, the same for all the sites in the lattice. There-

fore, we have

δS⃗j = S⃗j − m⃗j. (A2)

Thus, the spin–spin interaction term can be written as

S⃗i · S⃗j = −m2 + m⃗ ·
(

S⃗i + S⃗j

)

, (A3)

where we have neglected the square terms of the fluctuation (O(δS⃗)2). Therefore, the

interaction term of the Hamiltonian of Equation (1) (that we call HJ) can take the form

HJ = −J ∑
⟨i,j⟩

(

−m2 + m⃗ ·
(

S⃗i + S⃗j

))

= ∑
i

(2J m2 −J zm⃗ · S⃗i), (A4)

where now the sum runs for each site in the lattice, and z is the effective nearest neigh-

bor of the model. Consequently, we can define a Hamiltonian per site given by the

following structure:

hi =
z

2
J m2 −J zm⃗i · S⃗i − B⃗ · S⃗i. (A5)

Now, we can calculate the partition function per site, which will depend on Q, B, m,

and T given by

Z(q, B, m, T) = ∑
q

e−
ξ(q,B,m)

T , (A6)

where ξ(q, B, m) is the energy per site coming from the Hamiltonian of Equation (A5).

To extrapolate the results of the mean-field approximation of the thermodynamic

quantities in smaller lattices, in Ref. [43], we discuss the idea of finding an effective nearest

neighbor (ze f f ) through a simple optimization protocol. This protocol matches the internal

energies obtained for a lattice of L × L with L = 3 employing exact and mean-field calcula-

tions. In this way, by releasing the number of neighbors, ze f f ∈ R
+, and minimizing the

internal energy difference (between the exact and approximate case via the mean field), it

was found that for L = 3, the optimal number of neighbors was ze f f = 2.67 (for all values

of Q).
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Amplifying the above qualitatively, we propose an expression for the effective number

of near neighbors that adjusts according to the weighting of the effect of non-interacting

edges in the system when the lattice has a generic resolution L × L. The effective neigh-

bors for a central spin for the mean field are determined by the following expression

(independent of Q) for the square lattice with up, down, left, and right near neighbors [43]:

ze f f =
4 × (L − 2)2 + 3 × 4 × (L − 2) + 2 × 4

L2
. (A7)

Once the partition function of the system has been obtained by either of the two

approaches discussed above, it is possible to compute all the thermodynamic observables

in a general way through the expressions (with kB = 1 ):

F = −T ln Z, (A8)

U = T2

(

∂ ln Z

∂T

)

B

, (A9)

and

C =

(

∂U

∂T

)

B

, (A10)

where F is the Helmholtz free energy, U is the internal energy, and C is the specific heat at

the constant magnetic field. In addition, with the differential expression of the Helmholtz

free energy given by dF = −SdT − MdB, we can obtain the entropy and the magnetization

of the system given by

S = −

(

∂F

∂T

)

B

; M = −

(

∂F

∂B

)

T

. (A11)

Small Lattices

We will now analyze the MCE for different values of Q on the 3 × 3 lattice, both in the

exact case and using the mean field. This is presented in Figure A1, where the cases for

a final field of B = 0.1 (panel (a)) and the case of B = 1.0 (panel (b)) with an initial field

of B = 0.05 are shown. We first notice that for the value of Q = 4, what was observed for

Q = 2, associated with the location of the maximum temperature effect for both methods,

is also true. As the magnetic field increases, the maximum temperature locations become

closer. However, a considerable error is obtained when extrapolating mean-field solutions

for small lattices, and it has to do with the location of the maximum (or maxima) at −∆S

when we have the cases Q = 6 and Q = 8 as we can appreciate in Figure A1b. From

this last figure, it can be seen that both Q = 6 and Q = 8 present two maxima in −∆S,

vestiges of the double transition present for those values of Q in the model, both for the

mean field and the exact calculations. We note that the exact calculations indicate that the

peak at the lowest temperature is where the most remarkable effect occurs, while the mean

field suggests the opposite; the second peak indicates the maximum value of the effect. In

addition, from Figure A1a, we observe that in the exact case for the same parameter and

lattice configuration, the maximum of the effect is slightly higher for Q = 6 and 8 than for

Q = 4. Meanwhile, the mean field indicates that the ordering of the effect from highest to

lowest is Q = 4, Q = 6, Q = 8, and, finally, Q = 2. In contrast, from Figure A1b, we can see

that the most prominent effect is obtained for Q = 4 independent of the calculation method.

This is remarkable since previous studies found that when applying thermodynamic cycles

using the Q-clock model as the working system, the maximum efficiency and useful work

are obtained for the parameter Q = 4 [43]. These two cases, therefore, indicate that there

is a field value at which this inversion observed in the effect maxima occurs. For this
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purpose, we plot in Figure A2 the value of the maximum −∆Smax as a function of the field

independent of the location in the temperature at which it occurs both for the mean field

and for the exact calculation. From this plot, we can notice that in the exact case, Q = 6 and

Q = 8, responses higher than Q = 4 and Q = 2 are observed up to a field of approximately

∼0.26. After that value, the effect is ordered in the same way as the mean-field results, i.e.,

in the following form:

−∆SQ=4
max > −∆SQ=6

max > −∆SQ=8
max > −∆SQ=2

max , (A12)

with the equation valid only for a final B > 0.26.

(a) (b)

Figure A1. Caloric response for a 3 × 3 lattice with an initial field of B=0.05 and a final field of

(a) B = 0.1 and (b) B = 1.0 for the exact and mean-field cases for Q = 2, 4, 6, and 8.

Figure A2. Maximum caloric response (−∆Smax) as a function of the applied external field between

0.1 and 1.0 for a 3 × 3 lattice with an initial magnetic field B = 0.05 for Q = 2, 4, 6, and 8 employing

exact calculations (solid lines) and mean-field calculations (dashed lines).

From Figure A2, we can also confirm what happens when estimating the maximum

effect between the exact and mean-field calculations. Although the mean field and exact

differ quite a bit in the temperature location of the maximum point, if we focus only on the

numerical value of effect maximization at −∆S, the mean field does not show significant

variations compared to the exact calculation, even for a small lattice, as shown in this study.

The dotted curves in Figure A2 representing mean-field calculations differ very little from

the solid lines of the exact case, with the most considerable difference observed for Q = 4

and the minor discrepancies for Q = 6 and Q = 8. From this tendency, we can conclude

that for values larger than Q = 4, the numerical estimate of −∆S will be closer between the

two methods presented. We can say that the mean field is helpful in this context, even for

small lattices, in the numerical estimation of the maximum effect. However, it fails logically
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in the location of the temperature where it occurs because the nature of the approximation

used is regularly employed for lattices of larger sizes.

An interesting point to discuss is the location in temperature where the maximum

value of the effect is given compared to the critical temperature (Tc) of the different phases

present in the model. This is shown in Figure A3, which represents a plot of T vs. B for

(a) Q = 2 and Q = 4 and for (b) Q = 6 and Q = 8. To understand these plots, we will

start with the cases Q = 2 and Q = 4 presented in Figure A3a. We must think that the

variation in the effect is given by −∆S = S(T, B0 = 0.05)− S(T, B) and hence is described

by a spin system starting with an entropy of the form S(T, B0 = 0.05). This quantity has

associated a specific heat C(T, B0 = 0.05) that defines a critical temperature represented

by horizontal lines in Figure A3a. On the other hand, the continuous lines represent the

final entropy state S(T, B), which has an associated specific heat C(T, B), which will deliver

as the field changes different critical temperature values, indicating the respective phase

transition for these cases. The graphs with geometrical figures (triangular for Q = 2 and

square for Q = 4) are the points where, for a given field, −∆S is the maximum. Precisely,

the intersection between the curve with geometric figures and the dotted horizontal one

generates, for Q = 2 and Q = 4, two possible regions where the system maximizes its effect.

Under a field value given by the vertical black line, the system maximizes its effect in a

region where the system starts in a ferromagnetic phase (FPB0
) and ends in a ferromagnetic

phase (FPB). In contrast, past the critical field value found, the system maximizes the caloric

response, starting from a paramagnetic phase (PPB0
) and ending in a ferromagnetic phase

(FPB). The same analysis can be made if we recall that for the exact case of Q = 6 and

Q = 8, the peak of the effect was concentrated in the first peak of Figure A1 and, therefore,

more oriented to transitions relating to the BKT and FP phases. This is shown in Figure A3b,

where the maxima are concentrated when the system remains in a ferromagnetic phase or

involves transitions linking the BKT and FP phases. We note that the maxima of the effect

for Q = 8 are much closer to the Tc of the first phase transition related to an FP-BKT-type

transition of the final state of the spin system than what occurs for the case of Q = 6.

(a) (b)

Figure A3. T vs. B phase diagram for (a) Q = 2 and Q = 4 and for (b) Q = 6 and Q = 8. The

solid lines for (a) represent the critical temperatures of the FP-PP-type transition of the final state

of the spin system S(T, B), while for (b), the solid lines represent the critical temperatures of the

FP-BKT-type transition of the final state of the spin system S(T, B). For (a), the light blue triangles

indicate the maximum obtained from −∆S = S(T, B0 = 0.05)− S(T, B) with Q = 2 and the green

squares indicate the same but for Q = 4. The same applies to Q = 6 represented by magenta circles

and Q = 8 with blue circles. The horizontal dotted lines indicate the critical temperature of the

S(T, B0 = 0.05) state for Q = 2 (light blue), Q = 4 (green), Q = 6 (magenta), and Q = 8 (blue). The

black vertical dotted lines (for panels (a,b)) represent the location where the systems maximize −∆S

passing through an effective phase change.
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